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Abstract

Lifting Hardware Models from Implementations for Verification

by

Jonathan Shi

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

We introduce rtl2model, a compositional Python framework for modeling hardware de-
signs. rtl2model models can be generated from RTL with various degrees of micro-
architectural granularity, and can be composed with other models that are either manu-
ally constructed or algorithmically produced. We combine cone-of-influence algorithms with
syntax-guided synthesis techniques to produce simpler models than those that are trans-
lated directly from RTL, thus reducing the model-to-implementation gap and facilitating
more efficient verification.
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Chapter 1

Introduction

As hardware designs become more complex and more specialized, the need for scalable
methods of verifying their functional correctness continues to grow. Moreover, the relatively
recent discoveries of side-channel attacks like Spectre [19] and Meltdown [21] have demon-
strated the need for methods that encompass micro-architectural behaviors, in additional
the the architecture-level behaviors tested by traditional verification techniques. The task of
manually constructing such formal models of RTL designs is tedious, time-consuming, and
error-prone; to remedy this, this paper provides a framework for “lifting,” or automatically
synthesizing abstract models, directly from concrete RTL implementations with minimal
need for human input.

1.1 Motivation

The process of creating a formal model for a hardware design can be split into three phases:
(1) creation of an abstract model, (2) proving the correctness of the abstraction with re-
spect to the implementation, and (3) verifying properties of interest on the abstract model.
A fundamental trade-off exists between the complexity of the abstract model and the diffi-
culty of verification: the abstract model must still be detailed enough to capture the relevant
behaviors of the underlying RTL, but too much detail may make verification efforts computa-
tionally expensive. At one extreme, a verification engineer could directly verify assertions on
RTL signals using tools like JasperGold [9] or SymbiYosys [12], in which case the complexity
of the abstraction remains comparable to that of the original hardware implementation. All
stages of this process (abstraction, proof of correctness, and verification) have historically
required significant manual labor on the part of designers and verification engineers, and all
three stages generally scale poorly with the complexity of the hardware design. The key to
reducing this complexity is composition: just as software programs and hardware designs
are split into smaller, reusable units that are easier to understand and test, decomposing
abstract models into smaller components is the key to enabling more efficient formal verifi-
cation. This work provides a framework that allows composition of these models, and also
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presents techniques to automatically lift them from RTL designs.
To facilitate easier hardware composition, this work seeks to make the following improve-

ment existing RTL modeling techniques:

• Increased automation: Though users must still define the programs under which
they wish to test a processor, rtl2model automatically generates and synthesizes
large portions of hardware models from RTL.

• Easy composition of models: Larger hardware designs are typically split into
smaller sub-modules that perform some specialized functionality; for example, a typical
CPU design might have separate modules for the datapath and control logic, and the
datapath module itself could have dedicated sub-modules for the ALU and register file.
As with the use of classes in object-oriented software design, decomposing RTL into
black-boxed modules allow hardware designers to provide different implementations of
the same functionality, as long as these implementations share the same input-output
interface. Our modeling framework allows users to create sub-models analogous to RTL
sub-modules, thus enabling independent verification of parts of designs, and replacing
more complex models with simpler ones that might allow faster verification.

• Varying granularity of micro-architectural properties: Using cone-of-influence
algorithms, users of the rtl2model framework may specify different levels of granu-
larity for RTL state that is preserved in the lifted model.

1.2 Related Work

Traditional hardware verification techniques for pipelined processors are centered around the
so-called “flushing abstraction” introduced by Burch and Dill [8], where the equivalence of
executing an instruction between abstract and implementation state is verified by “flushing”
the implementation state to complete the currently executing instruction. The ATLAS
approach by Brady et al. [5, 6] uses random simulation and static analysis to identify portions
of designs that can be partially abstracted automatically, and then performs Burch-Dill style
equivalence checks to verify the correctness of their abstractions.

Programmable processors typically have a predefined specification in the form of an In-
struction Set Architecture (ISA), which describes the architecture-level effects of executing
an instruction on the processor. Subramanyan et al. [33] extend this to co-processors by
introducing the notion of an Instruction-Level Abstraction (ILA), a generalization of ISAs
that can describe the software-visible state changes for instructions executing on any manner
of hardware accelerator. Further work by Huang et al. [14] explores hierarchical composi-
tion and synthesis of ILA instructions by using “sub-instructions” to describe portions of
instruction behavior, and more recent work by others explores techniques to automatically
generate environment invariants [37] and detect architectural state variables [35]. These pre-
vious ILA-based works focus on generating the high-level architectural model for a processor
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design; to our knowledge, ours is the first work that attempts to include microarchitectural
details in such automatically generated operational models.

Our work applies syntax-guided synthesis (SyGuS) [1, 16, 28] techniques to automatically
generate components of hardware models; we use a counterexample-guided inductive synthe-
sis (CEGIS) algorithm to generate implementations for combinatorial functions in hardware
that are simpler than that in the original design. Jha et al. [16] define the oracle-guided
inductive synthesis approach, where external “oracles” are invoked to validate and provide
constraints on synthesized candidate functions. In particular, we use a hardware simula-
tor as an “I/O oracle” to provide input-output examples for combinatorial functions, and a
model checker as a “validation oracle” to determine whether a synthesized function correctly
abstracts the hardware.

Finally, the Check tools and µspec take an axiomatic approach to modeling and verifying
hardware properties, especially memory consistency models (MCMs). PipeCheck [23] uses
“microarchitectural happens before” graphs to verify that a given processor follows a de-
sired MCM, and CCICheck [25] applies similar techniques to verify memory coherence and
consistency properties. More recently, rtl2µspec [13] allows for automated generation of the
axioms needed to perform these proofs directly from RTL designs.

1.3 Contributions and Overview

To enable easier and more efficient hardware verification, we introduce rtl2model, a Python
framework that allows designers to generate and compose lifted models of hardware designs.
Designers can construct models by hand, synthesize portions of them with SyGuS techniques,
or translate them directly from RTL; all these different sorts of models can be composed
together in a hierarchical fashion.

In Chapter 2, we discuss in further detail the techniques underlying rtl2model, and its
differences from previous works. In Chapter 3, we describe the semantics, implementation,
and evaluation of the framework on example hardware designs.
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Chapter 2

Background

2.1 Processor Modeling and Verification

2.1.1 The Hardware Lifting Problem

Formal verification of hardware designs usually involves three components:

• RTL implementation: This is the original design, usually described in a language
like Chisel or Verilog.

• Verification model: This is an intermediate model, which may still contain micro-
architectural details that were present in the original RTL. Its software-visible behavior
still matches that of the RTL.

• Architectural specification: This defines the effect of instructions on the software-
visible state of the hardware, with micro-architectural details abstracted away. For
general processors, this is typically the instruction-set architecture (ISA). Instruction-
level abstractions (ILAs) [14, 33] further generalize the notion of an ISA to encompass
software-visible state of accelerators as well. The ISA/ILA for a design is often formally
described by a “golden model” that defines these behaviors.

An important goal in hardware verification is to determine whether a concrete hardware
implementation properly implements its architectural specification. Directly applying ver-
ification techniques to the transition system described by RTL is possible, but often very
computationally expensive. Thus, many verification approaches operate on an intermediate
model from the RTL design that captures the desired behavior, but contains less complexity
and can be verified more efficiently.

Once a verification model is generated, we must then prove that it is refined by (i.e.
abstracts) the original implementation. This is usually accomplished by a Burch-Dill style
check, where the same instruction is run on both the RTL and the lifted model; a “flush”
is then performed on the RTL, and the architectural states of the RTL and abstract model
are checked for equivalence.
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After refinement has been proved, we must now show that the lifted model satisfies the
architectural specification. This can take the form of another equivalence check to ensure
the lifted model refines the ISA, but in some cases it may be sufficient (and computationally
cheaper) to demonstrate that the ISA simulates the lifted model.

Instruction-Level Abstractions

In addition to providing a generalized mechanism for describing accelerator and processor
behaviors, ILAs also allow modeling of design behaviors at different levels of granularity. In
the work of Huang et al. [14], the ILA of a RISC-V processor is very similar to the predefined
RISC-V ISA, but with additional microarchitectural state to properly model interrupt and
TLB behaviors. By contrast, their model for the the START_ENCRYPT ILA instruction of an
AES accelerator is split into constituent child instructions: LOAD_BLOCK to load a block to
encrypt, ENCRYPT to encrypt a block of data, and STORE_RESULT to either move on to the
next block of data or end the encryption algorithm. Though it is possible to apply program
synthesis techniques to automatically generate portions of hierarchical ILAs, the bulk of an
ILA must still be be manually specified by an engineer.

Our work applies techniques similar to those of prior ILA works [33, 14], as we require
users to specify refinement relations between the verification model and RTL, in addition to
a program sketch that serves as a “template” for the behaviors we wish to verify. ILAs are
designed primarily to capture the behavior of the processor’s hardware-software interface;
by contrast, rtl2model models seek to operate at a lower level of abstraction, and more
deliberately capture microarchitectural details.

2.1.2 UCLID5 Models

UCLID5 [29] is a formal modeling system that supports a variety of specification, verification,
and synthesis techniques; its applications include verifying security properties of speculative
processors [10], formalizing execution time models of processor pipelines [15], and verifying
trusted execution environments [11]. It is evolved from the older UCLID system for formal
modeling and verification [7].

Verilog designs that operate within a single clock domain can be modeled as transition
systems: for the set of boolean/bit-vector/array state variables S and set of input variables
W , there exists a set of functions N = {Ni : (S ×W )→ S} that describes the values of S
on the next clock cycle. UCLID5 readily supports modeling transition systems, and thus
naturally lends itself to modeling hardware designs.

Figure 2.1 contains an abridged version of an example for verifying a processor design
from the UCLID5 tutorial [32], which verifies that the processor’s behavior is deterministic
by proving that two copies of the model will always have the same behavior when the same
program is run. UCLID5 modules may contain inputs, outputs, state variables, and synthesis
functions; variable assignments in the next block of a module correspond to register updates
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module cpu {

type op_t = enum { op_mov, op_add, op_sub };

input imem : [bv8]bv8; // Program memory

var regs : [bv8]bv8; // Register state

var pc : bv8; // Program counter

var inst : bv8;

// Decoding functions

function inst2op (i : bv8) : op_t;

function inst2reg0 (i : bv8) : bv8;

function inst2reg1 (i : bv8) : bv8;

function inst2imm (i : bv8) : bv8;

procedure exec_inst(inst : bv8, pc : bv8)

returns (pc_next : bv8)

modifies regs;

{

var op : op_t;

var r0ind, r1ind : bv8;

var r0, r1 : bv8;

var result : bv8;

op = inst2op(inst);

r0ind, r1ind = inst2reg0(inst), inst2reg1(inst);

r0, r1 = regs[r0ind], regs[r1ind];

case

(op == op_mov) : { result = inst2imm(inst); }

(op == op_add) : { result = r0 + r1; }

(op == op_sub) : { result = r0 - r1; }

esac

pc_next = pc + 1bv8;

regs[r0ind] = result;

}

init {

assume (forall (r : bv8) :: regs[r] == 0bv8);

pc, inst = 0bv8, 0bv8;

}

next {

inst' = imem[pc];

call (pc') = exec_inst(inst, pc);

}

}

(a) Transition system for CPU.

module main {

var imem : [bv8]bv8;

instance cpu1 : cpu(imem : (imem));

instance cpu2 : cpu(imem : (imem));

init { }

next {

// Perform state updates for each copy

next (cpu1);

next (cpu2);

}

// Properties to verify

invariant eq_regs :

(forall (ri : bv8)

:: cpu1.regs[ri] == cpu2.regs[ri]);

invariant eq_pc : (cpu1.pc == cpu2.pc);

invariant eq_inst : (cpu1.inst == cpu2.inst);

// Performs 3 cycle bounded model check

control {

bmc(3);

check;

print_results;

}

}

(b) Main module with proof script.

Figure 2.1: UCLID5 model of a simple processor, with bounded proof of its determinism.

in RTL. In the example, registers and the program counter are left as concrete state, while
decoding operations are left as uninterpreted functions.

rtl2model can translate Verilog models directly to the equivalent UCLID5 transition
systems to facilitate further analysis and verification. Other efforts to translate HDL code
directly to such models include the ChiselUCL project [24], which converts models from
Chisel HDL to UCLID5; and ATLAS [5, 6], which uses random simulation and static analysis
techniques to generate models in UCLID (UCLID5’s predecessor). The techniques discussed
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in this thesis can be applied to any transitional modeling system that supports uninterpreted
functions. We choose to build a custom framework, rather than use an existing tool, in order
to make applying transformations to models, interfacing with the synthesis engine, and
invoking oracles easier.

2.2 Synthesis Techniques

2.2.1 Syntax-Guided Synthesis and Synthesis Modulo Oracles

Syntax-guided synthesis (SyGuS) has gained popularity in recent years as a means to gener-
ate program implementations that satisfy certain constraints. Formally, the classic SyGuS
problem is formulated as ∃f⃗ .∀x⃗. ϕ, where f⃗ is a set of functions to be synthesized, x⃗ is a
set of variables, and ϕ is a formula in some logical theory. Synthesis terminates when a set
of function implementations f⃗ ∗ is found that satisfies the formula ∀x⃗. ϕ, with all f⃗ replaced
by f⃗ ∗ in ϕ [27]. A common approach to solving SyGuS problems is that of counterexample-
guided inductive synthesis (CEGIS), where the behavior of synthesis candidate functions
that do not satisfy ϕ is used to add further constraints to block invalid candidates. A typical
CEGIS loop, as outlined in [31], is shown in Figure 2.2.

Seshia [28] describes the combination of inductive reasoning that learns from examples
(like CEGIS algorithms) with deductive reasoning to answer validation queries (like SMT
solvers used to check properties). Jha and Seshia [17, 16] generalize the use of CEGIS in this
context to the notion of oracle-guided inductive synthesis (OGIS), where an inductive learner
queries black-boxed oracles to provide positive examples and counterexamples. In OGIS, the
learner synthesizes a candidate function that satisfies a provided set of input-output examples
from a larger class of functions; in the case of CEGIS with SyGuS, this class is the set of
functions producible by the given grammar. Queries to oracles then determine the validity
of a candidate, and provide positive examples or negative counterexamples.

In rtl2model, we rely on external hardware simulators and model checking tools to
verify the correctness of a generated model. In the context of the OGIS paradigm, the
hardware simulator serves as an input-output (I/O) oracle, where the resulting simulation
trace adds positive examples that describe the desired input-output behavior of candidate
functions. The model checker serves as a validation/correctness oracle with counterexamples:
it verifies the validity of candidate functions, and produces a concrete counterexample trace
if the synthesis candidates are invalid.

2.2.2 Program Sketches

Similar to previous ILA-based works like [36], the rtl2model framework relies on user-
provided program sketches–partially-specified templates of programs with “holes” that a
synthesis algorithm fills with concrete values. Traditionally, program sketches are used as
pure input-output relations, with holes as inputs and the corresponding outputs used as
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Observation Set
X = {x0, x1, ..., xi}

Inductive Synthesizer
solves ∃f⃗ . ∀x ∈ X.ϕ

(
f⃗ , x

)

Observations cannot be satisfied
Candidate Functions f⃗ ∗

Automated Validation
solves ∃xi. !ϕ

(
f⃗∗, x

)

Valid implementations f⃗ ∗

adds constraints

on success

sends to

on success

on failure

on failure, adds counterexample xi

Figure 2.2: A typical CEGIS loop for synthesizing a set of functions f⃗ that satisfies a set of
observations X.

examples for a CEGIS loop [31]. We use sketches somewhat differently: holes are still
treated as inputs to our synthesis functions, but outputs used for I/O examples are instead
derived from RTL simulation or model checking counterexamples. This process is explained
in further detail in Section 3.2.2.
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Chapter 3

Implementation and Semantics

This section discusses the semantics of rtl2model models, and the algorithms involved in
their construction. Figure 3.1 outlines the lifting procedure in its entirety; each constituent
component is explained in the sections below.

3.1 Model Semantics

3.1.1 Expression Grammar

Expressions in rtl2model models describe transition relations and assertions, and corre-
spond closely to terms in SMT-LIB [4]. Users construct expressions and sorts through the
rtl2model Python API, which in turn wraps the Python API of the CVC5 SMT solver [3].
We construct our own API rather than directly invoking CVC5 both to allow users to write
more ergonomic code, and to more easily translate equivalent expressions to other modeling
or simulation languages like Verilog and UCLID5 [29].

Sorts

As in SMT-LIB, all expressions have a sort, which represents the possible values it can take
on. rtl2model has four sorts:

• Booleans, constructed in Python code with BoolSort().

• n-bit bit-vectors, constructed with BVSort(n).

• Fixed-size arrays, constructed with ArraySort(idx, elem).

• Functions, constructed with FunctionSort(*inputs, codomain).

Terms

Expressions are made up of terms, which can be any of the following:
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Program Sketch
A program with holes,

specified by the user.

See Section 3.2.2.

Concrete Program
A program sketch with

its holes filled by random

values, or values from

previous counterexamples.

I/O Oracle
An RTL simulator that

produces I/O examples.

See Section 3.2.2.

Synthesis Engine
A SyGuS engine that

synthesizes interpretations

for uninterpreted functions

in the partial model.

See Section 3.2.2.

Correctness Oracle
A model checker that verifies

the correctness of synthesized

functions. See Section 3.2.2.

RTL
The original RTL design.

Partial Model
A transition system with

uninterpreted functions

generated from the

RTL. See Section 3.2.1.

Complete Model
A model where some or

all of the uninterpreted

functions in the partial

model have been replaced

by concrete interpretations.

is turned into

is executed on

gives constraints to

queries

on pass, produces

concrete functions for

is automatically converted into

defines synthesis

functions for

on failure,
provides inputs to

Figure 3.1: Flowchart outlining the entirety of the lifting procedure.
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• BoolConst, BVConst: These represent boolean constants (true/false) and bit-vector
constants (e.g. BVConst(3, 3) represents the 3-bit bit-vector 011).

• Variable: Variables have a name and a sort; Variable("x", BVSort(3)) represents
a reference to a 3-bit bit-vector variable named x.

• OpTerm: OpTerms represent more complex expressions like bit-vector manipulations and
comparisons. Each OpTerm has a Kind representing the sort of operation to perform
to its arguments, which are other terms. For example, adding together two bit-vector
variables is expressed by OpTerm(Kind.BVAdd, (x, y)), or the syntactic sugar x + y.
The sort of an OpTerm can be inferred from the sorts of its arguments; the previous
bit-vector addition term would have the same sort as x and y.

• UFTerm and ApplyUF: UFTerm represents an uninterpreted function, which has a name,
a codomain sort, and a vector of parameters. ApplyUF represents the application of an
uninterpreted function to an appropriate vector of argument terms.

All expressions are checked for valid argument arity and sorts by the Python framework as
they are constructed; for example, an OpTerm representing bit-vector addition would ensure
that there are exactly two arguments, and that both are bit-vectors of the same width.

3.1.2 Model Definition

Let E be the set of all possible terms, as defined above. A rtl2model model is a tuple of
the following form: M = (W,O, S, U, Unext, P, L,N) where

W is a vector of input variables,
O ... output variables,
S ... state variables,
U ... uninterpreted functions representing combinatorial

expressions,
Unext ... uninterpreted functions representing transition rela-

tions (see Section 3.2.1),
P : string → ({WM → E} ×M) is a map of instance names to submodules with input

bindings,
L = (V ⊆ (S ∪O))→ E represents combinatorial expressions that determine the

values of state variables and outputs,
N = (V ⊆ (S ∪O))→ E represents transition relations for register variables that

determine their value on the next clock cycle.

The lists of inputs and outputs for a rtl2model model align with the input/output in-
terface of the RTL module being modeled. In previous ILA works [14], the state variables in
S are restricted to “architectural”, or software-visible state that persists across instructions.
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By contrast, state variables in rtl2model models can represent any level of microarchitec-
tural granularity, and includes signals whose values are determined by combinatorial logic.

A user may choose to replace some signals by uninterpreted functions of varying arity, and
which may take on state variables and other uninterpreted functions as arguments (this is
discussed in further detail in 3.2.1). We refer to rtl2model models with such uninterpreted
functions as partial models, and those without as complete models.

3.1.3 Translation to Other Representations

Expressions in rtl2model can be translated into SyGuS or CVC5 Python binding expres-
sions to perform synthesis; our framework uses CVC5 as a synthesis backend. Partial models
can be hierarchically translated into equivalent UCLID5 models (as UCLID5 supports unin-
terpreted functions), and complete models can be translated to either UCLID5 or Verilog.

3.2 Model Construction

3.2.1 Generation From Verilog

Users may manually construct models as outlined above, or can call the verilog_to_model
function to generate them from the dataflow graph of an RTL design. We obtain a dataflow
graph from a modified fork of Pyverilog1 [34], a Python library for parsing Verilog circuits
with built-in dataflow and control flow analysis functions. We formally represent the dataflow
graph as a pair of edgelists (Elogic, Etransition). Each entry in both edgelists maps a signal to a
rtl2model expression that determines its value; Elogic represents same-cycle combinatorial
relations, whereas Etransition represents next-cycle state updates. For example, the below
Verilog snippet induces a graph where Elogic = {x : {b, c}}, Etransition = {y : {a, b}}.

1 module top(input clk, input a, input b, input c);

2 wire x;

3 reg y;

4 always @(posedge clk) begin

5 y <= a + b; // Clocked register assignment

6 end

7 assign x = b + c; // Combinatorial assignment

8 endmodule

Every non-input signal in the design has a corresponding entry in either Elogic or Etransition,
but not both. Figure 3.2 depicts an RTL circuit and its corresponding dataflow diagram.

Once a dataflow graph is obtained, it can readily be translated into a rtl2model model:
RTL inputs correspond to model inputs, RTL state variables correspond to model state

1https://github.com/noloerino/Pyverilog/tree/term-memoization

https://github.com/noloerino/Pyverilog/tree/term-memoization
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1 module top(input clk,

2 input rst,

3 input [1:0] a,

4 output [1:0] o);

5 wire [1:0] cl_0;

6 reg [1:0] state_0;

7 reg [1:0] state_1;

8 always @(posedge clk) begin

9 if (rst) begin

10 state_0 <= 2'b00;

11 state_1 <= 2'b00;

12 end else begin

13 state_0 <= cl_0;

14 state_1 <= cl_1;

15 end

16 end

17 assign cl_0 = a ^ 2'b11;

18 assign o = state_1;

19 endmodule

a

cl0 rst

state0

state1

o

Figure 3.2: Verilog circuit and its corresponding dataflow graph. Same-cycle edges from
Elogic are drawn in black, while cross-cycle edges from Etransition are drawn in red.

variables, and so on. Variables described by combinatorial logic in Elogic will have entries in
L, and those with transition relations in Etransition will have entries in N . The rtl2model
expression for each assignment is produced by using Pyverilog to parse and traverse the
Verilog AST. Simple expressions like addition and bit manipulation operators have very
straightforward correspondences; for example, the Verilog expression a & b is translated to
rtl2model expression OpTerm(Kind.BVAnd, (a, b)). The following Verilog constructs
have non-trivial translations:

• if/else statements: rtl2model cannot directly model if/else statements where
the else case is missing, and instead converts them to chains of ternary expressions
with inferred latches. For example, the Verilog code
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1 module top(input clk, input [1:0] c, output [1:0] o);

2 always @(posedge clk) begin

3 if (c == 0) o <= 2'h3;

4 else if (c == 1) o <= 2'h2;

5 // Missing else branch

6 end

7 endmodule

results in the following pseudocode expression tree for o’s transition relation:

1 c = Variable("c", BVSort(2))

2 o = Variable("o", BVSort(2))

3 T[o] = OpTerm(Kind.Ite, (

4 OpTerm(Kind.Eq, (c, BVConst(0, 2))), # if condition

5 BVConst(3, 2), # if true branch

6 OpTerm(Kind.Ite, ( # if false branch

7 OpTerm(Kind.Eq, (c, BVConst(1, 2))), # else if condition

8 BVConst(2, 2), # else if true branch

9 o, # else branch

10 # (inferred latch)

11 )),

12 ))

In all designs we examine, this assumed latch is either intended, or explicitly prevented
by the structure of the RTL.

• case statements: Due to limitations in Pyverilog’s dataflow analysis, Verilog case

statements are translated into if/else chains with appropriate conditions, instead of
a simpler “match” construct like that in SMT-LIB. For example, the above pseudocode
expression tree for o could also be produced by this RTL module:

1 module top(input clk, input [1:0] c, output [1:0] o);

2 always @(posedge clk) begin

3 case (c)

4 2'h0 : o <= 2'h3;

5 2'h1 : o <= 2'h2;

6 endcase

7 end

8 end
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• Variable bit-vector indexing: Since rtl2model operators more or less mirror operators
available in SMT-LIB, indexing a bit-vector by another bit-vector variable is prohibited,
as indices of a bit-vector extract must be constant. However, this is a valid operation
in Verilog, and appears in one of our case studies in a snippet similar to the following:

1 // All signals are 8 bits wide

2 always @* begin

3 wr_bit_byte = data0;

4 if (/*<condition>*/ )

5 wr_bit_byte[cmd1[2:0]] = 1'b0;

6 else if (/*<other condition>*/ )

7 wr_bit_byte[cmd1[2:0]] = ~wr_bit_byte[cmd1[2:0]];

8 end

Here, the 8-bit wr_bit_byte signal is indexed by a 3-bit signal (cmd1[2:0]) to change
the value of a particular bit. We model this assignment as a combination of bit-shifts
and masks, which are allowed in SMT-LIB and rtl2model. In particular, the Verilog
code x[idx] = y is equivalent to x = (x & ~(1 << idx)) | (y << idx).

Figure 3.3 demonstrates the entire process of translating RTL to dataflow graph to
rtl2model model on a simple circuit. All instances of submodules encountered in the
top-level design are recursively converted into rtl2model models by the above procedure;
all instances of the same RTL module will share the same rtl2model model. If the user
wishes to supply a pre-generated model (either manually constructed or lifted from RTL
prior), verilog_to_rtl takes as optional argument a list defined_modules that will be
used instead.

It is worth noting that Hsiao et al. [13] use Verific and Yosys to generate a dataflow
graph directly from a netlist. We choose Pyverilog for easier integration with the rest of the
rtl2model Python codebase, but the alternative implementation is also viable.

Cone-of-Influence Analysis

In order to reduce the state space and complexity of a generated model, the user may choose
to enable a cone-of-influence (COI) analysis that automatically eliminates irrelevant state
variables. Traditionally, the term “cone-of-influence” is used to refer to the set of all variables
that a particular property or formula is influenced by; we use it here to refer to the set of all
ancestors of a particular signal in the dataflow graph of a circuit, including itself. The user
specifies a list of “important” signals in the top-level module they wish to preserve, and one
of three configuration options to model all non-important signals:

1. NO_COI (default): No COI analysis is performed; any non-important signals referenced
in the expression for an important signal is left as a 1-argument uninterpreted function
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a

cl0 rst

state0

state1

o

1 bv2 = BVSort(2)

2 rst = Variable("rst", BoolSort())

3 a = Variable("a", bv2)

4 o = Variable("o", bv2)

5 c1_0 = Variable("c1_0", bv2)

6 state_0 = Variable("state_0", bv2)

7 state_1 = Variable("state_1", bv2)

8 Model(

9 "top",

10 inputs=[rst, a],

11 outputs=[o],

12 state=[c1_0, state_0, state_1],

13 logic={

14 c1_0: a ^ 0b11,

15 o: state_1,

16 },

17 transition={

18 state_0: rst.ite(0, cl_0),

19 state_1: rst.ite(0, state_0),

20 },

21 )

Figure 3.3: Conversion of the dataflow graph in Figure 3.2 to a model. Expression operations
are parsed from the RTL, and convenience methods are used for simplicity (e.g. x ^ y is
equivalent to OpTerm(Kind.BVXor, (x, y)). When applicable, Python integers are auto-
matically converted into a bit-vector constant of appropriate size.
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of equivalent width. This single argument is necessary because uninterpreted functions
are deterministic; that is, for an uninterpreted function f , then x = y =⇒ f(x) =
f(y). We therefore introduce a single argument variable that does not correspond to
any hardware signal in the design in order to ensure the uninterpreted function is not
assigned a constant value by the solver.

2. KEEP_COI: Any signal found in the COI of an important signal is explicitly preserved
as a state variable.

3. UF_ARGS_COI: Any signal x found in the COI of an important signal is replaced as an
uninterpreted function. Unlike with NO_COI, the uninterpreted function that models
x takes as argument any important signals in the COI of x in the original design. If
the COI of x contains more signals than x’s immediate parents, then the function also
takes a free variable argument as described earlier.

In order to account for the presence of cross-cycle dependencies in the cone-of-influence,
any uninterpreted functions, or parents of uninterpreted functions, that are assigned by
a transition relation in the RTL (that is, not combinatorially) are themselves preserved
as an uninterpreted function. These functions form the Unext set, and implicitly define
an additional register state variable; a synthesized interpretation for a member of Unext

is the transition relation for this new state variable.

Figure 3.4 illustrates these different COI behaviors on a simple circuit.
The COI computation procedure roughly follows the “fast cone-of-influence” algorithm

described by Locaino et al. [22]. The pseudocode is described in Algorithm 1, where DG
represents the dependency graph computed from the RTL (with Elogic and Etransition com-
bined together), and Simportant is the vector of important signals specified by the user. DG[s]
returns the direct parents of s in the dependency graph.

Note that we do not perform inter-module dependency analysis. When constructing the
dependency graph for a parent module, we effectively treat each child instance as a single
signal: if there exists an assignment of the form parent.x = parent.child.output_value,
then parent.x is assumed to depend on all input signals to instance parent.child. Fur-
thermore, we only perform COI analysis on signals declared within the top-level module: if
a user wishes to apply COI analysis to submodules, they can lift those from RTL and pass
the resulting models with the defined_modules argument.

3.2.2 Synthesis Algorithm

Since the purpose of the lifted model is to demonstrate that certain properties hold on the
original RTL design, our model must be consistent with the RTL; intuitively, any behavior
possible in an RTL simulation should be possible in the lifted model as well. We do not nec-
essarily require soundness, meaning it is acceptable (though undesirable) to have a behavior
that is possible in the model but not under the original hardware design.
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1 module top(input clk,

2 input [1:0] i0,

3 input [1:0] i1,

4 output [1:0] out);

5 reg [1:0] a;

6 reg [1:0] b;

7 reg [1:0] c;

8 always @(posedge clk) begin

9 a <= i0 + 1;

10 c <= b;

11 end

12 assign b = a & i1;

13 assign out = c;

14 endmodule

(a) Sample circuit RTL.

i0 i1

a

b

c

out

(b) Dataflow graph for circuit.



CHAPTER 3. IMPLEMENTATION AND SEMANTICS 19

i0 i1

c()

out

(c) Graph representing partial model with no COI checks; all variables that are
immediate parents of designated “important” variables are left as UFs.

i0 i1

a

b

c

out

(d) Graph for partial model where referenced variables in the COI are preserved.
Because every signal is int he COI of out, every signal is preserved, and the
model effectively matches the original dataflow graph.

i0 i1

c(i0, i1)

out

(e) Partial model where referenced important variables in the COI are used as
arguments to UFs. Because i0 and i1 are in the COI of c, they are passed as
arguments to c.

Figure 3.4: Demonstration of various cone-of-influence behaviors for a simple circuit. In
each case, the specified list of “important signals” is {out, i0, i1}. State left as uninterpreted
functions are drawn in blue, with arguments as applicable.
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Algorithm 1 Pseudocode for cone-of-influence computation.

1: procedure ConeOfInfluence(DG, Simportant)
2: C ← {} ▷ Maps signal to its COI set
3: V ← ∅ ▷ Set of visited signals
4: for s ∈ Simportant do
5: if s /∈ V then
6: Visit(C, DG, V , s)
7: end if
8: end for
9: return C
10: end procedure

11: procedure Visit(C, DG, V , s)
12: V ← V ∪ {s}
13: parents← DG[s]
14: if s /∈ C then
15: C[s]← {s}
16: end if
17: for p ∈ parents do
18: if p /∈ V then
19: if p /∈ C then
20: C[p]← {p}
21: end if
22: C[p]← C[p]∪ Visit(C, DG, V , p)
23: end if
24: C[s]← C[s] ∪ C[p]
25: end for
26: end procedure

Program Sketch and Refinement Relations

We require the user to provide a program sketch that is used as input to the simulator I/O
oracle. Holes in the sketch correspond to the inputs of some synthesis function in the partial
model.

We also require the user to define a refinement relation between model state variables
and the RTL, which is specified through annotations. Each annotation is associated with
a predicate p over RTL state. There are four types of annotations possible for some RTL
signal s when p holds:

1. Don’t Care(p): When p holds, the value of s is irrelevant to the model, and can be
left symbolic (this is the default).
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2. Assumed(p): When performing the correctness check, the value of s when p holds is
assigned the constant value that was encountered on that cycle during simulation. This
is used for signals that are fixed by the program sketch, such as values for instructions
to initialize state.

3. Parameter(p, v): When p holds, the value of this signal is that of the corresponding
hole v in the program sketch, and an input to some synthesis function in the model.
In the correctness check, this will be left as a solver-chosen variable.

4. Output(p, f): When p holds, the value of this signal represents the output of some
synthesis function f in the model. In the correctness check, this will be replaced by
the appropriate synthesized candidate function.

The refinement relations can be difficult to specify correctly, and an error may easily cause
spurious synthesis results. However, we are not aware of any simpler methods of specifying
correspondence without forcing the model’s state variables to have a 1-to-1 mapping with
RTL signals.

This aspect of our work is very similar to previous synthesis efforts in ILAng [14, 33].
ILAng users must hand-craft templates for synthesis; our users must still provide manual
program sketches and refinement mappings, but the templates themselves are derived from
the RTL.

I/O and Correctness Oracles

We make use of a hardware simulator I/O oracle and a model checker correctness oracle to
produce inputs for synthesis. In all our examples, Verilator [30] serves as the simulator, and
SymbiYosys [12] as the model checker.

The I/O oracle simulates the behavior of a concrete program (a program sketch with all
holes filled) on the RTL. Using the refinement relation, we mine the resulting simulator trace
to obtain the values of our annotated output signals. Combined with the inputs used to fill
the holes in the program sketches, this constitutes a single input/output pair that is used to
constrain the synthesizer.

The correctness oracle checks that the synthesized functions are valid under the specified
program sketch. The assumed values, parameters, and outputs from the refinement relation
are encoded into SystemVerilog assertions, and a bounded model check is performed on the
result.2 If a counterexample is produced, its inputs will be used as the next set of inputs
to the I/O oracle. If the outputs of the I/O oracle contradict the outputs identified in
the counterexample by the correctness oracle, then this likely indicates either a bug in the
refinement relation or simulation code.

2For simplicity, all our examples run the model checker for a fixed number of cycles until the last
instruction in the concrete program commits. We assume the user is able to identify an upper bound on
this cycle count in advance. In principle, an unbounded inductive check can also be used in the correctness
oracle.
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CEGIS Loop

We use CVC5 [3] as a synthesis engine, and translate rtl2model expressions to CVC5’s
Python bindings to add constraints. Putting all the components together gives us the fol-
lowing CEGIS loop, as outlined in Figure 3.1.

1. The user supplies the original RTL designs, a program sketch, a cone-of-influence
setting, and a set of refinement annotations.

a) By calling verilog_to_model with a list of important signals, the user transforms
the RTL design into a partial rtl2model model.

b) The user identifies a list of uninterpreted functions in this partial model to syn-
thesize.

2. Synthesis loop:

a) Counterexamples from previous calls to the correctness oracle determine values for
certain RTL signals (on the first iteration, these are random values). These values
are then matched against the user-specified refinement annotations to fill the
program sketch’s holes. The program sketch becomes a concrete program.

b) The execution of the concrete program is simulated on the RTL by the I/O
oracle, and input/output pairs for synthesis functions are generated. These con-
straints are then fed to the synthesis engine.

c) The synthesis engine generates a set of candidate functions that satisfy the
I/O constraints.

• If synthesis fails, then there is likely a bug with one of the oracles, the program
sketch, or refinement relations. No valid model can be generated.

d) If synthesis succeeds, these candidate functions are passed to the correctness
oracle, which verifies their consistency with the program sketch and design.

• If the correctness check fails, the resulting counterexample is saved as a con-
straint, and its inputs are used as the next set of inputs to the program sketch.
Synthesis continues with step 2(a).

e) If the correctness check passes, then the candidate functions are used to replace
the uninterpreted functions in the partial model.

3.3 The rtl2model Python Framework

We implement the aforementioned cone-of-influence and synthesis techniques in the rtl2model
Python framework. Some of its features are described here.
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Oracle Interactions

Users must specify a set of shell commands to compile the I/O oracle simulation binary, in
addition to code to read simulation traces from CSV files and write new concrete programs
for the I/O oracle to execute. The framework automatically generates C++ code that can
be linked with a Verilator simulation file to specify what RTL signals should appear in the
resulting trace.

Once the commands to invoke the I/O and correctness oracles are specified, the framework
automatically handles all relevant interactions with them throughout the synthesis loop: new
concrete programs are generated automatically from counterexamples, which are parsed from
traces output by SymbiYosys, our model checker.

Verilog Parsing and COI Algorithms

rtl2model transition system models can be constructed manually with the expression
DSL described in Section 3.1.1, or parsed directly from RTL. Consider this example code for
parsing the top module from a file named full.v:

1 alu = ... # Defined in some previous code

2 top = verilog_to_model(

3 verilog_path="full.v",

4 top_name="top",

5 defined_modules=[alu],

6 important_signals=["i1", "i2", "s1", "s2", "out"],

7 coi_conf=COIConf.UF_ARGS_COI,

8 )

The verilog_path is self-explanatory. top_name specifies the name of the top-level
module to parse from the file.

defined_modules provides a list of sub-models already defined either by manual con-
struction or a previous call to verilog_to_model. This allows for compositional applications
of our synthesis techniques, where a simpler version of a sub-model can be constructed and
verified, and then reused in verification of the top-level model.

important_signals represents the list of “important” state variables to preserve when
constructing the model, and coi_conf determines how that list is used in pruning other
state. Refer back to Section 3.2.1 for a discussion on these techniques.

Program Sketch and Refinement Specification

Users construct ProgramSketch objects as combinations of variable holes and concrete bi-
nary values. As an example, the following program sketch represents the RISC-V program
addi x11, x0, ??; addi x12, x0, ??; ?? a3, a1, a2 (the immediates of the first two
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instructions and the operation of the last are holes). short_a and short_b are defined as
12-bit bit-vector variables, and f3 as a 3-bit bit-vector.

1 ProgramSketch(

2 # First instruction: addi a1, x0, ??

3 # The immediate value is encoded in the upper 12 bits of the

4 # instruction, which are left as a hole. The lower 20 bits are

5 # fixed to specify registers and the addition operation.

6 Inst(short_a, SketchValue(0b10110010011, 20)),

7 # Second instruction: addi a2, x0, ??

8 Inst(short_b, SketchValue(0b11000010011, 20)),

9 # Third instruction: ?? a3, a1, a2

10 # The most significant 17 bits, as well as the least significant 12

11 # bits, contain register and operation information. The middle 3

12 # bits determine the arithmetic operation being performed, and are

13 # left as a hole.

14 Inst(SketchValue(0x18b, 17), f3, SketchValue(0x6b3, 12)),

15 # 20 occurrences of the NOP instruction to flush the pipeline

16 inst_word(0x13) * 20,

17 )

The burden remains on the user to understand the relationship between ISA/ILA-level in-
structions and their binary encoding, but we find this to be a reasonable restriction.

The relationship between sketch holes and RTL signals in counterexample traces is defined
by refinement annotations. Annotations for an RTL signal are a mapping of SMT expressions
to an annotation type (Assumed, Parameter, or Output); the annotation type is applied on
cycles in the simulation when the predicate holds. For example, the following annotation
expresses when the value of f3 should be sampled from the RTL:

1 guidance.annotate("lft_tile_fe_inst", {

2 # pc is a variable representing the program counter

3 # This predicate is true when the PC is 0x208

4 pc.op_eq(0x208): [

5 # Bits 31-15 and 11-0 of the instruction are fixed in the program

6 # sketch, and are therefore fixed in simulation as well

7 AnnoType.AssumeIndexed((31, 15), (11, 0)),

8 # Bits 14-12 of the instruction on this cycle correspond to the

9 # f3 input variable

10 AnnoType.ParamIndexed((14, 12), f3)

11 ],

12 })
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SyGuS Grammars

Users construct gramamrs for synthesis functions in a declarative manner closely resembling
BNF; the framework converts them automatically into the appropriate calls to the SMT
solver backend. All terms in the grammar are specified in the rtl2model expression lan-
guage, and users can use Python operator overrides as syntactic sugar for many operations.
The following is an example of a grammar for the function s0(i1 : bv8, i2 : bv8) : bv8.
Note that the Python range operator allows for ergonomic specification of a range of bit-
vector constants.

1 bv8 = smt.BVSort(8)

2 i1 = smt.Variable("i1", bv8)

3 i2 = smt.Variable("i2", bv8)

4 start = smt.Variable("start", bv8)

5 substart = smt.Variable("substart", bv8)

6 grammar = smt.Grammar(

7 bound_vars=(i1, i2),

8 nonterminals=(start, substart),

9 # Each entry in this dictionary represents a nonterminal

10 # and a list of its expansion rules

11 terms={

12 start: (

13 start.ite(start, start),

14 substart,

15 ),

16 substart: (

17 substart + substart,

18 substart - substart,

19 substart | substart,

20 i1, i2,

21 *list(smt.BVConst(n, 8) for n in range(0xFF)),

22 ),

23 }

24 )

3.3.1 Implementation Limitations

To automate the lifting process as much as possible, we would like to minimize the amount of
input and complexity of inputs required by the user. Currently, the refinement annotations,
program sketch, and SyGuS grammar specifications require the user to possess a modest
amount of knowledge of the design under test, and remain easy to specify incorrectly. We
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found the construction of grammars to be especially impactful, as leaving the grammar for a
function unspecified (which allows the solver to choose any valid term of the correct sort) re-
sult in synthesis candidates that were long if/else chains conditioned on the input/output
examples observed, and did not produce a correct function in a reasonable amount of iter-
ations. However, as with most applications of SyGuS, we find the requirement for users to
specify grammars with common operations to be a reasonable one.

Control flow instructions, which may cause a different sequence of instructions to execute
on the processor, are also difficult to verify under our framework because the fetch and
commit of instructions are identified based on the program counter of the appropriate pipeline
stage. Since control flow instructions may affect the program counter in unexpected ways
due to the extra cycles needed to kill instructions currently in the pipeline when a jump is
taken, we chose to avoid verifying any control flow instructions in this work.

Non-Combinatorial Functions

The most important limitation at present is that rtl2model can only synthesize interpre-
tations for purely combinatorial functions; that is, any uninterpreted functions for transition
relations cannot be synthesized under our framework, as allowing functions to span multiple
cycles would significantly increase the complexity of constraints provided by the I/O oracle.
A workaround for this is to augment the RTL design with extra registers to store values of
the signal from previous cycles, though this is inelegant and requires some amount of manual
labor.

More fundamentally, refinement annotations currently must explicitly refer to the inputs
and outputs of the functions being synthesized. If users were instead allowed to specify
constraints over any signal in a trace, this would allow synthesis of multi-cycle functions,
at the aforementioned cost of increased complexity in solver constraints. For example, if a
user specifies as output some signal x = f(a, b), where f is an uninterpreted function and
a and b are either uninterpreted functions or state variables, the expression for the asserted
I/O constraint must now contain the expressions/interpretations for a and b as well. This
is feasible if f is a purely combinatorial relation, but if f is a transitional relation, things
are significantly complicated: our constraint now depends on previous values of a and b,
which would potentially require encoding the entirety of the transition system outlined by
the model into SyGuS constraints and assumptions. While this is also possible, it may
significantly increase the burden on the solver, and additional investigation is required to
test its scalability.

This limitation also restricts the applicability of cone-of-influence techniques to model
generation: currently, these algorithms are only used to identify dataflow dependencies that
are then used as the arguments of functions to synthesize. Allowing functions to model
relations that span multiple clock cycles would allow these COI techniques to automate
away larger portions of the lifting process by possibly making refinement relations simpler,
as discussed above.
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Name Verilog source LoC Type
R8051 1064 general-purpose processor

riscv-mini 23814 general-purpose processor

Table 3.1: Summary of designs modeled.

3.4 Evaluation

We evaluate rtl2model by constructing models for a subset of the behaviors of two designs:

• R8051 [20]: a general-purpose processor implementing the 8051 ISA

• riscv-mini [18]: a single-core, in-order, 32-bit RISC-V processor with three pipeline
stages

The RTL designs for each are slightly modified to make exposing signals to the RTL
simulator easier; the behavior of the processors is not fundamentally changed. Partial models
were lifted from RTL using our Python framework, with various parameters for synthesis
and COI analysis manually specified as described below.3

All experiments are run on a 4.8GHz AMD Ryzen 7 5800X processor on Fedora Linux
35. All code in the framework is single-threaded.

3.4.1 R8051

The R8051 processor is the simplest of the designs we examine; the design is contained
in a single RTL module, and has a three-stage pipeline, where each stage processes one
instruction byte at a time. We synthesize a function to model the behavior of the psw_c

signal, which is an architectural status flag set to indicate the presence of a carry bit, when a
register-accumulator addition instruction is executed. The specific signature of the function
we synthesize is psw_c(data1 : bv8, acc : bv8) : bool, where data1 is a register value
and acc is the accumulator value.

We choose to synthesize this property because it is specified by a moderately complex
expression in the RTL. An abridged version of the Verilog code to set the next value of psw_c
is as follows:

1 always @(posedge clk) begin

2 if (rst) psw_c <= 1'b0;

3 else begin

4 // Large if/else tree determining behavior for different ops

3All artifacts can be found on GitHub: https://github.com/uclid-org/rtl2model.
4riscv-mini is originally written in Chisel; we examined the emitted equivalent Verilog.

https://github.com/uclid-org/rtl2model
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5 if (/*<operation is addition or subtrraction>*/ )

6 // `add_a`, `add_b` are the arguments being added/subtracted,

7 // `high` contains the upper bits of the addition

8 psw_c <= is_subtract ? (add_a[7] - add_b[7] - high[3])

9 : (add_a[7] + add_b[7] + high[3]);

10 else if (/*<operation is clear>*/ )

11 else if (/*<operation is multiplication>*/ )

12 // etc.

13 // ...

14 end

15 end

Our goal is to demonstrate that synthesis can be used to lift models simpler than the
original RTL; in this case, we wish to model the behavior of psw_c when only an addition
instruction is executed.

Program Sketch

The 8051 ISA specifies variable-length instruction encodings, but the processor is pipelined
to only ever process a single byte at a time. This means we need to add further nops after
our instructions of interest to simulate a pipeline flush. This implementation detail does not
otherwise affect the refinement annotations or program sketch.

1 NOP # PC=1

2 MOV R0, ?? # PC=2 2-byte instruction; sets data1

3 MOV A, ?? # PC=4 2-byte instruction; sets acc

4 ADD A, R0 # PC=6 1-byte instruction; performs addition

5 NOP # 20 more nops afterwards

Refinement Annotations

Recall that values “assumed” on a particular cycle are set to the corresponding value during
simulation, “parameter” values are constants chosen by the solver, and “outputs” are the
output of the synthesis function when called on those inputs.

Because of the variable-byte nature of the 8051 instruction encoding, the architectural
program counter does not correspond to the number of executed instructions; rather, it
corresponds to the byte index of the executed instructions. Both instructions with holes in
our sketch are 2 bytes long, while all others are a single byte.

cmd0, cmd1, and cmd2 represent the instruction byte being processed in each pipeline
stage. pc is the program counter of the first (0th) stage.
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• Assumed:

– On every cycle: rst, pc

• Parameters:

– Register data1 when pc == 3 (since the first byte of MOV R0, ?? is at PC=2, the
immediate enters the pipeline on the next byte when PC=3)

– Register acc when pc == 5 (since MOV A, ?? starts at PC=4, the immediate enters
the pipeline when PC=5

• Output: Flag psw_c when pc == 8

Synthesis Grammar

Below is the pseudocode grammar used in synthesizing psw_c(data1, acc) : bool. Zero-
padding of the 8-bit arguments is introduced into the grammar to avoid possible overflows, as
are the magic numbers 0 and 28− 1 (0xFF). The need for this sort of user-provided guidance
is one of the weaknesses of SyGuS (as discussed in Section 3.3.1).

⟨start⟩ ::= ⟨bv9 ⟩ == ⟨bv9 ⟩
| ⟨bv9 ⟩ < ⟨bv9 ⟩ [unsigned]
| ¬⟨start⟩
| ⟨start⟩ ∨ ⟨start⟩s
| ⟨start⟩ ∧ ⟨start⟩
| ⟨start⟩ ⊕ ⟨start⟩
| true

⟨bv9 ⟩ ::= ⟨bv9 ⟩ + ⟨bv9 ⟩
| ⟨bv9 ⟩ - ⟨bv9 ⟩
| ⟨bv9 ⟩ | ⟨bv9 ⟩
| ⟨bv9 ⟩ & ⟨bv9 ⟩
| ⟨bv9 ⟩ ⊕ ⟨bv9 ⟩
| ⟨bv8 ⟩.zero pad(1)
| ⟨bv8 ⟩.sign extend(1)

⟨bv8 ⟩ ::= x
| y
| 0bv8
| 0xFFbv8

Synthesized Function

The framework generates the following SyGuS function:
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1 (define-fun psw_c

2 ((lft_data1 (_ BitVec 8)) (lft_acc (_ BitVec 8))) Bool

3 (bvult ((_ zero_extend 1) #xff) (bvadd ((_ zero_extend 1) lft_data1) ((_ zero_extend 1) lft_acc))))

As expected, it returns true if the result of adding the two zero-padded operands would
exceed the maximum value of one byte (0xFF). The extraneous decoding logic and addition
optimizations seen in the RTL implementation have been elided.

Performance

Table 3.2 presents a breakdown of the runtimes of each component of the lifting algorithm.
The bulk of the runtime is taken up by invocations to the correctness oracle, but it still
completes in a very reasonable amount of time.

Operation Count Total (s) Average (s)
Dataflow parsing from Verilog 1 1.437 1.437

Partial model construction from dataflow 1 0.120 0.120
I/O oracle invocation 7 0.020 0.003

Correctness oracle invocation 7 21.857 3.122
Solver synthesis invocation 7 0.060 0.009

Table 3.2: Runtimes for various synthesis algorithm components for R8051. The “count”
column for the oracle and solver invocations refers to the number of iterations in the synthesis
loop outlined in Figure 3.1.

3.4.2 riscv-mini

The riscv-mini processor is a three-stage RISC-V pipeline. We synthesize an interpretation
for its ALU function under a set of 4 register-register instructions: add, xor, or, and and.
The specific signature of the function is alu_area(a : bv12, b : bv12, f3 : bv3), where
a and b are 12-bit immediates loaded into registers, and f3 is a field in instruction encoding
that determines which arithmetic operation is performed. Although the processor and ALU
operate on 32-bit values, we limit the inputs to the program sketch to 12-bit values, since
RISC-V instruction encoding restricts immediates to that size. 32-bit immediates require 2
instructions to load; we could have changed the program sketch to accommodate this, but
chose not to for simplicity

In the original RTL, the ALU result is expressed as a large case expression. We seek to
lift a model with a subset of these cases.

We evaluate the effectiveness of our lifting framework on this function in three different
scenarios:

1 : All components (refinement annotations, sketch, grammar) are specified correctly.



CHAPTER 3. IMPLEMENTATION AND SEMANTICS 31

2 : The refinement annotations and program sketch are correct, but a few operations are
missing from the grammar.

3 : The refinement annotation is specified incorrectly.

Program Sketch

Since riscv-mini initializes the program counter to byte address 0x200 (512 in decimal) on
reset, our program sketch needs to contain padding bytes to fill those out. We also include
nops at the end to function as a “flushing” mechanism.

1 unimp # 496 bytes of 0s

2 # Due to some quirks in how the pipeline is initialized,

3 # we need to include a few nops

4 nop; nop; nop; nop

5 addi x11, x0, ?? # PC=0x200 Hole for short_A

6 addi x12, x0, ?? # PC=0x204 Hole for short_B

7 ?? x13, x11, x12 # PC=0x208 Hole for f3

8 nop # 20 more nops afterwards

f3 is finally constrained to 3 possible values: 000 (addition), 100 (bitwise XOR), 110
(bitwise OR), and 111 (bitwise AND).

Refinement Annotations

fe_pc is the program counter of the instruction in the second pipeline stage, and ew_pc is
the program counter of that in the third and final stage. fe_inst represents the binary
encoding of the instruction currently in the second stage.

• Assumed:

– On every cycle: reset, pc, fe_pc, ew_pc

– Partially assumed on certain cycles:

∗ fe_inst[19:0] when fe_pc == 0x200 or 0x204 (everything except the im-
mediate)

∗ fe_inst[31:15] and fe_inst[11:0] when fe_pc == 0x208 (everything ex-
cept f3)

∗ The entirety of fe_inst otherwise

• Parameters:

– Register x11 when ew_pc == 0x204

– Register x12 when ew_pc == 0x208
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– Fetched instruction fe_inst[14:12] when fe_pc == 0x208

• Output: Register x13 when ew_pc == 0x20C

The above refinement relation is used for scenarios 1 and 2 . In the incorrect refinement
relation for scenario 3 , the ew_pc predicates for x11 and x12 are erroneously swapped,
leading the correctness oracle to sample the incorrect registers.

Synthesis Grammar

Below is the pseudocode grammar used in scenario 1 (the fully correct one) for synthesizing
the function alu(short_A : bv12, short_B : bv12, f3 : bv3) : bv32. Once again, we
provide a set of common bit-vector operations, but also need additional specifications for
“magic number” constants like the possible values of f3, and decoding-related behavior to
sign-extend the 12-bit function inputs to 32 bits. We also must specify the basic structure
of the case split by conditioning on the value of f3.

⟨start⟩ ::= (f3 == ⟨bv3 ⟩).ite(⟨start⟩, ⟨start⟩)
| ⟨substart⟩

⟨substart⟩ ::= ⟨substart⟩ + ⟨substart⟩
| ⟨substart⟩ - ⟨substart⟩
| ⟨substart⟩ | ⟨substart⟩
| ⟨substart⟩ & ⟨substart⟩
| ⟨substart⟩ ⊕ ⟨substart⟩
| ⟨boolterm⟩.ite(1bv32, 0bv32)
| ⟨boolterm⟩.ite(0xFFFFF000bv32, 0bv32)
| short A.sign extend(20)
| short B.sign extend(20)

⟨boolterm⟩ ::= short A.extract(11)
| short B.extract(11)

⟨bv3 ⟩ ::= 0b000bv3
| 0b100bv3
| 0b110bv3
| 0b111bv3

In scenario 2 , we underspecify the grammar by removing the expansion rules for
⟨substart⟩&⟨substart⟩ and ⟨substart⟩⊕ ⟨substart⟩. A valid function is still synthesized, but
the bitwise XOR and AND operators are omitted from the grammar, leading to a more
complex expression in the result.



CHAPTER 3. IMPLEMENTATION AND SEMANTICS 33

Synthesized Function

Scenario 1 . In scenario 1 , the following SyGuS function is produced (we provide Python
pseudocode below it for readability):

1 (define-fun alu_result

2 ((short_A (_ BitVec 12)) (short_B (_ BitVec 12)) (f3 (_ BitVec 3))) (_ BitVec 32)

3 (ite (= f3 #b110)

4 (bvor ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

5 (ite (= f3 #b100)

6 (bvxor ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

7 (ite (= f3 #b111)

8 (bvand ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

9 (bvadd ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))))))

Python pseudocode for the scenario 1 SyGuS function:

1 def alu(short_A : bv12, short_B : bv12, f3 : bv3):

2 a = short_A.sign_extend(20) # Sign extend to 32 bits

3 b = short_B.sign_extend(20) # Sign extend to 32 bits

4 if f3 == 0b000:

5 return a + b

6 elif f3 == 0b110:

7 return a | b

8 elif f3 == 0b111:

9 return a & b

10 else:

11 return a ^ b

Scenario 2 . In scenario 2 , where the grammar does not include every single used bit-
vector operation, the resulting expression for the ALU function is somewhat complicated;
further rounds of synthesis with a different grammar could be applied to simplify it further.

The SyGuS function from scenario 2 is as follows (Python pseudocode is again given
afterwards for readability):

1 (define-fun alu

2 ((short_A (_ BitVec 12)) (short_B (_ BitVec 12)) (f3 (_ BitVec 3))) (_ BitVec 32)

3 (ite (= f3 #b000)

4 (bvadd ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

5 (ite (= f3 #b110)

6 (bvor ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

7 (ite (= f3 #b111)

8 (bvadd ((_ sign_extend 20) short_A)

9 (bvsub ((_ sign_extend 20) short_B)

10 (bvor ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))))

11 (bvsub (bvor ((_ sign_extend 20) short_A) ((_ sign_extend 20) short_B))

12 (bvadd ((_ sign_extend 20) short_A)

13 (bvsub ((_ sign_extend 20) short_B)

14 (bvor ((_ sign_extend 20) short_A)

15 ((_ sign_extend 20) short_B)))))))))
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Python pseudocode for the scenario 2 SyGuS function:

1 def alu(short_A : bv12, short_B : bv12, f3 : bv3):

2 a = short_A.sign_extend(20) # Sign extend to 32 bits

3 b = short_B.sign_extend(20) # Sign extend to 32 bits

4 if f3 == 0b000:

5 return a + b

6 elif f3 == 0b110:

7 return a | b

8 elif f3 == 0b111:

9 return a + (b - (a | b)) # Equivalent to AND

10 else:

11 return (a | b) - (a + (b - (a | b))) # Equivalent to XOR

Scenario 3 . In scenario 3 , a BMC counterexample that contradicts the behavior of the
I/O oracle is found after 2 iterations. Since this results in contradictory constraints on the
solver, no synthesis candidate can be produced, and failure is recognized very quickly. We
found the process of refinement specification to be the most difficult task involved in setting
up the framework, and this quick failure mode allows users to easily detect and iterate on
mistakes.

Performance

As before, runtime breakdowns for scenarios 1 , 2 , and 3 are given in Tables 3.3, 3.4, and
3.5, respectively. In all scenarios, the correctness oracle takes up an even heftier portion of
the overall runtime compared to the 8051 design, likely due to the increased complexity of
generated synthesis candidates and the design as a whole; however, it still remains tolerable
for the user experience.

Operation Count Total (s) Average (s)
Dataflow parsing from Verilog 2 2.839 1.420

Partial model construction from dataflow 2 1.455 0.727
I/O oracle invocation 4 0.022 0.006

Correctness oracle invocation 4 89.886 22.471
Solver synthesis invocation 4 0.017 0.004

Table 3.3: Runtimes for various synthesis algorithm components for scenario 1 on riscv-mini
(all components are correctly specified).
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Operation Count Total (s) Average (s)
Dataflow graph parsing from Verilog 2 2.877 1.438

Partial model construction from dataflow 2 1.533 0.766
I/O oracle invocation 5 0.014 0.006

Correctness oracle invocation 5 140.617 28.123
Solver synthesis call 5 1.221 0.244

Table 3.4: Runtimes for various synthesis algorithm components for scenario 2 on riscv-mini
(the grammar is slightly underspecified).

Operation Count Total (s) Average (s)
Dataflow graph parsing from Verilog 2 2.851 2.851

Partial model construction from dataflow 2 1.517 1.517
I/O oracle invocation 2 0.012 0.006

Correctness oracle invocation 1 15.873 15.873
Solver synthesis call 2 0.007 0.004

Table 3.5: Runtimes for various synthesis algorithm components for scenario 3 on riscv-mini
(the refinement relation contains an error).
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Chapter 4

Conclusion

In this thesis, we present rtl2model, a compositional modeling framework for RTL designs,
as well as methods for automatically lifting them from RTL with varying granularity. We
demonstrate the effectiveness of synthesis techniques in lifting simpler models of complex
RTL combinatorial expressions for a pair of example processors; the resulting models are
correct by construction with respect to the supplied program sketch and refinement annota-
tions, and substantially easier to understand and verify. The rtl2model Python framework
is flexible, and can be augmented further in future work to automate even more significant
portions of the hardware lifting process.

4.1 Future Work

In order to decrease the amount of work required of the user in generating a model, the
rtl2model framework can further be adapted to synthesize definitions for non-combinatorial
functions, and generalize I/O traces to apply constraints to more than just the immediate
inputs and outputs of synthesis functions. We discuss a potential avenue to implementing
this in further detail in Section 3.3.1.

For processors which have formalized instruction sets (as with the RISC-V and 8051
designs we examine), the full end-to-end lifting process should also include a mechanism
for verifying that the lifted model refines the ISA specification. RISC-V has an operational
specification written in the SAIL language [26], and we also produced a version of the user-
level specification in UCLID5.5 Since rtl2model is capable of converting native models to
UCLID5 models, a next step is to apply this capability to perform refinement checks against
one such golden model specification.

rtl2model follows a recent trend towards increased automation in the hardware lifting
process [35, 37]. An area of substantial interest is to test the scalability of our algorithms in
verifying processors with more complex features and micro-architectural designs, such as the
RISC-V Rocket chip [2] and Berkeley Out-of-Order Machine (BOOM) [38] designs. These

5https://github.com/uclid-org/uclid-riscv

https://github.com/uclid-org/uclid-riscv
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processors are significantly more complicated than the designs we examine, and composi-
tionally verifying individual modules such as the TLB and BTB may be of more practical
use than the ISA-based examples we present in this work.

In addition to scaling up the size of processor designs examined, we also wish to further
explore modeling of security properties on processors, as one of the primary strengths of
rtl2model compared to previous ILA works is the ability to capture micro-architectural
state. Verifying common security properties like non-interference is possible under our frame-
work, but requires the user to provide somewhat detailed program sketches, which may not
always be available. Other properties of interest, especially timing-based ones, are also
currently impossible to express in rtl2model.

A last potential avenue of exploration is the application of rtl2model to verifying
processors’ memory consistency models. Though the models we construct are essentially
operational in nature, it is possible to simultaneously infer microarchitectural happens-
before invariants from RTL, as done in [13]. Mixing together elements of both operational
and axiomatic modeling has the potential to enable verification of a wider range of micro-
architectural properties.
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