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Abstract

Joist Detection and Climbing Method for Hexapod Robots

by

Yibin Li

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Avideh Zakhor, Chair

Avoiding obstacles is challenging for autonomous robotic systems. In this work, we examine
obstacle avoidance for legged hexapods, as it relates to climbing over randomly placed wooden
joists. We formulate the task as a 3D joist detection problem, and propose a detect-plan-act
pipeline using a SLAM algorithm to generate a pointcloud and a grid map to expose high
obstacles such as joists. A line detector is applied on the grid map to extract parametric
information of the joist, such as height, width, orientation, and distance; based on this
information the hexapod plans a sequence of leg movements to either climb over the joist or
move sideways. We show that our perception and path planning module works well on the
real-world joists with different heights and orientations.
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Chapter 1

Introduction

Attics are one the biggest sources of energy loss in residential homes. As such attic air sealing
and insulation can result in a substantial reduction in home energy costs. One way to do
this is through spray foaming which simultaneously helps to prevent insect infection, reduce
energy costs, and keep the main component of a home at a comfortable temperature. Despite
its importance, spray foaming the attic is challenging: the insulation material contains toxic
substances so the protective suit must be worn. Figure 1.1 shows a typical attic during
construction. The attic’s narrow and dark space makes it difficult for an operator to apply
spray foam. Therefore, we consider using a robot to complete this job. With six legs easily
crawling between joists, a hexapod robot is a perfect candidate for this task. It carries a
spray foam gun, walks autonomously in the attic, and sprays insulation foam between gaps.

Figure 1.1: Unfurnished Attic with Joists

Inspired by attic spray foaming work, we intend to develop obstacle avoidance method
for hexapods inside attics by developing perception and legged locomotion solutions.

Nevertheless, obstacle avoidance remains a hard challenge for robotics systems. Although
this topic has been well-studied and many path planning algorithms have been proposed [9]
[14], the gap between robots seeing obstacles and planning paths continues to exist.
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The most common approach to avoid obstacles is detect-plan-act: the robot first detects
and identifies the obstacle, then plans possible trajectories, and finally moves the actuator to
the desired place. Robotic vision is essential in this process, and luckily, with recent devel-
opments in deep learning and sensors, robot vision has become easier and more affordable.
The stereo cameras enable the robot to compute the depth and construct its surrounding
environment with Simultaneous Localization And Mapping (SLAM). Nevertheless, as we
will discuss in Chapter 2, traditional algorithms have many limitations and do not work in
all scenarios. For example, the reconstructed SLAM maps typically do not carry semantic
information, making it difficult for the robot to know which part of the pointcloud to pay
attention to.

This work aims to present elementary building blocks for obstacle avoidance solutions
for the legged hexapod. We use an indoor simulated attic to test whether the hexapod
could detect and climb over joists. The outline of this work is as follows: in Chapter 1
we discuss the motivation and background, in Chapter 2 we present the approaches and
experiments on hexapod robots joist climbing, and in Chapter 3 we conclude this project
with our achievements and future works.

1.1 Related Work

Hexapod and quadruped robots have been studied for many years. Back in 1990, Mcghee et
al. [10] proposed a set of rules to navigate hexapod in a simulated terrain. Putz et al. [12]
proposed a 3D navigation path for mobile robots in uneven terrain, but their work is mainly
for wheeled robots and does not consider the constraints of hexapod robots. More recently,
Nguyen et al. [11] experimented with what they called a ”library of gaits”, a sequence of
different leg gaits, on bipedal robots. Carlo et al. [8] used a more sophisticated convex
Model Predictive Control (MPC) to control and plan locomotion on the quadruped robot
dynamic system. Frankhauser et al. [5] developed a universal elevation map library in ROS
for hexapod and quadruped. Frankhauser et al. also [4] applied the previous elevation map
on their quadruped robots and reported solid results on quadruped robot navigation. Their
trajectory planning algorithm spends a great deal of time balancing the quadruped robots,
which, in our case, is not a major issue. Our hexapod is more stable than quadruped since
it has six rather than four legs.

Another challenge is 3D object detection to detect and parametrize joists. Joist param-
eterization supplies the necessary information to the path planning algorithm. There have
been attempts to use a deep learning-based approach on 3D pointcloud data to detect ob-
jects, but as Wang et al. [16] states 3D object detection tasks require significantly more
data to train than 2D. It is also expensive to acquire open-sourced 3D labels [17]. Most of
the open-sourced 3D labeled data are released by self-driving companies and only focus on
vehicles. Therefore, it would be time-consuming to label data and train a fresh 3D object
detection model for joists from scratch.
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Chapter 2

Joist Detection and Climbing

In this chapter, we present the joist climbing solution for a hexapod robot. This Chapter is
organized as follows: In Section 2.1, we introduce the setup of our hexapod robot; in Sections
2.2 and 2.3, we describe the algorithm for the vision system and joist climbing algorithm; in
Section 2.4, we discuss the ROS message synchronization and delay issues; in Section 2.5,
we test the integrated system with real-world joists.

2.1 Setup

The hexapod used in this experiment is a Widow X from Trossen Robots. It features eighteen
Ultra Fast DYNAMIXEL AX-18A Series Robot Servos, six three-degree-of-freedom legs, a
Raspberry Pi, and Trossen open-sourced SDK.

The onboard Raspberry Pi is primarily for Hexapod control and does not have enough
computing power for the perception module. To solve this, we add an Intel NUC as our
additional computing unit. Although NVIDIA’s Jetson AGX Xavier features a much better
CUDA framework and a much more powerful GPU for deep learning computing than Intel
NUC, Intel’s CPU computing power beats NVIDIA Xavier in sequential tasks, as illustrated
in [3]. Since our algorithm does not run any deep learning modeling and we are performing
”online” sequential trajectory planning, Intel NUC is our choice for computing. To share the
ROS network between NUC and Raspberry Pi, an Ethernet cable connects the two devices,
and the IP addresses have been configured in such a way that the Raspberry Pi is the ROS
master. Our planned communication schema between two devices is summarized in Figure
2.1.

https://www.trossenrobotics.com/


CHAPTER 2. JOIST DETECTION AND CLIMBING 4

Figure 2.1: Communication diagram between devices

The Widow X does not include any perception sensors. In order for the perception
system to work in low light conditions and not to consume substantial precious computing
power, the Intel L515 camera is chosen for the onboard perception sensor. L515 is a LiDAR
camera with 3D depth, RGB, and IR output streams. We considered other stereo and IR
cameras but L515 meets our needs best. On the hexapod, we use a single L515 camera to
understand surroundings in a near-dark or low-light environment, where a traditional stereo
camera is incapable of performing 3D depth measurement. Once we know the depth map of
the surroundings, we plan trajectories accordingly to avoid obstacles or climb over joists.

One challenge is the location for mounting the L515 camera. There is no convenient space
on the hexapod to tightly hold the L515 camera, but it is crucial to place the L515 high
from the ground to see things far away, so we 3D printed a rig to mount it. The complete
hardware setup is illustrated in Figure 2.2.
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Figure 2.2: Hexapod, NUC, and L515 Depth Camera

Since we are mostly interested in ground obstacles near the hexapod, it is useful to tilt
the depth camera downwards rather than having its optical axis parallel to the ground. To
achieve that, we designed a simple nob shown in Figure 2.3 to adjust the tilted angle of the
mount. The nob holds the mount and can be easily set to 7 different pitch configurations:
0, 15, 30, 45, 60, 75, and 90 degrees, where at 0 degrees L515 is completely looking down
and at 90 degrees L515 is looking straight ahead.

Figure 2.3: Pitch Angle Adjustable Nob for L515 Depth camera
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2.2 Hexapod Vision System

Our vision system is a three-stage pipeline shown in Figure 2.4. SLAM and Grid-Map are
the two core components in the hexapod vision system.

Figure 2.4: Three-Stage Vision Pipeline

2.2.1 SSL-SLAM and Grid-Map

SSL-SLAM [15] is a visual SLAM algorithm: it uses successive frames to reconstruct a scene
using structure from motion, estimates motion via visual odometry, and localizes the robot in
a global world map. The output of the SSL-SLAM algorithm is a dense colored pointcloud,
in the format of ROS msg/pointcloud2. Grid-Map [5] is a two-dimensional grid map, namely
a smooth surface quantized into grid cells, with multiple data layers. It serves as a central
map information system for foothold search and trajectory planning and can be customized
with useful data layers such as surface normal vectors and traversability. Grid map is stored
as a 2D Eigen-matrix and can be converted from and to pointcloud, octomap, costmap 2d,
and 2D images. In addition, the Grid-Map-OpenCV package provides a convenient interface
to process Grid-Map images with OpenCV functions.

In the first stage, the SSL-SLAM algorithm takes in successive frames captured by L515
and outputs a dense colored pointcloud, estimated odometry data, and hexapod’s position.
In the second stage, due to the bandwidth of the computing unit NUC, the dense colored
pointcloud is cropped into a 1m×1.2m×0.4m chunk around the hexapod, where the hexapod
is at the bottom middle, as shown in Figure 2.5. Next, this dense colored pointcloud chunk
is processed by the Grid-Map library and converted to a grid map with one single layer of
the cell’s height. The grid map has a resolution of 0.01, meaning each cell is a square of
0.01m by 0.01m. Next, this grid map goes through 12 layers of filters to calculate additional
information such as elevation, variance, color, friction coefficient, foothold quality, surface
normal, traversability, etc. After filtering, new information is stored as different data layers
in the grid map.
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Figure 2.5: L515 camera is placed at bottom middle of the local grid map

Similar to all SLAM algorithms, the SSL-SLAM is limited to the sensor field of view
(FOV), environmental lighting, and feature points in the image. Because the SLAM algo-
rithm is based on feature point detection and matching, shadows and reflections could make
feature matching more difficult from the robotics perspective. Furthermore, obstructed re-
gions behind objects will not have assigned depth value due to occlusion. As a result, in
the process of converting the pointcloud into grid map, these regions with undefined height
values are assigned not a value (NAN). Overall, the NaN regions are extremely problematic.
Figure 2.6 shows a pointcloud with the region behind a joist completely occluded, resulting
in a NaN region in the grid map. Figure 2.7 (a) shows the reflections in front of a joist in
the RGB image, which result in points below the ground plan with negative height in the
point cloud shown in Figure 2.7 (b).

These NaN regions need to be handled with caution. We cannot simply assume all NaN
regions are the floor and assign 0 height to them in the grid map. It might be shadows and
reflections of the joist that the hexapod should avoid. One way to handle NaN would be to
interpolate nearby not NaN value. This can be done by the Fast Marching Inpaint method
introduced by Telea et al. [13], which uses a binary mask of spots to be filled in values in an
input image. In our case, the mask is a zero matrix with the same size as the grid map. All
the locations of the NaN region are marked as 1 on the mask matrix, and this mask matrix
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(a) The region behind joist has no or
very few points in the pointcloud

(b) The black region in a 2D grid map cor-
responds to the NaN value

Figure 2.6: NaN region behind a joist. (a) pointcloud indicating shadow of the joist. On 2D
grid map image (b), grey region corresponds to the floor and bright white region corresponds
to the joist.

(a) RGB image from L515 depth camera (b) Side-view of the pointcloud visualization

Figure 2.7: (a) Reflections in front of the joist and have negative height in the pointcloud
(b)
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(a) 2D grid map image (b) Inpainted 2D grid Map

Figure 2.8: (a) Before and (b) after inpainting to remove NaN value.

with a 2D grid map is fed into the inpainting algorithm. Figure 2.8 shows the 2D grid map
before and after inpainting.

2.2.2 Line Detection

In the two stages described above, we have created a grid map for the surroundings, but we do
not know where the obstacles are. In fact, the joists are well-presented in the 3D pointcloud
and grid map, but the lack of semantic information is a challenge for our path planning and
climbing sequence. Moreover, previous work of the grid map library Frankhauser et al. [4]
only tests the quadruped walking algorithm on a semi-flat terrain with a grid map but not
in a world with random joist-like obstacles. Therefore, we must develop other methods to
detect joists. This is the third stage of our vision pipeline.

Our approach to detection joist relies on traditional 2D line detection. A Grid map can
be easily converted to a 2D image, which is a top-down view of the world with each cell
filled with the height value. The line detection idea is based on the assumption that if we
could detect the joist from a top-down 2D view, we could transfer them back to the real 3D
world coordinates and deliver joist parametric data such as height, orientation, and distance
information to the hexapod. More specifically, our joist detection algorithm follows these
three steps:

1. Grid map is converted to a top-down 2D image. ED-line detector is applied on a 2D
grid-map image and all possible joist contour lines are returned.

2. Detected lines are overlaid on the original grid map and the average height of the lines
is estimated. Since we are interested in lines on the actual joists, detected lines that
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(a) 2D inpainted grid map im-
age of a joist

(b) All line detection results
in red lines

(c) Filtered line detection re-
sults in blue lines

Figure 2.9: The result of ED-Line detection on a 1m × 1.2m grid map. The L515 depth
camera is at the bottom. Joist, floor, and joist reflection are in bright white, grey, and dark
grey colors respectively. (a) The grid map image after inpainting. (b) The ED-Line detector
incorrectly detects two line segments on the top; these two line segments are filtered out
based on underlying grid map height value, as shown in (c)

have average height less than 5cm are assumed to be not joists and filtered out, so that
these lines are not picked as the closest line in Step 3.

3. Joist distance is measured by the vertical pixel distance from the bottom of grid map
image to the center of the line. We calculate the joist distance for each line and the
line with the smallest distance is chosen and returned.

In Step 1, not all detected lines are on joists, as illustrated in Figure 2.9. Some of these
lines are formed between the floor in color grey and inpainted NaN in color black. These
lines are filtered out based on average height, in Step 2.

In Step 2, the average height of a line ĥ is estimated as follows: Given a grid map g
with each cell’s height of hcell = g(i, j), and given a line starting at (x1, y1) and ending at
(x2, y2), the estimated average height is given by

ĥ =
1

(x2 − x1 + 4)(y2 − y1 + 4)
×

x2+2∑
i=x1−2

y2+2∑
j=y1−2

g(i, j) (2.1)

where x1 ≤ x2, y1 ≤ y2, and all (i, j) are within grid map g’s boundary.
Intuitively, in Equation 2.1, we traverse over a line and compute the average height over

a stripe of 4 pixels width with 2 pixels on each side of the line.
We use Edge Drawing line detector (ED-line) [1] to detect lines in the 2D grid map image.

Two other common line detectors, Hough transform (Hough-line) [7] and Line Segment
Detector (LSD) [6], however, did not work as well as ED-line. We speculate that this is due
to our data which is unorganized with little structure. Figure 2.9 shows that the ED-Line
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detection results on the inpainted grid map image in red and the results after height filtering
in blue,.

These three stages summarize our vision system. Once the robot detects joists, it has to
climb over or avoid joists.

2.3 Hexapod Joist Climbing

Foothold is the point of contact on the terrain where the leg can firmly support the body.
Foothold selection of is critical for holding the body stance and maintaining balance. The
foothold selection process is commonly done on an elevation map where the algorithm loops
through all possible small grid cells and determines the best foothold for the next movement.
We have developed a heuristic algorithm to estimate the distance, height, and orientation of
the joist and it is used to prevent collisions with the joist. In our case, collision prevention
is done through a scan of the 3D global map and adjusting the hexapod’s pose accordingly.
During the climbing sequence, the hexapod leaves enough space between its legs and joist
so that the legs do not hit on the joist.

By default, the hexapod follows the simple “move straight” command and keeps moving
forward in the world with a tripod gait, until the joist distance is less than our chosen
threshold, 0.55 meters. The joist height is also estimated from the vision system while the
hexapod is moving. Joist height estimation helps to identify joists that are too high to climb
over. In our attic setup, we have two types of joists with different heights, 10 cm and 18
cm. Our experiments have shown that the 10 cm joist is climbable while the 18 cm one is
not. Therefore, to plan hexapod motion, we need to take joist height into account. Once we
estimate the height of the joist from the grid map, the rest of the logic is as follows: if the
joist height is over 14 cm, the hexapod stops any climbing attempt and moves sideways; if
the joist height is less than 14 cm, the hexapod continues climbing with caution.

It is worth mentioning the coordinate system used in our joist climbing algorithm. Our
vision and joist climbing algorithms use slightly different coordinate systems due to the
nature of the vision sensor and hexapod body.
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Figure 2.10: Hexapod Vision Coordinate System

In Figure 2.10, “map” is the center of the global coordinate system, as defined by the
starting position and orientation of L515 at time 0. On the other hand, “base link” is the
moving L515 coordinate system after time 0. Both “map” and “base link” follow the right-
handed coordinate system where red is the positive X-axis (+X), green is the positive Y-axis
(+Y), and blue is the positive Z-axis (+Z). L515 is pitched at an angle θ around +Y axis.
At the up-right position θ = 90◦ and at the facing-down position θ = 0◦.

Figure 2.11: Hexapod Robot Coordinate System. Source: Interbotix

The Hexapod Robot coordinate shown in Figure 2.11 is defined slightly differently, but the
axis orientation is the same. The “robot/base link” is at the center of the hexapod body, the
“robot/base footprint” is at the projection center of the robot body on the ground, and the
”robot/odom” is the center of the global coordinate system, as defined by the starting posi-
tion and orientation of the hexapod at time 0. The transformation between “robot/base link”
and “robot/base footprint” is a pure translation on -Z, but this transformation relationship

https://github.com/Interbotix/interbotix_ros_crawlers/tree/main/interbotix_ros_xshexapods/examples/python_demos
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(a) Pose 1: stop near joist,
calculate trajectory

(b) Pose 2: move front legs up
in the air

(c) Pose 3: reset body posi-
tion

(d) Pose 4: move middle legs
up in the air

(e) Pose 5: lean body for-
wards

(f) Pose 6: reset body posi-
tion

(g) Pose 7: walk 1 gait cycle
and lean body forward

(h) Pose 8: move back legs up
in the air

(i) Pose 9: reset body and all
legs position

Figure 2.12: Illustration of Hexapod Climbing Sequence

could change when the hexapod raises its body. On the other hand, the transformation be-
tween either “robot/base link” and “vision/base link” or “robot/odom” and “vision/map”
is always fixed with 20cm translation in +Z and 25cm translation in +X.

Figure 2.12 illustrates the hexapod climbing sequence over a joist. Once the hexapod
moves close to the joist, the onboard inverse kinematic (IK) solver computes trajectories for
the front legs to cross over the joist through pre-computed waypoints. Next, the leg actuator
executes the selected leg trajectories while the hexapod leans forward to compensate for the
change of gravity center. Once this process is completed, the front two legs climb over the
joist and now support the body from the other side of the joist. At this point, the hexapod
moves forward with one cycle of tripod gait to bring two middle legs close to the joist. This
process repeats again for the middle and back legs.
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2.4 ROS Message Synchronization and Delay

There are 6 ROS message topics running on the ROS server. They form the sequential
message flow of the hexapod in the time domain and execute each callback function when
necessary.

• /hexapod/joist cmd: receives commands to move hexapod around

• /camera/color/image raw and /camera/depth/color/points: output of L515

• /map: 3D global pointcloud map, output of SSL-SLAM

• /grid map from pointcloud: grid map from /map pointcloud

• /odom: visual odometry, output of SSL-SLAM

• /joist: joist parametric data, namely distance, height, and orientation of the closest
joist

During the experiments, we realized that there is a 0.2s processing time in processing raw
L515 data and converting it to pointcloud data, 0.15s processing time in joist detection and
calculation, and 1.5-2s processing time for grid map generation. The grid map processing
time depends on the density of pointcloud. The processing time delay issue has impacts on
two things:

1. Grid map and odometry data time synchronization. In order to localize the hexa-
pod and plan new paths, we need both grid map information and odometry data.
However, /grid map from pointcloud and /odom are running at two different
rates. In fact, it is computationally intensive to construct a grid map and as such
/grid map from pointcloud runs between 0.5 to 0.6HZ, while /odom runs at a
much faster frequency of 5Hz. Therefore, we first synchronize /odom message and
/grid map from pointcloud message with ROS message filter in the main callback
function to obtain the most up-to-date data of odometry and grid map. After syn-
chronization, the difference between the two topic’s message timestamps is less than
0.2s.

2. Joist distance estimation. The hexapod is moving forward at a speed v. Assume at
time (t0) the L515 captures joist image, at (t0 + 0.2) SSL-SLAM sends out pointcloud
data, at (t0+0.2+t1) grid map finishes processing, at (t0+0.2+t1+0.15) line detection
returns detected line results and logs joist detection result on screen, which by now
corresponds to the joist distance estimation from a few seconds ago, during which
hexapod has moved forward v(t0 + 0.2 + t1 + 0.15). To address this, we use odometry
data to compensate the joist detection distance at time (t0+0.2+ t1+0.15), such that
if the odometry measurement difference between (t0) and (t0 + 0.2 + t1 + 0.15) is O
and the joist detection distance at time (t0) is J , then the actual joist distance we use
at time (t0 + 0.2 + t1 + 0.15) is J −O.
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2.5 Experiments and Results

To understand the choice of L515 pitch angle and to verify our vision and climbing algorithm,
4 experiments are performed. Experiment descriptions are summarized in the Table 2.1.

Table 2.1: Experiments Description

Experiment Description

1 Understand how the L515 pitch angle affects horizontal and vertical views
2 Determine correlation between pitch angle, NaN region, and joist width
3 Measure accuracy of the line detector
4 Test integrated vision and climbing algorithm in 7 settings

2.5.1 Experiment 1: L515 Camera Angle

The first experiment is to understand how the L515 pitch angle affects horizontal and vertical
views of the robot. Considering the pitch angle would also affect the SSL-SLAM quality,
we ran the SSL-SLAM algorithm with different pitch angles and observed the quality of
pointcloud. We found that at 45◦ pitch, about 80% of the area in RGB image from L515
is on the ground with planar depth and very few feature points. Unsurprisingly, the SSL-
SLAM algorithm fails to reconstruct the pointcloud after only 5 seconds. Therefore, in the
following experiments, we will only consider the pitch angles of 60◦, 75◦, and 90◦.

Figure 2.13: Experiment to evaluate the vertical and horizontal FOV of image with different
pitch angle configurations
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(a) 60 degree RGB (b) 60 degree Depth

(c) 75 degree RGB (d) 75 degree Depth

Figure 2.14: Depth and RGB image at 1m distance away from joists

Next, we evaluate the FOV on different pitch angles. The technical spec information
of L515 indicates that it has a vertical FOV of 55◦ and a horizontal FOV of 70◦. In our
experiments, a tape measure is placed next to the hexapod so that the horizontal distance
can be measured as seen in Figure 2.13. L515 is fixed on the mount 0.35m above ground.
The pitch angles adjustable nob is inserted at 90, 75, and 60 degrees respectively. Then,
the L515 camera is turned on and the observable horizontal distance from the RGB image
is recorded as shown in Table 2.2.

Table 2.2: Vertical FOV Min/Max Ground Distance

Pitch angles Minimum distance (m) Maximum distance (m)

90◦ 0.7 >4∗

75◦ 0.4 >4∗

60◦ 0.25 1.5

∗: The max distance we can measure is 4m due to space constraints.
According to Table 2.2, at 90◦ and 75◦ the L515 has a relatively large horizontal view;

at 60◦ the L515 is able to see the ground as close as 0.25m, but cannot see ground as far as
at 90◦ and 75◦. We need more experiment data to choose between 75◦ and 60◦ pitch angle.
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(a) 60 degree RGB (b) 60 degree Depth

(c) 75 degree RGB (d) 75 degree Depth

Figure 2.15: Depth and RGB image at 1.5m distance away from joists

To do so, we recorded the depth and RGB images for 75◦ and 60◦ pitch angles at 1m and
1.5m, as we plan to use these two distances in later experiments. Figures 2.14 and 2.15 show
that at 60◦ pitch there is very little depth distinction and about 80% of image is ground.
This might have an impact on the quality of SLAM map and could result in the SLAM
algorithm failing occasionally due to limited feature points. From this perspective, 75◦ pitch
angle might be preferable. However, at 60◦, we might have a smaller NaN region and hence
more accurate joist width data after inpainting. Therefore, before we deciding on the pitch
angle, we need experiment 2 to determine whether decreasing the pitch angle improves NaN
region handling.

2.5.2 Experiment 2: Joist Width Estimation

The next experiment is to determine the correlation between the size of the NaN region and
the L515 pitch angle, the effectiveness of the grid map inpainted method to fill in the NaN
value, and the joist width estimation.

In this experiment, the hexapod starts 1m away from a joist with 0.1m height and 0.04m
width, walks towards it, and stops when the front legs hit the joist. While moving, the grid
map is being constantly updated and each grid map frame is saved. When the hexapod
stops, we measure the width of the NaN region and joist on the grid map image. Since each
grid map image pixel corresponds to a 1cm × 1cm square, the width measurement is done
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by manually counting the number of pixel sizes. As shown in Table 2.3, we observe that the
primary NaN region is behind the joist and the joist width is overestimated after inpainting.

Table 2.3: Pitch Angle and Inpainting Effect on Grid Map

θ WNaN (m) w̃ (m) w̃
′
(m) Wjoist (m)

90◦ 0.2 0.02 0.13 0.04
75◦ 0.15 0.02 0.1 0.04
60◦ 0.13 0.03 0.08 0.04

θ: pitch angle
WNaN : width of NaN region
w̃: estimated joist width by assuming NaN is zero height
w̃

′
: estimated joist width with inpainting

Wjoist: actual joist width

In Table 2.3, w̃ corresponds to the estimated joist width, assuming NaN behind the joist
are assigned to zero height in the grid map. Even though in the example the assumption is
valid, in general it might not be true, since the occluded margin could have any height. This
is the main motivation for considering inpainting the NaN values.

As seen in Table 2.3, before inpainting w̃ is underestimated about 0.01m. Though not
linear, WNaN decreases as pitch angle decreases. The decrease in the size of the NaN region
width is 0.05m from 90◦ to 75◦ pitch angles, while the decrease is only 0.02m from 75◦ to
60◦. On the other hand, 75◦ and 60◦ pitch angles lower w̃

′
by 0.03m and 0.02m respectively.

In summary, we observe that the NaN region width and overestimated joist width improves
mostly from 90◦ to 75◦, and marginally from 75◦ and 60◦. Based on these results above,
we determine that 75◦ is the best pitch angle configuration in consideration of horizontal
distance FOV, depth map quality, SLAM reliability, and decrease in the size of NaN region
and joist width estimation. Note that all results in Table 2.3 are computed manually and
not algorithmically.

2.5.3 Experiment 3: Line Detection Accuracy

In the third experiment, we investigate the accuracy of the line detector. Joists with different
heights and orientation are tested in this experiment. The hexapod starts at 1m away from
the joist and moves forward until its leg hits the joist. Figure 2.16 shows the experimental
setup.
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Figure 2.16: Joist are oriented at 1m in front of the hexapod.

The joist orientation angle, ψ, is measured from the perpendicular line to the direction of
the motion of the hexapod, such that when the joist is parallel to the direction of the motion
of the hexapod, ψ = 90◦; when the joist is perpendicular to the direction of the motion of
the hexapod, ψ = 0◦. Joist orientation is estimated by trigonometry formula:

ψ = arctan(
abs(ystart − yend)

abs(xstart − xend)
) (2.2)

where (xstart, ystart) and (xend, yend) are two vertex coordinates defining the line.

Figure 2.17: Line detection result on an oriented joist.
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Table 2.4: Estimated Joist Heights and Orientation Angle

ψ (◦) ψ
′

front (
◦) ψ

′

back (◦) h
′
(m) H (m)

60 55 59 0.083 0.1
45 42 47 0.085 0.1
30 33 31 0.081 0.1
60 52 58 0.187 0.18
45 41 47 0.19 0.18
30 31 34 0.195 0.18

where ψ: ground truth joist orientation yaw angle
ψ

′

front: estimated yaw angle on the front of the joist

ψ
′

back: estimated yaw angle on the back of the joist
h

′
: estimated joist height

H: ground truth joist height

The result of this experiment is summarized in the Table 2.4 and an example image is
shown as Figure 2.17. We can see that detected line segments estimates joist orientation
relatively accurately, with a tolerance of ± 3◦. Moreover, the estimated height is close to
the actual height with about a 0.01m difference, after inpainting to fill in the NaN value.

2.5.4 Experiment 4: Climbing over Joists

For Experiment 4, we combine the path planning and vision modules to determine whether
the hexapod could correctly detect joists’ parametric information and climb over joists. Seven
tests are performed, as shown in Table 2.5.

Table 2.5: Experiment 4 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

1 1 0◦ 10
2 1.5 0◦ 10
3 1 0◦ 18
4 1 45◦ 10
5 1 60◦ 10
6 1 75◦ 10
7 2.7 0◦ 18
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In Test 1, the hexapod starts at 1m away from the joist. The joist in this test is measured
at 10cm in height, 4cm in width, and 83cm in length. Joist is placed perpendicular to the
direction of the motion of the robot.

Test 1: Hexapod 1m away from 10cm joist

Figure 2.18: Test 1: hexapod starts at 1m from 10cm joist. The resulting grid map images
and line detections for this experiment are shown in Appendix A. Demo video.

The hexapod walks from 1m starting location and detects a joist at 0.65m. Hexapod keeps
moving forward until the joist distance falls within the 0.55m threshold. Next, the hexapod
moves forward with tripod gait and odometry data to get as close to the joist as possible,
where the climbing sequence starts. During the climbing sequence, the hexapod first takes
two front legs over the joist, plans again based on the current pose, then takes two middle
legs over the joist, plans new trajectories, and finally moves the back legs across the joist.

https://drive.google.com/file/d/1mdj-JK_H-EIvMniCTCZBxpg-AE_hH4ss/view?usp=sharing
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Test 2: Hexapod 1.5m away from 10cm joist

Figure 2.19: Test 2: hexapod starts at 1.5m from 10cm joist. The resulting grid map images
and line detections for this experiment are shown in Appendix B. Demo video.

Similar setup as Test 1, except that the hexapod starts further away. In Test 2, the hexapod
is placed 1.5m away from the horizontal joist. The hexapod detects the joist at 0.95m, 0.56m,
and 0.35m; once the distance to the closest joist falls under the 0.55m threshold, it steps out
of the walking forward loop, approaches the joist as close as possible, and climbs over the
joist.

Test 3: Hexapod 1m away from 18cm joist

Figure 2.20: Test 3: hexapod starts at 1m from 20cm joist. The resulting grid map images
and line detections for this experiment are shown in Appendix C. Demo video.

https://drive.google.com/file/d/1RVg-kh3Yr_99ZdbvhjjkQl-WvstAbHTl/view?usp=sharing
https://drive.google.com/file/d/1cT10r3oEmpwnYd3hfaOgYeP6WZxKGCye/view?usp=sharing
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Similar setup as Test 2, except that the 10cm joist is replaced with a 18cm joist. The
hexapod starts at 1m away from the joist. The joist is placed perpendicular to the direction
of the motion of hexapod. The hexapod detects the joist at 0.68m and immediately realizes
the joist height, estimated 0.15m, is too high to climb. It then moves sideways.

Test 4: Hexapod 1m away from 45◦ oriented 10cm joist

Figure 2.21: Test 4: hexapod starts at 1m from 45◦ oriented joist. The resulting grid map
images and line detections for this experiment are shown in Appendix D. Demo video.

Test 4 has a similar setup as Test 1, except that the 10cm joist is no longer perpendicular to
the direction of the motion of hexapod. The hexapod starts at 1m away from the bottom of
the joist. The joist is placed at 45◦ perpendicular to the direction of the motion of hexapod.
The hexapod detects the oriented joist at 0.5m and estimates the orientation angle, θ, of
41.5◦. It moves forward to get as close as possible to the joist, where it rotates clockwise
41.5◦ and orients itself perpendicular to the joist. It successfully climbs over the joist.

https://drive.google.com/file/d/1GgvTzWkanDfBSsfDS0dVEXHALxt0qKv1/view?usp=sharing
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Test 5: Hexapod 1m away from 60◦ oriented 10cm joist

Figure 2.22: Test 5: hexapod starts at 1m from 60◦ oriented joist. The resulting grid map
images and line detections for this experiment are shown in Appendix E. Demo video.

Test 5 has a similar setup as Test 1, except that the 10cm joist is no longer perpendicular
to the direction of the motion of the hexapod. The hexapod starts at 1m away from the
joist. The joist is placed at 60◦ perpendicular to the direction of the motion of the hexapod.
The hexapod detects the oriented joist at 0.59m and estimated orientation angle, θ, of 41.5◦.
Since the joist distance, 0.59m, is larger than the threshold of 0.55m, it keeps moving forward
until the second estimation came in. The second estimation is at 0.53m distance and 58.9◦

of orientation. It moves forward to get as close to the joist as possible, where it rotates
counter-clockwise 58.9◦ degree and orients itself perpendicular to the joist. It successfully
climbs over the joist.

https://drive.google.com/file/d/1xNDlgXvNjyRisFCmPor47l62FLfO6azu/view?usp=sharing
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Test 6: Hexapod 1m away from 75◦ oriented 10cm joist

Figure 2.23: Test 6: hexapod starts at 1m from 75◦ oriented joist. The resulting grid map
images and line detections for this experiment are shown in Appendix F. Demo video.

Test 6 has a similar setup as Test 1, except that the 10cm joist is no longer perpendicular to
the direction of the motion of the hexapod. The hexapod starts at 1m away from the joist.
The joist is placed at 75◦ perpendicular to the direction of the motion of the hexapod. The
hexapod detects the oriented joist at 0.66m and estimates the orientation angle θ = 73.9◦.
Since the joist distance 0.66m is larger than the threshold of 0.55m, it keeps moving forward
until the second estimation comes in. The second estimate is at 0.46m distance and 72.5◦

of orientation. It moves forward to get as close to the joist as possible, where it rotates
counter-clockwise 72.5◦ and orients itself perpendicular to the joist. It successfully climbs
over the joist.

https://drive.google.com/file/d/18PORtAPKIQDTDyRHYQmrY6Q1NJEYt3_L/view?usp=sharing
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Test 7: Hexapod 2.7m away from 18cm joist

Figure 2.24: Test 7: hexapod starts at 2.7m from 18cm joist. The resulting grid map images
and line detections for this experiment are shown in Appendix G. Demo video.

In test 7, we measure the accuracy of our joist distance estimation. The input pointcloud
size is changed from 1m× 1.2m× 0.4m to 3m× 1.2m× 0.4m to ensure that joist is always
in the view. The hexapod starts at 2.7m and moves forward for 1.8m. As soon as a new
joist distance estimation shows up, we immediately record the ground truth distance using
a tape measure as seen in Figure 2.25. After moving for 1.8m, the hexapod moves to the
left, signaling it detects a high joist of 18cm. Throughout the experiment, we collect 6
measurements. The joist distance error is summarized in Table 2.6:

Measurement Estimated distance (m) Ground truth distance (m) Error (m)

1 2.46 2.3 0.16
2 2.17 2.02 0.15
3 1.81 1.83 -0.02
4 1.54 1.61 -0.07
5 1.33 1.27 0.06
6 0.97 0.94 0.03

Table 2.6: The snapshots of video indicating the measurements shown in Figure 2.25

For Test 7, one can hypothesize possible causes of the error as follows:

1. The grid map processing delay: the grid map processing time highly depends on the
density of the input pointcloud, as mentioned in Section 2.4.4. Although we use syn-

https://drive.google.com/file/d/19hwHtGhhGFcatjzvPHSYw8MuwPpjZ3qw/view?usp=sharing
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(a) Measurement 1 (b) Measurement 2

(c) Measurement 3 (d) Measurement 4

(e) Measurement 5 (f) Measurement 6

Figure 2.25: Six snapshots from demo video where measurements are taken place
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chronized odometry data to compensate for this processing delay so that the joist
distance between hexapod and joist is up to date, the delay between synchronizing
grid map message and odometry message is non-negligible.

2. The quality of pointcloud: if the input pointcloud is dense, we should be able to
compute a high-quality grid map and accurate line detection. However, when the
hexapod is far away, the pointcloud might be sparse. Consequently, the line detection
might be slightly inaccurate.

3. The delay inside ROS logging system between the time joist distance estimation is sent
and the time it is actually logged on the screen might underestimated the distance.
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Chapter 3

Conclusions and Future Works

We analyze the problem of joist climbing for a hexapod robot. We use multiple wooden joists
as the obstacles and test whether the hexapod could detect the joist and take proper actions.
We examine the possibility to use one single L515 camera and an Intel NUC to detect joists
on the floor and move the hexapod to the desired location. The experiments show that
the hexapod is able to detect obstacles 2 meters ahead, plan trajectories accordingly, and
successfully climb over obstacles or move sideways when encountering unclimbable obstacles.

From the experiments, we discover the limitations of our algorithms. Even though we
show promising results for hexapod moving near joists, the environment is special and unique.
The material of obstacles could severely impact our detection algorithm. Moreover, the delay
from processing units is non-negligible.

Generally speaking, obstacle avoidance remains the hardest part of the autonomous
robotics system. For self-driving cars on a crowded highway with more than hundreds of
vehicles considered ”obstacles”, obstacle avoidance is crucial yet difficult. As discussed in
Chapter 1, the traditional way of obstacle avoidance is detect-plan-act. Unsurprisingly, with
observations from our experiment, detect-plan-act is not enough; every unit in the pipeline
needs to wait for the previous stage to complete. Some recent research work has been pro-
posed to combine the three stages using a single deep learning network, such that the robot
”knows” where to ”go” when it ”sees” the obstacle [2]. Demo videos show that the robot
is able to navigate through complex indoor environments with RGB video. However, this
method is far from perfect. One typical issue in the outdoor environment is that objects
could be extremely far away, making all current depth estimation algorithms fail.

On the other hand, we should still be optimistic that these problems could be addressed
soon. With next-generation LiDARs and cameras, robots can see objects further away and
more clearly. With powerful edge-computing devices such as NVIDIA Xavier and Intel
NUC, more computations could be performed onboard. Thus, a single end-to-end network
for vision and action is probably not out of reach.

https://smlbansal.github.io/LB-WayPtNav/
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Appendix A

Joist Detection Figures For Test 1

The exact joist parameters in Test 1 is summarized in Table A.1. Figure A.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 12 in Figure A.1 is about 43 seconds. The time between each successive frame is
about 3.5 seconds. Figure A.2 shows the inpainted grid map corresponding to the frames in
Figure A.1 and Figure A.3 shows line detection results on the inpainted frame of Figure A.2.
As shown in Figure A.3, the front and the back of the closest joist is detected in all frames
except for 3 - 7. In frames 8 - 12, there is an uneven region behind the test joist, resulting
in degraded inpainting images and line detections. This region is presumably the result of
inpainting on an array of the joists, circular objects, and the NaN region on the floor, as
shown in Figure A.4.

Table A.1: Test 1 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

1 1 0◦ 10
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Figure A.1: Grid map images with all NaN value painted in green

Figure A.2: Inpainted grid map images
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Figure A.3: Detected joist overlaid on inpainted grid map images

Figure A.4: Top down view of the region behind the test joist
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Appendix B

Joist Detection Figures For Test 2

The exact joist parameters in Test 2 is summarized in Table B.1. Figure B.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 12 in Figure B.1 is about 54 seconds. The time between each successive frame is
about 4.5 seconds. Figure B.2 shows the inpainted grid map corresponding to the frames in
Figure B.1 and Figure B.3 shows line detection results on the inpainted frame of Figure B.2.
As shown in Figures B.3, the closest joist is detected in all frames except for 1, 2, 11, and
12. In frames 8 - 12, there is an uneven region behind the test joist, resulting in degraded
inpainting images and line detections. One could hypothesize that this issue is due to the
joist reflections, circular objects, and NaN regions on the floor.

Table B.1: Test 2 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

2 1.5 0◦ 10
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Figure B.1: Grid map images with all NaN value painted in green

Figure B.2: Inpainted grid map images
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Figure B.3: Detected joist overlaid on inpainted grid map images
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Appendix C

Joist Detection Figures For Test 3

The exact joist parameters in Test 3 is summarized in Table C.1. Figure C.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 6 in Figure C.1 is about 20 seconds. The time between each successive frame is
about 3.2 seconds. Figure C.2 shows the inpainted gridmap corresponding to the frames in
Figure C.1 and Figure C.3 shows line detection results on the inpainted frame of Figure C.2.
As shown in Figure C.3, only the front of the test joist is detected. The inpainted grid map
image shows a degraded region behind the joist in frame 5. One could hypothesize that this
issue is due to very few points behind the 18cm joist and NaN on the floor.

Table C.1: Test 3 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

3 1 0◦ 18
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Figure C.1: Grid map images with all NaN value painted in green

Figure C.2: Inpainted grid map images
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Figure C.3: Detected joist overlaid on inpainted grid map images
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Appendix D

Joist Detection Figures For Test 4

The exact joist parameters in Test 4 is summarized in Table D.1. Figure D.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 12 in Figure D.1 is about 39 seconds. The time between each successive frame
is about 3.2 seconds. Figure D.2 shows the inpainted gridmap corresponding to the frames
in Figure D.1 and Figure D.3 shows line detection results on the inpainted frame of Figure
D.2. As shown in Figure D.3, the front and back of the test joist is detected in all grid map
images except for frames 1 and 10. As the hexapod approaches the joist, the joist detection
becomes more accurate.

Table D.1: Test 4 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

4 1 45◦ 10
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Figure D.1: Grid map images with all NaN value painted in green

Figure D.2: Inpainted grid map images
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Figure D.3: Detected joist overlaid on inpainted grid map images
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Appendix E

Joist Detection Figures For Test 5

The exact joist parameters in Test 5 is summarized in Table E.1. Figure E.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 14 in Figure E.1 is about 42 seconds. The time between each successive frame
is about 3 seconds. Figure E.2 shows the inpainted gridmap corresponding to the frames
in Figure E.1 and Figure E.3 shows line detection results on the inpainted frame of Figure
E.2. As shown in Figure E.3, the front and back of the test joist is detected in all grid map
images except for frames 6, 11, and 14. The middle joist is also detected in frames 9 - 14.

Table E.1: Test 5 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

5 1 60◦ 10
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Figure E.1: Grid map images with all NaN value painted in green

Figure E.2: Inpainted grid map images
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Figure E.3: Detected joist overlaid on inpainted grid map images
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Appendix F

Joist Detection Figures For Test 6

The exact joist parameters in Test 6 is summarized in Table F.1. Figure F.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 15 in Figure F.1 is about 40 seconds. The time between each successive frame
is about 2.7 seconds. Figure F.2 shows the inpainted gridmap corresponding to the frames
in Figure F.1 and Figure F.3 shows line detection results on the inpainted frame of Figure
F.2. As shown in Figure F.3, the front and back of the test joist is detected in all grid map
images except for frames 1 and 4. The line detector is also able to detect the joist that is
perpendicular to the 75◦ joist.

Table F.1: Test 6 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

6 1 75◦ 10
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Figure F.1: Grid map images with all NaN value painted in green

Figure F.2: Inpainted grid map images
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Figure F.3: Detected joist overlaid on inpainted grid map images
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Appendix G

Joist Detection Figures For Test 7

The exact joist parameters in Test 7 is summarized in Table G.1. Figure G.1 shows the grid
map image with NaN values shown in green for this test. The time span between frame 1
and frame 6 in Figure G.1 is about 55 seconds. The time between each successive frame
is about 10 seconds. Figure G.2 shows the inpainted gridmap corresponding to the frames
in Figure G.1 and Figure G.3 shows line detection results on the inpainted frame of Figure
G.2. As shown in Figure G.3, the front of the test joist is detected in all grid map images,
but there is a degraded inpainting region behind the test joist. This region is presumably
the result of inpainting on an array of the joists, circular tubes, and the NaN region on the
floor.

Table G.1: Test 7 Setup

Test Joist Distance (m) Joist Orientation Joist Height (cm)

7 2.7 0◦ 18
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Figure G.1: Grid map images with all NaN value painted in green

Figure G.2: Inpainted grid map
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Figure G.3: Detected joist overlaid on inpainted grid map images
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