
Proximity Detection Using Wi-Fi Fingerprints and

Smartphone Magnetometers, With Applications to

COVID-19 Surveillance

Zach Van Hyfte
Avideh Zakhor, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-165

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-165.html

May 22, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Proximity Detection Using Wi-Fi Fingerprints and Smartphone
Magnetometers, With Applications to COVID-19 Surveillance

by Zach Van Hyfte

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of
Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Avideh Zakhor
Research Advisor

(Date)

* * * * * * *

Professor Prabal Dutta
Second Reader

(Date)

1

Proximity Detection Using Wi-Fi Fingerprints and

Smartphone Magnetometers, With Applications to

COVID-19 Surveillance

Zach Van Hyfte

May 20th, 2022

Abstract

Smartphone apps for exposure notification and contact tracing have been shown to be
e↵ective in controlling the COVID-19 pandemic. However, Bluetooth Low Energy tokens
similar to those broadcast by existing apps can still be picked up far away from the transmit-
ting device, making them ine↵ective for COVID-19–related proximity detection applications
in some scenarios. In this thesis, we present two new classes of methods for detecting whether
or not two devices are in immediate physical proximity, i.e. 2 or fewer meters apart, as es-
tablished by the U.S. Centers for Disease Control and Prevention (CDC). One method uses
Wi-Fi RSSI fingerprints, and the other uses magnetometer traces. Both of these types of
data can be recorded by almost all modern smartphones. Our ultimate goal is to enhance
the accuracy of smartphone-based exposure notification and contact tracing systems.

We first design a set of binary machine learning classifiers that take as input pairs of
Wi-Fi RSSI fingerprints. These classifiers distinguish between pairs of RSSI fingerprints
recorded 2 or fewer meters apart and pairs recorded further apart but still in Bluetooth
range. We empirically verify that a single classifier cannot generalize well to a range of dif-
ferent environments with vastly di↵erent numbers of detectable Wi-Fi Access Points (APs).
However, specialized classifiers, tailored to situations where the number of detectable APs
falls within a prescribed range, are able to detect physical proximity significantly more ac-
curately. As such, we design three classifiers for situations with low, medium, and high
numbers of detectable APs. We characterize their balanced accuracy for proximity detection
to be between 66.8% and 77.8%.

Next, we design a second set of binary machine learning classifiers, which take as input
pairs of 10-second traces of smartphone magnetometer readings. These classifiers distinguish
between pairs of trace segments for which the two recording devices are 2 or fewer meters
apart for at least 75% of the segment duration and pairs for which the two devices are further
apart but still in Bluetooth range. We first evaluate these classifiers’ performance on traces
from the MagPIE dataset, a dataset for evaluating magnetometer-based localization algo-
rithms; we characterize their balanced accuracy for homogeneous-device proximity detection
to be between 89.3% and 93.3%. We show that our classifiers can generalize well to di↵erent
buildings whose traces are not present in their training data. We introduce a simple method
of compensating for di↵erent magnetometer biases in heterogeneous devices, and evaluate
our approach with this added mitigation by training and evaluating classifiers on di↵erent
disjoint subsets of traces from 4 di↵erent smartphone models. We characterize their balanced
accuracy for heterogeneous-device proximity detection with non–tilt-compensated traces to
be between 93.8% and 96.9%; these results indicate that our classifiers can generalize well
to devices whose traces are not present in their training data.

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Proximity Detection Using Wi-Fi RSSI Fingerprints 3

2.1 Related Work . 3
2.2 Data Sources . 4
2.3 Classifier Design and Proximity Classes . 6
2.4 Classifier Input Features . 7
2.5 Mitigating the E↵ects of Device Heterogeneity 11
2.6 Experiment Setup . 12
2.7 Generic Classifier Experiments . 13
2.8 Specialized-Classifier Experiments . 15

3 Proximity Detection Using Magnetometer Traces 19

3.1 Related Work . 19
3.2 Data Sources . 21
3.3 Trace Synthesis and Preparation . 22
3.4 Training Sets and Proximity Classes . 23
3.5 Classifier Input Features . 27
3.6 Homogeneous-Device Experiments . 30
3.7 Mitigating the E↵ects of Device Heterogeneity 31
3.8 Heterogeneous-Device Experiments . 33

4 Conclusions and Future Work 36

Bibliography 38

A Most Relevant Features for Wi-Fi Fingerprint Data 41

ii

B Most Relevant Features for Magnetometer Trace Data 43

iii

List of Figures

2.1 The high-level design of our Wi-Fi–based proximity detection system. 6
2.2 Precision–recall curves of the specialized classifiers on perfectly class-balanced

subsets of each evaluation dataset from Section 2.5, along with the analogous
precision–recall curves of the generic classifier. (S = specialized classifier, G =
generic classifier) . 16

3.1 The high-level design of our magnetometer trace–based proximity detection sys-
tem. 24

3.2 An example of our segment extraction process, showing all 4 of the segments that
would be extracted from a 25-second trace when the segment length LS = 10
seconds. 25

3.3 The X components, Y components, Z components, and norms of the 4 test devices’
magnetometer readings, in µT, over time as each of the devices was individually
taken down the same corridor. Note that, because the plots’ scales are di↵erent,
fluctuations that appear larger than others on the plots may not have a larger
actual magnitude. 32

3.4 The X components, Y components, Z components, and norms of the 4 test devices’
magnetometer readings, in µT, over time as each of the devices was held steady
in the center of a field far from buildings and other sources of magnetic anomalies.
Note that, because the plots’ scales are di↵erent, fluctuations that appear larger
than others on the plots may not have a larger actual magnitude. 33

iv

List of Tables

2.1 Wi-Fi RSSI Fingerprint Datasets . 5
2.2 Devices Used to Collect Wi-Fi RSSI Fingerprints 5
2.3 Number of Fingerprint Pairings Generated from Individual Datasets 14
2.4 Experiment Results for Generic Classifier on Individual Datasets 14
2.5 Experiment Results for Specialized Classifiers 16

3.1 Devices Used to Collect Magnetometer Traces 22
3.2 Number of Segment Pairings Generated from Trace Subsets 27
3.3 Results of Homogeneous-Device Experiments . 30
3.4 Baseline Magnetometer Readings for Devices . 32
3.5 Results of Heterogeneous-Device Experiments 34

i

Acknowledgments

First and foremost, I’d like to thank my research advisor, Professor Avideh Zakhor, whose
thoughtful guidance, expertise, and dedication to her students made this work possible, and
whose mentorship has helped me grow immensely as a student and researcher.

I’d also like to thank my family, whose constant support is what has gotten me through five
years at Berkeley and what keeps me moving forward each day.

I’m grateful for the work of all my colleagues at UC Berkeley who’ve contributed to this
project. Many thanks to Oleksii Volkovskyi and Jerome Quenum for collecting Wi-Fi fin-
gerprint data in Cory Hall; to Anderson Hansen for helping determine the design of these
proximity detection systems; to Richard Huang for implementing the RE3 algorithm from
[10]; to Willis Wang for evaluating the suitability of several RSSI fingerprint datasets for
this project; and to countless other students whose ingenuity and creativity has inspired me,
and from whom I’ve learned so much.

Computational resources for this work, on the Microsoft Azure platform, were generously
provided by Microsoft as an AI for Health grant.

1

Chapter 1

Introduction

The COVID-19 pandemic sparked a proliferation of “exposure notification” or “contact
tracing” smartphone apps designed to alert users if they came within close proximity of
an individual infected with COVID-19 [28, 7, 5, 27]. Many were backed by public health
authorities, and were used to help automate the traditional manual contact tracing process.
Most of these apps continuously track, in an oblique and privacy-preserving manner, which
other devices a specific smartphone has been near. When an individual tests positive for
COVID-19, these apps can send a notification to every device to which that individual’s
smartphone had recently been in close proximity. Those contacts can self-quarantine until
they confirm that they are not carrying the virus, thus limiting the disease’s spread.

Authors in [28], studying the e↵ects of the NHS COVID-19 app for England and Wales,
estimated that “for every percentage point increase in app users, the number of cases can
be reduced by [between] 0.8 . . . [and] 2.3 per cent . . . These findings provide evidence
for continued development and deployment of such apps in populations that are awaiting
full protection from vaccines.” COVID-19 has been shown to be much more transmissible
indoors than outdoors [26, 19], and most people spend roughly 80% of their waking hours in
indoor environments. Since many public indoor environments contain a substantial number
of Wi-Fi Access Points, Wi-Fi data has the potential to become a key method for exposure
notification and contact tracing apps to accurately measure proximity indoors. Likewise,
steel is used in the construction of many of the larger modern commercial and residential
buildings in which people spend large parts of their day; the fine-grained magnetic field
disturbances caused by both these steel components and other metallic objects or furniture
are another source of largely untapped data suitable for accurate proximity measurement.

Currently, the majority of existing exposure notification and contact tracing apps use
Bluetooth Low Energy (BLE) to determine whether two users are in close proximity. Specif-
ically, a device running an exposure notification app periodically broadcasts, via BLE, a
token that can be picked up by other nearby devices running the same app. The distance
from which a transmitted BLE token similar to those broadcast by the apps can be received
varies based on the radio configuration and the characteristics of the surrounding environ-
ment, but can be over 20 meters. Given the 2-meter social distancing guidelines set by the

CHAPTER 1. INTRODUCTION 2

U.S. Centers for Disease Control and Prevention (CDC), BLE-based proximity detection
methods might not be the most appropriate for exposure notification and contact tracing
applications across all environments.

This thesis presents two new classes of methods for detecting whether or not two devices
are in immediate physical proximity, i.e. 2 or fewer meters apart, as established by the
CDC. These guidelines are based on research indicating a high probability of COVID-19
transmission between two people who are within 2 meters of each other for at least 15
minutes. Both of our proposed methods involve binary machine learning classifiers that
take as input data collected by smartphone sensors about the surrounding environment and
infrastructure; the classifiers use this data to predict whether or not two devices are within
roughly 2 meters of each other.

Our first proposed method uses Wi-Fi RSSI fingerprints to determine whether or not
two devices are within immediate physical proximity. Each classifier takes as input two
Wi-Fi RSSI fingerprints — two sets of MAC addresses of APs and their respective received
signal strengths — and predicts whether or not the two fingerprints were captured within
roughly 2 meters of each other. Our second proposed method uses magnetometer traces to
accomplish a version of this same task. Each classifier takes as input two 10-second segments
of smartphone magnetometer traces and predicts whether or not the two recording devices
were within roughly 2 meters of each other for at least 75% of the segment duration. Both
of our methods can work across a range of device types, and are designed to be robust in
dealing with a wide range of physical environments as well as heterogeneous devices. The
Wi-Fi–based method can be deployed across a wider range usage scenarios and device types,
including notebook computers, while the magnetometer-based method has a significantly
lower impact on device battery life than the Wi-Fi–based method.

Our proposed methods could supplant or augment existing Bluetooth-based proximity
detection methods employed by exposure notification apps. They could improve the accuracy
of smartphone-based contact tracing by more precisely determining which individuals were
actually in very close physical proximity to an infected individual.

The outline of this thesis is as follows: In Chapter 2, we discuss the design of our Wi-
Fi–based machine learning classifiers and characterize their performance. In Chapter 3, we
discuss the design of our magnetometer trace–based machine learning classifiers, and present
preliminary performance results from evaluations involving a range of di↵erent buildings and
device models. In Chapter 4, we conclude the thesis and discuss future directions for the
work described within it.

3

Chapter 2

Proximity Detection Using Wi-Fi

RSSI Fingerprints

In this chapter, we design a set of binary machine learning classifiers that use Wi-Fi
RSSI fingerprints to determine whether or not two devices are within immediate physical
proximity, and characterize their performance for real-world COVID-19 proximity detection
tasks with heterogeneous devices.

The outline of this chapter is as follows: In Section 2.1, we discuss how our methods
di↵er from previous work. In Section 2.2, we outline where the RSSI fingerprint data used in
our experiments was sourced and how our new sets of RSSI fingerprint data were collected.
In Section 2.3, we describe how our training and evaluation sets were created from the RSSI
fingerprint data. In Section 2.4, we discuss each of the fingerprint similarity measurements
that are passed to our classifiers as input features. In Section 2.5, we detail the additions
and adjustments we made to the input features to ensure that our classifiers work across a
heterogeneous array of devices. In Section 2.6, we describe the algorithms, software, and
settings used for training the classifiers. In Section 2.7, we present empirical evidence indi-
cating that a single machine learning classifier cannot generalize well to a range of di↵erent
environments with vastly di↵erent numbers of detectable APs. In Section 2.8, we present a
set of three binary machine learning classifiers, each tailored for a situation where the number
of APs detected by the device falls into a given range, and quantify their performance.

2.1 Related Work

The development of systems for localizing Wi-Fi–enabled devices in indoor environments
using a Wi-Fi RSSI fingerprint — a list of the Wi-Fi Access Points (APs) detected by
a particular device, and the received signal strength indicator (RSSI) value for each of
those APs — has been an active research area over the past 15 years [15]. Existing Wi-Fi
localization systems can determine a device’s position within a building with an average error
of several meters. These systems typically require the creation of a database containing at

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 4

least one RSSI fingerprint from every single location or position within the building. Wi-
Fi–enabled devices within the building can submit a fingerprint to a central server, which
employs an algorithm such as k-nearest neighbors to find the location in the database whose
fingerprint is most similar to the one submitted by the device. The classifiers we present
in this thesis are concerned with determining whether or not two users are in close physical
proximity, rather than estimating a user’s location on a map, but they make use of established
techniques designed to increase the accuracy of RSSI fingerprint–based localization systems.
Crucially, too, the proximity detection methods explored in this thesis do not require the
a priori collection of a database of fingerprints from every possible reference point — they
can be utilized in a new location without having to perform any training or setup specific to
that location.

Similar to this chapter, [23] presents a number of binary machine learning classifiers that
use various features extracted from a pair of Wi-Fi fingerprints to determine whether or not
they were recorded in “close physical proximity” to each other. However, the sole criterion
used in [23] to determine whether two fingerprints were classified as within close physical
proximity was whether the two smartphones recording the fingerprints were both able to
detect each other via Bluetooth around the time the two fingerprints were recorded; this,
it was noted, generally happens when the two phones are 10 or fewer meters away from
each other. In contrast, because the data used in our training and evaluation sets includes
precise, meter-level ground truth position information, we assign a label of “Close” only
to samples recorded within 2.25 meters of each other — the goal of our classifiers is to
determine whether two devices are not just nearby but in immediate physical proximity to
each other, i.e. less than the safe social distance defined by the U.S. Centers for Disease
Control and Prevention (CDC). In addition, our systems expand upon the set of similarity
measurements evaluated in [23], making use of additional features and pre-processing steps
to further enhance accuracy.

2.2 Data Sources

A variety of Wi-Fi fingerprint datasets used to develop and evaluate Wi-Fi localization
systems are publicly available online, as shown in Table 2.1; we used Wi-Fi fingerprints from
several of these datasets to create training and evaluation data for our classifiers.

To the extent possible, we also collected our own training and evaluation data, optimized
for training proximity detection classifiers. We developed an Android app for data collection,
which uses Android’s WifiManager API to perform scans of nearby APs on-demand and save
the fingerprints to the device for later use.

We were able to collect our own RSSI fingerprint data in Cory Hall, a five-story academic
building on the UC Berkeley campus that houses classrooms, labs, common work spaces, and
o�ces for the EECS department. We collected fingerprints from the first, third, and fourth
floors of the building over the course of three days in late November and early December 2020.
Each device captured data in “bursts,” recording 9 fingerprints at a time in rapid succession.

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 5

Table 2.1: Wi-Fi RSSI Fingerprint Datasets

Name Median APs
a

Source

Miskolc 10 UCI ML Repository [16]

JUIndoorLocb 15 JUIndoorLoc Paper [20]

UJIndoorLoc 17 UJI IndoorLoc Platform [22]

IPIN 2016 Tutorial 32 UJI IndoorLoc Platform [22]

TampereU 38 UJI IndoorLoc Platform [22]

Alcalá Tutorial 40 UJI IndoorLoc Platform [22]

Suburban Home 8 Collected by Us

Cory Hall 66 Collected by Us
a The median number of APs detected in a given fingerprint

from the dataset.
b Only the test data from this dataset was used.

Table 2.2: Devices Used to Collect Wi-Fi RSSI Fingerprints

Device
Android Cory Hall

Suburban Home
Version Floor 1 Floor 3 Floor 4

Google Pixel 3 10 225 576 198 567

Nokia 2.2a 10 225 576 198 567

Google Pixel XL 10 225 342 198 —

Oppo RX17 Pro 8.1 63 27 9 —

Total 738 1, 521 603 1, 134
a Model TA-1179, in the 3 GB RAM configuration

The devices were kept stationary for the duration of each burst. At each position where a
set of fingerprints were recorded, a Leica DISTO E7100i laser distance measurement device
was used to measure the distance from each point to two reference walls on the current floor,
which were later used to calculate the distance between samples from the same floor. The
median number of APs observed in a given fingerprint from the first, third, and fourth floors
are 76, 69, and 52, respectively. The median number of APs observed in a given fingerprint
from the entire set of data collected from Cory Hall is 66.

Data was also collected from a single-story suburban home in San Diego, California, over
an area spanning roughly 1,800 square feet, also using our Android data collection app. As in
Cory Hall, data was captured in 9-fingerprint “bursts,” with devices kept stationary during

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 6

Figure 2.1: The high-level design of our Wi-Fi–based proximity detection system.

each burst. Within the home itself are two APs, one located roughly in the northwest corner
of the floorplan, and the other roughly in the southeast corner of the floorplan. However,
at any given location within the home, APs from several nearby homes are also detectable;
across all of the samples collected, the median number of APs observed in a given fingerprint
is 8.

Table 2.2 shows the devices we used to collect fingerprint data, the versions of Android
they were running at the time of data collection, and the number of fingerprints collected
with each device in each location.

No filtering of the APs within the fingerprints — e.g. filtering out APs with very weak
signal strengths, or filtering out smartphones in Wi-Fi “hotspot” mode — was performed.

2.3 Classifier Design and Proximity Classes

Our classifiers evaluate two RSSI fingerprints at a time, determining whether or not they
were recorded in immediate physical proximity to each other. Each classifier takes as input
two Wi-Fi RSSI fingerprints — two sets of MAC addresses of APs and their respective
received signal strengths — and predicts whether or not the two fingerprints were captured
within roughly 2 meters of each other. Figure 2.1 shows the high-level design of our Wi-
Fi–based proximity detection system.

To prepare training and evaluation sets from a given pool of fingerprints, we isolate
fingerprints into di↵erent subsets — one for each floor of each building of each dataset.
Within each subset, we enumerate every possible pairing of two distinct fingerprints from
the subset, and calculate the two-dimensional distance d between the locations where the two

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 7

fingerprints were recorded, using the meter-level coordinates that are either provided in the
dataset or recorded by our team. We assign each pairing of fingerprints a “proximity class”
according to the value of d for that pairing. If 0 meters d 2.25 meters, the fingerprint
pairing’s proximity class is set to “Close.” If 3.25 meters d 20 meters, it is set to “Far.”

Fingerprint pairings are dropped from the training and evaluation sets if the two finger-
prints were recorded more than 20 meters apart, in an e↵ort to focus the training process
on the fine-grained di↵erentiation between pairings recorded in immediate physical proxim-
ity and those recorded in somewhat close physical proximity, i.e. within Bluetooth range
of each other. This is in contrast to an approach which would optimize our classifiers for
the coarse-grained di↵erentiation of pairings recorded in immediate physical proximity and
those recorded very far away from each other. Fingerprint pairings are also dropped from
the training and evaluation sets if the two fingerprints were recorded between 2.25 and 3.25
meters apart, in an e↵ort to focus the training process on di↵erentiating between pairings
recorded in immediate physical proximity and those recorded in somewhat close physical
proximity, rather than on border cases that are nearly at the distance cuto↵ for the “Close”
label.

2.4 Classifier Input Features

For each fingerprint pairing, we calculate an expansive set of features, which are the
inputs passed directly to the classifiers described in Sections 2.7 and 2.8. The majority
of these input features were selected because we hypothesized that they could potentially
serve as similarity measurements — quantities that numerically express the level of similarity
between the two fingerprints in a pairing, which can be a rough proxy for how close together
the fingerprints were recorded. In this section, we describe our chosen features in detail.

Consider a pair of RSSI fingerprints, FX and FY . Define the set of shared APs {S1, S2,
. . . , SN} as the APs that are detected in both FX and FY . Furthermore, define RSSI(a, FX)
and RSSI(a, FY) as the RSSI of the AP a in fingerprints FX and FY , respectively.

2.4.1 AP Detection–Based Features

The classifiers are provided with the following input features derived from the number of
APs detected in FX , the number of APs detected in FY , and the number of shared APs:

1. The shared AP count : N , the number of shared APs from above.

2. The union AP count : the total number of APs detected in at least one of the finger-
prints.

3. The non-shared AP count : the total number of APs detected in exactly one of the two
fingerprints, but not both.

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 8

4. The detected AP count di↵erence: the absolute value of the di↵erence between the
number of the APs detected in FX and the number of APs detected in FY .

5. The Jaccard similarity of the sets of APs detected in the two fingerprints: the shared
AP count divided by the union AP count.

2.4.2 Basic RSSI Value–Based Features

The Manhattan distance and the Euclidean distance between two fingerprints FX and
FY , calculated exactly as in [23], are both provided to the classifiers as input features.

Define the top AP(s) of a fingerprint as the AP(s) whose measured RSSI value(s) in that
fingerprint are the highest among all APs detected in that fingerprint. We define a number
of feature types related to the di↵erence in dBm between the shared APs’ measured RSSI
values in FX and in FY :

1. The feature Has shared top AP within Z dBm for fingerprints FX and FY is equal to
1 if there exists at least one shared AP Si such that (a) the measured RSSI value of
Si in FX is at most Z dBm below the maximum RSSI of any AP in FX , and (b) the
measured RSSI value of Si in FY is at most Z dBm below the maximum RSSI of any
AP in FY . Otherwise, the feature is equal to 0. Features of the type Has shared top AP
within Z dBm are provided to the classifiers for Z = 1, 2, . . . , 15. This feature type
is similar to the “top AP ± 6 dB” feature described in [23]. It is designed to allow a
classifier to determine whether there is an AP that both fingerprints were likely closer
to than most other APs, while accounting for di↵erences in RSSI measurement scales
or minor RSSI fluctuations that could change which specific AP has the highest RSSI.

2. The feature RSSIs within Z dBm percentage for fingerprints FX and FY is equal to the
percentage of shared APs whose RSSI values in FX are within Z dBm of their RSSI
values in FY . Features of the type RSSIs within Z dBm percentage are provided to the
classifiers for Z = 1, 2, . . . , 15.

3. The feature Has shared top K APs for fingerprints FX and FY is equal to 1 if and
only if the K highest-RSSI APs in FX are the same as the K highest-RSSI APs in FY ,
regardless of ordering di↵erences between the two fingerprints. Features of the type
Has shared top K APs are provided to the classifiers for K = 1, 2, . . . , 8.

2.4.3 Redpin Score–Based Features

Two input features based on the Redpin score are also provided to the classifiers. The
Redpin score is a measurement of fingerprint similarity that was developed for and used
in the Redpin crowdsourced Wi-Fi localization system [2], with a reference implementa-
tion available at [3]. The Redpin score calculation is not a commutative operation, so we
provide two Redpin scores to the classifiers: RedpinScore(max(FX , FY),min(FX , FY)) and

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 9

RedpinScore(min(FX , FY),max(FX , FY)), where min and max select the fingerprint with
the lower and higher number of detected APs, respectively.

2.4.4 Correlation-Based Features

In addition, we define the following pairs of vectors:

1. The shared AP RSSI value vectors are a pair of vectors containing the measured RSSI
of each shared AP in FX and in FY :h

RSSI(S1, FX), RSSI(S2, FX), . . . RSSI(SN , FX)
i

h
RSSI(S1, FX), RSSI(S2, FX), . . . RSSI(SN , FX)

i

2. The shared AP pair di↵erence vectors are a pair of vectors containing the absolute value
of the di↵erence between the RSSI values within each fingerprint for every possible
pairing of two distinct shared APs:

h
| RSSI(Si, FX) � RSSI(Sj, FX) | . . . 8(i 6= j) N

i

h
| RSSI(Si, FY) � RSSI(Sj, FY) | . . . 8(i 6= j) N

i

3. The shared AP pair ratio vectors are a pair of vectors containing the ratios of the RSSI
values within each fingerprint of every possible pairing of two distinct shared APs.
They are similar to the modified type of RSSI fingerprints used in Hyperbolic Location
Fingerprinting [13]:

h RSSI(Si, FX)

RSSI(Sj, FX)
. . . 8(i, j) N, i 6= j

i

h RSSI(Si, FY)

RSSI(Sj, FY)
. . . 8(i, j) N, i 6= j

i

4. Define the rank of a shared AP Si within a particular fingerprint as the number of
shared APs, including Si itself, in the fingerprint whose measured RSSI values are at
least as weak as Si’s. The normalized ordered shared AP rank vectors are a pair of unit
vectors, R̂X and R̂Y . They are the normalized forms of the following vectors:

RX =
⇥
N, N � 1, N � 2, . . . 2, 1

⇤

RY =
⇥
RankY (N), RankY (N � 1), . . . RankY (1)

⇤

RankY (i), as used above, is the rank within fingerprint FY of the shared AP with
rank i in fingerprint FX . Thus, any index i represents some shared AP, and RX [i] and
RY [i] are the ranks of that shared AP in the two di↵erent fingerprints. The correlation
coe�cient of R̂X and R̂Y therefore measures how similar the signal strength rankings
of the shared APs are across the two fingerprints.

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 10

For each of the pairs of vectors above — the shared AP RSSI vectors, the shared AP
pair di↵erence vectors, the shared AP pair ratio vectors, and the normalized shared AP rank
vectors — the following measurements of similarity between the two vectors are passed as
input features to the classifiers:

1. The cosine similarity of the two vectors.

2. The Pearson correlation coe�cient of the two vectors.

3. The Spearman correlation coe�cient of the two vectors.

4. The Kendall correlation coe�cient of the two vectors.

2.4.5 Di↵erence-Based Features

Lastly, we define a set of individual vectors as follows:

1. The shared AP RSSI di↵erence vector is a vector containing the absolute value of the
di↵erence between the measured RSSI in FX and in FY of each shared AP:

h
| RSSI(Si, FX) � RSSI(Si, FY) | . . . 8 i N

i

2. Define PD(Si, Sj, FX) and PD(Si, Sj, FY) as the shared AP pair di↵erence, as defined
in Section 2.4.4, of shared APs Si and Sj in fingerprints FX and FY respectively.
The shared AP pair di↵erence comparison vector contains the absolute value of the
di↵erence between the pair di↵erence in FX and the pair di↵erence in FY of every
possible pairing of two distinct shared APs:

h ��PD(Si, Sj, FX) � PD(Si, Sj, FY)
�� . . . 8 i N

i

3. Similarly, define PR(Si, Sj, FX) and PR(Si, Sj, FY) as the shared AP pair ratio, as
defined in Section 2.4.4, of shared APs Si and Sj in fingerprints FX and FY respectively,
and define the shared AP pair ratio comparison vector as follows:

h ��PR(Si, Sj, FX) � PR(Si, Sj, FY)
�� . . . 8 i N

i

For each of the individual vectors above — the shared AP RSSI di↵erence vector, the
shared AP pair di↵erence comparison vector, and the shared AP pair ratio comparison vector
— the following similarity measurements are passed as input features to the classifiers:

1. The smallest element of the vector.

2. The largest element of the vector.

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 11

3. The mean of all of the vector’s elements.

4. The median of all of the vector’s elements.

5. The harmonic mean of all of the vector’s elements.

6. The standard deviation of all of the vector’s elements.

7. The population standard deviation of all of the vector’s elements.

2.5 Mitigating the E↵ects of Device Heterogeneity

A common challenge in creating indoor positioning systems that use RSSI fingerprints is
dealing with the e↵ects of device heterogeneity. Since di↵erent devices and di↵erent Wi-Fi
chips have di↵erent levels of sensitivity and di↵erent signal strength measurement scales,
two RSSI fingerprints recorded in the same place with di↵erent devices can generally have
(a) less of an overlap in the set of APs detected, and (b) a larger di↵erence between their
RSSI values for shared APs than a pair of RSSI fingerprints recorded with the same device
model. We employ several measures to compensate for these e↵ects of device heterogeneity,
including inputting several additional features to the classifiers:

1. In both publicly available datasets and in our own collected data, among the metadata
stored with each fingerprint is the model of the device that recorded it. Therefore, an
additional feature passed into all of our classifiers is Same device model, whose value
is 1 if the two fingerprints were recorded by the same device model and 0 otherwise.
For instance, if the two fingerprints were recorded by two di↵erent Google Pixel 3
handsets, the value of this feature would be 1. Likewise, if the two fingerprints both
came from a single Google Pixel 3 handset, the value of this feature would also be
1. This additional feature allows a classifier to select di↵erent decision sequences or
feature weights and cuto↵ values for device-heterogeneous fingerprint pairings than for
device-homogeneous ones.

2. An additional similarity measurement, designed to be more robust in the face of in-
puts from heterogeneous devices, is the Refined Relative RSSI Relationship (RE3),
as proposed for use in Wi-Fi localization systems in [10]. Since it is calculated using
the ranks of the APs detected in a fingerprint rather than their explicit RSSI values,
it is more likely to remain the same across di↵erent devices that have di↵erent RSSI
measurement scales. In addition to all of the classifier input features described above,
the RE3 of the two fingerprints is calculated and passed as an input feature to the
classifier.

3. It is established that in many cases, given two fingerprints recorded in the same loca-
tion with di↵erent devices, the measured RSSI values in both fingerprints are roughly

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 12

linearly dependent. Applying a linear transformation to the RSSI values from one of
the fingerprints can bring the two fingerprints in line and compensate for di↵erences in
the two devices’ sensitivities and signal strength measurement scales. So, in actuality,
for each of the 80 classifier input features described above that depends on the APs’
RSSI values themselves, four separate input features are passed into the classifiers:

a) No transformation, with the feature value calculated with the raw, original RSSI
values from FX and FY .

b) Single-fingerprint least squares, with the feature value calculated after every RSSI
value rX in the fingerprint FX has been replaced with ArX + B, with the values
of the constants A and B determined by using the method of least squares to fit
the RSSI values from FX to the RSSI values from FY .

c) Single-fingerprint 50% least squares, with the feature value calculated after every
RSSI value rX in the fingerprint FX has been replaced with A

2 rX + B
2 , where A

and B are computed as in (b) above.

d) Double-fingerprint least squares, with the feature value calculated after every RSSI
value rX in the fingerprint FX has been replaced with ArX + B and every RSSI
value rY in the fingerprint FY has been replaced with CrY +D, where A and B
are the same as in (b) and (c) above, and C and D are similarly determined by
using the method of least squares to fit the original, raw RSSI values from FY to
the original, raw RSSI values from FX .

2.6 Experiment Setup

We now present a series of binary machine learning classifiers whose aim is to predict,
based on the extensive set of input features they are provided, the proximity class — “Close”
or “Far” — of input fingerprint pairings.

The high number of input features provided to the classifiers has the potential to make
our data subject to overfitting and the “curse of dimensionality,” summarized in [21] as the
phenomenon where “increasing the number of features fed into a machine learning model
usually exponentially increases the search space and hence, the probability of fitting models
that cannot be generalized.” To mitigate this, while preserving the ability to take advan-
tage of a large set of available features, we trained classifiers using the attribute bagging
method, introduced in [4]. Attribute bagging is “a wrapper method that can be used with
any learning algorithm,” in which many di↵erent subsets of features, usually small ones,
are randomly selected and used to train a set of smaller base estimators, usually decision
trees. Base estimators with the highest possible performance are combined into an ensem-
ble classifier. When a sample is input to an attribute bagging classifier for prediction, the
base estimators each individually predict, or “vote,” based on their particular set of input
features, which class a sample belongs to. The class predicted by the most base estimators,

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 13

after optionally factoring in weights assigned to each base estimator’s vote, is chosen as the
final predicted class. Scikit-learn [17], a popular Python machine learning library, provides
a flexible BaggingClassifier class that can be configured to perform attribute bagging.
All of the classifiers outlined below were trained with instances of the BaggingClassifier

class from scikit-learn 0.22.1, with DecisionTreeClassifier instances as the base esti-
mators. Through manual tuning across a number of experiments, we empirically found a
set of hyperparameters that generally work well for this problem: at most 3 features per
base estimator, and 300 individual voting base estimators — i.e. max features = 3 and
n estimators = 300.

To further reduce the dimensionality of the data — and thus reduce both the probability
of overfitting and the time it takes to train a classifier, when necessary — we used the
minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm presented
in [18]. The mRMR algorithm analyzes a dataset and aims to identify a set of features that
are both “maximally relevant,” i.e. that “have the largest mutual information. . . with the
target class,” and “minimally redundant,” i.e. that have the smallest amount of mutual
information amongst each other. We used version 0.1.11 of the pymRMR Python package
provided by the authors of [18], with the “mutual information di↵erence” (MID) feature
selection method, to select the top features.

For every experiment, we began by training on a perfectly class-balanced training set,
where exactly 50% of the samples in the training set belong to the “Close” class and the
remaining 50% belong to the “Far” class. However, in some cases, training on a perfectly
class-balanced training set produced a classifier that was overly biased towards one particular
class. In the experiments discussed below, when applicable, we manually tuned the class
balance of the training set to compensate for any biases and produce a classifier with better
overall performance.

We began by training and evaluating a single classifier on data from a wide variety of
di↵erent environments. After verifying that the generic classifier approach was infeasible,
we developed specialized classifiers for use with fingerprints containing di↵erent numbers of
detected APs.

2.7 Generic Classifier Experiments

Initially, we trained a single generic classifier on a combination of data from all of the
publicly available Wi-Fi localization datasets listed in Table 2.1. Table 2.3 shows the number
of usable samples yielded by the training set generation process described in Sections 2.3
and 2.4 for each dataset.

We created a training set with samples evenly distributed among the datasets listed in
Table 2.1 by randomly selecting 9, 000 “Close” and 8, 000 “Far” fingerprint pairings from
each of the datasets. We trained a BaggingClassifier on this training set, and individually
evaluated the classifier on the remaining samples — i.e. those not selected for use in the
training set — from each dataset. The percentage of true negative samples correctly identi-

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 14

Table 2.3: Number of Fingerprint Pairings Generated from Individual Datasets

Dataset “Far” “Close”

Name Samples Samples

Miskolc 227, 716 11, 630

JUIndoorLoc 554, 011 335, 002

UJIndoorLoc 2, 644, 089 387, 186

IPIN 2016 Tutorial 90, 964 30, 845

TampereU 374, 556 17, 193

Alcalá Tutorial 826, 009 110, 442

Suburban Home 491, 832 97, 443

Cory Hall, Floor 1 107, 892 24, 336

Cory Hall, Floor 3 314, 847 34, 029

Cory Hall, Floor 4 65, 124 16, 263

Table 2.4: Experiment Results for Generic Classifier on Individual Datasets

Dataset True True Balanced

Name Negatives Positives Accuracy

Miskolc 75.76% 42.47% 59.11%

JUIndoorLoc 36.00% 68.69% 52.34%

UJIndoorLoc 64.30% 57.82% 61.06%

IPIN 2016 Tutorial 71.71% 39.21% 55.46%

TampereU 75.92% 42.14% 59.03%

Alcalá Tutorial 84.48% 44.59% 64.53%

Suburban Home 42.75% 72.74% 57.74%

Cory Hall 59.06% 70.09% 63.57%

Average 63.75% 54.72% 59.27%

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 15

fied, the percentage of true positive samples correctly identified, and the balanced accuracy
of the classifier for these “evaluation” portions of all of the individual datasets are shown
in Table 2.4. The generic classifier’s performance is not only low but inconsistent, varying
across di↵erent environments even though data from each of those environments is present
in equal capacity in the training set.

The results of the the generic classifier experiment indicate that a single, one-size-fits
all classifier is insu�cient for guaranteeing consistent performance across a wide range of
environments with di↵erent average numbers of APs per fingerprint.

2.8 Specialized-Classifier Experiments

To pursue solid performance across di↵erent environments, we developed an ensemble of
three classifiers, each tailored specifically for environments with a particular “AP density,”
or number of APs typically detected per fingerprint. We developed specialized classifiers for
three di↵erent types of target environments:

1. Locations with a low AP density — 5 to 15 APs detected per fingerprint on average.

2. Locations with a moderate to high AP density — 30 to 70 APs detected per fingerprint
on average.

3. Locations with a very high AP density — 70 to 90 APs detected per fingerprint on
average.

Table 2.5 shows the percentage of true negative samples correctly identified, the percent-
age of true positive samples correctly identified, and the balanced accuracy for all of the
experiments ran with the specialized classifiers. Figure 2.2 shows the precision–recall curves
of the specialized classifiers on perfectly class-balanced subsets of each evaluation set, along
with the analogous precision–recall curves of the generic classifier on perfectly class-balanced
subsets of the evaluation sets described in Section 2.7.

In the following sections, we describe the details of the specialized classifiers developed
for each of the three types of target environments above.

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 16

Table 2.5: Experiment Results for Specialized Classifiers

#
Dataset Name Classifier True True Balanced

(Features) Type Negatives Positives Accuracy

1 Miskolc (All) Low AP 71.66% 84.12% 77.89%

2 Suburban Home (All) Low AP 63.45% 70.25% 66.85%

3 Miskolc (Top 7) Low AP 71.31% 78.53% 74.92%

4 TampereU (All) Med. AP 70.77% 68.06% 69.41%

5 IPIN 2016 Tutorial (All) Med. AP 69.62% 66.02% 67.82%

6 Cory Hall, Floor 3 High AP 69.26% 70.43% 69.84%

7 Cory Hall, Floors 1 and 4 High AP 70.38% 73.47% 71.92%

Figure 2.2: Precision–recall curves of the specialized classifiers on perfectly class-balanced
subsets of each evaluation dataset from Section 2.5, along with the analogous precision–recall
curves of the generic classifier. (S = specialized classifier, G = generic classifier)

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 17

2.8.1 Low AP Density Classifier

The median number of APs detected in a fingerprint from the suburban home and in
a fingerprint from the publicly available Miskolc dataset is 8 and 10, respectively, making
them both low AP density environments. Following the process described in Section 2.6, we
created a training set from the suburban home data, containing all 97, 443 “Close” and 97, 443
randomly chosen “Far” fingerprint pairings, and used it to train a BaggingClassifier. We
then evaluated the performance of the classifier on the entire set of fingerprint pairings
extracted from the publicly available Miskolc dataset. The results of this evaluation, shown
in row 1 of Table 2.5, indicate that a model trained on data from a single location can achieve
fairly high recall on data from a completely di↵erent location with a similar AP density.

For comparison, we swapped the training and evaluation datasets, creating a class-
imbalanced training set with all 11, 630 “Close” and 8, 000 randomly selected “Far” finger-
print pairings from the Miskolc dataset. This classifier performed worse than the previous
one, as detailed in row 2 of Table 2.5. We believe that the main cause of this performance
disparity is that the data we collected from the suburban home is specially tailored to al-
low learning algorithms to determine the signifiers of close proximity. Because fingerprints
were recorded in “bursts” of 9 at a time, our own collected data yields many more pairs of
fingerprints that were recorded in the exact same location, allowing learning algorithms to
more easily establish a starker contrast between “Close” and “Far” samples. The Miskolc
dataset’s lack of extremely close fingerprint pairings may also be the reason why shifting the
class balance slightly in favor of “Close” samples yielded better performance when using a
training set derived from it. A secondary cause of the performance disparity may be the
relative size of the training sets; the training set created from the suburban home data is
more than 9 times larger than the one derived from the Miskolc dataset.

We also trained a second BaggingClassifer on the same suburban home training set,
with the input feature set reduced to only the top 7 features identified by the mRMR
algorithm when run on the same class-balanced data from the suburban home. Reducing
the input feature set substantially reduced the time it took to train and evaluate the classifier,
but reduced the classifier’s recall by 5% to 6%, as shown in row 3 of Table 2.5.

2.8.2 Medium AP Density Classifier

The median number of APs detected in a fingerprint from the TampereU and IPIN
2016 Tutorial datasets is 38 and 32, respectively; thus, both datasets are of medium AP
density. We created a class-balanced training set from the fingerprint pairings from the
IPIN 2016 Tutorial dataset, consisting of all 30, 845 “Close” and 30, 845 randomly selected
“Far” fingerprint pairings, and used it to train a BaggingClassifier. We evaluated the
performance of that classifier on the entire set of fingerprint pairings extracted from the
TampereU dataset; the results are shown in row 4 of Table 2.5. We then trained an identical
classifier on a training set derived from the TampereU dataset, containing all 17, 193 “Close”
and 15, 000 randomly selected “Far” fingerprint pairings, and evaluated it on the full set of

CHAPTER 2. PROXIMITY DETECTION USING WI-FI RSSI FINGERPRINTS 18

fingerprint pairings extracted from the IPIN 2016 Tutorial dataset. The results of this
evaluation are shown in row 5 of Table 2.5.

2.8.3 High AP Density Classifier

The median number of APs detected in a fingerprint from Cory Hall is between 52 and
76, depending on the floor, making it a high AP density environment. As detailed in Section
2.2, the data from Cory Hall can be organized into a set of 9-scan “bursts,” each associated
with a single physical position. A burst of fingerprints can yield data about significantly
more APs than a single fingerprint; across all of the data collected from Cory Hall, the
median number of APs detected in the first fingerprint of a burst is 65, while the median
number of APs detected in at least one of the first four fingerprints of a burst is 86.

To take advantage of the additional data provided by bursts, without substantially reduc-
ing the size of the eventual training set, we divided each burst into two smaller “sub-bursts”
— one comprised of the first 4 fingerprints recorded, and the other comprised of the next
4 fingerprints recorded. The final, ninth fingerprints from each burst were not used. Dur-
ing the feature extraction process described in Section 2.3, the fingerprints paired up for
the Cory Hall datasets were “pseudo-fingerprints,” one for each of the aforementioned sub-
bursts. The pseudo-fingerprint for a given sub-burst contains an entry for every access point
detected in at least one of the sub-burst’s fingerprints. The RSSI value for a given AP in
the pseudo-fingerprint is the median of all of the observed RSSI values for that AP from all
of the fingerprints within the sub-burst.

We created a training set containing all 1, 889 “Close” and 300 randomly chosen “Far”
pseudo-fingerprint pairings from the first and fourth floors of Cory Hall, and used it to train
a BaggingClassifier. We evaluated the performance of the classifier on the entire set of
pseudo-fingerprint pairings from the third floor of Cory Hall. The results of this evaluation
are shown in row 6 of Table 2.5. The reason for choosing this particular class imbalance is
that, unlike other datasets, for the vast majority of the “Close” fingerprint pairings from
these particular floors, the two fingerprints were recorded in the exact same place; thus,
a classifier trained on a training set derived from this dataset is more likely to misclassify
samples recorded 1 or 2 meters apart as “Far.” As such, when a perfectly class-balanced
training set is used, over 50% of “Close” samples in the evaluation set are misclassified as
“Far.”

As in the preceding sections, for comparison, we swapped the training and evaluation
datasets. We trained another BaggingClassifier on a training set derived from the pseudo-
fingerprint pairings from the third floor. This training set contained all 1, 549 “Close” and
2, 500 randomly selected “Far” pseudo-fingerprint pairings. We evaluated this classifier on
the full set of pseudo-fingerprint pairings from the first and fourth floors; it performed
slightly better than the previous classifier, as indicated in row 7 of Table 2.5. In contrast,
the balanced accuracy of a BaggingClassifier trained and evaluated on versions of the
same training and evaluation sets that only used the first fingerprint of each sub-burst was
only 65.90%.

19

Chapter 3

Proximity Detection Using

Magnetometer Traces

In this chapter, we design a set of binary machine learning classifiers that use short seg-
ments of magnetometer traces to determine whether or not two devices are within immediate
physical proximity, and discuss preliminary performance results from evaluations involving
di↵erent buildings and and di↵erent device models.

The outline of this chapter is as follows: In Section 3.1, we discuss how our methods relate
to and expand upon previous work. In Section 3.2, we detail where the existing magnetometer
data used in our experiments was sourced, and how our new sets of magnetometer data were
collected. In Section 3.3, we outline how we process the raw sensor data collected from
devices to create coherent magnetometer traces from which training and evaluation sets can
be compiled. In Section 3.4, we describe how we create training and evaluation sets from the
magnetometer traces. In Section 3.5, we discuss the similarity measurements that are passed
to our classifiers as input features. In Section 3.6, we present a set of binary machine learning
classifiers, each trained and evaluated on data collected by a single smartphone in di↵erent
buildings, and quantify their performance. In Section 3.7, we detail the pre-processing we
apply to devices’ magnetometer traces to compensate for the di↵erent magnetometer biases
of di↵erent devices. In Section 3.8, we present an additional set of binary machine learning
classifiers, each trained and evaluated on data from di↵erent sets of smartphone models, and
characterize their performance.

3.1 Related Work

Over the past decade, there has been a growing amount of research on developing sys-
tems that localize devices within a building using sequences of magnetometer readings over
time, i.e. magnetometer “traces.” Disturbances in the Earth’s magnetic field — caused by
the steel used in the construction of many larger buildings, as well as by metallic objects
and furniture — introduce distortions into smartphone magnetometer measurements. The

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 20

particular pattern of distortions seen in a device’s magnetometer readings over time serves
as a distinct “fingerprint” of a given path being walked through a building.

Companies such as IndoorAtlas [11] have developed commercial indoor positioning plat-
forms and APIs that localize devices primarily using their magnetometer traces. A number
of magnetometer trace–based localization systems [25, 1, 29] have also been proposed and
evaluated in the literature, with a typical average error of 1–3 meters. Similar to the Wi-Fi
localization systems referenced in Section 2.1, before they can be deployed, these magnetome-
ter trace–based localization systems require creating a database of reference traces collected
by walking di↵erent paths throughout the building. Devices within the building can submit
a sequence of magnetometer readings, usually spanning several seconds, to a central server,
which finds the location or path in the database for which the nearby magnetometer readings
from the reference traces are most similar to the ones submitted by the device.

Similar to the Wi-Fi–based classifiers we designed in Chapter 2, the classifiers we present
in this chapter are concerned with determining whether or not two users are in immediate
physical proximity, rather than estimating a user’s location on a map, and as such can be
used in any new location without first compiling a database of traces or performing other
location-specific training or setup.

The authors in [12] present a method to detect whether two users are in close physi-
cal proximity by comparing segments of smartphone magnetometer traces; their proposed
method is also intended for use in digital contact tracing. However, to measure the similar-
ity between two trace segments, the authors’ proposed method relies only on the Pearson
correlation coe�cient of the norms of the three-element magnetic field vectors that make up
the segment. A threshold value is empirically determined based on the length of the trace
segments being compared; a pair of segments is classified as “Close” if the Pearson correla-
tion coe�cient of their constituent vectors’ norms is above that threshold. In contrast, our
methods make use of additional pre-processing steps, as well as a much wider variety of sim-
ilarity measurements that account for similarities or dissimilarities between each of the three
elements of the magnetic field vectors, in addition to the norms; we use machine learning
classifiers to, in e↵ect, automatically determine the combination of features and threshold
values that yields the highest proximity detection accuracy. Furthermore, the authors in [12]
only evaluated their approach on pairs of segments that either (a) had the exact same start
location, trajectory, and end location, or (b) were collected in two distinct areas very far
away from each other. We go beyond this, evaluating our methods on segment pairings with
a broader range of distances between their two constituent segments. As opposed to dif-
ferentiating between segment pairings with the same exact trajectory and segment pairings
recorded in completely di↵erent areas, the classifiers we present perform proximity detection
at a finer level of granularity, with a more diverse set of “Close” traces; they di↵erentiate
between pairings recorded 2 or fewer meters apart on average and those recorded further
apart but still within Bluetooth range. Lastly, all of the traces used in the evaluation of
the method from [12] were collected with the same smartphone model; in this chapter, we
introduce a way of compensating for di↵erent magnetometer biases in heterogeneous devices,
and evaluate our methods with this added mitigation by training and evaluating classifiers

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 21

on di↵erent subsets of traces from 4 di↵erent smartphone models.

3.2 Data Sources

Several magnetometer trace datasets, intended for use in developing and benchmarking
magnetometer trace–based localization systems, are publicly available online. We used traces
from the MagPIE dataset [9, 8] to create training and evaluation sets for our classifiers. This
dataset contains raw traces from a single smartphone’s magnetometer, recorded in 3 di↵erent
academic buildings across the campus of the University of Illinois Urbana-Champaign. Some
of the traces were recorded while a person walked throughout the buildings holding the
smartphone, and others were recorded while the smartphone was mounted on a wheeled
robot. Some of the traces designated as “Test Data” are “live load cases”; for these traces,
to simulate changes in an environment over time, the authors deliberately moved certain
objects to positions di↵erent from those that they had occupied during the recording of all
of the other traces. In a hypothetical exposure notification app based on our proximity
detection methods, most if not all of the traces that would be input to the classifiers would
be recorded as users walked around with their smartphones somewhere on their person, and
by default only pairs of traces recorded around the same time would be input to classifiers for
comparison. Thus, to compile our training and evaluation sets, we used only the non-“live
load” traces designated “Training Data” that were recorded while a person walked holding
the smartphone.

In a real-world exposure notification app, the traces that would be input to the classifiers
would be recorded by a diverse range of devices, but all of the traces in the MagPIE dataset
were recorded by the same smartphone. In order to be able to evaluate how well our methods
hold up to inputs from heterogeneous devices, we also collected new magnetometer traces,
using the same tools employed in the creation of the MagPIE dataset. We collected our own
magnetometer trace data in Cory Hall, a five-story academic building on the UC Berkeley
campus. Over the course of two days in late April 2022, we recorded magnetometer traces in
a roughly 30m × 15m lab space on the third floor of the building, using 4 di↵erent Android
smartphones.

Table 3.1 shows the devices we used to collect fingerprint data and the versions of Android
they were running at the time of data collection. Magnetometer traces from the 4 devices
were recorded using a slightly modified version of the “MagnetometerV2” data collection
app [14] released by the authors of the MagPIE dataset. Ground-truth position data was
simultaneously recorded using the MagPIE authors’ “BRG Trajectory” app [6], which uses
the Google Tango API, on a Tango–equipped Lenovo Phab 2 Pro running Android 6.0.1. At
the start of each of the two data collection sessions, prior to recording any magnetometer
traces, the entire lab area was slowly walked with the BRG Trajectory app in “Learning
Mode” to perform area learning. The area learning process generates an Area Description
File (ADF) describing the space, which was subsequently used to continuously localize the
Phab 2 Pro within the mapped lab area while each magnetometer trace was recorded.

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 22

Table 3.1: Devices Used to Collect Magnetometer Traces

Device Android Version

Samsung Galaxy S8 9

Oppo RX17 Pro 8.1

Google Pixel 3 10

Google Pixel 10

Magnetometer traces were recorded while walking a number of intersecting linear and
non-linear paths — navigating around cubicles, desks, o�ce chairs, electronic and mechanical
equipment, and computers — with the smartphone recording the trace held flat in the palm
of one hand, and the Phab 2 Pro held vertically upright, i.e. with its rear cameras facing
forward, in the other hand. Since the clocks on any given pair of 2 of our test devices usually
di↵er by 1 to 2 seconds, in order to align the timestamps of the position and magnetometer
logs, we ensured that both the Phab 2 Pro and the phone recording the magnetometer trace
began recording at the exact same time by tapping the “Start Recording” button on both
devices at as close to the same instant as we were able to. For each log file generated by one
of the 4 test devices or by the Phab 2 Pro, we subtracted the timestamp of the first entry
from all of the timestamps in the log file — essentially making all of the log file timestamps
relative to the moment at which recording began.

3.3 Trace Synthesis and Preparation

In this section, we describe how we synthesize the raw sensor data in the log files output
by the MagnetometerV2 and BRG Trajectory apps into coherent magnetometer traces whose
trajectories and magnetometer readings can easily be compared.

For each recording, the output of the MagnetometerV2 app consists of three log files,
which contain timestamped magnetometer, accelerometer, and gyroscope readings, respec-
tively. Future work will involve using the accelerometer and gyroscope log files to tilt-
compensate the magnetometer readings, but for the experiments discussed in this chapter,
those files were not used. Likewise, for each recording, the BRG Trajectory app on the Phab
2 Pro produces a log file of timestamped position measurements, in local coordinates relative
to the point at which area learning was started. Each of these log files contains data from
di↵erent hardware sensors that operate at di↵erent frequencies — the timestamps are not
aligned across log files, and there are often cases in which there are no position measure-
ments with the same exact timestamp as a particular magnetometer reading. In order to
produce a single coherent trace — a single sequence of entries, where each entry contains
a single timestamp, a single position measurement, and a single magnetometer reading —
we match each magnetometer reading in the magnetometer log file with a “nearby” position

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 23

measurement from the corresponding position log file, eliminating magnetometer readings
from the final trace if there were no position measurements recorded su�ciently close in time
to the magnetometer reading.

To perform this matching, for each recording, we iterate through every magnetometer
reading mi in the magnetometer log file, starting at the very beginning of the log. For
each reading mi, we search the position log file to find the position measurement pc,i whose
timestamp is closest to that of mi. If the timestamp of pc,i is within � seconds of the
timestamp of mi, we add a new entry to the final trace containing both mi and pc,i, and set
its timestamp equal to mi‘s timestamp. Otherwise, we ignore mi and move on to the next
magnetometer reading.

For all of the experiments in this chapter, we set � to 0.01 seconds. This allows us to
preserve most of the magnetometer readings from the original log file in the final trace,
while ensuring that the position measurement paired with each magnetometer reading mi

represents the state of the device at a moment in time su�ciently close to that at which mi

was recorded, and thus represents the approximate state of the device at the exact moment
at which mi was recorded. In addition, once we have paired some position measurement pi
with a magnetometer reading that is added to the final trace, we remove it from the list of
position log file entries to search. This guarantees that the final trace contains exactly one
magnetometer reading for each instantaneous position measurement.

3.4 Training Sets and Proximity Classes

Our classifiers evaluate two magnetometer trace segments at a time, determining whether
or not they were recorded in immediate physical proximity to each other. Each classifier takes
as input two magnetometer trace segments of equal temporal length LS and predicts whether
or not the two traces were captured within roughly 2 meters of each other. Figure 3.1 shows
the high-level design of our magnetometer trace–based proximity detection system.

In this section, we describe how we generate training and evaluation sets from the mag-
netometer traces output by the process described in the previous section.

3.4.1 Segment Extraction

Once the various log file entries for each recording have been synthesized into a single
trace, segments of length LS are extracted from the trace for use in training and evaluation
sets. For each trace, two sets, or “tracks,” of segments are extracted, where one track is
o↵set from the other by LS

2 seconds. Specifically, each track corresponds to a particular
starting position in the trace; the starting position for the first track is 0 seconds and the
starting position for the second track is LS

2 seconds. For each track, the trace is divided
into contiguous, non-overlapping segments of length LS, with the first segment covering the
LS seconds immediately following the track’s starting position, the second segment covering

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 24

Figure 3.1: The high-level design of our magnetometer trace–based proximity detection
system.

the LS seconds immediately following the end of the first segment, and so on, with the last
segment ending at second LS ⇥ bLT

LS
c of the trace, where LT is the length of the trace.

Figure 3.2 shows the segments that would be extracted from a 25-second trace, i.e.
LT = 25 seconds, when LS = 10 seconds. The segments from the first track cover the
intervals [0s, 10s] and (10s, 20s]. The segments from the second track cover the intervals
[5s, 15s] and (15s, 25s].

Compared to a sliding-window method, this method of segment extraction yields fewer
segments, and thus smaller training and evaluation sets. However, it bounds the amount
of overlap between segments — a given pair of segments share at most 50% of their mag-
netometer readings, and a given pair of segments from the same track share none of their
magnetometer readings. This ensures that, after all possible segment pairings are enumer-
ated and then split into a training set and an evaluation set, the contents of the segment
pairings that make up the training set are substantially di↵erent than the contents of those
that make up the evaluation set. As we detail later in Section 3.4.3, we do not pair up
segments that come from di↵erent tracks, so a segment pair in the training set will share
at most 50% of its entries with any given pair in the evaluation set. Extracting two tracks
of segments, and not pairing up segments from di↵erent tracks, allows us to double the size
of our training and evaluation sets without introducing many substantially similar segment
pairs into the training and evaluation sets.

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 25

Figure 3.2: An example of our segment extraction process, showing all 4 of the segments
that would be extracted from a 25-second trace when the segment length LS = 10 seconds.

3.4.2 Segment Length (LS)

For all of the experiments in this chapter, we set the segment length LS = 10 seconds.
This time interval is long enough to allow distinct signatures of di↵erent paths to appear in
segments, but short enough that if two users were close together long enough for transmission
to occur, that period of contact would represent a significant portion of the segment. Using
a short segment length also enables a single system to easily adapt to a wide range of fine-
grained contact duration thresholds for di↵erent infectious diseases or variants; to determine
if two individuals were in immediate physical proximity for some arbitrary amount of time
that is a multiple or near-multiple of LS, it is trivial to keep a running total of the number of
contiguous LS-second intervals for which the two were estimated to have been in immediate
physical proximity. Note that the CDC’s guidelines indicate a high probability of COVID-
19 transmission between two people who are within 2 meters of each other for at least 15
minutes.

3.4.3 Proximity Classes

To prepare training and evaluation sets from a given pool of segments, we first isolate
segments into di↵erent groups. For the segments from the MagPIE dataset, we created 3
groups — one group for each building in which traces were recorded, such that each group
contained all of the segments that were recorded in that particular building. For the segments
we recorded in Cory Hall, we created 2 groups — one group for each day on which traces
were recorded, such that each group contained all of the segments that were recorded on

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 26

that particular day.
We then enumerate every possible pairing of two distinct segments that are both from

the same group and from the same track. Then, for each segment pairing (Si, Sj), we iterate
through every entry of Sj. For each entry ek of Sj, we find the entry ec,k of Si whose
timestamp, relative to the start of the segment, is closest to that of ek. We then calculate
the two-dimensional distance dk between the position measurements in ek and ec,k. We assign
each segment a “proximity class” based on an analysis of all of the entry distances dk for
the pairing; the sampling frequency for our magnetometer traces is 50 Hz, so roughly 500
entry distances dk are compared. If the percentage of entries ek for which 0 meters dk
2.25 meters is at least P , the fingerprint pairing’s proximity class is set to “Close.” If the
percentage of entries ek for which 3.25 meters dk 20 meters is at least P , it is set to
“Far.” For each of the sets of experiments in this chapter, we evaluate our classifier design
with two di↵erent choices of P : P = 75% and P = 95%.

Segment pairings are dropped from the training and evaluation sets if neither of these two
criteria are met. This has the e↵ect of excluding from the training and evaluation sets any
pairs of segments for which a significant portion of the corresponding entries were recorded
more than 20 meters apart on average. As with the training sets for the Wi-Fi–based classi-
fiers, we do this in an e↵ort to focus the training process on the fine-grained di↵erentiation
between pairings recorded in immediate physical proximity and those recorded in somewhat
close physical proximity, i.e. Bluetooth range. This is in contrast to an approach which
would optimize our classifiers for the coarse-grained di↵erentiation of pairings recorded in
immediate physical proximity and those recorded very far away from each other. Our method
of classifying segments also excludes from the training and evaluation sets any fingerprint
pairings for which a significant portion of the corresponding entries were recorded between
2.25 and 3.25 meters apart. Again, as with the training sets for the Wi-Fi–based classi-
fiers, we do this in an e↵ort to focus the training process on di↵erentiating between pairings
recorded in immediate physical proximity and those recorded in somewhat close physical
proximity, rather than on border cases that are nearly at the distance cuto↵ for the “Close”
label.

The fact that we only consider segment pairs (Si, Sj) where both Si and Sj are from
the same track guarantees that none of the entries in Si also appear in Sj. This more
closely mimics the segment pairs that would be input to the classifiers in a real-world usage
scenario, wherein each segment would belong to a di↵erent user’s trace, and there wouldn’t
be any entries that would appear in both segments. Likewise, for the Cory Hall traces, only
considering segment pairs where both segments were recorded on the same day ensures that,
for any given segment pairing (Si, Sj) in the training or evaluation sets, the segments Si and
Sj were recorded within a few hours of each other, and thus that the physical environment
in which they were recorded remains the same across the two segments. This ensures that
the training and evaluation sets more closely reflect real-world inputs — in a hypothetical
proximity detection system based on our methods, only segments recorded at or around the
same time would be input to the classifiers.

Table 3.2 shows the total number of “Close” and “Far” segment pairings generated from

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 27

Table 3.2: Number of Segment Pairings Generated from Trace Subsets

Subset Name

P = 75% P = 95%

“Far” “Close” “Far” “Close”

Samples Samples Samples Samples

“CSL First Floor” 44, 297 1, 669 31, 837 1, 256

“Loomis First Floor” 19, 278 1, 460 9, 270 1, 116

“Talbot Third Floor” 12, 378 698 6, 857 462

Cory Hall, Day 1 4, 188 587 2, 237 367

Cory Hall, Day 2 2, 174 455 929 202

each of the 3 buildings from the MagPIE dataset and each of the 2 recording sessions in
Cory Hall, both when P = 75% and when P = 95%.

3.5 Classifier Input Features

For each segment pairing, we calculate a set of features, which are the inputs actually
passed directly to the classifiers described in Sections 3.6 and 3.8. As with the Wi-Fi–based
classifiers, we chose to include the majority of these input features because we hypothesized
that they could accurately quantitatively express of the level of similarity between the two
segments in a pairing. In this section, we describe our chosen features in detail.

A single smartphone magnetometer reading defines a vector in 3D space; the direction of
the vector represents the direction of the Earth’s magnetic field — after accounting for any
distortions caused by nearby metallic objects — while the length of the vector represents
the intensity of Earth’s magnetic field. Thus, each reading has three components — an X
component, a Y component, and a Z component, which represent the magnetic field intensity
measured by the magnetometer along the X, Y, and Z axes defined by Android’s Sensor

APIs [24].
For a given magnetometer trace segment S, let |S| denote the number of entries in S.

Most of the 50 Hz magnetometer traces we use contain around 500 entries; the actual length
can di↵er slightly — it might be, for example, 496 entries — due to very slight variations
in the sampling rate over time. Define MS,i[x], MS,i[y], and MS,i[z] as the X, Y, and Z
components of the magnetometer reading in the i-th entry of the segment S. Additionally,
define |MS,i| as the norm of the magnetic field vector defined by the magnetometer reading
in the i-th entry of S.

Let MX(S), MY(S), and MZ(S) be vectors containing only the X, Y, and Z components
from the magnetometer readings in the entries of S, in the same order as their corresponding

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 28

entries:
MX(S) =

⇥
MS,1[x], MS,2[x], MS,3[x], . . . MS,|S|[x]

⇤

MY(S) =
⇥
MS,1[y], MS,2[y], MS,3[y], . . . MS,|S|[y]

⇤

MZ(S) =
⇥
MS,1[z], MS,2[z], MS,3[z], . . . MS,|S|[z]

⇤

Additionally, let MN(S) be a vector containing only the norms of the magnetometer
readings in the entries of S, in the same order as their corresponding entries:

MN(S) =
⇥
|MS,1|, |MS,2|, |MS,3|, . . . |MS,|S||

⇤

Consider a pair of magnetometer trace segments, Si and Sj. For each set of the segment
pair’s single-axis vectors — (MX(Si),MX(Sj)), (MY(Si),MY(Sj)), and (MZ(Si),MZ(Sj)) —
as well as the set of the pair’s norm vectors (MN(Si),MN(Sj)), the following measurements
of similarity between the two segments’ vectors are passed as input features to the classifiers:

1. The cosine similarity of the two vectors.

2. The Pearson correlation coe�cient of the two vectors.

3. The Spearman correlation coe�cient of the two vectors.

4. The Kendall correlation coe�cient of the two vectors.

These similarity measurements are intended to provide the classifiers with indications of
how well correlated the two segments are along each axis — how much the fluctuations in
the measured magnetic field strength in one segment match or align with the fluctuations in
the other segment.

Furthermore, for a pair of traces (Si, Sj), let DX(Si, Sj), DY(Si, Sj), and DZ(Si, Sj) be
vectors containing the di↵erences between the X, Y, and Z components of the magnetometer
readings in the entries of Si and Sj, respectively:

DX(Si, Sj) =
h
MSi,k[x] � MSj ,k[x] . . . 8 k min(|Si|, |Sj|)

i

DY(Si, Sj) =
h
MSi,k[y] � MSj ,k[y] . . . 8 k min(|Si|, |Sj|)

i

DZ(Si, Sj) =
h
MSi,k[z] � MSj ,k[z] . . . 8 k min(|Si|, |Sj|)

i

Additionally, let DN(Si, Sj) be a vector containing the di↵erences between the norms of
the magnetometer readings in the entries of Si and Sj:

DN(Si, Sj) =
h
|MSi,k| � |MSj ,k| . . . 8 k min(|Si|, |Sj|)

i

For each of these individual vectors of di↵erences — forDX(Si, Sj), DY(Si, Sj), DZ(Si, Sj),
and DN(Si, Sj) — the following similarity measurements are passed as input features to the
classifiers:

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 29

1. The mean of all of the vector’s elements.

2. The median of all of the vector’s elements.

3. The standard deviation of all of the vector’s elements.

These features are intended to provide the classifiers with a high-level summary of how
far apart the magnetometer readings in the two segments tend to be along each axis, and
an indication of whether or not this di↵erence between the two segments’ readings tends
to remain the same — i.e. whether or not the fluctuations along a particular axis in each
segment follow a similar pattern.

3.5.1 Segment Alignment

In our empirical analysis of pairs of segments from the MagPIE dataset, we found that,
in a significant number of “Close” segment pairs, both segments contain almost exactly the
same pattern of magnetic field strength fluctuations, but the pattern begins at a di↵erent
time within each segment, such that one segment “lags” another, usually by at most 1 second.
This phenomenon likely appears in segment pairs where two users are walking together for
some time, but one is slightly ahead of the other.1 To make this relatively common case
easier for the classifiers to detect, we developed a method to align each pair of segments in
the training and evaluation sets for all of the experiments described in Sections 3.6 and 3.8.

For a given segment S, of length LS seconds, define S[a, b], where a < b, as the subse-
quence of S starting with the first entry whose timestamp is � a seconds after the start of S
and ending with the last entry whose timestamp is b seconds after the start of S. Then,
define T ((Si, Sj),�) as follows:

T ((Si, Sj),�) =

(
(Si[��, LS], Sj[0, LS +�]) if � < 0

(Si[0, LS ��], Sj[�, LS]) if � > 0

In essence, the transformation T “shifts” Si either forwards (if � > 0) or backwards (if
� < 0) temporally relative to Sj, such that the two segments only overlap temporally for
LS �� seconds, and then removes the length-� portions of Si and Sj that now lie outside
this overlap region, thus producing two completely overlapping segments of length LS ��.

For each pair of segments (Si, Sj), after calculating all of the features described above, we
enumerate all pairs of transformed segments of the form T ((Si, Sj),�) where �2 seconds
� +2 seconds and � mod 0.25 = 0. We then find �⇤, the value of � for which the
Pearson correlation coe�cient of the norms of the magnetometer readings in the segment
pair T ((Si, Sj),�) is maximized. Finally, we calculate all of the features described above
for T ((Si, Sj),�⇤). Thus, the full input to the classifiers consists of two sets of the features

1
Or, in this specific case, considering how the MagPIE dataset was collected, when one person is walking

very close to where they had previously walked while recording a di↵erent trace.

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 30

Table 3.3: Results of Homogeneous-Device Experiments

Evaluation P = 75% P = 95%

Building Name TN TP BalAc TN TP BalAc

“CSL First Floor” 99.69% 78.97% 89.33% 99.37% 82.56% 90.96%

“Loomis First Floor” 89.02% 97.74% 93.38% 86.03% 98.66% 92.34%

“Talbot Third Floor” 90.47% 91.83% 91.15% 89.25% 94.59% 91.92%

Average 93.06% 89.51% 91.28% 91.55% 91.93% 91.74%

described above — one for the original, unshifted Si and Sj, and another for T ((Si, Sj),�⇤)
— plus a feature Best shift o↵set whose value is equal to �⇤.

We chose to limit the values of � we examine to those between �2 and +2 seconds,
because applying T should only be useful for “Close” segment pairs — if the two segments
of a “Far” pair happen to contain the same pattern of fluctuations, shifting the segments
enough to perfectly align the two instances of the pattern would only risk getting the pair
misclassified as a “Close” pair. Since the average human walking speed is roughly 1 meter
per second, shifting a segment temporally by up to ±2 seconds compensates for a distance
gap of up to ±2 meters between the segments, which is nearly the largest possible distance
gap for a “Close” pair.

3.6 Homogeneous-Device Experiments

To determine how well our approach performs in a baseline setting without the complica-
tions introduced by heterogeneous devices, and how well it generalizes to di↵erent buildings,
we trained a set of three classifiers on data from the MagPIE dataset. Each classifier was
trained on data from 2 of the 3 buildings in which traces were recorded, and evaluated on
data from the remaining building.

For each of the three cases, we created an evenly class-balanced training set consisting of
all “Close” segment pairings and an equal number of randomly selected “Far” pairings from
the 2 training buildings. We then used this training set to train a random forest classifier
— specifically, an instance of the RandomForestClassifier class from scikit-learn version
0.22.1. Then, we evaluated the classifier on the entire set of “Close” and “Far” segment
pairings from the evaluation building.

Table 3.3 shows the results of these evaluations — the percentage of true negative sam-
ples correctly identified, the percentage of true positive samples correctly identified, and the
balanced accuracy for each classifier — when P , as defined in Section 3.4.3, is set to 75%
and additionally when it is set to 95%. The results indicate that classifiers developed using
our methods accurately detect immediate physical proximity in this baseline setting involv-
ing traces from homogeneous devices, and that those classifiers perform well overall when

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 31

evaluated on data from buildings other than those whose data was included in the training
set. The classifiers’ performance remains strong across both looser and stricter definitions of
“Close” and “Far,” i.e. lower and higher values of P , which indicates that our methods are
adaptable to a range of di↵erent proximity class definitions and contact duration thresholds.

3.7 Mitigating the E↵ects of Device Heterogeneity

As with the Wi-Fi–based approach, a common challenge in creating indoor positioning
systems that use magnetometer traces is dealing with the e↵ects of device heterogeneity.
Di↵erent magnetometers in di↵erent devices have di↵erent biases — di↵erent baseline values
around which magnetometer readings fluctuate based on nearby objects. Furthermore, dif-
ferent magnetometers have di↵erent sensitivities — the amplitude of the fluctuations seen in
magnetometer readings when walking the same exact path can vary across di↵erent device
manufacturers and smartphone models. Examples of these varying biases and sensitivities
can be seen in Figure 3.3, which shows the X components, Y components, Z components,
and norms of the 4 test devices’ magnetometer readings over time as each of the devices
was individually taken down the same corridor in Cory Hall. Along each of the three axes,
the pattern of fluctuations is the same in all 4 lines, but there are fairly large vertical gaps
between the lines. Furthermore, there are small variations in the height of the “peaks” and
depths of the “valleys” across the 4 traces.

To make our methods as robust as possible in the face of inputs from heterogeneous
devices, we explicitly compensate for the biases of individual magnetometers by determining
a single baseline magnetometer reading for each device, and then subtracting that baseline
reading from all of the magnetometer readings in the traces recorded by that device.

To determine the baseline magnetometer readings, the MagnetometerV2 app was used
to record the 4 devices’ magnetometer traces as they were all held steady in the exact same
location — in the center of a field on the UC Berkeley campus, relatively far from buildings
and other sources of magnetic anomalies — and in the same orientation in which they were
held while traces were recorded in Cory Hall. For each device, we generated a trace from
the log files output by the MagnetometerV2 app using the process described in Section 3.3.
Figure 3.4 shows the X components, Y components, Z components, and norms of the 4 test
devices’ magnetometer readings over time as each of the devices was held steady in the field.
We set the X, Y, and Z components of the baseline magnetometer to the average of those
respective components across all of the magnetometer readings in the trace. Table 3.4 shows
the baseline magnetometer measurements — these averages — for each of our 4 test devices.

While the baseline subtraction described above compensates for the varying biases of
di↵erent magnetometers, we have not yet implemented any measures explicitly aimed at
compensating for the varying sensitivities of di↵erent magnetometers.

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 32

(a) X components (µT) (b) Y components (µT)

(c) Z components (µT) (d) Norms (µT)

Figure 3.3: The X components, Y components, Z components, and norms of the 4 test
devices’ magnetometer readings, in µT, over time as each of the devices was individually
taken down the same corridor. Note that, because the plots’ scales are di↵erent, fluctuations
that appear larger than others on the plots may not have a larger actual magnitude.

Table 3.4: Baseline Magnetometer Readings for Devices

Device X Y Z

Samsung Galaxy S8 60.2 34.2 �106.0

Oppo RX17 Pro 30.8 �54.4 �265.9

Google Pixel 3 17.5 9.1 �43.2

Google Pixel 13.6 5.5 �65.8

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 33

(a) X components (µT) (b) Y components (µT)

(c) Z components (µT) (d) Norms (µT)

Figure 3.4: The X components, Y components, Z components, and norms of the 4 test
devices’ magnetometer readings, in µT, over time as each of the devices was held steady in
the center of a field far from buildings and other sources of magnetic anomalies. Note that,
because the plots’ scales are di↵erent, fluctuations that appear larger than others on the plots
may not have a larger actual magnitude.

3.8 Heterogeneous-Device Experiments

To evaluate how well our methods — including the baseline subtraction described in the
preceding section — perform in a heterogeneous-device setting, we trained a set of classifiers
on the data recorded by our 4 test devices in Cory Hall. We trained 4 classifiers in total; each
classifier was trained on segment pairs from 3 of the devices and evaluated only on segment
pairs involving the remaining device. For each classifier, a di↵erent smartphone from among
our 4 test devices was selected to the the “evaluation device.” To compile the training and
evaluation sets for each classifier, we started with the entire pool of segment pairs that we
had previously generated from all of the Cory Hall traces using the process described in
Section 3.4. We assigned all segment pairs for which at least one of the two segments was
recorded by the evaluation device to the evaluation set. Then, from the remaining pairs
not assigned to the evaluation set — the pairs for which neither of the two segments was

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 34

Table 3.5: Results of Heterogeneous-Device Experiments

Evaluation P = 75% P = 95%

Device Name TN TP BalAc TN TP BalAc

Samsung Galaxy S8 98.52% 92.21% 95.36% 97.60% 94.52% 96.06%

Oppo RX17 Pro 98.37% 92.36% 95.36% 99.15% 93.53% 96.34%

Google Pixel 3 97.46% 96.15% 96.80% 97.23% 96.67% 96.95%

Google Pixel 98.83% 88.93% 93.88% 99.87% 89.36% 94.61%

Average 98.29% 92.41% 95.35% 98.46% 93.52% 95.99%

recorded by the evaluation device — we compiled a training set. This training set consists of
all “Close” pairs from the set of remaining segment pairs, plus just enough randomly selected
“Far” pairs to make the ratio of “Close” to “Far” pairs in the training set 1 : 1. We then
trained a RandomForestClassifier on this class-balanced training set, and evaluated it on
the entire evaluation set.

Table 3.5 shows the results of these heterogeneous-device experiments — the percentage
of true negative samples correctly identified, the percentage of true positive samples correctly
identified, and the balanced accuracy for each classifier — when P , as defined in Section 3.4.3,
is set to 75% and additionally when it is set to 95%. they confirm that classifiers developed
using our methods can distinguish between “Close” and “Far” segment pairs recorded by
heterogeneous devices with very high accuracy, and that their performance is solid even when
evaluated on data from devices other than those whose data was included in the training
set.

Initially, in addition to subtracting baseline magnetometer readings from all of the mag-
netometer readings within each segment, we also calculated and provided to the classifiers
three additional input features for each segment pair. These three features’ values were
equal to the di↵erences between the X, Y, and Z components of the two device-specific base-
line measurements subtracted from the two segments, respectively. However, this did not
improve the performance of the classifiers.

Notably, the Cory Hall traces used in these experiments were not tilt-compensated. As
established in Section 3.5, a smartphone magnetometer reading represents a vector in 3D
space. At any given position, the direction of Earth’s magnetic field relative to the smart-
phone — and thus the magnetometer reading — varies based on the roll and pitch of the
smartphone. The traces input to a real-world proximity detection system will have been
recorded by devices in countless di↵erent orientations; to enable accurate trace comparisons,
each individual vector within each trace will need to be individually rotated to where it would
be if the device were held in some arbitrary reference orientation. In this case, though, all
4 test devices were held in the same horizontal orientation during the recording of all of the
traces, so tilt compensation is not strictly necessary to enable accurate comparison of their

CHAPTER 3. PROXIMITY DETECTION USING MAGNETOMETER TRACES 35

magnetometer readings. Future work will include using the accelerometer and gyroscope
data recorded by the MagnetometerV2 app to tilt-compensate the traces, likely using one of
several well-established tilt-compensation procedures.

36

Chapter 4

Conclusions and Future Work

Our evaluations of the Wi-Fi RSSI fingerprint–based classifiers in Chapter 2 show that,
while a generic classifier is unable to generalize well to a wide variety of environments, an
ensemble of specialized classifiers for environments with di↵erent AP densities can detect
immediate physical proximity more accurately, with roughly 70% balanced accuracy on av-
erage.

Meanwhile, our evaluations of the magnetometer trace–based classifiers in Chapter 3
show that classifiers developed using our magnetometer trace–based methods can distinguish
between “Close” and “Far” segment pairs from non–tilt-compensated traces with over 90%
balanced accuracy on average, indicating that magnetometer trace–based methods are a
more promising means of performing immediate proximity detection than the comparison
of Wi-Fi RSSI fingerprints. Our results also show that our classifiers can generalize well to
di↵erent buildings and devices whose traces were not present in their training data.

Many of the same fingerprint-based techniques discussed in Chapter 2 could also be ap-
plied to fingerprints constructed from the MAC addresses and RSSI values of nearby BLE
devices. Generally, the range in which BLE devices can be detected is smaller than that in
which typical Wi-Fi APs can be detected, so the addition of BLE fingerprints may prove
valuable for improving the accuracy of immediate proximity detection. Meanwhile, future
work for the magnetometer trace–based methods includes using the accelerometer and gyro-
scope measurements captured by the MagnetometerV2 app to tilt-compensate magnetometer
traces; as noted above, tilt compensation is necessary in a real-world proximity detection
system whose input traces are recorded by devices in many di↵erent orientations. For both
the Wi-Fi–based and magnetometer–based methods, future directions could include explor-
ing additional classifier input features, pre-processing steps, or learning algorithms that have
the potential to boost the classifiers’ accuracy. A final strand of future work could explore
sensor fusion approaches for building a single combined proximity detection system that
makes use of magnetometer traces, Wi-Fi RSSI fingerprints, and possibly other sensor data
simultaneously.

Lastly, in an actual exposure notification contract tracing system, participating devices
would need to continuously record and save RSSI fingerprints or magnetometer traces to

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 37

later periodically compare with those recorded by infected individuals. Those infected indi-
viduals’ fingerprints or traces would likely need to be distributed to participating devices by
centralized servers. Another practical consideration is that even if two devices are physically
close to each other, their two users might not necessarily be in the same room; they could
be separated by a wall or door. As such, the methods we have described in this chapter
are merely the basic building blocks of any practical exposure notification or contact tracing
system, and require additional enhancements before they can be deployed.

38

Bibliography

[1] Han Jun Bae and Lynn Choi. “Large-Scale Indoor Positioning using Geomagnetic Field
with Deep Neural Networks”. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761118.

[2] Philipp Bolliger. “Redpin - Adaptive, Zero-Configuration Indoor Localization through
User Collaboration”. In: Proceedings of the First ACM International Workshop on
Mobile Entity Localization and Tracking in GPS-Less Environments. MELT ’08. San
Francisco, California, USA: Association for Computing Machinery, 2008, pp. 55–60.
isbn: 9781605581897. doi: 10.1145/1410012.1410025. url: https://doi.org/10.
1145/1410012.1410025.

[3] Pascal Brogle and Philipp Bolliger. Redpin on SourceForge. url: https://sourceforge.
net/projects/redpin/.

[4] Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. “Attribute bagging: im-
proving accuracy of classifier ensembles by using random feature subsets”. In: Pattern
Recognition 36.6 (2003), pp. 1291–1302. issn: 0031-3203. doi: https://doi.org/10.
1016/S0031-3203(02)00121-8. url: https://www.sciencedirect.com/science/
article/pii/S0031320302001218.

[5] California Department of Technology. CA Notify. 2020. url: https://canotify.ca.
gov.

[6] Alex Faustino. alex-faustino/BRG Trajectory: Android app for a Google Tango enable
device. 2017. url: https://github.com/alex-faustino/BRG%5C_Trajectory.

[7] Government of Singapore. TraceTogether. 2020. url: https://www.tracetogether.
gov.sg.

[8] Bretl Research Group. Magnetic Positioning Indoor Estimation (MagPIE) Dataset.
url: http://bretl.csl.illinois.edu/magpie.

[9] David Hanley et al. “MagPIE: A dataset for indoor positioning with magnetic anoma-
lies”. In: 2017 International Conference on Indoor Positioning and Indoor Navigation
(IPIN). 2017, pp. 1–8. doi: 10.1109/IPIN.2017.8115961.

BIBLIOGRAPHY 39

[10] Zhengyong Huang et al. “Clustering combined indoor localization algorithms for crowd-
sourcing devices: Mining RSSI relative relationship”. In: 2014 Sixth International Con-
ference on Wireless Communications and Signal Processing (WCSP). 2014, pp. 1–6.
doi: 10.1109/WCSP.2014.6992130.

[11] IndoorAtlas. url: https://www.indooratlas.com/.

[12] Seungyeon Jeong, Seungho Kuk, and Hyogon Kim. “A Smartphone Magnetometer-
Based Diagnostic Test for Automatic Contact Tracing in Infectious Disease Epidemics”.
In: IEEE Access 7 (2019), pp. 20734–20747. doi: 10.1109/ACCESS.2019.2895075.

[13] Mikkel Baun Kjærgaard and Carsten Valdemar Munk. “Hyperbolic Location Finger-
printing: A Calibration-Free Solution for Handling Di↵erences in Signal Strength (con-
cise contribution)”. In: 2008 Sixth Annual IEEE International Conference on Perva-
sive Computing and Communications (PerCom). 2008, pp. 110–116. doi: 10.1109/
PERCOM.2008.75.

[14] MagnetometerV2.tar.gz kPoweredbyBox. url: https://app.box.com/s/8g155irfv4ldbqcc5arnzhld3d9d62ig.

[15] Germán Martın Mendoza-Silva, Joaquın Torres-Sospedra, and Joaquın Huerta. “A
Meta-Review of Indoor Positioning Systems”. In: Sensors 19.20 (2019). issn: 1424-
8220. doi: 10.3390/s19204507. url: https://www.mdpi.com/1424-8220/19/20/
4507.

[16] Germán Martın Mendoza-Silva et al. “Long-Term WiFi Fingerprinting Dataset for
Research on Robust Indoor Positioning”. In: Data 3.1 (2018). issn: 2306-5729. doi:
10.3390/data3010003. url: https://www.mdpi.com/2306-5729/3/1/3.

[17] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: J. Mach.
Learn. Res. 12.null (Nov. 2011), pp. 2825–2830. issn: 1532-4435.

[18] Hanchuan Peng, Fuhui Long, and C. Ding. “Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 27.8 (2005), pp. 1226–
1238. doi: 10.1109/TPAMI.2005.159.

[19] Hua Qian et al. “Indoor transmission of SARS-CoV-2”. In: medRxiv (2020). doi: 10.
1101/2020.04.04.20053058. eprint: https://www.medrxiv.org/content/early/
2020/04/07/2020.04.04.20053058.full.pdf. url: https://www.medrxiv.org/
content/early/2020/04/07/2020.04.04.20053058.

[20] Priya Roy et al. “JUIndoorLoc: A Ubiquitous Framework for Smartphone-Based Indoor
Localization Subject to Context and Device Heterogeneity”. In: Wirel. Pers. Commun.
106.2 (May 2019), pp. 739–762. issn: 0929-6212. doi: 10.1007/s11277-019-06188-2.
url: https://doi.org/10.1007/s11277-019-06188-2.

[21] Omer Sagi and Lior Rokach. “Ensemble learning: A survey”. In: WIREs Data Mining
and Knowledge Discovery 8.4 (2018), e1249. doi: https://doi.org/10.1002/widm.
1249. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1249.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249.

BIBLIOGRAPHY 40

[22] E. Sansano et al. UJI Indoor positioning and navigation repository. 2016. url: http:
//indoorlocplatform.uji.es.

[23] Piotr Sapiezynski et al. “Inferring Person-to-person Proximity Using WiFi Signals”.
In: CoRR abs/1610.04730 (2016). arXiv: 1610.04730. url: http://arxiv.org/abs/
1610.04730.

[24] Sensors Overview kAndroidDevelopers. url: https://developer.android.com/
guide/topics/sensors/sensors_overview#sensors-coords.

[25] Shervin Shahidi and Shahrokh Valaee. “GIPSy: Geomagnetic indoor positioning system
for smartphones”. In: 2015 International Conference on Indoor Positioning and Indoor
Navigation (IPIN). 2015, pp. 1–7. doi: 10.1109/IPIN.2015.7346761.

[26] Mike Weed and Abby Foad. “Rapid Scoping Review of Evidence of Outdoor Transmis-
sion of COVID-19”. In: medRxiv (2020). doi: 10.1101/2020.09.04.20188417. eprint:
https://www.medrxiv.org/content/early/2020/09/10/2020.09.04.20188417.1.

full.pdf. url: https://www.medrxiv.org/content/early/2020/09/10/2020.09.
04.20188417.1.

[27] WeHealth. Covid Watch Arizona. 2020. url: https://www.wehealth.org/arizona.

[28] Chris Wymant et al. “The epidemiological impact of the NHS COVID-19 App”. In: Na-
ture (2021). (Pre-print from journal website). issn: 1476-4687. doi: 10.1038/s41586-
021-03606-z. url: https://doi.org/10.1038/s41586-021-03606-z.

[29] Sheng-Cheng Yeh et al. “Study on an Indoor Positioning System Using Earth’s Mag-
netic Field”. In: IEEE Transactions on Instrumentation and Measurement 69.3 (2020),
pp. 865–872. doi: 10.1109/TIM.2019.2905750.

41

Appendix A

Most Relevant Features for Wi-Fi

Fingerprint Data

This appendix lists the most relevant individual features — not the features that form
the most relevant set — for training sets derived from di↵erent Wi-Fi fingerprint datasets,
as identified by a feature of the pymRMR package. These rankings indicate which features’
values have the highest correlation with close proximity.

The 8 features from a perfectly class-balanced training set derived from the suburban
home dataset that are individually most relevant are:

1. Euclidean distance (No transformation)

2. Manhattan distance (No transformation)

3. Mean shared AP RSSI di↵erence (No transformation)

4. Largest shared AP RSSI di↵erence (No transformation)

5. Euclidean distance (Single-fingerprint least squares)

6. Standard deviation of shared AP RSSI pair di↵erence comparison vector (No transfor-
mation)

7. Euclidean distance (Double-fingerprint least squares)

8. Population standard deviation of shared AP pair di↵erence comparison vector (No
transformation)

The 8 features from a perfectly class-balanced training set derived from the IPIN 2016
Tutorial dataset that are individually most relevant are:

1. RE3 (Double-fingerprint least squares)

APPENDIX A. MOST RELEVANT FEATURES FOR WI-FI FINGERPRINT DATA 42

2. RE3 (No transformation)

3. Redpin score (max, min) (Double-fingerprint least squares)

4. RE3 (Single-fingerprint least squares)

5. Shared AP count

6. Redpin score (min, max) (Double-fingerprint least squares)

7. RE3 (Single-fingerprint 50% least squares)

8. Redpin score (max, min) (No transformation)

The 8 features from the training set derived from fingerprints from the third floor of Cory
Hall that are individually most relevant are:

1. RE3 (No transformation)

2. RE3 (Double-fingerprint least squares)

3. RE3 (Single-fingerprint least squares)

4. RE3 (Single-fingerprint 50% least squares)

5. Euclidean distance (No transformation)

6. Euclidean distance (Single-fingerprint least squares)

7. Largest element of shared AP pair di↵erence comparison vector (No transformation)

8. Mean of shared AP RSSI di↵erence vector (No transformation)

43

Appendix B

Most Relevant Features for

Magnetometer Trace Data

This appendix lists the most relevant individual features — not the features that form
the most relevant set — for training sets derived from di↵erent magnetometer trace datasets,
as identified by a feature of the pymRMR package. These rankings indicate which features’
values have the highest correlation with close proximity.

The 8 features from a perfectly class-balanced training set derived from the entire MagPIE
dataset (i.e. containing segments from all 3 buildings) that are individually most relevant
are:

1. Median of magnetometer reading X-component di↵erences (Aligned segments)

2. Mean of magnetometer reading X-component di↵erences (Aligned segments)

3. Median of magnetometer reading Y-component di↵erences (Aligned segments)

4. Median of magnetometer reading X-component di↵erences (Original segments)

5. Mean of magnetometer reading Y-component di↵erences (Aligned segments)

6. Mean of magnetometer reading X-component di↵erences (Original segments)

7. Median of magnetometer reading Y-component di↵erences (Original segments)

8. Standard deviation of magnetometer reading X-component di↵erences (Aligned seg-
ments)

The 8 features from a perfectly class-balanced training set derived from the entire set of
Cory Hall data (i.e. containing segments from all 4 test devices) that are individually most
relevant are:

APPENDIX B. MOST RELEVANT FEATURES FOR MAGNETOMETER TRACE
DATA 44

1. Standard deviation of magnetometer reading Z-component di↵erences (Aligned seg-
ments)

2. Standard deviation of magnetometer reading Y-component di↵erences (Aligned seg-
ments)

3. Standard deviation of magnetometer reading X-component di↵erences (Aligned seg-
ments)

4. Standard deviation of magnetometer reading Z-component di↵erences (Original seg-
ments)

5. Standard deviation of magnetometer reading norm-component di↵erences (Aligned seg-
ments)

6. Standard deviation of magnetometer reading Y-component di↵erences (Original seg-
ments)

7. Standard deviation of magnetometer reading X-component di↵erences (Original seg-
ments)

8. Mean of magnetometer reading Z-component di↵erences (Aligned segments)

