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Abstract

Machine learning in high-stakes domains, such as healthcare, faces two critical challenges:
(1) generalizing to diverse data distributions given limited training data while (2) maintain-
ing interpretability. To address these challenges, we propose an instance-weighted tree-sum
method that effectively pools data across diverse groups to output a concise, rule-based
model. Given distinct groups of instances in a dataset (e.g., medical patients of different
ages or from different treatment sites), our method first estimates group membership prob-
abilities for each instance. Then, it uses these estimates as instance weights in FIGS [1],
an existing greedy tree-sums method, to grow an set of decision trees whose values sum to
the final prediction. We call this new method Group Probability-Weighted Tree Sums (G-
FIGS). Extensive experiments on important clinical decision instruments datasets show
that G-FIGS achieves state-of-the-art prediction performance; e.g., holding the level of
sensitivity fixed at 92%, G-FIGS increases specificity for identifying cervical spine injury
(CSI) by up to 10% over CART and up to 3% over FIGS alone, with larger gains at higher
sensitivity levels. By keeping the total number of tree splits below 16 in FIGS, the final
models remain interpretable, and we find that they match medical domain expertise. All
code, data, and models are released on Github: Group Probability-Weighted Tree Sums is
integrated into the Python package imodels [2] with an sklearn-compatible API, and exper-
iments for reproducing the results here can be found at Yu-Group/imodels-experiments.
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1. Introduction

Recent advances in machine learning have led to impressive increases in predictive perfor-
mance. However, machine learning has high stakes in the healthcare domain, with two
critical challenges to effective adoption.

First, models must adapt to heterogenous data from diverse groups of patients [3]. Groups
may differ dramatically and require distinct features for high predictive performance on the
same outcome; e.g., infants may be nonverbal, disallowing features that require a verbal
response, which in turn may be highly predictive in adults. A potential solution is to simply
fit a unique model to each group (e.g., Kuppermann et al. 2009), but this discards valuable
information that can be shared across groups.

Second, interpretability is essential for the development and implementation of models in
healthcare and many other domains [5, 6]. Interpretability is required to ensure that models
behave reasonably, identify when models will make errors, and make the models amenable
to inspection by domain experts. Moreover, interpretable models tend to be much more
computationally efficient than larger black-box models, often making them easier to use
with humans in the loop, such as in medical diagnosis.

Here, we (1) address the challenge of sensibly sharing data across groups using group
membership probability estimates and (2) address the challenges of interpretability by
outputting a concise rule-based model. Specifically, we introduce Group Probability-
Weighted Tree Sums (G-FIGS1), a two-step algorithm which takes in training data divided
into known groups (e.g., patients in distinct age ranges), and outputs a rule-based model
(Figure 1). G-FIGS first fits a classifier to predict group membership probabilities for each
input instance (Figure 1A). Next, it uses these estimates as soft instance weights in the loss
function of FIGS. The output is an ensemble of decision trees where the contribution from
each tree is summed to yield a final prediction.

By sharing data sensibly across groups during training, G-FIGS results in a separate highly
accurate rule-based model for each group. We test G-FIGS on three real-world clinical
datasets (Chapter 4) and for two age groups commonly used in ER medicine; we find
that G-FIGS outperforms state-of-the-art clinical decision instruments and competing
machine learning methods in terms of specificity achieved at the high levels of sensitivity
1Our method is abbreviated as G-FIGS because we use an instance-weighted version of Fast Interpretable
Greedy-tree sums (FIGS, Tan et al. 2022) to output a rule-based model.
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Basic structure of transfer idea
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+

Figure 1. Overview of G-FIGS. (A) First, the covariates of each instance in a dataset are
used to estimate an instance-specific probability of membership in each of the pre-specified
groups in the data (e.g., patients of age <2 yrs and ≥2 yrs). (B) Next, these membership
probabilities are used as instance weights when fitting an interpretable model for each
group.

required in many clinical contexts. Moreover, G-FIGS maintains interpretability and
ease-of-vetting with small (1-3 trees per group) and concise (≤ 6 splits per tree) clinical
decision instruments by limiting the total number of rules across the trees for a given
group.

1.1 Background and related work

We study the problem of sharing data across diverse groups in a supervised setting. Our
methodology relies on estimates of group membership probabilities as instance weights
in each group’s outcome model, selected via cross-validation among multiple probability
estimation methods. More weight is placed on instances that have higher estimated group-
specific membership probability. In their role as group-balancing weights, we use these
probabilities in a manner that is mathematically (though not conceptually) analogous to
the use of propensity scores in causal inference for adjusting treatment-effect estimates [7].
More generally, this work is related to the literature on transfer learning [8], but we
focus on transfer in the setting where outcomes are known for all training instances and
interpretability is crucial.

Intrinsically interpretable methods, such as decision trees, have had success as highly
predictive and interpretable models [9, 10]. Recent works have focused on improving
the predictive performance of intrinsically interpretable methods [11, 12], particularly for
rule-based models [13, 14, 1, 15], without degrading interpretability.

A key domain problem involving interpretable models is the development of clinical deci-
sion instruments, which can assist clinicians in improving the accuracy and efficiency of
diagnostic strategies. Recent works have developed and validated clinical decision instru-
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ments using interpretable machine learning models, particularly in emergency medicine [16,
17, 18, 19].
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2. Method: G-FIGS

Setup We assume a supervised learning setting (classification or regression) with features
X (e.g., blood pressure, signs of vomiting), and an outcome Y (e.g., cervical spine injury).
We are also given a group label G, which is specified using the context of the problem
and domain knowledge; for example, G may correspond to different sites at which data is
collected, different demographic groups which are known to require different predictive
models, or data before/after a key temporal event. G should be discrete, as G-FIGS will
produce a separate model for each unique value of G, but may be a discretized continuous
or count feature.

Fitting group membership probabilities The first stage of G-FIGS fits a classifier to
predict group membership probabilities P (G|X) (Figure 1A). In estimating P (G = g|X),
we exclude features that trivially identify G (e.g., we exclude age when values of G are
age ranges). Intuitively, these probabilities inform the degree to which a given instance
is representative of a particular group; the larger the group membership probability, the
more the instances should contribute to the model for that group. Any classifier can be
used; we find that logistic regression and gradient-boosted decision trees perform best. The
group membership probability classifier can be selected using cross-validation, either via
group-label classification metrics or downstream performance of the weighted prediction
model; we take the latter approach.

Fitting group probability-weighted FIGS In the second stage (Figure 1B), for each
group G = g, G-FIGS uses the estimated group membership probabilities, P (G = g|X),
as instance weights in the loss function of a ML model for each group P (Y |X,G = g).
Intuitively, this allows the outcome model for each group to use information from out-of-
group instances when their covariates are sufficiently similar. While the choice of outcome
model is flexible, we find that the Fast Interpretable Greedy-Tree Sums (FIGS) model [1]
performs best when both interpretability and high predictive performance are required.
By greedily fitting a sum of trees, FIGS effectively allocates a small budget of rules to
different types of structure in data. When interpretability is not critical, the same weighting
procedure could also be applied to black-box models, such as Random Forest [20].
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3. Datasets

3.1 Overview

Table 1 shows the main datasets under consideration here. Each publicly-available dataset
constitutes a large-scale multi-site data aggregation generated by the Pediatric Emergency
Care Applied Research Network (PECARN) with a relevant clinical outcome. For each of
these datasets, we use their natural grouping of patients into <2 yrs and ≥2 yrs groups,
where the young group includes only patients whose age is less than two years. This
age-based threshold is commonly used for emergency-based diagnostic strategies (e.g.,
Kuppermann et al. [4]), because it follows a natural stage of development, including a
child’s ability to participate in their care. At the same time, the natural variability in
early childhood development also creates opportunities to share information across this
threshold. These datasets are non-standard for ML; as such, we spend considerable time
cleaning and preprocessing these features along with medical expertise included in the
authorship team.

We use 60% of the data for training, 20% for tuning hyperparameters (including estimation
of P (G|X)), and 20% for evaluating test performance of the final models. More details on
data splitting are provided in Chapter 4.

Unprocessed data is available at https://pecarn.org/datasets/ and clean data
is available on github at https://github.com/csinva/imodels-data (easily
accessibly through the imodels [2] package). The final set of features used for fitting
outcome models is shown in Table 2.

Name Patients Outcome % Outcome Features

TBI 42428 376 0.9 61
IAI 12044 203 1.7 21
CSI 3313 540 16.3 34

Table 1. Clinical decision-instrument datasets for traumatic brain injury (TBI) [4], intra-
abdominal injury (IAI) [19], and cervical spine injury (CSI) [21].
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3.2 Preprocessing

Traumatic brain injury (TBI) To screen patients, we follow the inclusion and exclusion
criteria from Kuppermann et al. [4], which exclude patients with Glasgow Coma Scale
(GCS) scores under 14 or no signs or symptoms of head trauma, among other disqualifying
factors. No patients were dropped due to missing values: the majority of patients have
about 1% of features missing, and are at maximum still under 20%. We utilize the same
set of features as Kuppermann et al. [4].

Our strategy for imputing missing values differed between features according to clinical
guidance. For features that are unlikely to be left unrecorded if present, such as paralysis
or skull fracture, missing values were assumed to be negative. For other features that could
be unnoticed by clinicians or guardians, such as loss of consciousness, missing values are
assumed to be positive. For features that did not fit into either of these groups or were
numeric, missing values are imputed with the median.

Cervical spine injury (CSI) Leonard et al. [21] engineered a set of 22 expert features
from 609 raw features; we utilize this set but add back features that provide information on
the following:

■ Patient position after injury
■ Clinical intervention received by patients prior to arrival (immobilization, intubation)
■ Pain and tenderness of the head, face, torso/trunk, and extremities
■ Age and gender
■ Whether the patient arrived by emergency medical service (EMS)

We follow the same imputation strategy described in the preceding TBI subsection. Features
that are assumed to be negative if missing include focal neurological findings, motor vehicle
collision, and torticollis, while the only feature assumed to be positive if missing is loss of
consciousness.

Intra-abdominal injury (IAI) We follow the data preprocessing steps described in
Holmes et al. [22] and Kornblith et al. [18]. In particular, all features of which at least
5% of values are missing are removed, and variables that exhibit insufficient interrater
agreement (lower bound of 95% CI under 0.4) are removed. The remaining missing values
are imputed with the median. In addition to the 18 original variables, we engineered three
additional features:
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■ Full Glasgow Coma Scale (GCS) score: True when GCS is equal to the maximum
score of 15

■ Abd. Distention or abd. pain: Either abdominal distention or abdominal pain
■ Abd. trauma or seatbelt sign: Either abdominal trauma or seatbelt sign

Data for predicting group membership probabilities The data preprocessing steps for
the group membership models in the first step of G-FIGS are identical to that above, except
that missing values are not imputed at all for categorical features, such that “missing", or
NaN, is allowed as one of the feature labels in the data. We find that this results in more
accurate group membership probabilities, since for some features, such as those requiring
a verbal response, missing values are predictive of age group.
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Traumatic brain injury

Feature Name % Missing % Nonzero

Altered Mental Status 0.74 12.95
Alt. Mental Status: Agitated 87.05 1.79
Alt. Mental Status: Other 87.05 1.82
Alt. Mental Status: Repetitive 87.05 1.04
Alt. Mental Status: Sleepy 87.05 6.67
Alt. Mental Status: Slow to respond 87.05 3.22
Acting normally per parents 7.09 85.38
Age (months) 0.00 N/A
Verbal amnesia 38.41 10.45
Trauma above clavicles 0.30 64.38
Trauma above clav.: Face 35.92 29.99
Trauma above clav.: Scalp-frontal 35.92 20.48
Trauma above clav.: Neck 35.92 1.38
Trauma above clav.: Scalp-occipital 35.92 9.62
Trauma above clav.: Scalp-parietal 35.92 7.79
Trauma above clav.: Scalp-temporal 35.92 3.39
Drugs suspected 4.19 0.87
Fontanelle bulging 0.37 0.06
Sex 0.01 N/A
Headache severity 2.38 N/A
Headache start time 3.09 N/A
Headache 32.76 29.94
Hematoma 0.69 39.42
Hematoma location 0.47 N/A
Hematoma size 1.67 N/A
Severity of injury mechanism 0.74 N/A
Injury mechanism 0.67 N/A
Intubated 0.73 0.01
Loss of consciousness 4.05 10.37
Length of loss of consciousness 5.39 N/A
Neurological deficit 0.85 1.3
Neurological deficit: Cranial 98.70 0.18
Neurological deficit: Motor 98.70 0.28
Neurological deficit: Other 98.70 0.71
Neurological deficit: Reflex 98.70 0.03
Neurological deficit: Sensory 98.70 0.26
Other substantial injury 0.43 10.07
Other sub. injury: Abdomen 89.93 1.25
Other sub. injury: Cervical spine 89.93 1.37
Other sub. injury: Cut 89.93 0.12
Other sub. injury: Extremity 89.93 5.49
Other sub. injury: Flank 89.93 1.56
Other sub. injury: Other 89.93 1.65
Other sub. injury: Pelvis 89.93 0.44
Paralyzed 0.75 0.01
Basilar skull fracture 0.99 0.68
Basilar skull frac.: Hemotympanum 99.32 0.35
Basilar skull frac.: CSF otorrhea 99.32 0.04
Basilar skull frac.: Periorbital 99.32 0.19
Basilar skull frac.: Retroauricular 99.32 0.08
Basilar skull frac.: CSF rhinorrhea 99.32 0.03
Skull fracture: Palpable 0.24 0.38
skull frac.: Palpable and depressed 99.69 0.18
Sedated 0.76 0.08
Seizure 1.70 1.17
Length of seizure 0.18 N/A
Time of seizure 0.12 N/A
Vomiting 0.71 13.1
Time of last vomit 89.04 N/A

Number of times vomited 0.60 N/A
Vomit start time 0.87 N/A

Intra-abdominal injury

Abdominal distention 4.38 2.3
Abdominal distention or pain 0.00 4.93
Degree of abdominal tenderness 70.13 N/A
Abdominal trauma 0.56 15.48
Abd. trauma or seat belt sign 0.00 16.3
Abdomen pain 15.38 30.06
Age (years) 0.00 N/A
Costal margin tenderness 0.00 11.33
Decreased breath sound 1.93 2.13
Distracting pain 7.38 23.29
GCS (Glasgow Coma Scale) 0.00 N/A
Full GCS score 0.00 86.21
Hypotension 0.00 1.44
Left costal margin tenderness 0.00 N/A
Method of injury 3.95 N/A
Right costal margin tenderness 0.00 N/A
Seat belt sign 3.30 4.93
Sex 0.00 N/A
Thoracic tenderness 9.99 15.96
Thoracic trauma 0.63 16.95
Vomiting 3.92 9.57

Cervical spine injury

Age (years) 0.00 N/A
Altered mental status 2.05 24.72
Axial load to head 0.00 24.0
Clotheslining 3.38 0.94
Focal neurological findings 9.84 14.67
Method of injury: Diving 0.03 1.3
Method of injury: Fall 2.44 3.83
Method of injury: Hanging 0.03 0.15
Method of injury: Hit by car 0.03 15.09
Method of injury: Auto collision 7.73 14.73
Method of injury: Other auto 0.03 3.11
Arrived by EMS 0.00 77.24
Loss of consciousness 8.03 42.68
Neck pain 5.25 38.42
Posterior midline tenderness 2.57 29.88
Patient position on arrival 61.52 N/A
Predisposed 0.00 0.66
Pain: Extremity 18.35 25.87
Pain: Face 18.35 7.58
Pain: Head 18.35 29.04
Pain: Torso/trunk 18.35 28.95
Tenderness: Extremity 20.37 15.15
Tenderness: Face 20.37 3.83
Tenderness: Head 20.37 7.79
Tenderness: Torso/trunk 20.37 25.87
Substantial injury: Extremity 1.03 10.87
Substantial injury: Face 1.06 5.67
Substantial injury: Head 1.00 15.88
Substantial injury: Torso/trunk 1.03 7.3
Neck tenderness 2.48 39.3
Torticollis 7.03 5.77
Ambulatory 5.77 21.46
Axial load to top of head 0.00 2.35
Sex 0.00 N/A

Table 2. Final features used for fitting the outcome models. Features include information
about patient history (i.e. mechanism of injury), physical examination (i.e. Abdominal
trauma), and mental condition (i.e. Altered mental status). Percentage of nonzero values is
marked N/A for non-binary features.
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4. Results

4.1 G-FIGS predicts well

Table 3 shows the prediction performance of G-FIGS and a subset of baseline methods.
Sensitivity is extremely important for these settings, as a false negative (missing a diagno-
sis) has much more severe consequences than a false positive. For high levels of sensitivity,
G-FIGS generally improves the model’s specificity against the baselines. We compare to
three baselines: CART [10], FIGS [1], and Tree-Alternating Optimization TAO [23]). For
each baseline, we either (i) fit one model to all the training data or (ii) fit a separate model
to each group (denoted with -SEP). Limits on the total number of rules for each model are
varied over a range which yields interpretable models, from 8 to 16 maximum rules (full
details of this and other hyperparameters are in Section 4.4).

Traumatic brain injury Cervical spine injury Intra-abdominal injury

Sensitivity: 92% 94% 96% 98% 92% 94% 96% 98% 92% 94% 96% 98%

TAO 6.2 6.2 0.4 0.4 41.5 21.2 0.2 0.2 0.2 0.2 0.0 0.0
TAO-SEP 26.7 13.9 10.4 2.4 32.5 7.0 5.4 2.5 12.1 8.5 2.0 0.0
CART 20.9 14.8 7.8. 2.1 38.6 13.7 1.5 1.1 11.8 2.7 1.6 1.4
CART-SEP 26.6 13.8 10.3 2.4 32.1 7.8 5.4 2.5 11.0 9.3 2.8 0.0
G-CART 15.5 13.5 6.4 3.0 38.5 15.2 4.9 3.9 11.7 10.1 3.8 0.7
FIGS 23.8 18.2 12.1 0.4 39.1 33.8 24.2 16.7 32.1 13.7 1.4 0.0
FIGS-SEP 39.9 19.7 17.5 2.6 38.7 33.1 20.1 3.9 18.8 9.2 2.6 0.9
G-FIGS 42.0 23.0 14.7 6.4 42.2 36.2 28.4 15.7 29.7 18.8 11.7 3.0

Table 3. Best test set specificity when sensitivity is constrained to be above a given
threshold. G-FIGS provides the best performance overall in the high-sensitivity regime.
-SEP models fit a separate model to each group, and generally outperform fitting a model
to the entire dataset. G-CART follows the same approach as G-FIGS but uses weighted
CART instead of FIGS for each final group model. Averaged over 10 random data splits
into training, validation, and test sets, with hyperparameters chosen independently for each
split. See Table 7 for more detail.

4.2 Interpreting the group membership model

In this clinical context, we begin by fitting several logistic regression and gradient-boosted
decision tree group membership models to each of the training datasets to predict whether
a patient is in the <2 yrs or ≥2 yrs group. Random forests and CART were tried as
well, but were found to lead to worse performance (see Section 4.4 for more detail). For
the instance-weighted methods, we treat the choice of group membership model as a
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Traumatic brain injury Cervical spine injury Intra-abdominal injury

Variable Coef Variable Coef Variable Coef

No fontanelle bulging 3.62 Neck tenderness 2.44 Bike injury 2.01
Amnesia 2.07 Neck pain 2.18 Abdomen pain 1.66
Struck by vehicle 1.44 Motor vehicle injury: other 1.54 Thoracic tenderness 1.43
Headache 1.39 Hit by car 1.47 Hypotension 1.23
Bike injury 1.26 Substantial injury: extremity 1.35 No abdomen pain 0.98

Table 4. Logistic regression coefficients for features that contribute to high P (≥2 yrs | X)
reflect known medical knowledge. For example, features with large coefficients require
verbal responses (e.g., Amnesia, Headache, Pain), relate to activities not typical for the <2
yrs group (Bike injury), or are specific to older children, e.g., older children should have
No fontanelle bulging, as cranial soft spots typically close by 2 to 3 months after birth.
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Figure 2. Visualizations of the group membership probabilities estimated in the first step
of G-FIGS. Note that the bulk of the distribution for the <2 group is under 0.4, and that for
the ≥2 group is over 0.8, indicating most points are estimated to be in the correct group.
However, there is a noticeable cluster of ≥2 points which have scores between 0.1 and 0.4,
and another small cluster of <2 points which have scores of about 0.95.

hyperparameter, and select the best model according to the downstream performance of
the final decision rule on the validation set.

Table 4 shows the coefficients of the most important features for each logistic regression
group membership model when predicting whether a patient is in the ≥2 yrs group. The
coefficients reflect existing medical expertise. For example, the presence of verbal response
features (e.g., Amnesia, Headache) increases the probability of being in the ≥2 yrs group,
as does the presence of activities not typical for the <2 yrs group (e.g. Bike injury).

Figure 2 visualizes how information is shared between groups in the data. Most points
are correctly classified within their group, but there is a small fraction of points which are
found by the group membership model to be more similar to points in the other group.
Additionally, there are some borderline points which the model finds equally likely to be in
either group. These scores allow the final outcome model to navigate the age cutoff with
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more nuance than would be possible with two completely separate models.

4.3 Interpreting the outcome models

Figure 3, Figure 4, and Figure 5 shows the G-FIGS models fitted to the entire TBI, CSI,
and IAI datasets respectively, selected via cross-validation. Outcome predictions for a
group are made by summing the predicted risk contribution (∆ Risk) from the appropriate
leaf of each tree in the group’s fitted tree ensemble. ∆ Risk is not simply equivalent to the
fraction of patients with the condition since (i) G-FIGS uses patients from both groups, (ii)
each tree in FIGS fits the residuals of the others, and (iii) positive examples are upweighted
in the loss function of FIGS (see Section 4.4 for more detail).

The models are concise, highly predictive, and match existing medical knowledge. In
general, we find that the tree ensemble of G-FIGS allows it to adapt a succinct model to
independent risk factors in the data, whereas individual tree models (i.e., CART, TAO) are
not flexible enough to model additive effects in the data.
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4.3.1 TBI
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26/8633 (0.3%) TBI

Low High

No Yes

Occipital hema.
14/1731 (0.81%) TBI ΔRisk = .79

5/135
(3.7%) TBI

ΔRisk = .21
1/1077 (0.09%) TBI

No Yes

Age: 6mo or less
9/1596 (0.56%) TBI ΔRisk = .60 

8/519
(1.5%) TBI

No Yes

Seizure
8/6891 (0.12%) TBI ΔRisk = .74

3/59
(5.1%) TBI

No Yes

Basilar skull frac.
5/6832 (0.07%) TBI ΔRisk = .87 

1/17
(5.9%) TBI

ΔRisk = .05 
4/6815 (0.06%) TBI

No Yes

Depressed skull 
fracture

12/6902 (0.2%) TBI ΔRisk = .97 
4/11

(36.4%) TBI

Model for <2 years Model for ≥2 years

No Yes

Altered mental
status

278/31707 (0.9%) TBI ΔRisk = .83 
174/4285 
(4.1%) TBI

No Yes

Basilar skull frac.
104/27422 (0.4%) TBI ΔRisk = .94 

19/167
(11.4%) TBI

Low High

Severity of injury 
mechanism

85/27255 (0.3%) TBI ΔRisk = .58 
37/3227 
(1.1%) TBI

Amnesia
23/3543 (0.6%) TBI

Loss of 
consciousness

48/24028 (0.2%) TBI

No Yes

No Yes

ΔRisk = .55 
19/1881 (1.0%) 

TBI

No Yes

Vomiting
25/20485 (0.1%) TBI

No Yes

Depressed skull 
fracture

12/18498 (0.06%) TBI ΔRisk = .94 
1/21

(4.8%) TBI

ΔRisk = .10 
0/946 (0%) TBI

No Yes

Headache 
13/1987 (0.6%) TBI ΔRisk = .59 

13/1041 (1.2%) 
TBINo Yes

Substantial injury, 
torso/trunk/flank
11/18477 (0.06%) TBI ΔRisk = .52 

1/245
(0.4%) TBI

No Yes

Severe headache
10/18232 (0.05%) TBI ΔRisk = .51 

2/220
(0.9%) TBI

ΔRisk = .05
7/17984 (0.04%) TBI

ΔRisk = .07 
1/1543 (0.06%) TBI

No Yes

Bike collision
4/1662 (0.2%) TBI ΔRisk = .74 

3/119
(2.5%) TBI

No Yes

Neuro. deficit: 
cranial nerves

8/18012 (0.04%) TBI ΔRisk = .80 
1/28

(3.6%) TBI

Figure 3. G-FIGS model fitted to the TBI dataset. Achieves 97.1% sensitivity and 58.9%
specificity (training). The features used by each group are overlapping and reasonable,
matching medical domain knowledge and partially matching previous work [4]; e.g.,
features such as altered mental status, basilar skull fracture, and loss of consciousness
are all known to increase the risk of TBI. Features unique to each group largely relate to
the age cutoff; the <2 yrs features only include those that clinicians can assess without
asking the patient (e.g., parietal hematoma), while two of the ≥2 yrs features require
verbal responses (severe headache, headache). Interestingly, in this case G-FIGS learns
only a single tree for each group.
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4.3.2 CSI

Model for <2 years

No Yes

Focal neuro. signs
27/218 (12.4%) CSI ΔRisk = .85

7/11
(63.6%) CSI

No Yes

Altered mental
status

20/207 (9.7%) CSI ΔRisk = .52
15/70

(21.4%) CSI

No Yes

Predisposed
5/137 (3.6%) CSI ΔRisk = .76

1/4
(25%) CSI

No Yes

Torticollis
4/133 (3.0%) CSI ΔRisk = .72

2/4
(50%) CSI

2/129 (1.5%) CSI
ΔRisk = .10

No Yes

Motor vehicle 
collision

27/218 (12.4%) CSI ΔRisk = .20
9/34

(26.5%) CSI

No Yes

Arrived by EMS
18/184 (9.8%) CSI ΔRisk = –.12

10/121
(8.3%) CSI

ΔRisk = .11
8/50 (16%) CSI

No Yes

Axial load to head
8/63 (12.7%) CSI ΔRisk = –.13

0/13
(0.0%) CSI

No Yes

Substantial injury, 
torso/trunk

27/218 (12.4%) CSI ΔRisk = .22
5/11

(45.4%) CSI

ΔRisk = –.02
22/207 (10.6%) CSI

+

No Yes

Focal neuro. signs
513/3095 (16.6%) CSI ΔRisk = .82

206/475
(43.4%) CSI

No Yes

Neck pain
307/2620 (11.7%) CSI ΔRisk = .57

182/1013
(18.0%) CSI

No Yes

Altered mental
status

125/1607 (7.8%) CSI ΔRisk = .55
89/547

(16.3%) CSI

No Yes

Torticollis
36/1060 (3.4%) CSI ΔRisk = .77

6/19
(31.6%) CSI

No Yes

Age over 5
30/1041 (2.9%) CSI ΔRisk = .18

27/826
(3.3%) CSI

ΔRisk = .05
3/215 (1.4%) CSI

No Yes

Head pain
513/3095 (16.6%) CSI ΔRisk = –.1

110/960 
(11.5%) CSI

No Yes

Arrived by EMS
403/2135 (18.9%) CSI ΔRisk = 0

268/1641 
(16.3%) CSI

ΔRisk = .12
135/494 (27.3%) CSI

No Yes

Motor vehicle 
collision

513/3095 (16.6%) CSI ΔRisk = .13
99/454

(21.8%) CSI

ΔRisk = –.03
414/2641 (15.7%) CSI

+ +

+

Model for ≥2 years

Figure 4. G-FIGS model fitted to the CSI dataset. Achieves 97.0% sensitivity
and 33.9% specificity (training). The left tree for <2 yrs gives large ∆ Risk to
active features, and on its own provides sensitivity of 99%. Counterintuitively, the
middle tree assigns ∆ Risk < 0 for patients arriving by ambulance (EMS) or with
head injuries that affect the spine (axial load). However, adding this second tree
results in boosted specificity (increase of 8.7%) with a tiny reduction in sensitivity (de-
crease of 0.4%), indicating that G-FIGS adaptively tunes the sensitivity-specificity tradeoff.

Again, the features used by G-FIGS partially match previous work [21]; e.g., fea-
tures such as focal neurological signs, neck pain, and altered mental status are all known to
increase the risk of CSI. The ≥2 yrs model utilizes two features requiring verbal responses
(neck pain, head pain), which are not in the <2 yrs model.
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4.3.3 IAI

No Yes

Abdominal trauma
5/1060 (0.5%) IAI ΔRisk = .74

2/92
(2.2%) IAI

No Yes

GCS below 11
10/1167 (0.9%) IAI ΔRisk = .88

5/107
(4.7%) IAI

No Yes or unclear

Thoracic
tenderness

3/968 (0.3%) IAI

No Yes

Costal margin 
tenderness

3/248 (1.2%) IAI ΔRisk = .79
2/26

(7.7%) IAI

No Yes

Abd. tenderness
1/222 (0.5%) IAI ΔRisk = .98

1/2
(50%) IAI

Unclear Yes

Thoracic
tenderness

0/220 (0%) IAI ΔRisk = .94
0/3

(0.0%) IAI

ΔRisk = .15
0/720 (0.0%) IAI

ΔRisk = .01
0/217 (0%) IAI

No Yes

Full GCS score
28/6298 (0.4%) IAI ΔRisk = .55

10/466
(2.1%) IAI

No Yes

Abdominal pain
193/10877 (1.8%) IAI ΔRisk = .67

165/4579
(3.6%) IAI

No Yes

Abdominal 
distention or pain

18/5832 (0.3%) IAI ΔRisk = .58
5/219

(2.3%) IAI

Yes or no Unclear

Thoracic 
tenderness

13/5613 (0.2%) IAI ΔRisk = .49
2/122

(1.6%) IAI

ΔRisk = .10
11/5491 (0.2%) IAI

+

No Yes

Abdominal trauma
193/10877 (1.8%) IAI ΔRisk = .15

109/1817
(6.0%) IAI

No Yes

ΔRisk = –.36
19/2355 (0.8%) IAI

No Yes

ΔRisk = .13
16/240

(6.7%) IAI

Severe abdominal 
tenderness

35/2595 (1.3%) IAI

Abdominal pain
84/9060 (0.9%) IAI

ΔRisk = –.06
19/6073 (0.3%) IAI

No Yes

GCS below 11
49/6465 (0.8%) IAI ΔRisk = .14

30/392
(7.6%) IAI

Model for <2 years

Model for ≥2 years

Figure 5. G-FIGS model fitted to the IAI dataset. Achieves 95.1% sensitivity and
50.8% specificity (training). Features predictive of intra-abdominal injury such as ab-
dominal trauma, GCS score, and abdominal pain match previous work [22]. However,
G-FIGS learns a different cutoff for GCS score (score of 11) compared to Holmes et al.
(score of 13). Note that the younger group only uses tenderness, which can evaluated
without verbal input from the patient, whereas the older group uses pain, which requires a
verbal response.
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<2 yrs group ≥2 yrs group

Maximum tree splits: 8 12 16 8 12 16

TAO (1 iter) 15.1 (6.7) 15.1 (6.7) 14.4 (6.1) 14.1 (7.8) 14.1 (7.8) 8.9 (5.9)
TAO (5 iter) 14.4 (6.1) 0.0 (0.0) 0.0 (0.0) 8.9 (5.9) 3.1 (0.9) 1.5 (0.7)
CART-SEP 15.1 (6.7) 14.4 (6.1) 0.0 (0.0) 14.0 (7.8) 8.9 (5.9) 3.1 (0.9)
FIGS-SEP 13.7 (5.9) 0.0 (0.0) 0.0 (0.0) 23.1 (8.8) 13.0 (7.4) 7.8 (5.6)
G-CART w/ LR (C = 2.8) 7.9 (6.7) 3.1 (2.1) 3.5 (1.7) 19.0 (8.8) 21.8 (8.4) 2.1 (0.6)
G-CART w/ LR (C = 0.1) 20.4 (8.6) 8.3 (6.6) 10.1 (6.7) 12.7 (7.6) 14.9 (7.1) 3.6 (0.9)
G-CART w/ GB (N = 100) 19.8 (8.3) 7.2 (6.3) 7.6 (6.1) 13.3 (8.0) 21.4 (8.5) 9.0 (5.6)
G-CART w/ GB (N = 50) 26.8 (9.7) 8.1 (6.3) 8.4 (6.1) 13.3 (8.0) 21.4 (8.5) 9.7 (5.6)
G-FIGS w/ LR (C = 2.8) 14.9 (8.5) 7.5 (5.4) 8.1 (6.9) 41.0 (8.7) 48.1 (8.2) 35.6 (8.9)
G-FIGS w/ LR (C = 0.1) 31.0 (9.4) 23.1 (9.1) 25.9 (9.7) 46.9 (8.4) 48.2 (8.4) 33.7 (8.9)
G-FIGS w/ GB (N = 100) 24.5 (8.6) 24.0 (9.3) 21.2 (8.7) 47.5 (8.5) 47.5 (8.2) 27.9 (8.6)
G-FIGS w/ GB (N = 50) 32.1 (9.6) 18.3 (8.2) 12.7 (6.9) 47.5 (8.5) 53.2 (7.3) 28.4 (8.3)

(a)

Group membership model: LR (C = 2.8) LR (C = 0.1) GB (N = 100) GB (N = 50)

G-CART (<2, ≥2 combined) 27.8 (6.0) 21.5 (5.9) 19.0 (5.7) 27.1 (6.5)
G-FIGS (<2, ≥2 combined) 51.3 (5.8) 54.5 (6.2) 57.4 (5.6) 44.6 (7.4)

(b)

Table 5. Hyperparameter selection table for the TBI dataset; the metric shown is specificity
at 94% sensitivity on the validation set. Standard errors are shown in parentheses. First,
the best-performing maximum of tree splits is selected for each method or combination of
method and membership model (a). This is done separately for each data group. Next, the
best membership model is selected for G-CART and G-FIGS using the overall performance
of the best models from (a) across both data groups (b). The two-stage validation process
ensures that the <2 yrs and ≥2 yrs groups use the same group membership probabilities,
which we have found leads to better performance than allowing them to use different
membership models. Metrics shown are averages across the 10 validation sets, but hyper-
parameter selection was done independently for each of the 10 data splits.

4.4 Hyperparameter selection

Data splitting We use 10 random training/validation/test splits for each dataset, perform-
ing hyperparameter selection separately on each. There are two reasons we choose not to
use a fixed test set. First, the small number of positive instances in our datasets makes our
primary metrics (specificity at high sensitivity levels) noisy, so averaging across multiple
splits makes the results more stable. Second, the works that introduced the TBI, IAI, and
CSI datasets did not publish their test sets, as it is not as common to do so in the medical
field as it is in machine learning, making the choice of test set unclear. For TBI and CSI,
we simply use the random seeds 0 through 10. For IAI, some filtering of seeds is required
due to the low number of positive examples; we reject seeds that do not allocate positive
examples evenly enough between each split (a ratio of negative to positive outcomes over
200 in any split).
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Class weights Due to the importance of achieving high sensitivity, we upweight positive
instances in the loss by the inverse proportion of positive instances in the dataset. This
results in class weights of about 7:1 for CSI, 112:1 for TBI, and 60:1 for IAI. These weights
are fixed for all methods.

Hyperparameter settings Due to the relatively small number of positive examples in all
datasets, we keep the hyperparameter search space small to avoid overfitting. We vary the
maximum number of tree splits from 8 to 16 for all methods and the maximum number of
update iterations from 1 to 5 for TAO. The options of group membership model are logistic
regression with L2 regularization and gradient-boosted trees friedman2001greedy. For
both models, we simply include two hyperparameter settings: a less-regularized version
and a more-regularized version, by varying the inverse regularization strength (C) for
logistic regression and the number of trees (N ) for gradient-boosted trees. We initially
experimented with random forests and CART, but found them to lead to poor downstream
performance. Random forests tended to separate the groups too well in terms of estimated
probabilities, leading to little information sharing between groups, while CART did not
provide unique enough membership probabilities, since CART probability estimates are
simply within-node class proportions.

Validation metrics We use the highest specificity achieved when sensitivity is at or above
94% as the metric for validation. If this metric is tied between different hyperparameter
settings of the same model, specificity at 90% sensitivity is used as the tiebreaker. For the
IAI dataset, only specificity at 90% sensitivity is used, since the relatively small number of
positive examples makes high sensitivity metrics noisier than usual. If there is still a tie at
90% sensitivity, the smaller model in terms of number of tree splits is chosen.

Validation of group membership model Hyperparameter selection for G-FIGS and
G-CART is done in two stages due to the need to select the best group membership model.
First, the best-performing maximum of tree splits is selected for each combination of
method and membership model. This is done separately for each data group. Next, the
best membership model is selected using the overall performance of the best models across
both data groups. The two-stage validation process ensures that the <2 yrs and ≥2 yrs

groups use the same group membership probabilities, which we have found performs better
than allowing different sub-models of G-FIGS to use different membership models.
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5. Simulation

In addition our evaluations on clinical datasets, we evaluate G-FIGS under a simple
simulation involving heterogeneous data. The data-generating process is multivariate
Gaussian with four clusters and two meta-clusters which share the same relationship
between X and Y , visualized in Figure 6. There are two variables of interest, X1 and
X2, and 10 noise variables. Each cluster is centered at a different value of X1; the first
meta-cluster consists of the clusters centered at X1 = 0 and X1 = 2, which share the
relationship Y = X2 > 0, while the second consists of the clusters centered at X1 = 4 and
X1 = 6, which share the relationship Y = X2 > 2. X1 and X2 have variance 1 and all
noise variables have variance 2; additionally, zero-mean noise with variance 2 is added to
X1 and X2.

The four clusters are then treated as four groups, to which separate models are fitted. If the
intuition behind G-FIGS is correct, G-FIGS should assign relatively higher probabilities
to points that are within a given cluster’s meta-cluster, and relatively lower probabilities
to points in the other meta-cluster. In comparison to fitting completely separate models,
this should increase the amount of data available for learning the two rules, thereby
counteracting noise and resulting in better performance. On the other hand, if one model
is fit to all of the data, we expect the lack of group-awareness to hurt performance (i.e.
the crucial split at X1 = 3 may be missed since it does not significantly reduce entropy).
Our evaluation suggests that this is the case; as shown in Table 6, G-CART and G-
FIGS significantly outperform baseline methods.

We do not perform any hyperparameter selection; we fix the maximum number of tree
splits to be 1 for the probability-weighted models and -SEP models, and 4 for the models fit
to all the data. The rationale for this is that 3 splits are sufficient to ideally model the entire
data-generating process (splits at X1 = 3, X2 = 0, and X2 = 2) and 1 split is sufficient for
each cluster. Note that when only one split is used, G-CART and G-FIGS are the same
algorithm. Logistic regression is used to fit the group membership model.
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Figure 6. Visualization of the data-generating process for the simulation. Each cluster
represents a group for G-FIGS. The two clusters on the left and two clusters on the right
share a prediction rule, presenting a simple case where sharing data between groups can
help performance. Noise variables are not pictured, and the variances of X1 and X2 are
reduced for a clearer visualization.

ROC AUC APS Accuracy F1

TAO .376 (.07) .498 (.04) 59.0 (.02) 58.0 (.04)
TAO-SEP .475 (.04) .573 (.03) 58.3 (.02) 60.4 (.03)
CART .370 (.07) .495 (.04) 56.5 (.02) 54.7 (.03)
CART-SEP .475 (.04) .573 (.03) 58.3 (.02) 60.4 (.03)
FIGS .470 (.04) .539 (.04) 58.5 (.02) 55.5 (.03)
FIGS-SEP .475 (.04) .573 (.03) 58.3 (.02) 60.4 (.03)
G-CART / G-FIGS .550 (.03) .644 (.03) 65.8 (.03) 63.9 (.04)

Table 6. Unlike the clinical datasets, the simulation data is class-balanced and lacks a
medical context, so we report area under the ROC curve, average precision score, accuracy,
and F1 score instead of specificity metrics. Because only one split per cluster is computed
for G-CART and G-FIGS they reduce to the exact same algorithm, so their results are
shown together.
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6. Discussion

G-FIGS makes an important step towards interpretable modeling of heterogeneous data
in the context of high-stakes clinical decision-making, with interesting avenues for future
work. The fitted models show promise, but require external clinical validation before
potential use. Our scope was limited to age-based splits in the clinical domain, but the
behavior of G-FIGS with temporal, geographical, or demographic splits could be studied
as well, on these or other datasets.

Here we utilized datasets that used prospective data collection (TBI, IAI) or case-matched
data (CSI) to avoid bias. However, future work will focus on prognostic models, (e.g.
risk for future disease) requiring the evaluation of data that may be collected pre- and
post-diagnosis or therapeutic measures. For instance, datasets that are collected both
before and after the introduction of a vaccine, development of a new form of treatment,
or arrival of a new disease variant present a problem in terms of temporal heterogeneity.
When demographic heterogeneity is present within data, the ability of our new method to
improve fairness metrics could be evaluated. Additionally, there are many methodological
extensions to explore, such as data-driven identification of input data groups and schemes
for feature weighting in addition to instance weighting.
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Extended results

Traumatic brain injury Cervical spine injury

92% 94% 96% 98% 92% 94%

TAO 6.2 (5.9) 6.2 (5.9) 0.4 (0.4) 0.4 (0.4) 41.5 (0.9) 21.2 (6.6)
TAO-SEP 26.7 (6.4) 13.9 (5.4) 10.4 (5.5) 2.4 (1.5) 32.5 (4.9) 7.0 (1.6)
CART 20.9 (8.8) 14.8 (7.6) 7.8 (5.8) 2.1 (0.6) 38.6 (3.6) 13.7 (5.7)
CART-SEP 26.6 (6.4) 13.8 (5.4) 10.3 (5.5) 2.4 (1.5) 32.1 (5.1) 7.8 (1.5)
G-CART 15.5 (5.5) 13.5 (5.7) 6.4 (2.2) 3.0 (1.5) 38.5 (3.4) 15.2 (4.8)
FIGS 23.8 (9.0) 18.2 (8.5) 12.1 (7.3) 0.4 (0.3) 39.1 (3.0) 33.8 (2.4)
FIGS-SEP 39.9 (7.9) 19.7 (6.8) 17.5 (7.0) 2.6 (1.6) 38.7 (1.6) 33.1 (2.0)
G-FIGS 42.0 (6.6) 23.0 (7.8) 14.7 (6.5) 6.4 (2.8) 42.2 (1.3) 36.2 (2.3)

CSI (cont.) Intra-abdominal injury

96% 98% 92% 94% 96% 98%

TAO 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0)
TAO-SEP 5.4 (0.7) 2.5 (1.0) 12.1 (1.7) 8.5 (2.0) 2.0 (1.3) 0.0 (0.0)
CART 1.5 (0.6) 1.1 (0.4) 11.8 (5.0) 2.7 (1.0) 1.6 (0.5) 1.4 (0.5)
CART-SEP 5.4 (0.7) 2.5 (1.0) 11.0 (1.6) 9.3 (1.8) 2.8 (1.4) 0.0 (0.0)
G-CART 4.9 (1.0) 3.9 (1.1) 11.7 (1.3) 10.1 (1.6) 3.8 (1.3) 0.7 (0.4)
FIGS 24.2 (3.2) 16.7 (3.9) 32.1 (5.5) 13.7 (6.0) 1.4 (0.8) 0.0 (0.0)
FIGS-SEP 20.1 (2.6) 3.9 (2.2) 18.8 (4.4) 9.2 (2.2) 2.6 (1.7) 0.9 (0.8)
G-FIGS 28.4 (3.8) 15.7 (3.9) 29.7 (6.9) 18.8 (6.6) 11.7 (5.1) 3.0 (1.3)

Table 7. Test set prediction results averaged over 10 random data splits, with corresponding
standard error in parentheses. Values in columns labeled with a sensitivity percentage
(e.g. 92%) are best specificity achieved at the given level of sensitivity or greater. G-
FIGS provides the best performance overall in the high-sensitivity regime. G-CART attains
the best ROC curves, while TAO is strongest in terms of F1 score.
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