
A Compiler in Snap!: Compiling a Block-Based

Language

Oscar Chan

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-157

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-157.html

May 20, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Compiler in Snap!: Compiling a Block-Based Language

by Oscar Chan

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Brian Harvey
Research Advisor

(Date)

* * * * * * *

Professor Joshua Hug
Second Reader

(Date)

May 13, 2022

 20-May-2022

A Compiler in Snap!: Compiling a Block-Based Language
Oscar Chan

University of California, Berkeley
ochan2@berkeley.edu

ABSTRACT
This paper presents a compiler framework for the Snap! blocks
programming language. Snap! is a web browser language
using JavaScript to run the interface and the original interpre-
tation of the language, therefore it is sensible to use JavaScript
as the destination language as well. The compiler reads each
Snap! block sent to it within a warp block and translates it to
the equivalent JavaScript function that powers the block and
powers the Sprites on the Snap! graphical interface. Control
looping blocks like the forever, for, and repeat return control
to the Snap! graphical interface by using JavaScript Genera-
tors pausing themselves in the middle to redraw the graphics
and then come back to the block and continues running the
compiled program. When the compiled code is executed on
several tasks, it was able to attain a speedup that is significantly
noticeable for a sizeable program compared to the interpreter
and the interpreter-version of warp, but for simple programs,
the interpreter warp performed better or as good, and more
work needs to be done to support more Snap! blocks.

Author Keywords
Snap!; JavaScript; compilers; Computer Science Education;
block-based programming

CCS Concepts
•Human-centered computing → Human computer interac-
tion (HCI); •Applied computing → Education; •Software
and its engineering → Software notation and tools; Com-
pilers;

MOTIVATION
Snap! is a graphical blocks-based language inspired by MIT’s
Scratch. It is built as an educational programming language
designed to help create an introduction to mathematical and
computational ideas. It is built using a web interface and
JavaScript so that it can be run inside a browser without any
extra setup needed unless the student prefers downloading
Snap! and using it offline. Even then, it is as simple as open-
ing the folder inside a browser after download. As a result, this
avoids the problems of installation and syntax errors that tend
to discourage and frustrate new programmers from continuing
in the field. Snap! is used in various places including UC
Berkeley’s CS 10 The Beauty and Joy of Computing (a “CS
0” non-majors course), The Beauty and Joy of Computing
Massive Open Online Course (MOOC) on edX, and a recom-
mended language in the relatively new Advanced Placement
(AP) Computer Science Principles course. With the growth
of the language into prospective programmers, it is a good
time to introduce new features that allows them to experience
more of the programming world, one of which is compiled
languages.

There are several advantages to having languages compiled
down to as much of the host language as possible (normally
would be Assembly or Bytecode on most computers), includ-
ing allowing faster execution of a program compared to in-
terpreted programs and going directly to the host language.
Another advantage to going directly to the host language is
cutting away the need for a translation layer in the interpreter
for packaged stand-alone executions of Snap! projects, using
the Snapp! tool1 since the need to see the source code for users
is no more and therefore can cut down the packaged project
size by a bit and hopefully let the program run faster and more
smoothly.

Since the host is a browser for the reasons mentioned earlier
in the Abstract, the decision to compile to JavaScript makes
sense. Compiling JavaScript is not a new concept, as other
languages like CoffeeScript and TypeScript do just that. A
Scratch compiler to JavaScript already exists called LeopardJS,
showing that such a concept can exist for Snap!. Since it is
written in TypeScript, a form of JavaScript, it becomes more
hopeful to be able to write a compiler in the browser using
JavaScript.

Because Snap!’s audience is mostly in an educational and
beginner-friendly setting, there is not as much incentive to
optimize its performance. As a result, not as much exten-
sive research is done in Snap! as there is in other popular
programming languages.

Many Snap! users commonly lament about Snap!’s speed.
Often the slowdown is bad enough to the point users may fall
back on using Python or other languages to complete their
projects.

Increasing the performance of Snap! using compilation can
benefit in several ways. It can, of course, fix the major problem
of some users having concerns about the Snap! performance.
Therefore, it could open the possibility of Snap! returning as
a programming option for many students and make them less
frustrated to use the language, which was the original intention
of block-based languages. There also exists a good amount
of seasoned programmers who don’t want to use traditional
typing-based languages and use a block-based language for
many of their implementations. Having that back-to-home
feeling for them when they use a tool like Snap! would be
very beneficial to them as well.

During the need finding stage, it revealed a potential feature
for a compiled Snap! program having the ability to, later on,
add custom JavaScript code alongside the JavaScript compiled
Snap! code. While this is not the scope of our current imple-
mentation, having something that creates JavaScript code from
1http://snapp.citilab.eu/

1

Snap! can open doors to a possible additional implementation
to add JavaScript code. As a result, it would allow Snap! pro-
grammers to use the increased support of JavaScript to create
other special implementations and also take advantage of the
JavaScript libraries that exist today.

Currently, there aren’t any known tools in Snap! that do what
this project has set out to do. The closest thing to this project’s
functionality is the warp block in Snap!, which gives the Snap!
block code more time to run the code before returning partial
control to the Snap! interface. While using the block does
provide some speedup, the warp block does not compile the
code nor speed up the interpretation process enough to satisfy
user needs.

It is expected that the outcome of the compiler will help speed
up computationally heavy tasks while still allowing users to
take advantage of the simplicity and coding abstraction of a
drag-and-drop block environment.

RELATED WORK
There has not been any large interest in the programming
community in compiling block-based languages. A compiler
has been made for Scratch, but that’s about it. Although there
has been more work related to the compiling to JavaScript as
the destination language like with CoffeeScript and TypeScript.
This section will focus on two other block-based language
compiling where inspiration is taken from.

LeopardJS - a Scratch to JavaScript compiler

Figure 1: LeopardJS program running compiled Scratch
code with the cat forever running in circles with

JavaScript code used turn background red

Scratch, the language Snap! is heavily influenced2, already
has a third-party compiler. The LeopardJS tool3 for Scratch
was created to compile Scratch code on a separate website,
and the results were promising. Scratch code was able to run
faster, but the process of going to a third-party website still
made the task of compiling the code an extra step. There
was still no way to compile Scratch code in the Scratch user
interface where there was less risk of troubleshooting or er-
rors on another website, let alone be self-contained. If users
wanted to edit the code, they would first have to add what they
want in regular Scratch and then upload a new Scratch file to
LeopardJS. This is problematic given the original purpose of
Scratch, which is primarily targeting young audiences and the
2https://en.scratch-wiki.info/wiki/Snap!_(programming_language)
3https://leopardjs.com/

new programming community, who wouldn’t know how to
use the resulting JavaScript code immediately and especially
when there are bugs in the program that needs to be fixed,
which would require going back to the block editor to fix it.

One of the inspirations from this program is the compiler
structure. Using string concatenation to create JavaScript code,
Leopard can create code that mimics its block-based version
as much as possible. Since the tree-like structure of Scratch
already makes it its syntax tree, all the code needs to do is to
traverse down that tree and generate the required JavaScript
code snippets to create the entire program. The resulting code
is then placed into a function for the Leopard editor to have
access to run it. But because there are no blocks to click on to
run the Scratch blocks anymore, the only way to run the code
is by Events and clicking the Green Flag.

LogoBlocks

Figure 2: Logoblocks sample movement program with
wall detector

LogoBlocks4 is an old block-based language that was used
to create a program onto a computerized Lego brick. It was
used in inspiration to create the Lego Mindstorm5 robot pro-
gramming language and a graphical user interface, very much
similar to Snap! and Scratch. However, because the desti-
nation machine is a small computerized Lego brick (called
a "Brick"), it has to be compiled to another language. This
language has to be small and direct to the machine enough it
doesn’t take too much space to include an interpreter. LogoB-
locks as a result follows the usual path of a compiler to create
a spanning tree to parse the block language into a different
language called BrickLogo. Afterward, it compiles down to
portable code (or p-code) that can be loaded onto the Brick,
which is then read and executes the commands it is given.
Like Snap!, the purpose of this language was educational and
recreational for children and new programmers. However, Lo-
goBlocks required the use of a downloaded and installed tool
to then perform the compilation and then have it load into the
Brick unit. Another one of the bottlenecks that the program
and compiler faced at the time was the ability to have parame-
terized functions and return statements, which, according to
the author, added a whole new level of complexity.

4https://andrewbegel.com/mit/begel-aup.pdf
5http://www.cs.uml.edu/~fredm/papers/magical-machines.pdf

2

Figure 3: Turbo Mode and Warp block

While there is no intention on having Snap! having to go as
low-level as portable assembly code, inspiration can be taken
from the steps needed that allowed LogoBlocks to go from a
block-based language to a destination language. Additionally,
the compiler can use the Abstract Syntax Tree inherently inside
Snap! to start creating the JavaScript program.

ALTERNATIVE TECHNIQUES
Before having a compiler, there were two ways to speed up
the Snap! interface: Turbo Mode and the warp block (Fig.
3), both of which do the same thing in different ways. The
similarity in both is that they run the Snap! blocks program
at the cost of not giving back control to the main interface as
often, which is a user interface concern. The only difference is
that Turbo Mode applies this optimization indiscriminately (or
to all blocks ran) while warp applies this optimization only to
the blocks nested inside the block.

For now, these are two great ways to help make the program
run faster when live graphics are not a huge issue to the user,
but because many of the interface controls lie in the browser
and shares the same JavaScript thread with the interpreter, the
entire interface starts to lag. The graphics also update less
often, but this is the desired behavior by the specification.

We wanted to look for other ways to speed up Snap! to mit-
igate having problems with the interface interaction. The
belief in this project is that running the Snap! code directly
in JavaScript fast enough so that the interface can refresh less
often.

MOTIVATING TASKS
There are many different ways users can utilize Snap!. Various
environments and project ideas are made easier due to Snap!’s
visual design, so we need to ensure that tasks required to
complete all kinds of projects are made as easy as possible for
users. In Snap!, this means fixing runtime issues with common
project types and operations like mathematical calculations,
physics simulations, and data science queries/visualization.

We create these tasks based on potential creations Snap! pro-
grammers, students, or otherwise can potentially do. A ma-
jority of the programmers are students or explorers who have
little to no programming experience or are someone who had
programming experience in another language for some time
but wanted to not deal with the grammatical constraints of a
keyboard-based programming language. Our goal with these
tasks is to find ways we could mitigate limiting someone’s
creativity once they get the skills to create sizable projects,
which would cause them to have no choice but to learn a whole
new language to get their projects to a usable state. Even in-
troducing a compiler can sometimes limit one’s creativity. For
example if some blocks are not supported or appropriate for

a compiled context, then the block may have to be rewritten
specifically for a compiler or that block must be switched to
an interpretation context only.

In cases where the user needs to do a lot of mathematical oper-
ations, for example when multiplying matrices, Snap! can see
significant slowdown even in cases with smaller matrices. Be-
cause matrix multiplication is expected to work on very large
orders of magnitude, this slowdown is not tolerable. Modern
uses for matrix multiplication involve large matrices and re-
peated multiplication, neither of which are made any easier for
users when runtimes are too slow. If they spend too long wait-
ing for the mathematical operations to terminate, they may get
discouraged because their mistakes are amplified by the large
amounts of waiting. Other than optimizing their matrix and
vector multiplication algorithms, there is not currently much
to do to speed up the code without compiling it. Even with
these optimizations, which we do not necessarily expect Snap!
users to have good enough knowledge about to implement,
the Snap! code still may not run quickly enough. Using the
warp block lags the interface which as a result lags the Snap!
graphics that uses these heavy mathematical operations.

In other cases where students may want to run basic physics
simulations, there is also a considerable amount of mathemati-
cal operations to be done, but in these cases, there is another
factor affecting runtime. The need to make graphical updates
further slows computation time in Snap!, so being able to run
mathematical physics simulations and see the results updated
over time can be another challenging task in Snap!. Snap!
is ideologically a great language for this because it has the
built-in stage for image rendering, but the combination of
mathematical operations and visual updates can slow down
Snap! significantly. If a user wanted to simulate a planetary
body orbiting around a stellar body, generally considered a
basic, common, and educational physics simulation, Snap!’s
current functionality can’t run quickly enough to combine the
calculation and the visuals. Even with the aid of the warp
block and/or Turbo Mode in Snap!, simple simulations like
this are too slow.

Lastly, in cases where students want to use data science tools,
Snap! can slow down when working with larger datasets and
more complicated table queries. There are a lot of memory
reads and writes involved in common table query methods,
and even with the aid of using JavaScript functions to execute
atomic operations, Snap! slows down on common queries.
There are some ways to reduce runtime by optimizing query
order, but even for seasoned data scientists, optimizing query
order is a difficult problem, so for Snap! users, the assumption
cannot be that they will be able to optimize their queries. Snap!
needs to have reasonable runtimes for queries of any kind to
accommodate Snap! user needs. If a Snap! user has a dataset
they found and they want to be able to answer some questions
about it using Snap!, they need to be able to get results for
their queries quickly so that they can learn as they code. Users
using Snap! to conduct data science are likely doing so at an
beginner level, so we cannot assume that they will be able to
fully understand the blocks they are using and avoid common

3

Figure 4: Snap! User Interface with an Example
Program6

pitfalls. Snap! needs to be able to give immediate feedback
when students work with data science tools.

In all these cases, the common issue is that Snap! needs to
be able to do operations more efficiently so that users can get
feedback on their code more quickly. Users learning to code
should not be expected to tolerate large runtimes when they
are in the educational process. Instant feedback is important
as they learn how to use the tools. These tasks need to be able
to be done faster in Snap!.

DESIGN OF THE TOOL

Snap! Interface Flow
This section discusses the original technical implementation
of Snap! in a general context. Knowing how the flow works
helps us identify where the compiler would be best placed.

User Interface and Development Environment
The user interface of the Snap! (Fig. 4) includes several blocks
that programmers can drag and drop onto the Scripts canvas to
create a program. Programmers can make programs for each
of the Sprites to control them. The Sprites perform actions
based on the block code onto the canvas on the top right. Snap!
also can have a series of blocks that make up a custom blocks,
or in other words: a function.

Snap! Interface Control Flow
The Snap! interface is implemented in a way to return control
to the graphical interface after the interpretation of a connected
set of blocks, each step of a control loop (using a “doYield”
flag), and a timeout defaulting to 500 ms starting from the last
start or continuation of the program. There is a while loop
that goes through each connected block one at a time until
any one of the conditions mentioned is met to return control
to the interface.7 The world is generated onto the browser
starting from the snap.html file, which the browser looks
at to generate onto the browser’s web interface. It will call
several functions from the morphic.jsWeb-GUI interface,
inspired by Squeak, to generate the Snap! interface and the
world loop to trigger the next interpretation step of the code.

The Snap! blocks are connected one after another and the
lexical analyzer of the program reflects the blocks as a series
of linked blocks one after another, like a linked list. It is then
nested in a series of Contexts, which can be seen as frames for
7https://github.com/ochan1/Snap/blob/6513c9c/src/threads.js#L671

Figure 5: Flow chart of a general overview of Snap! web
interface control flow

Figure 6: Warp Block in use to compile a series of blocks

each block, for the interpreter loop to go through and process
each block, popping the completed Contexts when done or
retaining them as a new variable environment for loops or
functions.

Snap! Compiler
This section explains some of the implementations of the
compiler. The compiler structure code for some of the sections
is listed in Appendix A.

User Interaction
Given the purpose and limitations of the compiler, the compiler
implementation is abstract away within the warp block. Part
of the reason is the tight-nit creation of the interpreter with the
Snap! interface, which made it difficult to redesign all of Snap!
to have a compiler. In other words, the warp block is being
redesigned. It makes sense since the compiler does ignore
as many of the "doYield" flags just like what "warp" does.
Because the warp block accepts a nested series of blocks that
acts as an Abstract Syntax Tree, we can know what program
to compile. The code is compiled the first time the block is
reached, then it is saved to be reused again. When changes
are detected within the blocks, including the inputs, a flag will
be set to all the warp blocks that are ancestors at the location
being changed to tell the warp block to recompile the block
program.

4

Compiler Design and Interface
The Snap! compiler currently works by having the block
integrated into the interpreter. The warp block has a separate
function for its JavaScript logic to power the compiler. The
function then accepts the series of blocks and a continuing
generator. At the first run, the continuing generator parameter
is expected to be null, to show that this is the first run of
the block and requires starting the compiled code either from
scratch or from a previous compilation stored for now in the
top block of the block series inside the warp block.

When the series of blocks needs to be compiled if it has never
been compiled or needs to be recompiled based on the flag
set, the starting block, which is the topmost code block in a
connected stack of blocks inside the warp, is used to start the
compilation. As mentioned before, Snap! blocks contain the
blocks that come after it as next blocks and within it like for
parameters as children. The compiler goes through each block
and then performs syntax and semantic analysis based on the
block name it is currently at. It detects the block used by name,
similar to a token reader, and then generates a snippet of code
for itself and its children recursively.

Just-in-Time (JIT) Compiler within the Interpreter
The compiling behavior in this project is that the compilation
of warp blocks only happens when during the interpretation
of the main program a warp block is hit. It is then that the
Snap! interpreter will switch to running the inside blocks in a
compilation context. If the warp block is marked and needed
to be recompiled, it will then generate the JavaScript code
needed to run the series of blocks and their powered functions.

Custom Blocks are compiled on a just-in-time basis. During
compilation of a series of Snap! blocks, once a Custom Block
is found to require compiling, the JavaScript code to represent
the block is then also made. More details about its compilation
can be found in the "Custom Blocks" section.

Reporter Blocks
Reporter blocks are blocks that return a value to the parent
context. When a reporter block is returned onto the global
frame, the series of blocks will show a value as a text bubble
next to it. Since there is no expectation for more blocks to be
connected, the value is returned immediately, and the program
is stopped. The interpreter will then get the compiled program
return value and then return it to the outer context. If there is
no return value, it is by default null. The interpreter will then
not report anything for null.

The compiler simply just "returns" the received value, but it
also has the additional responsibility to clean up the contexts
made inside the function, especially when it exists somewhere
in the center of the entire code. As a result, the warp block’s
context is specially marked to, in a way, sandbox the Con-
texts so that when popping it doesn’t accidentally access the
Contexts that belong to the parent interpreter. Custom Block
contexts are marked to signify to the reporter block to stop
popping once it sees that marker, to signify all the contexts
made inside the functions are cleaned up.

Control Loops
Control loops are the trickier blocks. In the interpreter of
Snap!, each step of a loop returns control to the interface to
allow the user to interact with the interface. This is a problem
for compiled programs that required it to return control to the
interface at each step since it can’t push a new Context for the
next step of the program. For certain loops, it is possible to
wait for them to end like the “for” and “repeat” loops, even
though it may be possible that users will have to wait for a
long time. It’s even more problematic for the “forever” loop,
however, since it never ends and can relinquish control and
instead freezes the entire interface.

One idea was to make a new function for the loop, but it
is a problem if there was a branch fork where one of them
contained a loop, and then merge back together in the end,
essentially sharing the same tail of the branching.

We take into inspiration how Leopard implements control
loops. The solution was to have a method to pause the pro-
gram and return control to the interpreter to run the interface.
Fortunately, there was a way to do this in JavaScript using
Generators. The compiled JavaScript code is then made as a
Generator Function using the “function*” syntax. At the end
of each loop step, a JavaScript yield is added to pause the
program and give back control to the interpreter and interface
for a bit. This is where the third parameter comes in to accept a
continuing generator function. The structure of the interpreter
allows inputs to be pushed into the current Process so they can
be passed in again to the same function. In this case, we push
the string name, a block, and the returned generator along
with a Context with the “compiler” block again to continue the
generator upon next time the interpreter loop is executed. To
make sure control is given back to the interface, a “doYield”
is also pushed, following the same structure as the other loops
in the program.

Custom Blocks
Custom Blocks are equivalent to functions in the Snap! pro-
gramming language. They are defined in two ways: a block
definition and the block instance itself. The common imple-
mentation that relates the same body, should it be modified,
to the same custom block is the block definition. As a result,
the function body is compiled as if it was a separate program,
with a new Context at the start and then popped at the end of
the program to simulate an environment created and destroyed.
A special function is then compiled to for now search linearly
through an entire list of all the custom blocks in existence in
the current Sprite and the global environment, and then takes
the compiled function defined inside the block’s definition to
run on. Parameters are then parsed to fit the rules of JavaScript
parameter names (since Snap! programmers can use any string
they want to name their parameters) and avoid duplicates to
use as function parameter names in the JavaScript function.
Their values are then passed to the original variable names in
the inside context of the block during runtime.

Optimization - "yielding" to the Interface Less Often
In the original Snap! interpreter, what happens is that on each
step of a loop, every time certain timing blocks are called, and
on every Custom Block call, the interpreter yields control back

5

to the interface to potentially draw on the graphics screen and
introduce control back to the interpreter. On the other hand,
warp and Turbo Mode skip the yields often, but at the cost of
lagging the interface.

In the compiled portion of Snap!, whenever the runtime of the
JavaScript code uses a generator yield to pause the code for a
bit, the expectation there is to return control of the JavaScript
thread to the interface. However, "yielding" each time pro-
duces the same timed-speed as the interpreter, which was a
problem.

As a result, taking inspiration from the behavior of warp of
ignoring yields sometimes, we only yield back to the interface
after a certain number of times or when the timeout is reached
(as mentioned before, the default is 500 ms), whichever comes
first. Currently, this number is set at 300 yields skipped. For
a sizable program, the interface doesn’t lag and outperforms
the interpreter runtime and interface experience using a warp
block. However, for small programs, the compiled code still
lags the interface and the interpreter outperforms the compiled
version.

Limitations of the Compiler
At its current stage and as can be seen during the usability
testing, it can only run certain basic blocks and setups.

Cloning is not possible as there’s a structure different than
if the Sprite selected is used. By default, most blocks come
with their function names attached and only special blocks like
control and reporter blocks need something special to retain
both interface control and value returning in the compiled
state (since if we called the reporter block functions, they only
accept a block and not a compiled input).

The main categories of blocks tested in this project are Motion,
Control, Operators, and Variables. However, not all the blocks
in those categories are tested and are not guaranteed to work.
Over time, each block will be tested and made sure it can
work with the compiler. As of now, only async and timed
blocks, essentially those that require the use of "doYield"
themselves that are not Control blocks, would not work in
the compiler since their code requires interaction with the
interface itself (especially with the "doYield") and require a
complete rewrite of those functions or temporarily returning
control to the interpreter for those blocks.

COMPILER CODE RESULTS

Example Compiled Code
The compiler creates syntactically correct JavaScript code, but
not stylish code since this is meant only for JavaScript to see
it and not the end-user.

Some examples of Snap! code and their respective compiled
JavaScript code are listed in Appendix B.

Compiled Code Performance
Three programs (one simple and two large, based on the pro-
gram size and complexity) are running on the original Snap!
interpreter and also in the compiling warp block. The tasks
are as follows: A simple task is a simple linear loop program,
one large task is a matrix multiplication algorithm, and another

large task is matrix squaring (via looping on matrix multiply
of A := AA, for some matrix A with the result saved to matrix
variable A).

Benchmark Results on the three tasks
Since the compiler in the warp block is a JIT compiler, we
time the results for a first run that involves compiling and then
running, and also an additional run after that to get accurate
timing to see if compiling affected the timing.

The benchmarks are run on the Google Chrome browser on an
Intel i7 laptop.

Timings are reported by whatever the timer block reports.
The harness is as follows: A reset timer, the program it-
self (with or without a warp block wrapped around it), and a
report block that mentions the time via the timer block.

Tables 1, 2, and 3 show the timing results of benchmarking
programs using four different ways: interpreter, compiled
(inside the warp) with Compile + Run, compiled again with
Run only, and interpreter’s Warp.

In Table 2 when benchmarking the matrix multiplication tasks,
the compiled version was too fast to be able to determine if
the interfaced lagged. However, using the Table 3 results it is
possible on larger-sized matrices that the interface does not
lag and is fast, but would be immensely slow on Snap!.

Discussion of Benchmark Results
The compiler warp expectedly performs simple tasks around
the same speed as the interpreter warp block and also for large
tasks outperforms the interpreter warp.

For the simple tasks, the program is small enough in terms of
the number of instructions that any overhead introduced from
the compiler and its harness doesn’t beat the inefficiencies
of the warp block. Sometimes, as seen in the plain linear
loop program without the say block, the warp block is faster,
though the initial program is already quick to complete anyway.
It is believed that any code that involves rendering the Sprite’s
speech bubble the linear loop program with the say block
caused the massive slowdown. The compiler harness and the
compiler itself inside the warp block are already considerable
in size, and also the interpreter needed to power each Snap!
block, so as a result they even each other out.

On the other hand, for large tasks like the matrix multiply
and matrix squaring, the problem is big enough to jump over
any overhead hurdle and run faster than the overhead inside
the interpreter when running each block. The compiler code
achieved 4.5x and about 7.36x speedup than the interpreter
warp, and about 303x more compared to using only the inter-
preter.

Liveliness of Snap! with Compiler
With the current settings of 300 yields skipped over or until
timeout, many tasks do not lag the interface as bad as what
interpreted warp does. This does allow the user to interact
with other parts of the Snap! interface without having to wait
for the program to complete running, therefore allowing one
to check their work while debugging or editing other block
series.

6

Table 1: Timing benchmarks for simple linear loop program tasks

Table 2: Timing benchmarks for large matrix multiply tasks

Table 3: Timing benchmarks for large matrix squaring tasks

However, if one were to add blocks that relied less on compu-
tation and control, but more on graphics like move or say, the
interface starts to lag as much as the warp block.

However, because the compiler runs all the blocks on one
JavaScript program, rather than as an interpreter which goes
through a series of tokens, adding blocks to the middle of a
series of Snap! blocks inside warp while that series on blocks
are running would not work. The code inside the warp block
would have to be recompiled by reaching the block again to
trigger the JIT compiler.

As a result, using a compiler can help with introducing the
speed of the program while not heavily sacrificing the liveli-
ness of Snap! for computational tasks.

CONCLUSION
The introduction of a compiler is one step forward towards
introducing a speedup for Snap!, such that it can introduce
a new feature of programming that can help them mitigate
the various inefficiencies that come with Snap! This project
also created a framework to continue implementing a compiler
for Snap!. The results show that there is some feasibility in
continuing the development and potential optimization of this
compiler, especially to introduce speed while not sacrificing
liveliness as much as possible.

On the other hand, while future programmers would not be
aware of the abstraction of the compiled code in the back-
ground, we can say the same for the interpreter as well. How-
ever, based on our initial need finding, we could already see
that Snap! programmers are already frustrated with the slow-
downs introduced as a result of the interpretation and also the

constant lag of using the warp block or Turbo mode, which
means waiting for the return of control back to the Snap!
interface to interact with it.

A big major hurdle in getting the compiler completed was
the sheer size of the Snap! code base and the many different
functions that power the Snap! interface. Since Snap! is a
very niche language and no documentation exists to detail its
creation, it requires intense code reading and subsequent anal-
ysis using breakpoints to see if the JavaScript runner reaches
that point, and then see how a certain interaction behaves for
that code area. Regardless, the work that has been laid out
here should create a firm groundwork to identify where and
how to meet the needs of the Snap! programming language in
a compiled context.

Since some of the features are so tight nit into the interpreter, it
may not even be possible to cover all the possible features that
Snap! has. Even the Scratch variant, Leopard, still has some
blocks still in development.8 One idea would be to have the
compiler share some implementation with the interpreter, to
support those blocks. One way would be to compile the parts
before the interpreted block, have logic that would pause the
code and push the block that can only be used in interpretation
into the Snap! context stack, and then continue running the
code down.

As the compiler gets more developed, one future usability
study we would like to explore is having a group of students
use the compiled version of Snap! in their projects. These
students would use Snap! for their learning and programming.
This would reveal where in large Snap! programs the feature
8https://leopardjs.com/manual

7

would work and would not work, and either give recommen-
dations to those who use the tools or provide workarounds.

REFERENCES
[1] Brian Harvey and Jens Mönig. 2020. Snap! Reference

Manual.
https://snap.berkeley.edu/snap/help/SnapManual.pdf

[2] Josh Pullen, Florrie Haero Miller, and adroitwhiz. 2020.
Leopard. (2020). https://leopardjs.com/

[3] Jens Mönig. 2008. Snap! - A Visual Programming
Language inspired by Scratch. (2008).
https://github.com/jmoenig/Snap

[4] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger.
2019. ChocoPy: A Programming Language for
Compilers Courses. In Proceedings of the 2019 ACM
SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019).
Association for Computing Machinery, New York, NY,
USA, 41–45. DOI:
http://dx.doi.org/10.1145/3358711.3361627

8

https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://leopardjs.com/
https://github.com/jmoenig/Snap
http://dx.doi.org/10.1145/3358711.3361627

 Appendix

 A) Compiler Code

 A1. Reporter Blocks

 A2. Some of the Control Loop Blocks

 9

 A3. Custom Blocks

 A4. Skipping Yields

 10

 B) Compiler Generated Code

 B1. Basic movement code

 B2. Movement code with addition operation

 B3. Matrix Multiply

 11

 B4. Matrix Squared

 B5. Matrix Multiply Custom Blocks
 create_row

 12

 create_matrix

 13

 matrix_multiply

 14

	74302103-4fa3-41d6-ab9c-17b5958ae01d.pdf
	Motivation
	Related Work
	LeopardJS - a Scratch to JavaScript compiler
	LogoBlocks

	Alternative Techniques
	Motivating Tasks
	Design of the Tool
	Snap! Interface Flow
	User Interface and Development Environment
	Snap! Interface Control Flow

	Snap! Compiler
	User Interaction
	Compiler Design and Interface
	Just-in-Time (JIT) Compiler within the Interpreter
	Reporter Blocks
	Control Loops
	Custom Blocks
	Optimization - "yielding" to the Interface Less Often
	Limitations of the Compiler

	Compiler Code Results
	Example Compiled Code
	Compiled Code Performance
	Benchmark Results on the three tasks
	Discussion of Benchmark Results
	Liveliness of Snap! with Compiler

	Conclusion
	References

