
Software-in-the-loop Testing for Autonomous Vehicles

With Docker

Sarah Bhaskaran

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-135

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-135.html

May 17, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I could not have completed this project without the technical assistance of
Dr. Rahul Bhadani and the supervision of Dr. Jonathan Sprinkle. Fangyu
Wu, George Gunter, and Dr. Eugene Vinitsky also provided important
assistance and contributions. Thank you to Dr. Saleh Albeaik and Dr.
Alexandre Bayen for bringing me onboard the research team.

Software-in-the-loop Testing for Autonomous Vehicles With
Docker

Sarah Bhaskaran
UC Berkeley

Abstract

When developing autonomous vehicle controllers that will act directly on the physical
environment, software-in-the-loop (SWIL) testing is important to ensure reliability of
the codebase and system. Existing programs to do this job are often difficult to install,
clunky, and may lack the granularity or complexity needed for certain experiments. Here,
an approach is implemented that uses Docker’s containerization to facilitate running and
maintaining the simulation. The simulation is comprised of a Python training and evaluation
environment, modified so that it can interface with the same ROS components that will be
running on a hardware-in-the-loop (HWIL) testbed. This containerized simulation can be
easily run by new researchers and with new versions of the controller, making it convenient
and useful for controller designers to run SWIL regression testing before deployment.

Plan II Masters Report, UC Berkeley, Spring 2022

1 Introduction

In autonomous vehicle development, many levels of testing are needed to give us confidence that the system is
ready to interact with the physical environment on public roads. From the ad-hoc and unit testing performed
by controller designers to road tests where humans can take control of the vehicle if needed, each successive
stage demands more stringent safety precautions. Large-scale (or even small-scale) testing of vehicles on
public roads is extremely expensive and high-stakes, so simulation-based testing does the majority of the work
between design and deployment. Simulations facilitate a cyclical design process in which developers iterate on
their controllers and quickly test the results of each set of changes. Developing, maintaining, and evaluating
the simulations themselves now becomes part of the work of the project collaborators. The practices involved
in this process are part of the broader topic of DevOps, which asks how to efficiently cycle between making
changes to a project and deploying these changes in a working system (John et al. [2021]). As the field of AV
research and technology development grows, those involved in the field will increasingly borrow tools from
DevOps, but identify what is particularly appropriate and necessary for the case of autonomous vehicles.

The intermediate stage of testing that is the focus of this work is referred to as software-in-the-loop (SWIL or
SIL) testing. Specifically, at this stage, code is intended to be production-ready, but this readiness is confirmed
by testing in simulation software, rather than on the hardware system that will be used in deployment (Erkkinen
and Conrad [2008]). The space of possible simulations is quite large, as there is no standard for the granularity
or the complexity of the simulation. The real world is infinitely complex and intractable to specify, so the
simulator occupies a somewhat arbitrary place on this spectrum. Choosing how to test at this stage therefore
involves some judgment calls as to how confident one must be before moving to the next stage, processor- or
hardware-in-the-loop testing. However, considering the controller that will be tested narrows the scope of the
problem. The controller only takes a clearly defined set of inputs and produces defined and constrained outputs.
I argue that a customized simulation focused on this state space best enables the developers to evaluate their
product.

A key factor for the practical value of any simulator used for SWIL testing existing simulators is the ease of use.
If the software is difficult to install and run on standard computing resources, this reduces the likelihood that
engineers will thoroughly test their products. And, as mentioned above, bringing testing closer to the design
space is helpful to ensure the suitability of SWIL testing. Running and installing programs is a significant
barrier given today’s proliferation of operating systems and software packages. I examine the conditions that
facilitate and hinder software use, and find them to be another compelling reason to build a new simulator.

Once this simulator is built, containerization is a useful tool to borrow from DevOps. Running a program using
a containerization platform like Docker is intended to be agnostic to the operating system of the user’s local
machine or any other software they might have installed or run. In addition to the desire for reproducibility
that first motivated this adoption, containerization contributes to the maintainability of the simulation, at least
for the duration of the project if privacy concerns bar sharing the codebase or container publicly. Docker
is a highly beneficial agent in facilitating the use of DevOps-style SWIL testing towards the deployment of
autonomous vehicles.

In the context of the ongoing CIRCLES Consortium project focused on designing and testing autonomous
vehicles, this paper traces the modification of a custom simulation for software-in-the-loop testing. I examine
the factors that motivated the development of this simulation, and evaluate the extent to which it fulfills its
promise of being both valuable and easy to use. The SWIL simulator developed here largely fulfills the need
for accessible, targeted testing that enables a DevOps mentality for verifying and validating autonomous
vehicle controllers.

2 Related Work

Erkkinen and Conrad [2008] lists software-in-the-loop testing as a crucial step before processor- and hardware-
in-the-loop testing of models. SWIL must run on production code and verify that the code performs according
to its requirements. In the context of Erkkinen and Conrad [2008], requirements are strictly quantifiable and
can be specified in Matlab, permitting automated validation programs to run. The authors also mention code
coverage as an important metric appropriate to the SWIL testing phase.

3

However, beyond these mechanisms which apply to models in general, there are other ways in which SWIL
must reassure designers that certain types of models are performing desirably. Pei et al. [2017] warns that
when neural networks are involved, code coverage can be 100% even when neuron coverage is only 10%.
The authors develop DeepXplore to measure neuron coverage, perturb inputs, and automatically discover
problematic corner cases using gradient methods. This process of "white-boxing" machine learning models
counteracts some of the uncertainty surrounding how they will perform in conditions on the edge of or outside
of the distribution of training data.

The previous works apply to testing robotics software in many domains; AV controller software demands
particular care in ensuring that the car can respond safely to the many scenarios that arise on public roads.
Rajabli et al. [2020] systematically reviews the approaches to validation and verification of AV software,
covering methods of automatically generating test cases, quantifying confidence in ML algorithms, and
formally proving safety of algorithms. For example, Schultz et al. [1992] proposes an approach in which faults
are gradually added to the simulation in order to test the fault-tolerance of the system. Borg et al. [2018] was
an earlier literature survey focusing on machine learning network safety in AVs, with similar considerations to
Rajabli et al. [2020].

A similar, somewhat parallel study to this one is AbdelHamed et al. [2020], in which the AV software
communicates via a Robot Operating System (ROS) network, and Gazebo is used as the platform for the
simulation, as it has been used in my group. The authors develop and evaluate a framework for software-in-
the-loop testing of autonomous vehicle software. In addition to the steering, acceleration, and other standard
car controls, they primarily focus on testing camera and LiDAR sensors.

In Bhadani et al. [2019], which is also part of the background of this work, both software- and hardware-in-the-
loop testing contribute to verification and validation of AV systems. Both the SWIL and HWIL stages involve
integrating production-ready code modules into an environment (ROS) that allows them to communicate in
the manner that they would in a real operational AV. The testing process is model-based: in SWIL, parts of
the system that involve complex real-world inputs (such as sensors) are modeled mathematically and then
simulated. This simulated data feeds into the code to be tested. Moving to HWIL, sensor models are replaced
with actual sensors. Bhadani et al. [2019] justifies this process and provides a case study with autonomous
vehicles, ROS, and Gazebo. Automatic code generation in Simulink is also used to facilitate the translation of
models into simulation components.

Containerization is an increasingly common solution for projects relating to both autonomous vehicles and
SWIL testing. Wang and Bao [2020] uses several containers for the distributed programs needed to run an
actual AV, not simply for testing or simulation. These containers are handled with the open-source Kubernetes,
and the setup adds benefits of modularization, versioning, without incurring too much cost in overhead on the
vehicle computing resources. Likewise, Berger et al. [2017] advocates for packaging different algorithms on
the autonomous vehicle as microservices offered through their own Docker containers for increased security
and flexibility of development. White and Christensen [2017] provides a tutorial on using OSRF’s Docker
images of ROS distributions.

3 Project Background

The approach to simulation development proposed by this paper involves catering to the scope of the AV
controller and the structure of the project, so here is an overview of the project so far.

The Congestion Impacts Reduction via CAV-in-the-loop Lagrangian Energy Smoothing (CIRCLES) project
runs from January 2020 to December 2022, a collaboration between five universities and additional industry
partners (Consortium [2020], Bayen [2020]). As the name suggests, the research primarily focuses on the
effects of AVs on the flow of traffic networks. The premise of the project is that if connected autonomous
vehicles (CAVs) are present in the traffic network at a certain penetration rate, all of the vehicles in the traffic
network can experience energy savings of at least 10%. It turns out that having these controllers in the loop
can also improve overall throughput of the network by smoothing standing waves generated by normal human
driving behavior.

4

Towards this goal, the project consists of showing the impacts of CAVs in simulation and then validating these
results in field tests with real cars on a public highway. As of writing in May 2022, one medium-scale car
test, nicknamed the Vandertest, was already carried out in summer 2020, demonstrating the project’s ability to
run control algorithms on vehicles on the I-24 highway. The cars ran by themselves for the majority of the
drive, but human drivers were at the wheel and occasionally took control when they felt that the autonomous
controller was insufficient, such as when a vehicle cut in ahead. Data from the Vandertest is used to investigate
weaknesses in the controllers; validate models of car energy consumption; and contribute to training data for
machine learning-based controllers.

A new 100 CAV demonstration for fall 2022 is scheduled, where the recent iteration of controllers will run
on 100 vehicles in multiple scenarios (Bayen [2021]). This time, the experiment intends to demonstrate the
energy reduction and traffic smoothing that is the objective of this project.

3.1 Simulation

As in similar projects, CIRCLES researchers have explored the space of possible simulators for training and
testing autonomous vehicles. Different simulators were used for energy modeling, but here we highlight those
concerning the flow of traffic, the most macro-scale focus of the project. Earlier research by the same lab
group used the Simulation of Urban Mobility (SUMO), the open-source large-scale traffic simulator, with
many successful publications and results (Wu et al. [2022]). However, SUMO tries to simulate such a wide and
complex variety of traffic-related phenomenon, from signalized intersections to demand routing to multi-modal
traffic, that it has become quite bulky and has a steep learning curve. Furthermore, due to the challenges
in modeling such complexity, some of the implementation is brittle and exhibits unrealistic behavior. For
example, it is unable to represent traffic waves realistically (S. Shanto [2021]), which is a problem for this
research project which is centered around damping traffic waves. Therefore, the researchers had already
implemented a new simulation, called trajectory_training, on which to train and evaluate controllers. Because
it is small (limited in the number of traffic features it simulates), transparent (written in easy-to-parse Python),
and self-built, trajectory_training successfully exhibits the behavior that is the main focus of the study. It
is continually being extended and thus vulnerable to requirement creep that may eventually overwhelm its
useful simplicity, but currently still straightforward to use. The transition from SUMO to trajectory_training
is relevant because it demonstrates the value of building a simulator from scratch; this value, in fact, led to
trajectory_training becoming the basis of the SWIL simulator that is the focus of this paper.

3.2 Controllers from simulation to real

In terms of CAV controllers, most of the focus is on Multi-Agent Reinforcement Learning-based controllers.
These RL controllers learned in simulation to reduce energy consumption across the whole network of AVs.
For a controller that is not connected across vehicles, an imitation learning algorithm was trained on a
FollowerStopper controller, enabling slight improvement over the baseline of human driving behavior. Some
algorithms based on classical control methods are also implemented in simulation for comparison to the
RL controller. For the deployment to actual vehicles, safety controllers which are not based on deep neural
methods wrap around the main controller and restrict the range of control signals that are sent to the car (Bayen
[2021]).

Any controller that was trained on simulation must undergo some changes before being deployed for live
testing. Table 1 compares the different simulations to how the AVs will run in the real-life 100-car test. On
the vehicle, controller modules pass messages between each other over the ROS (Robot Operating System)
network as real-time signals. It is essential to minimize latency when executing algorithms in real time so that
controllers operate based on up-to-date data. For lowest latency, code must be compiled from C++, whereas
most of the control algorithms are implemented in Python for simulation training and testing. This necessitates
manual translation of the code into C++. Some parts of the controller can also be translated into Simulink
models, which can be converted into C++ code automatically. However, machine learning models present a
special challenge when being incorporated into a ROS module. The weights can be saved as an ONNX model,
and Simulink can automatically convert standard ML models from ONNX to C++. But when custom models

5

Table 1: Simulations in the research group1

Aspect of the simulation Real life Unmodified trajec-
tory_training

Gazebo SWIL trajectory_training
SWIL

How is the controller imple-
mented?

C++ ROS nodes Python PyTorch
model

C++ ROS nodes C++ ROS nodes

How is data exchanged between
the controller and simulated vehi-
cle?

ROS Python ROS ROS

How is the vehicle simulated? N/A Euler updates Rigid-body kine-
matics

Euler updates and
dynamics model

How is lead distance calculated? Radar Python calculation Ray tracing from
simulated sensors

Python calculation

How can lead vehicle trajectory
be ingested?

Bagfiles or real-life
vehicle

CSVs of existing
drives

Bagfiles, simulated
or of existing
drives

Bagfiles or CSVs
of existing drives

Who runs the simulation and re-
ports the results?

100 drivers Anyone who can
clone the repo and
run

Controller design-
ers and Rahul
Bhadani

Anyone who can
pull the docker im-
age and run

are used, this conversion does not work. For this conversion, a new onnx2ros package was developed by the
research group.

3.3 Previous SWIL testing

SWIL testing procedures were already developed to validate the safety of controllers for the summer 2021
"Vandertest". Gazebo was used as the simulation platform for software-in-the-loop testing (column "Gazebo
SWIL" of table 1. This high-fidelity simulation ran on production code and checked that it behaved safely in
several scenarios. The work was based on Bhadani et al. [2019], and as discussed above, different components
of the cyberphysical system were modeled in Simulink, converted to C++ by code generation, and included in
the Gazebo simulation.

This testing was sufficient to confirm the quality of the software before deployment. However, the process
was bottlenecked by the fact that only a couple of researchers had ROS installed on their computers and were
familiar enough with Gazebo to run tests. Understanding ROS already involves going through as many as
thirty tutorials, and to install it, one must choose between 13 distributions which are not all supported by all
operating systems. On top of that, Gazebo is even more finicky during installation than basic ROS because
Gazebo includes rendering of images and video. Therefore, it is not surprising that the project’s controller
designers, who are mostly interested in the mathematics behind reinforcement learning or the simulation of
large traffic networks, mostly eschewed the lengthy ROS installation and learning process. The translation and
testing of their controllers were left more to the part of the team focused on hardware and safety.

This was not a seamless integration of SWIL testing into the operation of the research team. The inefficiency
resulted in limited use of SWIL testing during the development process. In practice, newly written code often
goes straight to testing on a car, in which the controller is run but the outputs are not immmediately used to
control the car. Researchers can verify that the outputs are reasonable before doing some live hardware-in-the-
loop testing. This process is expensive and jumps straight to HWIL without SWIL confirmation.

Gazebo-based simulation is also limited by its inability to scale. Simulating multiple AVs makes it too slow
and requires larger computing resources. Therefore, it is unable to check whether production code is similar
enough to the code used in controller design and training to exhibit the same benefits for traffic flow and fuel
consumption.

1Information in the table presented by Dr. Jonathan Sprinkle at 05/05/2022 All-Hands meeting.

6

4 Problem

The goal of this work is to create a tool for validating the behavior of autonomous vehicle controllers, in a way
that conveniently enables setup of the software, running of the simulation, visibility and informativeness of the
results, and maintenance under updates. The desired characteristics of this simulation are explored in more
detail below.

4.1 Validation of controllers

True validation of ML controllers is extremely challenging due to their inherently black-box nature. The
neural networks are not linear or convex in the input features, so there is no guarantee that in input somewhere
between two validated inputs will also behave normally. That is only interpolation; extrapolation to inputs
out of distribution of the training data is even more unspecified. This leads researchers to argue that machine
learning code for autonomous vehicles is fundamentally incompatible with current safety standards for vehicle
software, such as ISO 26262 (Borg et al. [2018]).

This work does not pretend to comprehensively validate all possible outputs of a machine learning algorithm,
or even to provide the software infrastructure necessary for doing so. Researchers may want to try measuring
neural coverage (Pei et al. [2017]) or tolerance to system faults (Schultz et al. [1992]) for these stronger
guarantees; many of these tests would require digging further past the abstraction barrier in ways that would
further complicate the testing software environment. However, I claim that my framework provides a good
entrypoint for running a range of tests on the state space. These tests can be expected to confirm that behavior
seen in the ROS-ified, safety-bounded, dynamics-burdened version of controllers matches closely enough the
performance of controllers as bare PyTorch models.

4.2 Portability of the simulation

The aim is to substantially limit the amount of time that developers must spend installing software in order
to run a simulation of an arbitrary ROS controller. Of course there will always be installation overhead, as
the initial version of the simulation must be containerized. Also, Docker occasionally fails to live up to its
promise of full portability, as we will see. However, this paper shows how the process of installation requires
less careful parsing of documentation, and instead a more direct following of guidelines, as is part of a DevOps
mindset (Boettiger [2015]).

4.3 Maintainability of the simulation

This goal is similar to the above in that we would like to minimize time dealing with software compatibility
and usage learning curves. But in fact, it is often traded off against the initial portability of the simulation.
Building in more flexibility from the beginning means that each user has more parameters to specify even
when running something simple. Conversely, the entire simulation can be tightly packaged in a black box, but
this makes digging into the black box to extend its capabilities or fix its bugs more difficult. I identify these
trade-offs in this simulation and point out opportunities for maintenance as well as potential future struggles.

5 Approach

Rather than further exploring the capabilities of Gazebo, the open-source robotics simulator that had previously
been used to test controllers, I adapted the custom trajectory_training simulation developed for the CIRCLES
project to interface with the controllers through ROS. I packaged this in a Docker container to increase the
simulation’s portability and hopefully facilitate future iterations on the simulation and testing framework itself.
The structure of the project is shown in Figure 1.

Table 2 lists the input parameters that can most easily be changed, and table 3 highlights some outputs
automatically generated by running the simulation.

7

Figure 1

Table 2: Inputs
Lead vehicle
AV controller

Platoon order and composition
Lane changing (enabled or disabled)

Acceleration dynamics model

5.1 trajectory_training environment

This environment allows a platoon of vehicles, composed partly of autonomous vehicles and partly of
simulated human-driven vehicles, to follow a given leader trajectory. As a relatively simple and transparent
simulation, it has endless opportunities for modification, but here we treat most of the environment as static to
preserve consistency with the main branch of the repository. The modifications center around (1) creating an
interface between the trajectory_training Python environment and the ROS topics informing and controlling
the autonomous vehicles, and (2) passing arguments from the command line to those controller interfaces
inside the environment.

An additional simulation feature I added was a module that made acceleration dynamics more realistic. For
safety and comfort, acceleration is already cut off between −3 and 1.5m/s2, but vehicle controllers, especially
those tuned in reinforcement learning, may request changes in acceleration within the space of .05 seconds.
Engines are physically incapable of providing this jerk instantaneously, and the friction on the road also
prevents the requested acceleration from taking effect instantly. When testing code for cyberphysical systems in
simulation, mathematical models approximate the way physical phenomena interact with a robotic component
(Bhadani et al. [2019]). Accordingly, system identification was used to produce both a first-order and a
fourth-order model of acceleration, incorporating a PID controller to simulate the engine’s response and a
transfer function to simulate other sources of delay (Wu [2022]). I converted these modules into ROS nodes
in Matlab Simulink and incorporated them into the trajectory_training simulation. Users can choose which
acceleration module to include. This comprises another step towards evaluating controllers under more realistic
conditions than those in which they were trained.

Table 3: Outputs
Bagfile recording ROS messages

Time-space diagram
Energy use metrics

Trajectory plot

8

Figure 2: Docker layers

Finally, I added a script that converts a bagfile into a csv that can be used as a lead vehicle trajectory in the
trajectory_training simulation with the help of the bagpy Python package (Bhadani). Bagfiles are generated by
the ROS networks on this project’s test vehicles during test runs. This script enables researchers to conveniently
pass in a new real-life driving trajectory behind which to test their controllers. trajectory_training already
provides 60 real driving trajectories (Nice et al. [2021]), but new driving tests are run regularly and provide a
rich source of possible new test cases for simulation.

5.2 Containerizing with Docker

The Open Source Robotics Foundation facilitates the process of containerization by providing a pre-built
Docker image for each ROS distribution (dockerhub [2022]). I started with this image and added more layers
to install the necessary Python packages and repositories for the project and build ROS dependencies (2). As a
best practice for using Docker for research reproducibility, Boettiger [2015] recommends distributing to other
researchers, in addition to a pre-built image, a Dockerfile, which contains line-by-line installation commands.
Since the Dockerfile is used to automatically build the image, it serves as a better form of reproducible "recipe"
for recreating an environment than text documentation. My Dockerfile is approximately 20 Docker commands
and is included in Appendix A.

5.2.1 Supporting file structure

docker_supporting_files

run_docker_container.sh

scripts

run_simulation.sh

lead_velocity.bag

controller_v1.launch

rosbags

README

While it would be nice for the Dockerfile and Docker image to be self-contained, a small tree of supporting
files and folders was necessary to enable both the installation and the running of the simulation. First of
all, ROS handles path resolution by providing two different setup files that must be sourced in order for the
ros* commands to be found. So, catkin_make, rosrun, and any initialization of ros nodes, among other
commands, must occur inside a bash script.

The most questionable aspect of my design was the inclusion of GitHub private SSH keys in the Docker
images. To enable git repositories to be cloned and updated during the initial build, subsequent builds for
extension/maintenance, and runs, I created private SSH keys linked to my account, located them in the build
folder, and copied them into the image via the Dockerfile. This violates the best practices prescribed for private
SSH keys: never copy, never share. Additionally, it limits the scope of where this Docker image can be safely

9

shared, as it essentially provides access to the project’s proprietary information. Alternative solutions proposed
on StackOverflow include:

1. SSH keys can be mounted as a volume at build time or run time, using a Buildkit option specifically
for SSH so that they do not get copied into the repository.

2. Private Git repositories can be mounted as a volume on the image at runtime (mounting is a means of
allowing Docker access to files on the host computer).

3. Private git repositories can be copied into the image by additional layers in a Dockerfile that pulls
from the base image.

4. Deployment keys can be issued for each individual Git repository that only provide access to that
repository.

For most or all of these options, the additional steps required to add this privacy benefit would decrease the
likelihood of people trying the software tool. Due to this concern, I have so far chosen not to follow any of
these suggestions. However, (1) appears to be the best option and I am investigating making this change.

For running the simulation, I wanted to make the actual command as simple as possible, but in order to provide
the user with flexibility certain options must be specified. The most common modifications can be made to the
variables in a bash script (5.2.1). A launch file and bagfile may be placed in the scripts folder in the provided
file structure; this folder is accessible from inside the Docker container as the mounted /docker_script
folder. The launch file specifies which controller is used, and the bagfile provides a trajectory that will lead
the platoon in the simulation. If users wish to make finer-grained modifications to the simulation, such as
allowing lane changes, running multiple AVs with different controllers in the same platoon, or shortening
the length of the simulation, they will need to modify the command running simulate.py, the entrypoint of
trajectory_training that is useful to us. And the actual command to run the docker container hard-codes the
arguments that mount the appropriate supporting folders on the container, allowing the user to ignore that file
as long as they use the provided supporting file structure.

Finally, in order to view outputs of the simulation, the /rosbags folder is mounted to a location inside the
Docker container at which some of the ROS outputs are saved. Additionally, all of the outputs generated
automatically by the trajectory_training simulation are copied into the /scripts folder after the simulation is
run. I added one more plot, an emissions graph, to add clarity on the output of the simulation.

5.2.2 Extensions

For new controllers that are developed, it is usually necessary to install some additional programs or at least
update the repositories. The proposed mechanism for this is via a new Dockerfile that pulls from the base
image before running additional installation steps. Usually one or more new supporting files would also be
necessary for running this script because, as mentioned, ROS commands need to be run preceded by source
commands in a shell. Even after pulling from git repositories, catkin_make would be necessary at minimum
to re-build the ROS packages. For supporting files for build time, users can include them in whatever folder
from which they run docker build. Supporting files necessary for runtime may be placed in the scripts
folder that is mounted as /docker_script folder.

6 Results

The Appendices provide further specifics on developing, installing, running, and interpreting the software.
Appendix A explains the construction of the Docker image; 5.2.1 contains the scripts that run the container
and specify the parameters; C shows what to run on the command line for installation and running; D gives
an example of how to extend the image to work for a new controller; and E dissects the terminal output for
insight on understanding and debugging the simulation.

2Trajectory: Westbound I-24 trajectory 2021-04-22-12-47-13; Controller: 08/05 Vandertest, Platoon: Leader
Human AV Human AV; Command: python simulate.py –platoon "av human av human" –traj_path
dataset/data_v2_preprocessed_west/2021-04-22-12-47-13_2T3MWRFVXLW056972_masterArray_0_7050/trajectory.csv
–av_controller ros –no_lc

10

Figure 3: Available output graphs.2

(a) Default outputs for simulation as a whole.

(b) Graphed emissions highlighting AV trajectories.

(c) Time-space diagram showing platoon performance.

The simulation runs in real time; most ROS topics are published to at 10Hz or 20Hz, and the trajectories
usually last several thousand .1s timesteps. Unfortunately, the way Docker handles the terminal output, no new
output shows on the screen for most of the simulation running time. For this reason, I recommend starting
with a short horizon (100 timesteps) when first running it.

6.1 Simulation examples

Figure 3 displays several plots that are generated during each run of the simulation. Visual inspection can
allow researchers to judge whether the behavior looks smooth, safe, and normal. Figure 4 graphs the topics
recorded in a bagfile for each AV that is controlled through ROS. These messages would be published on the
car hardware. Seeing the different messages provides debugging guidance for situations when the outputs are
not as expected, as well as assurance that the different modules of the safety controller are passing information
from node to node as expected.

5a displays a classic trajectory_training scenario that was used throughout RL training. In this scenario, 4
AVs lead platoons of 6 "human" vehicles each, where each "human" vehicle is controlled by the Intelligent
Driver Model (IDM). 5b and 5c both illustrate running the RL controller from the Vandertest in the same
scenario, the former without acceleration dynamics and the latter with fourth-order acceleration dynamics
applied. In both cases, the platoon vehicles keep up with their leaders and do not cause any crashes, but when
the controllers communicate through ROS control modules and the acceleration dynamics are applied, the AVs
become slightly less effective at damping waves, creating a bit more congestion for the vehicles behind.

11

Figure 4: Bagfile data graphed

Figure 5: Platoon scenario

(a) Python RL model. (b) Vandertest RL controller using
ROS without acceleration dynamics.

(c) Vandertest RL controller using
ROS with acceleration dynamics.

12

Figure 6: Closer look at a cut-in event

Figure 7: New safety controller running behind simulated eastbound I24 vehicle.

6 demonstrates how one might more closely examine the data from a simulation in which lane changing
was enabled. The logged metrics state that 33 cut-in or cut-out events occurred. By doing some exploratory
data analysis on the emissions data, we can pinpoint the cut-in events and graph them to better visualize the
controller’s behavior. We can see that when the human vehicle ahead of the AV speeds up, the AV does not
immediately close the gap, and that leads to a car entering the lane in front of it.

7 and 8a are examples of using Docker for SWIL testing. This safety controller is in the process of being
developed. For the development process, the safety module is run with a controller that just outputs a constant
velocity. In 7, we can tell at a glance that the controller successfully avoids a crash, but behaves in a manner
that would be uncomfortable for human passengers. Meanwhile, in 8a, a crash occurred within the first few
seconds. It could be that the safety controller does not behave properly for inputs at this slow speed. In
comparison, the AVs that were developed for the Vandertest (8b) were able to avoid crashing when presented
with the same scenario in simulation.

Controller Acceleration Dynamics Crashed on easy trajectory Crashed on hard trajectory
0805 4th order No No

CBF v1 4th order Yes No
CBF v1 1st order No No
CBF v2 1st order Yes No
CBF v2 None No No
CBFe None Yes No

Table 4: Inputs resulting in crashes during design iterations on CBF controller.

13

Figure 8: Using minitest bagfile as lead trajectory

(a) New safety model crashes. (b) RL controller from Vandertest does not crash.

As part of development of a new version of the CBF (control boundary function) safety controller, we tested
this controller against an easy lead trajectory and a harder one. A crash was observed in the harder case,
so we tested multiple controllers on these trajectories and varied the acceleration dynamics in case the 4th
order model was causing the problem. Results are shown in table 4. Removing the dynamics did allow the
new CBF controller (CBF v2) to succeed on the harder trajectory. In fact, the old version of CBF (CBF v1)
performed satisfactorily when the first order dynamics model was used, raising the question whether the 4th
order dynamics are an important test to check to pass before testing on the road.

Meanwhile, as a control, a version of CBF with a known error (CBFe) failed on the harder trajectory regardless
of the dynamics, and the Vandertest controller (0805) passed even with fourth-order dynamics. This shows
the harder trajectory with fourth order dynamics is a viable baseline test. However, the easy trajectory was
not sufficient to catch any errors in the example controllers. This also suggests that a wider range of tests is
important to increase the likelihood of forcing a crash in flawed controllers.

6.2 Ease of setup and use

A researcher unfamiliar with Docker was able to pull the image and run it locally without errors in less than 20
minutes. It remains to be seen whether the tool will be adopted consistently across the research group, and
whether users will be able to comfortably tailor tests to their needs. However, the installation process is orders
of magnitude faster than it would be to install ROS, trajectory_training, and their assorted dependencies and
get them running properly.

Yet Docker’s promise of portability did not fully hold up. On a MacOS Monterey containing the Apple M1
chip, ROS processes segfaulted and died, preventing the controllers from running. This bug affected running
ROS nodes on the image pulled from osrf/ros. Based on GitHub posts, it seems to be a known effect of faulty
qemu emulation when running x64 images on an ARM-based architecture. The only available strategy may be
to wait for the OSRF to publish an image for arm64.

Lastly, it should be noted that the size of the image is 10.8 GB. Docker’s ability to share layers between
images means that one could maintain several different versions stemming from the same image, or run many
containers of the same image simultaneously Boettiger [2015], but this size could be prohibitive for researchers
who are already using their personal computers intensively for other tasks.

6.3 Design for maintainability

To test the ease of updating the image as software changes, I enabled the running of a newer safety controller,
which involved running an installation script. I began the new Dockerfile by pulling FROM the image I had
developed to work with the Vandertest controller. From there, only four more Dockerfile commands, which
achieved the purpose of running the installation script, were needed to set up the image (see Appendix D

14

for the Dockerfile and script). A similar process was followed for the CBF controllers.3This suggests that
future installs will also be relatively low-effort. Experimenting with this installation also motivated some other
changes to the original image, such as installing most software as a user rather than as root.

Also related to maintainability, some issues with the existing base Docker image became apparent as the
trajectory_training repository evolved over the course of the project. Boettiger [2015] cautions about code-rot,
a phenomenon in which package dependencies and relationships start to break as packages iterate through
versions over time. For example, if a ‘git pull‘ is part of running a container, the run may change as new
commits are added to the git repository by external collaborators. Accordingly, Boettiger [2015] advises saving
occasional tarballs of the image, as a snapshot to confirm how the code originally worked. However, if one
wishes to work with up-to-date software, some maintenance of the software environment is inevitable.

Finally, a challenge with maintainability is that development and debugging are slightly harder in Docker
containers than in environments that are not containerized. When running a Docker machine interactively, by
default one can only access it through the command line, and there is only one entrypoint (no running multiple
shells simultaneously accessing the same Docker container in different working directories or running different
programs). This presents a challenge for debugging ROS-networked applications, which require notoriously
many terminal windows to run ad-hoc testing. It is possible to use GUI tools, such as rqt_graph that is often
very helpful for debugging faulty ROS node connections. But viewing a GUI served on a Docker container
requires some volume-mounting, networking, and display setup that demands a greater familiarity with Docker
and with these software concepts. The process would also be different on different people’s local computers
where they are running Docker. This is the cost of using containerization rather than full virtualization.

7 Future Work

As development of controllers continues, future work will naturally involve installing additional requirements
via new layers of the Docker image. For example, some controllers under development take information about
downstream congestion as input. This is not currently one of the ROS messages read by the ROSController in
trajectory_training, so vehicles.py and accel_controllers.py will need to be updated, and new ROS
packages will likely be necessary. All of these updates could either be made in trajectory_script.sh or
in a Dockerfile that pulls from the base Docker image, and it is up to the discretion of the researchers whether
the update time is short enough to be endured every time the simulation runs. Either way, these updates will
prove the extent to which the existing software provides a robust and flexible foundation.

A large missing piece of the SWIL testing setup remains: generating a set of test cases that can be used as
a standard regression test between different controllers and iterations. The state space of the controllers is
(currently) limited to the inputs of ego velocity, leader velocity, and space headway, and test cases should
cover common traffic phenomena as well as corner cases. See Section 2 for suggestions for testing the state
space of deep neural models, but even a simple set of tests for sanity checks would be useful to standardize.

Gazebo simply does not scale for simulating a platoon, but it is built on a more realistic physics engine that
may uncover safety risks that trajectory_training would miss. dockerhub [2022] provides a docker image for
Gazebo. Future work could explore how to facilitate more widespread use of Gazebo via containerization.
These results could be compared to the trajectory_training results to better understand what a high-fidelity
simulator adds to the SWIL testing process.

8 Conclusion

This simulation addresses a need for convenient software-in-the-loop testing within the process of AV research
and development. More exhaustive and sophisticated simulators are available, but their usefulness depends
on many researchers being able to install, run, debug, and comprehend the outputs of a simulator. Previous
DevOps processes in the lab group suggest that this tool will enable better integration of SWIL testing into

3In fact, for the CBF controllers, since I was working with someone who lacked comfort with writing Dockerfiles, we
eased into the process by calling the installation script directly from trajectory_script.sh. This has the same effect
but the installation script is then run every time the simulation is run.

15

controller development. Towards this end, containerization encourages researchers to use the simulation by
minimizing installation time and easing maintenance.

Some difficulties still exist, notably ROS’s failure to run in Docker on ARM architectures. More work is
needed to improve the security practices around Git private keys. Maintentance of the packages can still
require effort as software evolves.

At writing, this software-in-the-loop testing tool is becoming useful in practice as controller development
moves towards the deployment stage for a large field test. It is used by controller designers as they generate
production-ready versions of existing algorithms. It serves to debug the functioning of the ROS network; if
the vehicle does not run or its behavior is clearly wrong, there may be a gap in the modules’ communication.
This tool fulfills this iterative-testing need better than previous tools because of its ease of use and portability.
Before the field test, it will also be used to refine our expectations of how well the controllers will live up to
their original promise of reducing congestion, even when acceleration dynamics are introduced in the model.
This tool’s flexibility and scalability lets us answer this question with more certainty than previous methods.

Despite its challenges and limitations, this SWIL simulation tool contributes to a streamlined development
process well-suited to the demands of this vehicle autonomy research project.

9 Acknowledgments

I could not have completed this project without the technical assistance of Dr. Rahul Bhadani and the
supervision of Dr. Jonathan Sprinkle. Fangyu Wu, George Gunter, and Dr. Eugene Vinitsky also provided
important assistance and contributions. Thank you to Dr. Saleh Albeaik and Dr. Alexandre Bayen for bringing
me onboard the research team.

References
Ahmed AbdelHamed, Girma Tewolde, and Jaerock Kwon. Simulation framework for development and

testing of autonomous vehicles. In 2020 IEEE International IOT, Electronics and Mechatronics Conference
(IEMTRONICS), pages 1–6, 2020. doi: 10.1109/IEMTRONICS51293.2020.9216334.

Alexandre M. Bayen. Circles: Congestion impacts reduction via cav-in-the-loop lagrangian energy,
6 2020. URL https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_
2020_o_5.12.20_1247PM_LR.pdf.

Alexandre M. Bayen. Circles: Congestion impacts reduction via cav-in-the-loop lagrangian energy,
6 2021. URL https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_
2020_o_5.12.20_1247PM_LR.pdf.

Christian Berger, Björnborg Nguyen, and Ola Benderius. Containerized development and microservices for
self-driving vehicles: Experiences amp; best practices. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 7–12, 2017. doi: 10.1109/ICSAW.2017.56.

Rahul Bhadani. jmscslgroup/bagpy. URL https://github.com/jmscslgroup/bagpy. Accessed on
04-30-2022.

Rahul Bhadani, Matt Bunting, and Jonathan Sprinkle. Model-Based Engineering with Application to Autonomy,
pages 255–285. 12 2019. ISBN 9781119552390. doi: 10.1002/9781119552482.ch10.

Carl Boettiger. An introduction to docker for reproducible research. SIGOPS Oper. Syst. Rev., 49(1):71–79, jan
2015. ISSN 0163-5980. doi: 10.1145/2723872.2723882. URL https://doi.org/10.1145/2723872.
2723882.

Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer Levandowski, Shenjian Gao,
Yanwen Tan, Henrik Kaijser, Henrik Lönn, and Jonas Törnqvist. Safely entering the deep: A review of
verification and validation for machine learning and a challenge elicitation in the automotive industry, 12
2018.

16

https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_2020_o_5.12.20_1247PM_LR.pdf
https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_2020_o_5.12.20_1247PM_LR.pdf
https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_2020_o_5.12.20_1247PM_LR.pdf
https://www.energy.gov/sites/default/files/2020/06/f75/eems083_bayen_2020_o_5.12.20_1247PM_LR.pdf
https://github.com/jmscslgroup/bagpy
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882

CIRCLES Consortium. Circles: Using deep reinforcement learning and self-driving cars to improve traffic flow
and reduce energy consumption, 2020. URL https://circles-consortium.github.io. Accessed on
2022-04-27.

dockerhub. osrf/ros, 2022. URL https://hub.docker.com/r/osrf/ros/. Accessed on 2022-04-28.

Tom Erkkinen and Mirko Conrad. Verification, validation, and test with model-based design. 10 2008. doi:
10.4271/2008-01-2709.

GitHub. qemu: uncaught target signal 11 (segmentation fault) - core dumped when running docker-compose
up on apple silicon 5123. URL https://github.com/docker/for-mac/issues/5123. Accessed on
2022-04-28.

Meenu Mary John, Helena Holmström Olsson, and Jan Bosch. Towards mlops: A framework and maturity
model. In 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pages 1–8, 2021. doi: 10.1109/SEAA53835.2021.00050.

Matthew Nice, Nathan Lichtle, Gracie Gumm, Michael Roman, Eugene Vinitsky, Safwan Elmadani, Matt
Bunting, Rahul Bhadani, Kathy Jang, George Gunter, Maya Kumar, Sean McQuade, Chris Denaro, Ryan
Delorenzo, Benedetto Piccoli, Daniel Work, Alex Bayen, Jonathan Lee, Jonathan Sprinkle, and Benjamin
Seibold, September 2021. URL https://zenodo.org/record/6456348#.Ym3Dxy-B1O0.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore. In Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, oct 2017. doi: 10.1145/3132747.3132785. URL https://doi.
org/10.1145%2F3132747.3132785.

Nijat Rajabli, Francesco Flammini, Roberto Nardone, and Valeria Vittorini. Software verification and
validation of safe autonomous cars: A systematic literature review. IEEE Access, PP, 12 2020. doi:
10.1109/ACCESS.2020.3048047.

R. Ramadan B. Seibold D. Work S. Shanto, G. Gunter. Challenges of microsimulation calibration with traffic
waves using aggregate measurements, Jan 2021. Accepted for presentation at the Transportation Research
Board Annual Meeting.

A.C. Schultz, J.J. Grefenstette, and K.A. De Jong. Adaptive testing of controllers for autonomous vehicles. In
Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, pages 158–164, 1992.
doi: 10.1109/AUV.1992.225178.

Yujing Wang and Qinyang Bao. Adapting a container infrastructure for autonomous vehicle development. In
2020 10th Annual Computing and Communication Workshop and Conference (CCWC), pages 0182–0187,
2020. doi: 10.1109/CCWC47524.2020.9031129.

Ruffin White and Henrik Christensen. ROS and Docker, pages 285–307. Springer International Publishing,
Cham, 2017. ISBN 978-3-319-54927-9. doi: 10.1007/978-3-319-54927-9_9. URL https://doi.org/
10.1007/978-3-319-54927-9_9.

Cathy Wu, Abdul Rahman Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M. Bayen. Flow: A
modular learning framework for mixed autonomy traffic. IEEE Transactions on Robotics, 38(2):1270–1286,
apr 2022. doi: 10.1109/tro.2021.3087314. URL https://doi.org/10.1109%2Ftro.2021.3087314.

Fangyu Wu. Vehicle systems identification, 2022. URL https://cocalc.com/fangyuwu/workspaces/
sysid. Accessed on 2022-04-28.

A Dockerfile

Below is included the Dockerfile that can be built to generate the base image.

17

https://circles-consortium.github.io
https://hub.docker.com/r/osrf/ros/
https://github.com/docker/for-mac/issues/5123
https://zenodo.org/record/6456348#.Ym3Dxy-B1O0
https://doi.org/10.1145%2F3132747.3132785
https://doi.org/10.1145%2F3132747.3132785
https://doi.org/10.1007/978-3-319-54927-9_9
https://doi.org/10.1007/978-3-319-54927-9_9
https://doi.org/10.1109%2Ftro.2021.3087314
https://cocalc.com/fangyuwu/workspaces/sysid
https://cocalc.com/fangyuwu/workspaces/sysid

Listing 1: Base image Dockerfile to build jmscslgroup/trajectory_training_swil:v0
######################
ROS and libpanda
######################

FROM osrf/ros:noetic-desktop-full

RUN sudo apt-get -y update && \
sudo apt-get install -y libusb-1.0-0-dev && \
sudo apt-get install -y libncurses5-dev && \
sudo apt-get -y install git-all && \
sudo apt-get -y install dialog apt-utils && \
sudo apt-get -y install openssh-server && \
sudo apt-get install -y build-essential && \
sudo apt-get install -y wget && \
sudo apt-get clean && \
sudo rm -rf /var/lib/apt/lists/* && \
adduser --disabled-password --gecos ’docker machine for swil’ user1 && adduser user1 sudo && \
echo ’%sudo ALL=(ALL) NOPASSWD:ALL’ >> /etc/sudoers

USER user1

WORKDIR /opt/
RUN sudo git clone https://github.com/jmscslgroup/libpanda.git && \

cd /opt/libpanda && \
sudo mkdir build

WORKDIR /opt/libpanda/build
RUN sudo cmake .. && sudo make && \

git config --global --add safe.directory /opt/libpanda && sudo mkdir /var/panda && sudo chown user1:user1 /var/panda

############################
Conda
############################

Install miniconda
ENV CONDA_DIR /home/user1/conda
RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O /home/user1/miniconda.sh && \
/bin/bash /home/user1/miniconda.sh -b -p /home/user1/conda

Put conda in path so we can use conda activate
ENV PATH=$CONDA_DIR/bin:$PATH

RUN conda init

#######################################

##########
Git ssh
##########

WORKDIR /home/user1
RUN sudo apt-get update && sudo apt-get -y install openssh-server && \
mkdir /home/user1/.ssh
COPY id_ed25519 /home/user1/.ssh/id_ed25519
COPY id_ed25519.pub /home/user1/.ssh/id_ed25519.pub
RUN ssh-keyscan github.com >> /home/user1/.ssh/known_hosts && eval "$(ssh-agent -s)" && \
sudo chown -R user1 /home/user1/.ssh; sudo chmod -R go-rwx /home/user1/.ssh && \
ssh-add /home/user1/.ssh/id_ed25519

##########################
CIRCLES ROS dependencies
##########################

RUN mkdir /home/user1/catkin_ws && mkdir /home/user1/catkin_ws/src && \
cd /home/user1/catkin_ws/src && \
git clone git@github.com:jmscslgroup/hoffmansubsystem && \
git clone git@github.com:jmscslgroup/followerstoppermax4rl && \
git clone git@github.com:jmscslgroup/followerstoppermax && \
git clone git@github.com:jmscslgroup/followerstopperth && \
git clone git@github.com:jmscslgroup/followerstopperth4rl && \
git clone git@github.com:jmscslgroup/micromodel && \
git clone git@github.com:jmscslgroup/trajectory_07_05_2021_real && \
git clone git@github.com:jmscslgroup/velocity_controller && \
git clone git@github.com:jmscslgroup/integrator && \
git clone git@github.com:jmscslgroup/margin && \
git clone git@github.com:jmscslgroup/can_to_ros && \
git clone git@github.com:jmscslgroup/transfer_pkg && \
git clone https://github.com/sarahbhaskaran/accel_4th_order.git && \
git clone git@github.com:sarahbhaskaran/accel_to_vel.git && \
git clone git@github.com:sarahbhaskaran/accel.git && \
git clone git@github.com:CIRCLES-consortium/algos-stack.git && \
cd algos-stack && git checkout setpoint_rahul && cd .. && \
git clone git@github.com:nathanlct/trajectory_training.git && \
cd trajectory_training && git checkout ros-controller
WORKDIR /home/user1/catkin_ws/src/trajectory_training
RUN conda install -y python==3.8
RUN pip install update && git pull origin ros-controller
RUN pip install -r requirements.txt

#####################

18

Build and run trial
#####################

COPY catkin_make_script.sh /home/user1/catkin_make_script.sh
COPY trajectory_script.sh /home/user1/catkin_ws/src/trajectory_training/trajectory_script.sh
SHELL ["/bin/bash", "-c"]
RUN sudo chmod +x /home/user1/catkin_make_script.sh && sudo /home/user1/catkin_make_script.sh && \

sudo chmod +x /home/user1/catkin_ws/src/trajectory_training/trajectory_script.sh && \
/home/user1/catkin_ws/src/trajectory_training/trajectory_script.sh

B Key supporting files

As described in section 5.2.1, additional supporting files are necessary in order to run the simulation. Script 2
runs the docker container.

Listing 2: Script starting the Docker container
--label doesn’t matter but it could help identify the Docker containers to delete them later
The first volume is our local scripts/ mounted inside the container as docker_script
Second volume mounts the file where rosbags will be generated
Currently using jmscslgroup/trajectory_training_swil:v0 but it will be different if you use a different dockerhub repo or tag.
You have to have that docker image pulled or at least do docker login, otherwise authentication will fail.
The trajectory_script.sh that it runs is the one in scripts/ on your local computer
(not the one pulled in the docker container’s trajectory_training folder)
docker run --label run_trajectory_script \
-v $(pwd)/scripts:/home/user1/catkin_ws/src/trajectory_training/docker_script \
-v $(pwd)/rosbags:/home/.ros/latest \
jmscslgroup/trajectory_training_swil:v0 docker_script/trajectory_script.sh

The above script mounts a folder in the Docker container containing the trajectory_script.sh (Listing
3), and then runs this trajectory_script.sh inside the container. trajectory_script.sh specifies the
simulation parameters, runs the simulation, and gathers the outputs.

Listing 3: Script running the simulation
Source the ROS environment
source /opt/ros/noetic/setup.bash
source /home/user1/catkin_ws/devel/setup.bash
Start the ros master in the background
roscore >/dev/null &
Update the ROS repository
cd /home/user1/catkin_ws/src/trajectory_training
git pull origin ros-controller

Input parameters

Leader trajectory
Suggestion: dataset/data_v2_preprocessed_west/2021-03-22-22-23-58_2T3MWRFVXLW056972_masterArray_0_4223/trajectory.csv
or easier: dataset/data_v2_preprocessed_east/2021-04-07-21-22-07_2T3MWRFVXLW056972_masterArray_0_4882/trajectory.csv
If using a bagfile in scripts/, do docker_script/<bagfile name>.bag
LEADER_TRAJ=dataset/data_v2_preprocessed_west/2021-03-22-22-23-58_2T3MWRFVXLW056972_masterArray_0_4223/trajectory.csv
LEADER_TRAJ_IS_BAG=false
accel_launch.launch is committed in trajectory_training and currently uses a fourth order model.
It gets passed in the value of ros_accel as an argument.
Only relevant when using a single AV. If multiple, just put the acceleration node in the launch file.
ACCEL_MODULE=accel_launch.launch
If ros_accel is --ros_accel, cmd_accel will be the topic passed through the dynamics model and into the simulation.
If the variable is empty, cmd_vel will be the topic passed through the dynamics model into the simulation.
Watch out! Even if this is set wrong, the vehicle might still run. Check the bagfile generated from the run
to make sure the right topics are being published with the right values.
ROS_ACCEL=--ros_accel
Horizon limits the length of the simulation which is good to do when making sure it runs successfully.
For no horizon set the variable to ""
HORIZON="--horizon 100"
HORIZON=""

Convert the bagfile into a csv and put it in an accessible folder, if leader traj is a bagfile
if [[$LEADER_TRAJ_IS_BAG = true]]
then

python bagfile_to_csv.py $LEADER_TRAJ
LEADER_TRAJ=dataset/data_v2_preprocessed_west/bagfile/trajectory.csv

fi

Use is_single_av unless you have specifically written a launch file to work with multiple avs, as described in
https://docs.google.com/document/d/1wXCnonVP3yk4MDscO53H0cJYcZkWwEUDfQi2akWMSzc/edit?usp=sharing
IS_SINGLE_AV=true

Get the right launch file parameters and run the simulation
if [[$IS_SINGLE_AV = true]]
then

If the launch file is placed in scripts/, the path to it is docker_script/<launch file name>.launch
If the launch file can be accessed from a ros package, you can enclose it in quotes like "transfer_pkg rl0719_readonly.launch"
--platoon takes "av" and "human"; make sure that if using --launch_file option there is only one av

19

python simulate.py --platoon "av human" --traj_path $LEADER_TRAJ --no_lc --av_controller ros $HORIZON $ROS_ACCEL \
--launch_file "transfer_pkg rl0805_readonly.launch"

else
If no launch_file_list is specified it will use specific.launch which is committed in trajectory_training.
Make sure the length of the launch file list equals the number of AVs in the platoon.
(for this example platoon could be "av human av")
--platoon takes "av" and "human"
LAUNCH_FILE_LIST="[specific.launch]*2"
python simulate.py --platoon "av human av" --traj_path $LEADER_TRAJ --no_lc --av_controller ros $HORIZON $ROS_ACCEL \
--launch_file_list $LAUNCH_FILE_LIST

fi

Generate the emissions graph
python emissions_graph.py
Copy the output data into scripts/
cp -r data/simulate/ docker_script/

C Installation and running process

In order to install the software, it suffices to install Docker, and on the command line,
docker login
docker pull jmscslgroup/trajectory_training_swil:v0

One must obtain the supporting folder structure, and place any bagfiles or launch files that will be used into
scripts in this supporting folder structure. Then, adjust parameters in trajectory_script.sh to the
desired ones. Finally, run the software:
./docker_run.sh

If one wanted to build the base SWIL simulator image from a Dockerfile, they must have an SSH key in the
current working directory and run
docker build -t jmscslgroup/trajectory_training_swil:<tag of choice> -f Dockerfile .

It can be saved on the DockerHub cloud storage by
docker push jmscslgroup/trajectory_training_swil:<tag of choice>

If one wanted to run the Docker image interactively:
docker run --label run_trajectory_script \
-v $(pwd)/scripts:/home/user1/catkin_ws/src/trajectory_training/docker_script \
-v $(pwd)/rosbags:/home/.ros/latest -it jmscslgroup/trajectory_training_swil:v0

D Installing new controllers

To install a new safety controller, a new Dockerfile was written that pulled from the base image and built on it.

Installation and build for new controller, as an additional layer
FROM jmscslgroup/trajectory_training_swil:v0

SHELL ["/bin/bash", "-c"]
COPY install_script.sh /home/user1/catkin_ws/src/trajectory_training/install_script.sh
RUN /home/user1/catkin_ws/src/trajectory_training/install_script.sh

The install_script.sh is required as a supporting file:

source /opt/ros/noetic/setup.bash
source /home/user1/catkin_ws/devel/setup.bash
cd /home/user1/catkin_ws/src
sudo apt-get update
sudo apt-get install -y ros-noetic-robot-upstart
git clone git@github.com:jmscslgroup/time_to_collision.git
sudo chown -R user1:user1 /home/user1/catkin_ws

cd /opt/libpanda
git status
sudo git pull origin master
pip install empy
sudo chmod +x scripts/install_time_to_collision_Packages.sh
./scripts/install_time_to_collision_Packages.sh

20

Alternatively, this code can be included in the trajectory_script.sh and run in the same container. This makes
the container take longer to run, but it saves the user the trouble of learning how to write a Dockerfile and
correcting the various issues that arise when porting command line code into that format.

E Interpreting terminal output from the simulation

There are many possible ways to debug problems with the simulation, and the command line output is a good
place to start. 4 is an example of terminal output from a working run of the simulator. 5 explains what these
outputs refer to and highlights some that are often useful for debugging.

Listing 4: Terminal outputs from a successful run
1 From github.com:nathanlct/trajectory_training
2 * branch ros-controller -> FETCH_HEAD
3 46517b9..f165c42 ros-controller -> origin/ros-controller
4 Updating 46517b9..f165c42
5 Fast-forward
6 README.md | 7 ++-
7 docker/Dockerfiles/Dockerfile4 | 86 -------------------------------------
8 echo_vel.py | 30 +++++++++++++
9 emissions_graph.py | 8 +++-

10 simulate.py | 14 +++++-
11 trajectory/env/accel_controllers.py | 4 ++
12 trajectory/env/trajectory_env.py | 3 +-
13 7 files changed, 61 insertions(+), 91 deletions(-)
14 delete mode 100644 docker/Dockerfiles/Dockerfile4
15 create mode 100644 echo_vel.py
16 rosbag_record_swil is now alive!
17 cat: /etc/libpanda.d/vin: No such file or directory
18 In Save param
19 /var/panda/CyverseData/JmscslgroupData/bagfiles/2022_05_10/2022_05_10_23_23_41_following_real_vehicle_rl0719_enable_true.csv
20 [INFO] [1652225020.806226559]: ** Starting the model "velocity_controller" **
21
22 [INFO] [1652225020.781186997]: Forwarding lead distance events...
23 [INFO] [1652225021.054020387]: Recording to ’/home//.ros/latest/2022_05_10_23_23_40_NO_VINfs_enable_true.bag’.
24 [INFO] [1652225021.055035260]: Subscribing to /rosout_agg
25 [INFO] [1652225021.056569497]: Subscribing to /vel
26 [INFO] [1652225021.058000794]: Subscribing to /lead_dist
27 [INFO] [1652225021.059445271]: Subscribing to /rel_vel
28 [INFO] [1652225021.060895914]: Subscribing to /msg_467
29 [INFO] [1652225021.062640685]: Subscribing to /accel
30 [INFO] [1652225021.064230641]: Subscribing to /rosout
31 [INFO] [1652225021.066240643]: Subscribing to /v_act
32 [INFO] [1652225021.067661226]: Subscribing to /lead_dist_869
33 [INFO] [1652225021.069179317]: Subscribing to /rel_vel_869
34 [INFO] [1652225021.070530585]: Subscribing to /steering_angle
35 [INFO] [1652225021.071905643]: Subscribing to /msg_921
36 [INFO] [1652225021.073264617]: Subscribing to /track_a0
37 [INFO] [1652225021.074617328]: Subscribing to /track_a1
38 [INFO] [1652225021.075995796]: Subscribing to /rel_vel_old
39 [INFO] [1652225021.077356289]: Subscribing to /track_a2
40 [INFO] [1652225021.080211992]: Subscribing to /track_a3
41 [INFO] [1652225021.082266134]: Subscribing to /track_a4
42 [INFO] [1652225021.083774809]: Subscribing to /track_a5
43 [INFO] [1652225021.085252842]: Subscribing to /track_a6
44 [INFO] [1652225021.086653349]: Subscribing to /track_a7
45 [INFO] [1652225021.088134270]: Subscribing to /car/hud/mini_car_enable
46 [INFO] [1652225021.089990722]: Subscribing to /track_a8
47 [INFO] [1652225021.091402195]: Subscribing to /track_a9
48 [INFO] [1652225021.092800195]: Subscribing to /track_a10
49 [INFO] [1652225021.094221637]: Subscribing to /track_a11
50 [INFO] [1652225021.095612733]: Subscribing to /track_a12
51 [INFO] [1652225021.096976505]: Subscribing to /track_a13
52 [INFO] [1652225021.098232792]: Subscribing to /track_a14
53 [INFO] [1652225021.099624441]: Subscribing to /track_a15
54 [INFO] [1652225021.100962636]: Subscribing to /highbeams
55 [INFO] [1652225021.102268507]: Subscribing to /region
56 [INFO] [1652225021.103617707]: Subscribing to /cmd_vel
57 [INFO] [1652225021.105184774]: Subscribing to /timheadway1
58 [INFO] [1652225021.107099614]: Subscribing to /cmd_accel_null
59 [INFO] [1652225021.108876019]: Subscribing to /v_ref
60 [INFO] [1652225020.836418805]: ego_vel_topic/vel
61 [INFO] [1652225020.837391751]: relative_vel_topic/rel_vel
62 [INFO] [1652225020.837406100]: ego_odom_topic/ego_odom
63 [INFO] [1652225020.837417009]: leader_odom_topic/leader_odom
64 [INFO] [1652225020.837430784]: headway_topic/lead_dist
65 [INFO] [1652225020.837445873]: use_lead_vel0
66 [INFO] [1652225020.837458421]: use_odom0
67 [INFO] [1652225020.837471681]: use_accel_predict1
68 [INFO] [1652225020.855344307]: ego vel topic: /vel
69 [INFO] [1652225020.855368205]: relative vel topic: /rel_vel
70 [INFO] [1652225020.855382646]: headway topic: /lead_dist
71 [INFO] [1652225020.855393524]: ego odom topic: /ego_odom
72 [INFO] [1652225020.855403531]: leader odom topic: /leader_odom
73 [INFO] [1652225020.855418036]: use lead vel: 0

21

74 [INFO] [1652225020.855429896]: use odom: 0
75 [INFO] [1652225020.855447333]: headyway scale: 1
76 [INFO] [1652225020.855457898]: speed scale: 1
77 [INFO] [1652225020.855467943]: We will predict acceleration first. Acceleration will be on linear.z component
78 [INFO] [1652225020.855478777]: T Parameter is :0.6
79 [INFO] [1652225020.797183776]: ** Starting the model "followerstopperth4rl" **
80
81 ... logging to /home/user1/.ros/log/367d3342-d0b8-11ec-bd95-0242ac110002/roslaunch-0b97d65786ee-114.log
82 Checking log directory for disk usage. This may take a while.
83 Press Ctrl-C to interrupt
84 Done checking log file disk usage. Usage is <1GB.
85
86 started roslaunch server http://0b97d65786ee:37199/
87
88 SUMMARY
89 ========
90
91 PARAMETERS
92 * /rosdistro: noetic
93 * /rosversion: 1.15.14
94
95 NODES
96 /
97 bashscript2 (trajectory_training/rosbag_record_swil.sh)
98
99 ROS_MASTER_URI=http://localhost:11311

100
101 process[bashscript2-1]: started with pid [152]
102 [bashscript2-1] killing on exit
103 shutting down processing monitor...
104 ... shutting down processing monitor complete
105 done
106 ... logging to /home/user1/.ros/log/367d3342-d0b8-11ec-bd95-0242ac110002/roslaunch-0b97d65786ee-113.log
107 Checking log directory for disk usage. This may take a while.
108 Press Ctrl-C to interrupt
109 Done checking log file disk usage. Usage is <1GB.
110
111 started roslaunch server http://0b97d65786ee:36589/
112
113 SUMMARY
114 ========
115
116 PARAMETERS
117 * /rosdistro: noetic
118 * /rosversion: 1.15.14
119
120 NODES
121 /
122 accel_4th_order (accel_4th_order/accel_4th_order)
123
124 ROS_MASTER_URI=http://localhost:11311
125
126 process[accel_4th_order-1]: started with pid [147]
127 [accel_4th_order-1] killing on exit
128 shutting down processing monitor...
129 ... shutting down processing monitor complete
130 done
131 ... logging to /home/user1/.ros/log/367d3342-d0b8-11ec-bd95-0242ac110002/roslaunch-0b97d65786ee-112.log
132 Checking log directory for disk usage. This may take a while.
133 Press Ctrl-C to interrupt
134 Done checking log file disk usage. Usage is <1GB.
135
136 started roslaunch server http://0b97d65786ee:39871/
137
138 SUMMARY
139 ========
140
141 PARAMETERS
142 * /HEADWAY_SCALE: 1.0
143 * /SPEED_SCALE: 1.0
144 * /T: 0.6
145 * /description: following_real_ve...
146 * /ego_vel_topic: /vel
147 * /enable_fs: True
148 * /headway_topic: /lead_dist
149 * /hwil: True
150 * /margin: 30.0
151 * /mode: prompt
152 * /model: /home/user1/catki...
153 * /readonly: True
154 * /relative_vel_topic: /rel_vel
155 * /rosdistro: noetic
156 * /rosversion: 1.15.14
157 * /th1: 0.4
158 * /th2: 1.2
159 * /th3: 1.8
160 * /use_accel_predict: True
161 * /use_lead_vel: False
162 * /use_margin: False
163 * /w1: 4.5
164 * /w2: 5.25
165 * /w3: 6.0

22

166
167 NODES
168 /
169 bashscript2 (can_to_ros/rosbag_record.sh)
170 controller (onnx2ros/prompt_mode)
171 followerstopperth4rl_node (followerstopperth4rl/followerstopperth4rl_node)
172 lead_info (can_to_ros/lead_info)
173 saveparam (transfer_pkg/saveparam.py)
174 simple_mini_car_from_lead_distance (can_to_ros/simple_mini_car_from_lead_distance)
175 subs_fs (can_to_ros/subs_fs)
176 velocity_controller_readonly_node (velocity_controller/velocity_controller_node)
177
178 ROS_MASTER_URI=http://localhost:11311
179
180 process[subs_fs-1]: started with pid [187]
181 process[lead_info-2]: started with pid [188]
182 process[simple_mini_car_from_lead_distance-3]: started with pid [193]
183 process[controller-4]: started with pid [201]
184 process[followerstopperth4rl_node-5]: started with pid [204]
185 process[velocity_controller_readonly_node-6]: started with pid [210]
186 process[bashscript2-7]: started with pid [219]
187 process[saveparam-8]: started with pid [223]
188 [saveparam-8] process has finished cleanly
189 log file: /home/user1/.ros/log/367d3342-d0b8-11ec-bd95-0242ac110002/saveparam-8*.log
190 [bashscript2-7] killing on exit
191 [controller-4] killing on exit
192 [velocity_controller_readonly_node-6] killing on exit
193 [simple_mini_car_from_lead_distance-3] killing on exit
194 [subs_fs-1] killing on exit
195 [lead_info-2] killing on exit
196 [followerstopperth4rl_node-5] killing on exit
197 shutting down processing monitor...
198 ... shutting down processing monitor complete
199 done
200 WARNING: topic [/car/panda/gps_active] does not appear to be published yet
201 pygame 2.0.1 (SDL 2.0.14, Python 3.8.0)
202 Hello from the pygame community. https://www.pygame.org/contribute.html
203 Created experiment folder at data/simulate/1652225018_10May22_23h23m38s
204
205 Running experiment with the following platoon: 0_trajectory_leader 1_ros_av 2_idm_human
206 with av controller ros (kwargs = {})
207 with human controller idm (kwargs = {})
208
209 Running experiment 1/1, lasting 4223 timesteps.
210 Using trajectory /home/user1/catkin_ws/src/trajectory_training/dataset/data_v2_preprocessed_west/2021-03-22-22-23-58_2T3MWRFVXLW056972_masterArray_0_4223/trajectory.csv
211 Progress: 0.7% (29/4223 env steps)
212 Progress: 1.9% (80/4223 env steps)
213 Progress: 3.1% (130/4223 env steps)
214 Progress: 4.3% (181/4223 env steps)
215 Progress: 5.5% (231/4223 env steps)
216 Progress: 6.7% (282/4223 env steps)
217 Progress: 7.9% (333/4223 env steps)
218 Progress: 9.1% (384/4223 env steps)
219 Progress: 10.3% (435/4223 env steps)
220 Progress: 11.5% (486/4223 env steps)
221 Progress: 12.7% (536/4223 env steps)
222 Progress: 13.9% (587/4223 env steps)
223 Progress: 15.1% (638/4223 env steps)
224 Progress: 16.3% (689/4223 env steps)
225 Progress: 17.5% (740/4223 env steps)
226 Progress: 18.7% (790/4223 env steps)
227 Progress: 19.9% (841/4223 env steps)
228 Progress: 21.1% (892/4223 env steps)
229 Progress: 22.3% (942/4223 env steps)
230 Progress: 23.5% (992/4223 env steps)
231 Progress: 24.7% (1043/4223 env steps)
232 Progress: 25.9% (1093/4223 env steps)
233 Progress: 27.1% (1144/4223 env steps)
234 Progress: 28.3% (1195/4223 env steps)
235 Progress: 29.5% (1246/4223 env steps)
236 Progress: 30.7% (1296/4223 env steps)
237 Progress: 31.9% (1346/4223 env steps)
238 Progress: 33.1% (1397/4223 env steps)
239 Progress: 34.3% (1447/4223 env steps)
240 Progress: 35.5% (1498/4223 env steps)
241 Progress: 36.7% (1549/4223 env steps)
242 Progress: 37.9% (1599/4223 env steps)
243 Progress: 39.1% (1650/4223 env steps)
244 Progress: 40.3% (1701/4223 env steps)
245 Progress: 41.5% (1751/4223 env steps)
246 Progress: 42.6% (1801/4223 env steps)
247 Progress: 43.9% (1852/4223 env steps)
248 Progress: 45.1% (1903/4223 env steps)
249 Progress: 46.3% (1954/4223 env steps)
250 Progress: 47.5% (2004/4223 env steps)
251 Progress: 48.7% (2055/4223 env steps)
252 Progress: 49.8% (2105/4223 env steps)
253 Progress: 51.0% (2155/4223 env steps)
254 Progress: 52.2% (2206/4223 env steps)
255 Progress: 53.4% (2257/4223 env steps)
256 Progress: 54.6% (2307/4223 env steps)
257 Progress: 55.8% (2357/4223 env steps)

23

258 Progress: 57.0% (2408/4223 env steps)
259 Progress: 58.2% (2459/4223 env steps)
260 Progress: 59.4% (2509/4223 env steps)
261 Progress: 60.6% (2560/4223 env steps)
262 Progress: 61.8% (2610/4223 env steps)
263 Progress: 63.0% (2661/4223 env steps)
264 Progress: 64.2% (2712/4223 env steps)
265 Progress: 65.4% (2762/4223 env steps)
266 Progress: 66.6% (2812/4223 env steps)
267 Progress: 67.8% (2863/4223 env steps)
268 Progress: 69.0% (2914/4223 env steps)
269 Progress: 70.2% (2965/4223 env steps)
270 Progress: 71.4% (3016/4223 env steps)
271 Progress: 72.6% (3066/4223 env steps)
272 Progress: 73.8% (3117/4223 env steps)
273 Progress: 75.0% (3167/4223 env steps)
274 Progress: 76.2% (3217/4223 env steps)
275 Progress: 77.4% (3268/4223 env steps)
276 Progress: 78.6% (3318/4223 env steps)
277 Progress: 79.8% (3368/4223 env steps)
278 Progress: 81.0% (3419/4223 env steps)
279 Progress: 82.2% (3470/4223 env steps)
280 Progress: 83.4% (3521/4223 env steps)
281 Progress: 84.6% (3572/4223 env steps)
282 Progress: 85.8% (3623/4223 env steps)
283 Progress: 87.0% (3673/4223 env steps)
284 Progress: 88.2% (3723/4223 env steps)
285 Progress: 89.4% (3774/4223 env steps)
286 Progress: 90.6% (3825/4223 env steps)
287 Progress: 91.8% (3875/4223 env steps)
288 Progress: 93.0% (3926/4223 env steps)
289 Progress: 94.2% (3977/4223 env steps)
290 Progress: 95.4% (4028/4223 env steps)
291 Progress: 96.6% (4079/4223 env steps)
292 Progress: 97.8% (4129/4223 env steps)
293 Progress: 99.0% (4180/4223 env steps)
294 Progress: 100.0% (4223/4223 env steps)
295 Saved emissions file at data/simulate/1652225018_10May22_23h23m38s/emissions/emissions_1.csv
296 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/training_1.png
297 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/custom_metrics_1.png
298 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/base_state_1.png
299 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/sim_data_av_1.png
300 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/platoon_0_1.png
301 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/system_1.png
302 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/speed_accel_profiles_1.png
303 Wrote data/simulate/1652225018_10May22_23h23m38s/figs/time_space_diagram_1.png
304
305
306 Metrics aggregated over 1 runs:
307
308 system_mpg: 36.86 0.00 (min = 36.86, max = 36.86)
309 system_speed: 28.51 0.00 (min = 28.51, max = 28.51)
310 av_mpg: 34.00 0.00 (min = 34.00, max = 34.00)
311 platoon_0_mpg: 38.37 0.00 (min = 38.37, max = 38.37)
312 count_crash: 0.00 0.00 (min = 0.00, max = 0.00)
313 count_low_headway_penalty: 0.00 0.00 (min = 0.00, max = 0.00)
314 count_large_headway_penalty: 3701.00 0.00 (min = 3701.00, max = 3701.00)
315 count_low_time_headway_penalty: 0.00 0.00 (min = 0.00, max = 0.00)
316 av_headway (mean): 551.36 0.00 (min = 551.36, max = 551.36)
317 av_headway (std): 310.59 0.00 (min = 310.59, max = 310.59)
318 av_headway (min): 61.21 0.00 (min = 61.21, max = 61.21)
319 av_headway (max): 1025.89 0.00 (min = 1025.89, max = 1025.89)
320 av_speed (mean): 28.40 0.00 (min = 28.40, max = 28.40)
321 av_speed (std): 5.67 0.00 (min = 5.67, max = 5.67)
322 av_speed (min): 5.09 0.00 (min = 5.09, max = 5.09)
323 av_speed (max): 46.12 0.00 (min = 46.12, max = 46.12)
324 platoon_0_speed (mean): 28.40 0.00 (min = 28.40, max = 28.40)
325 platoon_0_speed (std): 5.63 0.00 (min = 5.63, max = 5.63)
326 platoon_0_speed (min): 5.81 0.00 (min = 5.81, max = 5.81)
327 platoon_0_speed (max): 43.15 0.00 (min = 43.15, max = 43.15)
328 av_leader_speed_difference (mean): 2.22 0.00 (min = 2.22, max = 2.22)
329 av_leader_speed_difference (std): 6.09 0.00 (min = 6.09, max = 6.09)
330 av_leader_speed_difference (min): -16.53 0.00 (min = -16.53, max = -16.53)
331 av_leader_speed_difference (max): 24.76 0.00 (min = 24.76, max = 24.76)
332 instant_energy_consumption (mean): 1.87 0.00 (min = 1.87, max = 1.87)
333 instant_energy_consumption (std): 1.86 0.00 (min = 1.86, max = 1.86)
334 instant_energy_consumption (min): 0.00 0.00 (min = 0.00, max = 0.00)
335 instant_energy_consumption (max): 24.21 0.00 (min = 24.21, max = 24.21)
336 rl_reward (mean): -0.94 0.00 (min = -0.94, max = -0.94)
337 rl_reward (std): 0.71 0.00 (min = 0.71, max = 0.71)
338 rl_reward (min): -3.42 0.00 (min = -3.42, max = -3.42)
339 rl_reward (max): 1.00 0.00 (min = 1.00, max = 1.00)
340 rl_episode_reward: -3967.98 0.00 (min = -3967.98, max = -3967.98)
341 n_cutins: 0.00 0.00 (min = 0.00, max = 0.00)
342 n_cutouts: 0.00 0.00 (min = 0.00, max = 0.00)
343 n_vehicles (mean): 3.00 0.00 (min = 3.00, max = 3.00)
344 n_vehicles (std): 0.00 0.00 (min = 0.00, max = 0.00)
345 n_vehicles (min): 3.00 0.00 (min = 3.00, max = 3.00)
346 n_vehicles (max): 3.00 0.00 (min = 3.00, max = 3.00)
347
348 Experiment logs have been saved at data/simulate/1652225018_10May22_23h23m38s/logs.txt
349 Experiment folder is data/simulate/1652225018_10May22_23h23m38s

24

Table 5: Terminal outputs from a successful run
Line num-
bers

Source Notes

1-15 git pull command in trajec-
tory_script.sh

Updating the trajectory_training repository with changes since
when the docker image was built

16 just_bag.launch Added my own bagrecord node that works on a non-RPi computer
17 ROS nodes Error because there is no VIN in the appropriate folder in libpanda,

but that does not cause problems
18-200 ROS nodes Runs through the output from starting the launch file twice because

create_simulation() function runs an extra time before the sim
starts

24-59 ROS nodes Tells you what topics have been created (what topics the ros-
bag_record is recording in the bagfile)

200 rosbag_record.sh script in
can_to_ros package

The usual rosbag_record.sh doesn’t work, which is why I added
the just_bag.launch to run rosbag_record_swil.sh

201-349 trajectory_training simulation Normal outputs from trajectory_training
211-294 trajectory_env.py So many progress updates because ROS nodes run in real time,

but the progress updates don’t necessarily show up on the terminal
immediately when being run inside a docker container.

349 simulate.py Name of the folder where all outputs except rosbags are saved

25

	Introduction
	Related Work
	Project Background
	Simulation
	Controllers from simulation to real
	Previous SWIL testing

	Problem
	Validation of controllers
	Portability of the simulation
	Maintainability of the simulation

	Approach
	trajectory_training environment
	Containerizing with Docker
	Supporting file structure
	Extensions

	Results
	Simulation examples
	Ease of setup and use
	Design for maintainability

	Future Work
	Conclusion
	Acknowledgments
	Dockerfile
	Key supporting files
	Installation and running process
	Installing new controllers
	Interpreting terminal output from the simulation

