Learning Causal Overhypotheses through Exploration
in Children and Computational Models

Jiakun Liu

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-134
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-134.html

May 17, 2022




Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would first like to thank my research advisor Professor John Canny and
my men-

tor David Chan. | would also like thank my collaborators Eliza Kosoy,
Jasmine Collins,

Bryanna Kaufmann , Rosemary Nan Ke, Jessica B Hamrick and Sandy
Han Huang for their

contributions, and professor Alison Gopnik for her guidance. Finally, |
would also like to

thank research assistants Andy Liu, Janie Dent, Athena Leong, Eli Phipps,
Jenna Levin,

Nikita Kumar and Zane Levine for their meticulous work



Learning Causal Overhypotheses through Exploration in Children and
Computational Models

by Adrian Liu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Canny
Research Advisor

(5/17/22)

H sk ok sk sk ook ok

Professor Alison Gopnik
Second Reader

Ao, G

May 11, 2022



Learning Causal Overhypotheses through Exploration in Children and Computational
Models
by

Adrian Liu

A techinal report submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor John Canny, Chair
Professor Alison Gopnik

Spring 2022



Learning Causal Overhypotheses through Exploration in Children and Computational
Models

Copyright 2022
by
Adrian Liu



Abstract

Learning Causal Overhypotheses through Exploration in Children and Computational
Models

by
Adrian Liu
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor John Canny, Chair

Despite recent progress in reinforcement learning (RL), RL algorithms for exploration still
remain an active area of research. Existing methods often focus on state-based metrics,
which do not consider the underlying causal structures of the environment, and while re-
cent research has begun to explore RL environments for causal learning, these environments
primarily leverage causal information through causal inference or induction rather than ex-
ploration. In contrast, human children—some of the most proficient explorers—have been
shown to use causal information to great benefit. In this work, we introduce a novel RL
environment designed with a controllable causal structure, which allows us to evaluate ex-
ploration strategies used by both agents and children in a unified environment. In addition,
through experimentation on both computation models and children, we demonstrate that
there are significant differences between information-gain optimal RL exploration in causal
environments and the exploration of children in the same environments. We conclude with
a discussion of how these findings may inspire new directions of research into efficient explo-
ration and disambiguation of causal structures for RL algorithms.
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Chapter 1

Introduction

Exploration is a fundamental problem in reinforcement learning (RL). In order to act on
the world effectively, an agent needs to be able to efficiently and actively gather information
about how the environment works. Gathering causal information is particularly helpful for
action planning and generalization [22, 44, 24]. For example, if the agent’s task is to turn on
a lamp, the corresponding causal relationship is that the lamp will turn on only if all of the
following are true: 1) the switch is flipped to the on position, 2) the lamp is plugged into a
source of electricity, and 3) the light bulb is working. Understanding this causal relationship
enables the agent to systematically diagnose a problem—if, for instance, it is in a new room
and flips the switch to on but the lamp does not turn on—and systematically explore to find
solutions.

Existing RL exploration methods typically do not focus on such causal exploration: they
do not form and test causal hypotheses, or plan active interventions to obtain causal data [3].
Instead, existing RL exploration methods primarily focus on expanding the set of experiences
of the agent, for instance by visiting novel or surprising areas of the state space. This may
be sufficient for the agent to solve the particular task it is trained for, but limits its ability
to generalize to new tasks and environments [41, 10]. Although there is growing interest in
causal learning in RL, this work has focused on extracting a particular underlying causal
graph from given data in a particular environment [35, 24, 50]. There is very limited amount
work that attempts to utilize causal information for exploration in RL, or to learn abstract
causal structure through exploration.

How might we integrate causal learning and reasoning into exploration in RL agents? We
propose to draw inspiration from cognitive science. In contrast to RL agents, even young
children learn and reason about causal relations and actively explore to collect causal data.
Moreover, they can learn and use causal overhypotheses—hypotheses about which classes
of causal relationships are more or less likely [25, 28]. Causal overhypotheses are a key
component that allows humans to learn causal models from a sparse amount of data [21],
because they can help narrow down the possible causal relationships that we consider and
test.

In the previous light example, suppose that we enter a new apartment, and want to turn
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on the lights in the living room. If we lacked any causal overhypothesis about what causes
a light to turn on, then this would be an essentially hopeless task. We might try knocking
on the wall, shuffling on the carpet, rotating the lamp, and so forth—the way that an RL
agent starts out acting in an environment in which it has no prior experience. Instead, if
our causal overhypothesis is that flipping a light switch on the wall will turn on one or more
lights, then that helps our hypothesis testing. We might try flipping various combinations
of light switches in the apartment, and quickly identify the correct causal relationships.

In our experiments, we draw inspiration from the blicket detector experiment [16], which
is a classic setting for evaluating causal learning and reasoning in children. Blocks are placed
on a “blicket machine”. Some blocks are “blickets” and the blicket machine lights up when
blickets are placed on it, according to some rule. The participants must learn which blocks
are blickets, and use those blocks to activate the machine.

The blicket machine requires children to learn the structure of a novel causal system,
and allows researchers to present children with relatively complex patterns of statistical
correlation and intervention. It does so in a concrete, simple and intuitive way. As a result,
a large body of studies using this method have demonstrated a remarkable range of causal
inference capacities in children as young as 18 months [19, 12, 14, 18, 15, 17, 26, 28, 33]. In
particular, studies have tested how well children learn more abstract overhypotheses about
the rules by which the machine works. For example, the causal relationship can be either
disjunctive or conjunctive [28]. In the disjunctive case, if at least one blicket is placed on
the machine, then it lights up. In the conjunctive case, at least two blickets must be placed
on the machine in order for it to light up. Participants must infer whether the machine is
conjunctive or disjunctive. Interestingly, prior work has found not only that that children
can learn these overhypotheses from data, but also that they are more flexible than adults
in these tasks. They are better at learning unusual overhypotheses, like those involving
conjunctive causal relationships [28, 20]

However, in prior experiments investigating causal overhypotheses, children are given
the relevant data by the experimenter rather than generating the data themselves through
causal exploration. Could children also actively generate data that would allow them to learn
the right causal overhypotheses? And would causal overhypotheses shape their exploration?
Developmental psychology has found that children are active and curious learners, with
strong intrinsic motivation to systematically explore their environment [47, 46]. Even young
children engage in hypothesis-testing behavior in settings with ambiguous [12] or inconsis-
tent [27] evidence. However, there is limited prior work on spontaneous causal exploration
in children and none on how causal overhypotheses affect children’s exploration.

In this work, we seek to understand how young children, between the ages of four and
six, explore and learn causal structure and how their exploration compares to that exhibited
by typical ideal observer or RL models. In particular, we investigate how children use
exploration to learn causal overhypotheses and how causal overhypotheses influence their
exploration. We first show them specific sequences of interactions with the blicket machine,
which are consistent with either a disjunctive, conjunctive, or ambiguous causal relationship.
We then give them as much time as they want to experiment with a new blicket machine, to
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“figure out how to make it go.” We find that children exhibit rich and diverse exploratory
behavior, and that their overhypotheses are indeed influenced by their prior exposure to the
environment. In contrast, we consider an ideal learner with a particular causal overhypothesis
and find that its exploratory behavior in this task is quite different from that of children.
We conclude by discussing how our findings can inform the development of RL agents that
are capable of causal exploration, learning and reasoning. Our findings cannot be directly
applied to existing RL algorithms, but rather may inspire entirely new directions of research.

To summarize, the main contributions of this report are as follows. 1) We develop an
online environment based on the classical blicket machine [16] which can be used with both
children and agents. 2) We collect experimental data from children in this environment, and
demonstrate that they exhibit diverse structured exploration strategies, and that they learn
from this exploration. 3) We compare children’s exploration strategies with a set of simple
ideal observer models, and show that children’s actions do not directly reflect either simple
overhypothesis information gain or reward maximization. The results suggest that children
rely on a broad set of causal assumptions and exploration behaviors that may generalize
to many environments. This paves the way for future research which will enable artificial
agents to exhibit richer, causally motivated, exploration strategies.



Chapter 2
Related Work

The relevant previous work includes studies of exploration in reinforcement learning (RL),
multi-task RL, causal learning in RL, and various versions of the blicket environment used
in cognitive science experiments.

Exploration in reinforcement learning Causal exploration is a relatively understudied
area in reinforcement learning. Most techniques do not consider explicit causal hypotheses,
but instead rely on adding an exploration bonus to the task reward. This exploration bonus
may be given for visiting novel states [5, 40, 31, 49, 29], surprising dynamics [45, 43],
uncertainty [39, 7] or disagreement [42]. Please refer to [3| for a comprehensive survey of
exploration in deep reinforcement learning. Our proposed work using the blicket environment
lays the groundwork for potential exploration algorithms based on the empirical exploration
patterns of children in causal environments.

Multi-task learning in reinforcement learning There are several benchmarks for
multi-task learning for robotics [51, 23], for physical reasoning [2, 4] and video games [9,
30, 37, 8]. The relevant causal overhypotheses for these environments are not clear, however,
making it difficult to evaluate the influence of causal information on agents’ exploration. In
our work, we introduce a novel blicket environment, where the causal overhypotheses are
clearly defined.

Causal learning in reinforcement learning In recent years several reinforcement learn-
ing benchmarks and environments for causal discovery have been proposed. The first group
provide realistic simulations that capture of causal relationships in the real world. Causal
World [1] provides simulations where the agent controls a robotic arm to perform a distribu-
tion of tasks such as push, picking and stacking blocks. It allows the experimenter to design a
wide range of tasks that share the same causal structure. Similarly, Causal City [32] provides
a realistic navigation environment for driving simulation. It contains rich causal information
in the form of behaviors of drivers, pedestrians, traffic lights and other environment features.
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Both of these examples involve different tasks with shared causal structures that are fixed,
such as laws of physics or the behavior of pedestrians, and are primarily concerned with
how causal knowledge learned from one task can be transferred to another. This encourages
the agent to store specific causal knowledge in its network parameters, rather than learn a
exploration strategy so that it can discover the causal structure in an unseen task.

Another group of benchmarks and environments are more closely related to our work
in that they use a meta-RL paradigm where the causal structure is randomly generated
for each episode. Thus the agent needs to determine the causal structure for every task it
sees. Alchemy [50] involves a task where the agent plays the role of a chemist, and needs to
figure out what each potion does to each stone. The specific set of rules for which potions
interact with stones is called a ”chemistry”, and is randomly generated each episode. More
interestingly, Alchemy provides two different interfaces for the agent: an embodied version
where the agent needs to visually understand the environment and navigate through space to
interact with the objects it wants, and a symbolic version where both the observation space
and action space are simplified to only include essential features and meaningful actions.
One might expect the agent to perform better in the symbolic version since it does not need
to learn visuospatial and motor skills. However, the researchers found that current state-
of-the-art RL methods do equally poorly in both versions, providing evidence that causal
reasoning a serious bottleneck in current RL methods. [13] is very similar to the symbolic
version of Alchemy in that the agent can see the values of nodes of a causal graph, but
not the edges in that graph. The agent can perform interventions by forcing a node to a
particular value, and letting the node values be re-sampled. Both examples above involve
two kinds of learning: an ”inner loop” where the agent performs experiments to learn the
causal structure that is specific to that episode, and an ”outer loop” where the agent learns
the ability to discover causal structures.

Finally, ACRE [52] is very similar to our approach in that it uses also uses the blicket
detector paradigm and has essentially the same hypotheses space as ours. The main difference
is that ACRE focuses on causal reasoning after the relevant observations have been generated
by the experimenter, rather than letting an agent explore the causal relationships in an RL
setting.

In conclusion, most environments are concerned with causal induction or generalization,
rather than focusing on exploration [though see 48]. We instead focus on developing an
environment with a controllable causal structure designed to allow us to measure the agents’
ability to explore using causal overhypotheses. Moreover, none of these environments have
been used with children. In fact, most of the environments discussed above either focus on
causal knowledge that children are already familiar with in their daily lives(such as the laws
of gravity), or are so complicated that children are not expected to perform well. Moreover,
the complexity of those environments make it very hard to directly analyze and understand
the exploration strategies of the agents, forcing us to only compare numeric metrics such
as reward values. We aim to put agents and children in exactly the same environments,
allowing us to use information about the real life causal exploration of these very effective
child causal learners to inform agents.



Chapter 3

The Virtual “Blicket Detector”
Environment

Although there is a large body of work on causal learning in children, and some experi-
mental studies of active learning in the lab, as noted above, there are no studies analyzing
children’s spontaneous actions as they freely explore the blicket machine, and none looking
at how such exploration might lead to the learning of overhypotheses or how overhypotheses
might influence learning.

We introduce a virtual, internet-hosted, representation of the standard blicket detector
[16, 28] which is suitable not only for interaction with children, but also enables an ezact
comparison between children and reinforcement learning agents through an inferface with

4 O

Figure 3.1: Screenshot of our virtual blicket detector. Children can interact with the blicket
detector through a touch interface on an iPad, or through a point and click interface on any
web-enabled machine.
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OpenAl Gym [6]. In particular, this environment allows us to precisely record and analyze
both children’s and agent’s actions. Unlike previous experiments [16, 28] which were mainly
conducted in person, the internet-based environment also allows for a more diverse set of
participants. A visualization of the online blicket detector is shown in 3.1.

Environment details Observations are a 3D rendering (256 x 256 RGB pixels) of the
detector and a set of objects (3.1). In each episode, there are three objects, (which we
refer to as A, B, and C for the rest of the report) and the blicket detector present in the
environment. Each object in the environment has a unique color and shape. The environment
is Markovian, as all objects and blicket detector states are visible at any given time. The
children can put any combination of objects on the detector in any order, and click the check
mark to test to see if its works or not. It lights up and makes a sound when the correct
set of objects (i.e., blickets) are placed on top, and object combinations are permutation
invariant in our setup (though children do not necessarily have this prior, see section 3.1).
The required combinations of blickets to trigger the detector is governed by a particular
causal structure that is randomly sampled per episode based on the condition. The action
space consists of seven discrete actions. There are six actions for moving the objects (on/off
for each of the three objects) and an additional action for pressing the check mark on the
blicket detector, which checks if the existing objects make the blicket detector light up. Note,
that the blicket detector will light up as long as a subset of the objects on the detector are
blickets (e.g. putting three objects on the detector will also light up the detector).

Causal overhypotheses Our environment setup consists of a hierarchical causal struc-
ture, where the higher level structure is a causal hypotheses that determines the number of
objects needed to light-up the blicket detector, and the lower level describes which particular
objects are blickets. Similar to the setup in [28], we consider two causal hypotheses in our
environment: CONJUNCTIVE and DISJUNCTIVE. In the CONJUNCTIVE condition, a pair of
blickets must be on the machine (together) to activate it. In this case, A and B turn on the
machine, but only when placed on the detector together so the only possible combinations
that turn on the detector in the CONJUNCTIVE condition are AB, or ABC. The combina-
tions that wouldn’t work are: A, B,C, AC' and BC'. In the other condition or DISJUNCTIVE,
A and B are blickets which individually turn the blicket machine on. Therefore, the following
combinations tun on the detector in the DISJUNCTIVE condition: A, AB, ABC, B, BC and
AC.

3.1 Measuring Childrens’ Causal Exploration

We designed an experiment modeled on the blicket detector tasks [16] which allowed us to
measure and analyze children’s exploration behavior and use of overhypotheses in an online
environment that could also be given to an agent. We tested N = 85 children aged 4-5 years
(20-23 children per condition) at a local science museum following IRB protocols. The exact
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script we used can be found in the appendix of our paper https://arxiv.org/abs/2202.
10430.

Conditions Our experimental setup consisted of a 2 x 2 design. Our first tier of conditions
were CONJUNCTIVE and DISJUNCTIVE, reflecting different ways the detector could work, as
described in chapter 3. Children also received one of two forms of evidence about the
blicket detector, either suggesting (GIVEN HYPOTHESIS) or failing to suggest (NOT GIVEN
HYPOTHESIS) a relevant hypothesis space.

Demonstration phase In both the DISJUNCTIVE and CONJUNCTIVE conditions, children
first saw a video of a live demonstration of two different blicket machines. The machines
had either a polka dot pattern or a stripe pattern and the objects varied in color and shape
(sphere, pyramid and cube) as well, counterbalanced across conditions. The demonstrations
for each machine and for each of the GIVEN HYPOTHESIS and NOT GIVEN HYPOTHESIS
conditions are illustrated in 3.2. In the testing portion of the experiment, we specifically
chose colors and shapes that were different from those used in the demonstration phase, so
that children could not directly apply attribute-based overhypotheses from the demonstration
phase to the exploration phase. In the GIVEN HYPOTHESIS condition the children received
evidence that the blicket detectors could work in either a conjunctive or disjunctive way.
In the NOT GIVEN HYPOTHESIS condition children only received ambiguous evidence about
how the blicket machine might work, consistent with many overhypotheses. To avoid biasing
the children, we did not give them any other evidence about how the machine works, beyond
the demonstration video.

Exploration and test phase After they watched the demonstrations, the children were
shown a new detector with a checkerboard pattern and ring, triangle and half dome objects
(as in 3.1). They were told, “Look, I have a 3rd blicket detector. It could work like the
polka dot one, or it could work like the striped one. Can you figure out how it works and
which blocks make it go, and make the detector go yourself?” After making the machine
light up the first time, the children were then asked “Great, is there something else you
want to try?”. Once the child responded no to that question they were asked two final test
questions. First, they were asked whether each object was or was not a blicket, and then
they were asked how the machine worked.

Results

A major aim of this study was as a proof of concept that young children would actively
and intelligently explore in this online environment and treat it as a causal system, as they
do with the real-life blicket machines. We see this study as itself exploratory, but broadly, we
hypothesized that children would exhibit systematic causal exploration rather than exploring
randomly, and, as a result, make correct causal inferences.
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Condition: Given hypothesis space Condition: Not given hypothesis space

A\ @) oA A\ @ [0A

Doesn't turn on Doesn't turn on Turns on Doesn't turn on Doesn't turn on Turns on

Turns on Doesn't turn on Turns on Doesn’t tum on Doesn’t turn on Turns on

Figure 3.2: Visualization of the demonstration the children see for which objects make the
blicket detector light up, per condition, either Condition 1: GIVEN HYPOTHESIS or Condition
2: NOT GIVEN HYPOTHESIS.

Condition # Participants # Actions # Combinations  Time (s)  Time to Success (s)
NOT GIVEN HYPOTHESIS (CONJUNCTIVE) 20 12.2 (8.19) 3.85 (2.59) 208.88 (78.64) 22.21 (19.73)
GIVEN HYPOTHESIS (CONJUNCTIVE) 22 12.68 (7.44) 5.36 (1.63) 164.89 (62.96) 23.61 (16.21)
NOT GIVEN HYPOTHESIS (DISJUNCTIVE) 20 8.95 (5.66) 3.7 (2.07) 181.87 (83.75) 12.35 (10.13)
GIVEN HYPOTHESIS (DISJUNCTIVE) 23 15.4 (8.39) 5.43 (1.34) 191.81 (63.81) 11.91 (20.76)

Table 3.1: Statistics of children’s exploration. Shown are the average number of checks (i.e.,
presses of the check mark) taken per condition, the average number of unique combinations
tried per condition, the average time played per condition in seconds, and the average time
played before seeing the blicket detector go on for the first time. Standard deviations are
given in parenthesis.

Theory-driven exploration Following previous work on exploration in children [47, 46],
we expected that children would not simply try to make the light go on, but that they
would explore more extensively. As shown in 3.1, children in all conditions took less than 30
seconds to activate the detector for the first time but continued to explore for at least several
minutes more. Moreover, children tried fewer unique combinations of objects than the total
number of checks (i.e., the number of times they pressed the check mark to test the effect of
the combination), indicating that children tested some combinations multiple times. Note
that if a child clicked the check mark multiple times without any action in between, only
the first time was counted and all subsequent checks were discarded. However, if the child
performed any action, including taking all objects off and placing them back on in the same
order, the second check would be included in our data. The number of combinations refers
to how many different sets of objects the child tried, even if children placed the objects on
the machine in different orders, which they frequently did. As we will discuss later in this
chapter, the observation that children tried the same combinations multiple times and that
they varied the order of the objects might indicate that children are considering additional
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hypotheses which were not part of our initial analysis.

Inferential success Prior work has shown that children can make correct causal inferences
about blicket machines given sufficiently informative data [28]. We similarly hypothesized
that children would successfully be able to distinguish blickets from non-blickets given the
evidence they generated during exploration. To test this, we compared how likely children
were to report that true blickets are blickets (true positive rate) to how likely they are to
report that non-blickets are blickets (false positive rate). The results are shown in 3.3 (left).
Across all conditions, children were more likely to report that blickets were blickets than
that non-blickets were blickets. While children were not perfectly able to determine the
correct causal structure from the evidence they generated themselves, they showed some
ability to do so across conditions. We did not ask the children to identify if the detector was
conjunctive or disjunctive because it is challenging to get a meaningful answer on questions
like this from children, especially in the NOT GIVEN HYPOTHESIS condition where they are
not introduced to the concepts of conjunctive and disjunctive.

Effect of conjunctive vs. disjunctive [28] showed that, given sufficient evidence, chil-
dren are equally good at making causal inferences about conjunctive and disjunctive struc-
tures. Similarly, we expected that children would be equally good at making inferences in
the DISJUNCTIVE condition as the CONJUNCTIVE condition, and that they would exhibit
similar amounts of exploration. To test this, we measured how long children explored (both
in terms of time and number of actions taken) in the different conditions, as well as their
success at discriminating between blickets and non-blickets.

As reported in Table 3.1, Children took approximately the same amount of time in both
the CONJUNCTIVE (185.84 seconds) and DISJUNCTIVE (187.19 seconds) conditions. The
same is true for the number of actions they performed (12.45 in CONJUNCTIVE and 12.39 in
DISJUNCTIVE). Interestingly, even though it is easier to illuminate the blicket detector in the
DISJUNCTIVE condition and children were faster at turning the blicket machine on for the
first time in the DISJUNCTIVE condition, their exploration of both conditions was similar.

We also looked at how well children could discriminate between blickets and non-blickets
across the different conditions. As illustrated in 3.3 (left), there is little difference between
the conditions (with the exception of GIVEN HYPOTHESIS (DISJUNCTIVE), which we discuss
further below). Taken together, these results indicate that the true causal structure of the
blicket detector does not substantially influence how much children explore or how likely
they are to come to a correct answer, consistent with earlier results [28].

Hypothesis space effects If an actor has evidence about the hypothesis space, the actor
should be more efficient in the exploration of that space, and causal inference should be an
easier task. Thus, we hypothesized that children in the GIVEN HYPOTHESIS conditions would
explore less and be more accurate in their inferences than in the NOT GIVEN HYPOTHESIS
condition.
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Figure 3.3: Left: Children’s verbal replies about objects’ blicket-ness. Blue bars indicate the
true positive rate, i.e. the proportion of times children said that an object was a blicket,
given that it was a blicket. Yellow bars indicate the false positive rate, i.e. the proportion
of times children said that an object was a blicket, given that it was not. The error bars
indicate standard error. Random guesses would achieve 50% for both true positive rate and
false positive rate. The differences between all the conditions are statistically significant
with p < 0.02, except between the CONJUNCTIVE GIVEN HYPOTHESIS conditions. Right:
The percentage of children who generated enough data to make a valid conclusion about
which objects are blickets (assuming an optimal inference procedure).
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Figure 3.4: The average number of actions taken per condition, and the time that children
require to make the first successful action (lighting up the detector) per causal model and
condition.

First, to measure the amount of exploration that children performed, we looked at the
amount of time they took and the number of actions they explored, as given in Table 3.1
and 3.4. When collapsing across causal structures, the results did not entirely align with
our hypotheses: on average children tried more actions in a shorter time in the GIVEN
HYPOTHESIS condition (178.65 seconds, 14.07 actions) than in the NOT GIVEN HYPOTHESIS
condition (195.38 seconds, 10.58 actions).
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Second, we examined if the data generated during exploration was sufficient to disam-
biguate the hypothesis space. 3.3 (right) indicates that children were substantially more
likely to do so in the GIVEN HYPOTHESIS conditions (71% of the time) than in the NOT
GIVEN HYPOTHESIS conditions (32% of the time, p = 0.002 using a standard 2-proportion Z
test). Although children only tried a few more combinations more in the GIVEN HYPOTHESIS
conditions, this exploration was more effective. This result is consistent with the hypothesis
that without guidance, children may explore unbounded sets of overhypotheses, which may
not be useful for discriminating between conjunctive and disjunctive structures.

Third, we looked at hypotheses that might naturally occur to children but should be ruled
out in the GIVEN HYPOTHESIS condition. We identified 4 experiments that are indicative of
these types of hypotheses. (1) No object needed. We counted the percentage of children who
tested whether the machine would turn on without any objects on it. (2) Permutation. We
counted the percentage of children who tried different orderings of the same set of objects
(our environment preserves the order in which the the objects are put on top of the blicket
detector). We only counted the cases where the same set of objects was tested successively.
This makes it unlikely that, rather than trying to distinguish between permutations, the
children simply forgot about the result of an experiment and wanted to test again. (3)
Stochasticity. We counted the percentage of children who tested the same set of objects
with the same permutation multiple times. Similar to (2), we only counted the cases where
the same permutation was tested successively. (4) Anti-blicket. This refers to when two
objects fail to turn the detector on, and the child chooses to take one object off and try
again. In this hypotheses, the object being taken off is acting like an anti-blicket in that it
prevents the machine from turning on. Note that this is only possible for the CONJUNCTIVE
conditions. Since two out of three objects were always blickets, any two objects would
always turn the machine on in DISJUNCTIVE conditions. Therefore, we only used the data
from GIVEN HYPOTHESIS (CONJUNCTIVE) and NOT GIVEN HYPOTHESIS (CONJUNCTIVE)
to calculate the percentages.

The percentages of children who performed these tests are reported in 3.2. All of the
tests mentioned above are reasonable for children in the NOT GIVEN HYPOTHESIS condition;
however, the children in the GIVEN HYPOTHESIS conditions could have ruled out all four.
Thus it is surprising that children in both conditions tested all four hypotheses at similar
rates. This suggests that children can be completely unaffected by prescribed knowledge
when exploring hypotheses that are compelling to them. We hypothesize this to be a useful
trait for causal discovery, and it remains an open question as to how Al systems can generate
and judge these kinds of hypotheses.

Finally, we looked at whether children’s inferences about blickets and non-blickets were
affected by being given the hypothesis space or not. As shown in 3.3 (left), there were
generally no clear differences between conditions, again with the exception of the GIVEN
HYPOTHESIS (DISJUNCTIVE) condition in which children were substantially more likely to
correctly identify blickets. Although they were not more likely to generate sufficient data in
this condition (3.3, right), they did try substantially more actions (Table 3.1).
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Test given hypothesis not given hypothesis
No object needed 17.7% 17.6%
Stochasticity 51.1% 50%
Permutation 46.7% 52.5%
Anti-blicket 18.1% 20%

Table 3.2: Percentage of children who tested for hypotheses that should be ruled out in the
GIVEN HYPOTHESIS conditions. If the children acted completely rationally, the first column
should be 0 for all 4 hypotheses. Instead, we see the children are testing these hypotheses
with near identical frequency regardless of the demonstration video they received

Summary Overall, our results suggest that children are able to effectively explore—
particularly when given the relevant hypothesis space—and that they are often able to
correctly identify blickets. However, children did not always generate sufficient evidence
and could not perfectly discriminate between blickets and non-blickets (3.3). One explana-
tion for this finding could be that the children were acting optimally (with noise); however,
we favor another explanation: that children were optimizing for a wider range of alternative
hypotheses. To differentiate between these explanations, in the next section we compare the
results of children with several optimal models.
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Chapter 4

Modeling Causal Learning Using
Blickets

Given our experimental results, we aimed to characterize the optimal behavior for the
blicket detector task, and used this optimal behavior to interpret the children’s decisions.
As a first pass at understanding the motivations and priors of the children, we leveraged
the relatively simple causal structure of the blicket environment to build several policies,
which we used as a baseline for the children’s behavior. Our approach is similar to previous
work [38, 36, 11] which has taken a Bayesian approach to optimal data selection and used
such a model to describe adult behavior for various causal reasoning tasks. We used the
unified environment described in Section 3, and the same experimental setup. Here, one
action corresponds to putting any number of blickets on the detector and pressing the check
button. For each action there are two possible observations (blicket machine turns on or
remains off).

Policy Design In the blicket game, there are eleven possible causal structures, seven of
which are disjunctive (A-dis, B-dis, C-dis, AB-dis, AC-dis, BC-dis, and ABC-dis, where
“A-dis” refers to a disjunctive structure where A is a blicket and B and C' are not), and four of
which are conjunctive (AB-con, AC-con, BC-con, and ABC-con). We excluded degenerate
causal structures such as A-con and B-con where no observations can distinguish between
them, since conjunctive detectors require two blickets to light up. The goal of our models
was to determine the causal structure through intervention in the environment. In this work,
we investigated two policies through which we explored optimal behavior in the state space:
a policy based on per-step information gain maximization (the PER-STEP model), and a
policy which minimized the expected time to full disambiguation of the hypothesis space
(the MINIMUM-STEP model).

per-step model The first policy optimizes for the expected per-action information gain,
and aims to optimally discriminate between a set of fixed hypotheses through its actions by
taking actions which minimize the uncertainty in the conditional posterior. We measured
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uncertainty over all hypotheses using KL-divergence between the hypothesis distribution
over causal hypotheses and some current prior distribution. More formally, let A € H be the
possible hypotheses considered by this policy. The “usefulness” of a particular observation,
o, resulting from an action a, is given by the difference between the posterior and prior
distribution: Dy, (p(h|o) || p(h)). The posterior probability for each individual hypothesis
h is given by Bayes’ rule: p(hlo) = p(olh)p(h)/p(0). Before the first action, the prior
distribution p(o0) is initialized using one of two possible choices (see below). For modeling
multiple actions in sequence, the prior is defined to be to the posterior of the previous
timestep, and actions are selected by maximizing the sum of the per-timestep divergences
over the sequence. The PER-STEP model returns action sequences that are optimal for all
possible ground-truth states of the blicket detector (i.e. A and B are blickets and the detector
is conjunctive, A and C' are blickets and the detector is disjunctive, etc.).

minimum-step model Instead of greedily optimizing for disambiguation as in the PER-
STEP model, the second policy that we explored (the MINIMUM-STEP model) optimizes for
the minimum number of steps required to fully disambiguate the hypothesis space. To
determine this policy, we modeled the possible hypothesis space as a tree search problem,
where each vertex represents the possible causal hypotheses, and each edge represents an
action. The policy selects sequences of actions which minimize the expected depth of the
tree rooted at each vertex. Unlike the PER-STEP model, this policy actively attempts to
minimize the number of steps that are required for resolution.

Choice of prior We considered two possible prior beliefs for our models. The first prior,
the UNIFORM prior, posits that that all causal structures are equally likely. However, in
the GIVEN HYPOTHESIS condition, we implied equal likelihood between the CONJUNCTIVE
and DISJUNCTIVE overhypotheses, and our experiments with children only contained causal
structures with two blickets. Therefore, children could reasonably be expected to follow
a different prior with three conjunctive structures and three disjunctive structures, are of
which are equally likely. We encoded this possibility in a prior (the EXPERIMENTAL prior)
which placed equal weight on conjunctive and disjunctive hypotheses.

Results, Analysis and Comparison to Children’s Exploration

The PER-STEP model and the MINIMUM-STEP models generated subtly different strategies
for playing the game. In all experiments, the causal structure (or type of causal structure)
was not known a priori and the policies had to determine both which causal structure (con-
junctive vs. disjunctive) was present, and which objects in the scene were blickets. Because
of the relatively small policy space, we could succinctly describe the policies in 4.1, 4.2, 4.3,
and 4.4, to demonstrate the optimal strategies learned by each model. As expected, the
MINIMUM-STEP agent optimizing for the minimum number of steps obtained a policy which
is slightly better than PER-STEP, with MINIMUM-STEP achieving an expected time to full
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Test Object C (Detector on) - Test Object B (Detector on) Test Object A and Done
(Detector off) Test Object A and Done
Test Object C (Detector off) - Test Object B (Detector on) Test Object A and Done
(Detector off) - Test Objects B,C (Detector on) Done
(Detector off) Test Object A (Detector on) Done
(Detector off) Test objects A, C and Done

Figure 4.1: The optimal policy for the PER-STEP model under UNIFORM prior. The observa-
tion tree is represented from left to right, with the first column representing the first action
taken and the second column representing the resulting observation outcomes and subse-
quent action taken by the PER-STEP model. The model tests single objects, and if both
tested objects are off, tries combinations of objects to attempt to reduce the uncertainty.
The model is done when it knows the exact condition of the space.

Test Object C (Detector on) - Test Object A (Detector on) - Test Object B (Detector off) Done
(Detector on) Done
(Detector off) - Test Object B (Detector on) Done
(Detector off) Done
Test Object C (Detector off) - Test Objects B.C (Detector on) - Test Object B (Detector on) - Test objects A.C (Detector on) Done

(Detector off) Done
(Detector off) - Test objects A,B (Detector off) Done
(Detector off) Done
(Detector off) - Test Objects A,.C (Detector on) Test Object A (Detector on) Done
(Detector off) Done

(Detector off) Done

Figure 4.2: The optimal policy for the PER-STEP model under the EXPERIMENTAL prior.
This choice of prior reduces the number of policy branches, but also increases the average
time to solution.

Test Object C (Detector on) - Test Object A (Detector on) Test Object B and Done
(Detector off) Test Object B and Done
Test Object C (Detector off) - Test Objects B,C (Detector on) - Test Object B (Detector on) Test objects A,C and Done
(Detector off) Test objects A,.B and Done
(Detector off) - Test Objects A,.C (Detector on) Test Object A and Done

(Detector off) Done

Figure 4.3: The optimal policy for the MINIMUM-STEP model under the UNIFORM prior.
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Test Object C (Detector on) - Test Object B (Detector on) - Test Object A (Detector off) Done
(Detector on) Done

(Detector off) - Test Object A (Detector on) Done

(Detector off) Done

Test Object C (Detector off) - Test Object B (Detector on) - Test Object A (Detector on) Done

(Detector off) Done
(Detector off) - Test Objects B.C (Detector on) Test Objects A,C (Detector on) Done
(Detector off) Done

(Detector off) Test Object A (Detector on) Done
(Detector off) Test objects A, C (Detector on) Done
(Detector off) Test objects A, C (Detector off) Done

Figure 4.4: The optimal policy for the MINIMUM-STEP model under EXPERIMENTAL prior.

information of 3.55 actions under the UNIFORM prior, and 3.50 actions under the EXPERI-
MENTAL prior, while PER-STEP achieved 3.72 expected actions to full information under the
UNIFORM prior, and 4.0 expected actions under the EXPERIMENTAL prior. It is interesting
to note that the PER-STEP model performed worse when given incorrect information (the
EXPERIMENTAL prior), while the MINIMUM-STEP model is able to perform better in this
scenario (the downside to the MINIMUM-STEP being the fact that it is usually intractable to
compute in practice).

Next, we contrasted the models’ behavior with that of the children. As shown in 4.5
(left), children always took more steps than the agents before they finished exploring the
environment. Surprisingly, children did not show any notable difference between GIVEN
HYPOTHESIS (CONJUNCTIVE) and GIVEN HYPOTHESIS (DISJUNCTIVE), whereas the agents
differed significantly, with both optimal methods taking longer to explore for conjunctive
spaces (note that the agents have no variance in expected time to goal, as these numbers are
analytic). This increase in required actions for conjunctive causal structures demonstrates
the bias towards disjunctive structures in the environment, as there are more possible dis-
junctive than conjunctive structures (7 vs. 4).

Even though children are explicitly encouraged to determine how the machine functions,
while the agents always took enough actions in the space to fully disambiguate the causal
structure, the children often did not take enough actions, especially when they were not
given any information about the hypothesis space. 4.5 (right) shows the percentage of
children who took enough actions to fully disambiguate the space. Unsurprisingly, when in
GIVEN HYPOTHESIS, the children were far more likely to fully disambiguate the environment,
demonstrating the power of fully guided exploration. There is little difference between
the CONJUNCTIVE and DISJUNCTIVE conditions when it comes to exploration, suggesting
that the children explored equally in both conditions, and did not favor disambiguation of
conjunctive vs. disjunctive environments. This effect raises an interesting question: unlike
RL agents, we do not have any explicit understanding of the reward function that children
are optimizing during training time, and even though an effort was made to encourage the
children to optimize the reward function of maximum information gain, the children may
not optimized this reward alone. A key contribution of this work is to raise this question:
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Figure 4.5: Left: The average number of combinations the children tried before they indicated
they finished exploring, compared to the number of combinations the models needed to fully
determine the ground truth. Agents use the EXPERIMENTAL prior. We find that in the
CONJUNCTIVE GIVEN HYPOTHESIS condition the children’s average number of combinations
is statistically significant compared to the MINIMUM-STEP model, but the difference between
the PER-STEP model is not significant. In the DISJUNCTIVE GIVEN HYPOTHESIS condition the
difference between the children and the MINIMUM-STEP and PER-STEP models is significant
with p < 0.0001. Right: The percentage of children who generated enough observations to
completely determine the ground truth in each condition. While conj. vs. disj. have no
significant difference (p > 0.9), when given the hypothesis space, children are more likely to
disambiguate the causal space (p = 0.002). The models always generate enough observations
to disambiguate the causal space.

can we discover in future work what kinds of reward functions children optimize during
overhypothesis discovery, and can we leverage these functions to build more powerful machine
learning models?

Further analyses of children’s exploration As the previous results show, children’s ex-
ploration behavior was not well-captured by the proposed optimal models. By qualitatively
examining children’s behavior in more detail, we observed that they appeared to be testing
many different kinds of overhypotheses beyond the ground-truth conjunctive and disjunctive
structures. 4.6 shows some example sequences of the combinations the children tried, indi-
cating the various hypotheses they were testing. These qualitative examples suggest that
children have a richer and larger hypothesis space than the models. For example, Participant
1 seemed to only consider the possibility that all three objects must trigger the detector, but
attempted to determine if the order in which blickets are placed on the detector is impor-
tant, as well as if the detector might be stochastic. Participant 2’s behavior was consistent
with trying disjunctive conditions first, and then conjunctive conditions after that: a good
example of systematic testing. Participant 3 only tested conjunctive behavior (with some
testing of order). Participant 4 is another example where the child quickly discovered the
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Figure 4.6: Example sequences of what objects children placed and tested on the blicket
detector. The 0 column gives the ground truth blicket objects. Each row represents the
order the blickets are placed on the detector, and the final row is green if the blicket detector
is illuminated. The gray column represents when the child has finished exploring and is
asked which objects are blickets.

causal structure, but then tested order and stochasticity.

In addition to causal structure, order, and stochasticity, childrens’ overhypotheses may
also take into account the attributes of objects, for example that blue objects are blickets or
circular objects are blickets. Taking into account attributes would exponentially increase the
size of the overhypothesis space, so we designed our experiment to try to minimize the likeli-
hood that children would consider attribute-based overhypotheses. First, we used distinctly
different colors and shapes in the exploration phase, compared to in the demonstration phase,
so that children would not be able to directly apply attribute-based overhypotheses from the
demonstration phase to the exploration phase. In addition, for each child we randomized
which two of the three objects were blickets, in both the demonstration and exploration
phases.

Unlike children, the optimal policies do not consider that the blicket detector may be
stochastic or that there may be additional hypotheses outside of conjunctive and disjunctive.
Determining a set of hypotheses that more accurately represents what the children actually
consider would lead to a model which is more predictive of the children’s behavior.
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Chapter 5

Discussion & Conclusion

Exploration—and in particular, causal exploration—remains a challenge for modern RL
agents. In this project, we investigated how human children engage in this type of exploration
in order to draw insights that can be applied to artificial agents as well. To do so, we both
introduced a novel “blicket” environment which enables testing exploration strategies of both
humans and agents, and collected data on young children to observe how they explore in
this domain. We found that children exhibited a diverse set of exploration strategies not
well captured by naive models optimizing for a small set of known overhypotheses. Notably,
from our results it seems that children bring to bear extensive prior knowledge regarding
how objects and mechanisms behave, and use this knowledge to generate a wide range of
potential hypotheses.

These results have important implications for research aimed at developing RL agents.
Most importantly, they suggest that effective exploration requires rich prior knowledge struc-
tured via causal overhypotheses. While in our experiments children’s behavior may techni-
cally be “suboptimal” in the context of simply disambiguating conjunctive vs. disjunctive
hypotheses, in more realistic environments, children spend their time exploring an incredi-
bly vast range of phenomena: block towers, bugs in the forest, digital devices, pets, social
dynamics, and so on. To effectively explore in such a broad range of domains, children need
to leverage rich prior knowledge; our experiments reflect that they do this by default even
in simple settings. If we want agents that can perform a similar breadth of exploration,
they similarly need to bring to bear rich causal knowledge about the world. Moreover, it
may not be sufficient to have a large “bag-of-hypotheses”: like children, agents may need
to organize their knowledge into hierarchical representations like overhypotheses in order to
swiftly narrow in on the relevant subset of causal structures.

Although we have only presented results here for simple optimal models, these results
pose a clear set of questions regarding RL, in particular: what is required for RL agents to
exhibit exploration strategies similar to those children use? There are two challenges: what
reward function should be used to train such agents, and under what training regime? A
maximally “blank-slate” approach to our task might be: on each episode, sample whether the
agent is in the CONJUNCTIVE or DISJUNCTIVE condition, and then reward it for making the
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blicket detector turn on. Unfortunately, this training regime would not result in exploratory
behavior at all: the optimal solution here would be to always just put all blocks on the
detector. A more promising approach would be to reward agents for correctly identifying the
causal structure, and optionally introduce downstream tasks that can only be accomplished
with causal knowledge that is discovered during that episode. Some recent work has seen
success using this approach[13, 34, 35]. But ultimately, this would only lead to behavior that
converges to our optimal models in the ideal case. The children’s true motivation is likely a
combination of the two factors mentioned above, and more carefully designed experiments
would be needed to determine how they balances the two.

The second question requires more careful consideration. When presented with the blicket
environment for the first time, children can use their prior knowledge and instincts to per-
form causal reasoning, essentially solving the task zero-shot. Since it is unclear how to teach
an RL agent the abstract concept of causal learning without tethering it to a specific task
or environment, it seems inevitable that the agent would need to be trained in a similar
or identical environment using some distribution of causal hypotheses. The distribution of
hypotheses an agent sees during training would have a strong influence on the exploratory
behavior it can demonstrate at test time. One potential solution might be a "least knowl-
edge” approach by enumerating the widest possible set of hypotheses and assigning them
equal probability. However, this ignores the fact that children clearly have priors for what
hypotheses are more likely. This intuitive judgement on priors is likely a key reason that
makes children efficient at exploration, and it remains a challenge to measure those priors
from noisy behavior.

We might also consider training agents on a broader set of overhypotheses (for example,
that order matters, that the detector is stochastic, etc.), so that some portion of hypotheses,
or even overhypotheses, can be held out during training. However, doing so can easily risk
making the game too difficult or tedious for children. Since our goal is to learn from children’s
exploration strategies, it is best to stay clear from the capacity of their cognitive abilities
such as short term memory. But it is unclear what this set should be, or how to avoid it
being overly task-specific, and we would need to be careful in how we categorize hypotheses
into overhypotheses, as the criterion that seems most logical to the experimenter might not
match the children’s intuition.

In conclusion, such “blank-slate” and “constructed” approaches do not appear consistent
with how children learn about the world or how humans have developed over the course of
evolution. We believe that developing environments and training regimes to tackle these
questions is an essential aspect of future work in building agents that can efficiently and
effectively explore.
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