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Abstract

The Effect of Model Size on Worst-Group Generalization

by

Alan Pham

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

Overparameterization is shown to result in poor test accuracy on rare subgroups under a
variety of settings where subgroup information is known. To gain a more complete picture,
we consider the case where subgroup information is unknown. We investigate the effect of
model size on worst-group generalization under empirical risk minimization (ERM) across
a wide range of settings, varying: 1) architectures (ResNet, VGG, or BERT), 2) domains
(vision or natural language processing), 3) model size (width or depth), and 4) initialization
(with pre-trained or random weights). Our systematic evaluation reveals that increasing
model size does not hurt, and may help, worst-group test performance under ERM across all
setups. In particular, increasing pre-trained model size consistently improves performance
on Waterbirds and MultiNLI. We advise practitioners to use larger pre-trained models when
subgroup labels are unknown.
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1.1 Introduction

Recent work shows that overparameterized models display stronger generalization perfor-
mance than smaller models, even on small datasets, suggesting that larger models overfit
less [2]. Despite this trend, many works find or assume that overparameterization can hurt
test accuracy on certain subgroups of the data [3, 7, 20, 26, 36]. This problem is exacerbated
when tuning a model with unknown subgroup labels since the performance gap between av-
erage accuracy and worst-group accuracy–the subgroup with poorest accuracy– can be large.
The difference between the average test accuracy and worst-group test accuracy ranges from
40 to 60% in the empirical risk minimization (ERM) setup from Sagawa et al. [25] on CelebA
and Waterbirds. In addition to the resulting fairness concerns, real-world deployments might
encounter distribution shifts that upweight rare subgroups, causing the average accuracy to
suffer.

Low worst-group accuracy often occurs when subgroups are associated with spurious
features. For example, consider the task of classifying images of landbirds and waterbirds:
although waterbirds are more likely to appear on a water background, the image background
(the spurious feature) has no direct causal relationship with the species of bird. These spu-
rious features harm performance on “rare” subgroups (e.g. waterbirds on land background)
where the cue contradicts the true label. This can lead to high-stakes real-world problems:
thoracic pathology detection models were found to rely on the presence of chest drains (a
treatment device) to detect pneumothorax, which led to poor performance on the clinically
relevant rare subgroup of untreated patients with pneumothorax [23].

We systematically investigate the effect of model size on the performance of the model on
the rare subgroups. Prior works show that increasing model size can hurt worst-group per-
formance. In Sagawa et al. [25], this trend was shown for models trained with the reweighted
objective that upweights minority groups. Furthermore, Sagawa et al. [25] finds that, trained
with naive ERM, models have poor worst-group error regardless of model size. In our work,
we provide complementary findings as we explore the trend in naive ERM models in more
comprehensive and informative experiments. We experiment on a wide range of datasets
with spurious correlations, which include: Waterbirds (a dataset of birds on land and water)
[26], CelebA (a face dataset we use for two tasks: Lipstick / Earring and Blond / Male)
[18], and MultiNLI (a language dataset) [34] datasets (more details and conventions listed in
Appendix 1.4). We also conduct experiments across multiple model architectures, varying
model depth or width and initializing with pre-trained or random weights.

We find that, under ERM, increasing model size does not hurt and sometimes helps worst-
group test accuracy across all settings considered in this paper (Section 1.5). In particular,
larger pre-trained models are often less susceptible to spurious correlation. For example, in
the Waterbirds dataset, compared to pre-trained ResNet18, pre-trained ResNet152 decreases
the worst-group error by approximately 18.39% (Figure 1.2).

Interestingly, pre-trained models actually achieve better worst-group accuracy as model
size increases, while models trained from scratch merely do not get worse.
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We summarize our contributions as follows:

• We empirically show that, under ERM, larger model sizes either help or do not hurt
worst-group test accuracy across a wide range of settings. Specifically, we look across
vision and language datasets and common model architectures.

• We explore the trend over increasing numbers of parameters by separately looking
at the effects widening models and deepening models. We also look at the effects of
pre-training the model on a different dataset compared to randomly initialized models.

• We find that larger pre-trained models consistently improve worst-case group accuracies
on two widely used datasets: Waterbirds and MultiNLI.



CHAPTER 1. THE EFFECT OF MODEL SIZE ON WORST-GROUP
GENERALIZATION 4

1.2 Related Work

Generalization with Overparameterized Models. Many widely-used models, includ-
ing the ResNet, VGG batchnorm (BN), and BERT series of architectures, show a monotonic
increase in average test accuracy on common tasks with increasing model size. Overparame-
terization, increasing model size beyond memorizing the training set, is also found to improve
robustness to adversarial samples and distributional shifts [11]. This has been attributed
to the “double descent”, where increasing model size results in worse performance, then
better model performance, past some interpolation threshold [1, 21]. Bornschein, Visin, and
Osindero [2] discusses this in the context of small data, while Yang et al. [35] provides an
explanation via the bias-variance trade-off curve. Sagawa et al. [25] studies overparameter-
ization and worst-group accuracy, finding that larger models often fail to generalize to rare
groups in the test distribution. This is attributed to the presence of spurious correlations in
the training data.

Distributional Shift and Spurious Correlation. We examine the phenomenon of
distributional shift, where training and test set distributions differ [15]. Pre-trained language
models are more robust against spurious correlation, though this is dependent on the number
of negative samples (i.e., samples that for which the spurious correlation does not correctly
predict the label) [29]. On the other hand, Niven and Kao [22] finds that language models
heavily rely on spurious correlations. For instance, on the argument reasoning comprehension
task, even when logically necessary parts of the input are obscured, BERT Large is still
reliably able to perform well. Meanwhile, vision models suffer from spurious correlations due
to scene biases such as co-occurrence of objects with other objects, backgrounds, or textures
[38, 12].

Mitigating Spurious Correlation. Prior works have explored data augmentation
to combat dependence on spurious correlations. In NLP, one approach is counterfactual
augmentation: modifying the input sentences by a minimal amount to change the target
label [13]. This reduces the strength of spurious correlations by introducing variation in core
features (with a causal relation to the label) while controlling for non-causal variables. In
computer vision, Goel et al. [5] suggests using CycleGAN to generate negative examples. Liu
et al. [17] suggests a two-stage training regime that upweights misclassified points. Wang
et al. [32] introduces a causal attention module that performs unsupervised annotations to
mitigate spurious correlation.

Alternatively, worst-group test error can be reduced through the use of distributionally
robust optimization (DRO) to guide training [38, 8]. One approach is group DRO (GDRO),
an instance of DRO that minimizes the worst-group expected loss [26, Eqn.(4)]. This sub-
stantially improves generalization when coupled with heavy regularization, but requires prior
labeling of subgroups in the training set.
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1.3 Problem Setting

We adopt the formulation presented in Sagawa et al. [25]. Each sample consists of an input
x ∈ X , a target label y ∈ Y , and a spurious attribute a ∈ A. We categorize samples into
groups g = (y, a) ∈ G = Y × A. The spurious attribute a is correlated with the label
y, but has no causal relationship. The problem domains we consider are all classification
tasks, where |Y| = 2 or 3, and are confounded by a binary spurious attribute (|A| = 2).
For example, in the Waterbirds dataset, we might have an image x of a waterbird on a
land background: the label y is the target class “waterbird”, the spurious feature a is “land
background”, and the group g is (waterbird, land background).

Our work focuses on the effect of model size on worst-group test error. We train using
empirical risk minimization (ERM) [31], finding the model parameters θ that empirically
minimize the average training loss:

RERM(θ) = E(x,y,g)[ℓ(θ, (x, y))]. (1.1)

We use cross-entropy loss and choose the weight decay, learning rate, and training epoch so
that the models are trained to convergence. Further details on the training procedure are in
Appendix 1.4.

Metrics. Given a model h : X → Y , we define the error on a group g ∈ G as

εg := Ex,y|g[1(h(x) ̸= y)]. (1.2)

Throughout the paper, we compute the group error averaged over the last 10 epochs of
training in order to reduce noise and smooth out the results.

We consider two metrics: the average error as well as the worst-group error, defined as:

ε :=
∑
g∈G

wg · εg and εwg := max
g∈G

εg, (1.3)

where wg is the weight equal to the group’s proportion in the training data.
Across our experiments on increasing model depths and widths for the ResNet, VGG

BN, MobileNet, and BERT architectures, we report average and worst-group error on the
training and test datasets.
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1.4 Experimental Setup

We compare the trends of the average and worst-group train and test performance of different
model architectures by varying the model size in terms of depth and width. For CV, we use
ResNet [9], VGG (batchnorm) [28], and MobileNet [27]. For the NLP domain, we use BERT
[4]. Compared to prior work, we use a wide range of commonly-used models including those
run on edge devices to observe the trends in realistic settings. We also make sure that
we follow the experiment settings in prior works. For example, the setup over the CelebA
datasets follows the setup of Nakkiran et al. [21], varying the width of a ResNet10 model
[10]. The setup over the Waterbirds dataset follows the setup in Mei and Montanari [19],
training an unregularized logistic regression model over a variable number of projections of
the feature representation of the input in a pre-trained ResNet18 model.

Datasets

We look at the trends on four tasks: Waterbirds, CelebA Blond / Male, CelebA Lipstick /
Earring, and MultiNLI. The first three are CV tasks whereas MultiNLI is a NLP task.

Waterbirds. Waterbirds is a synthetic dataset constructed in [26] by cropping out
bird photographs from the Caltech-UCSD Birds-200-2011 (CUB) dataset [33] and placing
them on top of image backgrounds from the Places dataset [37]. In Waterbirds, we classify
two types of birds: birds that primarily live on land (landbirds) and birds that live on
water (waterbirds). These classes are spuriously correlated with the background type: land
background or water background.

Most landbirds are photographed on land and waterbirds on water. Therefore, there
are four groups of varying sizes in this dataset. Two large groups of common pairings:
landbird on land background, and landbird on water background, and two small groups of
less common pairings: waterbird on land background, and waterbird on water background.
The background acts as a spurious factor; models typically associate water backgrounds with
waterbirds and vice versa. As a result, models tend to fail to generalize to rare groups.

CelebA [18] is a large scale multi-feature face dataset with varying backgrounds and
poses. Using the CelebA dataset, we can construct spurious correlations datasets by selecting
specific features from the multi-feature dataset. CelebA Blond / Male and CelebA Lipstick/
Earring are two such examples of spurious correlation datasets formed from CelebA.

CelebA Blond / Male. In CelebA Blond / Male, the model classifies images as either
containing blond or dark hair. The model classifies images as either containing blond hair
or not. The spurious correlation is whether or not the subject is male.

CelebA Lipstick / Earring. In the CelebA Lipstick / Earring task, the model classifies
images as either containing lipstick or no lipstick [14]. The spurious correlation is the presence
of earrings, which is highly correlated with the presence of lipstick.

MultiNLI. MultiNLI is a natural language inference dataset introduced in [34]. The
NLI task consists of predicting how a sentence A logically relates to another sentence B.
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While the three labels (entailment, contradiction, neutral) are represented equally in the
dataset, [6] discovers an annotation artifact: negation words (“nobody”, “no”, “never”, and
“nothing”), when present in sentence B, are far more likely to correspond to a contradiction
than entailment. Thus, the labels are spuriously correlated with the presence of negation
words.

Table 1.4 in the appendix describes the number of samples in each group.

Models

We refer to “pre-trained” models as those where we finetuned models which were pre-trained
(say on ImageNet for CV tasks), or “trained from scratch” models where our initial check-
point begins with randomly initialized weights.

VGG (batchnorm). VGG batchnorm (BN) models are large CNN, which extend on
AlexNet using multiple 3x3 sized filters. It was one the of the top performing models for the
ImageNet image localization task. We train and test pretrained VGG BN 11, VGG BN 13,
VGG BN 16, and VGG BN 18 models.

ResNet. ResNet is a state of the art deep convolutional model that also perform very
well on image classification on ImageNet. It was created to minimize the vanishing gradient
by adding a residual block that adds weights from previous layers. For the depths, we
train and test pretrained ResNet18, ResNet34, ResNet101, and ResNet152 models. For the
widths, we train and test pretrained ResNet18 WD4, ResNet18 WD2, ResNet18 W3D4, and
ResNet18 models.

MobileNet V2 width reductions. Different width multipliers applied all layers (but
the last convolutional layer) of the MobileNetv2 architecture, pretrained on ImageNet [27].
We use architectures and pretrained checkpoints from a Github reproduction from [16].

BERT. We use the BERT architecture for the MultiNLI task, varying the width and
depth as in [30], which showed effectiveness of BERT even with non-standard depths and
widths.

Training Procedure

The CV models (ResNet, VGG, MobileNet) were trained with Nvidia GPUs. The BERT
models were pretrained and fine-tuned on a TPUv3 through the Google Cloud Platform. For
the CV models, we use a batch size of 128, a stochastic gradient descent (SGD) optimizer
with a momentum of 0.9, and a step scheduler for the learning rate. For the BERT models,
we use a batch size of 64, the Adam optimizer with β1 = 0.9 and β2 = 0.999, and a linear
LR warmup for 10% of the training epochs followed by linear LR decay to zero. A list of the
hyperparameters used can be found in Table 1.2.
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Resampling

We resample each dataset to verify the consistency of the trends. 95% confidence interval
error bars are included in the graphs for context. Resampling is done by shuffling train,
validation, and test data while keeping the proportions of the 4 subgroups in each set. The
models are then trained to convergence and we graph the training and validation errors of
the converged models. Within each set of model size experiments (i.e., set of graphs), we
trained all the models using the same hyperparameters.

Dataset Worst-Group Total # Worst-Group #
Waterbirds Waterbird, Land Background 4795 56

CelebA Blond / Male Blond, Male 162770 1387
CelebA Lipstick / Earring No Lipstick, Earring 162770 4516

MultiNLI Entailment, Negation 205357 1483

Table 1.1: Number of training examples in each dataset
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Dataset Inital Weight Architecture Epochs LR LR Step WD

Waterbirds
Pretrained

ResNet 100 5e-4 30 1e-4
ResNet Width 100 0.001 30 1e-4
MobileNet 100 0.01 30 1e-4
VGG BN 100 5e-4 30 1e-4

Random
ResNet 100 0.01 30 1e-4

ResNet Width 100 0.01 30 1e-4

Pretrained

ResNet 100 5e-4 30 1e-4
ResNet Width 100 0.001 30 1e-4

CelebA MobileNet 200 0.05 50 3e-5
Blond / Male VGG BN 100 5e-4 30 1e-4

Random
ResNet 100 0.01 30 1e-4

ResNet Width 100 0.01 30 1e-4

Pretrained

ResNet 100 5e-4 30 1e-4
ResNet Width 100 0.001 30 1e-4

CelebA MobileNet 200 0.06 50 3e-5
Lipstick / Earring VGG BN 100 5e-4 30 1e-4

Random
ResNet 100 0.01 30 1e-4

ResNet Width 100 0.01 30 1e-4

MultiNLI
Pretrained BERT 20 5e-5 1 0.01
Random BERT 20 5e-5 1 0.01

Table 1.2: The hyperparameters used to train the models to convergence on each dataset.

Dataset Worst-Group DRO Acc. Worst-Group ERM Acc.
Waterbirds 84.6 39.47

CelebA Blond/Male 88.3 58.41
MultiNLI 77.7 67.5

Table 1.3: Comparison of group DRO summarized from Sagawa et al. [26] with our own
ERM results.
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Figure 1.1: Models trained to convergence, e.g., until average training accuracy is close or
equal to 100%. Hyperparameters remain the same within each experiment series. In each of
the four graphs above, we compare the error of pre-trained and randomly initialized models of
the same architecture. Pre-trained models perform better than models trained from scratch
and increasing model sizes for both types of models does not hurt the worst-group error.
Top row: Depth-varying results. Bottom row: Width-varying results. Columns: From
left to right, ResNet on Waterbirds, ResNet on CelebA Blond / Male, ResNet on CelebA
Lipstick / Earring, BERT on MultiNLI.

1.5 Experimental Results

We are interested in understanding how worst-group test accuracy changes with model size.
To investigate the trends systematically, we study the effect of varying width and depth,
under pre-trained and randomly initialized models. We perform four sets of experiments,
varying the depth and width of pre-trained and randomly initialized models. The summa-
rized results of the experiments on the Waterbirds and MultiNLI datasets are presented in
Figure 1.1.
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We summarize our depth varying for pre-trained models results in figure 1.2, width
varying for pre-trained models in figure 1.3, depth varying for randomly initialized models
in figure 1.4, and width varying for randomly initialized models in figure 1.5. Pre-trained
models on the Waterbirds dataset show a distinct decrease in error with model size while for
other experiments, error stays roughly the same for all model sizes.
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Figure 1.2: The top row shows the pre-trained ResNet models of varying depth. The bottom
row shows the pre-trained VGG models of varying depth. Each column represents the
dataset the model is trained and evaluated on. From left to right: CelebA Blond / Male,
CelebA Lipstick / Earring, and Waterbirds. For the two CelebA datasets, model depth has a
negligible effect on the worst-group error whereas on the Waterbirds dataset, the increasing
the model size decreases the worst-group error.
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Figure 1.4: Depth of randomly initialized ResNet models is varied, increasing in depth from
left to right. Each column represents the dataset the model is trained and evaluated on.
From left to right: CelebA Blond / Male, CelebA Lipstick / Earring, and Waterbirds. For
all of the datasets, model depth has a negligible effect on the worst-group error.
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Figure 1.3: The top row shows the pre-trained ResNet18 models of varying widths. The
bottom row shows the pre-trained MobileNet models of varying width. Each column repre-
sents the dataset the model is trained and evaluated on. From left to right: CelebA Blond
/ Male, CelebA Lipstick / Earring, and Waterbirds. For the two CelebA datasets, model
depth has a negligible effect on the worst-group error whereas on the Waterbirds dataset,
the increasing the model size decreases the worst-group error.
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Figure 1.5: Width of randomly initialized ResNet models is varied, increasing in width from
left to right. Each column represents the dataset the model is trained and evaluated on.
From left to right: CelebA Blond / Male, CelebA Lipstick / Earring, and Waterbirds. For
all of the datasets, model depth has a negligible effect on the worst-group error.
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Figure 1.6: Top Row: Depth and width of pre-trained BERT models are varied, increasing
in size from left to right. Bottom Row: Depth and width of randomly initialized BERT
models are varied, increasing in size from left to right. Increasing pre-trained model size
reduces worst-group error, while on randomly initialized models, model size has negligible
effect.
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Figure 1.7: Graphs displaying how the error changes as we vary the width or number of
features. From left to right: CelebA Blond / Male, CelebA Lipstick / Earring, and Wa-
terbirds. For CelebA Blond / Male and Waterbirds, worst-group error improves with the
greater model size whereas worst-group error on the CelebA Lipstick / Earring seems to stay
at about the same value as model size increases.

Analysis

Pre-trained Models and Randomly Initialized Models, Varying Last Layer Width.
We replicate experiments in prior work and extend results with an additional dataset to show
that our setup is comparable. This set of experiments follows the setup of Sagawa et al. [25].
Performance on the Waterbirds and CelebA Blond / Male datasets gives us results consis-
tent with prior work: worst-group error dips close to 50% for larger widths. Furthermore,
we also study the CelebA Lipstick / Earring dataset and the worst-group error approaches
30% as we increase the model width. The results are summarized in Figure 1.7. Overall,
we find that worst-group error decreases slightly for both CelebA datasets before saturating.
On Waterbirds, the worst-group error decreases as we increase the number of features and
remains around 50% when the number of features is larger than 103.

Pre-trained Models, Varying Depth and Width. For pre-trained models, we find
that model size does not hurt worst-group test error over multiple model architecture series.
We compare model sizes by varying depth on ResNet, VGG BN, and BERT; and width on
ResNet18, MobileNet, and BERT. On the Waterbirds and MultiNLI datasets, larger models
monotonically improve worst-group accuracy. For the two CelebA datasets, increasing model
sizes neither significantly increases nor decreases the worst-group test error. Results for
varying depth of ResNet and VGG BN models are summarized in Figure 1.2; Resnet18 with
varying width is given in Figure 1.3; and BERT results are given in Figure 1.6.

Randomly Initialized Models, Varying Depth and Width. For models trained
from scratch, we also find that model size does not hurt worst-group test error. However,
unlike the pre-trained results, the error did not improve with the increasing model size.
ResNet results can be seen in Figure 1.4 for varying depth and Figure 1.5 for varying width,
while BERT results can be seen in Figure 1.6.
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Experimental Takeaways

Empirically, worst-group test error decreases or stays the same as model size increases. The
experiments show that pre-trained models perform significantly better than those trained
from scratch. On the Waterbirds and MultiNLI datasets we find that increasing the size
of the pre-trained model improves performance on the worst group. This suggests that
pretraining may be a factor in improving performance of overparameterized models.

On the other hand, we show in Appendix 1.3 that the worst-group performance of group
DRO (which uses group label information) is generally better than that of ERM. Therefore,
group DRO should be used when group labels are available, and our analysis primarily
applies to the case where they are unavailable.

1.6 Conclusion

Although increasing model size only sometimes helps worst-group generalization, large mod-
els generally do not hurt across almost all the ERM settings, whether the model is pre-trained
or trained from scratch. Furthermore, we find that as compared to models trained from
scratch, increasing pre-trained model size is more likely to improve worst-group accuracy.
We leave for future work the effects of pre-training on the worst-group performance. Our
experimental results suggest that the study of spurious correlations under the ERM setting
is interesting from both the practical and analytical perspectives, and it can potentially lead
to novel ways of designing experimental protocols and algorithms.
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