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Abstract

Environment Reconstruction from an Aerial Perspective with RGB-D and Fisheye Cameras

by

Ritika Shrivastava

Masters of Electrical Engineering and Computer Science in Electrical Engineering and
Computer Science

University of California, Berkeley

Professor Sastry, Chair

Drones are becoming increasingly prevalent due to their a↵ordability, agility, and size. With
this increased usage it is important to account navigability in a variety of terrains. This
required detailed understanding of the environment. Most 3D environment reconstruction
techniques use LiDAR or RGB-D cameras. However, LiDAR is too expensive and heavy
for drones and RGB-D cameras have limited a field of view. To improve upon this we
worked on a hardware design with a fisheye camera and RGB-D camera for 3D environment
construction. This paper also explores improvements to SLAM module results through
trajectory alignment. The use of least-squares estimations of transformation parameters
given two points is shown it improve the rotational and translation error.
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Chapter 1

Introduction

There is a boom in drone usage today due to their use cases in remote sensing, surveil-
lance, film, disaster relief, and delivery. There are several applications for drones in outdoor
and indoor environments. This is attributed to their a↵ordability, size, and agility. Dur-
ing aerial navigation, drones are expected to be robust and accurately navigate in variable
environments which makes safety become an important question and requires knowledge of
the environment such as the locations of navigable spaces. This coupled with the ability for
drones to reach and view objects from several locations that are hard to reach for humans
makes them useful for recreating an objects and environments that might not have been easy
to recreate otherwise. Environment reconstructions with drones have a multitude of use cases
which include and are not limited to autonomous navigation and obstacle detection.

There are several sensors that assist with environment reconstruction. Some are active
range sensors, which includes LiDAR and radars, that are commonly used by industry for
obstacle avoidance. However, these tools can often be fail size and weight constrains needed
to be placed on small aerial robot. Additionally, the current cost of these sensors ranges
on the higher end. Other sensors that are useful for environment reconstruction include
cameras. These adopt a vision-based approach and are optimal for drones due to their
size, weight, and cost. The development of cheap RGB-D cameras in the consumer market
has made it is possible to retrieve the 3D of the scene without extra computational cost.
However, these cameras often have narrow field of view (FoV) which can limit the safety of
motions in all directions. Fisheye cameras and other omnidirectional cameras can improve
on this limitation by providing a larger FoV. This allows for understanding of a larger scene
to recreate a scene which leads to fewer frames needed for a scene. However, fisheye cameras
require more complex models than conventional camera models due to their extremely wide
FoV and the distortion of the images. Figure 1.1 and Figure 1.2 visualize the Pinhole and
Fisheye camera model.

Our work combined the use of RGB-D cameras with a fisheye camera to increase the FoV
of the system. We build a mount that could be attached to a drone which has the ability to
hold 2 ZED2 cameras and a fisheye camera. For the purposed of our work, we planned to
use 2 ZED cameras, however due to hardware restrictions we tested out set-up on 1 ZED2
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Figure 1.1: Pinhole Camera model

Figure 1.2: Fisheye Camera model

camera and fisheye camera. Despite the di↵erence in FoV for both devices the sections of
the images that are shared are valuable. The mount can be seen in Figure 1.3, Figure 1.4,
and Figure 1.5.

Additional Work

In addition to the project on Drone-based environment reconstruction with a novel set-up,
I also assisted Saxena et al. with their experiments [19]. I have included my contributions
here.
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Figure 1.3: Camera System view 1 Figure 1.4: Camera System view 2

Figure 1.5: Camera System view 3
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Chapter 2

Related Works

This project has three main areas of work it is related to. The first area is a development
of a hybrid camera system with a RGB-D camera and fisheye camera. The second area
is structure from motion (SfM) with a fisheye camera on a drone. Lastly, this work is
also related to other works which has placed RGB-D cameras on drones for the purpose of
environment reconstruction.

Perez-Yus et al. [15] developed a system with a RGB-D camera and a fisheye camera. In
their paper, they talked about how their novel setup allows them to take take the advantage
of the 3D information and scale of the scene obtained from the RGB-D camera and wide
field of view to capture a larger area of the scene from the fisheye camera. They stated that
this setup has use cases in navigation, SLAM and object detection. This paper explored
setting up a combined fisheye and depth camera system and showed that there area benefits
to a combined fisheye and depth camera setup.

They expanded on this work with a paper on peripheral depth expansion [16]. This work
used the camera setup from the prior work [15] to create an environment reconstruction.
From their setup they were able to obtain the depth information for the central field of view
of the fisheye camera. Then they identified lines and corners of the room from the fisheye
camera. The depth camera was then used to assign probabilities to the existence of the
corners detected by the fisheye. Once the corners and lines were validated it was possible to
create a recreation of a given room. The results from this paper were good, however they
could not be used in all situations. Work by Boutteau et al. also take a similar approach
and recreates environments by identifying lines in the fisheye camera’s view [3].

While these papers have good results there is one major flaw. These papers mention
that their work could only be applied to rooms and scenes which uphold the Manhattan
assumption [4]. This assumption states that a given scene is built on a Cartesian grid and
is therefore proven to hold true for city and indoor scenes. However, a drone can be flying
is several environments (indoor and outdoor) and the Manhattan assumption would be too
limiting for this use case. Therefore instead of taking the approach of detecting line in the
fisheye to do environment reconstruction, we decided to take the approach of structure from
motion on the fisheye cameras.
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Another area of related work is using a fisheye camera to perform structure from motion.
Gao et al. presented a work with a dual-fisheye setup on a drone with one fisheye camera
pointing upwards (towards the sky) and one pointing down (to the ground) with the purpose
of autonomous drone navigation and environment reconstruction [6]. They were able to show
that with their system could achieve omnidirectional visual perception in real-time. Their
program worked in a variety of environments including texture-less environments without
prior knowledge. One drawback of this work was that in several scenarios the exposure of the
upward-facing and downward-facing did not match, with the upward facing fisheye visual
field having a higher intensity of than the downward-facing camera. For stereo matching it
is essential that brightness of the visual scenes be similar. For our project, we understood
that in a drone (outdoor) scenario most important features are going to be facing downward.
For this reason, our approach moved away for a dual-fisheye drone system and focused on a
hybrid camera system that would be pointing downward from the drone.

Additionally, Jagannatha et al. explored the usage of the ZED2 camera for environment
reconstruction on drones [9]. Their work mounted a ZED2 camera streamed the RGB, Depth,
IMU, and clock data over Wifi to a device that developed a 3D reconstruction with the ZED
SDK and the OpenARK library. This work showed that it was possible to use a RGB-D,
specifically ZED 2, camera on a drone for the purpose of 3D reconstruction.
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Chapter 3

Hardware Setup

3.1 Problem Setup

For the purposes of our goals, we decided to have a novel camera setup. Our hybrid camera
system was created by rigidly coupling a fisheye camera and 2 ZED2 cameras. This can be
seen in Figure 1.3, Figure 1.4, and Figure 1.5. The di↵erence in field of view between the two
types of camera is large and can be seen in Figure 3.1 and Figure 3.2. The field of view of
the ZED2 camera can be too small for some purposes and applications, especially on drones.
To solve this problem, fisheye camera can provide for a larger field of view. There are several
papers that discuss the benefits of omnidirectional cameras in the robotics and computer
vision space [1] [17]. Additionally, despite their smaller field of view, RGB-D cameras allow
for a deeper understanding of the surrounding, with the availability of depth information.
This can allow for obstacle detection and environment reconstruction.

In this project, we focused on environment reconstruction on a drone. We tested out two
types of fisheye cameras: 160�FoV and 200�FoV and opted for the 200�camera for our work.

The ZED 2 camera is an RGB-D stereo vision camera that is created by StereoLabs.
This camera has a dedicated API developed by the company that allows for users to obtain
depth maps and optometry data from the cameras. Due to a hardware failure, we were only

Figure 3.1: View from fisheye Camera Figure 3.2: View from ZED2 Camera
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able to test our implementation on one ZED2 camera. However, this would should be easy
to expand to two cameras.

3.2 Designing the Mount

The mount for our project underwent several iterations before reaching the final model.
There are a few main goals for the mount. These are: (1) fisheye camera and ZED cameras’
field of views should overlap, (2) Jetson Nano should be placed on the mount, and (3) mount
should be robust to forces encountered by flight.

The original mount design can be seen in Figure 3.3, 3.4, and 3.5. This design was a
flat 3D printed mounts with a few holes for screwing in the ZED and fisheye cameras. This
design was a simple print that allowed for mounting of the fisheye and ZED2 cameras. After
this mount design it was discovered that the feild of view of the fisheye and the ZED had
very little overlap. This was because despite the fisheye having 200� field of view, it was only
able to see up to 180�. This was because the mount was blocking the rest. Figure 3.6 shows
this. The grey region in this image show the area of the fisheye camera which is blocked by
the fisheye camera and the mount. If we continued with this design it would results in a
small region of overlap between the view of the fisheye and the ZED.

To solve this problem, we created a second mount design. This mount solved the fisheye
field of view problem in two ways: (1) it raised the fisheye camera to be placed higher and
(2) angling the ZED. This solves the problem by lifting the fisheye cameras so that the FOV
was not blocked by the mount or ZED camera and angling the ZED cameras so that there
is a larger overlap in the FOV of the ZED and fisheye cameras. This can be seen in Figure
3.8. The labels locations of the fisheye and ZED camera can be seen in Figure 3.9. While
this mount solved the previous problems in the mount, one additional problem faced was
that the Jetson Nano was hanging o↵ the edge of the mount. This would not be helpful in
a real drone flight. Additionally, the elevated support mount for the fisheye camera broke.

Our third design solved the problems in the second mount by shifting the fisheye camera
back, such that the Jetson Nano could be positioned near the center of the mount. We also
added supports around the elevated platform for the fisheye camera. This would prevent the
fisheye camera’s elevated platform from breaking. These changes can be seen in Figure 3.10,
Figure 3.11, and Figure 3.12. The performance of this mount was good, There was only one
change to be made: the ZED camera needed to be angled more. The issue with this mount
was that the region of view for the ZED and fisheye camera has a small region of overlap
and the region of overlap on the fisheye has a high rate of distortion.

Our last and final mount design achieved all the desired goals. This mount improved on
the previous design by angling the ZED at a 45 degree angle from horizontal. This increased
the FOV overlap between the ZED and fisheye camera. The mount can be seen in Figure
3.13, Figure 3.14, and Figure 3.15.
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Figure 3.3: Aerial view of mount 1

Figure 3.4: Side view of mount 1

Figure 3.5: Labeled Aerial view of mount 1

Figure 3.6: Fisheye Camera’s FOV
is obscured by ZED. The grey re-
gion shows the region from the fish-
eye camera’s FOV that is covered by
the back of the ZED.
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Figure 3.7: Aerial view of mount 2

Figure 3.8: Side view of mount 2

Figure 3.9: Labeled Aerial view of mount 1

3.3 Calibration

ZED2 Camera Calibration

The calibration and distortion matrix for the ZED camera was provided by StereoLabs. This
was used in conjunction with functions from OpenCV to calibrate the ZED2 camera.

Fisheye Camera Calibration

For a majority of the project, the IMX219-200 was used as the primary fisheye camera on
the mount. This camera has 200� degrees of freedom along the diagonal and has a resolution
of 3280 x 2464. The distortion of this camera is less than 11% [8].
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Figure 3.10: Aerial view of mount 3

Figure 3.11: Side view of mount 3

Figure 3.12: Labeled Aerial view of mount 3

When calibrating the camera there were several parameters that needed to be tested.
In specific, when using the OpenCV API for calibrating the fisheye, the flag used in the
calibrate function altered the results of the fisheye calibration [5]. The various possible flags
were:

• CALIB USE INTRINSIC GUESS : sets the valid initial values for the camera
calibration matrix (fx, fy, cx, cy).

• CALIB RECOMPUTE EXTRINSIC : recomputes the extrinsic after each itera-
tion of intrinsic optimization.

• CALIB CHECK COND : checks the validity of condition number.
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Figure 3.13: Aerial view of mount 4

Figure 3.14: Side view of mount 4

Figure 3.15: Labeled Aerial view of mount 4

• CALIB FIX SKEW : sets and keeps the skew coe�cient (↵) at zero

• CALIB FIX K1 : sets and keeps the first distortion coe�cient at zero

• CALIB FIX K2 : sets and keeps the second distortion coe�cient at zero

• CALIB FIX K3 : sets and keeps the third distortion coe�cient at zero

• CALIB FIX K4 : sets and keeps the fourth distortion coe�cient at zero

• CALIB FIX PRINCIPAL POINT : The principal point is not changed during the
global optimization.

To test the performance of the various calibration schemes, we used the average of the
sum of the distance between the true location of the point and the projection of that point
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Flags Error
RECOMPUTE EXTRINSIC + FIX SKEW 438901.94

RECOMPUTE EXTRINSIC + FIX SKEW + FIX K4 35.77
RECOMPUTE EXTRINSIC + FIX SKEW + FIX K3 7.43

RECOMPUTE EXTRINSIC + FIX SKEW + FIX K3 + FIX K4 79.91
RECOMPUTE EXTRINSIC + FIX SKEW + FIX K2 4.00
RECOMPUTE EXTRINSIC + FIX SKEW + FIX K1 37.65

Table 3.1: Fisheye camera calibration flags and corresponding errors

using the calculated calibration (K) and (D) matrix. The equation can be written as

error =
⌃n

i=0

p
(xi � x̃i)2

n

where n is the number of points in the image used for calibration. xi is the location of the
point in pixel coordinates for the original image. x̃i is the calculated location for the new
point.

The flags that were tested and resulting the the corresponding errors can be seen in
Table 3.1. Calibration was done with points acquired through camera calibration matrix 9x6.
From the results above it can be seen that the best flags were RECOMPUTE EXTRINSIC
+ FIX SKEW + FIX K2. This was what was used for camera calibration. The original
fisheye image in grayscale can be seen in Figure 3.16. The results for calibration are seen in
Figure 3.17. A noticeable e↵ect of the calibration is that the region of interest in the image
has shrunk. However, this is not a problem as long as the region of interest is overlapping
with the ZED camera. The FoV can be increased by adjusting the balance in the calibration.
That remain as a potential future exploration.

At the end, undistorting the fisheye camera has an error rate for distorting points around
the edge of the image. This average di↵erence between points and their undistored equivalent
has an error is around 1.48 pixels in the x axis and 0.45 pixels in the y axis.

Fisheye to ZED2 Calibration

The calibration between fisheye and ZED2 camera calibration involved holding a camera
calibration matrix that could be seen in both images, as seen in Figure 3.1 and Figure 3.2.
Both cameras were calibrated, then the 8-point algorithm was used calculate the fundamental
matrix. We also know that F = K�TEK�1, where K is the camera intrinsic matrix and E
is the essential matrix. Knowing the essential matrix E allows for the calculation of Rzed2fish

and tzed2fish.
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Figure 3.16: Distorted fisheye camera im-
age

Figure 3.17: Undistorted fisheye camera
image

3.4 Frame Synchronization

While working on this project it was important that the frames of the fisheye camera and
odometer information from the two ZED cameras were synchronous. This would mean that
each Rzed and tzed was associated to a frame from the fisheye. To do this, we utilized pynput,
time, and pythons sub-process libraries. We began by launching a di↵erent sub-processes
per camera and in our case: 1 python sub-process controlling the fisheye camera, and 2
separate python sub-processes each controlling one of the ZED2 Stereo cameras. These
sub-processes launch separate python scripts that handle any camera initialization for there
specific cameras and allow us to stream data from all 3 cameras at the same time.

After a sub-process has been started for each camera, we will begin to see the live-
streamed data from each camera using each cameras respective libraries(OpenCV or PyZed).
Each script is waiting for a cue from the main launcher script before it actually begins to
save relevant data. In this case, we used pynput as the cue and waited for the keyboard to
click ”s”. This click is monitored using a pynput keyboard listener by each of the launched
scripts as the cue to actually begin saving relevant data. In the case of the ZED 2 cameras
this means starting to fused point cloud information, and in the case of the fisheye camera
this mean to save image data.

To synchronize reading the point cloud info from the ZED2 and the image data from
the fisheye we use the time library to synchronize data capture times between the cameras.
Specifically, we allow use the time library to synch a sensor read once per second after the
main queue. Once the top of the second is reached, we read our sensor data, then wait until
the next second to read the next set of data. Through this synchronization method we are
able to ensure that relevant data is fully read within 100ms of each other. We use ”s” again
to stop the program. Finally, we save all data at the end of the program when the keyboard
click presses ”q” again using pynput to synchronize the ending of our recording. We save
the point cloud information as .ply file and the fisheye image data as a .png file. In addition,
we save the relevant R and T of the ZED cameras in a JSON file.
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3.5 Conclusion

With the hardware setup mentioned in this section, we were able to begin to develop the
software for 3D environment reconstruction.
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Chapter 4

Software Setup

4.1 System Design

Our system consisted of 2 parts: (1) data capture and (2) o✏ine 3D reconstruction. Our
three sensors capture and store relevant information on the Jetson and we perform 3D
reconstruction o✏ine. The overall system can be seen in Figure 4.1.

Data Capture

We used two Sterolabs ZED 2 Stereo RGB-D sensors and a IMX219-200 fisheye camera.
For the ZED2 cameras, for every frame we captured the output point cloud and Intertial
Measurement Unit (IMU) data. From the fisheye camera, we captured the RGB image at
every frame. We collected 960 × 540 images and point clouds at 1 frame per second which
o↵ered a good streaming quality and allowed us to save the point cloud data at each frame.

Figure 4.1: Software System Overview
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To capture images from similar time frames on the fisheye and two ZED cameras, we
used the python tools for multiprocessing and insured that there was a separate pipeline
for each camera. Each camera script waits for a cue from main coordinate script before
collecting data. Through this pipeline we were able to ensure that frame between cameras
occur withing 500 ms.

Once a flight was completed all the data is saved locally. This is transferred o✏ine for
post-processing.

3D Environment Reconstruction

The script for 3D Environment Reconstruction can be explained in three components:

1. Structure from motion (SfM) on the fisheye camera

2. Point cloud generation on the ZED

3. Combination of the fisheye-generated point cloud and ZED-generated point cloud

Structure from motion on fisheye camera

To better understand structure from motion (sfm) , we can look to the break down of the
concept. The ”structure” in can be assumed to be the 3D point cloud of a given scene and
the ”motion” is the camera location and orientation. The problem of sfm is around getting
a point cloud from moving cameras.

For our use case of structure from motion (SfM), we began with a scenario with two image
I0 and I1 from fisheye cameras, where I0 is the base image and is where the world reference
frame will be set to. This two-view reconstruction with will begin with generating keypoints
using the Oriented FAST and Rotated BRIEF (ORB)[18] for both I0 and I1. This feature
detector was selected due to its rotation invariance, noise resistance, and speed. These three
attributes were essential to optimize for the use case of environment reconstruction on the
drone, where rotations a camera’s field of view are common. With this we were able to
generate features for both images f0 and f1 which have the dimensions of Nx32 where N is
the number of features generated (N = 500 by default) and 32 is number of descriptors used
to denote each feature by ORB.

The next step is to match the generated features. To do this the brute force feature
matcher is used with the norm hamming flag. This means that when f0 and f1 are passed
into the the matcher, the output is points pairs which are sorted according to their humming
distance in ascending order. This means the i+1 feature pair has a larger humming distance
than the ith pair.

Typically after this, the 8-point algorithm can be used to calculate the fundamental
matrix. We also know that F = K�TEK�1, where K is the camera intrinsic matrix and
E is the essential matrix. Knowing the essential matrix E allows for the calculation of the
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rotation and translation between I0 and I1, since we know that E = t̂R where t̂ is the
skew-symmetric matrix of the elements of t.

However, for our purposes, rather than using the approach from the previous paragraph
we used the odometer information provided by the ZED2 camera. We can use the rota-
tion and translation provided by the ZED to calculate the transformation between di↵erent
frames. This can be done with,

Rfish = Rzed2fish ⇥Rzed

tfish = tzed2fish + (Rfish ⇥ tzed)

where Rzed2fish and tzed2fish are known from calibration between the fisheye and ZED camera.
This calibration involved holding a camera calibration matrix that could be seen in both
images, as seen in Figure 3.1 and Figure 3.2. Then the 8-point algorithm was used calculate
the fundamental matrix. We also know that F = K�TEK�1, where K is the camera
intrinsic matrix and E is the essential matrix. Knowing the essential matrix E allows for
the calculation of Rzed2fish and tzed2fish. Additional information from the equation above
include Rzed and tzed, which are the rotation and translation obtained by the ZED camera
visual odometer.

Once the rotation and translation were calculated, it was possible to triangulate the point
in 3D space. This was used to create 3D reconstructions using the fisheye camera.

Point Cloud Generation on the ZED2 Camera

To generate the point cloud we utilized PyZed’s Spatial Mapping Parameters as well as the
fused point cloud class. Spatial Mapping uses the camera position data to overlap generated
point clouds to create one full point cloud. We capture the spatial mapping data once per
second using request spatial map function. Once we finish capturing the Spatial Map we
can call extract whole spatial map and then save it as a fused point cloud .ply file. The
Fused Point Cloud Class allows us to save this spatial map as a point cloud file.

For setting the Spatial Mapping Parameters we first set the map type to a fused point
cloud. We have to set the save texture parameter to true so that we save color data into the
fused point cloud. Finally we set the resolution meter parameter to LOW. This allowed us
to generate point cloud of objects approximately 5-7 meters away, and fully build the point
cloud. We found other resolution meter parameters to be very bad at actually constructing
point clouds and were often disconnected. This parameter may depend on the environment
you are mapping.

The results can be seen for two di↵erent scenes. The first scene is a lab scenario 4.2.
The reconstruction for created by the ZED2 camera looks good 4.3. It is easy to make out
key features like the yellow cabinet and while it is hard to understand the point cloud from
a singular view, this reconstruction was able to recreate the shelves behind the yellow and
black cabinets. This point cloud was created by moving the mount through the room as if
it was mounted on a drone.
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Figure 4.2: Scene 1 image
Figure 4.3: Point cloud generated by
the ZED2 for Scene 1

Figure 4.4: Scene 2 image Figure 4.5: Point cloud generated by
the ZED2 for Scene 2

The second scene this was done for can be seen in Figure 4.4. The ZED2 point cloud for
this can be seen in Figure 4.5. This point cloud is more sparse than the one generated for
scene 1. This can be attributed to glass walls are hard to detect as they have no features.
Aside from the glass region, the rest of the room has been recreated quite well. There is
a brown portion on the left of the image, which is the door. Additional, some of the pink
features of the bookshelf can be seen places properly on the point cloud. When this point
cloud was viewed in 3 dimensions, it was interesting to see the pillar in front of the door also
being part of the reconstruction and for it to be place properly in front of the door.

4.2 Results

For the final results, we worked on environment reconstruction for two di↵erent rooms. This
is the results from the ZED2 camera. The code from the fisheye camera did not provide
a clean point cloud due to problems with time synchronization with the ZED2 camera’s
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Figure 4.6: Room 2 Reconstruction Figure 4.7: Room 2 Reconstruction

odometer. The results can be best seen at the following links.

• Room 1 : Video recording of the first room

• Room 1 Reconstruction : Video recording of the first room reconstruction

• Room 2 : Video recording of the second room

• Room 2 Reconstruction : Video recording of the second room reconstruction

Here the 3D reconstruction can be seen from all sides. In the first reconstruction, we
can see that the cabinets can be seen well reconstructed. The yellow cabinet can be see well
reconstructed. In the second room, the bookcase has a good reconstruction, which can be
seen from the backside of the bookcase. We can see here that even sections that are outside
the room are well reconstructed.

Images of the reconstruction can be seen in Figure 4.6 and Figure 4.7. In the image
on the left, the shape of the room is roughly visible. The image on the right shows the
prominence of the books on the bookcase. The missing wall was a white wall with very few
features. For this reason, it is missing from the reconstruction. If the wall has more features
it would also be included.

4.3 Future Improvement

There are a few more steps before this module is complete. The next step will be fix the
errors in time synchronization. There are a few extra frames from the fisheye camera which
are causing error for the point cloud generation. Additionally, the point clouds from the
fisheye camera and ZED2 camera need to be combined.

Additional route for improvement of the project would be fixing the hardware issue with
the second fisheye camera and testing the program with both ZED cameras. Increasing the

https://drive.google.com/file/d/1V0cc-DWySyvrbzt0KR5yeQAiw7J9ft29/view?usp=sharing
https://drive.google.com/file/d/1dnUuChZ-OCElZtcOssJuvhszxizqG0PY/view?usp=sharing
https://drive.google.com/file/d/1m8CAs1pZYuT52ldQxKM3XApS6MOSu4g1/view?usp=sharing
https://drive.google.com/file/d/1Uqvow21AuYia3dVL6ePkv7hOLScgcgfD/view?usp=sharing
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balance of the fisheye camera is also a test to do for calibrating the fisheye camera that could
increased the post-calibration fisheye FoV.
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Chapter 5

SLAM Experiments

5.1 SLAM Experiments - Trajectory Alignment

While working on the SLAM module for [19], an additional aspect that was noticed was
that the error grew with respect to time. As the time span of the experiment was longer,
the error accumulated and caused larger shifts in the data. For this reason, we proceeded
to implement an approach for trajectory alignment. This was adapted from the work of
Umeyama [20]. This work talks about an algorithm for least-squares estimations of trans-
formation parameters given two points. Given point correspondences in 3-dimensional space
which are denoted as X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, the minimum value of the
root mean squared error can be written as:

p
e2(R, t, c) =

vuut 1

n

nX

i=1

||yi � (cRxi + t)||2 (5.1)

where R is the rotation, t is the translation, c is the scaling, and n is the number of point
correspondences. Umeyama [20] tells that we can calculate estimates for R and t given point
correspondences. To reach the calculation for the estimates for R and t we must first define
some variables:

µx =
1

n

nX

i=1

xi (5.2)

µy =
1

n

nX

i=1

yi (5.3)

�2
x =

1

n
||xi � µx||2 (5.4)

�2
y =

1

n
||yi � µy||2 (5.5)
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Data MSCKF(n=5) iMSCKF(n=5) OKVIS(n=10,k=5) OKVIS(n=3,k=5) SWF(n=10) SWF(n=20) SWF(n=5) EKF iEKF

V1 01 0.24m, 1.46� 0.23m, 1.47� 0.49m, 5.60� 0.71m, 8.50� 0.58m, 2.73� 0.50m, 4.22� 1.52m, 11.60� 1.74m, 10.40� 1.89m, 32.10�

V1 01 TA 0.09m, 2.87� 0.09m, 2.87� 0.20m, 3.62� 0.23m, 3.68� 0.36m, 3.12� 0.36m, 4.72� 1.00m, 8.22� 1.10m, 8.79� 0.04m, 59.10�

V1 02 0.36m, 2.03� 0.36m, 2.04� - - 0.93m, 6.25� 1.15m, 6.00� 1.13m, 8.51� 1.24m, 10.01� 0.67m, 7.56�

V1 02 TA 0.15m, 1.52� 0.16m, 1.55� - - 0.33m, 3.90� 1.16m, 4.69� 0.30m, 3.68� 0.75m, 8.13� 0.42m, 5.48�

V1 03 1.81m, 9.25� 1.93m, 9.07� 1.56m, 21.23� 1.84m, 23.36� - 9.54m, 5.41� 1.41m, 3.12� 4.77m, 13.03� 2.33m, 15.92�

V1 03 TA 1.00m, 4.84� 1.12m, 4.90� 0.42m, 6.49� 0.46m, 6.99� - 6.36m, 25.85� 0.79m, 6.47� 14.84m, 24.58� 1.83m, 8.69�

V2 01 0.22m, 0.77� 0.22m, 0.75� 0.55m, 5.44� 0.56m, 5.98� 1.08m, 4.88� 0.49m, 3.72� 0.37m, 2.81� 1.68m, 5.90� 0.89m, 4.65�

V2 01 TA 0.14m, 0.83� 0.14m, 0.80� 0.45m, 2.88� 0.39m, 2.58� 0.75m, 5.23� 0.23m, 1.71� 0.26m, 1.96� 0.79m, 3.67� 0.48m, 3.58�

V2 02 0.42m, 3.11� 0.42m, 3.19� 1.02m, 12.55� 0.77m, 9.99� 2.26m, 3.17� 1.55m, 16.36� 3.23m, 7.97� 2.02m, 13.56� 0.87m, 3.63�

V2 02 TA 0.24m, 1.67� 0.24m, 1.74� 0.44m, 4.69� 0.38m, 4.13� 0.96m, 3.71� 0.75m, 4.49� 1.42m, 2.99� 0.83m, 4.32� 0.47m, 4.14�

Table 5.1: Root-mean-squared error in translation and rotation on Vicon room sequences
from the Euroc MAV dataset. The bold results show the result with the smallest error. The
data with TA has trajectory alignment applied to it.

⌃xy =
1

n

nX

i=1

(yi � µy)(xi � µx)
T (5.6)

Here µx and µy represent the mean vectors for X and Y . �x and �y represent the variance
vectors for X and Y . ⌃xy represent the covariance matrix of X and Y .

Using these values we can define our rotation and translation as:

R = USV T (5.7)

t = µy � cRµx (5.8)

c =
1

�2
x

tr(DS) (5.9)

Here U and V are obtained from the singular value decomposition of ⌃xy as ⌃xy = UDV .
Additionally, if rank (⌃xy) � m� 1, where m is the dimension of the data. We can say

S =

(
I, if det(⌃xy) � 0

diag(1, 1, ..., 1,�1), if det(⌃xy) < 0
(5.10)

Using the above calculations for the rotation and translations, I was able to improve on the
results from [19]. The results can be seen in Table 5.1. From this we can see that trajectory
alignment improved majority of the results except for a few. Additionally, there are some
rotational errors that are higher compared to the earlier results. When evaluating the results
where the error after trajectory alignment was larger (compared to the other tests), it was
seen that the error for there trajectories was already large and alignment cause it to grow
further.

The experiments run in [19] that are seen in Table 5.1 are listed below:

• MSCKF - Multi-State Constrained Kalman Filter [14] [10] [11]. This algorithm updated
the full state with the current IMU data and n past posed with n limited by an upper
bound which can be altered to trade-o↵ accuracy and computational speed.
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• OKVIS - Open Keyframe Visual-Inertial SLAM [13]. This algorithm updated a sliding
window of poses which as deemed important and are called ”keyframes”. Non-keyframe
poses are dropped and keyframes exiting hte sliding window are marginalized.

• SWF - Sliding Window smoother, Fixed-Lag Smoother [12]. These smoothers perform
similar to MSCKF, but performs Gauss-Newton descent before marginalization to tune
the linearization point.

• EKF - Extended Kalman Filter. This algorithms updated the full state with the current
position estimates of all features observed and all previous states are marginalized.

• iEKF - Iterated Extended Kalman Filter. This algorithm is similar to EKF except
it takes several Gauss-Newton steps before each marginalization step, to tune the
linearization point at which marginalization happens.
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Chapter 6

Conclusion

Over the period of the thesis, we explored the development of hardware and software that
would allow for environment reconstruction on a drone with a ZED2 camera and fisheye
camera. The result was great reconstruction from the ZED2 camera. This hardware setup
can be used by future for data collection and training to convert the fisheye camera’s view
to depth information.

The next step for the drone environment reconstruction research is improvement of the
structure from motion on the fisheye camera. Additional areas of improvement could be
shown by testing the algorithm on a drone. This could also be expanded to run in real-time.
This would require transfer of information from the drone to a server as was done in [9].

Near the end of the thesis, we also began an exploration of Dynamic SLAM. This area
of research covers performing SLAM in an environment where there are several moving
obstacles [21] [2] [7]. There are several possible improvements in dynamic SLAM, such
as using estimating acceleration of moving features and using those estimations for better
predictions of the moving features.
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