
The Beauty and Joy of Physical Computing

Deanna Gelosi
Dan Garcia, Ed.
Eric Paulos, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-156

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-156.html

May 20, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

A big thank you to the BJC Sparks team for your support with curriculum
development: Brian Harvey, Lauren Mock, Mary Fries, Michael Ball, and
Pamela Fox. And a special thank you to Dan Garcia for your
encouragement throughout this Master’s degree, and to Michelle Cheung
for your activity development work over Summer 2021.

Thank you to my Tinkering Studio colleagues and friends at the
Exploratorium: Anna Guardiola, Casey Federico, Claudia Caro, Ernest
Aguayo, Jake Montano, Karen Wilkinson, Luigi Anzivino, Mike Petrich,
Ryoko Matsumoto, Sebastian Martin, and Steph Muscat.

Last but not least, thank you to my family for your love and support through
it all: Travis Uhrig and Maggie Gelosi, Valerie and Dean Uhrig, and Breana
and Patrick Castonguay.

The Beauty and Joy of Physical Computing

by

Deanna Gelosi

A master’s report submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Teaching Professor Dan Garcia, Chair
Professor Eric Paulos (reader)

Spring 2022

The master’s report of Deanna Gelosi, titled The Beauty and Joy of Physical Computing, is
approved:

Chair Date

Date

Date

University of California, Berkeley

The Beauty and Joy of Physical Computing

Copyright 2022
by

Deanna Gelosi

1

Abstract

The Beauty and Joy of Physical Computing

by

Deanna Gelosi

Master of Science in Computer Science

University of California, Berkeley

Teaching Professor Dan Garcia, Chair

This Master’s report captures the creation and initial pilot feedback on a new computing
unit BJC Sparks to introduce middle school students to hardware and physical computing
through hands-on, tinkering projects. The goal of this curriculum was to design an open entry
point for students to see themselves in computing through meaningful, engaging projects.
The unit consists of eight labs and is one part of the new BJC Sparks curriculum, and was
designed around one piece of technology: the micro:bit, a low-cost microcontroller created
for educational use. Using the micro:bit, students can control an on-board LED array,
servo motors, external LED lights, and more using input sensors such as tilt, light, and pin
connections. In addition to the micro:bit, projects include use of craft materials and toys
to encourage creative material use with technology. Five middle school CS teachers tested
this unit in their middle school classrooms in Spring 2022. In feedback surveys, they shared
that they appreciated that their students were able to be creative while also learning about
hardware. Some also commented that they would have liked more structure through example
projects and suggesting timings. This feedback will be incorporated into future iterations of
this unit to best meet the needs of students from a variety of computing backgrounds.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Prior Work 2
2.1 The Beauty and Joy of Computing . 2
2.2 Middle School CS Curricula . 2
2.3 Making and Tinkering . 3

3 Background and Motivation 4
3.1 AP CS Principles and Visual Programming 4
3.2 Middle School Hardware Curriculum . 5
3.3 Tinkering with Technology . 7

4 Methodology 8
4.1 Curriculum Development . 8
4.2 Hardware Curriculum Overview . 11

5 Results 16
5.1 Teacher Feedback . 17

6 Conclusion 20

7 Future Work 21

8 Appendix A - Student Pages 22

9 Appendix B - Teaching Guide 52

Bibliography 67

ii

List of Figures

3.1 Overview of micro:bit hardware [16] . 6
3.2 MicroBlocks programming environment . 7

4.1 Sample LED display animation. 11
4.2 An interactive cat example project. 12
4.3 A simple homemade switch. 13
4.4 A BitBooster breakout board and servo motors. 13
4.5 An LED connects to a micro:bit with copper tape. 14
4.6 Two micro:bits can communicate via radio. 14
4.7 A multi-stage chain reaction. 15

5.1 Student project for Lab 3. 16

iii

List of Tables

4.1 The number of students and location of each participant teacher. 10
4.2 BJC Sparks: Hardware labs and approximate timings. 11

iv

Acknowledgments

A big thank you to the BJC Sparks team for your support with curriculum development:
Brian Harvey, Lauren Mock, Mary Fries, Michael Ball, and Pamela Fox. And a special thank
you to Dan Garcia for your encouragement throughout this Master’s degree, and to Michelle
Cheung for your activity development work over Summer 2021.

Thank you to my Tinkering Studio colleagues and friends at the Exploratorium: Anna
Guardiola, Casey Federico, Claudia Caro, Ernest Aguayo, Jake Montano, Karen Wilkinson,
Luigi Anzivino, Mike Petrich, Ryoko Matsumoto, Sebastian Martin, and Steph Muscat.

Last but not least, thank you to my family for your love and support through it all: Travis
Uhrig and Maggie Gelosi, Valerie and Dean Uhrig, and Breana and Patrick Castonguay.

1

Chapter 1

Introduction

BJC Sparks: Hardware is a physical computing unit designed for middle school students
as an introductory experience into computing with a block-based environment. The founda-
tion for the larger curriculum is the Beauty and Joy of Computing (BJC), an introductory
computer science curriculum intended for non-CS majors at the high school junior through
undergraduate freshman level [4].

The hardware curriculum introduces students to the micro:bit through hands-on, project-
based activities. The BBC micro:bit is a low-cost microcontroller with on-board sensors, I/O
pins, an LED array, and buttons used in a variety of educational technology settings. Every
lab in this unit uses micro:bit and each lab is scaffolded to introduce students to new features
and functionalities of the tool, including additional outputs like servo motors and LEDs. All
of the projects have a physical making component and builds on the ideas of constructionism,
stating that learning is most effective when learners actively construct tangibles in the real
world [19].

The goal across this unit is for students to make—both through programming in Snap!
as well as with physical materials like cardboard, craft supplies, and hot glue. Students
start with activities that only use the micro:bit and are slowly introduced to additional
components like servo motors and LEDs over subsequent weeks. Each activity prompt is
open-ended for students to bring their unique interests and passions as project inspiration.
The unit culminates in a large scale, collaborative chain reaction machine [9] where students
can apply their understanding of programming many aspects of a micro:bit into practice.

In Spring 2022, five teachers shared Unit 3 with their students. Participating teachers
were generous with their feedback. They shared what worked well and offered suggestions
for improvement. While some complemented the curriculum for offering opportunities for
students to express themselves creatively while learning about hardware, others found the
open-endedness unmooring and asked for more structure. This feedback will be folded into
future iterations of the curriculum to better serve students and their path toward computing
creatively through tinkering.

2

Chapter 2

Prior Work

2.1 The Beauty and Joy of Computing

The Beauty and Joy of Computing (BJC) is an Advanced Placement CS Principles
(AP CSP) course whose guiding principle is to meet every student where they are at in the
computing education journey. The course is designed for high school and college students
and covers computational thinking skills covered by AP CSP as well as advanced topics
such as higher order functions and recursion. Every programming assignment uses Snap!, a
block-based programming environment based on Scratch [3]. The course is designed around
students having fun and experiencing that code itself can be beautiful.

BJC consists of a series of sequential labs that walk students step-by-step through new
computer science content. This approach supports students tinkering with code before re-
quiring them to formalize their knowledge. Daily For You To Do tasks offer a way for
students to demonstrate what they’ve learned to peers or their teacher, and Take It Further
tasks are a chance for students to go deeper with a particular topic.

BJC celebrates creativity, collaboration, and sharing work with one another. It offers
opportunities for students to uplift one another rather than directly compete. Students take
pride in demonstrating what they’ve created, and the act of sharing projects helps recruit
future students [13].

2.2 Middle School CS Curricula

There exist a number of curricula for teaching computer science to middle school. Code.org
created a free online curriculum designed for the middle school level that can be taught over
the course of one semester or year called CS Discoveries [7]. The course maps to CSTA
standards and includes a wide breadth topics, including problem solving, programming,
physical computing, user-centered design, and data. Students learn while creating their own
websites, apps, games, and physical computing devices.

CHAPTER 2. PRIOR WORK 3

Bootstrap teaches text-based functional programming through online materials [25].
Their emphasis is on how studying mathematics can be leveraged in learning about com-
puting. Bootstrap offers lessons ranging from hour-long lessons through Hour of Code to
Bootstrap: Reactive in which students take a deeper dive into programming to build more
sophisticated programs. The design of their program supports non-CS teachers in delivering
research-backed CS curriculum.

Alice is a block-based environment that allows students to create narratives, games, and
animations in 3D [24]. Alice centers creative exploration for students as they learn logical and
computational thinking skills, foundational principles in programming, and object-oriented
programming. It supports a wide range of prior computing backgrounds through their lesson
plans, including those who are learning programming for the first time.

2.3 Making and Tinkering

Making as a playful form of learning and inquiry aligns with the teachings of educators
including Friedrich Froebel [12], Maria Montessori [18], and Seymour Papert [19]. Today,
researchers see making as a way to engage learners in personally meaningful and creative
projects, which positions them to be producers instead of consumers as they connect with
their environment and community [5, 11].

Making and maker education can often fall into the pattern of offering step-by-step in-
structions to guide learners along a predefined path. While learners are making something,
their path is limited. Tinkering is learner-centered and inquiry-driven pedagogy that takes
the ideas of making one step further. The tinkering approach is defined as playful, experi-
mental, and iterative, where learners can engage in an open-ended exploration [22].

Tinkering as an approach to making and learning draws upon constructionist theories
of pedagogy and is based on a view of learning as the process of being, doing, knowing,
and becoming [14]. Tinkering moves beyond traditional in-school knowing and traditional
constuctivist ideas of doing to include the importance of growth and identity through being
and becoming [20].

The design for tinkerable experiences consists of three pillars: environment, activity, and
facilitation. The environment is the place where the learning is taking place, which can
vary from in-school contexts to out-of-school spaces like afterschool programs, libraries, or
museums. Within these spaces, details like the table layout, where to access materials, and
the flow of how people move throughout the space are up for consideration. The activity
itself is also a designed experience, which includes the theme or subject matter, materials for
making, tools and technologies, as well as expected outcomes. The facilitation is determined
by the people who introduce and support the learning of tinkerers through asking questions,
making suggestions, and guiding their learning path [20].

4

Chapter 3

Background and Motivation

BJC Sparks takes inspiration from the design principles and lessons from The Beauty and
Joy of Computing, and is motivated by the goal to bring BJC to middle school students. The
original BJC curriculum was inspired by Seymour Papert’s idea that programming is “hard
fun.” It empowers students to see the creative and expressive qualities of programming,
while mastering computing skills like recursion. Students of all backgrounds see themselves
as programmers and see the power that computing has in their lives.

3.1 AP CS Principles and Visual Programming

The Beauty and Joy of Computing satisfies the requirements for AP Computer Science Prin-
ciples (CSP) and is built around seven Big Ideas and six Computational Thinking Practices.
The Big Ideas are things that students learn about computer science, including abstrac-
tion, data and information, algorithms, and programming. Students engage in programming
deeply throughout the course with Snap!, a visual block based programming language, and
learn about the importance of abstraction in programming. They develop their own algo-
rithms and analyze existing ones. Additionally, students learn about creativity, the internet,
and the global impact of computing. Students exercise creativity through projects, and global
impact is introduced through readings and classroom discussion.

Computational thinking is a practice that benefits not only computer scientists and en-
gineers, but is a fundamental skill for everyone [29]. Connecting computing means making
connections between computing and other areas of students lives, like hobbies, possible future
careers, and social impacts of computing. Computational artifacts are the videos, slide decks,
blogs, programs, music, spreadsheets, anything that can be created with a computer, that
students engage in making. Abstraction is core to programming, and students learn how
to structure their programming projects using layers of abstraction. Analyzing programs
includes debugging, predicting code behavior, and thinking about efficiency, all serving the
goal of creating programs that work. Communication and collaboration is supported through
pair programming and classroom discussions on the social implications of computing.

CHAPTER 3. BACKGROUND AND MOTIVATION 5

All of BJC is taught using Snap!, a visual, block based programming language based
on MIT’s Scratch. Snap! provides tools for students to create their own abstractions like
functions and explore CS ideas like recursion, while the visual representation of blocks makes
the programmatic procedure more concrete for students.

BJC Sparks

BJC Sparks began as the middle school equivalent to BJC. Students in grades 6-8 would be
introduced to functional programming through Snap! and prepare them for future computer
science courses in high school and beyond. However, this idea evolved over time to be more
expansively redesigned. First, teachers noted that they were interested in offering this middle
school curriculum to students in grades 9-11 who were not quite ready for AP CSP. Since
writing curriculum for a pre-AP CSP audience was the mission for this team, it was decided
to rename the series. BJC Sparks was chosen because the curriculum is “sparking” or igniting
interest in computing for students.

There is some overlap between AP CSP and BJC Sparks, specifically in the basics. We
recognise that we should revise AP CSP so that a student who takes BJC Sparks does not
repeat the same material. One way to address this is to amend the BJC Teacher Guide to
identify which labs and activities students can skip if they learned BJC Sparks.

3.2 Middle School Hardware Curriculum

Teachers today have a variety of physical computing curricular options. Birdbrain Technolo-
gies created teaching guides to support the use of their Hummingbird and Finch Robotics kits
[6]. Scratch partnered with the Harvard School of Education to design creative computing
curriculum that supports a wide variety of projects, though does not currently support phys-
ical computing [8]. Scratch does offer coding cards for micro:bit, though they are designed as
example projects to try instead of a complete curriculum [10]. Other online platforms offer
micro-curriculum like Tinkercad [1] and MakeCode [15], though their projects are designed
to supplement other CS curricula. Tinkercademy [27] offers a kit for sale that pairs with
their curriculum, but also offers supplemental support from MakeCode and Instructables.

micro:bit and MicroBlocks

The BBC micro:bit fig. 3.1 is an affordable microcontroller designed as an educational tech-
nology for physical computing. The compact board features an LED light display, buttons,
sensors and I/O options that can be programmed using a variety of web-based block-based
programming environments. The new micro:bit (V2) also includes a built-in microphone,
speaker, touch input button, and a power button.

MicroBlocks fig. 3.2 is a free, block-based programming environment for learning physical
computing with educational microcontroller boards such as the micro:bit [17] . Inspired

CHAPTER 3. BACKGROUND AND MOTIVATION 6

Figure 3.1: Overview of micro:bit hardware [16]

by Scratch [23] and from the developers of Snap!, MicroBlocks features both interactive
programming and autonomous operation. Interactive programming allows for live edits to
code and the ability to immediately see the changes. In contrast, Microsoft MakeCode [15]
requires building and uploading the program before seeing changes. Autonomous operation
allows for the board to run independently without the need for the programming environment
open and running on the computer or for the board to be plugged into the computer. In
Scratch, micro:bit projects only function when the program is live on the computer.

CHAPTER 3. BACKGROUND AND MOTIVATION 7

Figure 3.2: MicroBlocks programming environment

3.3 Tinkering with Technology

To inform the creation of a hardware unit for BJC Sparks, I drew upon my background as an
activity designer and developer at the Exploratorium’s Tinkering Studio in San Francisco.
Our work in the Tinkering Studio has parallels to that of BJC: we create rich environments
for tinkering with phenomena that center learner agency and creativity. We design experi-
ences that are rich in science, technology, engineering, art, and mathematics (STEAM) using
familiar tools and everyday materials. This work happens in the museum the Exploratorium,
in the community through the Boys and Girls Club of San Francisco, and through collabo-
rations within both research and practice, both in the United States as well as abroad.

One strand of work is computational tinkering, a hands-on, materials-rich approach to
exploring programming and technology where code becomes a material for making. We also
use block-based programming environments and emphasize the ways physical materials can
connect to and support digital tools and environments. One technology we used was the
micro:bit, which is where the inspiration for BJC Sparks first originated. It easily connects
to block-based programming environments, can be functional with just a few blocks, and
also affords the opportunity for rich complexity.

8

Chapter 4

Methodology

BJC Sparks: Hardware is designed for teachers across the country and world. The hardware
curriculum was created in 2021-22 and was piloted with teachers during the 2021-22 academic
year.

4.1 Curriculum Development

Fall 2020: Hardware Scoping

A variety of hardware was considered for the middle school curriculum. Other strong con-
tenders for the unit featured robotics with BirdBrain Technologies wireless Finch (2.0) and
micro:bit, internet of things with Plezmo, programmable sewing machine with Turtlestitch,
and programmable 3D printing with Beetle Blocks [26, 21, 28, 2]. This range of tools and
technologies fits nicely into any makerspace and would be a wonderful introduction to the
breadth and depth that physical computing offers .

The reason we chose to exclusively feature micro:bit as the core technology is twofold.
The first is the accessibility of the curriculum. A micro:bit is a low-cost microcontroller at
less than fifteen dollars a board. This brings the cost-per-student for the curriculum down
substantially when compared with purchasing large pieces of equipment like 3D printers,
programmable sewing machines, and robotics kits. More schools and students would be
able to have access to micro:bits than expensive fabrication equipment and robotics. Some
schools may also be able to purchase one micro:bit per student and allow them to keep them
afterwards.

The second was the depth of understanding. By focusing solely on micro:bit, students
are able to learn many aspects of the tool and then culminate in a final project (Lab 7:
Collaborative Chain Reaction) that celebrates the many things that the microcontroller can
do. It would be challenging to go into as much depth while jumping between four or five
tools over the course of a semester or quarter.

CHAPTER 4. METHODOLOGY 9

Spring 2021: Software Scoping

After selecting micro:bit as the hardware, the choice of what software to use was the next
task. Snap! was the obvious and preferred choice since BJC is designed exclusively around
using the block-based environment. However, Snap! does not currently offer key features
that would be necessary for the hardware unit. The first is that Snap! requires tethering
of the micro:bit to the computer at all times. Untethered micro:bits allow for taking a
Tamagotchi digital pet on the go or making a more complex chain reaction machine without
worrying about laptops cluttering the space. Another important feature is how the blocks
in the visual programming environment are designed. Snap! ’s blocks prioritize screen-based
interactions and do not have the focus on hardware that’s needed for a physical computing
curriculum.

MicroBlocks is a hardware-first version of Snap! that prioritizes features like untethering
the micro:bit from the computer and designing blocks specifically for hardware. For instance,
it has a block that looks like the micro:bit screen so students can click individual LEDs to
turn them on or off. MicroBlocks does not have all of the features of Snap!, including cloud
storage of projects, a digital stage for making computer-based animations, or the ability to
create higher order functions. However, these lacking features do not outweigh the advantages
of designing a curriculum exclusively around MicroBlocks.

A third software solution was introduced as a viable alternative in spring 2022. Project
ExCITE (Exploring Computation Integrated into Technology and Engineering) teaches BJC
AP CSP curriculum along with computer control and robotic activities. The introduction
of this new option came late in the hardware curriculum development timeline and was not
fully explored as an alternative to MicroBlocks, but their block-based programming language
is at least comparable to MicroBlocks.

Summer 2021: Curricular Development Sprint

The hardware curriculum team had a three-month sprint with developing labs and activities
during the summer of 2021. An undergraduate researcher joined in the efforts and prototyped
activity introductions and projects. The curriculum development continued into the fall and
spring semesters.

During the same summer, the BJC Sparks team also lead a week-long PD for the partic-
ipating teachers to introduce and prepare them to teach Unit 1 starting in Fall 2021.

Fall 2021 - Spring 2022: Pilot Program with Teachers

BJC Sparks was piloted during the 2021-22 academic year. Twenty teachers from around
the world participated in the pilot in the fall of 2021 with Unit 1: Functions and Data. The
original plan was to cover units 1-2 during the 9-month academic year. However, due to the
active nature of curriculum development alongside teachers piloting the curriculum, Unit 1
extended past the fall semester into the beginning of the spring. Given it was a priority to

CHAPTER 4. METHODOLOGY 10

Teacher initials Total number of students Location

DB 90 Lafayette, CA
LH 12 Shenandoah, PA
BK 14 Pacific Palisades, CA
DD 61 Fremont, CA
ZA 14 Oakland, CA

Table 4.1: The number of students and location of each participant teacher.

pilot Unit 3 in Spring 2022, the team broke Unit 2: Sequencing and Iteration into two parts:
2a and 2b. The former included labs that were important for students to complete before
Unit 3, and the latter were labs that could be completed afterwards.

For the pilot of the hardware unit, five of the original twenty teachers were able teach
Unit 3 in Spring 2022. The participating teachers are at middle schools across the country,
though they are mostly concentrated in California (table 4.1). They work with a wide variety
of students, ranging from 14 to 90 students.

In January 2022, we hosted a two-hour professional development (PD) workshop for
all five teachers. To introduce and prepare them for the hardware unit, two curriculum
developers walked through the logistics of the second half of the pilot year and then taught
Lab 1. Lab 1 introduces students to micro:bit, so the PD workshop allowed teachers to also
be learners and walk through some of the challenges their students might face in connecting
their hardware to the computer and running their first commands.

CHAPTER 4. METHODOLOGY 11

Lab Number and Name Timing range

Lab 1: Meet micro:bit 1-2 class periods
Lab 2: Interactive Pet 1-2 class periods
Lab 3: Game Play 2-3 class periods
Lab 4: Marvelous Movements 2-4 class periods
Lab 5: Paper Stories 2-4 class periods
Lab 6: Making with Multiples 2-4 class periods
Lab 7: Collaborative Chain Reaction 3-5 class periods

Table 4.2: BJC Sparks: Hardware labs and approximate timings.

4.2 Hardware Curriculum Overview

BJC Sparks: Hardware (Unit 3) consists of seven labs (table 4.2), each one introducing
a new feature of the micro:bit and culminating in a collaborative chain reaction machine.
Each lab includes a project for students to make both with physical materials and with code.
Activities within labs are open-ended and offer many possible directions for students to bring
in their own personal interests to projects.

Figure 4.1: Sample
LED display anima-
tion.

Lab 1: Meet micro:bit

The first micro:bit experience is to make an animation on the LED
screen. Students are introduced to the core blocks in MicroBlocks
and learn how to make an animation by switching between at least
two different images. Animations can be as simple (e.g. a two-
frame animation, see fig. 4.1) but also increase in complexity when
introducing new inputs like light levels.

One big idea with Lab 1 is that students walk away with an
understanding of the key fundamentals of their software and hard-
ware. They know how MicroBlocks works, how to connect their
micro:bit to MicroBlocks, and how to save a project locally (unlike
Snap! which saves projects on the cloud). Students also learn now
to make an animation as a series of frames. This can be as simple
as two frames alternating back-and-forth, or a more complex series
of frames. The most important take-away experience for students
with this lab is that they have an early success with MicroBlocks
and see themselves as capable of using the software to interact with
their micro:bit.

CHAPTER 4. METHODOLOGY 12

Lab 2: Interactive Pet

Figure 4.2: An interactive cat example
project.

A continuation on animations from Lab 1,
students make an interactive pet using the
LED screen and various inputs form the
micro:bit. The lab consists of four activi-
ties: designing, building, adding interactiv-
ity, and storytelling. In the first activity,
students start by making a plan for what
type of interactive pet they want to make.
While this is a good practice for physical
computing in general, crafting and carry-
ing out a plan that combines software and
hardware also aligns with CSTA Standard
2-CS-2: design projects that combine hard-
ware and software components to collect and
exchange data. The activity supports stu-
dents planning process by encouraging them
to sketch their ideas on paper and to be spe-
cific about their inputs and outputs.

The second and third activities focus on
the physical and digital aspects of making
an interactive pet. Physical making includes
using everyday craft materials to construct
a holder for the micro:bit in the shape of
the interactive pet. Example ideas include
making a shape like an animal (fig. 4.2) or a
digital pet like a Tamagotchi.

The final activity supports students in
sharing their pets to their classmates and beyond. This storytelling activity also ties in
key computer science principles of documenting projects in such a way that others can use
their creations as described in CSTA Standard 2-AP-19: document programs in order to
make them easier to follow, test, and debug. Students explain to other users how to interact
with their pet by identifying its inputs and outputs.

CHAPTER 4. METHODOLOGY 13

Figure 4.3: A simple homemade switch.

Lab 3: Game Play

In this lab, students create their own games
collaboratively with a partner. The game
can be single- or multi-player and will use
some combination of inputs and outputs in-
troduced in Lab 2. The lab is split across
three activities that invite students to brain-
storm project ideas collaboratively, build the
physical and digital components of their game,
and then play test their games with class-
mates for feedback and iteration.

Students have the option to make a game
that exists entirely on the micro:bit board,
or a physical game that could use the board’s
I/O pins. To accomplish this, they are intro-
duced to homemade switches (fig. 4.3) and
use the read analog pin block to determine
whether the switch is open or closed. Both
styles of games also include variables as a
means to track and share the current score
of the game.

.

Figure 4.4: A BitBooster breakout board and
servo motors.

Lab 4: Marvelous Movements

Students learn now to control servo motors
to create a precise moving contraption. This
can be a game or something else that moves
in an interesting way. This lab prepares stu-
dents for their collaborative chain reaction
machines (Lab 7), where precise movements
could be very useful for continuing the mo-
mentum of their machines.

While the micro:bit can run on two AA
batteries, using additional outputs like ser-
vos requires more power than these batteries
can provide. The BitBooster breakout board
(fig. 4.4) uses two AA batteries to control
servos and sometimes the board also needs
to be powered through its USB micro cable.

CHAPTER 4. METHODOLOGY 14

Figure 4.5: An LED con-
nects to a micro:bit with
copper tape.

Lab 5: Paper Stories

Copper tape is featured as a conductive material for circuit
making. Students construct circuits to turn on 5mm LEDs by
laying down conductive tape onto paper and wiring these con-
nections to a micro:bit. Those who made homemade switches
in Lab 3 may find the programming familiar since this method
also uses the micro:bit’s I/O pins.

Planning and troubleshooting is of utmost importance with
this lab. Students design their circuits to be able to power more
than one LED (fig. 4.5). They are careful that no wires cross
unintentionally and troubleshoot any challenges with code as
well as the physical materials. This process aligns with CSTA
Standard 2-CS-03: systematically identify and fix problems with
computing devices and their components.

One takeaway from this lab is for students to be introduced
to unusual yet familiar conductive materials that can be used
for making circuits. For some, this may be the first time experi-
encing making circuits using non-traditional circuit materials.
This is also an opportunity to explore paper craft as engineer-
ing, and construct paper mechanisms like pop-ups and switches
using materials on hand.

.

Figure 4.6: Two micro:bits can communicate
via radio.

Lab 6: Making with Multiples

The penultimate lab is a collaborative project
in which students learn about radio com-
munication. Two micro:bits can wirelessly
communicate with one another by sending
strings and integers via radio (fig. 4.6). Stu-
dents can use what they’ve learned over the
last five labs and use radio communication
to add complexity to their servo, LED, and
micro:bit sensor projects.

One important detail is defining what ra-
dio channel to use for communication. In a
classroom full of project partners, defining
radio channels for each group will be crucial.

CHAPTER 4. METHODOLOGY 15

Figure 4.7: A multi-stage chain reaction.

Lab 7: Collaborative Chain Reaction

The final lab is a celebration culminating in the variety of ways to use micro:bit in com-
bination with physical materials. Together, students build a collaborative chain reaction
machine in which pairs of students work on segments that link-up together and create one
continuous cause-and-effect contraption. Student pairs use both of their micro:bits in their
section alongside any analog materials and techniques of their choosing. This event can be
shared with other students, friends, or family and is a way of demonstrating all that has
been learned through this unit.

16

Chapter 5

Results

“I’m noticing that to keep the middle school students engaged, you need to show them a new
technique / blocks / functions of using the micro:bit at the beginning of every class. I’m see-
ing a lot of success in running unit 3 because of the plan in covering one lab per week. The
students are excited to see something new and are going back to their previous week’s projects
and incorporating a new functionality or their eager to begin another unique project.”
- DD, participating teacher

Figure 5.1: Student project for
Lab 3.

In Fall 2021, twenty middle school computer science
teachers joined the BJC Sparks pilot program. In Spring
2022, only five teachers remained to implement Unit 3.
This attrition is due to the challenges of teaching at the
middle school level. It’s rare to have the same group of stu-
dents for the entire academic year, so teachers who taught
Unit 1 in the fall were not able to work with the same
group of students in the spring. Only five teachers taught
the same group of students since Fall 2021.

At the time of writing this report, four of the five teach-
ers indicated that they had started teaching Unit 3 to
their classes. All of the teachers had taught Lab 1 (the
lab that was introduced to them during the January PD
workshop). One teacher (DD) taught up through Lab 4
and one taught up to Lab 3 (LH) (see fig. 5.1 for one of
the student projects). When given a survey to give feed-
back on what labs they had taught, two of the five teachers
completed a portion of the questionnaire. The following
feedback is a summary of their takeaway thus far with the
curriculum.

CHAPTER 5. RESULTS 17

5.1 Teacher Feedback

We collected pre- and post-surveys from teachers who completed the hardware unit. Before
teaching Unit 3, teachers average rating for comfort teaching with micro:bit as 5.8 out of
10. After teaching Unit 3, the score increased to 7.8. Due to the small sample size, these
results only indicate that by working with micro:bit, teachers became more familiar and
consequently more comfortable teaching with the hardware.

Timing

Teachers commented that the suggested timing did not always align with what they needed
(see table 4.2 for original timings). In some cases, the activities took less time than antici-
pated, and in others, they took longer. Their first-hand experiences teaching these activities
will help the curriculum development team refine their suggested timings. Of the two re-
spondents, one teacher (DD) had students weekly and taught the entire lab in one ninety
minute session. Students were able to complete the core activity but did not have time to
explore other directions or tangents. The other teacher (ZA) had their students for a longer
amount of time and self-reported that their students were able to complete optional tasks
and projects.

Specifically, DD noted that they covered Labs 1 and 2 in one class and Labs 3 and 4
took one class per lab. They noted that, “Some students want to spend more time on each
lab while others are eager to move forward. Covering the concepts and learning objectives of
the lab in the first 20 minutes of class is beneficial to all and then letting the students create
new projects or continue a big project keeps the students fully engaged in their learning.”
This pacing is a bit faster than predicted, but it’s notable that DD is teaching in an after
school setting and that packaging each lab per weekly session is quite beneficial to the overall
pacing of the program. It would be much harder to pick up a project after putting it down
one week prior.

Alternatively, ZA said their students spent much longer on Lab 2, noting that the “Making
the pet took a little longer, but that was more of students wanting to make their project perfect
and they were happy to get to some hands on activities so I let them work a little longer on
it.” While it’s not ideal that the lab timing didn’t match up with reality, it’s wonderful
feedback to hear that students wanted to continue working on the project they had started.

Student Successes and Challenges

Participating teachers shared both the successes and challenges for students in the pilot
version of Unit 3. DD noted that they appreciated that the activities were short and allowed
time to cover basic computing concepts and learning objectives as well as time to build their
own artifacts. DD also shared that the unit was very successful with their SPED (special
education) student, sharing that “with a little help was able to successfully complete the
interactive pet activity.” ZA also commented that they appreciated that students enjoyed

CHAPTER 5. RESULTS 18

being creative with Unit 3 while also learning how to use hardware. This feedback is met
with great enthusiasm, since the hardware unit was designed to meet a wide variety of
programming backgrounds and personal interests.

One piece of feedback shared informally in an email was that some of the labs did not
meet the interests of some students. BK noticed that Lab 2 (Interactive Pet) was “too
crafty” and that their students would hopefully enjoy Lab 3 (Game Play) more than Lab
2. This feedback is met with mixed reactions. While it is important that there are ways
for students to meaningfully engage in exploring the micro:bit board’s input sensors and
LED screen, craftiness is seen as an asset by the curriculum team and not as something that
would disengage students. Further conversation would be required to unpack how students
engaged in the project and if there are opportunities to expand the definition of what an
interactive pet could look like to meet student interests.

The most prominent challenge that DD identified was the inconsistency of the homemade
circuit in Lab 3 (Game Play). “It was a little buggy for some student[s]” they noted in their
feedback, “so they didn’t enjoy it as much but it could have also been due the the limited time
we had to work on the games”. This is a known issue with homemade switches, and could
be addressed with a dedicated troubleshooting guide. BK also noted that their students
needed more support in adding sound files to MicroBlocks. Another challenge was students
had trouble thinking of Lab 3 projects that could incorporate a micro:bit. DD noted that
showcasing more example projects could help students see different game possibilities.

Hardware and Software

We asked in pre- and post-surveys for teachers to self-report their comfort using micro:bit.
Before teaching Unit 3, the average self-reported score was 5.8 on a scale of 1-10 across all
five teachers. After teaching some of Unit 3, the average score increased to 7.5 for the two
teachers who completed the survey. The increase in average score is not reflective of all five
participating teachers since we have not yet collected their scores, but it’s still notable that
there was a noticeable increase among the two teachers.

One teacher asked whether Unit 3 could include additional sensors, such as an ultra
sonic sensor, for measuring distance. Additional sensors could become part of the students’
extended toolkit for building more complex contraptions into their projects. They could also
be the jumping-off point for a subsequent hardware unit.

We also asked teachers to comment on Snap! and MicroBlocks. For Units 1 and 2a,
teachers used Snap! and Unit 3 used MicroBlocks. ZA and DD shared that MicroBlocks
was easy to use and program and that the environment overall environment was satisfactory.
When asked if they would use Snap! over MicroBlocks if given the option, both teachers
responded that they would like to use Snap! in the future. DD said that they would use Snap!
so students could save projects to their accounts rather than to the computers themselves.
MicroBlocks does not support cloud saving and this is a known difference between the two
environments. ZA commented that students would be able to better build off their prior
knowledge by continuing with Snap! and add their new hardware knowledge to their toolkit.

CHAPTER 5. RESULTS 19

They would also have access to live data using Snap! and could program their micro:bit
based off this live data. Snap! affords students access to higher-order functions and live
data, which could sustain and deepen their programming understanding.

20

Chapter 6

Conclusion

The BJC Sparks Hardware Unit (Unit 3) was developed to complement the function-first
curriculum for pre-AP CSP students in middle school and early high school. The curriculum
design principles included centering affordable hardware, hands-on learning, and simultane-
ous physical and digital making. The unit was created to work with a variety of student
programming backgrounds and offer possible extensions to continue learning. The unit used
micro:bit, an affordable piece of hardware, as the core educational technology. The BBC
micro:bit features a variety of on-board inputs and can be augmented to use external out-
puts. In concert with micro:bit, a variety of readily-available craft supplies and materials
were used for students to build creative and personally-meaningful projects.

In Spring 2022, five BJC Sparks teachers participated in a pilot program to test out
Unit 3 with their classes. During the pilot, students used the Unit 3 labs and explored
micro:bit across seven different experiences. Teachers shared feedback about the curriculum
and noted both the successful aspects as well as areas for improvement. They appreciated
the creativity students showcased while making and learning hardware concepts and the
approachability of the activities. Challenges identified included troubleshooting I/O pins
and switches, activity length and timing, and finding ways for all students to engage in
physical making. BJC Sparks is still under development and will take this feedback into
account for future iterations.

21

Chapter 7

Future Work

BJC Sparks is still under development and will continue to pilot their curriculum for teachers.
Teachers will continue to implement Unit 3 during the remainder of the 2021-22 school
year. Feedback that has already been identified includes adjusting the suggested timing for
activities and creating a troubleshooting guide for homemade switches. During Summer 2022,
a week-long professional development series will take place for another cohort of teachers
online.

Unit 3 may ultimately be taught in Snap! instead of MicroBlocks, and future work
would involve translating the activities into Snap! blocks. As identified by both curricu-
lum developers and by pilot teachers, there are significant advantages to stay in the same
programming environment throughout the three units.

22

Chapter 8

Appendix A - Student Pages

The following pages are the student facing curriculum available at
https://bjc.berkeley.edu/bjc-r/course/middle-school.html.

Vocabulary

A software library is a collection of procedures (blocks) that can be used in
programs.

Get Ready

In this activity, you'll set up your micro:bit and write your first program in MicroBlocks.

Collect Materials

���

micro:bit

USB cable

Battery pack (optional)

Set Up Your micro:bit with MicroBlocks

For this unit, you'll use a program called MicroBlocks, a Snap!-like programming language designed to control tools like micro:bit.

��� Open MicroBlocks in a Chrome browser.

Why Chrome?

Chrome supports connecting a micro:bit to your web browser.

��� Connect your micro:bit to your computer with a USB cable.

��� Select the USB icon in the upper left corner (shown right), then select your board from the dialog box.

��� A green circle should automatically appear behind the USB icon, showing that the micro:bit is connected. If not, ask your teacher for help.

Adding Blocks

Your micro:bit is now connected, but you'll need to add more blocks to program it. You'll do this by
adding a couple of libraries to MicroBlocks.

��� Click the + symbol next to Libraries.

��� Select "Basic Sensors.ubl" and then click "Open."

��� Do the same to load the "LED Display.ubl" library.

Using the Display Block

One block that's unique to micro:bit is the display block. It's designed to look like the grid of LEDs on the front side of the board. There are 25 LEDs that you can turn on and
off individually.

��� Drag the display block into the Scripts area (the large open area on the right), and design your own pattern by clicking the LED rectangles to turn them on or off.

���� Click on the block once and a your pattern should appear on your micro:bit! (If not, work with your classmates or teacher to fix the problem.)

Saving Your Project

Saving in MicroBlocks is different from saving in Snap!.

���� Download your project:

a�� Click the MicroBlocks "File" menu ().

b�� Choose "Save."

c�� Selecting a location on your computer.

A file will download to your computer that you can open using MicroBlocks later.

In this activity, you learned how to set up a coding environment for micro:bit and made a pattern on the micro:bit LED display.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 1: Meet micro:bit, Activity 1 �������� ��������

Vocabulary

A software library is a collection of procedures (blocks) that can be used in
programs.

Get Ready

In this activity, you'll set up your micro:bit and write your first program in MicroBlocks.

Collect Materials

���

micro:bit

USB cable

Battery pack (optional)

Set Up Your micro:bit with MicroBlocks

For this unit, you'll use a program called MicroBlocks, a Snap!-like programming language designed to control tools like micro:bit.

��� Open MicroBlocks in a Chrome browser.

Why Chrome?

Chrome supports connecting a micro:bit to your web browser.

��� Connect your micro:bit to your computer with a USB cable.

��� Select the USB icon in the upper left corner (shown right), then select your board from the dialog box.

��� A green circle should automatically appear behind the USB icon, showing that the micro:bit is connected. If not, ask your teacher for help.

Adding Blocks

Your micro:bit is now connected, but you'll need to add more blocks to program it. You'll do this by
adding a couple of libraries to MicroBlocks.

��� Click the + symbol next to Libraries.

��� Select "Basic Sensors.ubl" and then click "Open."

��� Do the same to load the "LED Display.ubl" library.

Using the Display Block

One block that's unique to micro:bit is the display block. It's designed to look like the grid of LEDs on the front side of the board. There are 25 LEDs that you can turn on and
off individually.

��� Drag the display block into the Scripts area (the large open area on the right), and design your own pattern by clicking the LED rectangles to turn them on or off.

���� Click on the block once and a your pattern should appear on your micro:bit! (If not, work with your classmates or teacher to fix the problem.)

Saving Your Project

Saving in MicroBlocks is different from saving in Snap!.

���� Download your project:

a�� Click the MicroBlocks "File" menu ().

b�� Choose "Save."

c�� Selecting a location on your computer.

A file will download to your computer that you can open using MicroBlocks later.

In this activity, you learned how to set up a coding environment for micro:bit and made a pattern on the micro:bit LED display.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 1: Meet micro:bit, Activity 1 �������� ��������

Design your LED pattern by
clicking on individual
rectangles to light them up.

Tiny Animation

In this activity, you'll write a script make an animation appear on the LED screen by switching between two screens.

To start, you'll make an animation flipping between a smile and a frown.

��� If it isn't already, open MicroBlocks, and connect your micro:bit.

��� Create two face designs on two copies of the display block.

��� Create a loop to cycle through both expressions.

Tip: Animations are a rapid sequence of images displayed in a row. To bring your face to life, you'll need to switch between display blocks
quickly, but not too quickly. To achieve this, use a wait block after each display. Adjust with the amount of time the program waits to what
you like.

��� Once your animation is playing on the micro:bit, create your own animation by switching between two display blocks.

Make an Interactive Animation

So far, your animation changes on its own, but you can control when it changes for example, by using the micro:bit's LEDs as light sensors. The LEDs can detect different levels
of light, and you can program the micro:bit to change the animation depending on how much light they detect.

��� Use an if block together with a light level block to change the image on the LED screen based on the light detected.

Tip: Light levels vary greatly depending on the room that you're in, so you'll need to experiment with values for your program considers bright or
dark, and you may need to change it later for a different room. One way to do this is to use the say block. Click for a picture.

If There Is Time…
��� Make a more complicated animation by adding more display blocks or varying the wait time.

In this activity, you used display blocks together with forever, wait, and light level to create animations controlled by pauses and by light.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 1: Meet micro:bit, Activity 2 �������� ��������

Designing Your Pet

In this activity, you'll design an interactive, imaginary creature that uses the micro:bit LED display.

Collect Materials

���

micro:bit

USB cable

battery pack (optional)

Plan Your Pet

Your pet can be real, fictional, or an entirely new creature of your own creation. It will detect its environment using micro:bit’s sensors and inputs, and the LED display will let
your pet respond.

��� Brainstorm your creature. Think about how it spends its day or the activities it enjoys doing. Use a pencil and sketch what it will look like.

��� Write some notes about how your pet will look and behave:

What will its body look like? What materials do you need?

Where will the micro:bit go? How will it be used to enhance the pet?

What will be shown on the LED display?

You've already seen how to control the 25-LED display depending on light level detected by the micro:bit. The board can also respond to its two

buttons (labeled "A" and "B"), and it can play sounds with a block that's like .

��� Your pet should respond to at least one of these interactions:

Pressing a button

Tilting the micro:bit

Changing the light level (see L1: Meet micro:bit)

Write some notes about how your pet will be respond to your actions.

��� Share your ideas with a partner, and offer feedback on their plan.

Do you have ideas for making it more interesting?

Do you think they may run into any challenges with their plan?

In this activity, you decided on a pet to create and thought about how to make it interactive using micro:bit.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 2: Interactive Pet, Activity 1 �������� ��������

Building Your Pet

In this activity, you'll create your pet using craft supplies.

Collect Materials

micro:bit

Craft supplies, such as:

Scissors

Markers

Glue stick

Colorful paper

Cardboard

Pencils

Popsicle sticks

Decorative materials (googly eyes, pipe cleaners, etc)

Make a Pet

Create a body that will house your micro:bit. Consider the following design details:

How will you integrate the micro:bit into the pet body?

Do you want your pet to be flat or three-dimensional?

Do you want parts of the micro:bit accessible? (LED screen, A/B buttons)

It's okay if you try a design that doesn't work at first. Think about if there are ways to modify the design to make it fit your vision, or if you need to change your original design.
Your pet may evolve as you're making it.

Examples

The cat (left) builds off of the design seen in Activity 1: Designing Your Pet. Notice how it looks similar but
not quite the same as the drawing. The LED screen became the cat's mouth and the A/B buttons are
accessible on either side.

The digital pet (right) is a new design that takes a different approach to making an interactive pet. Its
body is an egg-shaped home that houses a pet that lives on the screen. To interact with the pet, one
button is visible below the LED screen.

��� Create your body for your pet that integrates the micro:bit.

You can move between Activity 2: Building Your Pet and Activity 3: Adding Interactivity.

In this activity, you created the physical body for your interactive pet.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 2: Interactive Pet, Activity 2 �������� ��������

Adding Interactivity

In this activity, you'll bring your pet to life with code.

To make your pet interactive, you will need to use at least two different inputs that cause at least two different outputs.

Vocabulary: Input and Output

In computing, the input is the action that tells the computer to do something. The output is the resulting action that occurs after the input command is
received.

The micro:bit has different types of inputs: light (bright or dark), button pressed, or certain movement. The output we're currently exploring is displaying
a picture on the LED display.

Consider the following inputs and decide which one to use to enhance your pet’s personality or story.

light level (like from Lab 1)

button A or button B

tilt x or tilt y or tilt z

��� Open MicroBlocks in a Chrome browser and start a new project. Load the additional libraries by selecting Library, then LED Display and Basic Sensors.

��� Use a when block to start your script.

��� Select an input for your interactive pet. Note that you'll need to include an inequality with light level and tilt x. Experiment with different values to trigger the
script (100 may not be the right value). For a reminder about inequalities, check out 1.6.2, 1.6.3, and 1.7.

��� Create an animation using the LED display, wait, and repeat blocks.

In this activity, you created an interactive pet using code, paper, and storytelling.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 2: Interactive Pet, Activity 3 �������� ��������

For a list of craft supplies
you may find helpful, see Lab
2 Activity 2: Building Your
Pet.

Game Design

In this activity, you'll start making a game (or reimagine an existing one) that uses micro:bit using light level, buttons, or tilt to be played either individually or with others.

Collect Materials

For each activity, we'll provide you with a list of materials to gather and some suggested materials.

���

micro:bit and USB cable

Homemade switch materials (optional)

Aluminum foil

Alligator clip wires

Craft supplies

Get Started

Think of a game you've played many times, and imagine how adding code could enhance the experience. You'll make a game that uses the micro:bit only or uses the micro:bit as
a part to the game alongside other general craft materials.

��� Brainstorm the game that you would like to bring to life. Use micro:bit inputs and outputs that you know to incorporate into game play, such as:

Inputs:

Light level

A or B button

Tilt x, y, or z

Outputs: LED display

��� Think first on your own and then discuss with a partner:

What are the rules to the game?

How will the game start? How will players know when it ends?

Is it single player, or can it be played collaboratively?

When making your game, you'll likely want to use a variable to keep track of data like a score. We first learned about variables in Unit 1 Lab 7: Dealing with Data Dos, Activity 2.
Here are some key pieces of information to remember:

Vocabulary

A variable is like a labeled box that can store a value, such as a word, a number, or a list.

Create a new variable in MicroBlocks by selecting the Variables tab on the left. Select Add a variable and give it a name that's meaningful to your project. You will then have
access to set and use your variable in your script.

Before building, decide whether you would like your game to be played with the micro:bit only or if you want to include additional materials. The following is an example of a
micro:bit only game.

Example 1: micro:bit only

Fast Click

In this game, players click the A and B buttons as quickly as they can. After the micro:bit displays ”GO”, Player A and B will try to click their respective buttons as fast as
possible. The player able to click their button 10 times the fastest wins. The LEDs will then display the letter of which player (A or B) won the round.

In this activity, you started to brainstorm your game design and rules and decide whether your game is made with a micro:bit only or with additional materials.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 3: Game Play, Activity 1 �������� ��������

For a list of craft supplies
you may find helpful, see Lab
2 Activity 2: Building Your
Pet.

Game Design

In this activity, you'll start making a game (or reimagine an existing one) that uses micro:bit using light level, buttons, or tilt to be played either individually or with others.

Collect Materials

For each activity, we'll provide you with a list of materials to gather and some suggested materials.

���

micro:bit and USB cable

Homemade switch materials (optional)

Aluminum foil

Alligator clip wires

Craft supplies

Get Started

Think of a game you've played many times, and imagine how adding code could enhance the experience. You'll make a game that uses the micro:bit only or uses the micro:bit as
a part to the game alongside other general craft materials.

��� Brainstorm the game that you would like to bring to life. Use micro:bit inputs and outputs that you know to incorporate into game play, such as:

Inputs:

Light level

A or B button

Tilt x, y, or z

Outputs: LED display

��� Think first on your own and then discuss with a partner:

What are the rules to the game?

How will the game start? How will players know when it ends?

Is it single player, or can it be played collaboratively?

When making your game, you'll likely want to use a variable to keep track of data like a score. We first learned about variables in Unit 1 Lab 7: Dealing with Data Dos, Activity 2.
Here are some key pieces of information to remember:

Vocabulary

A variable is like a labeled box that can store a value, such as a word, a number, or a list.

Create a new variable in MicroBlocks by selecting the Variables tab on the left. Select Add a variable and give it a name that's meaningful to your project. You will then have
access to set and use your variable in your script.

Before building, decide whether you would like your game to be played with the micro:bit only or if you want to include additional materials. The following is an example of a
micro:bit only game.

Example 1: micro:bit only

Fast Click

In this game, players click the A and B buttons as quickly as they can. After the micro:bit displays ”GO”, Player A and B will try to click their respective buttons as fast as
possible. The player able to click their button 10 times the fastest wins. The LEDs will then display the letter of which player (A or B) won the round.

In this activity, you started to brainstorm your game design and rules and decide whether your game is made with a micro:bit only or with additional materials.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 3: Game Play, Activity 1 �������� ��������

Game Play

In this activity, you'll build your game and play it with classmates.

In the previous activity, you were introduced to a game that uses the micro:bit only. The following is an example game that uses additional materials. We'll introduce read analog
pin, a new input type, and use the read analog pin blocks to determine whether an action has occurred or not using a switch.

Vocabulary

An analog input pin can read a voltage level that ranges of voltages provided to your micro:bit.

A switch is an electronic device that disconnects or connects and electrical path, resulting in a circuit turning off or on.

Make a switch using your micro:bit by connecting alligator clip wires to Pin 0 and GND. Start by connecting these two alligator clips together and you've got a switch! Use
another conductive material like aluminum foil to add more complex shapes to your game design.

Example 2: micro:bit + materials

Tube Ball

A toilet paper tube transforms into a basket for catching a ball. Alligator clips to make a homemade switch, so when the ball is inside the tube, it completes the circuit. I really
like this technique and hope we can use it more! I'm also using a counter to keep track of every time the ball goes in the hole. To reset the game, press the A button.

Tip: Add scrolling text to your micro:bit by adding the Scrolling library in MicroBlocks. Click for a picture.

Build a Game

After brainstorming and seeing games that use only a micro:bit as well as one that uses physical materials, it's time to start bringing your game to life.

��� Design and build your game in MicroBlocks and with physical materials, if applicable.

��� Play your game yourself or ask a classmate to play with you. If you find that something does not work as intended, make necessary changes.

��� Write down the game and its rules to communicate to those who are new at playing the game or are new to micro:bit.

If There Is Time…

After playing your game with classmates, ask them for feedback on your game. Was it easy to play? Did the rules make sense? Consider their feedback and make
appropriate changes to you game design.

If you have completed your game early, make a game of the opposite type. For example, if you made a micro:bit only game, make a game that uses additional
materials or visa versa.

In this activity, you built your own game and tested it with classmates.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 3: Game Play, Activity 2 �������� ��������

Make It Move

In this activity, you'll learn about servo motors, how to connect one to your micro:bit, and use MicroBlocks to control its movement.

Collect Materials

���

micro:bit and USB cable

Crazy Circuits Bit Board

Servo motor

Craft supplies

For a list of craft supplies you may find helpful, see Lab 2 Activity 2: Building Your Pet.

Get Started

Motors are one way to add movement to your projects. There are many different types of motors, including one called a servo motor.

Vocabulary

A servo motor provides position control, so it can be told to move into an exact spot. Its position can be selected from 0 to 180 degrees.

��� Insert your micro:bit into the Bit Board, pins facing down.

��� Connect a servo to the pins on the Bit Board, making note of which pins. Use the following image as reference for setup.

��� Add the servo library in MicroBlocks by selecting Library, and then Servo.ubl.

Control the servo motor by using the servo motor blocks. After adding the servo library, you'll have the following blocks available:

set servo to degrees

Moves the servo arm to a particular position in degrees. The range of -90 to 90 degrees is equivalent to 180 degrees. Be sure to address the right servo (check your Bit
Board to see which port your servo is connected to, and use the following chart as reference for determining servo position in degrees.

set servo to speed

Determine the speed at which the servo moves. The speed range is from 0 to 100, and the sign (positive or negative) determines the direction it turns.

stop servo

Stop the servo's movements.

Tip: Each block asks to specify which the servo number. Check which port your servo is plugged into on the Bit Board. The available options are 0, 1, 13,
14, or 15.

Add Movement

Now that you've set up your micro:bit and servos, make your first movement. Use the set servo to degrees block to make the servo move, and change the sign (positive and
negative) to switch the direction.

��� Make your servo move using at least two blocks.

In this example, the servo motor moves twice with a wait block to add a pause between movements. This script starts by pressing the A button.

Add Another Type of Movement

There are many ways to make a servo move: big or small, quick or slow, with pauses or rapid succession, the choice is yours!

��� Create a second servo movement.

This example uses the B button to reset the servo's position.

If There Is Time…
Now that you've made two different movements with your servo, consider making something more complex using different micro:bit inputs. Or add more than
one servo to your Bit Board to control multiple motors simultaneously.

In this activity, you learned how to connect a servo motor to your micro:bit and make it move in MicroBlocks.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 4: Marvelous Motions, Activity 1 �������� ��������

Make It Move

In this activity, you'll learn about servo motors, how to connect one to your micro:bit, and use MicroBlocks to control its movement.

Collect Materials

���

micro:bit and USB cable

Crazy Circuits Bit Board

Servo motor

Craft supplies

For a list of craft supplies you may find helpful, see Lab 2 Activity 2: Building Your Pet.

Get Started

Motors are one way to add movement to your projects. There are many different types of motors, including one called a servo motor.

Vocabulary

A servo motor provides position control, so it can be told to move into an exact spot. Its position can be selected from 0 to 180 degrees.

��� Insert your micro:bit into the Bit Board, pins facing down.

��� Connect a servo to the pins on the Bit Board, making note of which pins. Use the following image as reference for setup.

��� Add the servo library in MicroBlocks by selecting Library, and then Servo.ubl.

Control the servo motor by using the servo motor blocks. After adding the servo library, you'll have the following blocks available:

set servo to degrees

Moves the servo arm to a particular position in degrees. The range of -90 to 90 degrees is equivalent to 180 degrees. Be sure to address the right servo (check your Bit
Board to see which port your servo is connected to, and use the following chart as reference for determining servo position in degrees.

set servo to speed

Determine the speed at which the servo moves. The speed range is from 0 to 100, and the sign (positive or negative) determines the direction it turns.

stop servo

Stop the servo's movements.

Tip: Each block asks to specify which the servo number. Check which port your servo is plugged into on the Bit Board. The available options are 0, 1, 13,
14, or 15.

Add Movement

Now that you've set up your micro:bit and servos, make your first movement. Use the set servo to degrees block to make the servo move, and change the sign (positive and
negative) to switch the direction.

��� Make your servo move using at least two blocks.

In this example, the servo motor moves twice with a wait block to add a pause between movements. This script starts by pressing the A button.

Add Another Type of Movement

There are many ways to make a servo move: big or small, quick or slow, with pauses or rapid succession, the choice is yours!

��� Create a second servo movement.

This example uses the B button to reset the servo's position.

If There Is Time…
Now that you've made two different movements with your servo, consider making something more complex using different micro:bit inputs. Or add more than
one servo to your Bit Board to control multiple motors simultaneously.

In this activity, you learned how to connect a servo motor to your micro:bit and make it move in MicroBlocks.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 4: Marvelous Motions, Activity 1 �������� ��������

Servo Project

In this activity, you'll create your own servo project using the Bit Board, MicroBlocks, and general making materials.

Before diving into your servo project, take some time to brainstorm independently and discuss your project idea with a classmate.

��� Brainstorm how you want to incorporate motion into a project and what supplies you'll need to accomplish your idea.

��� Talk with a nearby classmate about your idea, and listen to theirs. Ask yourselves the following questions:

Describe the story of what will happen. What's the order of events?

Does a person need to interact with the story? If so, how?

Describe the movement? How will it start? How will it stop?

Example 1: Goal!

Make a game using servos, like this soccer game. The servo controls the player's leg, which can then kick the ball into the goal. Keep track of the score on the micro:bit by
pressing the A button the mark each point.

Tip: To keep track of the score, this project uses variables, which were introduced in Lab 3 Activity 1: Game Design.

Example 2: Pass the Ball

Move a ball from one end of a table to the other by passing it between servos. These servo arms are extended and modified with a cup on the end to hold a small ball. Start the
sequence of events by pressing the B button on the micro:bit, which then initiates the servo arms to pass the ball from one cup to another.

��� Create your servo project using MicroBlocks and physical materials.

��� Share your project with others and make changes, if desired.

If There Is Time…
Make another project with a servo motor. If possible, add a second servo and make a project that incorporates both.

In this activity, you created your own unique project using servo motors and controlled them with code.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 4: Marvelous Motions, Activity 2 �������� ��������

LED It Glow

In this activity, you'll learn about LED lights and how to turn them on both with and without code.

Collect Materials

���

micro:bit and USB cable

Copper tape

LEDs

Coin cell battery

Pencil

Needle nose pliers (optional)

Craft supplies

For a list of craft supplies you may find helpful, see Lab 2 Activity 2: Building Your Pet.

LEDs and Circuits

In this activity, we'll explore programmable light by using LEDs.

Vocabulary

An LED contains a light emitter inside of a plastic bulb. This light emitter can be made from different materials, and when electricity runs through it, it
shines different colors. However, electricity can only flow in one direction, and the name for electronic parts with this quality is called a diode. Thus, an
LED stands for "light-emitting diode."

An LED only works when oriented in one direction (it's not reversible), so it's important to be familiar with its structure. LEDs have two legs with different lengths. The long leg is
the positive side of the LED, and the short leg is the negative side.

First, we will illuminate an LED with only a battery (no code). The simplest way is to place the positive (+) side of your LED on the positive side of the battery.

��� Grab an LED and a coin cell battery. Place the long leg on the positive (+) side of the battery, and the short leg on the negative side (-) of the battery].

Next, we'll walk through how to make a circuit on a piece of paper.

��� Recreate this drawing on a quarter sheet of paper. The circles are created by tracing a coin cell battery twice in the corner of the piece of paper. The dashed line is
where the paper folds. Take note of where the positive (+) and negative (-) signs are located.

��� Use copper tape to cover the drawn path, leaving a gap in the middle. Careful to use one continuous piece of tape, if possible, as the underside of the tape is less
conductive and may lead to the light not turning on.

Tip: Use this folding technique to make corners with copper tape. Click for a video.

��� Place the coin cell battery face up so that it's on top of the (-) circle.

��� Place your LED onto the copper strips in the correct (+)/(-) orientation and secure it using copper tape or clear tape. When the corner of the paper is pressed on
top of the battery, the light should illuminate.

In this activity, you learned how to complete a circuit on paper using copper tape, a coin cell battery, and an LED.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 5: Paper Stories, Activity 1 �������� ��������

LED It Glow

In this activity, you'll learn about LED lights and how to turn them on both with and without code.

Collect Materials

���

micro:bit and USB cable

Copper tape

LEDs

Coin cell battery

Pencil

Needle nose pliers (optional)

Craft supplies

For a list of craft supplies you may find helpful, see Lab 2 Activity 2: Building Your Pet.

LEDs and Circuits

In this activity, we'll explore programmable light by using LEDs.

Vocabulary

An LED contains a light emitter inside of a plastic bulb. This light emitter can be made from different materials, and when electricity runs through it, it
shines different colors. However, electricity can only flow in one direction, and the name for electronic parts with this quality is called a diode. Thus, an
LED stands for "light-emitting diode."

An LED only works when oriented in one direction (it's not reversible), so it's important to be familiar with its structure. LEDs have two legs with different lengths. The long leg is
the positive side of the LED, and the short leg is the negative side.

First, we will illuminate an LED with only a battery (no code). The simplest way is to place the positive (+) side of your LED on the positive side of the battery.

��� Grab an LED and a coin cell battery. Place the long leg on the positive (+) side of the battery, and the short leg on the negative side (-) of the battery].

Next, we'll walk through how to make a circuit on a piece of paper.

��� Recreate this drawing on a quarter sheet of paper. The circles are created by tracing a coin cell battery twice in the corner of the piece of paper. The dashed line is
where the paper folds. Take note of where the positive (+) and negative (-) signs are located.

��� Use copper tape to cover the drawn path, leaving a gap in the middle. Careful to use one continuous piece of tape, if possible, as the underside of the tape is less
conductive and may lead to the light not turning on.

Tip: Use this folding technique to make corners with copper tape. Click for a video.

��� Place the coin cell battery face up so that it's on top of the (-) circle.

��� Place your LED onto the copper strips in the correct (+)/(-) orientation and secure it using copper tape or clear tape. When the corner of the paper is pressed on
top of the battery, the light should illuminate.

In this activity, you learned how to complete a circuit on paper using copper tape, a coin cell battery, and an LED.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 5: Paper Stories, Activity 1 �������� ��������

LED It Glow

In this activity, you'll learn about LED lights and how to turn them on both with and without code.

Collect Materials

���

micro:bit and USB cable

Copper tape

LEDs

Coin cell battery

Pencil

Needle nose pliers (optional)

Craft supplies

For a list of craft supplies you may find helpful, see Lab 2 Activity 2: Building Your Pet.

LEDs and Circuits

In this activity, we'll explore programmable light by using LEDs.

Vocabulary

An LED contains a light emitter inside of a plastic bulb. This light emitter can be made from different materials, and when electricity runs through it, it
shines different colors. However, electricity can only flow in one direction, and the name for electronic parts with this quality is called a diode. Thus, an
LED stands for "light-emitting diode."

An LED only works when oriented in one direction (it's not reversible), so it's important to be familiar with its structure. LEDs have two legs with different lengths. The long leg is
the positive side of the LED, and the short leg is the negative side.

First, we will illuminate an LED with only a battery (no code). The simplest way is to place the positive (+) side of your LED on the positive side of the battery.

��� Grab an LED and a coin cell battery. Place the long leg on the positive (+) side of the battery, and the short leg on the negative side (-) of the battery].

Next, we'll walk through how to make a circuit on a piece of paper.

��� Recreate this drawing on a quarter sheet of paper. The circles are created by tracing a coin cell battery twice in the corner of the piece of paper. The dashed line is
where the paper folds. Take note of where the positive (+) and negative (-) signs are located.

��� Use copper tape to cover the drawn path, leaving a gap in the middle. Careful to use one continuous piece of tape, if possible, as the underside of the tape is less
conductive and may lead to the light not turning on.

Tip: Use this folding technique to make corners with copper tape. Click for a video.

��� Place the coin cell battery face up so that it's on top of the (-) circle.

��� Place your LED onto the copper strips in the correct (+)/(-) orientation and secure it using copper tape or clear tape. When the corner of the paper is pressed on
top of the battery, the light should illuminate.

In this activity, you learned how to complete a circuit on paper using copper tape, a coin cell battery, and an LED.

�������� ��������

The Beauty and Joy of Computing by University of California, Berkeley and Education Development Center,
Inc. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The development of this site has been funded by the National Science Foundation under grant nos. 1138596,
1441075, and 1837280; the U.S. Department of Education under grant number S411C200074; and the Hopper-
Dean Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or our
other funders.

Unit 3 Lab 5: Paper Stories, Activity 1 �������� ��������

52

Chapter 9

Appendix B - Teaching Guide

The following pages are the student facing curriculum available at
https://bjc.berkeley.edu/bjc-r/course/middle-school-teacher.html.

67

Bibliography

[1] Autodesk. Explore Micro:bit With Tinkercad. url: https://blog.tinkercad.com/
explore-microbit-with-tinkercad.

[2] Beetle Blocks. url: http://beetleblocks.com/.

[3] UC Berkeley. Snap!: Build Your Own Blocks. url: https://snap.berkeley.edu.

[4] UC Berkeley. The Beauty and Joy of Computing. 2022. url: https://bjc.berkeley.
edu/.

[5] Paulo Blikstein. “Digital fabrication and ‘making’in education: The democratization
of invention”. In: FabLabs: Of machines, makers and inventors 4.1 (2013), pp. 1–21.

[6] Curriculum planning tool. Aug. 2019. url: https://www.birdbraintechnologies.
com/resources/curriculum-planning-tool/](https://www.birdbraintechnologies.

com/resources/curriculum-planning-tool/.

[7] Code.org Middle School: CS Discoveries. 2022. url: https://code.org/educate/
curriculum/middle-school.

[8] Harvard School of Education. ScratchEd Creative Computing Curriculum Guide. url:
https://scratched.gse.harvard.edu/resources/scratch-curriculum-guide.

html.

[9] The Tinkering Studio at the Exploratorium. Chain Reaction. 2017. url: https://
www.exploratorium.edu/tinkering/projects/chain-reaction.

[10] Scratch Foundation. Scratch micro:bit Coding Cards. url: https : / / resources .

scratch.mit.edu/www/cards/en/microbit-cards.pdf.

[11] Paulo Freire. Pedagogy of the oppressed. New York: Continuum, 1970.

[12] Friedrich Froebel. The education of man. New York: Appleton, 1887.

[13] Dan Garcia, Brian Harvey, and Tiffany Barnes. “The Beauty and Joy of Computing”.
In: ACM Inroads 6.4 (Nov. 2015), pp. 71–79. issn: 2153-2184. doi: 10.1145/2835184.
url: https://doi.org/10.1145/2835184.

[14] Idit Ed Harel and Seymour Ed Papert. Constructionism. Ablex Publishing, 1991.

[15] MakeCode. Courses. url: https://makecode.microbit.org/courses.

BIBLIOGRAPHY 68

[16] BBC micro:bit. micro:bit Overview. url: https://microbit.org/get-started/
user-guide/overview/.

[17] MicroBlocks. url: https://microblocks.fun/.

[18] Maria Montessori. The montessori method. New York: Frederick Stokes Co., 1912.

[19] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas. USA: Basic
Books, Inc., 1980. isbn: 0465046274.

[20] Mike Petrich, Karen Wilkinson, and Bronwyn Bevan. “It looks like fun, but are they
learning?” In: Design, make, play. Routledge, 2013, pp. 68–88.

[21] Plezmo. url: https://www.plezmo.com/.

[22] Mitchel Resnick and Eric Rosenbaum. “Designing for tinkerability”. In: Design, make,
play: Growing the next generation of STEM innovators (2013), pp. 163–181.

[23] Mitchel Resnick et al. “Scratch: programming for all”. In: Communications of the ACM
52.11 (2009), pp. 60–67.

[24] Susan H. Rodger et al. “Engaging Middle School Teachers and Students with Alice
in a Diverse Set of Subjects”. In: Proceedings of the 40th ACM Technical Symposium
on Computer Science Education. SIGCSE ’09. Chattanooga, TN, USA: Association
for Computing Machinery, 2009, pp. 271–275. isbn: 9781605581835. doi: 10.1145/
1508865.1508967. url: https://doi.org/10.1145/1508865.1508967.

[25] Emmanuel Schanzer et al. “Transferring Skills at Solving Word Problems from Com-
puting to Algebra Through Bootstrap”. In: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. SIGCSE ’15. Kansas City, Missouri, USA:
Association for Computing Machinery, 2015, pp. 616–621. isbn: 9781450329668. doi:
10.1145/2676723.2677238. url: https://doi.org/10.1145/2676723.2677238.

[26] BirdBrain Technologies. Finch Robot. url: https://www.birdbraintechnologies.
com/finch/.

[27] Tinkercademy. Micro:bit Tutorials and Store. url: https://tinkercademy.com/
microbit/.

[28] Turtlestitch - Coded Embroidery. url: https://www.turtlestitch.org/.

[29] Jeannette M Wing. “Computational thinking”. In: Communications of the ACM 49.3
(2006), pp. 33–35.

