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Abstract

Nanopore sequencing platforms combined with machine learning models have been shown
to be effective for detecting base modifications in DNA such as 5mC and 6mA. However, a
challenge in building machine learning-based callers is access to labelled training data that span
all modifications on all possible DNA k-mer backgrounds—a complete training dataset. Nanopore
calling has historically been done with Hidden Markov Models (HMMs); these HMMs cannot
make successful calls in k-mer contexts not seen during training because of their independent
emission distributions. However, deep neural networks (DNNs) are increasingly being used to
make base and modification calls, often outperforming their HMM cousins in the complete data
setting. Moreover, it stands to reason that the DNN approach should be able to better generalize
to unseen examples because its parameters are more fully shared across all training examples.
Herein, we demonstrate that indeed a common DNN approach (DeepSignal) outperforms a
common HMM approach (Nanopolish) in the incomplete data setting. Furthermore, we propose
a novel hybrid approach, AmortizedHMM, demonstrating that it outperforms both the pure
HMM and DNN approaches on methylation calling when the training data are incomplete.

Nanopore sequencing for epigenetics

Nanopore sequencing is a third-generation technology for sequencing DNA and RNA that provides
advantages over other technologies, such as long read lengths, inexpensive sample preparation,
real-time sequencing [1, 2], and owing to its small size, mobile sequencing [3]. Additionally nanopores
are increasingly being used to detect epigenetic modifications to DNA, particularly methylation
marks [4]. The nanopore device works by running an ionic current through nanometer-wide pores.
As a DNA molecule passes through the pore, the current across the pore changes in a manner that
is characteristic of the molecules in the pore, namely the RNA/DNA sequence and its modifications.
From measuring the current from known sequences and modifications, one can build up a supervised
training dataset suitable for machine learning (ML) methods that are then able to transform future,
unlabelled current signals to their corresponding sequence of bases and modifications [5].

Early studies demonstrated that nanopore sequencing could be used for the detection of epigenetic
modifications in DNA, showing that distinct current levels are produced when a modified base is
present in the pore [6, 7]. These successes sparked the development of supervised machine learning
methods for methylation calling on nanopore data [8, 9, 10, 11]. The first methylation marks to be
tackled by nanopore technology were those of 5-methylcytosine (5mC), which has been particularly
well-studied due to its abundance in the human genome [12], with previous studies linking 5mC
content to a number of key biological processes such as aging and cancer [13, 14]. Another base
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modification of interest is 5-hydroxymethylcytosine (5hmC), which is common in mammalian brain
tissue, accounting for 40% of modified cytosine in the central nervous system [15]. Moreover, 5hmC
content in brain cells increases with age, suggesting that it is linked to neurodevelopment [16].
Early results suggested that nanopore devices may also be able to pick up on 5hmC-specific current
signal [6], although calling these marks accurately in the presence of other marks has not yet been
conclusively achieved.

Generalization in nanopore callers

Although supervised ML methods are developed specifically for their ability to generalize to unseen
examples, the notion of generalization for nanopore sequencing is nuanced. For example, one form of
generalization for base calling is from the current observations for one k-mer, to slightly different
current observations, arising from stochastic noise in the system, for that same k-mer. We call this
sensor generalization, because the generalization is required owing to sensor noise. Another form of
generalization relevant to nanopore sequencing is k-mer generalization, wherein an ML-based caller
must make accurate calls for k-mers that it has never seen current observations for. Note that in the
case of epigenetics, in addition to k-mers comprised of the standard nucleotides, we also consider
modified k-mers, which include methylated bases.

When constructing a training dataset for base callers, it is relatively easy to generate a k-mer com-
plete dataset—one in which current observations associated with all possible k-mers are present.
This can be achieved by taking, for example, a sample of human DNA, amplifying the DNA and
running it through the nanopore. Labels for training can be obtained using alternative sequencing
platforms. Consequently, typically it suffices to require only sensor generalization for base calling.

When it comes to constructing a training dataset for a particular methylation mark, it can be
more difficult to obtain a similarly comprehensive dataset, largely due to the burden of obtaining
high-confidence reference labels for these modifications. In the case of detecting 5mC modifications,
previous studies have used the gold standard assay of bisulfite sequencing to obtain supervisory calling
labels [17, 18], achieving a 6-mer complete dataset. However, as we move to other modifications, such
as 5hmC, achieving similarly complete training data becomes increasingly difficult. TET-assisted
bisulfite sequencing (TAB-seq) and oxidative bisulfite sequencing (oxBS) are currently the standard
methods for reading 5hmC at single-base resolution [19]. However, both methods are expensive and
low-throughput [20]; they also require high coverage to make high-confidence 5hmC calls (particularly
oxBS) [19]. Additionally, beyond these sequencing challenges, rarity of certain epigenetic marks may
also present a problem, as it may be the case that not all k-mers containing a given modification are
represented in a specific genome. As the field progresses to simultaneous calling of multiple types of
epigenetic marks, achieving a complete dataset with respect to all of the marks will become harder
still. Consequently, as nanopore sequencing technology is used to call more and more epigenetic
marks, we require ML-based callers that are accurate even with limited training data. In particular,
the callers will require both k-mer and sensor generalization.

To further illustrate why it might be challenging to obtain high quality k-mer complete training
data for a given methylation mark, consider that for base calling, the alphabet is of size four:
{A, C, G, T}, whereas for a given methylation mark that can occur only on a cytosine, we expand
the alphabet to size five: {A, C, G, T, M}. For current pore models where k = 6, we go from
46 = 4, 096 unique k-mers to 56 = 15, 625. In practice, only methylated sites in certain contexts are
possible, such as detecting 5mC modifications which, in mammalian genomes, can occur only on
the C in a CpG dinucleotide [21]. Additionally, even if the pore contains only, say, six bases at a
time, ML callers may be able to make use of larger contexts still to improve calling, exacerbating
the combinatorial explosion of possible k-mers. Indeed, recently developed pore models for the new
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R10 Oxford Nanopore Technology (ONT) chemistry use k = 9 [22], which yields 59 = 1, 953, 125
unique methylation contexts. Herein, we will restrict ourselves to k = 6, although the conclusions
that emerge should be equally, if not more, applicable to larger values of k.

Next we describe the two main modelling paradigms currently used for nanopore-based methyla-
tion calling, discussing how they relate to sensor and k-mer generalization. Then we propose and
demonstrate the utility of our new method, which is a hybrid between the two approaches. Note that
in both of these modelling approaches, and later in our own, newly developed approach, methylation
calling occurs after base calling.

Hidden Markov Model-based callers. Simpson et al. [10] developed the widely-used Nanop-
olish, a Hidden Markov Model (HMM)-based approach to detecting 5mC in CpG contexts. The
Nanopolish HMM assumes a different current distribution for each unique k-mer, including distinct
distributions for modified versions of a k-mer. For example, a k-mer, CGAACG, that has a 5mC in the
fifth position, denoted CGAAMG, has its own mean and variance of current distribution in Nanopolish,
and MGAAMG in turn has its own, and so forth. That is, every possible modification on top of any
DNA background—a unique modified k-mer—has its current distribution modelled independently.
The Markov transitions in the HMM ensure a coherence of calls as the DNA sequence moves through
the pore. That is, if the HMM believes the last call in the sequence being pulled through the pore
was a CAMGAT, then the next call in the sequence should be off-set by a shift of one, AMGATX, for
wildcard X. Because of the independent current distributions—called emission distributions in HMM
parlance—for each modified k-mer, the HMM-based Nanopolish approach requires having seen all
possible modified k-mers in the training data.

Deep Neural Network-based callers. Recently, there has been a shift to using deep neural
networks (DNN) for base [23, 24, 25] and methylation calling [17, 18]. In particular, for methylation
calling, Ni et al. [17] combined a bidirectional recurrent neural network (RNN) with long short-term
memory (LSTM) units that constructs sequence-based features and a convolutional neural network
(CNN) that processes raw signal values in order to perform methylation calling. This approach
is called DeepSignal [17]. Liu et al. [18] similarly used an LSTM-RNN architecture in their tool
DeepMod, also adding a secondary network to account for correlation of methylation marks on nearby
sites. These DNN-based methods have been shown to provide a performance improvement over the
HMM-based Nanopolish for 5mC calling [26]. Importantly, because these DNN approaches do not
have parameters that are a priori independent for each modified k-mers, it stands to reason that they
should perform better than HMM-based approaches in generalizing to new modified k-mers—that is
perform better k-mer generalization. Although it has not previously been shown, we will demonstrate
herein that this is indeed the case.

A novel hybrid HMM-DNN approach to methylation calling. Although we show that the
DNN has better k-mer-generalization than the HMM approach, we hypothesized that combining the
two modelling approaches may provide better k-mer-generalization, and therefore better robustness
to incomplete training datasets. Our approach, AmortizedHMM, first trains a Nanopolish-like HMM
on the training data that is available. This yields a learned emission distribution for each modified
k-mer in the training data. Next we train a feedforward deep neural network (FDNN) to estimate
the emission distribution for a given modified k-mer. Finally, in our hybrid approach, we use the
Nanopolish HMM where we impute any missing modified k-mer emission distributions with that
predicted by the FDNN. Because we are sharing information between the emission distributions
by way of the FDNN, we say that we are amortizing the emission distributions, hence the name,
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AmortizedHMM. In addition to developing this hybrid model, we also develop a new algorithm for
choosing which k-mers to use for training in the k-mer incomplete setting.

Next we describe a series of experiments comparing and contrasting our proposed hybrid approach
to pure DNN and HMM approaches, across a range k-mer incompleteness settings, showing that for
complete training data, the DNN is best, but that as training data becomes incomplete, that our
hybrid approach dominates in performance.

Results

We focused our empirical investigation on the problem of 5mC calling, for which several high
quality datasets exist, and for which existing callers have been developed with the intent of having
approximately k-mer complete training data. However, we consider this a proof-of-principle for
harder tasks such as 5hmC calling, or joint calling of 5mC and 5hmC, and so forth.

We trained three types of methylation callers, described in the previous section, on k-mer incom-
plete datasets. The first two callers are existing approaches for which we used code provided by the
authors: the HMM-based Nanopolish [10], and the DNN-based DeepSignal [17]. No model selection
or architecture search was performed for these methods. The third approach is our newly proposed
approach, AmortizedHMM, for which we performed architecture search in the k-mer complete setting,
as was done for Nanopolish and DeepSignal. We did not change any of the model architectures when
testing them in k-mer incomplete settings.

We focused on datasets representing naturally occurring 5mC marks in human genomes, as in Ni et
al. [17] and Liu et al. [18], which include k-mers that are unmethylated, partially methylated, and fully
methylated. In particular, we trained and evaluated our models using two primary nanopore datasets
obtained from sequencing two different human genomes, HX1 [8] and NA12878 [2]. Additionally, we
obtained gold standard bisulfite 5mC labels for NA12878 from ENCODE (ENCFF835NTC) [27] and
for HX1 from the NCBI Sequence Read Archive (PRJNA301527) [8].

From these primary datasets, we constructed a range of k-mer incomplete training datasets.
Briefly, these were created within 6-fold cross-validation. By default, each training fold contains
k-mer complete data. Next, to create a, say, 10%-complete training dataset, we compute the number
of modified k-mers that this corresponds to, say 250 k-mers. Although in principle we could then
simply choose 250 of the training modified k-mers at random for our 10%-complete dataset, this
would not correspond to a real physical situation owing to the fact that a single methylated site
in a genome corresponds to six modified k-mers (for k = 6), all shifted from each other by one
position. Random selection would not guarantee modified k-mers shifted from each other in this
fashion. Thus, to actually order k-mers for training, we need to account for this physical reality. We
use a slight modification of the random modified k-mers selection scheme, whereby we enforce that
all six modified k-mers for that one modified site are simultaneously included in the training data.
In practice, we use a linear integer program to compute these k-mer-incomplete training datasets.
The algorithm we developed to perform this training data k-mer selection also accounts for the
frequency with which any modified k-mer1 occurs in the genome of choice (e.g., human genome), so
that priority is given to more commonly occurring modified k-mers. However, this can also be run
simply with frequency of base composition if the modifications in the target genome are not known.
In any case, given a set of k-mers, we then filter the k-mer complete training data such that the
only remaining modified k-mers are those present in the set. Note that each individual modified

1This part of the algorithm actually looks at the frequency of the 11-mer (for 6-mers) sequence that contains the
“central" modification.

4



k-mer will generally appear many times in the training data (with distinct sensor readings), but the
total number of unique k-mers is limited. Additionally, for a given fold, test sets remained the same
for every level of incompleteness and, as was the case with our training folds prior to k-mer filtering,
were k-mer complete.

We will denote different levels of k-mer completeness by p. That is, p is the percentage of
all possible modified k-mers that are present in the training data. A k-mer complete dataset has
p = 100, while increasingly less complete data have p < 100. The smallest p we consider is five,
which corresponds to fewer than 150 unique modified k-mers in the training data.

Accuracy of 5mC calling across a range of k-mer-incompleteness

For each of the two primary datasets and their various k-mer-incomplete versions, we ran each of
the three ML-based callers (Figure 1). In this scenario, which most closely mimics a real-use case,
the test set (which is k-mer complete) typically contains modified k-mers that also appeared in the
training data, albeit with different (hold out) instantiations of the current observations. In the next
section, we will evaluate again, testing only those modified k-mers not appearing in the training
data, so as to assess k-mer-generalization specifically.

On both datasets, the performances of Nanopolish and AmortizedHMM were very similar for
high values of p. This is to be expected, since when p is close to 100, AmortizedHMM does not
need to impute many emission distributions; rather it can use the Nanopolish emission distributions
directly. Note that even for the k-mer complete setting, AmortizedHMM and Nanopolish may diverge
because Nanpolish requires a certain number of data points to learn each emission distribution,
and otherwise sets this distribution to the default of being unmethylated. DeepSignal outperforms
both other methods in this setting. This is consistent with earlier results in where it was shown
that DeepSignal outperforms Nanopolish in the k-mer complete setting [17, 26]. We speculate that
DeepSignal performs better than AmortizedHMM here because the amortization implicit therein
applies to the raw data inputs, rather to the HMM parameters used as inputs to AmortizedHMM.

As the training data become increasingly incomplete, AmortizedHMM starts to systematically
outperform Nanopolish because of its ability to impute missing emission probabilities corresponding to
modified k-mers not in the training data. Although AmortizedHMM has fewer of the estimated HMM
parameters to fit its FDNN with when p is smaller, AmortizedHMM nevertheless is able to generalize
quite well by virtue of its amortization. Meanwhile, DeepSignal continued to hold an advantage
over the other methods for p ≥ 20− 30, the cross-over point for where AmortizedHMM starts to
outperform it. We hypothesize that the diminished performance of DeepSignal with increasingly
k-mer incomplete data arises from insufficient data to train on. It is possible that if we had performed
an architecture search for DeepSignal at each level of k-mer incompleteness, that its performance
could have been boosted. Importantly, however, none of the methods, including AmortizedHMM,
had their architecture selected other than on the basis of k-mer complete training data, so as to
make the comparison fair.

Decomposition into sensor and k-mer generalization

In order to better understand the source of AmortizedHMM’s comparative success in low k-mer cov-
erage regimes, we divided each of the cross-validation tests into two: one corresponding to modified
k-mers not appearing in the training data to assess k-mer generalization, and one corresponding
to only those appearing in the training data to assess sensor generalization. Across both primary
datasets, DeepSignal is the clear winner for pure sensor generalization, whereas Nanpolish and
AmortizedHMM perform similarly to each other, and well below DeepSignal. On the other hand, for
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Figure 1: Performance of 5mC calling across different k-mer incompleteness regimes.
Results averaged over 6-fold cross-validation, with length of error bars equal to one standard
deviation across the folds. The k-mer complete case, p = 100, corresponds to a training dataset
containing 2, 669 unique modified k-mers, whereas the case where p = 5 corresponds to a training
dataset containing 133 unique modified k-mers.

k-mer-generalization, AmortizedHMM is the consistent winner, with DeepSignal coming in second,
and Nanopolish, last.

Figure 2: Sensor and k-mer generalization. Accuracy of methylation callers on k-mers previ-
ously appearing and not appearing in the training data. Results averaged over 6-fold cross-validation,
with length of error bars equal to one standard deviation across the folds. The k-mer complete
case, p = 100, corresponds to a training dataset containing 2, 669 unique modified k-mers, whereas
the case where p = 5 corresponds to a training dataset containing 133 unique modified k-mers.
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Investigation of low- and high-novelty in k-mer generalization. In the previous section,
we treated all k-mer-generalization in the same way, whereas in reality, some modified k-mers not
seen in the training data may be more similar to those in the training data than others, what we
refer to as low- and high-novelty k-mers. To investigate if this issue affects performance, and how, we
quantified distance to the training modified k-mers with the average Hamming distance to modified
k-mers in the training data. Then we evaluated the calling accuracy for different distances. We
performed this analysis for for all the values of p appearing in Figure 2, between five and fifteen, and
averaged the results over these values of p (Figure 3). Although AmortizedHMM performed similarly
to DeepSignal for low-novelty k-mers, it was far more accurate than DeepSignal for high-novelty
k-mers. This difference in performance appears to underpin the success of AmortizedHMM over
DeepSignal in k-mer generalization.

Figure 3: Accuracy of methylation callers in detecting 5mC in previously unobserved k-
mers, for different levels of k-mer novelty. Accuracy of DeepSignal and AmortizedHMM on
k-mers previously unobserved during training at varying levels of k-mernovelty. Results are
averaged over model evaluations for values of p between 5 and 15, with length of error bars equal
to one standard deviation.

Discussion

We investigated how several common modelling approaches, and our newly developed approach, for
5mC calling, are robust to generalizing to k-mers not seen at training time—what we refer to as the
task of k-mer generalization. Although the DNN-based DeepSignal performed best with complete
k-mer training data, as the training data became increasingly less and less complete, our newly
proposed hybrid approach that combines HMMs and neural networks, AmortizedHMM, dominated
in calling accuracy.

Although we focused our evaluation on 5mC detection, in practice, 5mC calling methods need
not be specialized for the k-mer incomplete setting, as there already exist high k-mer coverage
nanopore sequencing labelled datasets for 5mC. However, our method could be expanded to detect
modifications for which obtaining such a dataset is not so straightforward, such as in cases where
sequencing experiments for obtaining a ground truth reference are extremely costly, or in cases where
a specific modification is especially rare in a given genome. In particular, we are working to improve
calling for 5hmC.
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Methods

Datasets

We trained and validated models for 5mC calling on two published Nanopore datasets. Jain et al.
[28] sequenced the human genome NA12878 at 30x coverage using the ONT R9.4 pore chemistry,
and Liu et al. [18] sequenced the HX1 genome, also at 30x coverage and using the R9.4 chemistry. In
both cases, sequencing was performed on native DNA molecules containing native modifications (in
contrast to other works where methylation was synthetically introduced in PCR-amplified samples
using enzymes such as M.SssI methyltransferase [10, 11]). In addition to raw signal data, these
datasets included base calling results obtained from running ONT-trained base callers: Guppy v2.3.8
for the NA12878 dataset and Albacore v2.3.1 for the HX1 dataset.

As a reference for 5mC modifications, we used bisulfite sequencing datasets obtained from
sequencing NA12878 [27] and HX1 [18]. Following preprocessing steps using Bismark [29], we
obtained a set of methylation calls for each CpG site corresponding to the bisulfite sequencing reads
that cover that site. Similarly to [18] and [17], we then filtered for CpG sites that were (1) covered
by a sufficient number of reads (in our case, at least 5) and (2) consistently called as methylated
or unmethylated across every read covering the given site. The second step is necessary since
methylation may not be consistent across the sequenced samples. This process provided us with
a set of CpG sites for which we could confidently assign non-methylated or methylated labels for
training and evaluation purposes.

k-mer selection

Recall that the practical application of our method is that one may not have k-mer complete data,
possibly due to, for example, some limitation in the number of regions in a genome that can be
sequenced because of experimental cost or the base modification of interest occurring infrequently
in the genome. However, since the datasets considered in this work are k-mer complete, we must
further filter our nanopore datasets so that only some subset of k-mers are represented in the data
in order to simulate the k-mer incomplete setting. Here, we detail the process by which we select
which k-mers to retain. Note that we continue to assume that k = 6.

We begin by defining which k-mers are candidates for removal. First, note that we are generally
more concerned with how well-represented methylated k-mers are in the dataset. This is because in
the HMM setting, the emission distribution parameters for unmethylated k-mers can be assumed to
have already been learned. Moreover, in general, modified bases are more common than unmodified
ones, so obtaining a dataset in which all unmethylated k-mers are represented is not very challenging.
Thus, in practice, we only update the parameters for methylated k-mers. Second, we are only
interested in calling 5mC in CpG contexts, so many methylated k-mers are not relevant for our
analysis. For example, AAAMAG is not a valid k-mer, whereas AAAAMG and AAAAAM are. Simpson et al.
[10] refer to this as the CpG alphabet.

We let n denote the number of valid k-mers that contain a methylated base. As described in the
main text, we let p denote the percentage of k-mers that our reduced dataset ought to cover. For
example, if p = 100, then we retain all k-mers. The obvious approach would then be to randomly
select a set of b pn100c k-mers, which we denote as T , and then remove any appearances of k-mers that
are not present in T . However, this approach faces immediate problems. Let us fix a position at
which there is a methylated cytosine in a CpG dinucleotide (i.e., an MG). We can consider the 11-mer
centered on this methylated site, which we denote as S. As an example, S could be the 11-mer
GATTTMGCAAC. This 11-mer may be viewed as a combination of six overlapping 6-mers s1, s2, . . . , s6,
as described in Figure 4.

8



S = GATTTMGCAAC

s1 = GATTTM

s2 = ATTTMG

s3 = TTTMGC

s4 = TTMGCA

s5 = TMGCAA

s6 = MGCAAC

Figure 4: Example decomposition of an 11-mer into 6-mers, each containing a modified base.

We note that our goal is to simulate a real, physical experiment producing a k-mer incomplete
dataset. In this setting, when a methylated site passes through the nanopore, all six 6-mers which
include that methylated site will necessarily pass through the pore together, or not at all. In other
words, it is only sensible to keep this specific methylated site in the dataset if all of s1, s2, . . . , s6 are
in T , since removing just one of these k-mers while keeping the rest would not be consistent with an
actual sequencing experiment. Then, since P [si ∈ T ] ≈ p

100 for i = 1, . . . , 6, the probability that we
keep this particular methylated site in our dataset is near

( p
100

)6 (we assume that the events si ∈ T
are approximately independent). In our analysis, we will take p to be as small as 5, in which case
virtually every methylated site will be removed from the data. Moreover, we have assumed that
k = 6—if we were to consider longer k-mers, the probability of retaining a methylated site would
decay even more quickly as a function of p. Consequently, in order to retain more methylated sites
in the dataset, we must select the k-mers we keep more carefully. Intuitively speaking, the main
issue with randomly selecting k-mers is that a random procedure is unlikely to select k-mers which
are adjacent (i.e., k-mers of the form XY1Y2Y3Y4Y5 and Y1Y2Y3Y4Y5Z, where X, Yi, Z ∈ {A, C, G, T, M})
and can combine to form a longer sequence centered on a methylated site (such as in Figure 4).

To encourage the selection of a more coherent set of k-mers, we formulate our k-mer selection
problem as an integer linear program (ILP). Informally, we select a set T of methylated k-mers with
maximum size B = b pn100c, and aim to maximize the frequency-weighted count of possible (2k − 1)-
mers (in this case, 11-mers) that (1) are centered on a methylated base in a CpG site, such as S in
Figure 4 and (2) can be generated as a combination of overlapping k-mers in the set T .

max
m∑
i=1

wiyi (1)

s.t.
n∑

i=1

xi ≤ B, (2)

0 ≤ −kyi+
k∑

j=1

xij ≤ k − 1 ∀i ∈ {1, . . . ,m} (3)

Here, the constant n still denotes the number of methylated k-mers, whereas m denotes the total
number of possible (2k − 1)-mers centered on a methylated CpG. The integer variables xi ∈ {0, 1}
denote whether the ith k-mer is included in the set T . Thus, Equation (2) represents a constraint on
the size of T . For each methylation-centered (2k−1)-mer Si (with 1 ≤ i ≤ m), xi1 , . . . xik correspond
to the k-mers of which Si is comprised. For example, using the example from Figure 4 where we
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Figure 5: Change in percentage of methylated sites retained in data with respect
to percentage of k-mers kept, compared between randomly selected k-mer sets and
ILP-selected k-mer sets.

take Si = GATTTMGCAAC, xi1 , . . . , xik denote whether the k-mers GATTTM, ATTTMG, TTTMGC, TTMGCA,
TMGCAA, and MGCAAC are in T . Note that Equation (3) is equivalent to the k-way AND constraint

yi =
k∧

j=1

xij (4)

Thus, the integer variables yi ∈ {0, 1} denote whether the ith (2k − 1)-mer can be written
as a combination of overlapping k-mers which are present in T . Moreover, for each 1 ≤ i ≤ m,
the constant wi represents the proportion of the ith (2k − 1)-mer among all methylation-centered
(2k − 1)-mers in the reference genome; therefore, the objective function (1) counts the number of
methylation-centered (2k − 1)-mers that can be generated using the selected set of k-mers, weighted
by each (2k−1)-mer’s relative frequency. Thus, maximizing it is equivalent to maximizing the number
of methylated CpG sites that we retain in the data upon removing all occurrences of k-mers not
included in T .

Using k-mer sets produced by solving the ILP reduces the number of methylated sites removed
from the data significantly compared to random selection (Figure 5). Continuing to let p denote
the percentage of modified k-mers that we retain in the data, we consider the following values of
p throughout this study: p ∈ {5, 6, . . . , 15, 20, 30, . . . , 90, 100}. Note that, in total, we consider 20
values of p.

We emphasize once more that, in practice, this rather involved method for selecting k-mers would
not be necessary, and it serves only to simulate a setting where sequencing experiments originally
produce k-mer incomplete data. One potential scenario would be to perform high-coverage nanopore
sequencing experiments on a small region of the genome, which would then be less costly to generate
a methylation reference over using methods such as bisulfite sequencing or TAB-seq.

k-mer incomplete training of pre-existing methods

Equipped with sets of varying size which describe k-mers that we retained in our dataset, we now
discuss our process for training two pre-existing methods for 5mC modification calling: Nanopolish,
which is HMM-based [10], and DeepSignal, which is DNN-based [17]. Note that for both methods,
we split the set of reads into 6 folds and ran the described training procedure 6 separate times, each
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time leaving out a different fold for validation purposes. Moreover, the entire procedure was run
independently for the NA12878 and HX1 datasets.

Nanopolish. Training emission distributions for the Nanopolish HMM is based on event alignment,
as described in [10]. First, the signal time series in each Nanopore read is segmented into events,
which are then aligned to a reference genome. Then, each k-mer is associated with a list of events.
Second, these lists of events are then used to update the emission distribution parameters for each
k-mer. This process is repeated from the alignment step for five iterations, following the work of
Simpson et al. [10].

Thus, in order to train parameters for modified k-mers, the primary pre-processing step is to edit
the reference genome by changing CG dinucleotides that have been consistently called as methylated in
our bisulfite sequencing reference data into MG. For a given value of p, we filtered out any methylated
site that is covered by a k-mer that does not appear in the corresponding ILP-produced k-mer set.
This process produced 20 modified reference genomes, each with a varying number of methylated
sites. We then executed the standard Nanopolish training procedure for each of these 20 modified
genomes.

DeepSignal. Next, we describe the process for training the DeepSignal DNN methylation caller
on k-mer incomplete data. For a given CpG site in the reference genome and a read covering the site,
DeepSignal extracts a feature vector containing nucleotide sequence information, signal summary
statistics, and raw current values corresponding to a window centered on the CpG dinucleotide. We
then annotated the feature vector with a binary methylation label obtained from bisulfite sequencing
reference data. In cases where the CpG represents a methylated site, we then determined whether
to filter out the example for each of the 20 values of p in the exact same fashion as we did for our
k-mer incomplete HMM training procedure: checking if any k-mer covering the methylated site
does not appear in the current k-mer set, and removing the example if so. Via this procedure, we
obtained 20 filtered datasets, one for each of the different values of p.

There are two notable side effects of our filtering approach. First is that, since we are only
concerned with removing methylated sites from the data, this procedure naturally introduces
significant class imbalance in the training data, since unmethylated sites are untouched during
k-mer filtering. To remedy this, we downsampled the negative (unmethylated) class. Second is that
we remove significantly more methylated sites when we keep, for example, 5% of all methylated
k-mers compared to 90%. Consequently, the training datasets produced by this method were much
larger for higher values of p. To control for this, we uniformly limited training dataset size by
downsampling all of the datasets to match the size of the dataset produced for the lowest value
of p. For both the NA12878 and HX1 datasets, we ultimately obtained training datasets with
approximately 1 million positive examples and 1 million negative examples for every value of p.

AmortizedHMM

AmortizedHMM extends the HMM method for methylation calling through use of a DNN. Following
our HMM training procedure detailed in the previous section, we obtained sets of emission distribution
parameters, with each set corresponding to a different value of p. In each set, some number of
k-mers have had their parameters updated from the default values, with the count of such k-mers being
larger the larger p is. We then let the set Up be comprised of all of the triples (ki, µi, σi), where
ki denotes a methylated k-mer whose emission distribution parameters µi, σi were updated when
training on p-filtered data.
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k-mer featurization. In our method, we train a feedforward deep neural network (FDNN) that
can estimate the emission distribution parameters for previously unobserved k-mers. First, we
describe the string featurization method we apply for each k-mer given as input to the FDNN. Given
a k-mer, we extract a feature vector comprised of the following binary features:

1. At each position in the k-mer, a one-hot encoding of the nucleotide at that position. Again,
k = 6, and we use a modified nucleotide alphabet {A, C, G, T, M}, so this represents 30
values.

2. For each of the first k−1 positions in the k-mer, a one-hot encoding of the dinucleotide starting
at that position. With 5 choices of starting positions and 52 − 4 = 21 possible dinucleotides
(since MA, MC, MT, MM are not valid pairings), this corresponds to 105 features.

3. At each position in the k-mer, a boolean value representing whether a C or an M is present at
that position. The motivation for including these features is that M is closely tied to C by
way of being a modified cytosine, so we hypothesized that they may have similar effects on the
nanopore current. This accounts for another 6 features, giving a feature vector of total length
141.

We additionally experimented with one-hot encoding trinucleotides in the k-mer, but this did
not improve performance.

Model training. The AmortizedHMM takes the string featurization for a k-mer as input and
outputs estimates of the emission distribution parameters (a mean and a standard deviation) for
that k-mer. When training the AmortizedHMM, instead of using a mean-squared error loss as would
be typical for regression problems such as ours, we minimize a symmetrized Kullback-Leibler (KL)
divergence loss. This is because our goal is ultimately to emulate k-mer emission distributions, and
simply using the numerical difference between parameter estimates may not accurately reflect how
different our estimated distributions are from the emission distributions that would have been learned
when training on k-mer complete data. In particular, we let P ∼ N(µ, σ2) be a Gaussian random
variable with parameters estimated via the training procedure described in the previous section, and
P̂ ∼ N(µ̂, σ̂2) be a Gaussian variable with parameters estimated by the AmortizedHMM. We define
the symmetrized KL-divergence as

f(P, P̂ ) = DKL(P ‖ P̂ ) +DKL(P̂ ‖ P ) (5)

Since P and P̂ are Gaussian, there exist closed-form solutions for the DKL terms in Equation
(5). Specifically,

DKL(P ‖ P̂ ) = log
σ̂

σ
+
σ2 + (µ− µ̂)2

2σ̂2
− 1

2
(6)

DKL(P̂ ‖ P ) = log
σ

σ̂
+
σ̂2 + (µ̂− µ)2

2σ2
− 1

2
(7)

Hyperparameter search. Now, we detail the process by which we choose the architecture of the
AmortizedHMM. We determine the number of hidden layers (denoted as d) in this network and
the size of each hidden unit (denoted as h) via cross-validation. In particular, we divide the set
U100 (methylated k-mers with parameters updated from training on k-mer complete data) into a
training and a validation set according to an 80%/20% split. Then, we perform grid search over the
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hyperparameter values d ∈ {3, 4, 5, 6} and h ∈ {16, 32, 64, 128} (these candidate values were selected
based on a preliminary analysis using the Nanopolish-provided emission distributions).

Then, for each value of p, we initialize a copy of the best-performing network architecture from
this cross-validation procedure, and train it on Up. The resulting network is then used to estimate
the emission distribution parameters for k-mers that were not updated during the initial rounds of
training (that is, the k-mers that do not appear in Up). This provides a “complete" set of emission
distribution parameters, some of which were learned during the standard HMM training step, while
the rest were estimated using the AmortizedHMM. Given this set of parameters, we can then perform
methylation calling in the usual fashion using Nanopolish.

Note that we use the same network architecture chosen by training and evaluating on distribution
parameters from the p = 100 case for every value of p. This is because we wish to produce a
comparison between our hybrid method and a pre-existing DNN methylation caller (DeepSignal).
Since the network architecture for this caller was chosen based on its performance when p = 100
(the k-mer complete setting), our methods are comparable only if we uniformly use an architecture
optimized for the p = 100 case as well. However, we note that since the size of the set of parameters
Up decreases as p decreases, it stands to reason that networks of lower capacity compared to the one
selected via this cross-validation procedure could potentially be more suitable for small values of p.
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