
LEM: A Configurable RISC-V Vector Unit Based on

Parameterized Microcode Expander

Zitao Fang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-150

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-150.html

May 19, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

LEM: A Configurable RISC-V Vector Unit Based on Parameterized
Microcode Expander

by Zitao Fang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Krste Asanovic
Research Advisor

(Date)

* * * * * * *

Professor Sophia Shao
Second Reader

(Date)

5/18/2022

Krste Asanovic
5/19/2022

Contents

1 Abstract 3

2 Introduction 4

3 Background and Prior Works 6
3.1 RISC-V Instruction Set Architecture 6
3.2 Rocket Core, RoCC Accelerators, and Chipyard 7
3.3 Microcode Machine . 7
3.4 Vector Unit . 8
3.5 Saturn-V Core . 9
3.6 Systolic Array Accelerator and Einstein DSL 9

4 Parameterizable Microcode Sequence Expander 11
4.1 Overview . 11
4.2 Interface . 12

5 RISC-V Vector Unit 13
5.1 Overview . 13
5.2 Vector Register File . 13

5.2.1 Register Data Request 14
5.2.2 Write request . 15
5.2.3 Mask Register . 16
5.2.4 Immediate Generation 16
5.2.5 Hazard checking . 17
5.2.6 Permutation Operations in the Register File 17

5.3 ALU and FPU Modification 18
5.3.1 Integer ALU . 18
5.3.2 Integer Multiplier . 20

1

5.3.3 FPU Enhancement and Reciprocal / Square Root Lookup
Table . 20

5.3.4 Common Decode Logic 20
5.3.5 Decode and Control Logic for Di↵erent Vector Instruc-

tions . 21
5.3.6 Vector CSR control . 22

6 Custom Microcode Operation through Einstein DSL 23
6.1 Simplified DSL Syntax . 23
6.2 SpMV Algorithm . 25
6.3 Hardware Modification . 25

7 Implementation and Result 27
7.1 Assembly Tests Functionality 27
7.2 Benchmark Result . 28

7.2.1 Analysis . 28
7.3 Preliminary Synthesis Result 29
7.4 DSL Synthesis and Performance Result 30

8 Future Work 32

9 Conclusion 34

10 Acknowledgement 35

2

Chapter 1

Abstract

The end of Moore’s Law has motivated numerous innovations in computer ar-
chitecture. The traditional approach of increasing frequency and numbers of
transistors for general-purpose computation hardware are facing diminishing
return, and we must turn to data-level parallelism and specialized hardware
accelerator for performance growth. This thesis describes a simple RISC-V
vector unit implementation based on a microcode expander. We found that
even if we are only using one data path, we still get considerable performance
improvement on some benchmark tests over scalar code. We also demonstrate
that we can reuse existing hardware to implement custom instructions with
minimum hardware overhead by mapping a DSL for accelerator generation
onto the microcode expander.

3

Chapter 2

Introduction

Vector and SIMD instructions are powerful tools for programmers to ex-
ploit data-level parallelism. Among the three common types of parallelisms
- instruction-level parallelism, data-level parallelism, and thread-level paral-
lelism - data-level parallelism requires the least control complexity to achieve
the same speedup. Not all algorithms exhibit data-level parallelism, and even
if an algorithm does, programmers still need to rewrite the code for acceler-
ation. However, reducing hardware complexity can lead to less area and less
power, which leads to reduced computation costs.

Before vector and SIMD instructions were invented, programmers used
loop unrolling to exploit data-level parallelism using the hardware designed
for instruction-level parallelism, namely hardware pipelines. Di↵erent steps
in the loop body are farther away, so we will spend less time waiting with
the data hazard interlock.

Vector instructions are not the only way to continuous performance im-
provement in a post-Moore’s Law era. Hardware accelerators built for specific
algorithms are another popular type of architecture. Many exploit data-level
parallelism to some degree, like 2D arrays for machine learning and acceler-
ators for digital signal processing pipelines. It used to be di�cult to find the
right processor architecture to integrate and control accelerators, especially
for tightly coupled ones. Most ISAs are not open, and their vendors don’t
provide interfaces for customization. But, the emergence of RISC-V changes
this. It’s an open instruction set, meaning anyone can use it without any
restriction, and the modular design of RISC-V makes integrations of custom
instruction extensions easier. RISC-V is the ideal ISA for academic research.

In the ADEPT/SLICE lab, we are currently building a new configurable

4

core, Saturn-V, for DSP applications and hardware accelerator control. As
a part of this e↵ort, I built a microcode sequence expander, Loop Expand-
ing Microsequencer (LEM), as an experimental interface for tightly coupled
hardware accelerators. I created a RISC-V standard-compliant vector unit on
top of LEM to demonstrate its ability to handle complex logic. I also worked
with other people in the lab to map a domain-specific language to this pro-
gram to demonstrate its flexibility for implementing arbitrary algorithms. I
will dedicate the remainder of this thesis to these works.

5

Chapter 3

Background and Prior Works

3.1 RISC-V Instruction Set Architecture

RISC-V is an open instruction set architecture developed at UC Berkeley
[1]. Contrary to most other proprietary instruction sets, anyone may build
their hardware implementations based on this ISA without seeking licenses
and paying royalties to any parties. This makes RISC-V an ideal platform
for academic research. There have been many open source hardware im-
plementations of RISC-V, including Rocket core and Berkeley Out-of-Order
Machine (BOOM), They are both academic cores developed at UC Berkeley.

The RISC-V ISA has a modular design: the base instruction set only
contains the most basic integer instructions necessary to support a minimal
core (RV32I or RV64I for 32-bit and 64-bit machines, respectively), and de-
signers are free to choose the ISA extensions to implement on top of it [2].
The most commonly implemented extensions include M (multiplication), A
(atomic operation for synchronization), F (single FP), D (double FP), and
C (compressed ISA). An architectural profile containing all these extensions,
RV64GC, is required by most modern application OS that support RISC-V.

The RISC-V International foundation is in charge of the future develop-
ment of the instruction set, and new extensions continue to be added into
the standard for designers to choose from [3]. Some recent examples include
vector (V) extension (which is the focus of this thesis), cryptographic (K),
and bit manipulation (B) extension.

6

3.2 Rocket Core, RoCC Accelerators, and Chip-
yard

Rocket core is one of the earliest open-source RISC-V cores [4]. It has an in-
order pipeline and supports the RV64GC instruction set. The core is written
in Scala/Chisel and comes with a simple SoC generator framework, allowing
users to easily parameterize the design and embed it in an SoC design.

Rocket chip provides an accelerator interface RoCC, and the designer
can specify what instructions the Rocket decode unit should send to the
accelerator for execution. Many accelerators designed in the ADEPT/SLICE
lab use this accelerator interface to receive instructions from the core so that
they can be invoked from regular RISC-V code. Some examples include
Gemmini for matrix multiplication and machine learning [5], and Hwacha
for vector instructions before V-extension [6].

Besides the RoCC interface, they are often connected to the L2 cache
(or the level of cache shared by all cores) to access the memory system
directly without using CPU time. RoCC instructions use the four reserved
opcode slots for custom instructions in RISC-V and follow R-type (register
type) instruction format. This design limits the number of arguments in
a single instruction to two, and it only allows ”macro”-instructions to be
sent, hindering the development of closely coupled accelerators. In the case
of Gemmini, one operation is often broken down into multiple configuration
instructions, taking multiple cycles just to initiate an operation.

Chipyard is an SoC generator framework based on Rocket with more fea-
tures [7]. It provides a clean interface for third-party core integration, more
IP blocks and bus system support, FireSim FPGA-accelerated simulation
flow, and workflow support for ASIC and FPGA. Most projects (including
Saturn-V) in the SLICE lab now use Chipyard as their infrastructure.

3.3 Microcode Machine

Microcode has a very long history as a processor control scheme. Although
it is slower and bigger than hardcoded control units, it o↵ers more flexibility
for hardware design while maintaining ISA compability. Being able to use
software compiled for earlier machines is crucial for a machine’s success,
otherwise it will lose access to the software collection and often the ecosystems
of previous machines and deemed too expensive to switch to by users. This

7

architectures can be seen in IBM System/360 series in 1960s and 1970s,
where every machine in the series has compatible ISA but very di↵erent
hardware realization [8]. Microcode bridges these di↵erences and create a
uniform software interface for them. Besides, a programmable microcode
table allows bug-fixing after product release and helps avoid recalls in some
cases, which can be catastrophic like Intel’s DIV bug [9]. This design is still
used on modern CISC processors (in particular x86) to reduce control and
data path complexity.

3.4 Vector Unit

Vector architecture was first popularized by the Cray-I archtiecture and re-
mained as the mainstream architecture for supercomputers for a long time
[10]. Cray-I has a iconic loveseat-shape for its extensive cooling system, a
modular design that uses only four type of ASIC to build hundreds of logic
boards, and new vector architecture that lowers the length threshold for e�-
cient vector operations over scalar instructions. The machine employs vector
registers instead of performing memory-to-memory vector operation, whose
latency became unacceptable due to the diverging processor and memory
speed. The team also proposed the vector chaining mechanism, which can
be viewed as register bypassing for vector. With chaining, later vector in-
structions can be issued with only intermediate results, while other functional
units (most likely the memory) may still be computing the remaining output
portion of the previous instructions.

Later vector units has more sophiscated design to address memory bot-
tleneck, which is still one of the most important limiting factor for compu-
tation. The T0 vector unit, developed in UC Berkeley in 1990s, is a MIPS-
based vector unit with 8 vector lanes [11]. The vector unit has separated
memory pipeline connected through buses, which allows computations to be
overlapped with memory operations for the next loop iteration. T0 issues
and executes instructions in order. A later RISC-V based vector unit that
predates the vector extension, Hwacha, takes a step further and includes a
runahead unit for memory instructions in the frontend and prefetch the data
once it detects one [6]. Hwacha’s micro-ops expanders (”sequencers”) also
implements some forms of out-of-order execution to further eliminate dead
cycles.

RISC-V vector instructions set takes a di↵erent approach to reduce in-

8

structions and register file complexity. There are only 32 registers with
implementation-defined length, and user may set the vector element width
and vector length to be operated on by setting control registers (CSRs in
RISC-V terminology). These options will change vector instructions’ behav-
iors. At most 8 registers can be grouped together and treated as a single
register by vector instructions. Any trap during vector execution stop it
immediately and save the current element index to a CSR vstart for later
resume. The vector instruction set uses strip-mining programming model:
users execute vector instructions inside a loop, and the loop will ”chop o↵”
a segment of input vectors that has been processed by the current iteration,
whose length is usually the maximum vector length in the current architec-
ture settings. This process continues until we reach the tail, for which we
will execute the same instruction sequence but with a shorter vl. This ar-
chitecture greately reduces the number of instructions due to di↵erent vector
configurations and simplifies the vector register design.

3.5 Saturn-V Core

Saturn-V core is a configurable core targetting control cores for tightly cou-
pled hardware accelerators and DSP applications. Before the implementation
of the vector unit, the core supports RV64GC architecture with an optional B
(Bit-manipulation) extension. The default configuration contains two scalar
datapaths with only one FPU on the first datapath. All data path may issue
scalar memory instructions, but only one of them can be active in a given
cycle. Although the frontend is capable of issuing two instructions per cycle,
any floating point instructions assigned to the second lane will need to stall
until the first lane is cleared so that it can be issued to an FPU. The datapath
is classical 5-stage pipeline design, and we can configure the total number of
lanes as well as the number of FP lanes.

3.6 Systolic Array Accelerator and Einstein
DSL

For operations on 2D data structures, an accelerator based on systolic array
is a more e�cient way to exploit data-level parallelism than 1D vector units.
Such architectures consist of many functional units arranged in 2D matrix.

9

Gemmini is an example of RISC-V-based systolic array accelerators [5]. The
accelerator targets GEMM kernels with simple activation functions and a
convolution unroller so that it can be used in machine learning applications.
It runs as a separated hardware accelerator, and the only control signal con-
nection is RoCC interface despite being connected to the cache system for
data access.

To apply hardware acceleration to more kernel types, the Gemmini group
is developing the Einstein DSL, a Scala-based language that describes an
algorithm running on 2D systolic arrays. The project is still in its early
stages. The target of this project is to generate hardware designs directly
from the algorithms described in the DSL, allowing agile design for systolic
array accelerators.

10

Chapter 4

Parameterizable Microcode
Sequence Expander

4.1 Overview

The microcode expander was originally a part of the vector implementa-
tion, and the early design doesn’t allow reuse for other instructions. As the
first step toward a high-performance RISC-V vector unit, we implemented a
micro-ops unroller for vector instructions on a single scalar datapath so that
they can be expanded and executed over multiple cycles using existing scalar
datapaths. We soon realized that we could exploit this pattern to implement
custom vector operations or even scalar operations that need to be broken
down into multiple steps (like cryptographic/K extension of RISC-V), so we
extracted the unroller core to exposed its interface for other operations.

The expander contains two counters to track the unrolling progress, and
a flag register to indicate whether the expander is busy. During circuit elabo-
ration, the module reads the list of all decoder extensions from its config and
instantiates them inside the expander. The expander operates as follows:

1. The expander sends a new instruction to all of its decoder extensions,
which would indicate whether they recognize the instructions. If none
of them does, the expander outputs the fetch bundle as is and repeat
this step.

2. If any extension recognizes the instruction, the expander will block
the input instruction stream from the frontend. The extension will

11

start generating and outputting a sequence of control signal bundles.
The cycle when new instructions are recognized is called the ”prepare
phase”, and we initialize the pipeline in this step. At the same time, the
outer loop counter is reset to the initial value provided by the extension,
and the inner loop counter is reset to 0. The busy flag is raised.

3. In the loop, we increment the loop counters and stop when they reach
the limit provided by the extension during the prepare phase. We
supply the counter values to the extension, which will generate the
control signal bundle (micro-op) for the operation. The extension may
also branch on the inner loop counter to simulate microcode execution.

The outer loop in this architecture targets di↵erent elements in the array,
and the inner loop should be used as a micro-pc. In a later version, we will
unroll the outer loop and spread them over multiple vector lanes.

4.2 Interface

The UnrollerExtensionIO interface is the standard interface through which
the microcode expander communicates with the decoder module. It can be
inherited to add additional pins (usually for CSR) so that additional signals
can pass through the expander layer into the decoder extensions. The decoder
extension should generate micro-op bundles based on the information from
the expander (counter values, busy flag, etc.), and there is no restriction
on how to implement it. In addition, upon receiving a new instruction,
the decoder module needs to output the starting and ending counter values,
whether the decoder module recognizes the instruction, and whether it is an
illegal instruction.

A Saturn-V micro-op bundle is supplied to decode modules as a template,
and the decoder modules need to augment the bundle with decoded control
signals. The expander will select the bundle from the currently active decoder
module and output it to the vector register file. Both the expander and
decoder modules have knowledge of Saturn data path and control scheme,
therefore

12

Chapter 5

RISC-V Vector Unit

5.1 Overview

RISC-V vector extension contains over a hundred instructions with diverse
functionalities. To handle the complexity, we use the microcode expander
to generate control signals for the scalar pipelines so that we can focus on
functional units and decode logic. We modified the integer and floating point
ALU to support additional operations not required by the scalar instruction
set. We need to integrate a microcode expander equipped with vector ex-
tension, a vector register file, and a scoreboard for data hazard detection to
the data path. We bundle them into a single module so that we can mini-
mize code change to the scalar datapath. Internally, the vector extension is
divided into five submodules to handle di↵erent groups of instructions. The
interface is very similar to the microcode expander level so that users can
add custom vector instructions easily. Below is a diagram of Saturn-V data
path after integrating the vector unit.

5.2 Vector Register File

The vector register file is a simple flip-flop-based register model that is very
ine�cient for synthesis in terms of area. It also has large numbers of read and
write ports, complicating any future conversion to an SRAM-based design to
increase data density and reduce wiring costs. For every vector lane, there are

13

Figure 5.1: High-Level Abstraction of Satun-V Datapath with Vector Unit

three read ports (for FMA) and two write ports (one extra for long-latency
op). Therefore, register banking and scheduling must be implemented before
the conversion. However, this model provides a basic behavior model for the
rest of the vector unit to target, and we will at least have a working model
to refer to when we implement the SRAM register file.

The vector regfile control signals and request bundle are defined in VectorRegfileUOP.
This big bundle can be roughly divided into four parts: read and write re-
quest, mask and permutation operation control signals, immediate generate
controls and hazard checking signals. We will describe each part below.

5.2.1 Register Data Request

The same register data request format is used by both reads and writes, and
it can be divided into two small bundles: VectorRegReq and OperandManip.
The first bundle specifies which vector register and double word to read data.
he second bundle specifies how to extract data from the double word. This
design is useful when we need to extract data from scalar register inputs (in
which case the vector request bundle is invalid but we still want to perform
some data processing and extraction). Some additional bit manipulation

14

instructions in the cryptographic (K) extension need it, such as packing op-
erations that pack the lowest bytes from several registers into one register
[3].

Some vector instructions require one or two operands in some micro-ops
to be replaced by some constants: for example, we need to add 1 (before ALU
pre-shift) to the memory address in the accumulator for vector unit-stride
memory operations. We define a few constants in the vector request bundle
to indicate what special constant we want to use for the operand.

It is not feasible to have the same accumulator-based design as the integer
data path for FP reduction instruction because FPU is multi-cycle. We need
a ”reduction queue” for feedback data from FPU so that it can handle multi-
cycle latency. We also include an extra bit flag in the vector register request
bundle to indicate the use of the FP reduction queue. In the source operand
request, a set reduce bit means the FPU will need to wait for the feedback
data from the queue and then use it to replace the operand. In the destination
writeback request, this bit indicates that we need to put the data into the
reduction queue so that the next operation can take it.

The index in the vector register request is 64-bit aligned, and the register
address in the request bundle may be di↵erent from the address in the in-
struction when LMUL > 1. Similarly, the index in the operand manipulation
bundle is byte-addressed with alignment based on the element width. To
simplify the process of data request generation, we define some functions to
fill in the request fields by shifting the element index from the microcode
expander and breaking them down.

5.2.2 Write request

For long-latency instructions (mostly memory operations), we need a very
compact representation of the register request. The HellaCache interface
used by Saturn-V only allows us to track a memory request by sending an
integer (tag), and we will lose access to the micro-op bundle when the re-
sponse arrives. Therefore, every vector register write port accepts an ”RD
tag” that can be decoded into a complete data request inside the vector reg-
ister file. The vector unit codebase also provides utility functions to generate
and decode a tag from a data request and a function to calculate the tag
width. All long-latency functional units use this tag format to store write-
back requests with their associated data.

15

5.2.3 Mask Register

The default vector mask register, v0 is duplicated in our vector register file
to reduce the number of read ports for instructions with a mask input. Oth-
erwise, a masked vector fused multiply-add will need four read ports (mask,
operand 1-3) per lane. The mask bit is stored in uop mask field inside the
micro-op bundle, although this field has a di↵erent meaning in later stages
(described below). Some instructions use mask inputs other than v0, where
every micro-op reads one bit at a time (in contrast to mask logical operations,
for which we read 64 bits from both input mask registers every cycle). For
these instructions, the vector register file can use one of the input registers
instead of v0 to produce uop mask.

Many vector operations produce mask output. This means for every
element in the input register, we output one mask bit. The mask bit is
stored in uop mask after the execution pipeline stage. Although the vector
register can only overwrite an entire byte at a time, we implemented single-
bit writeback with a 64-bit register bu↵er that provides all unused bits in
the destination double word. In the mask generation mode, the bu↵er will
be filled with the value in the destination register (1) after each write or (2)
at the beginning of the instruction so that the inactive output bit can be
preserved. We produce the writeback double word by substituting the bit
at the writeback location with the incoming bit. This double word will be
written into the flip-flop array as well as the bu↵er.

Some bit operations in the vector extension have mask register output,
but we can generate 64 bits every cycle. The mask logical operations men-
tioned above are such instructions. However, their output values still need to
be masked bit-by-bit if vm is false. To support these operations, the vector
register file can perform bitwise selection (or merge) on the writeback data
and the original value in the destination register element (again, stored in
the 64-bit bu↵er) according to the bit values in v0.

5.2.4 Immediate Generation

The immediate generation logic is located inside the vector register file. The
current version of vector extension only uses the literal value of RS1 field as an
immediate for Input 1. Most of the instructions require the 5-bit immediate
to be sign-extended to SEW, then we will either zero or sign extend the SEW-
bit operand to 64 bits using OperandManip logic. Some instructions in the

16

specification do not sign-extend the 5-bit immediate to SEW, hence we have
an imm unsigned flag in the vector micro-op bundles to mark them.

We also need to generate immedate for vsetvl instructions, which has a
long immediate encoded in the space after the RS1 field in the instruction.

The logic for immediate generation is located in the method create imm gen(),
and users may add their own immediate generation logic by extending the
class and overriding this function.

5.2.5 Hazard checking

Our vector unit has a simple scoreboard-based hazard checking mechanism.
The decoder will set a bitmap sboard check to indicate what vector regis-
ter the instruction intends to read or write during the prepare phase. The
scoreboard entry for a particular register is a counter, whose value indicates
how many issued operations need to write to the register. We will only allow
the prepare micro-ops to proceed if all the scoreboard entries it requests have
the value 0 to avoid RAW and WAW (for long-latency operations) hazard.

The scoreboard entries are incremented when a micro-op is issued into
the pipeline and start reading the vector register. The counter will be decre-
mented at the writeback stage, or if the micro-op is flushed, immediately at
the stage where it becomes invalid.

5.2.6 Permutation Operations in the Register File

The permutation instructions in the vector extension rearrange data in a
vector register. These rearrangements are non-trivial to implement, so we
provide a set of index registers in the vector register file and a narrow index
adder for them. These registers can be used as indices for vector memory
requests or directly outputted into the data path as an operand. Data can be
loaded into these registers from architectural register reads or the index adder
output. The index adder takes inputs from either one of the index registers,
the mask bit from the vector register file, or a value supplied by the decoder.
Besides, we have an index comparator that takes the same input data type as
the index adder, and its output can be used to replace uop mask. All control
signals for these components are defined in the register micro-op bundle. We
implemented all vector permutation instructions using these components, and
users may use them to implement their custom permutation instructions.

17

5.3 ALU and FPU Modification

In RISC-V vector extension, many instructions require special functional
units typically not available in a scalar datapath. This section provides
an overview of the extended ALU and FPU components we added to the
datapath and the changes to accommodate them.

5.3.1 Integer ALU

We used a two-step approach for integer ALU extension. We want to mini-
mize the changes to the Rocket ALU because it is well-tested and too com-
pact to add complex logic. However, some necessary changes can only be
implemented by changing the Rocket ALU directly (like adding more bits
to the adder). We modified the vanilla Rocket ALU (into CustomALU) to
incorporate the following changes:

1. Adder with overflow output (required by add-with-carry family and
fixed-point add, signedness of input needed)

2. Shifter with shift-out bits (for rounding)

3. Optionally, rotation support (used in B-extension only)

We then added additional logic to a module that wraps the Rocket ALU
(ExtendedALU) to implement the following:

1. Fixed point arithmetic for adder and shifter (clipping and rounding).

2. Population count, first-set-bit count, and set-before-first bit operation
(PriorityEncoder(OH), with in3 as the bit mask).

3. Output selection based on a control bit (implemented as a single mux,
controlled by ctrl bit mux which also serves as the output mask).

4. Additional Logic to (1) exchange operands, (2) negate Operand 2 after
exchange, (3) negate output, and (4) shift Operand 2 by at most 3 bits
for address generation.

Vector and bit manipulation extensions have many instructions that share
the same functional unit, so we also implement all bit manipulation instruc-
tions here. However, due to a lack of test cases, we have to disable all logic
used only by the B-extension since they are not verified. Below is a diagram
of the logic.

18

Figure 5.2: Simplified Diagram of Scalar ALU

Accumulator Register and ”Seen 1” Flag

To support reduction and stride memory operations, we have ”accumulator
registers” in the extended ALU. The number of accumulators are config-
urable. They are controlled by two signals: use acc and save acc, both in
AccumulatorReq. When save acc is high, we save the current output of the
ALU and store it into the specified accumulator register. When use acc is
high, Input 1 of the ALU will be replaced by the accumulator value.

To support any bitwise vector instructions that involve the first set bit,
we also have a reg seen 1 flag register to the ALU so that the ALU knows
if it has seen a set bit before. It is often that case that whether the ALU has
seen a set bit will a↵ect the instruction behavior.

All the states in the ALU can be replayed: all subsequent pipeline stage
will keep a copy of the register values before they are changed when the
micro-op is at the execution stage. These values will be recovered to the
ALU if a replay occurs.

19

5.3.2 Integer Multiplier

To support integer fused multiply-add instructions and some fixed-point
multiplication instructions, we also modified the Rocket multiplier used in
Saturn-V, in the same two-step fashion. We built the multiplier by modifying
Rocket’s pipelined multiplier to add the third input port for addition after
multiplication. The same fixed-point round logic as in the integer ALU is
used in the outer module to support fixed-point multiplication instructions.

5.3.3 FPU Enhancement and Reciprocal / Square Root
Lookup Table

Compared to the scalar FPU, the FPU in the vector lane requires a feedback
queue from its output to its inputs. We need it to implement floating point
reduction instructions, where the queued data is used to replace the input
with a set FP reduce flag. See the section for vector register requests for
more details.

This vector unit also contains two floating point lookup tables (FPLUT) to
approximate reciprocal and square roots, since we have two such instructions
in the vector extension. They accept FP data in Hardfloat’s recoded format
in di↵erent lengths. The lookup table is not working when this thesis is
completed, but I will try to fix the problem in a later version.

5.3.4 Common Decode Logic

VectorUnrollerExtension contains the common decode logic for all vector
instructions. It also serves as the interface between individual vector decode
submodule and the expander. It has the following functions:

1. Register overlap checking (some forms of overlaps between source and
destination are not allowed)

2. Register group alignment checking

3. Generation of scoreboard bitmap for hazard checking

20

5.3.5 Decode and Control Logic for Di↵erent Vector
Instructions

Because the number of instructions we need is large, we created five decode
modules for each (self-defined) category of vector instructions:

1. Memory operations

2. Integer arithmetic

3. FP arithmetic

4. Permutation of vector elements and instructions with scalar destination
register

5. vsetvl handling

They are connected to the common decode logic through an extended ver-
sion of the interface between the microcode expander and the vector common
decode logic, augmented with vector-specific information like input register
checking. One may easily define custom vector operations by leveraging
the existing infrastructure. To implement an operation, we just need to
implement another decode module and add it to the list of modules to be
instantiated inside the vector decoder extension.

For vector integer and FP arithmetic instructions, we have a special de-
code table format to compress the number of columns in the table, coated
heavily in syntactic sugar. This is because most instructions only use a very
small subset of all control signal fields, and there are so many control fields
that a plain decode table for them will be impossible to read.

Our decode table is organized as follows: there are three types of decode
table rows, and each row contains a tranformation on the decode bundle,
which is a small bundle that contains the decode table output. This bundle
is initially all zeros. All table row objects check the input instruction to see
if it matches their patterns. If yes, the row object will apply its transforma-
tion onto the decode bundle. ”Region” rows match the instruction’s funct6
against a BitPat, which can be used to match multiple vector instructions
close to each others on the instruction listing in the specification. ”Line”
rows requires exact matches, and they are the only type of rows that will sig-
nal a decode table hit. ”Subline” rows match funct5 field (in the location of

21

rs1 field) beside funct6, and it contains a smaller decode table running sim-
ilar logic to apply transformation. They are most commonly used for unary
instructions, since several unary instructions often share the same funct6
space and are distinguished by their funct5 values. Besides, every decode
table rows will also check the funct3, which encodes the operand type in-
formation, to determine if it is a match since some combinations of operand
types are illegal for some instructions.

Our decode table is organized as follows: there are three types of decode
table rows, and each row contains a transformation on the decode bundle,
which is a small bundle that contains the decode table output. This bundle
is initially all zeros. All table row objects check the input instruction to see
if it matches their patterns. If yes, the row object will apply its transforma-
tion onto the decode bundle. ”Region” rows match the instruction’s funct6
against a BitPat, which can be used to match multiple vector instructions
close to each other on the instruction listing in the specification. ”Line” rows
require exact matches, and they are the only type of rows that will signal a
decode table hit. ”Subline” rows match funct5 field (in the location of rs1
field) beside funct6, and it contains a smaller decode table running similar
logic to apply the transformation. They are most commonly used for unary
instructions since several unary instructions often share the same funct6
space and are distinguished by their funct5 values. Besides, every decode
table row will also check the funct3, which encodes the operand type infor-
mation, to determine if it is a match because some combinations of operand
types are illegal for some instructions.

5.3.6 Vector CSR control

RISC-V vector standard defines a few CSRs. We include a module to handle
any changes to their values and supply their values to the vector decoder. Be-
sides, it also (1) decodes and changes vconfig for vsetvl-family instructions,
(2) changes vl and sends terminate signal to the unroller for vle<eew>ff (so
that the unroller stops issuing instructions without triggering exception), and
(3) handles precise trap and set vstart accordingly.

22

Chapter 6

Custom Microcode Operation
through Einstein DSL

As a part of the CS252A class project, we explored the feasibility of using the
microcode expander to drive complex functional units. One of the potential
use cases is to feed data from a scratchpad memory into a systolic array with
complex access patterns, as Gemmini control unit currently does.

Due to our time constraints, we could not use the vanilla Einstein DSL for
this project since it targets 2D systolic arrays. Instead, we created a modified
DSL version for 1D vectors so that we can more easily map it onto our
vector decode unit. We believed that we could implement custom operations
on the microcode expander and vector unit with minimal overhead, so we
implemented a small SpMV kernel using the simplified DSL to demonstrate
its feasibility.

6.1 Simplified DSL Syntax

The simplified DSL uses the SIMT programming model similar to those used
in OpenCL and CUDA, although the kernels are executed in series for di↵er-
ent elements at this time due to hardware limitations. The language syntax
is similar to Python. We believe that this design can also be used in a future
implementation with multiple vector lanes.

A kernel defined in this DSL describes a series of scalar operations needed
to produce one vector element output. The DSL has a few keywords that
the kernel can use to access the counter indices from the microcode expander

23

to determine what vector elements to read and write, similar to threadIdx
and blockIdx in CUDA. The kernel may also define temporary variables,
which will be mapped to either accumulator registers or vector index registers
depending on their data type. Index registers are shorter registers (with the
maximum value smaller than VLMAX) that can be used as indices to access
vector registers. They are located in the vector register file. The current
implementation does not have any restrictions on control structures (if-else
and loops) in the kernel. Because we only have one vector lane at this time, all
control structures behave the same as their counterparts in software running
on a single hardware thread. In future versions, we will apply masking to
resolve branch and variable-length loop for multi-thread scenarios; this means
we will issue micro-ops for both if and else at all time and mask away
unused branch. A code sample is provided in the following section.

The simplified DSL uses the SIMT programming model similar to those
used in OpenCL and CUDA, although the kernels are executed in series for
di↵erent elements at this time due to hardware limitations. The language
syntax is similar to Python. We believe that we can also use this design in a
future implementation with multiple vector lanes.

A kernel defined in this DSL describes a series of scalar operations needed
to produce one vector element output. The DSL has a few keywords that
the kernel can use to access the counter indices from the microcode expander
to determine what vector elements to read and write, similar to threadIdx
and blockIdx in CUDA. The kernel may also define temporary variables,
which will be mapped to either accumulator registers or vector index registers
depending on their data type. Index registers are shorter registers (with the
maximum value smaller than VLMAX) that can be used as indices to access
vector registers. They are located in the vector register file. The current
implementation does not have any restrictions regarding control structures
(if-else and loops) in the kernel. Because we only have one vector lane at
this time, all control structures behave the same as their counterparts in
software running on a single hardware thread. In future versions, we will use
instruction masking to resolve branch and variable-length loops for multi-
thread scenarios; this means we will issue micro-ops for both if and else at
all times and mask away unused branches. A code sample is provided in the
following section.

24

Figure 6.1: SpMV Complied Microcode Table

6.2 SpMV Algorithm

We implemented the standard SpMV algorithm with the DSL, then compiled
them into a microcode table. We allow arbitrary microcode branching, so
there is no limit on how much time we will spend on one output element.
It’s the programmer’s responsibility to write microcode free of infinite loops.

The custom instruction that invokes the algorithm treats the two input
vector registers as two-field structures in the same way as vector segmented
memory operations do. The register group (as defined by the current vector
configuration) following the one specified by the instruction operand field will
also be an input vector. We arrange the parameter fields so that no micro-op
needs to take two inputs from the same input register (group). This design
limits the input matrix length and width to (MAXVL - 1) and the number of
nonzeros to MAXVL so that all data can be loaded into the register file.

Because we only have limited time for this project, we couldn’t build a
fully automated build flow from DSL to RTL. The hardware decoder module
was manually implemented while referring to the generated microcode table
because we had to resolve structural hazards and optimize the microcode. We
also needed to manually determine what to include in the decoder output
bundle. We hope that a future compilation flow can recognize hardware
structural hazards and minimize the decode bundle size when generating
decode table entries similar to those described in 5.3.5.

6.3 Hardware Modification

When we implemented the SpMV algorithm, we had to add some hardware
structures to Saturn-V to support it. For most algorithms that don’t need
specialized functional units, the only hardware overhead is the custom en-
code table and additional accumulator and index registers (configurable to

25

Figure 6.2: SpMV DSL Source

minimize waste). All other hardware components are needed by the standard
vector extension. We have to change the RTL architecture to expose more
control signals in the vector register file for customization, but these changes
also simplified our vector extension. Since they are not on the critical path
of our current implementation, we believe that the RTL changes for our DSL
implementation do not incur high hardware costs.

26

Chapter 7

Implementation and Result

The implementation is done on the vanilla version of Saturn-V core. We use
the Chipyard SoC generator [7] framework as our infrastructure to reduce
debug time and shorten our feedback cycle. To reduce the implementation
complexity, we used only one data path to unroll vector instruction while
blocking all other lanes if the microcode expander is busy. We modified the
scalar data path to insert our vector unit and implement additional oper-
ations required by the vector ISA. All works are done in Chisel, and they
will be released with a free and open-source license along with the rest of
Saturn-V project in the future.

7.1 Assembly Tests Functionality

When we finished this vector unit, the RISC-V vector extension standard had
only been ratified for six months. Given the relatively short time since the
ratification, there were no assembly test suites accessible to us that provide
su�cient coverage for such a big instruction set. Therefore, we decided to
use an incomplete test suite provided by the RISC-V International Open-
Source lab in China, which is still under development, so that we could at
least partially verify the functionality of our vector unit. We also worked
with the team and provided feedback and bug reports to improve the test
suite. Please note that by the time I finish this thesis, the following cases
have not been covered by the test suite:

1. Long vl and EMUL 6= 1: the vector test cases we used are designed in
the same way as scalar tests and focus on the correctness of element-

27

wise operation. Except for a few instructions where we need multiple
elements to check correctness, all test cases hard EMUL 6= 1. vsetvl
also had no tests to check its corner cases.

2. Masked instructions are not covered except for a few where masks are
required to check correctness (like vadc which uses masks as an ALU
input).

3. Cases with vector register overlapping and alignment (when LMUL >

1 and for vlxseg) were not checked.

4. Nonzero vstart values, which means we need to resume operations
after an interrupt when executing a vector instruction, are not checked.

5. Tests for instructions that depend on VLMAX are not correctly imple-
mented due to a design flaw (not detecting VLMAX).

Some of the problems (like masked instructions and long vl cases) were
partially covered by the benchmark tests. Also, vector FP reciprocal and
square-root reciprocal estimation operations along with the fixed point round-
ing instructions were not working when I finished this thesis due to limited
time. I will continue to try to fix these bugs if possible.

7.2 Benchmark Result

FLOP/S (floating point operations per second) is the most important metric
for the performance of a vector unit. Although not all vector instructions
specified in the ISA are working now, we are still able to run a few bench-
mark tests that give us some insights into its performance. We select three
benchmark tests to run so that we can compare our design against scalar
code: DGEMM (matrix size 43), DGEMV (row size 50, column size 100),
and conv2d-depthwise (4 channels, 3x3 filter, 56x56 output). These kernels
represent the operations with di↵erent computational densities and access
patterns.

7.2.1 Analysis

Because our current architecture only uses one datapath for vector opera-
tion, there is no real parallelism in the vector unit. We expected that the

28

Table 7.1: Benchmark Performance
mcycle minstret FLOP/cycle

vec-dgemm 136436 124859 1.17
vec-dgemv 36257 20627 0.27

vec-conv2d-depth 816940 658829 0.28
dgemm 274326 273721 0.58
dgemv 45913 30528 0.22

conv2d-depth 1497828 1264443 0.15

performance of these benchmarks to be similar to their scalar version. How-
ever, it turns out that the vector performance has around 100% improvement
over the scalar version, and in some cases, vector code has significantly denser
floating point operations. Since the scalar kernels we use are not exact trans-
lations from their vector versions, we may have suboptimal scalar code that
causes the ”performance improvement”. However, it is equally likely that
the vector unit does eliminate the dead cycles caused by data and control
hazards by unrolling loops more aggresively.

7.3 Preliminary Synthesis Result

We synthesized the Saturn-V core with the vector unit using Hammer VLSI
toolchain [12], which itself is a part of the Chipyard SoC framework. The
target technology is ASAP7, and our frequency goal is 1GHz. The frequency
goal hasn’t been met, and the current critical path has 1533ns latency. Most
delays are due to the long logical paths in the ALU and can be reduced by
rearranging ALU components. Below is a table of all major modules and
their areas when we have the following configuration: 2-issue, 64 bits, 1 FPU
lane, RV64GCV with 256 bits vector length, and custom DSL support.

The vector register file is a flip-flop-based design and is not practical for
place-and-route. In the current post-synthesis design, the vector register file
occupies 1/3 of the total area.

Besides replacing flip-flops with SRAM, we can also optimize the area by
changing the current decode table organization by allowing unused decode
bundle fields to be any values instead of 0.

29

Table 7.2: Selected Post-Synthesis Area for Vector Unit (area in µ
2)

Instance Cells Cell Area Net Area Total Area
core 174246 331929 149596 481525
-vector unit 59530 119647 48166 167813
–regfile 44830 101741 41337 143078
–unroller 10354 11986 4109 16095
—VectorUnrollerExtension 8836 9233 3390 12623
—-VecDecPermutationModule 1334 1507 612 2119
—-VecDecIntegerModule 1199 1427 558 1985
—-VecDecFPModule 1163 1433 535 1968
—-VecDecMemoryModule 941 976 321 1297
—-VecDecVSETVLModule 508 419 22 441
–vsboard 3501 5324 2599 7923
-alu 5231 7562 4233 11795
–scalarALU 2174 2895 1636 4531

7.4 DSL Synthesis and Performance Result

We ran synthesis and some benchmark tests for the DSL implementation.
The synthesis results and benchmark performance data are listed below. The
custom decoder module is not on the critical path. Most of the area increase
is due to the additional index and accumulator registers. The performance
of DSL implementation is worse than their scalar code, mostly because the
DSL algorithm must load the entire 4x16 double word memory region into
the vector registers even if some of them are not used. We can observe this
from the constant latency for di↵erent input sizes. We believe that setting
vl before loading every field could eliminate the extra memory access and
bring the total latency down and closer to the scalar version.

Partition Area (um2)
Decoder 850
Saturn-V Core 492072
Saturn-V Core (original) 481525

Table 7.3: Area Breakdown

30

Matrix
Size/Input
Non-Zeros

uOp Ex-
pander (cy-
cles)

Scalar
(cy-
cles)

12x12/15 nnz 2156 948
14x14/10 nnz 2229 902
12x4/7 nnz 2107 739
5x13/11 nnz 2216 593

Table 7.4: Custom vs Scalar Performance Comparison

31

Chapter 8

Future Work

Saturn-V is an ongoing project, and LEM is only a prototype now. It can
be used as an RTL model for vector units at this time, but it can do more if
we keep working on it.

Vector Unit with Multiple Lane and Compact Register File The
vector unit can only issue microcode bundles to a single datapath to simplify
initial implementation, but a vector unit, by design, should exploit data-level
parallelism and allows multiple micro-ops to be issued at the same time.
The easiest way to do this is to add multiple ports to the expander and the
vector register file, duplicating the entire micro-op bundle except for register
requests, since di↵erent vector lanes should work on di↵erent data streams.

As mentioned in previous sections, the vector register file is extremely
large and occupies almost half of the entire core area. To build a synthesizable
vector unit for ASIC, we must replace flip-flops with SRAM and implement
scheduling logic to address the extra latency and structural hazards.

Systolic Array and Complex Functional Unit Control The LEM
microcode expander can be used to issue control signal sequences to complex
functional units. This is particularly useful for systolic arrays since the LEM
expander is designed to handle parallel data streams. By augmenting the
Einstein DSL microcode compiler, we should be able to describe a systolic
array with custom interconnects for non-GEMM 2D algorithms and utilize
the LEM infrastructure to control the sequence generation, as we have shown
in the vector DSL implementation.

32

Implementing Other RISC-V Extension Currently, only the vector
extension is implemented on LEM. Although the functional units for bit-
manipulation extension are already in place, the decoder unit is not, and the
arithmetic logic is not tested. Implementing a fully-functional bit manipula-
tion unit would not take long.

Also, although not yet vectorized, the cryptographic extension has a lot
of instructions that can be divided into multiple steps. We should be able to
build a very small cryptographic accelerator by reusing LEM infrastructure.
Even if we can build a faster accelerator with a compact, decoupled design,
the LEM-based cryptographic implementation can still serve as a reference
model and help verifying the compact unit.

33

Chapter 9

Conclusion

There is no more free lunch after the end of Moore’s Law. We can no longer
scale up the frequency and numbers of transistors for the same architecture
and expect to get as much performance improvement as we did in the past.
We have to explore new hardware architectures, particularly for algorithm
acceleration and parallel hardware. The Saturn-V core and LEM microcode
expander is the first step for a RISC-V vector unit and also for closely coupled
hardware accelerators. Although it is only a functional model now, LEM still
proves the capability and flexibility of the microcode expander architecture
as a building block for accelerators and vector units.

34

Chapter 10

Acknowledgement

The Saturn-V project is led by Prof. Krste Asanovic, who is my advisor and
gave me a lot of advice on architecture design for this project. Jerry Zhao,
Albert Ou, and Daniel Grubb work on RTL and vector kernel design, and
they provided feedback for the design and helped me integrate the vector unit
into Saturn-V. Max Banister and Charles Hong worked with me to explore
OS support for heterogeneous cores (since Saturn-V SoC will be a multi-core
heterogeneous system), which influenced some of my design decisions for the
vector unit.

Prashanth Ganesh and Hasan Genc, both advised by Prof. Sophia Shao,
worked on the Einstein DSL project and helped me map the language onto
LEM. Prof. John Wawrzynek was teaching the CS 252A class where we devel-
oped the DSL mapping project, and he also gave us feedback and comments
on the direction of our project.

Shenwei Hu and other members in the RIOS lab provided an assembly test
suite for this project, which was extremely helpful and significantly shortened
the time to test the vector unit.

35

Bibliography

[1] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[2] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v
instruction set manual, volume i: Base user-level isa,” EECS Depart-
ment, UC Berkeley, Tech. Rep. UCB/EECS-2011-62, vol. 116, 2011.

[3] Specification - risc-v international, https://riscv.org/technical/
specifications/, Accessed: 2022-05-16.

[4] K. Asanović, R. Avizienis, J. Bachrach, et al., “The rocket chip genera-
tor,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17, 2016. [Online]. Available: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[5] H. Genc, A. Haj-Ali, V. Iyer, et al., “Gemmini: An agile systolic ar-
ray generator enabling systematic evaluations of deep-learning archi-
tectures,” arXiv preprint arXiv:1911.09925, vol. 3, p. 25, 2019.

[6] Y. Lee, “Decoupled vector-fetch architecture with a scalarizing com-
piler,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, 2016. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-117.html.

[7] A. Amid, D. Biancolin, A. Gonzalez, et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020, issn: 1937-4143. doi:
10.1109/MM.2020.2996616.

[8] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the
ibm system/360,” IBM Journal of Research and Development, vol. 8,
no. 2, pp. 87–101, 1964.

36

[9] D. Price, “Pentium fdiv flaw-lessons learned,” IEEE Micro, vol. 15,
no. 2, pp. 86–88, 1995.

[10] R. M. Russell, “The cray-1 computer system,” Communications of the
ACM, vol. 21, no. 1, pp. 63–72, 1978.

[11] K. Asanovic, Vector microprocessors. University of California, Berkeley,
1998.

[12] E. Wang, “Hammer: A platform for agile physical design,” M.S. thesis,
EECS Department, University of California, Berkeley, 2020. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/
EECS-2020-28.html.

37

