
Human-Guided Generation of Sketches and

Prototypes

Forrest Huang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-175

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-175.html

July 18, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Human-Guided Generation of Sketches and Prototypes

by

Zifeng Forrest Huang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Canny, Chair
Professor Alexei Efros

Professor Björn Hartmann
Professor Kosa Goucher-Lambert

Summer 2022

Human-Guided Generation of Sketches and Prototypes

Copyright 2022
by

Zifeng Forrest Huang

1

Abstract

Human-Guided Generation of Sketches and Prototypes

by

Zifeng Forrest Huang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Canny, Chair

Sketching and prototyping are central to creative activities that improve and advance many
aspects of human lives. They enable non-experts to express themselves through drawing,
or help User Interface (UI) designers explore diverse alternatives through low-fidelity pro-
totyping. Generating these sketches and prototypes, however, typically requires significant
expertise that casual users might not possess, and may be effortful and time-consuming even
for professional users.

In this dissertation, I will introduce multiple deep-learning methods and systems that can
generate sketches and prototypes. The generation of these artifacts is designed to be guided
by annotations in familiar modalities (e.g., generating user interfaces from text descriptions).
The presented generation systems and methods include Sketchforme, a system that generates
individual sketched scenes from text descriptions; Scones, a system that iteratively generates
and refines sketched scenes based on users’ multiple text instructions; and Words2ui, a
collection of methods that can create UI prototypes from high-level text descriptions. This
research creates unique affordances, advances the state-of-the-art of creativity support tools,
contributes benchmark metrics, and explores novel interaction paradigms in diverse domains
from non-expert sketching to professional UI design. These research contributions can serve
as important building blocks towards future multi-modal systems that enable more effective
and efficient sketching and prototyping for all.

i

To Mum, Dad, and Anthony.

ii

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Contributions . 2
1.2 Overview . 4
1.3 Statement of Prior Publications and Authorship 5

2 Background 7
2.1 Sketching and Prototyping in Creative Processes 7

2.1.1 The History of Sketching and Its Significance for Communication, Self-
expression, and Art . 7

2.1.2 Human-Centered Design Process and Artifacts 8
2.1.3 Sketching in Human-Centered Design 10
2.1.4 Prototyping in Human-Centered Design 11

2.2 Creativity Support . 13
2.2.1 Definitions of Creativity . 13
2.2.2 Target Applications and Users . 14
2.2.3 Human-Machine Collaboration and Mixed-Initiative Interfaces 15

2.3 Transformers . 16
2.3.1 Notation and Task . 17
2.3.2 Building Blocks of the Transformer Network 18
2.3.3 Transformer Block . 18
2.3.4 Position Embeddings . 20
2.3.5 Practical Concerns . 21
2.3.6 Large Language Models . 21

2.4 Mixture Density Networks . 24
2.5 Contrastive Learning . 25

2.5.1 Recent Approaches . 26

iii

2.5.2 Applications . 27
2.6 Sketch and Prototype Datasets . 27

2.6.1 Sketching Datasets . 27
2.6.2 Abstract Objects with Text Descriptions and Conversations 28
2.6.3 UI Layout Datasets . 29

3 Related Work 30
3.1 Natural and Artistic Image Generation . 30

3.1.1 Neural Style Transfer . 30
3.1.2 Generating Images with Generative Adversarial Networks (GANs) . . 31
3.1.3 Conditional Image Generation with GANs 32
3.1.4 Transformer-Based Image Generation 34
3.1.5 Generative Image Diffusion Models 34

3.2 Sketch and Vector Graphics Generation . 35
3.2.1 Sketch Generation . 35
3.2.2 Vector Graphics Generation . 36

3.3 Automatic Sketching Tutorial and Assistance 36
3.4 User Interface Prototype Retrieval and Generation 37

3.4.1 User Interface Retrieval . 37
3.4.2 Generating UI Designs . 38

3.5 Sketch-Based Prototyping Tools . 38
3.6 3D Model Retrieval and Generation . 39

4 Sketchforme: Sketch Generation from Individual Text Descriptions 41
4.1 System Description . 42

4.1.1 Scene Composer: Generating Composition Layouts 43
4.1.2 Object Sketcher: Generating Individual Sketches 44

4.2 Model Training and Data Sources . 45
4.3 Experiments and Results . 47

4.3.1 Composition Layout Generation . 47
4.3.2 Generating Individual Object Sketches at Various Aspect Ratios . . . 49
4.3.3 Complete Scene Sketches . 49
4.3.4 Human Perception User-Study . 50
4.3.5 Sketch Interpretation User Study . 52

4.4 Applications . 53
4.4.1 Sketch-Assisted Language Learning 53
4.4.2 Intelligent Sketching Assistant . 55

4.5 Limitations . 55
4.5.1 Occlusions and Layer Order . 55
4.5.2 Aspect Ratios might be Weak Signals for Object Poses 56

5 Scones: Sketch Generation and Iterative Refinement in Critique Cycles 58

iv

5.1 System Architecture . 59
5.1.1 Scene Composer . 59
5.1.2 Object Sketchers . 60

5.2 Datasets and Model Training . 63
5.2.1 CoDraw Dataset . 63
5.2.2 Quick, Draw! Dataset . 63

5.3 Results . 64
5.3.1 Scene Composition Modification State-of-the-Art 64
5.3.2 Sketches with Clip Art Objects as Mask and Ratio Guidance 66
5.3.3 Complete Sessions with Composition Layouts and Sketches 66
5.3.4 Interpreting Transformer’s Attention Maps 68

5.4 Exploratory User Evaluation . 68
5.4.1 Method . 71
5.4.2 Results . 72
5.4.3 Participants’ Feedback for Improving Scones 74

5.5 Limitations . 75
5.5.1 Underspecified Masks . 75
5.5.2 Limited Variation of Sketches . 75
5.5.3 Data Mismatch Between CoDraw and Target Task 76

5.6 Towards End-to-End Generation . 76
5.6.1 Dataset Development . 77
5.6.2 Task Formulation and Model Architectures 78
5.6.3 Task Variants . 80
5.6.4 Metrics . 80
5.6.5 Baseline Results . 81
5.6.6 Key Research Challenges . 85

6 Words2ui: User Interface Prototype Generation and Retrieval from Text 87
6.1 UI Generation and Retrieval Methods . 88

6.1.1 Datasets . 89
6.1.2 UI Generator . 90
6.1.3 Multi-modal Retriever . 92
6.1.4 Rendering . 94

6.2 Benchmark Metrics for Generative UI Models 95
6.2.1 Well-formedness . 95
6.2.2 Relevance . 96
6.2.3 Diversity . 99

6.3 Results . 99
6.3.1 UI Generator Quantitative Results 99
6.3.2 Multi-modal Retriever Quantitative Results 101
6.3.3 Qualitative and Comparative Analysis 102

6.4 Expert Feedback . 103

v

6.4.1 Procedure . 103
6.4.2 Participants . 106
6.4.3 Results and Discussion . 106

6.5 Envisioned Applications . 108
6.5.1 Early-Stage Design Sketch Rendering 108
6.5.2 Interactive and Steerable UI Generation 108
6.5.3 Combining Multiple UI Suggestion Methods 109

6.6 Limitations . 109
6.6.1 Supporting Design-Specific Language 109
6.6.2 Addressing Rare and Intermediate UI Elements 109

7 Discussion and Future Research Opportunities 111
7.1 Machine Guidance and Tutorial for Sketching and Prototyping 111
7.2 From Cross-modality to Multi-modality . 112
7.3 Large Multi-modal Models . 112
7.4 Novel Architecture and Task Design . 114
7.5 New Domains and Modalities . 115
7.6 Integration with Application in Real Usage Scenarios 115
7.7 Dynamics and Research of Future Designer-AI Interaction 116

8 Conclusion 118

Bibliography 120

vi

List of Figures

1.1 Overview of all projects presented in this dissertation. 5

4.1 Sketchforme synthesizes sketched scenes corresponding to users’ text descriptions
to support interactive applications. 42

4.2 Overall system architecture of Sketchforme. Sketchforme consists of two steps in
its sketch generation process. 42

4.3 Model architecture of (a) the Scene Composer and (b) the Object Sketcher. . . . 45
4.4 Heat-maps generated by super-positioning Sketchforme-generated/

Visual Genome (ground-truth) data. Each horizontal pair of heat-maps corre-
sponds to an object from a description. 48

4.5 Generated sketches of trees with various aspect ratios by the Object Sketcher in
Sketchforme. 49

4.6 Complete scene sketches generated by Sketchforme. 49
4.7 Complete scene sketches generated by Sketchforme trained on the Abstract Scenes

dataset that contains complex multi-object scenes. 50
4.8 Samples of sketches produced by humans and Sketchforme used in the AMT user

study. 51
4.9 Results of the human perception user-study on Sketchforme. 64.6% of human-

generated sketches and 36.5% of Sketchforme-generated sketches are perceived as
human-generated in (a). In (b), Sketchforme-generated sketches were considered
more expressive than human-generated sketches for sketches of ‘a boat under a
bridge.’ and ‘an airplane in front of a mountain.’ 52

4.10 Applications enabled by Sketchforme. Sketchforme can augment (a) language-
learning applications and significantly reduced the time taken for users to achieve
similar learning outcomes. With the (b) intelligent sketching assistant powered
by Sketchforme, the user can create a partial sketch for Sketchforme to suggest
multiple candidates for them to choose the adequate sketch they prefer from the
description ‘a horse under a tree.’ . 56

4.11 Limitations of Sketchforme’s sketch generation process. In (a), the boats are
significantly occluded by the bridges. In (b), the elephants were represented with
square bounding boxes which guided the system to sketch only the faces of the
elephants. 56

vii

5.1 Overall architecture of Scones. Scones takes a two-stage approach towards gen-
erating and modifying sketched scenes based on users’ instructions. 59

5.2 The scene layout generation process using the Transformer Model of the Scene
Composer. 61

5.3 Sketch-RNN model architecture of the Object Sketchers. 62
5.4 Example generated scenes for the scene layout modification task. The Scene

Composer was able to improve state-of-the-art performance for modifying object
representations in scene compositions. 65

5.5 Sketch generation results of trees conditioned on masks. The Object Sketcher
was able to sketch trees of three different classes based on mask and aspect ratio
inputs. 67

5.6 Sketch generation results of racquets conditioned on masks. The Object Sketcher
was able to sketch racquets at two orientations consistent to the masks. 67

5.7 Complete sketching sessions with Scones curated by the authors. 69
5.8 Attention map of the Transformer across object and text tokens for the generation

of an airplane, the first object in the scene. 70
5.9 Attention map of the Transformer across object and text tokens for the generation

of slide in the second turn of conversation. We observed that the Transformer
model attended to the corresponding words and objects related to the newly
generated ‘slide’ object. 70

5.10 Attention map of the Transformer for text instructions that specify unseen objects. 70
5.11 Screenshot of Scones’ evaluation user interface. 71
5.12 Survey results from user sessions with Scones. 72
5.13 Recreated scenes during the user study. Users combined Scones-generated out-

puts with their own sketch strokes to reproduce the target scenes presented to
them. 73

5.14 Sketches generated by the Object Sketcher with underspecified masks of the Snake
and Cat classes. 76

5.15 Generated and ground-truth scenes for the end-to-end sketch modification task.
The end-to-end model is able to copy sketched objects from the original scene,
and modify and add sketched objects into the output predicted scene. 84

5.16 Predicted and ground-truth scenes with (a) low and (b) high Chamfer Distances. 85

6.1 High-level overview of the two proposed retrieval and generative methods for
creating UI mock-ups from text descriptions with deep neural networks. 88

6.2 Side-by-side comparison of overall workflows of each of our proposed methods. . 89
6.3 Model architecture of the UI Generator (Transformer Encoder-Decoder variant). 91
6.4 Self-BLEU distributions for examples in COCO and screen2words datasets. . . . 98
6.5 UI mock-ups created by the baseline Text-only Retriever and our methods in

response to the text description “screen displaying list of topics under pocket
physics”. 104

viii

6.6 UI mock-ups created by the baseline Text-only Retriever and our methods in
response to the text description “pop up displaying an image and other options”. 105

6.7 The study results for best alternative designs for three of the five design goals
(Q2.). We observe that each of our methods is preferred in one of the design
goals. The design goals are shown at the top of each chart. 107

ix

List of Tables

4.1 Overlap metric from Monte-Carlo simulations for each description between real
data and Sketchforme-generated/heuristics-generated/random data. 48

5.1 Test set performance of various models on the CoDraw task. 65
5.2 Chamfer Distances for end-to-end sketch critique, lower is better. D - Discrete

Coordinates,C -Continuous Coordinates,A -Absolute Coordinates,R -Relative
Coordinates N - RaNdomized Output Objects, S - Sorted Output Objects . . . 81

5.3 Partial Chamfer Distances (from ground-truth to predicted points) for copy and
added objects, lower is better. Both models usedRelative coordinates and Sorted
output object order. 82

5.4 Chamfer Distances for TranSketch rounds and Non-TranSketch rounds, lower is
better. Both models used Relative coordinates and Sorted output object order. 83

6.1 Dual-encoder accuracies for models trained on COCO and screen2words datasets. 97
6.2 Benchmark for Text-to-UI Generation (Lower is better for all metrics, except HRP

and RP), D - Discretized coordinates, C - Continuous coordinates (modeled
with GMMs), 10 samples per caption in screen2words test set, * - real data, ** -
published performance on Rico . 100

6.3 Cross-modality retrieval accuracy results. 102

x

Acknowledgments

The Ph.D. program has been a challenging yet extremely rewarding experience for me.
Throughout this arduous but productive journey, I am forever grateful to have the support
of many mentors, colleagues, friends, and family members. They have made these past few
years in graduate school the most intellectually stimulating and fruitful learning experience
that I have ever had. This dissertation and my entire research career would not have been
possible without their guidance and assistance. They have helped me improve not only as
a researcher and collaborator, but also as a human being. With the limited amount of text
that follows, I hope to express my unlimited gratitude towards them.

First and foremost, I would like to express my deepest gratitude towards my research
advisor Professor John Canny, for his endless support of my work, for connecting me with
relevant academic and industry collaborators, and for putting his trust in me by taking me as
his student. Over the past few years, he has been patient and encouraging in advising each
of my projects, especially at times when I faced significant challenges. He offered insightful
yet practical suggestions, especially with his expertise in Deep Learning which I was not
proficient in at the beginning of my studies. He taught me to be scientific, systematic,
and methodical about understanding and diagnosing cutting-edge technical methods, and
to holistically consider long-term research vision and directions in each of our projects. I
have benefited tremendously from these invaluable lessons from his advising throughout the
Ph.D. program, and I believe they will considerably strengthen my future research career.

I would like to thank each of the members of my dissertation committee: Professor
Kosa Goucher-Lambert, Professor Björn Hartmann, and Professor Alexei Efros. I have
worked closely with Professor Kosa Goucher-Lambert on interdisciplinary research between
Computer Science, Mechanical Engineering, and Design. He provided me with many fresh
perspectives with his domain expertise in Mechanical Engineering and Human-Centered
Design, and encouraged me to think of implications that my research could have beyond
my immediate field of studies. These perspectives have inspired projects presented in this
dissertation and my overall research vision. Professor Björn Hartmann kept me connected
with the wonderful Human-Computer Interaction research community and offered high-level
research and career advice at multiple critical instances in graduate school. He has also built
a supportive community of students that had graciously provided me with feedback and ideas
about research and teaching. While I have not interacted with Professor Alexei Efros beyond
the context of the dissertation committee, various works presented in this dissertation were
inspired by Professor Efros’ and his students’ research, which we will cover in greater detail
in the dissertation.

Beyond my immediate dissertation committee, there are many professors and instructors
at UC Berkeley that have played vital roles in my academic and professional development.
I would like to thank Professor Eric Paulos, who served as the examiner of my preliminary
examination and a primary organizer of visit day events each year that have also reinforced
my decision to pursue graduate studies at UC Berkeley. I attended classes taught by Professor
Aydin Buluç, Professor Trevor Darrell, Professor James Demmel, Professor Armando Fox,

xi

Professor Gerald Friedland, Professor Chris Hoofnagle, Professor Jitendra Malik, Professor
James F. O’Brien, Professor Kimiko Ryokai, Professor Dawn Song, Professor Jennifer Urban,
Professor Katherine Yelick, Professor Stella Yu, Dr. Allen Y. Yang, and Xavier Malina.
I would like to thank all of them who have prepared highly applicable technical content
and provided me with important research training in their classes. I would also like to
thank postdoctoral scholars Vivek Rao and Qian Yu for providing insightful and actionable
suggestions on my research projects with their experience and expertise.

I am fortunate to have the support and mentorship from many mentors in industry re-
search. I would like to especially thank Jeffrey Nichols, who was my manager and mentor
for my first first-author publication in graduate school. He provided me with extensive guid-
ance not only on specific projects but also long-term advice in terms of research planning
and career development. He also connected me to other researchers and domain experts
whose opinions are constructive, important, and relevant to my research. I would like to
thank David Ha, who has been an avid supporter of my work, for meeting me regularly
to discuss novel ideas, for promoting and steering my projects to achieve maximal impact,
and for endorsing my application to computing resources. I would like to thank my most
recent manager Yang Li, who has supported me in pursuing ambitious projects, and pro-
vided in-depth and pivotal research ideas and recommendations that have led to the success
of our research collaborations. Further, I would also like to thank the following industry
researchers who have provided research advice and engineering support for my Ph.D. work:
Peggy Chi, Tao Dong, Douglas Eck, Daniele Grandi, Gang Li, James Lin, David Salesin,
Karl D.D. Willis, and Xin Zhou. Finally, I would like to thank Google Cloud for provid-
ing computational resources for experiments conducted in this dissertation, and Adobe for
awarding me with an honorable mention for its research fellowship program in 2020.

My research career towards pursuing a Ph.D. degree would not have been realizable
without my undergraduate research experiences at the University of Illinois at Urbana-
Champaign. I would like to thank my undergraduate thesis advisor Professor Ranjitha
Kumar, who introduced me to the Human-Computer Interaction research community, sup-
ported me to attend conferences as an undergraduate student, and trusted me to be ex-
tensively involved in her research projects. Many of these projects that we completed then
have set up great foundations for the research work presented in this dissertation. I would
also like to thank Professor Matthew Caesar for providing me with my first research expe-
rience in Computer Science, and Professor Cinda Heeren for guiding me through planning
and managing a research mentorship program to serve the wider community of engineering
students.

The magnificent and diverse research community at UC Berkeley has provided me with
great colleagues to learn research and technical skills from and alongside with. First, I would
like to thank the past and current members of CannyLab (Professor John Canny’s Research
Group), where I learned about video captioning and system administration from David Chan,
protein modeling from Roshan Rao, news and natural-language processing techniques from
Philippe Laban, robotics and reinforcement learning from Daniel Seita, contrastive learning
and advanced attention mechanisms from Suhong Moon, autonomous driving from Jinkyu

xii

Kim, and deep learning visualization from Biye Jiang. I would like to thank members
of the Berkeley Institute of Design, consisting primarily of members of b-crew (Professor
Björn Hartmann’s research group) and Co-Design Lab (Professor Kosa Goucher-Lambert’s
research group). This includes Eldon Schoop, who is a close collaborator on our projects
and taught me about machine-learning debugging tools; Elisa Kwon, who is another close
collaborator on our projects and taught me about inspirational stimuli in design; Jeremy
Warner, who taught me about vector style transfer; Andrew Head, who taught me about
interactive tools for programming notebooks; Richard Lin, who taught me about hardware
debugging; James Smith, who taught me about optimizing the data-collection processes with
Augmented Reality; Bala Thoravi Kumaravel, who taught me about building interactive and
usable tools in Virtual Reality; J.D. Zamfirescu-Pereira, who taught me about applications
of large language models; Shm Almeda, who taught me about interactive tools for digital
design; Nate Weinman, who taught me about programming education; Yakira Mirabito, who
taught me about design decision-making; Ananya Nandy, who taught me about functional
similarities in engineering design; and Doris Jung-Lin Lee, who taught me about accelerating
data science workflows. I would also like to thank a few members of the Hybrid Ecology
Lab (Professor Eric Paulos’ research group), including Cesar Torres, Molly Nicholas, and
Sarah Sterman, who have widened my horizons with some of the most novel and innovative
interaction methods, and helped me prepare for my preliminary examination. Furthermore,
I would like to thank Chandan Singh and Colorado Reed from Berkeley AI Research for the
research discussions and social events. Apart from the research community, I would also
like to thank the support staff I interacted the most with at the EECS department at UC
Berkeley: Jean Nguyen, Shirley Salanio, and Patrick Hernan. They have been professional
and helpful in handling documentations and inquiries about both regular procedures and
extraordinary circumstances throughout the Ph.D. program.

I am grateful to have my closest friends in the bay area and beyond. I would like to
thank Calvin Leung, Kelvin Kwok, Darren So, Ricky Yeung, Markus Au Yeung, Kyle Wong,
Godfrey Chan, Tim Chiu, Victor Cheung, Annie Jin, and Evan Huang. They have made
various phases of graduate school significantly easier through enthusiastically celebrating
my tiniest achievements, and continuously providing mental and emotional support through
challenges and obstacles.

Finally, I would like to thank my family for tirelessly supporting me not only in this Ph.D.
program, but through all stages of my life. My parents’ nurturing has granted me the passion
for technology and innovation from a very young age, and growing up with my brother has
taught me the qualities and characteristics of a good collaborator. Most importantly, they
have been my biggest champion through the ups and downs of this journey of life. Their
unconditional love has given me tremendous strength to weather through storms in the past,
present, and future, and they can expect the same commitment and contribution from me
in my lifetime.

1

Chapter 1

Introduction

Communicating novel visual ideas and materializing them with concrete prototypes are
some of humans’ most unique capabilities that drive innovation and improvements in many
aspects of our lives. As the descendent of one of the earliest forms of communication [129],
sketches are widely used to convey visual ideas in diverse fields. The abstract yet expres-
sive nature of sketches enables humans to quickly and succinctly communicate conceptual
and high-level ideas. Sketchers can transform their intents into concrete illustrations and
artifacts, and communicate these concepts tangibly while leaving out unnecessary details.
Therefore, sketches are popular among artists for expressing creative thoughts [49, 90, 108,
129], among engineers for communicating hard-to-verbalize ideas [41, 66], and among educa-
tors for teaching complex and unintuitive concepts [2, 43, 94]. Most notably, the advantages
of sketch-based problem-solving and communication are manifested in design processes where
designers frequently sketch in iterative design, critique, and review sessions [12, 19, 29, 31,
41, 109, 146, 164].

Following through on the envisionment of creative ideas through sketching, prototypes
at various abstract levels, or fidelities, are often created to help us further realize, refine,
and evaluate the novel solution we developed for a particular problem. For instance, user
interface (UI) designers might prototype using low-fidelity mock-ups with abstract graphics
or high-fidelity screenshots [189]. These prototypes allow designers to better gauge the merits
and issues of their design solutions, while being able to quickly iterate without devoting
significant effort to building out a polished solution or product.

As both sketching and prototyping have facilitated creative activities in many areas, each
of these two processes and their sub-steps has been established and well-researched in design
and creativity research fields (see a review of the background of sketching and prototyping
in creative processes in Chapter 2). However, producing aesthetic and functional sketches
and prototypes still requires extensive expertise, considerable experience, and non-trivial
effort. Attempting to lower this barrier of execution, Human-Computer Interaction (HCI)
researchers have since developed a number of computational Creativity Support Tools to
reduce users’ workload during these processes [175]. Many of these tools were designed to
support exploratory search [78, 105, 110, 157, 166], assist prototype creation [95, 106, 120],

CHAPTER 1. INTRODUCTION 2

and encourage collaboration [107], all to further elevate and improve users’ creative processes.
Recent advances in the field of Machine Learning (ML) and Deep Learning (DL) have

drastically improved computational systems’ ability to comprehend and generate visual con-
tent [150, 151, 165, 195]. The development of neural-network architectures (e.g., convolu-
tional neural networks [104] and attention-based Transformers [184]) have provided machines
the ability to generate visual content conditioned on user-specified natural language and/or
other accompanying semantic information. These model architectures have also advanced
the state-of-the-art for computer vision tasks of sketching [62, 156] and prototyping [7, 60].
They provide great opportunities for sketching and prototyping applications that this dis-
sertation aims to explore.

Inspired by work in the HCI community on creativity support tools and recent advances
in DL, this dissertation investigates and presents computational systems that can automat-
ically generate sketches and prototypes from scratch while guided by users. These
automatic processes of creating creative artifacts drastically reduce the demands for skills
and effort of users to engage with sketches and prototypes. We specifically designed these
systems to also take users’ guidance in various forms that they are familiar with (e.g., nat-
ural language) to grant them control over the generation outputs. These systems effectively
transform users’ creative expressions from modalities that they are proficient in, to modali-
ties that were previously difficult for them to be expressive in. Through contributing these
new systems towards guided generation of sketches and prototypes, this dissertation also
explores novel affordances and interaction paradigms in diverse domains from non-expert
sketching to professional UI/UX design. We believe these research contributions can serve
as important building blocks towards future multi-modal systems that enable more effective
and efficient creative expression for all.

1.1 Contributions

The core contributions of this dissertation are several computational systems that can
create and generate sketches and prototypes to support various creative activities. These
systems adapt state-of-the-art DL models to generate sketches and prototypes from scratch
and support appropriate levels of user-control that the targeted audience can easily use: the
artifacts generated by these systems are guided by naturalistic user-inputs, such as natural
language authored by non-experts and professionals. Through developing these systems,
we also contribute models that accomplish novel tasks and/or establish new state-of-the-art
performance on established tasks. These systems and models which target various creative
domains include:

• Sketchforme (Chapter 4), the first DL system that can generate sketched scenes
that contain multiple objects corresponding to individual text descriptions.
Sketchforme uniquely factors the complex sketch-generation task into layout composi-
tion and stroke rendering sub-tasks. We evaluated the quality of the generated sketches

CHAPTER 1. INTRODUCTION 3

of Sketchforme with a custom quantitative metric, a qualitative exploration, and a
study of user-rating of the sketches. Our evaluation and study participants have found
the generated sketches to be generally expressive and realistic. Using these gener-
ated sketches, we develop prototype applications to demonstrate that Sketchforme can
potentially improve language-learning applications by adding visual hints to foreign
language phrases. We also demonstrate that Sketchforme could support sketching
assistants by auto-completing sketched scenes based on users’ instructions and prefer-
ences.

• Scones (Chapter 5), which enables iterative authoring and critique of sketched
scenes using natural language. It is the first DL system that can generate and
modify sketched scenes given users’ text commands across multiple turns and cycles
of sketching and critiquing. Scones improves upon Sketchforme’s novel workflow to
continuously consider new text commands while composing scene layouts with object
specifications, before rendering sketch strokes for each scene object. Scones exceeds
state-of-the-art performance for an established text-based scene-layout modification
task, and introduces a novel affordance of controlling the appearance and poses of gen-
erated object sketches with masks and aspect ratios. In an exploratory user evaluation
of Scones, participants generally enjoyed the novel conversational sketching interaction
paradigm that it is able to support, and were satisfied with the final sketches that they
co-created with Scones.

• Words2ui (Chapter 6), which is a collection of multiple DL models that are all first of
their classes to be able to generate and retrieve user interface prototypes in the
form of low-fidelity mock-ups1 guided by users’ high-level specifications of the desired
UIs. We also developed a set of novel benchmark metrics grounded on prior works
to measure three aspects of success of the text-to-UI generation task. We evaluated
our models using these metrics and found that our text-conditional models are able to
generate UIs of similar quality and diversity as previous state-of-the-art unconditional
models. We further built a filtering and rendering pipeline to present model outputs
in the plausible form of low-fidelity UI mock-ups. Using these generated mock-ups,
we performed a qualitative analysis and a user study, and found that the mock-ups
adhere to constraints given by input text descriptions and can potentially support
experts’ design processes.

1Note that there are contemporary definitions that only consider high-fidelity artifacts that are compa-
rable to the final product as prototypes. However, there are a large number of prior literature referencing
UI mock-ups that consist of abstract graphics as low-fidelity prototypes, and even consider sketches as
prototypes. Please see Section 2.1.4 for a detailed discussion.

CHAPTER 1. INTRODUCTION 4

1.2 Overview

This dissertation will be organized as follows: We begin with reviewing background
knowledge and relevant research in Design, HCI, and ML communities about sketching and
prototyping. We will then describe in the following chapters sketch-generation and prototype-
generation systems that we contributed in detail. Finally, we conclude this dissertation with
high-level takeaways from these research projects and outline important future avenues of
research. We include a brief overview of all projects and systems presented in this dissertation
in Figure 1.1.

Chapter 2 provides background information about creative processes, tools that support
these processes, and the application of sketches and prototypes in these processes. It also
provides a technical prior of various DL techniques and datasets that could be useful for
modeling sketches and prototypes.

Chapter 3 surveys recent work relevant to the research in this dissertation. In the HCI
research literature, this includes systems for sketching and prototyping support such as auto-
mated sketching tutors and assistants, sketch-based prototyping tools, and generative design
applications in specific domains. We additionally review related work in recent ML research
literature in this chapter, which includes models that enabled style transfer, natural image
generation, sketch generation, scene and document layout generation, 3D model generation,
and interactive conditional generation and editing of visual content.

Chapter 4 describes Sketchforme, the first system presented in this dissertation. Sketch-
forme can generate individual scenes with multiple sketched objects given a single natural
language description. This chapter describes the implementation of Sketchforme and presents
both quantitative and qualitative analyses of the sketches generated by Sketchforme. It
additionally describes a few applications enabled by Sketchforme in detail, validating and
showcasing the utility of Sketchforme-generated sketches for language learning and assistive
sketching.

Chapter 5 describes Scones, which built upon the text-to-sketch task and system ar-
chitecture introduced by Sketchforme to perform iterative generation of sketches from text
instructions. This chapter describes the Transformer-based system architecture of Scones
that allows it to consider previous scenes in addition to text instructions as inputs, conse-
quently enabling its new iterative scene sketching ability over Sketchforme. We then report
Scones’ quantitative and qualitative performance in composing scenes and sketching objects.
We additionally describe a web-deployable system supported by Scones towards the end of
this chapter. This system was used in our user study with Mechanical Turk users on sketch-
ing with Scones iteratively through natural language. We report findings from this study and
important features suggested by our users for both Scones and future human-AI co-creative
systems to implement.

We then move beyond non-expert sketches to investigate professional design domains in
Chapter 6. We introduce several DL methods that can create UI prototypes in the form
of design mock-ups from text descriptions. We describe the dataset choices, pre-processing
procedure, model architectures, post-processing and filtering techniques, and mock-up ren-

CHAPTER 1. INTRODUCTION 5

dering pipeline of these methods. We additionally define a novel benchmark that consists of
a set of metrics addressing three main aspects of text-to-UI task success: Well-formedness,
Relevance, and Diversity, to systematically evaluate our approach against prior and future re-
search in this area. We then report quantitative results of our methods on the newly-defined
metrics and present qualitative examples of UI mock-ups created by our models. Towards
the end of this chapter, we report expert UI/UX practitioners’ preferences and opinions in
a user study about the quality and utility of the generated and retrieved mock-ups.

Computational Generation

274

Sketchforme
(Chapter 4)

Words2ui
(Chapter 6)

System

a horse under a tree.

Scene Sketches

Designer/Developer

System

sign in page.

UI Mockups

Human Guidance

Drawing

Scones
(Chapter 5)

Text Description

Non-expert

System
Modified Scene Sketches

Non-expert

Text Description

Text Description + Previous Scene

Drawing

UI/UX Design

put a campfire
under the balloon.

Figure 1.1: Overview of all projects presented in this dissertation.

Finally, in Chapters 7 and 8, we conclude the dissertation with some high-level take-
aways and themes that are common across the proposed computational systems. We also
further paint the landscape of future research in this exciting area of generative sketching
and prototyping.

1.3 Statement of Prior Publications and Authorship

This dissertation contributes multiple projects with core ideas and research progress pre-
viously published at various venues. Sketchforme (Chapter 4) was published at the UIST
2019 conference [77] as a full paper. Scones (Chapter 5) was published at the IUI 2020
conference as a long paper [80] and done in collaboration with Google Research. Scones
was also included in a chapter on Sketch-based Creativity Support Tools using Deep Learning
in the Artificial Intelligence for Human Computer Interaction: A Modern Approach book

CHAPTER 1. INTRODUCTION 6

published by Springer in 2022 [81]. Chapter 6 contains work on text-to-UI generative models
published at the Computational Approaches For Understanding, Generating, and Adapting
User Interfaces Workshop at the CHI 2022 conference [79] and done in collaboration with
Google Research. I am the first author in all of the aforementioned papers and book chapter,
but this research would not have been possible without the assistance of my collaborators. I
am especially grateful for the guidance of my faculty advisor—John Canny, and my industry
mentors—David Ha and Yang Li, who are also co-authors of most of the aforementioned
papers and book chapter. I also appreciate the research and software development support
from Eldon Schoop on Scones, and Gang Li and Xin Zhou on text-to-UI generative models,
who are also co-authors of the respective papers. Finally, I would like to specially acknowl-
edge my mentee Luming Chen for contributing the TranSketch dataset as an extension to
Scones (described in Section 5.6), and Luming had also completed a master’s thesis on this
topic [23]. I reflected all of my collaborators’ support by using ‘we’ throughout this disser-
tation, with the exception of Chapter 7 which reflects my personal opinion and speculation
on future research opportunities.

7

Chapter 2

Background

In this chapter, we provide the necessary background for understanding existing types and
approaches of support towards creative processes that involve sketching and prototyping, and
the technical approach developed recently to model data formats that are commonly found
in these processes. We additionally review some datasets, which are important prerequisites
for deep-learning (DL) systems to support these processes.

2.1 Sketching and Prototyping in Creative Processes

Sketching and prototyping are central to many creative processes, supporting activities
in many creative fields. In the context of this dissertation, we center our discussion on how
systems might support the creative processes of non-expert sketching and user interface (UI)
design. Note that sketching is often defined as the modern-day practice of creating quick and
free-hand drawings that only emphasize general shapes, which is consistent with the usage
of this process in design fields. However, the products created by this process are often line
drawings (or line art) which can trace their roots to earlier art forms [129].

2.1.1 The History of Sketching and Its Significance for
Communication, Self-expression, and Art

Sketching processes, one of the main types of creative processes that this dissertation
aims to support, often produce line drawings as their primary artifacts. Line drawings
have deep roots as one of the earliest communication media and art forms, manifested as
prehistoric cave paintings in the Upper Paleolithic period [69, 71, 144, 182]. They were
used by humans at the time for artistic expression of their imaginative worlds [129] and
practical, utilitarian records of life events [153]. Some of these paintings are hypothesized
by researchers to have been specifically designed to reflect the acoustics of their physical
locations within caves, allowing cross-modality information from the physical world to be
preserved in the paintings [127].

CHAPTER 2. BACKGROUND 8

The pervasiveness of sketches in human society can also be partially reflected by the cog-
nitive development process of humans, particularly of children and infants. Multiple studies
have discovered that visual concepts were developed as early as infancy, and sketching has
therefore been used by psychologists and cognitive scientists as probes into children’s devel-
opmental processes [82, 96, 123]. Similarly, drawing has also been recognized as an important
outlet of expression among children and can uncover individual stories and experiences that
might be hard to verbalize [93].

In artistic fields, sketching and line drawing are considered to be important art forms
that aspiring artists practice extensively during their education. Starting from the 18th
century, the promotion of line drawings allowed amateurs to participate in producing art
now recognized by experts. Line drawings have been recognized as final products that many
artists are known for (e.g., John Constable [90], Pablo Picasso [108]). Moreover, the processes
of creating many types of more sophisticated art forms often start with artists sketching the
general structures and compositions of the final products [49] before details of the art pieces
are filled in, making the sketching process important for artistic ideation and production.

2.1.2 Human-Centered Design Process and Artifacts

Perhaps one of the most significant use-cases of sketches and prototypes in contemporary
creative processes is in design processes across many domains. In this section, we first
provide background about definitions and examples of design processes, and then describe
the produced artifacts in various parts of these processes including sketches and prototypes.

The commonly established human-centered design-thinking (HCD) process [5] recom-
mends five steps towards a working solution to a design problem: Empathize, Define, Ideate,
Prototype, and Test. We use a simple example of building a restaurant-searching mobile
application for university students to illustrate these steps. We emphasize the definitions of
the last three steps in this section due to their high relevance to sketching and prototyping.
For completeness, however, we first briefly describe the empathize and define steps. The
Empathize step aims to be used by designers to fully understand and engage with target
users about their problems in their context. In our example, designers might recruit univer-
sity students and discuss with them about their current pain points and difficulties in using
existing solutions for finding local restaurants. Based on the results of the empathize step,
the Define step aims to clearly frame the design problem and document requirements for
the potential solution. In our example, designers would describe requirements such as users’
need to see current wait times of restaurants nearby.

Following the empathize and define steps is the Ideate step, in which designers are sug-
gested to generate many potential ideas that might solve the concerned design problem.
Designers are recommended to diverge and explore a great breadth of concepts and ref-
erences as starting points and resources for the next steps of the design process. In our
example, this might lead to the ideas of using map-based and list-based layouts to display
restaurants located around the user.

CHAPTER 2. BACKGROUND 9

In the Prototype step, designers need to translate concepts and ideas formulated in the
previous steps into prototypes. Prototypes are design artifacts that provide certain degrees
of resemblance to the final potential solutions. They should embody ideas and concepts con-
verged and chosen from previous steps and allow designers to experience potential solutions,
reason about their merits and disadvantages, and compare them between various candidate
solutions. In our example, this would represent the process of actually building out map-
based and list-based layouts in a mobile form factor to demonstrate their appearance and
functionalities. Given the high relevance of this step to targeted design artifacts that our
systems aim to support (i.e., prototypes), we include a detailed discussion of prototyping in
the human-centered design processes in Section 2.1.4.

In the Test step, prototypes created in the prototype step are used to solicit feedback
from targeted users. Note that on many occasions, these testing activities overlap with the
empathize step such that this provides ‘another opportunity to gain empathy for the people
you are designing for’ [5]. In our example, this would represent taking several completed
prototypes to the targeted users (e.g., the university student recruited in the empathize step)
to solicit their opinions and/or record quantitative statistics with them performing a task
representative of the real use-cases of the design. This could potentially lead to another
Empathize step, and this overlap highlights the non-linearity of the overall design process,
such that these activities can repeatedly happen in various orders until a final design solution
has been developed and built.

Throughout this design process, numerous artifacts in various modalities would be used
by designers to iteratively ideate, create, communicate, reason, and compare design ideas.
Some of the most commonly used artifacts in the Ideate step are sketches, which allow
designers to quickly express and discuss design ideas without committing to other irrelevant
details of the ideas. As they move through the design process, low-fidelity and high-fidelity
prototypes1 that include greater details of proposed design solutions would be used to more
comprehensively evaluate the solutions. This leads to our investigation of the possibility for
computing systems to generate these important and applicable artifacts to aid in the design
process. In addition, natural language is frequently used in the earlier empathize and define
steps in interviews and requirement documentations. This leads to natural language being
a primary form of human guidance supported by systems proposed in this dissertation.

Before we dive into the specific discussions of these artifacts, it is important to note
that this is not the only model for design processes. However, many of the steps defined by
this process model are echoed by other processes, including the design process described in
influential design literature [134], practical design thinking recommendations by IDEO [37],
and a mobile app design process [189] adapted from the famous and widely applicable Total
Design method proposed by Pugh [145]. This mobile app design process includes specifi-
cation, conceptual design, prototyping, and testing phases that share similarities with the

1Some definitions of prototypes include sketches as a type of prototypes, widely defining a prototype as
‘any representation of a design idea, regardless of medium’ [75]. We separate the discussion of sketches due
to its distinctiveness in form compared to the mockup-based prototypes that we produce in different systems
introduced by this dissertation.

CHAPTER 2. BACKGROUND 10

Ideate, Prototype, and Test steps discussed above. Hence, we believe the artifacts produced
in the HCD design process discussed above are applicable to design processes in many other
domains.

2.1.3 Sketching in Human-Centered Design

Sketching is commonly used by designers today to expand novel ideas, visualize abstract
concepts, and rapidly compare alternatives. Its involvement and utility in multiple facets
of design have been extensively documented by work in the design research community,
including architectural and product design [31, 72, 109]. Sketching, or working in visual
media, is considered a core competency and critical skill for designers to master [30]—
researchers have shown through interviews and conversations that possessing great sketching
skills is one of the most important characteristics of prominent designers [29, 31, 109]. Hence,
sketching tutorials have been included in many design textbooks and courses in the training
curriculum of designers [19, 160]. The abstract nature of sketches solicits feedback discussed
at a high level, without burdening the designer with creating and consuming lower-level
details and prevents premature commitment to a particular idea. This allows designers to
more comprehensively consider and explore different alternatives, resulting in better final
designs. Thus, sketches are often used primarily in the earlier steps in design processes, such
as the Ideate step discussed above in Section 2.1.2.

Sketches produced in design processes, while often are earlier manifestations of more de-
tailed and higher fidelity design artifacts and prototypes of the same design idea, are used
themselves as artifacts of the design processes [41, 67]. One primary usage of sketches in
design is to visually represent the intended design solution in an abstract manner, serving the
important purpose of allowing reinterpretation and exploration among designers themselves
and among members of design teams [41, 146]. Sketches allow designers to consider potential
physical and geometrical configurations of design solutions relevant to their problem contexts.
Because of this, sketches on their own can also take different levels of fidelity and formalities
depending on the levels of completeness of the design solutions and the levels of decision
needed to be further made on them, ranging from simpler line drawings depicting overall
concepts of the products, to technical sketches that specify constraints for manufacturing
prototypes. Note that the definition of sketches can also expand beyond visual representa-
tions of final design solutions, to hand-drawn diagrams, symbols, numbers, and texts that
explain various aspects of the solutions [30], such as those in system design flowcharts. Such
heterogeneity is considered by an early computational system that separately processes each
type of sketches to fully support free-form sketching in design [124].

One prolific lens in design research towards sketches is considering them as a communi-
cation medium, which could be a natural extension of drawings being used to communicate
hard-to-explain visual and physical ideas discussed in the previous sections. Ferguson identi-
fied three classes of sketches in the context of communication in engineering design: thinking
sketches for individuals to ‘guide nonverbal thinking’; prescriptive sketches to dictate instruc-
tions towards more complete drawings; and talking sketches for interaction among members

CHAPTER 2. BACKGROUND 11

of groups and teams [44]. Other researchers have also noted similar use-cases of sketches
in design to generate, communicate, analyze, and retain design ideas and solutions [169,
181, 183]. Researchers have additionally noted the important usage of sketches as boundary
objects [41, 67], which are artifacts that support groups with different levels of expertise
and understanding of context to communicate effectively. Most relevant to this dissertation,
Neilson and Lee observed complex inter-dependency between natural language and sketches,
and that designers frequently use them in combination in design activities [133]. This further
motivates our proposed systems in supporting natural language as a form of human guidance
for sketching. Overall, all of these definitions of sketching as a communication tool reinforce
the pervasiveness of sketches as artifacts in design processes in diverse domains.

Following the documentation of the frequent use of sketches in design processes, re-
searchers have also investigated the relation between design outcomes and the degree of
usage of sketches. There is some evidence that points to the positive correlation between
levels of sketching and positive design outcomes in university engineering design courses.
This is especially due to their roles in encouraging design exploration and lowering cognitive
workload when reasoning about potential solutions’ effectiveness. There are many other
prior research works that describe the important roles of sketching in design that we are
unable to include. Review articles written by Eckert et al. [41], and Purcell and Gero [146]
are good starting points to these works.

2.1.4 Prototyping in Human-Centered Design

Prototyping usually follows after different design ideas are sketched out and explored,
and when the team has decided on a more concrete design (or few candidates) to proceed
with. This is also reflected by the Prototype step defined in the human-centered process
example in Section 2.1.2 that follows the Define and Ideate steps.

Prototypes are the primary artifact created during prototyping (as the name obviously
specifies). There are many definitions, properties, and taxonomies of prototypes available and
published, and we discuss several that are relevant to human-centered design. Beaudouin-
Lafon and Mackay define a prototype to be a tangible artifact that concretely represents
individual parts or the entirety of an interactive system, and that participants in the design
process can use these artifacts to envision and reflect on the final system [12]. It is thus clear
that prototypes usually refer to artifacts that are of greater detail and with more realized
properties than sketches, and are used for evaluating and reasoning about the final concrete
effects that certain design solutions have on their problems.

To further understand the types of prototypes used in design processes, we consider
Beaudouin-Lafon and Mackay’s definition of four dimensions of prototypes [12]:

• Representation, which is the form that the prototype is presented in (e.g., sketches,
CADmodel renderings, or user interface (UI) mock-ups with abstract colored graphics).

CHAPTER 2. BACKGROUND 12

• Precision, which is the level of details that the prototype was created with. This could
be thought of as similar to the definition of level of fidelity commonly used in design
literature (e.g., low-fidelity wireframes vs. high-fidelity screenshots for a mobile app)2.

• Interactivity, which describes the amount of interactive behavior implemented in the
prototypes and the degree that users can interact with the prototype.

• Evolution, which describes the expected life cycle of the prototype. This refers to
whether it is designed to be reused and redesigned iteratively or to be thrown away
after a single use.

Using this framework, we discuss several types of prototypes commonly used in design.
To begin with prototypes with the lowest fidelity and with great connection to sketches, paper
prototypes are commonly used by designers to quickly turn design sketches into ‘interactive’
prototypes to evaluate their design solutions on realistic tasks [177]. A paper prototype
consists of a hand-drawn (often in sketch-like form) or printed version of the prototype on
paper. The user would perform the target task on pieces of paper with the printed or hand-
drawn interface (e.g., tapping on the paper if the target task is tapping on a mobile device in
an app), and the designer or practitioner usually accompanies the user in the whole process
and plays the role of the ‘computer’ to rearrange the pieces of paper of the prototype to
reflect interactive behavior of the app. Paper prototypes have the advantage of being low-
cost and can be quickly created, leading to quick iterations and explorations of many design
ideas. Paper prototypes can thus be considered to have low precision, moderate interactivity,
and are designed to be thrown away after single or very few uses.

Following paper prototypes, low-fidelity (Lo-fi) wireframes and mock-ups are prototypes3

frequently used in the UI design process [9, 177, 189]. A mock-up defines the layout of a
certain page in a UI, describing the exact positions of various types of UI elements and
widgets (e.g., buttons, text fields, etc.). These elements are contemporarily represented
with graphics that depict various types of elements and template text, giving a mock-up
a slightly more polished and refined quality than a sketch. One main purpose of mock-
ups is to concretely define the relative and absolute sizes and positions of various elements,
which affect the aesthetics and usability of the UIs that the mock-ups reflect. Hence, the
mock-up representation allows designers and testers to more concretely analyze and evaluate
their design solutions and envision final end-products produced from them. Mock-ups and
wireframes themselves are often not directly interactive, but they can be augmented with the
paper prototyping technique to add interactivity by printing out the mock-ups or wireframes
and having the designer act as ‘computers’ [177].

2The definition of fidelity, however, has the additional reference of comparing to final systems, while
precision only describes the state of content in prototypes concerned.

3There are contemporary definitions that consider prototypes only as high-fidelity artifacts that are com-
parable to the final product for differentiating them against low-fidelity prototypes in the form of sketches or
abstract graphics. However, we follow the definition of prototypes mentioned above and consider wireframes
and mock-ups to be prototypes that help designers envision the final to-be-built products.

CHAPTER 2. BACKGROUND 13

Towards the end of the prototyping process, high-fidelity prototypes are produced. These
prototypes could be complete UI screenshots with partially programmed behavior of a mobile
app [189], or a physical prototype for a mechanical structure [20]. These prototypes have
similar or equal properties in the four dimensions discussed above as the final design solution.
Some of these prototypes might even be reused as final design solutions, given the high
effort typically associated with creating them. As such, the design research community has
explored and employed various techniques to reduce the effort of coming up with relevant
high-fidelity prototypes [20, 78], aiming to encourage further design exploration in this high
level of fidelity.

The latter part of this dissertation explores the generation of low-fidelity UI prototypes
in the form of mock-ups, with a moderate level of details, and no interactivity since these
wireframes primarily serve the purpose of evaluating the aesthetics and usability associated
with the placement and sizing of UI elements. Nevertheless, it is important to note that
there are many other types of prototypes, creating numerous future research opportunities
in this area to be pursued. We would also like to highlight an orthogonal perspective of
modeling the characteristics of prototypes based on their purposes, which can be useful for
ensuring the generated prototypes achieve their intended objectives in design processes [75].

2.2 Creativity Support

To support creative activities which include the aforementioned design and artistic ac-
tivities that involve sketching and prototyping, HCI researchers have developed a class of
Creativity Support Tools and has since been established as a prolific research sub-field. In
this section, we review some fundamental concepts and frameworks about creativity and
their relations to creativity support tools that have been built upon these definitions. We
further discuss the applicability of the larger theme of human-machine collaboration to these
tools given the highly human-driven nature of creative activities in the past, and our disser-
tation can be considered as an investigation of human-AI collaboration in this space. Note
that this section focuses primarily on the background of creativity support tools. We will
further describe specific creativity support tools developed by researchers relevant to this
dissertation in Chapter 3.

2.2.1 Definitions of Creativity

The fundamental paper on Creativity Support Tools written by Shneiderman presents
three definitions of creativity that influenced the types of support tools being developed. We
provide a brief overview of these definitions in this section and refer interested readers to the
original article [175] for an in-depth discussion on this topic.

The first definition of creativity originates from structuralists, which ‘believes people can
be creative if they follow an orderly method’. This definition results in creativity support
tools that help people manage their information and artifacts explored in creative processes,

CHAPTER 2. BACKGROUND 14

and help them quantify their progresses towards solutions. An example tool that falls into
this category would be a structured exhaustive search and optimization tool for the param-
eters of light-bulb designs.

Inspirationalists instead define creativity to originate from departure from familiar struc-
tures. Exploration of unrelated problems and viewing of random stimuli (such as photos)
are encouraged by this definition of creativity. Some example tools that are inspired by this
school of thought include design screenshot libraries and sketch-based interfaces that afford
free-hand drawing.

The final school of thought on creativity originates from situationalists, which considers
creativity to be primarily social, and investigates the social connection of creative individuals
to friends, family members, and mentors. This definition of creativity has encouraged the
development of social creativity tools such as emails and blogs, facilitating collaboration on
creative problems.

2.2.2 Target Applications and Users

Given these definitions of creativity, Shneiderman further defines a genex (GENeration
of EXcellence) framework on four phases of creative activities where support is needed [174]:

• Collect, in which users ‘learn from previous work stored in libraries, the Web, etc.’.

• Relate, in which users ‘consult with peers and mentors at early, middle and late stages’.

• Create, in which users ‘explore, compose and evaluate possible solutions’.

• Donate, in which users ‘disseminate the results and contribute to the libraries’.

With this framework of different phases of creative activities, we review some general
and notable applications that support each of these phases proposed by Shneiderman. Note
that as the area of creativity support tools is closely relevant to our dissertation, we include
related work specific to sketching and prototyping processes in Chapter 3.

Examples of tools supporting the Collect phase include the families of browsing and
searching tools through digital libraries. More recently, search engines (e.g., Google and
Bing) have been frequently used as the first sources of inspiration for many creative activities.

In the Relate phase, emails and discussion threads can serve as great asynchronous tools
to solicit feedback from the users’ peers and mentors. These tools have lowered the time and
cost of communication compared to non-digital methods, hence supporting and encouraging
users to consult with peers and mentors more frequently.

A large number and variety of tools have historically been designed to support the Cre-
ate phase. Authoring tools are a major type of creativity support tools aiming to support
this phase. Some representative examples of these tools are Adobe Photoshop, Microsoft
Office, and Apple Final Cut Pro. These tools improve workflows for composing creative ar-
tifacts including poems, illustrations, photos, and videos. Moreover, ‘What-If’ tools, such as

CHAPTER 2. BACKGROUND 15

spreadsheets with macro support, are a family of software tools that support the exploration
of possible solutions based on the structuralist perspective of creativity. For example, busi-
ness planners and analysts can author macros in spreadsheets to quickly explore a variety of
potential scenarios and solutions.

To help disseminate results created in creative activities, communication tools were de-
signed to support the Relate phase, such as Email and Listservs. In addition, digital libraries,
scientific journals, and newsletters can all be used to effectively distribute creative work.

The systems presented in this dissertation mostly support the Create phase, by modeling
the creation process itself using DL models and systems. These systems allow users to
more easily create sketches and prototypes with alternative methods of specifying their
requirements (i.e., natural language). However, some of the related work also contributed
by the author of this dissertation in UI and 3D model retrieval presented in Chapter 3, can
also support the Collect phase and help users find relevant prior examples of designs.

Finally, we would like to note that while it appears the discussion about creativity sup-
port tools in this chapter primarily surrounds professional applications, amateurs also need
to engage in creative activities. There have been prior works exploring tools supporting
amateurs’ needs which are often different from experts [32]. One notable area of research
is end-user programming support [100]. This area aims to support non-experts to create
usable computer programs customized to their own needs by themselves, and this paradigm
has been extended and applied to creative use-cases [11]. Several systems introduced in
this dissertation also aim to support non-experts’ sketching and drawing process, such as
Sketchforme (Chapter 4) and Scones (Chapter 5).

2.2.3 Human-Machine Collaboration and Mixed-Initiative
Interfaces

Earlier creativity support tools were often developed in a way that these tools primarily
take assistive and passive roles in users’ creative processes. In the examples listed above,
such as authoring tools (e.g., Adobe Photoshop) and communication tools (e.g., email), users
typically take the initiative in performing the task, meaning that they are usually the sole
party that proactively creates [38] and contributes to solutions [118] that drive the task
forward [135].

On the other hand, humans and computational systems have been more actively collab-
orating in many domains, with machines contributing significant knowledge and effort to
collaborative tasks at hand with the Human-Machine Collaboration paradigm. One of the
earliest manifestations of this paradigm can be found in AURA (AUtomatic Reasoning As-
sistant), a system that assisted mathematicians in finding proofs automatically [40]. While
AURA was originally designed to be an assistive system that validates humans’ intuition in
mathematical proofs, the actual workflow in-place showed that AURA had contributed new
knowledge with its behavior in computational experiments. In more recent research litera-
ture, human-in-the-loop machine learning (ML) has gained extensive attention—researchers

CHAPTER 2. BACKGROUND 16

have adopted this method to improve data quality of object annotations [163] and to de-
sign novel model architectures [171]. Interactive machine teaching was introduced as a new
human-in-the-loop ML paradigm that allows humans to directly ‘teach’ target task knowl-
edge to complex ML models, resulting in semantic and debuggable models [152]. Beyond
making theoretical and technical advancements in the fields of Mathematics and Computer
Science, the human-machine collaboration paradigm has also been applied to domain-specific
computational systems to assist experts in diverse fields in their tasks. These systems have
aid in performing surgery [137], monitoring health of building structures [131], moderating
discussion content [86], and composing music [159]. We recommend interested readers to
review proposed frameworks of human-machine collaboration [59, 125], and a taxonomy for
these collaborative systems [176].

With such broad application of the human-machine collaboration paradigm, Human-
Computer Interaction (HCI) researchers have built mixed-initiative interfaces [65, 74] that
foster a human-machine collaborative approach towards interacting with their users. The
LookOut system is an early example that can intelligently help users manage appointments
between calendar scheduling and email correspondence [74]. With algorithmic and techni-
cal advancements in computational systems, recent approaches have built upon the mixed-
initiative framework to develop mixed-initiative creative interfaces [38], supporting creative
activities such as game-level-building [38], icon design [118], information discovery [97], and
storytelling [118]. In these activities, humans and machines collaborate to determine the
exploration process without either humans or machines making decisions alone and both
contributing to the final outcome. In an example game-level-building tool, the AI would
determine the playability of certain levels and hence steering the creation process.

This dissertation was inspired by the thread of research in both human-machine collab-
oration and mixed-initiative creative interfaces. With recent technical advancements in DL,
we can introduce more effective and powerful mixed-initiative interfaces that can further
stimulate users’ creativity through human-AI collaboration. For example, the generation of
a large variety of free-hand sketches was only made effective after DL was introduced, and
tying these sketches to text descriptions also requires advancements in DL-based natural
language processing techniques. We believe the introduction of text-to-sketch tools (i.e.,
Sketchforme in Chapter 4 and Scones in Chapter 5) in this dissertation can elevate the level
of human-AI collaboration, providing users with further creative inspiration through the
generation of realistic, coherent, and relevant sketches.

2.3 Transformers

Advancements in DL have led to new effective model architectures for handling sequential
data and artifacts common to sketching and prototyping. The recent state-of-the-art family
of DL models for handling sequence data in many domains is Transformers [184] that utilize
the attention mechanism. This section will describe the attention mechanism and other
technical components used in the Transformer architecture by walking through a concrete

CHAPTER 2. BACKGROUND 17

example of modeling a sketch artifact. We will additionally describe several other common
applications in the DL research community that are built upon Transformers. Note that this
section only describes the core components of the Transformer architecture, and we refer
interested readers to a complete description of the architecture in the original paper [184].

2.3.1 Notation and Task

We first introduce notations and the example task that help us better explain the tech-
nical details of Transformer models. Sketches and prototypes are commonly represented
sequentially. For instance, one common way of encoding the sketching process is considering
it as a sequence of pen events in a chronological order, where each event is the state of the
pen including the displacement from the previous event and whether the pen was kept on the
canvas so that it forms a drawn stroke on the canvas from the previous point. Alternatively,
this event could be just a movement towards the starting point of the next stroke without
the pen touching the canvas, or the end of the whole sketch sequence. Prototypes can also
be considered as a sequence of semantic elements (e.g., UI elements including text fields and
buttons, for UI/UX design) of various positions and classes on the canvas.

Without loss of generality, we consider a sketch with multiple pen events. As mentioned
above, each pen event e can be considered as the displacement (δx, δy) from the previous
point, and a pen action event (p ∈ {down, up, end}). We then encode a sketch S as a
sequence of n sequential events:

S = {ei|i ∈ 1...n}, ei = [δxi, δyi, pi]

If we normalize the displacement coordinates against the size of the canvas, we can
bound δx and δy between 0 and 1. The pen event p can be considered as a categorical
attribute encoded with a one-hot vector. Alternatively, for a prototyping task, we can
similarly consider a sequence of UI elements by replacing δx, δy with the absolute coordinates
of the elements on screen x, y, and replacing the action event with the semantic classification
of the particular UI element (e.g., text field, button).

One critical example task we can then consider is the autoregressive modeling of pen
events, which corresponds to the next-event prediction task. This task is important because
solving it allows us to generate sketches from scratch by generating pen events sequentially, a
novel capability first solved by DL in [62]. To formalize this task, we represent the probability
of a certain pen event at time-step i + 1 (the next event) given all the previous pen events
up to time-step i as follows:

P (ei+1|e1...ei)

If we consider a Transformer model with the parameters θ, and attempt to model this
distribution with the model, the definition of this distribution becomes:

p(ei+1|e1...ei) = Wout(bi), bi = Transformerθ(e1...ei) (2.1)

CHAPTER 2. BACKGROUND 18

where bi is the output embedding of the final layer at the last time-step (i) in the Trans-
former network, and Wout is the output projection layer that projects this embedding to
form a distribution of the next pen events4.

2.3.2 Building Blocks of the Transformer Network

We further explain the process of computing bi by the Transformer model in Equation 2.1.
Each Transformer model consists of l blocks/layers (TBlock). These blocks are stacked
against each other and take the outputs from the immediate previous blocks as inputs. We
use an additional index (k) to represent the k-th block in the Transformer, this is combined
with the time-step index (i) to represent data at a certain layer for a certain time-step.

The first block in a Transformer (TBlock1) uses a projection layer Win to convert raw
inputs e to an embedding. It additionally adds a Position Embedding (PE) to the input to
indicate the time-step position of the current input. This embedding is only computed based
on the index value (i) of the input token. Formally, this is recursively defined as:

oi,k = TBlockk(ii,k), ii,k =

{
Win(ei) +PE(i) if k = 1;
oi,k−1 otherwise (k = 2...l)

(2.2)

Then, for the entire Transformer, the output of the entire network would be the output
of the last layer at a certain time-step (i):

bi = Transformerθ(e1...ei) = oi,l (2.3)

We would like to remind the readers that we have so far only been considering the
output of a single time-step (bi), and as shown in the above formula, the only direct input
dependency of this time-step is the raw input from the previous time-step at the first layer
(ei). We will further address how Transformer models consider other time-steps’ inputs with
the following description of a Transformer Block.

From the above formulas, it is thus apparent that the main structural building blocks of
the Transformer model would be the input embedding layer (Win), the position embedding
layer (PE), and the Transformer Block (TBlock). The input embedding layer is usually
modeled as a learnable, linear fully-connected layer. We explain the Transformer Block and
the Position Embedding in detail in the following Sections 2.3.3 and 2.3.4.

2.3.3 Transformer Block

Each Transformer block consists of two main sub-components: 1) the multi-head at-
tention layer (Attn), and 2) a feed-forward network layer (FFN). These two blocks are

4It is also reasonable in many cases to consider Wout as a part of the Transformer architecture, we
separate this layer out for the better discussion of various choices of output parametrizations, such as those
discussed in Section 2.4.

CHAPTER 2. BACKGROUND 19

combined by stacking the feed-forward network layer on top of the multi-head attention
layer:

TBlock(ii) = FFN(Attn(ii)) (2.4)

Note that the indexing of a Transform Block could be applied further to each of these
sub-components, and that these blocks in a Transformer model learn l different sets of
weights.

Multi-headed Attention

The crucial aspect of handling sequence data is to model the relation and structure
between various data points in the sequence. In our example described above, this would be
the relations between various pen events at different time-steps in the sketch sequence. Prior
to the introduction of Transformers, recurrent neural networks (RNNs) have been handling
such relations using a single, fixed-length internal state that is carried forward through the
encoding of data at different time-steps in the entire sequence. However, as shown in the
equations defined in Section 2.3.2, such dependency is not directly modeled as inputs to any
of the main components of a Transformer model.

In Transformers, this relation is handled using key-query-value attention mechanisms.
At a high level, the inputs of each time-step in the sequence (ii) will be used to find other
similar inputs (ij) based on a similarity function learned by the model, and the subsequence
output (ui) at that time-step is determined by a weighted average of similar inputs and itself:

ui =
∑
j∈1...i

A(ii, ij) (2.5)

This allows the Transformer to model inter-dependence and structure in the sequential
data by grouping relevant data points together. The specific mechanism (A) works as follows.
Given all input data in the sequence up to i (i1...ii), the attention layer A computes three
types of learned embeddings for a single input ii. They are considered as key ki with
dimension dk, query qi with dimension dk, and value vi with dimension dv specifically with
their corresponding embedding layers. Note that this embedding layer is shared across all
events.

Then, for a certain input ii that produces the query qi, other inputs are attended to by
taking the dot-product between each query qi against all other keys kj (including itself).
This will be considered as the similarity between that particular input (ii) and other inputs
(ij, j ∈ {1...n}). These similarity values are then rescaled using a softmax layer (and the
constant

√
dk for numerical stability) to form a probability distribution. The distribution

parameters will then be used as weights to be multiplied with all the value embeddings vj.
Expanding this into a formula:

A(ii, ij) =
exp(qi(kj)

T/
√
dk)vj∑

k∈1...n exp(qi(kk)
T/

√
dk)

(2.6)

CHAPTER 2. BACKGROUND 20

We can parallelize this computation by collecting the K matrix for all keys, where each
row kj is generated from ij, j ∈ {1...n}, and similarly V matrix where each row is vj, j ∈
{1...n}, forming the final output (ui):

ui = softmax(
qiK

T

√
dk

)V (2.7)

qi ∈ R1×dk , K ∈ Rn×dk , V ∈ Rn×dv

This computation is repeated on inputs at each time-step (ei) across the entire sequence,
forming the final output matrix O composed of all outputs corresponding to each time-step
in the sequence (oi). Note that this computation can be further parallelized by feeding in
the stacked Q matrix in the previous equation. In practice, each event is also composed of
multiple m keys, query and value projections (i.e., ki,a, qi,a, vi,1, a ∈ {1..m}) referred to as
m attention heads, but this can also be parallelized in modern computational architectures.
We omit the description of both parallelization steps for clarity of our explanation of the
attention mechanism.

This weighted output is then added to the original inputs (i.e., residual connection [63])
and then normalized using Layer Normalization [8], generating the final output of the atten-
tion layer (ai):

ai = Attn(ii) = LayerNorm(ui + ii) (2.8)

Feed-Forward Network

The outputs of the multi-headed attention mechanism (ai) are then further processed
through a feed-forward network. This network consists of typical fully-connected layers
of various configurations. The original Transformer uses two linear transformations and a
single ReLU layer, followed by residual connection and layer normalization. Using this as an
example, the final outputs from the feed-forward network (oi) are:

oi = FFN(ai) = LayerNorm(max(0, aiW1 + b1)W2 + b2 + ai) (2.9)

Other activation functions and configurations of normalization layers have also been
explored. Prior works have added normalization at the input side instead of at the output
side and used GeLU as the activation function instead of ReLU [148].

2.3.4 Position Embeddings

A significant characteristic of only using attention mechanisms to model sequence de-
pendencies in Transformers is its lack of the notion of ordering. This is because all inputs
are fed through the same embedding layers and correlated with dot-product-based atten-
tion layers, which is an inherently unordered computation. This is in stark contrast to prior

CHAPTER 2. BACKGROUND 21

approaches, where orderings are either preserved through the hidden state in RNN-based ap-
proaches with inputs processed sequentially, or are preserved through the model architecture
in Convolutional Neural Networks using fixed windows. However, the ordering information
remains important in solving many tasks.

To alleviate this issue, the ordering information is injected into Transformers using a
position embedding layer which gets added to the other inputs of the Transformer. More
recent architectures have implemented a learned position embedding, meaning that it learns
an embedding layer (WPE) that converts each position in the sequence to a unique and
learned de-dimensional vector. This means the embedding layer would have learnable weights
of size n×de, with n being the maximum length of the sequence data (or maximum ‘context
window’ length for a particular task). We can then consider the conversion as retrieving the
row embedding weights at row i for each time-step i:

PE(i) = rowi(WPE), WPE ∈ Rn×de (2.10)

Other options of position embeddings have also been investigated. Some notable exam-
ples include fixed multi-frequency sine-cosine functions [184] and relative position embed-
dings [173].

One important aspect of the position embedding component is that the embeddings do
not have to be assigned with time-step index values of the inputs. Other relevant information
to the attention mechanism, such as the absolute x and y coordinates of pen events in the
sketch sequence, can be similarly used for position embeddings to encode similarity and
proximity in spaces other than time. Moreover, a special case of this consideration of position
embeddings is the lack of position embeddings, in which we do not consider any ordering of
the inputs. This could be useful for encoding set-based inputs in a permutation invariant
manner.

2.3.5 Practical Concerns

There are several practical concerns and guidelines towards successfully training Trans-
former networks. We document some of these practices that we found to be helpful during
our investigation in this section. We found that a linear learning-rate warm-up and the
learning rate guidelines introduced by the original Transformer paper [184] are often helpful
for training. We use the Adam optimizer [99] for most of our trained models, and found
that label smoothing and weight decay regularization are also helpful for developing a robust
model.

2.3.6 Large Language Models

Building upon the Transformer model architecture described above, researchers have
scaled up this general architecture and have trained gigantic models on massive amounts of
data, resulting in impressive results in the direct modeling task, downstream tasks supported

CHAPTER 2. BACKGROUND 22

by pre-trained embeddings, and even in zero-shot tasks more recently. We believe this is
the result of widely available text data from the internet, the low label requirement of
self-supervised training paradigms employed by these large language models, and the great
scaling ability of the Transformer architecture. We survey some of these models and training
paradigms in the remainder of this section. Many of these models are trained to model
language data, which we would use as an example to explain the core ideas in this body of
research.

Training Paradigms

There are two general training paradigms commonly utilized by large language models:
masked language modeling and autoregressive language modeling. We first consider a data
sample that consists of a sequence of words (ei), forming a text piece S (we used the same
notation as the sketch example above for simplicity).

The first paradigm is masked language modeling, which randomly masks out a certain
percentage of time-steps. We first consider a set of masked time-steps M such that ej =
0|j ∈ M . Then, at a high level, the model is trained to maximize the probability of all the
masked tokens given the non-masked tokens. Formally, the Transformer is trained to model
the distribution of text at time-steps in M using the information from all other unmasked
tokens, which is to maximize:

Ej∈M [P (ej|{ei|i ̸∈ M})]

The first representative example using this training paradigm is the BERT model [39].
The second paradigm is autoregressive modeling, which follows the more classic notion of

language modeling where the model is trained to recurrently predict the next word given all
the previous words in a particular data sample (i.e., the same piece of text). Our example
task of sketch prediction (described in Section 2.3.1) also follows this training paradigm. The
Transformer is trained to model the distribution of text at a particular time-step i with all
information of inputs in previous time-steps {ej|0 ≤ j < i}. Formally, given a text sample
of n tokens (time-steps), the model is trained to maximize:

Ei∈1...n[P (ei|{ej|0 ≤ j < i)]

Note that to achieve this “backwards-looking-only” dependency, the keys of future time-steps
are masked (commonly named as masked self-attention) during training so the model could
not ‘cheat’, as the ground-truth is available if the sequence is not masked. The outputs of this
model are also shifted to the future by one time-step, in order to train the model to predict
data at the immediate future time-step given all data of past time-steps. Representative
examples that use this training paradigm include the original Transformer model [184] and
the GPT-series of models [16, 148].

The advantage of these two training paradigms is that they do not require any addi-
tional explicit ‘labels’ of downstream tasks, such that the models are self-supervised by large

CHAPTER 2. BACKGROUND 23

amounts of plain text data that is already available from the internet. Thus, crawling text
data from the internet has become a common method for developing datasets for training
these models.

Large-Scale Models

With the training paradigms outlined above, researchers scaled up the model architecture
to include an extremely large number of parameters, and trained them on large amounts of
data. One representative model, GPT-3, contains 170 billion parameters and is trained on
300 billion text tokens of web text data [16]. The underlying dataset is even larger than
the amount of data used to train the model, which means the model had not seen all data
examples once (or had not gone through a single epoch5). GPT-3 shows highly impressive
performance on numerous downstream applications without explicit supervision, and larger
models (up to 540 billion parameters [26]) and models with training data of different focuses
(e.g., conversational data [180]) have since been trained and have successfully demonstrated
the effectiveness in wider use-cases of this class of models.

Downstream Applications

From large models trained on both masked language modeling and autoregressive lan-
guage modeling, researchers have either fine-tuned or performed few-shot prompting to solve
a number of downstream tasks. Fine-tuning refers to starting with a trained large model and
continuing to train it using specific objectives and datasets that a particular downstream
application requires. Few-shot learning, on the other hand, works with an already-trained
model without further training it, but changes the specific input format (usually referred
to as ‘prompts’) and extracts solutions to tasks from the same text generation task as the
original language model.

Taking the example of a downstream task of sentiment classification of whether a sentence
is positive or negative, a fine-tuning approach involves taking the output embedding of the
last word in the sentence, and training a classification head (and potentially modifying the
original large model’s weight) to output a single positive or negative label for the sentence as
the final output. Few-shot learning, on the other hand, involves first giving a few examples
to the model in the format ‘(sentence A) is (positive / negative). (sentence B) is (positive
/ negative).’, then inputting ‘(sentence C is)’ along with the examples to the model, and
measuring whether the probability of the word ‘positive’ or ‘negative’ is higher for the next
word. This measurement will effectively become the classification result at the end, and
usually no model weights are modified in this paradigm.

Using these paradigms, researchers have first explored a wide variety of Natural Language
Processing (NLP) tasks, including sentence completion [138], story-ending selection [130] and
open-domain question-answering [92]. BERT [39] and GPT-2 [148], two earlier large language
models using the two different aforementioned training paradigms, had exceeded the then

5Epoch is defined as a single pass over the entire training dataset by ML models.

CHAPTER 2. BACKGROUND 24

state-of-the-art performance on almost all tasks through fine-tuning. More impressively, the
larger GPT-3, which was trained with more data, outperformed fine-tuned models in some
tasks without fine-tuning using the few-shot learning paradigm, demonstrating the great
ability of these models in achieving their original design goal—learning general knowledge
about natural language—with merely a single self-supervised training objective and a large
amount of data. Beyond natural language, most recent works have expanded the large-
language model paradigm to other domains. These domains include image modeling [24]
and text-to-image generation [151], with Transformers demonstrating impressive results in
both cases.

2.4 Mixture Density Networks

Following the consideration of model architectures, the choice of output parameterization
is also important for solving generation tasks with neural networks. While other sequence
modeling tasks, such as natural language processing, frequently use categorical distribution
and cross-entropy loss since these tasks involve picking discrete text tokens out from a vo-
cabulary, our task is slightly different: part of our task involves modeling and generating
continuous coordinates (i.e., displacement of pen events).

A naive approach is to directly predict these coordinates using deterministic, real-valued
outputs and train our model with mean-squared error. However, our task is inherently
under-specified—there could be many possible outputs given a single input, and using a
deterministic output will resolve to the mean coordinates. This means the deterministic
outputs might not be representative of actual sketching actions (i.e., two options of pen
strokes with similar length but opposite directions would resolve to a near-zero prediction).

One of the approaches we take is to model our strokes with the well-established Gaussian
Mixture Models (GMMs). At a high level, the method constructs multiple Gaussian distri-
butions around a single prediction (e.g., a continuous displacement value) and models the
final distribution by taking the learned weighted average of multiple learned Gaussian distri-
butions. This ensures the model is able to handle variations in the output space while leaving
flexibility on the magnitudes and directions of the variations through mixtures of potentially
different Gaussian distributions. Most importantly, GMMs allow us to reasonably bias the
model to consider pen events and strokes with comparable displacement values as similar.
However, since the task itself is still highly complex, we parameterize these GMMs with
the outputs of our trained neural networks. This is an established approach in prior work
named Mixture Density Network [13] and has been shown to successfully model sketches and
handwriting.

Using the same example we established earlier, we consider a single ground-truth data
point ei and the associated predicted output embedding from the Transformer bi =
Transformerθ(e). Note that this is the same output embeddings computed from the pre-
vious Equation 2.3. From this output embedding (bi), we need to model both a categorical
distribution for the action event (1 of 3 options, which has 3 parameters) and mixtures

CHAPTER 2. BACKGROUND 25

of Gaussians for two displacement values (i.e., δx and δy which are the displacement on
the X- and Y-axis). We found that it is often sufficiently complex and more numerically
stable to model mixtures of univariate Gaussian distributions for each axis independently,
hence ignoring co-variances between δx and δy (practically, the co-variances might already
be modeled by the Transformer itself). For each coordinate, we model its distribution with r
different weighted Gaussian distributions (i.e., mean, variance, and mixture weight for each
Gaussian distribution). Hence, the likelihood of δx and δy can be defined as follows:

p(δx, δy) = p(δx)p(δy) (2.11)

p(δx) =
R∑

j=1

Πx,jN (δx|µx,j, σx,j), [Π, µ, σ] = gi = a(Wout(bi)) (2.12)

This results in three parameters for each distribution (mean µ, variance σ, mixture weight
Π), with two coordinates δx, δy and r mixtures to be modeled, resulting in (2 × 3)r = 6r
parameters for the GMMs of coordinates and three parameters for the categorical distribution
of the action event. Thus, we project our Transformer outputs bi to gi ∈ R6r+3 using
the projection layer Wout as shown in Equation 2.12. Note that we add special activation
functions (a) for each type of parameters, such that variances (σ) are passed through an
exponential activation function to ensure they are always positive. The mixture weights (Π)
and the categorical distribution parameters are passed through a softmax function to ensure
they form valid probability distributions. The means were either passed through a tanh
function or taken linearly depending on the stability of training.

We then train the entire neural network with the objective to maximize the log-likelihood
of ground-truth coordinates log p(δx, δy) and the action events log p(pi). To train on the joint
distribution of multiple continuous coordinates (δx, δy in this case), we assume that they are
independent and take the sum of the log-likelihoods:

log p(δx) + log p(δy) = log(p(δx)p(δy)) = log p(δx, δy) (2.13)

This parameterization allows us to model and reflect multiple different stroke options
for sketching the same high-level object. We refer interested readers to a more detailed
discussion of Mixture Density Networks [13], application examples, and training processes
of them in [62].

2.5 Contrastive Learning

Relevant to modeling targeted artifacts from scratch, it is often also important to study
the problem of explicitly drawing correspondence between the two modalities of interest. As
an example, in the well-studied problem of text-based retrieval, researchers have used this
method to draw correspondences between text captions and images. Understanding such

CHAPTER 2. BACKGROUND 26

correspondences and subsequently developing quantifiable models of distances between ar-
tifacts in multiple modalities allow us to better measure performance of generative models
that additionally need to follow certain multi-modal conditions (e.g., text-to-sketch genera-
tion). These models themselves also allow us to enable the retrieval of artifacts relevant to
conditions, a similarly important interaction in supporting creative activities [70, 110, 157].
This is because using other artifacts as reference examples and sources of inspiration are
important and common creative practices.

One recent area of research that directly develops such correspondence is Contrastive
Learning. Instead of training DL models to classify certain data examples or to directly
model distributions of data examples, contrastive learning defines training objectives over
paired artifact data (these pairs could also be in two modalities of interest, e.g., image-caption
pairs), and trains models to embed pairs of related artifacts similarly in their embedding
spaces. This paradigm is explored by our novel text-to-UI retrieval model in Chapter 6 in
this dissertation.

To formalize the contrastive learning paradigm, we use an example problem of drawing
correspondence between UI layouts and text descriptions. Assume we have a UI layout (Ui)
and its related text description (ti), the direct goal of contrastive learning is to develop a
model f such that f(Ui) is more (numerically) similar to f(ti) than any other unrelated
text descriptions. A more ambitious but indirect goal is for the model f to learn semantic
similarity, so that groups of UIs and text descriptions perceived as similar in some aspects
can be modeled by training on merely paired data.

2.5.1 Recent Approaches

To achieve the goal(s) mentioned above, one of the most popular recent approaches is
InfoNCE [136, 178], or batch-softmax contrastive loss [54, 140]. We consider the same
problem statement as the above section and extend our model (f) to have two sub-parts
which are encoders dedicated for each of the modalities: fU for a UI encoder and ft for
a text encoder. This framework is agnostic to any specific encoder architectures, but one
can consider these encoders to be also implemented with Transformers. We then obtain the
embeddings fU(Ui) = eU,i for the UI, and ft(ti) = et,i for the text description. Note that
each e is a fixed-length, numerical embedding.

After having these embeddings, we consider a mini-batch N − 1 of other paired UIs and
text descriptions:

{(Uj, tj)|j ∈ 1...N, j ̸= i}

This produces a corresponding set of embeddings {eU,j, et,j}. At a high level, we train the
encoders fU and ft to produce similar embeddings for all paired Ui and ti, while maximizing
the distances between the embeddings of non-pairs (as mentioned by our direct goal earlier).
We minimize the following loss function to train the encoders:

CHAPTER 2. BACKGROUND 27

L(fU , ft) = − 1

N

N∑
i=1

(
S(eU,i, et,i)− log

N∑
j=1,j ̸=i

exp
(
S(eU,i, et,j)

))
− 1

N

N∑
i=1

(
S(et,i, eU,i)− log

N∑
j=1,j ̸=i

exp
(
S(et,i, eU,j)

))
(2.14)

where S(x, y) is the dot-product6 between x and y. One advantage of this method is
that it allows the models to consider many pairs of dissimilar embeddings. This improves
the efficiency of training and final performance of trained models.

2.5.2 Applications

This method has since been applied to many domains. Most notably, CLIP [149] uses this
training paradigm to correspond between text and images from Transformer-encoded images
and text pairs. Subsequent research has found CLIP to be highly effective in encoding not
only natural images, but also sketches and artistic images. Moreover, CLIP has been shown
to be effective in guiding unconditional generation models with its embeddings to follow
certain conditions in the form of CLIP embeddings, demonstrating the great coverage and
representation power of CLIP.

2.6 Sketch and Prototype Datasets

All of the aforementioned DL advancements would not be effective without the support
of corresponding datasets. Towards the end of this chapter, we survey several important
datasets that are relevant to our areas of interest: sketching, text-guidance, and UI layouts.

2.6.1 Sketching Datasets

To support DL-based approaches towards sketch comprehension and generation that
rely heavily on large amounts of data, researchers have crowdsourced sketch datasets of
individual objects. Most of these datasets have focused on individual instances that cor-
respond to either natural images or general semantic classes. The Quick, Draw! [91] and
TU-Berlin [42] datasets consist of human-drawn sketches for 345 and 250 object classes re-
spectively. SketchyDB provides paired images and simple sketches for retrieval tasks [168].
These datasets have been used to enable sketch generation [62] from scratch. They have also
been used to support sketch-based image retrieval [166], a well-researched modeling task and
interaction of finding corresponding visual content to sketches also relevant to UI design [78].

6Dot-product in this formulation measures similarity, which is the opposite of distance, and hence we
maximize it in the loss function to minimize the distance between corresponding pairs.

CHAPTER 2. BACKGROUND 28

Researchers have also explored beyond individual sketched instances to compile datasets
of sketched multi-object scenes. The SketchyScene dataset consists of sketched scenes of pre-
drawn objects transformed and resized by humans, as scene sketches are highly demanding
for users to create from scratch [198]. The developers of SketchyCOCO started with the
MSCOCO dataset and retrieved relevant instances from the Sketchy dataset, compiling them
into complex scenes [48]. Nevertheless, none of these datasets consist of sketched scenes
drawn by humans entirely from scratch. Most recently, the FS-COCO dataset consists of
complete human-drawn sketches from scratch corresponding to photos in COCO [27]. This
new dataset opens up great future opportunities in investigating research in end-to-end
recognition and generation of complex scene sketches.

Related to complex sketches consisting of multiple artistic objects, the DiDi dataset in-
troduced drawings of flowcharts and functional diagrams traced entirely by human users [52].
While users did not design the diagrams from scratch, they generated each individual sketch
stroke based on procedurally generated diagram templates. In addition to general-purpose
and non-expert sketches, the OpenSketch [58] dataset offers densely annotated sketches of
product designs drawn by professional designers.

2.6.2 Abstract Objects with Text Descriptions and
Conversations

Many research projects in this dissertation have employed a multi-stage approach, with
the first-stage model only generating abstract object representations, followed by a second-
stage model that generates sketches that fit individual object specifications. This approach
was developed to utilize the existing parallel efforts in the research community in supporting
abstract visual reasoning with natural language.

The three primary datasets that we have been able to repurpose are Abstract Scenes [197],
CoDraw [98], and Visual Genome [103]. The Abstract Scenes dataset consists of pairs of text
descriptions and scene representations, where each scene is represented by a set of abstract
objects with their attributes and classes. These scenes generally are composed of natural
objects such as animals, toys, and plants. They are created using a clip-art-based interface
by crowd-workers based on the given text descriptions.

The CoDraw dataset was developed upon scenes with the same graphical style as those
in the Abstract Scenes dataset [98]. However, instead of single text descriptions, this dataset
contains editing and interaction sequences of scenes corresponding to conversation rounds
between a drawer and a teller. In each round, the drawer maintains the same canvas and can
choose and manipulate scene objects on and off the canvas, while the teller sees a ground-
truth scene that they need to guide the drawer to recreate with natural language instructions
in a conversational interface. This creates the sequence of instruction/scene action rounds
for the conversational authoring of abstract scenes. We will describe this dataset in detail
in Chapter 5 when we describe our system Scones.

In an attempt to support a greater number of classes and a larger variety of object

CHAPTER 2. BACKGROUND 29

specifications, we also investigated the use of Visual Genome, a natural image dataset, to
extract text and scene object pairs from these image-caption pairs. Each image in the Visual
Genome [103] is divided into regions, and each region contains scene-graph information of
the position of various objects in the graph and the corresponding text description (e.g., “a
boat under a bridge”). Thus, this allows us to extract relevant objects and text descriptions
that originate from natural images and use them to support the first-stage models in our
early Sketchforme system to generate object specifications from text descriptions. We will
similarly describe our usage of this dataset in detail in Chapter 4.

2.6.3 UI Layout Datasets

To explore the benefit of DL models in various UI/UX design tasks, several large-scale
datasets of UI layouts have been recently developed. The primary dataset of mobile UI
designs used in many fields is Rico [34], which contains more than 72,219 UIs from 9,772
Android apps. Each UI in Rico is collected from crowd-workers’ interaction with a partic-
ular Android app (on a real device hosted in a research lab) captured using the techniques
introduced in ERICA [33]. For each UI, the dataset includes the screenshot, the user action
that led to the current and next UI in the sequence of interaction (since these are real user
interactions by crowd-workers), and the complete view hierarchy that contains attributes of
each UI element as well as the tree structure between them in the UI.

Since the introduction of Rico, many additions to the dataset have then been introduced.
Researchers have annotated interactable UI elements as one of the semantic types using
neural networks [122], detected and removed mismatched view hierarchies in RicoSCA [117],
collected paired sketches to UI screenshots in Swire [78], and crowdsourced text captions of
UIs [186]. Most recently, the first large-scale mobile app dataset for iOS apps has also been
introduced [194]. All of these datasets have supported recent research progress towards con-
ditional and unconditional UI understanding and generation tasks. We will further discuss
the datasets that are used by our proposed text-to-UI system in Section 3.4.

30

Chapter 3

Related Work

The processes of generating creative artifacts, including sketches and prototypes, have
been extensively studied by prior related works in multiple research communities. The
Human-Computer Interaction community has a long history of prior work in assisting and
educating users to create better sketches and prototypes, and the Machine Learning (ML)
community has applied most recent advancements in deep-learning (DL) model architectures
to the generation of images, sketches, vector graphics, and 3D models. In this chapter, we
review some representative works from each of these research communities on each of these
topics.

3.1 Natural and Artistic Image Generation

While generating realistic natural and artistic images has been a longstanding research
goal, it is only until recent advancements in DL model architectures have these models
been able to generate realistic images almost indistinguishable by human raters. We begin
this section with reviewing the more constrained task of style transfer which follows concrete
content and style input images, and expand our survey to unconditional and text-conditional
image generation from scratch.

3.1.1 Neural Style Transfer

The discovery of Neural Style Transfer [50] has created a myriad of new research direc-
tions and artistic applications due to its impressive transfer performance. This proposed
method is able to take a ‘content’ image and a ‘style’ image and synthesize a new image
that retains the content in the ‘content’ image, such as scene objects, while presenting it in
the artistic style of the ‘style’ image. An example of this task would be to stylize a photo-
graph (‘content’ image) of a famous landmark in the style of an oil painting (‘style’ image).
This allows artists and non-expert users to easily re-express visual content artistically, which
previously required significant fine-art expertise and/or manual effort.

CHAPTER 3. RELATED WORK 31

The core component of this method is a Convolutional Neural Network (CNN) typically
trained for classification tasks. To perform transfer, both ‘content’ and ‘style’ images are
first passed through the CNN, in which ‘content’ and ‘style’ losses are computed based on
internal features of the CNN of respective images. Then, instead of optimizing the weights
of the CNN, Neural Style Transfer optimizes the content image while freezing the CNN’s
weights, so that the optimized image now contains similar feature statistics (according to the
‘content’ and ‘style’ loss) to both the ‘content’ and ‘style’ images. We refer interested readers
to the original Neural Style Transfer paper [50] for the technical details of this process.

Based on this framework, subsequent works have introduced better formulation of losses,
applied neural methods to improve the optimization process, and transferred beyond natural
and fine-art images as content and style artifacts [89]. Most related to this dissertation are
recent works that transfer styles to Fashion designs [88] and UI designs [46]. Each of these
works offers improvements to the structure and content of output images to accommodate
design-specific needs, such as maintaining structural integrity of ‘content’ UI screenshots in
the generated UI screenshots. One of the more significant improvements in solving the style
transfer task comes from the novel model architecture of Generative Adversarial Networks,
which presents a more general formulation of the task that we will cover in detail in the
following section.

3.1.2 Generating Images with Generative Adversarial Networks
(GANs)

Although Neural Style Transfer offers fresh perspectives of existing visual content, its
optimization process relies on a ‘starting point’ (which is typically the ‘content’ image) for
the final product to look reasonable, which means it relies on the real input content and
artistic images. To produce images truly unseen in the datasets, researchers developed Gen-
erative Adversarial Networks (GANs) [56], a model architecture that has gained significant
popularity in the research community for generating highly realistic yet novel images.

The core architecture of GANs contains two neural networks, the generator and the dis-
criminator. The generator takes a random vector and generates an image that is also the
final output of the model. The discriminator takes the image generated by the generator,
along with a number of real images, and tries to differentiate real images from the generated
ones by outputting a probability of ‘realism’ for each image. During training, the generator
is trained to maximize the probability of its output image being considered as real by the
discriminator, while the discriminator is trained to minimize the generator’s output image’s
realism probability while maximizing the realism probability of the real images. As such,
the only data required to train models of this architecture are large numbers of images from
the target distribution of the generated images, such as natural images, with no labeling re-
quirements for the images. These neural networks are optimized with conflicting objectives
and analogically act as a counterfeiter and a cop, such that the generator learns to gener-
ate better ‘counterfeit’ images while the discriminator ‘cop’ improves its ability to detect

CHAPTER 3. RELATED WORK 32

counterfeits. Another novel advantage of this training paradigm over existing work is that
it does not explicitly define a loss objective directly over generated images during training,
such that this objective could be difficult to define for data with complex, high-dimensional
correlations (e.g., pixel data of natural images). This paradigm only relies on a discrimina-
tor to serve as the ‘loss function’, in which the discriminator learns to output single realism
probability values for the artifacts from seeing other real artifacts.

The GAN architecture has opened up a new avenue of research work, particularly for
image generation since the image distributions are typically difficult to model with prior
approaches. The most straightforward application is unconditional image generation, where
images have random characteristics that could be related to any aspects of the original
dataset. DCGAN is one of the earlier practical works that introduced architectural improve-
ments over GANs to enable the generation of natural images [147]. These improvements
include novel activation functions and novel tuning of convolution patterns over the ones
used in the original GAN experiments. Since then, many further improvements have been
made to the GAN architecture to improve training stability, generation resolution, and out-
put quality. Most recently, multi-stage architectures with large-scale training have been used
to achieve state-of-the-art performance [15]. While systems introduced in this dissertation do
not utilize the GAN architecture for generating visual content, they have been used by other
researchers to generate sketches [51] and UI layouts [115] (further described in Section 3.4.2),
with competitive performance that could serve as strong baselines and alternative technical
approaches for current and future work on sketch and prototype generation.

3.1.3 Conditional Image Generation with GANs

A more relevant variant of the GAN architecture to this dissertation than the uncondi-
tional image generators introduced in the previous section are conditional models, in which
users can have some form of control and guidance over the content and/or style of the gen-
erated artifacts. Towards this goal, conditional GANs (CGANs) have been developed by
adding the desired form(s) of condition as additional inputs to the generator. Label-based
generators use class annotations that exist in large-scale image datasets (e.g., ImageNet [36]),
such that given a class (e.g., an orange), models that are trained to generate multiple types
of objects can be controlled to only generate images of that particular class (e.g., images of
oranges) [126]. Text-to-image systems, which address highly similar tasks to all proposed
systems in this dissertation, have also been developed to generate images from text cap-
tions [155] using image-caption datasets (e.g., MSCOCO [121], Conceptual Captions [172]).
Text descriptions offer more flexible yet fine-grained control over the image content, such
as ‘a small boat under a bridge’ could dictate both object types, sizes, positions, and inter-
object relations in the target images. The text-to-image generation process has also been
further improved by combining contrastive learning (Section 2.5) to achieve state-of-the-art
performance [193].

One possible approach for text-to-sketch generation, a primary task investigated by this
dissertation, that arises from text-conditional GANs and Neural Style Transfer (Section 3.1.1)

CHAPTER 3. RELATED WORK 33

is to combine these two approaches: applying style transfer to synthetic images generated
by CGANs based on text descriptions. However, this approach likely results in realistic,
detailed sketch-style images which contain distracting artifacts. On the other hand, our
proposed systems in Chapters 4 and 5 focus on synthesizing abstract sketched scenes from
scratch that capture fundamental ideas from messages communicated by the scenes.

Label-based generation and text-based generation are examples of using conditions that
represent high-level semantics of the target images. Meanwhile, researchers have also devel-
oped models that enable low-level controls over image generation processes. One common
method of realizing low-level control is through a sketching process, which allows direct an-
notation of semantic details of the generated artifact. GauGAN is a recent architecture that
allows users to sketch out specific parts of the to-be-generated images as particular semantic
classes (e.g., sky, water) through the use of specially color-coded strokes, then conditionally
generate realistic images based on these annotations [141]. Other than conditioning on single
modalities, researchers have also combined multiple methods of controls introduced above,
such as both text and sketches, using datasets with multi-modal information to achieve
multi-modal control over image generation [102].

For an even finer-grain control for generation, pixel-level conditional GANs were exten-
sively explored by researchers, which can be considered as a more general case of style transfer
such that this type of GANs can translate any types of input images to any types of output
images with sufficient data support. The pix2pix network trains a U-net model according to
the GAN paradigm to generate a new image conditioned on another image of identical reso-
lution [84]. This can be applied to not only style transfer applications to stylize images, but
also in transformations between more disparate domains such as transferring dense labels of
objects in street scenes to images, sketches to photos, day-time photos to night-time photos,
and aerial satellite images to map annotations. Subsequent work also combined pix2pix with
class-conditions to enable multi-class sketch-to-image translation [53], and color-conditions
to control the colors of generated images [167].

This initial pix2pix framework requires paired images since it is trained to perform one-
to-one translation. CycleGAN significantly relaxes this requirement to perform translation
without paired data [195]. While pix2pix still optimizes the generated output to match the
ground-truth output of paired data, CycleGAN merely enforces correspondence using two
generators that translate between the domains in each of the directions. This allows the use
of a cycle-consistency loss, such that an image only needs to be consistent with itself after
having been translated from the source to the target domain, and then back to the source
domain. This allows transfer processes between domains to be learned only with unpaired
image data in each of the domains, such that the model learns simultaneously to translate
and follow the respected domain information without the use of paired data. In the case
of CycleGAN, it only needs ImageNet (for natural images) and artistic paintings retrieved
from online repositories to enable natural-image-to-art and art-to-natural-image applications.
Subsequent works also use similar paradigms to learn image translation between more than
two domains [25] and enforce consistency in the embedding spaces instead of the image
spaces [162].

CHAPTER 3. RELATED WORK 34

3.1.4 Transformer-Based Image Generation

More recently, another model architecture, Transformers [184], has gained significant
popularity among the DL community. Transformers are originally and specifically designed
to handle sequence-based data, such that it encodes inter-element relations among items
within a sequence using repeatedly stacked self-attention blocks. This results in high flexi-
bility in encoding any correlations between data items and removes the need for hand-crafted
connections and memory modules, such that the strengths of connections between data are
entirely learned by Transformers. We refer interested readers to a technical description of
Transformer models in Section 2.3 and the original Transformer paper [184]. Beyond do-
mains where sequences naturally emerge which are suitable to be modeled by Transformers
(e.g., natural language processing and sketch modeling), researchers have also found success
in using Transformers to learn image distributions by treating images as flattened sequences
of pixel data [24].

Building upon Transformers’ success in modeling image data, DALL-E is a recent
Transformer-based architecture that demonstrates significant success in generating realis-
tic images from text descriptions [150, 151]. Given a pair of text description and image,
DALL-E first discretizes the image pixel data and flattens it into a long sequence of image
‘tokens’. Then, it combines both text and image tokens into a common vocabulary and
autoregressively decodes image tokens. Some innovations required in DALL-E include a spe-
cially hand-crafted attention pattern that imitates spatial convolutions on the image, and an
improved training process for stability. It is shown to be able to generate not only realistic
images, but also abstract graphics that already exist in the large dataset that DALL-E is
trained on, such as paintings and sketches. This approach is similar to the majority of the
proposed systems in this dissertation, which utilize Transformer models to generate sketches
and UIs from text descriptions.

3.1.5 Generative Image Diffusion Models

Diffusion Models have recently gained significant popularity given the introduction of
DALL-E 2. This is a family of models that can serve as alternatives to GAN-based and
Transformer-based models presented above for generating images from scratch. Recent ex-
periments have shown that this family of models has been able to surpass prior approaches
and achieve state-of-the-art performance in various image generation tasks, sometimes with
even fewer model parameters.

The general idea of diffusion models can be explained by learning a progressive denoising
process from random noise. During training, noise is progressively added to a training
example using a Markov chain of diffusion steps, until the input is highly similar to random
noise. The model is then trained to denoise (i.e., taking the backward steps) stepwise in this
process, effectively learning how to re-create the input image. After this model has been
trained, at test-time we can then use the model to generate realistic images from a randomly
sampled noise input similar to the ones the model has seen during training time (which do

CHAPTER 3. RELATED WORK 35

not require any image data). Note that diffusion models only refer to the general paradigm
of training, and do not constrain the exact model architectures used to perform the denoising
steps.

This family of models has since been applied to enable state-of-the-art unconditional
image generation and conditional text-to-image generation [150, 165], outperforming exist-
ing methods by a wide margin, presenting itself as a strong technical approach for future
generative systems for visual content to utilize as their backbone models.

3.2 Sketch and Vector Graphics Generation

There are a number of prior works that explored the generation of sketches and abstract
graphics closely related to the topic of this dissertation. These works take a different form
of generation processes than GAN-based approaches, where sketches and vector graphics
are treated as sequences of pen events or vector element parameters. Modeling graphics in
this sequential form has the additional benefit of modeling the temporal aspect of creative
processes that these sketches and graphics are created in, such that pen strokes and graphical
elements are generated in chronological order. As described in the earlier Section 3.1.4, such
sequence modeling paradigm also lends itself to the recent success of Transformers, which
have shown to be particularly effective for modeling sequential data.

3.2.1 Sketch Generation

Sketches are some of the most commonly used visual artifacts in art, science, design, and
engineering, due to their abstract yet highly expressive nature allowing the communication
and materialization of artistic and functional ideas. The abilities of computational systems
to understand and generate free-form sketches have been significantly augmented by recent
advances in DL due to the highly abstract and free-form nature of sketches that still retains
core patterns in the strokes about the expressed ideas.

The most significant recent advancement in sketch generation is Sketch-RNN [62], which
models sketches from Quick, Draw! [91], a dataset that contains free-form sketches of various
individual concept classes drawn by crowd-workers in under 20 seconds. Sketch-RNN mod-
els sketches as temporal sequences of geometric offset points and pen action events using
LSTMs. The outputs of the LSTMs are used to parameterize Gaussian Mixture Models
(GMMs) so that a distribution of offsets is created for each point, in order to model vari-
ations of sketches. Using similar paradigms, Sketchformer improved upon Sketch-RNN by
replacing the LSTMs in Sketch-RNN with Transformers as the core model architecture and
investigated various discretization strategies for the offset points [156]. CoSE introduced a
novel hierarchical architecture for generating sketched diagrams [3]. Two systems introduced
in this dissertation, Sketchforme and Scones, extend beyond generating individual objects to
investigate text-conditioned generation of sketched scenes. These systems will be described
in detail in Chapters 4 and 5.

CHAPTER 3. RELATED WORK 36

Furthermore, other than training explicitly on sketch data, researchers have developed
differentiable renderers that constrain the model output space to only be sketch strokes while
being able to optimize against pixel-based data. A notable recent example of this is CLIP-
Draw, which uses a CLIP-based architecture to compute a loss value between a generated
‘sketch’ and a particular text condition [47]. The gradients of this loss are propagated back
to the sketch strokes and subsequently model weights, so the models can learn to generate
sketches conditioned on text descriptions without any sketch data.

3.2.2 Vector Graphics Generation

Apart from sketches, other important elements of visual design such as fonts, icons, and
symbols can take a vector-based format (e.g., SVG) that can be represented as sequential
data. DeepSVG is a Transformer-based model that is able to generate SVGs from scratch
and interpolate between various vector graphics in its latent space [21]. It also introduces the
SVG-Icons8 dataset which consists of 100,000 SVG icons. The model learns to generate these
icons by modeling each SVG element as individual parts in a hierarchical Transformer-based
architecture, and subsequently generating each of the parts separately. Similarly, scale-
invariant representations are developed for fonts in vector formats. Further, to bridge vector
and pixel-based data formats, Im2Vec introduced a novel method (similar to CLIPDraw [47])
to allow generated vector-based graphics to be differentiable and optimizable against pixel-
based graphics [154]. This allows models to learn to reconstruct pixel-based graphics in a
vector-based format and enables interpolation between various vector graphics in its latent
space, without requiring any supervision of vector-based drawings. Vector graphics are often
modeled in a similar manner as sketches as sequences of composition events on the canvas.
Hence, we believe some of these research contributions towards vector graphics generation
might be repurposed to augment sketch generation in the future and vice versa.

3.3 Automatic Sketching Tutorial and Assistance

Beyond modeling the sketching processes with novel DL models, prior works have also
studied humans’ sketching processes, and attempted to augment them with automatically-
generated and crowdsourced drawing guidance. ShadowDraw [112] and EZ-sketching [179]
use edge images traced from natural images to suggest realistic sketch strokes to users. The
Drawing Assistant [83] extracts geometric structure guides to help users construct accurate
drawings. PortraitSketch [190] provides sketching assistance specifically for facial sketches
by adjusting geometric and stroke parameters of user-created sketches. Researchers also
developed crowdsourced web applications to provide real-time feedback for users to correct
and improve sketched strokes [119].

In addition to assisted sketching tools, researchers also developed sketching tutorial sys-
tems to improve users’ sketching proficiency. How2Sketch [68] automatically generates multi-
step tutorials for sketching 3D objects. Sketch-sketch revolution [45] provides first-hand

CHAPTER 3. RELATED WORK 37

experiences created by sketch experts for novice sketchers. We believe the interactions de-
veloped by these tools and assistants can be augmented by technical advances we make in
this dissertation, and help inform potential improvements to and applications of systems
introduced in this dissertation.

3.4 User Interface Prototype Retrieval and

Generation

Beyond studying non-expert sketches and general natural and artistic images, researchers
have also investigated domain-specific creative applications. One of the most studied areas
is UI design, with significant research conducted on dataset creation, example retrieval, and
layout generation.

3.4.1 User Interface Retrieval

UI retrieval is an important interaction that can be applied to design workflows. De-
signers retrieve UI examples to gain inspiration, explore viable alternatives, and evaluate
potential solutions [14, 70]. Recent approaches towards UI retrieval have utilized DL models
to understand design-related concepts within UIs. These approaches are often advantageous
over simpler methods (e.g., keyword matching), since features that correspond to design-
related concepts are often hidden from surfaced text and/or UI attributes. The application
of DL models towards enabling effective retrieval typically involves two main steps: 1) de-
veloping a DL-based encoder that generates meaningful embeddings for UIs and relevant
artifacts, such as text or sketches; 2) performing retrieval via nearest-neighbor-search be-
tween the embedding of the query and the pre-computed embeddings of examples in the
corpus. The second step can be trivially accomplished using common numerical distances
(e.g., Euclidean Distance), and optimized using general nearest-neighbor-search techniques
such as locality-sensitive hashing. Hence, we review several approaches towards encoding UI
examples as fixed-length, numerical embeddings for retrieval corresponding to the first step
of the process outlined above.

The original Rico paper proposed an auto-encoder-based approach on heatmaps of click-
able and non-clickable UI elements as an early example of searchable semantic embeddings of
UI designs. screen2vec proposed a multi-modal approach that uses text information, element
attributes, and app descriptions of the source app of the UIs to learn embeddings that cap-
ture information in UIs holistically [116]. UIBert proposed to train Transformer encoders
with various novel pre-training tasks, such as real/fake UI prediction and masked image
prediction, to learn predictive features that compose particular UIs [10]. ActionBert, in con-
trast, uses data from neighboring UIs in the user interaction sequence in Rico to compute
action-context-based embeddings of the UIs [64].

The development of embeddings can be extended beyond only using intrinsic information
of the UIs to correlating with other relevant artifacts such as sketches and text descriptions

CHAPTER 3. RELATED WORK 38

of the UIs. Swire, a work completed by the author of this dissertation, collects a dataset
of paired sketches and UIs to learn sketch-semantic-centric embeddings through contrastive
learning. This allows the model to inject semantic meanings of the UIs often contained in
designer-drawn sketches into the UI embeddings [78]. Words2ui introduced in Chapter 6 of
this dissertation explores a similar cross-modal retrieval paradigm, but with high-level text
descriptions instead of sketches to enable the retrieval and creation of UI mock-ups from
text descriptions.

3.4.2 Generating UI Designs

Generating UI designs is a more difficult task than retrieving UIs for computational mod-
els, because it requires the models to not only understand but also synthesize novel designs
that are plausible and reasonable. Similar to generating images and sketches, recent ad-
vances of GANs and Transformers have enabled DL models to generate novel UI designs.
Most DL-based methods consider UIs as sequences of element classes and positions, and train
models to output semantically meaningful and interactable elements included in semantic
annotations of Rico [122]. This removes distractors in full UI hierarchies while retaining
fundamental and meaningful parts of the UI generation task. LayoutGAN [115] and Lay-
outTransformer [60] adapted GANs and Transformers respectively, to generate not only UI
designs but also other types of document layouts. Variational Transformer Networks im-
proved upon LayoutTransformer by using a VAE-based approach to model UIs in its latent
space, enabling generation and interpolation simultaneously [7]. Alternatively, Neural Design
Network considers UIs as graphs with nodes as elements and edges to be constraints between
elements. This enables unconditional and constraint-conditioned UI generation, which can
be helpful in realistic design applications where designers specify partial inter-element con-
straints [111]. In Chapter 6 of this dissertation, we will present Words2ui which further adds
text conditions from the screen2words dataset in its generative model, to enable the novel
interaction of generating UIs based on user-provided high-level text descriptions [79].

3.5 Sketch-Based Prototyping Tools

One type of tools that bridges between sketching and prototyping processes are rapid
prototyping tools that support the generation of prototypes from sketches. This could be
considered similar in spirit to paper prototyping [177], where prototypes can be quickly
developed using elements drawn by hand on paper. The early work SILK [106] is the first
system that allows designers to author interactive, low-fidelity UI prototypes by sketching on
a software interface. DENIM [120] further enables web designers to prototype with sketches
at multiple detail levels. More recently, researchers have integrated sketches with verbal text
descriptions in crowdsourced sketch-based UI prototyping tools, a combination of modalities
that this dissertation also investigates. Aiming to support more high-fidelity prototypes,
researchers have developed tools that aim to directly generate UI interface code by detecting

CHAPTER 3. RELATED WORK 39

sketched elements drawn by users [161, 187]. A potential future research goal for Words2ui
(Chapter 6) is to add support for the sketch-to-UI interaction beyond the current text-to-UI
interaction. This sketch-to-UI task was partially explored by the author of this dissertation
in the form of sketch-to-UI retrieval in Swire [78].

Beyond the domain of UI/UX design, researchers have also developed sketch-based inter-
active systems supporting other design processes. DreamSketch [95] introduces a 3D sketch-
based design interface that allows users to couple generative algorithms with sketch contexts
for solving mechanical engineering design problems. Sketchsoup [6] automatically generates
variations of users’ input sketches that differ in perspective and/or structure, which helps
industrial designers more exhaustively explore the design space during the ideation process.

3.6 3D Model Retrieval and Generation

Other than UI designs, researchers have also developed methods to retrieve and generate
3D models, a modality that is frequently used in industrial and mechanical design domains.
These are two similarly important creative domains as UI design and sketching investigated
in this dissertation. The first step towards supporting these applications with DL is by
building large-scale datasets for these models. ShapeNet is an early large-scale dataset
that contains publicly available mesh-only data of over 50,000 3D models [22]. The ABC
dataset extends the scale to contain over 1 million models’ original CAD files, curves, and
patches [101], but does not contain semantic annotations and categories of the 3D models as
ShapeNet does. PartNet focuses on offering multi-part annotations within each 3D model
which enables part-based applications such as instance segmentation [128]. Most recently,
the Fusion 360 Gallery is a smaller-scale dataset but contains action sequences designers
originally used to create 3D models in the dataset, and additionally presents an environment
for AI agents to interact with these 3D models [188].

These and other similar 3D modeling datasets have subsequently been used to develop
retrieval and generation applications for 3D models. Various 3D model retrieval models have
utilized contrastive learning to query for relevant 3D models in the dataset given a 3D model
provided by the user. The most common features learned by these models are appearance-
based that originate from considering multiple perspectives of each 3D model independently.
Recent research work has also attempted to learn from the context [76] of the 3D models
that can return results that are more functionally similar to the input query. Similar to
UIs, retrieval modalities beyond original 3D models, such as sketch-based retrieval, have
also been explored to allow users to query for 3D models using the versatile modality of
sketching [114, 192]. Building upon these retrieval-based models that accept various modali-
ties, the author of this dissertation has co-published a multi-modal search application for 3D
models, supporting the use of natural language, individual 3D examples, and 3D assemblies
to search for relevant 3D models in the dataset [105]. Beyond retrieval, composition processes
of 3D models, including generation, have also been explored in prior works. These works
include Sketch-to-3D-model generation [35], text-to-3D-object-generation [85], and reverse-

CHAPTER 3. RELATED WORK 40

engineering of modeling sequences from 3D models [191], which could all be applicable to
engineering design.

41

Chapter 4

Sketchforme: Sketch Generation from
Individual Text Descriptions

Towards the goal of encouraging the wider adoption of sketches for various applications,
we first investigate the generation of non-expert sketches guided by natural language. Having
these systems produce diverse sets of sketches can significantly improve applications when it
is time-consuming or difficult for users to create sketches. These interactions could be useful
for domains such as language learning and communication.

Recent advances in neural-network-based generative models drastically increased ma-
chines’ ability to generate convincing graphical content, including sketches, from high-level
concepts. The Sketch-RNN model demonstrates that recurrent neural networks (RNNs)
trained on crowd-sourced data can generate original sketches of various concept classes [62].

With the advancement in sketch-generation algorithms and the benefits of using sketches
as outputs in interactive applications, this chapter introduces Sketchforme1, the first system
that is capable of synthesizing complex sketches for users while allowing them to maintain
control over the sketches’ content naturally using text descriptions. Sketchforme uses a
novel, automated two-step neural method for generating sketched scenes from text descrip-
tions. Sketchforme first uses its Scene Composer, a neural network that learned high-level
composition principles from datasets of human-annotated natural images that contain text
captions, bounding boxes of individual objects, and class information of the objects, to gen-
erate composition layouts of the scenes. Sketchforme then uses its Object Sketcher, a neural
network that learned low-level sketching mechanics to generate sketches adhering to the
objects’ aspect ratios in the compositions. Finally, Sketchforme composes these generated
objects of certain aspect ratios into meaningful sketched scenes.

We also build and evaluate several applications, including a sketch-based language learn-
ing system and an intelligent sketching assistant. These applications illustrate the potential
value of Sketchforme in supporting novel sketch-based interactions (Chapter 4.4). In these
applications, Sketchforme creates new interactions and user experiences with the interplay

1Sketchforme was also published as a conference paper at UIST 2019 [77].

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 42

between language and sketches. These features of Sketchforme are highlighted in Figure 4.1.

a horse under
a tree.

User
Sketchforme

Composed Sketches

Language-Learning Applications

Sketching Assistants

Figure 4.1: Sketchforme synthesizes sketched scenes corresponding to users’ text descriptions
to support interactive applications.

4.1 System Description

To support applications that afford sketch and natural-language-based interactions, we
developed Sketchforme, the system that provides the core capability of synthesizing sketched
scenes from natural language descriptions. Sketchforme implements a two-step approach to
generate a complete scene from text descriptions as illustrated in Figure 4.2. In the first
step, Sketchforme uses its Scene Composer to generate composition layouts represented by
bounding boxes of individual objects. These bounding boxes dictate locations, sizes, and
aspect ratios of objects in the scene. Sketchforme’sObject Sketcher then uses this information
at the second step of the generation process to generate specific sketch strokes of these objects
in their corresponding bounding boxes. These steps reflect a fundamental process suggested
in many sketching and artmaking tutorials, where the overall composition of the scene is
drafted before filling in details that characterize each object [28, 49].

Generates sketches of
individual objects and

composes them in the scene

Generates scene
composition layout

[0.0, 0.0, 1.0, 0.94, “tree”]

[0.06, 0.52, 0.81, 0.48, “horse”]

r = 0.59

a horse under
a tree.

User
1) Scene 

Composer

Natural Language
Description

r = 0.94

2) Object
Sketcher

Figure 4.2: Overall system architecture of Sketchforme. Sketchforme consists of two steps
in its sketch generation process.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 43

By taking this two-step approach, Sketchforme is able to model high-level object rela-
tions critical to composing the scenes, enabling a multitude of applications that require such
information. Moreover, this approach overcomes the difficulty for end-to-end sketch gener-
ation methods to capture global structures of sequential inputs [62]. End-to-end sketched
scene generation also requires datasets of dedicated sketch-caption pairs that are difficult for
crowd-workers to create [198].

4.1.1 Scene Composer: Generating Composition Layouts

To generate composition layouts of scenes, we first model composition layouts as a se-
quence of n objects (and start/end tokens), such that each object generated by the network
is represented with 8 values:

bt = [xt, yt, wt, ht, lt, boxt, startt, endt], t ∈ [1, n]

The first 5 values are fundamental data that describes bounding boxes of objects in the
scene: x-position, y-position, width, height, and the class label. The last three values are
boolean flags used as extra ‘tokens’ to mark the actual objects, the beginning of sequences,
and the end of sequences.

Using this sequential encoding of scenes, we designed a Transformer-based Mixture Den-
sity Network as our Scene Composer to generate realistic composition layouts. Transformer
models [184] are state-of-the-art neural networks for sequence-to-sequence modeling tasks,
such as machine translation and question answering. We use a Transformer Network to per-
form a novel task: generating a sequence of objects from a text description c, a sequence of
words. As multiple scenes can correspond to the same text descriptions, we feed the outputs
of the Transformer Network into Gaussian Mixture Models (GMMs) to model the variation
of scenes, forming a Mixture Density Network [13] as we described in detail in Section 2.4.

The generation process of the composition layouts involves taking the previous bounding
box bt−1 (or the start token) as an input and generating the current box bt. At each time-
step, the Transformer Network generates an output tt conditioned on the text input c and
previously generated boxes b1...t−1 using self-attention and cross-attention mechanisms built
into the architecture. This process is repeated for multiple bounding boxes until an end
token is generated:

tt = Transformer([b1...t−1; c]) (4.1)

tt is then projected to the appropriate dimensionality to parameterize the GMMs with various
projection layers Wxy and Wwh to model p(xt, yt), the distribution of the bounding boxes’
positions, and p(wt, ht), the distribution of the bounding boxes’ sizes. The main difference
to the generic process described in Section 2.4 is that in the scene composer we model the
joint distribution between xt and yt, and between wt and ht. Sketchforme can then generate
bounding boxes [xt, yt, wt, ht] by sampling from these mixture of Gaussians distributions.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 44

p(wt, ht) = p(wt, ht|θ), θ = a(Wwh([xt; yt; tt])) (4.2)

Another special adaptation to the generic MDN described in Section 2.4 is that while
p(xt, yt) is modeled only from the first projection layer Wxy, we consider p(wt, ht) to be
conditioned on the position of the boxes similar to [73]. To introduce this condition, we
concatenate tt and [xt, yt] as inputs to the second projection layer as described in Equation
4.2. The probability of each generated bounding box being an actual object or a start/end
token is generated using a softmax-activated third projection layer Wc from the Transformer
output, similar to when generating a pen-event described in Section 2.4:

p(boxt, startt, endt) = softmax(Wctt) (4.3)

In addition, Sketchforme separately uses an LSTM to generate class labels lt because the
class labels given certain descriptions are assumed to not vary across examples. The full
architecture of the Scene Composer is shown in Figure 4.3a.

4.1.2 Object Sketcher: Generating Individual Sketches

After obtaining scene layouts from the Scene composer, we designed a modified version
of the Sketch-RNN model to generate individual objects in Sketchforme according to the
layouts. We adopt the decoder-only Sketch-RNN that is capable of generating sketches
of individual objects as sequences of individual strokes. Sketch-RNN’s sequential genera-
tion process involves generating the current stroke based on previously generated strokes, a
method commonly used in sequence modeling tasks. Sketch-RNN also uses a GMM to model
variation of sketch strokes, forming a Mixture Density Network similar to the process used
by the Scene Composer and described in detail in 2.4 and in the Sketch-RNN paper [62].

While the decoder-only Sketch-RNN generates realistic sketches of individual objects in
certain concept classes, the aspect ratios of the output sketches generated by the original
Sketch-RNN cannot be constrained. Hence, sketches generated by the original Sketch-RNN
may be unfit for assembling into scene sketches guided by the layouts generated by the
Scene Composer. Further, naive direct resizing of the sketches can produce sketches of
unsatisfactory quality for complex scenes.

We modified Sketch-RNN as the Object Sketcher that factors in the aspect ratios of
objects when generating sketches. To incorporate this information in the Sketch-RNN model,
we compute the aspect ratios of the training data and concatenate the aspect ratio r = ∆y

∆x

of each sketch with the previous stroke as input to our modified Sketch-RNN in the sketch
generation process as shown in Figure 4.3b. The new formulation and output of the modified
Sketch-RNN for t-th stroke is:

[ht; ct] = LSTM([St−1; r;ht−1; ct−1]), yt = Wht + bt (4.4)

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 45

Since each Sketch-RNN model only handles a single object class, we train multiple modi-
fied Sketch-RNN models based on multiple classes and use appropriate models based on class
labels in the layouts generated by the Scene Composer for assembling the final sketched scene.

After generating the strokes, the Object Sketcher converts them into SVG paths and fills
each object in white using the non-zero rule. The object corresponding to the first bounding
box generated by the Scene Composer is then composed as the foreground of the sketched
scene, and subsequently generated objects are placed in the background according to the
order of generation.

GloVe Vectors

“a person riding a horse”
(Condition)

512-unit LSTM
Encoder

512-unit LSTM
Decoder

 (box labels) l1 l2

Transformer
Encoder

Transformer
Decoder

GMM

[x, y]
 (box coords.)

Inputs Outputs

Outputs

[w, h]

GMM

t

pstart/end/box

 (start prob.)

Wxy

Wwh

Wp

(a) Scene Composer

2048
Units
Hyper
LSTM

2048
Units

Hyper
LSTM

2048
Units
Hyper
LSTM

…

S0 r S1 r Si r

y1

S1

GMM,
Categorical
Distribution

Sampling

y2

S2

GMM,
Categorical
Distribution

Sampling

yi+1

Si+1

GMM,
Categorical
Distribution

Sampling

…
h0 h1 hi

(b) Object Sketcher

Figure 4.3: Model architecture of (a) the Scene Composer and (b) the Object Sketcher.

4.2 Model Training and Data Sources

Sketchforme’s Scene Composer and Object Sketcher are trained on different datasets that
encapsulate visual-scene-level knowledge and sketching knowledge separately. This relaxes
the requirement for Sketchforme to be trained on natural language annotated datasets of
sketched scenes that provide varied scenes corresponding to realistic scene-caption pairs.

We trained the Scene Composer using the Visual Genome dataset [103], which contains
natural language region descriptions and object relations of natural images, to demonstrate
its flexibility in utilizing various types of scene-layout datasets. Object relations in the
dataset each contain a ‘subject’ (e.g., ‘person’), a ‘predicate’ (e.g., ‘on’), and an ‘object’
(e.g., ‘car’) represented by class labels and bounding boxes of participating objects in the

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 46

image. Natural language region descriptions are represented by bounding boxes of the re-
gions and description texts that correspond to the regions. We reconcile these two types of
information using region graphs in the dataset. With the paired data of natural language
descriptions and relations, we train the Scene Composer to generate composition layouts.
We selected relations that contain subsets of the 100 most commonly used object classes and
70 predicates in the dataset. This dataset of selected object classes and predicates contains
101,968 instances. We split this dataset in the scheme of: 70% training set, 10% validation
set, and 20% test set.

The Object Sketcher is trained with the Quick, Draw! [91] dataset that contains 70,000
training sketches, 2,500 validation sketches, and 2,500 test sketches for each of the 345 object
categories in the dataset. As mentioned in Chapter 4.1, we preprocess the data by computing
the aspect ratios of all sketches as inputs to the Object Sketcher in addition to the original
stroke data.

Using these data sources, we train multiple neural networks of various configurations and
loss functions in Sketchforme. The LSTM architectures in the Scene Composer for generating
composition layouts are stacked with 2 hidden-layers of size 512. Similarly, the Transformer
Network has the configuration (dmodel, Nlayers) = (512, 6).

The Scene Composer is trained by minimizing the negative log-likelihoods of the position
data Lxy and size data Lwh, and cross-entropy loss for categorical outputs Lp:

Lxy = −
n∑

i=1

log(p(xi, yi)) (4.5)

Lwh = −
n∑

i=1

log(p(wi, hi)) (4.6)

Lp = −(
n∑

t=1

p(boxt) log(boxt) + p(startt) log(p(startt)) + p(endt) log(p(endt))) (4.7)

For generating the class labels, each lt is represented as a 100-dimensional vector in our
model, with each value li,t corresponding to the output probability of the class. Lclass is thus
computed as:

Lclass = −
n∑

t=1

100∑
i=1

li,t log(li,t) (4.8)

We combine these losses with weight hyper-parameters to obtain a general training ob-
jective LSC for the Scene Composer:

LSC = λ1Lxy + λ2Lwh + λ3Lp + λ4Lclass (4.9)

We set λ1 = 1.0, λ2 = 1.0, λ3 = 1 × 10−5, λ4 = 1 × 10−3. We used the Adam Optimizer
with an initial learning rate of 1 × 10−5 and β1 = 0.9, β2 = 0.999 to minimize the loss

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 47

function. We used 5 mixtures in each of the GMMs. We chose these hyper-parameters based
on empirical experiments.

The Object Sketcher uses an HyperLSTM cell [61] of size 2,048 for the modified Sketch-
RNN model. The loss function of the Sketch-RNN model is identical to the reconstruction
loss LR in the original Sketch-RNN model to maximize the log-likelihood of the generated
probability distribution for each of the strokes St. The model is trained with an initial
learning rate of 0.0001 and gradient clipping of 1.0.

4.3 Experiments and Results

Central to evaluating Sketchforme’s success is assessing its effectiveness in generating
realistic and relevant sketches and layouts from text descriptions. We evaluated the data
generated by Sketchforme at each step of the generation process qualitatively and quantita-
tively to demonstrate its effectiveness of generating sketched scenes. We further conducted
two user studies on the overall utility of the generated sketches to explore their potential in
supporting real-world applications.

4.3.1 Composition Layout Generation

The composition layouts generated by the Scene Composer in the first step of Sketch-
forme’s sketch generation process are represented as bounding boxes of individual objects in
the scene. While the Scene Composer already directly maximizes the log-likelihood of the
data, we can evaluate the performance of the model by visualizing and comparing heat-maps
created by super-positioning instances of real data and generated data.

Because Sketchforme considers the text input when generating the composition layouts,
we should only compare the generated bounding boxes with ground-truth bounding boxes
from the dataset that are relevant to the text input. We obtain these ground-truth com-
positions by filtering the subjects, objects, and predicates based on the descriptions. For
instance, the composition layouts generated from ‘a person riding a horse.’ are compared to
all ground-truth layouts with ‘person’ subjects, predicates that are related to riding such as
’on’, ’on top of’ etc. and ‘horse’ objects.

Heat-maps in Figure 4.4 show the distributions of Sketchforme-generated bounding boxes
and ground-truth bounding boxes from the dataset. From these heat-maps, we can obtain a
holistic view of the generation performance of the model by visually evaluating the similarity
between the heat-maps. We observe similar distributions between the ground-truth layouts
and the generated layouts based on all of the descriptions.

We can further approximate an overlap metric between the distributions using Monte-
Carlo simulations to evaluate the model’s performance quantitatively. To estimate the degree
of overlap between the generated data distribution and the dataset’s distribution, we gener-
ated 100 composition layouts for each description and randomly sampled 1,000 data points
within each bounding box in these layouts. We estimate the overlap between the distributions

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 48

by counting the number of data points that lie within the intersections between any gener-
ated and ground-truth bounding boxes. We compare Sketchforme’s performance with both
a heuristic-based bounding box generator and a naive random bounding box generator. The
heuristic-based bounding box generator only generates the first bounding boxes above/below
the second bounding boxes for descriptions with the above-related/below-related predicates.
The random bounding-box generator samples random values that describe the bounding
boxes from uniform distributions, which serves as a naive baseline. Table 4.1 shows the
percentage of the 1,000 data points that lie in the intersections. The metric value for overlap
between real and Sketchforme-generated data is considerably higher than both the value for
overlap between real and heuristic-generated data and the value for overlap between real and
randomly generated data, which confirms our analysis from qualitative visual inspection of
the heat-maps.

a dog on a chair an elephant under a tree

Generated Ground-truth Generated Ground-truth

El
ep

ha
nt

Tr
ee

Do
g

Ch
ai

r

Generated Ground-truth

a person riding a horse

Pe
rs

on
H

or
se

Generated Ground-truth

a boat under a bridge

Bo
at

Br
id

ge

(a) A dog on a chair

a dog on a chair an elephant under a tree

Generated Ground-truth Generated Ground-truth

El
ep

ha
nt

Tr
ee

Do
g

Ch
ai

r

Generated Ground-truth

a person riding a horse

Pe
rs

on
H

or
se

Generated Ground-truth

a boat under a bridge

Bo
at

Br
id

ge

(b) An elephant under
a tree

a dog on a chair an elephant under a tree

Generated Ground-truth Generated Ground-truth

El
ep

ha
nt

Tr
ee

Do
g

Ch
ai

r

Generated Ground-truth

a person riding a horse

Pe
rs

on
H

or
se

Generated Ground-truth

a boat under a bridge

Bo
at

Br
id

ge

(c) A person riding a
horse

a dog on a chair an elephant under a tree

Generated Ground-truth Generated Ground-truth

El
ep

ha
nt

Tr
ee

Do
g

Ch
ai

r

Generated Ground-truth

a person riding a horse

Pe
rs

on
H

or
se

Generated Ground-truth

a boat under a bridge

Bo
at

Br
id

ge

(d) A boat under a
bridge

Figure 4.4: Heat-maps generated by super-positioning Sketchforme-generated/
Visual Genome (ground-truth) data. Each horizontal pair of heat-maps corresponds
to an object from a description.

Description Sketchforme Heuristics Random
a dog on a chair 89.1% 64.4% 61.6%

an elephant under a tree 68.4% 40.3% 30.6%
a person riding a horse 94.0% 57.7% 51.5%
a boat under a bridge 31.8% 15.0% 6.85%

Table 4.1: Overlap metric from Monte-Carlo simulations for each description between real
data and Sketchforme-generated/heuristics-generated/random data.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 49

4.3.2 Generating Individual Object Sketches at Various Aspect
Ratios

The main addition of Sketchforme to the original Sketch-RNN model is a new input that
allows the Object Sketcher to generate sketches based on target aspect ratios (r = ∆y

∆x
) of

completed sketches. We evaluate this approach by generating sketches of various aspect
ratios. The Object Sketcher is able to adhere to input aspect ratios and generate individual
object sketches coherent to the ratios. As shown in Figure 4.5, sketched trees generated with
ratio r = 1.0 can be perceived as shorter than those generated with r = 2.0.

= 1.0

Δy
Δx = 0.6

Δy
Δx

r =

r =

Aspect Ratio Sketched Objects

= 5.0

Δy
Δx = 2.0

Δy
Δx

r =

r =

Aspect Ratio Sketched Objects

Figure 4.5: Generated sketches of trees with various aspect ratios by the Object Sketcher in
Sketchforme.

4.3.3 Complete Scene Sketches

Combining the Scene Composer and the Object Sketcher, Sketchforme generates complete
scene sketches directly from text descriptions. Several examples of the sketches are shown
in Figure 4.1, Figure 4.6, and Figure 4.8. In these figures, sketches that correspond to ‘a
boat under a bridge’ consist of small boats under bridges, whereas sketches that correspond
to ‘an apple on a tree’ consist of small apples on large trees that follow the actual sizes and
proportions of the objects. Moreover, Sketchforme is able to generalize to novel concepts
of ‘a cat on top of a horse,’ such that the only relations involving a cat and a horse in the
Visual Genome dataset that the model was trained on correspond to ‘a horse facing a cat.’
The sizes of cats and horses in these sketches are in proportion to their actual sizes, and the
cat is adequately placed on the back of the horse, as shown in Figure 4.8.

a boat under
a bridge

Description Complete Sketches

a dog on
top of a car

an apple
on a tree

Description Complete Sketches

a bike next to
a bench

Figure 4.6: Complete scene sketches generated by Sketchforme.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 50

We further trained Sketchforme on the Abstract Scenes dataset [197] to evaluate the
approach’s generalizability on handling complex scenes. We included examples of sketches
generated by Sketchforme based on a) ‘Some squirrels near the pond under the trees on a
sunny day’ (a multi-object multi-relation scene) and b) ‘Living room with some paintings
on the wall’ (a scene consists of an abstract setting, i.e., living room) in Figure 4.7.

Sketchforme was able to generate these scenes adhering to the captions: for description
a), Sketchforme was able to locate each object according to inter-object relations dictated by
the description; for description b), Sketchforme was able to analyze the phrase ‘living room’
and generate couches and house plants in the scenes. When Sketchforme needs to handle
a large number of objects, we found that it can be further improved by making a minor
modification to the Scene Composer: feeding the generated classes into the Transformer
network to synchronize the generated bounding boxes with the generated class labels of
the objects. Moreover, we observed that the limitation of occlusions (further discussed in
Chapter 4.5.1) is more apparent as the scenes become more crowded with objects, such as
the multiple overlapping trees in scenes based on description a).

Some squirrels
near the pond

under a tree on a
sunny day

Description Complete Sketches

Living room
with some

paintings on the
wall

Description Complete Sketches

Figure 4.7: Complete scene sketches generated by Sketchforme trained on the Abstract
Scenes dataset that contains complex multi-object scenes.

4.3.4 Human Perception User-Study

Sketchforme’s high-level goal is to augment users’ communication and learning processes
by generating realistic, plausible, and coherent sketches for users to interact with. To comple-
ment the quantitative and qualitative evaluation of the sketches, we conducted a user study
on Amazon Mechanical Turk (AMT) to gauge human subjects’ opinions on the sketches’
realism and ability to convey the descriptions used to generate them.

Study Procedure

We recruited 51 human subjects on AMT and asked them to each review 50 sketches
generated by either humans or Sketchforme. These 50 sketches are generated from five de-
scriptions. The human-generated sketches are obtained from another AMT task prior to this
user study based on Quick, Draw! [91]. These human-generated sketches are shown in Figure
4.8. In this study, subjects are provided with complete sketched scenes and descriptions that
the scenes are based on. Subjects are required to respond to the following questions:

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 51

1. Do you think this sketch was generated by a computer (AI) or a human?

2. On a scale of 1-5 (1 represents that description conveyed very poorly, 5 represents that
description conveyed very well), how well did you think the message is conveyed by
the sketch?

The subjects are given 10 sketches as trial questions with answers to the first question
at the beginning of the task. After completing the trial tasks, the subjects’ answers to the
remaining 40 sketches are aggregated as the study results. This study protocol is similar to
perception studies commonly used to evaluate synthetic visual content generation techniques
in the deep-learning community [84]. In addition, we collected comments from the users (if
any) and their perceived overall difficulty of the task at the end of the task.

SketchformeHumans

an airplane in front
of a mountain

an elephant
under a tree

a cat on top
of a horse

Description SketchformeHumans

a clock on
a building

a boat under
a bridge

Description

Figure 4.8: Samples of sketches produced by humans and Sketchforme used in the AMT user
study.

Results

The first question probes the realism of the sketches with a Turing-test-style question
asking the subjects to determine whether the sketches are created by humans. As shown
in Figure 4.9a, subjects on average considered 64.6% of the human-generated sketches as
generated by humans, while they considered 36.5% of Sketchforme-generated sketches as
generated by humans. Although the percentage of Sketchforme-generated sketches consid-
ered as generated by humans is significantly lower (p < 1.05×10−10, paired t-test) than that
of human-generated sketches, individual participants commented in the study that it was
difficult to distinguish between human-generated and Sketchforme-generated sketches. P2
mentioned that they ”really couldn’t tell the difference in most images.” P6 commented that
they ”didn’t know if it was (a) human or a computer (that generated the sketches).” These
results demonstrate the potential for Sketchforme in generating realistic sketched scenes.

We hypothesize one of the possible reasons for the lower percentage of Sketchforme-
generated sketches to be considered as human-drawn is that the curves of the synthetic
sketches are in general less jittery than human-drawn sketches. We suggest future work to
explore introducing stroke variation to generate more realistic sketches.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 52

The results for the second question reflect the ability of the sketches to communicate
the underlying descriptions that they are based on. The average score for human-generated
sketches is µ = 3.46, whereas the average score for Sketchforme-generated sketches is µ =
3.21 as shown in Figure 4.9b. Although Sketchforme-generated sketches achieved lower
scores overall, Sketchforme-generated sketches achieved statistically better average scores
for sketches based on two of the descriptions: ‘a boat under a bridge’ and ‘an airplane in
front of a mountain’ (p < 0.0005, paired t-test). This shows the competitive performance
of Sketchforme-generated sketches in communicating the underlying descriptions for some
scenes.

0% 20% 40% 60% 80%

 27.9%

 28.9%

 54.4%

 34.8%

 36.3%

 59.8%

 71.1%

 59.8%

 65.7%

 66.7%

Human-generated Sketchforme-generated

an airplane in front
of a mountain

an elephant under
a tree

% of sketches perceived as human-generated sketches

Description

a cat on top of a
horse

a clock on a
building

a boat under a
bridge

(a) Percentage of sketches considered by users as
human-generated.

0 1 2 3 4 5

 2.75

 2.72

 3.2

 3.68

 3.68

 3.61

 3.78

 3.55

 3.11

 3.27

Human-generated Sketchforme-generated

an airplane in front
of a mountain

an elephant under
a tree

Description

a cat on top of a
horse

a clock on a
building

a boat under a
bridge

Average score (out of 5) for conveying the
sketches’ descriptions

(b) Average score for conveying the sketches’ de-
scriptions.

Figure 4.9: Results of the human perception user-study on Sketchforme. 64.6% of human-
generated sketches and 36.5% of Sketchforme-generated sketches are perceived as human-
generated in (a). In (b), Sketchforme-generated sketches were considered more expressive
than human-generated sketches for sketches of ‘a boat under a bridge.’ and ‘an airplane in
front of a mountain.’

4.3.5 Sketch Interpretation User Study

To further evaluate Sketchforme’s ability to deliver messages through sketches, we con-
ducted an exploratory user study to gauge users’ ability to translate Sketchforme-generated
sketches back into natural language descriptions.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 53

Study Procedure

We recruited 10 participants on AMT. Each participant was provided with 5 sketches
generated by humans and 5 sketches generated by Sketchforme from the same descriptions,
but without the original text descriptions. The sketches are reused from the previous study,
but the order and selection of the sketches from the set of sketches in the previous study are
randomized for each participant. Participants are then asked to produce text descriptions
that represent the meaning of each of the sketches. We ensured that the participants had
not participated in any of our other studies.

Results

We aggregated the text descriptions produced by each of the participants and com-
pared the subjects, objects, and predicates included in their text descriptions with the orig-
inal descriptions used to generate the sketches. The percentage of user-generated descrip-
tions that match the subjects/objects/predicates of the original descriptions are respectively
86%/72%/46% for human-generated sketches, and 86%/76%/38% for Sketchforme-generated
sketches. While we did not observe a significant difference between the communication abil-
ity of both sets of sketches (p > 0.269, each paired t-test for subjects/objects/predicates),
one novel insight brought by this study is that these sketches are particularly weak in con-
veying the predicates. Multiple descriptions provided by the users on both sets of sketches
did not mention the predicates at all, such as ’an elephant and a tree,’ or mentioned more
general predicates, such as ‘elephant walking near a tree,’ for sketches based on ‘an elephant
under the tree.’ Effectively conveying the descriptions’ predicates through sketches can be
an interesting issue for further research investigation.

4.4 Applications

In this chapter, we explore several applications that can benefit from Sketchforme’s ability
to generate compelling sketches from natural language descriptions.

4.4.1 Sketch-Assisted Language Learning

Sketches have been shown to improve memory [185]. As language learning is a memory-
intensive task, Sketchforme could support language education applications based on sketches.
These sketches can potentially create engaging and effective learning processes and avoid rote
learning.

Language Learning Application

To explore the possibility of Sketchforme in supporting language learning, we built a
basic language-learning application that aims to educate learners with a translation task

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 54

from German to English. In this application, learners are presented with German phrases
and asked to translate them to English in the form of multiple-choice questions similar to
the process of learning term definitions from flash-cards. This application also implements
the Leitner system [113] with three bins that repeat phrases which learners make the most
mistakes on most frequently. Under this system, the phrases are moved to different bins
depending on the participants’ familiarity with the translations.

We gathered 10 pairs of German-English sentences from a native German speaker and
formed 2 sets of 5 translations each. In addition, deceptive English sentences are added as
other choices in the multiple-choice test to be selected by the learners in the application.
We deployed this application on AMT to test the improvement of learning performance
by presenting Sketchforme-generated sketches along with the phrases. The UI of the full
application with a sketch presented to the users is shown in Figure 4.10a.

Study Procedure

The study consists of a training phase and a test phase for each participant. In the train-
ing phase, participants are presented with correct answers after answering each question.
The participant can only advance to the next phase when they answer all questions correctly
consecutively for all translations according to the Leitner system. In the test phase, partic-
ipants are given one chance to provide their answers to all translations without seeing the
correct answers. The participants are divided into two conditions, with the ’control’ group
only receiving phrases on their interface during training, and the ’treatment’ group that
receives both phrases and sketches generated by Sketchforme on their interface during the
training phase. Both groups receive only the phrases on their interface during the test phase.
Moreover, we use our two sets of translations for training and test phases alternatively, such
that the participants will not get consecutive training and test phases for the same set of
descriptions.

The performances of the participants during the study are monitored with multiple an-
alytical metrics, including completion time of each phase, and scores in the test phase, etc.
At the end of the study, we also provide surveys for them to rate the difficulty of the task
and the usefulness of the sketches (if applicable) on five-point Likert scales, and ask them to
provide any additional suggestions to the interface.

Results

We recruited 38 participants on AMT to participate in the study. While we did not
see a significant difference (p = 0.132, unpaired t-test) in the correctness of answers in the
test phase of the phrases between the ‘control’ and ‘treatment’ groups of participants, we
discovered that the time taken to complete the learning task for the ‘treatment’ group (246
seconds on average) was significantly less (p = 0.011, unpaired t-test) than the control group
(338 seconds on average). The ‘treatment’ group also generally found the sketches to be
helpful for learning (rated 4.58 out of 5 in the post-study survey).

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 55

As Sketchforme is an automated system that is capable of generating sketches from free-
form text descriptions, and with these promising results on sketch-assisted language learning,
we envision Sketchforme to support and improve large-scale language learning applications
in the future.

4.4.2 Intelligent Sketching Assistant

Since Sketchforme uses sequence models and a multi-step generation process to gen-
erate sketches, by design it can support interactive human-in-the-loop sketching systems.
To demonstrate such capability, we built a prototype of an intelligent sketching assistant
reflective of two potential use-cases:

Auto-completion of scenes

As Sketchforme’s Scene Composer consists of the Transformer Network, a sequence model
that attends to previous objects in the scene to generate the upcoming object, we can
complete unfinished user scenes instead of starting with a blank canvas by starting the
generation with both the start token b1 and an existing object in the scene created by the
user b2. Figure 4.10b shows examples of Sketchforme completing users’ sketch of a horse in
step a) by adding potential sketched trees involved in the scene.

User-Steerable generation

Sketchforme’s Scene Composer is capable of generating multiple potential candidate
sketched objects at each step of composing the final sketched scenes. As such, users can
select their preferred scene layout from the candidates. Figure 4.10b shows multiple can-
didates proposed by Sketchforme based on a text description in step b). Moreover, since
Sketch-RNN is also capable of generating a variety of sketches, the users can select their
preferred sketches of each individual object in the scene.

4.5 Limitations

4.5.1 Occlusions and Layer Order

Sketchforme is trained to model scene compositions from a natural image dataset. In
natural images, objects might occlude each other, hence affecting sizes and positions of the
bounding boxes in the composition layouts. Figure 4.11a shows several boats that were
inadequately placed in front of parts of the bridges that should have occluded the boats. To
overcome this limitation, future systems can augment Sketchforme by including advanced
vision models to determine the objects’ layer order in the original natural image. The current
Sketchforme system only considers a naive layer order determined by the generation sequence
of the composition layout, which is ‘subject’ then ‘object’ from the dataset.

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 56

(a) Sketch-augmented language-learning ap-
plication.

“a horse under a tree.”
1 2 3

a

b:

a a

(b) Intelligent sketching assistant.

Figure 4.10: Applications enabled by Sketchforme. Sketchforme can augment (a) language-
learning applications and significantly reduced the time taken for users to achieve similar
learning outcomes. With the (b) intelligent sketching assistant powered by Sketchforme, the
user can create a partial sketch for Sketchforme to suggest multiple candidates for them to
choose the adequate sketch they prefer from the description ‘a horse under a tree.’

Moreover, novel methods should be developed to handle overlapping sketched objects
generated from occluded compositions. For instance, the model that generates composition
layouts could enforce constraints to avoid overlaps in the sketches or follow user-specified
heuristics to handle overlaps.

(a) Occluded Objects (b) Incoherent Poses

Figure 4.11: Limitations of Sketchforme’s sketch generation process. In (a), the boats are
significantly occluded by the bridges. In (b), the elephants were represented with square
bounding boxes which guided the system to sketch only the faces of the elephants.

4.5.2 Aspect Ratios might be Weak Signals for Object Poses

Sketchforme uses aspect ratios of bounding boxes as the primary signal to inform the
shapes of sketches of individual objects. Although these shapes can be sufficient to determine
the correct poses for objects in some classes, such as the ‘tree’ class, merely constraining
the shapes might be weak signals for objects of other classes. These shapes can suggest

CHAPTER 4. SKETCHFORME: SKETCH GENERATION FROM TEXT 57

incoherent perspectives or incomplete sketches, such as examples shown in Figure 4.11b.
In Figure 4.11b, only faces of the elephants were sketched due to aspect ratios provided to
the Object Sketcher, which is inappropriate for composing sketched scenes. To mitigate this
limitation, future work could model the poses of objects in sketches and natural images more
closely using other cues, such as complete masks of the objects.

58

Chapter 5

Scones: Sketch Generation and
Iterative Refinement in Critique
Cycles

While Sketchforme enabled the new affordance of generating complex sketched scenes
from natural language descriptions, the creation of sketches is often an internalized or ex-
ternalized iterative process. Hence, it would be preferable for systems that can continuously
accept users’ instructions and improve and edit the generated sketch. Towards this goal, we
develop a system that supports iterative generation of sketches given users’ text instructions
to support refinement and critique. The goal is to mimic a user trying to verbally convey a
visual idea to an expert sketcher.

The use of sketches in an iterative design and/or artistic process, where the sketch itself
is annotated or refined, requires additional, specialized expertise. Inspired by recent de-
velopment of deep-learning (DL) QA systems and generative sketching models, we develop
Scones, a DL-based sketching system that can progressively construct a sketched scene based
on multiple natural language instructions across multiple turns, an interaction analogous to
an iterative sketch/critique process. This system must unify knowledge of the low-level me-
chanics for generating sketch strokes and natural language modification instructions with a
high-level understanding of composition and object relationships in scenes.

We formulate the novel task of iteratively generating and refining sketches with text
instructions and present a web-deployable implementation of Scones1. Scones contains a
scene composer that takes a novel approach in creating and editing scenes of objects using
natural language. It adapts a recent neural network architecture and improves state-of-the-
art performance on the scene modification task. We also introduce in Scones a novel method
for specifying high-level scene semantics within individual object sketches by conditioning
sketch generation with mask outlines of target sketches. Using Scones, we hope to enable
users of all levels of sketch expertise to freely express their intent using abstract, text-based

1Scones was also published as a long conference paper at IUI 2020 [80].

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 59

instructions, together with concrete visual media.

5.1 System Architecture

The creation of complex sketches often begins with semantic planning of scene objects.
Sketchers often construct high-level scene layouts before filling in low-level details. Modeling
machine-learning systems after this high-to-low-level workflow has been shown to be benefi-
cial for transfer learning from other visual domains and for supporting interactive interfaces
for human users [77]. Inspired by this high-to-low-level process, Scones adopts a hierarchical
workflow that first proposes a scene-level composition layout of objects using its Scene Com-
poser, then generates individual object sketches, conditioned on the scene-level information,
using its Object Sketchers (Figure 5.1).

put a campfire under the hot air
balloon

1) Scene
Composer

2) Object
Sketchers

1) Previous Scenes

2) Text Instruction

... ...

x n

Figure 5.1: Overall architecture of Scones. Scones takes a two-stage approach towards
generating and modifying sketched scenes based on users’ instructions.

5.1.1 Scene Composer

The Scene Composer in Scones uses text instructions to place and configure objects in
the scene. It also considers recent past iterations of text instructions and scene context at
each conversation turn. As text instructions and sketch components occur sequentially in
time, each with a variable length of tokens and objects, respectively, we formulate scene
composition proposal as a sequence modeling task. We use a self-attention-only decoder
component of the Transformer [184], a recent DL model architecture with high performance
for this task.

To produce the output scene Si at turn i, the Scene Composer takes inputs of n =
10 previous scenes S(i−n),...,(i−1) and text instructions C(i−n),...,(i−1) as recent context of the
conversation. Each output scene Si contains li objects o(i,1),...,(i,li) ∈ Si and special tokens
os marking the beginning and oe marking the end of the scene. Each text instruction Ci

contains mi text tokens t(i,1),...,(i,mi) ∈ Ci that consist of words and punctuation marks.
We represent each object o as a 102-dimensional vector o:

o = [1s,1e, e
(o), e(u), e(s), e(f), x, y]

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 60

The first two dimensions 1s,1e are Boolean attributes reserved for the start and end of the
scene object sequences. e(o) is a 58-dimensional one-hot vector2 representing one of 58 classes
of the scene objects e(u) is a 35-dimensional one-hot vector representing one of 35 sub-types
(minor variants) of the scene object. e(s) is a three-dimensional one-hot vector representing
one of three sizes of the scene objects. e(f) is a two-dimensional one-hot vector representing
the horizontal orientation of whether the object is flipped in the x-direction. The last two
dimensions x, y ∈ [0, 1] represents the x and y position of the center of the object. This
representation is very similar to that of the CoDraw dataset the model was trained on,
which is described in detail in Section 5.2.1. For each text token t, we use a 300-dimensional
GLoVe vector trained on 42B tokens from the Common Crawl dataset [142] to semantically
represent these words in the instructions.

To train the Transformer network with the heterogeneous inputs of o and t across the
two modalities, we create a unified representation of cardinality |o|+ |t| = 402 and adapt o
and t to this representation by simply padding additional dimensions in the representations
with zeros as shown in Equation 5.1.

o′(i,j) = [o(i,j),0(300)] t′(i,j) = [0(102), t(i,j)] (5.1)

We interleave text instructions and scene objects chronologically to form a long sequence
[C(i−n), S(i−n) , ..., C(i−1), S(i−1), Ci] as input to the model for generating an output scene
representation Si. We expand the sequential elements within C and S, and add separators
to them to obtain the full input sequence to a single Transformer Decoder. To adapt the
Transformer model to our multi-modal inputs t′ and o′ and produce new scene objects o,
we employ a 402-dimensional input embedding layer and 102-dimensional output embedding
layer in the Transformer model. The outputs from the network are then passed to sigmoid
and softmax activations for object position and other properties respectively. We show this
generation process in Equation 5.2 and in Figure 5.2.

Si = [o(i,1),...,(i,l)] = Transformer([o′s, o
′
(i−n,1), ...o

′
(i−n,l(i−n))

,

o′e, t
′
(i−n,1), ..., t

′
(i−n,m(i−n))

, ..., t′(i,1), ...t
′
(i,li)

, o′s]) (5.2)

5.1.2 Object Sketchers

Since the outputs of the Scene Composer are scene layouts consisting of high-level object
specifications, we generate the final raw sketch strokes for each of these objects based on
their specifications with Object Sketchers. We adapt Sketch-RNN to generate sketches of
individual object classes to present to users for evaluation and revision in the next conver-
sation turn. Each sketched object Q consists of h strokes q1...h. The strokes are encoded

2an encoding of class information that is an array of bits where only the corresponding position for the
class to be encoded is 1, and all other bits are 0s.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 61

(64, 6) Transformer Decoder

o’(i, 1) o’e o’s o’(i+1, 1)o’s

o’(i+1, 1) o’(i+1, 2)

t’(i, 1)o’(i, l) t’(i, m) o’(i+1, l)

o’e

(scene start) (scene end)

...

baseball left

 i i i+1

Figure 5.2: The scene layout generation process using the Transformer Model of the Scene
Composer.

using the Stroke-5 format [62]. Each stroke q = [∆x,∆y, pd, pu, pe] represents states of a pen
performing the sketching process. The first two properties ∆x and ∆y are offsets from the
previous point that the pen moved from. The last three elements [pd, pu, pe] are a one-hot
vector representing the state of the pen after the current point (pen down, pen up, end of
sketch, respectively). All sketches begin with the initial stroke q1 = [0, 0, 1, 0, 0].

Since Sketch-RNN does not constrain aspect ratios, directions and poses of its output
sketches, we introduce two additional conditions for the sketch generation process: masks m
and aspect ratios r. These conditions ensure our Object Sketchers generate sketches with
appearances that follow the object specifications generated by the Scene Composer. For

each object sketch, we compute the aspect ratio r =
∆y

∆x
by taking the distance between

the leftmost and rightmost stroke as ∆x and the distance between topmost and bottommost
stroke as ∆y. To compute the object mask m, we first render the strokes into a pixel bitmap,
then mark all pixels as 1 if they are in between the leftmost pixel pyxmin and rightmost pixel
pyxmax that are passed through by any strokes for each row y, or if they are in between
the bottommost pixel pxymin and topmost pixel pxymax that are passed through by any
strokes for each column x (Equation 5.3). As this mask-building algorithm only involves
pixel computations, we can use the same method to build masks for clip art objects (used to
train the Scene Composer) to generate sketches with poses matching the Scene Composer’s
object representations.

m(x,y) =


1 if pyxmax ≥ x ≥ pyxmin, or;
1 if pxymax ≥ y ≥ pxymin

0 otherwise
(5.3)

We adapt the Variational-Autoencoder(VAE)-based conditional variant of Sketch-RNN

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 62

to enable generating and editing of sketch objects. Our adapted conditional Sketch-RNN
encodes input sketches with a Bi-directional LSTM to a latent vector z. The Hyper-LSTM
decoder then recreates sketch strokes q′1...h from z, and m, r described above during training,
as defined in Equation 5.4 and shown in Figure 5.3. Since the latent space is also trained
to match a multivariate Gaussian distribution, the Object Sketchers can support sketch
generation when the objects are first added to the scene by randomly sampling z ∼ N(0, 1)128.

q′1...h = Sketch-RNN Decoder([m, r, z]), z ∼ N(0, 1)128

z = Sketch-RNN Encoder(q1...h) (5.4)

Encoder

q1
Hyper
LSTM

q2 qh

q’1

q’2

GMM

q’3

GMM

q’h

GMM

q’2 q’h-1

Hyper
LSTM

Hyper
LSTM

z

Bi-
LSTM

Bi-
LSTM Decoder

...

...

Bi-
LSTM

Bi-
LSTM

Bi-
LSTM

CNN

Δy

Δx

Δy
Δx

= r
q1...h

m

Figure 5.3: Sketch-RNN model architecture of the Object Sketchers.

As m is a two-dimensional mask, we encode m using a small convolutional neural network
into a flattened embedding to be concatenated with z, r, and qi as inputs to the decoder.
The decoder then outputs parameters for a Gaussian Mixture Model (GMM) which will
be sampled to obtain ∆x and ∆y, forming a Mixture Density Network. It also outputs
probabilities for a categorical distribution that will be sampled to obtain pd, pu and pe. This
generation process and the architecture of the model are illustrated in Figure 5.3, and are
described in detail in Section 2.4 and in the Sketch-RNN paper [62].

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 63

5.2 Datasets and Model Training

As Scones uses two components to generate scenes of sketched objects, it is trained on
two datasets that correspond to the tasks these components perform.

5.2.1 CoDraw Dataset

We used the CoDraw dataset [98] to train the Scene Composer to generate high-level
scene layout proposals from text instructions. The task used to collect this data involves two
human users taking on the roles of Drawer and Teller in each session. First, the Teller is
presented with an abstract scene containing multiple clip art objects in certain configurations,
and the Drawer is given a blank canvas. The Teller provides instructions using only text in
a chat interface to instruct the Drawer on how to modify clip art objects in the scene. The
Teller has no access to the Drawer’s canvas in most conversation turns, except in one of the
turns when they can decide to ‘peek’ at the Drawer’s canvas. The dataset consists of 9,993
sessions of conversation records, scene modifications, and ground-truth scenes.

Using this dataset, we trained the Scene Composer to respond to users’ instructions given
past instructions and scenes. We used the same training/validation/test split as the original
dataset. Our model is trained to optimize the loss function Lcm that corresponds to various
attributes of the scene objects in the training set:

Lcm = Lc + λsubLsub + λflipLflip + λsizeLsize + λxyLxy (5.5)

Lc is the cross-entropy loss between the one-hot vector of the true class label and the
predicted output probabilities by the model. Similarly Lflip and Lsize are cross-entropy
losses for the horizontal orientation and size of the object. Lxy is the Euclidean Distance
between predicted position and true position of the scene object. We trained the model
using an Adam Optimizer with the learning rate of lr = 1 × 10−4 for 200 epochs. We set
λsub = 5.0× 10−2, λflip = 5.0× 10−2, λsize = 5.0× 10−2, λxy = 1.0. These hyper-parameters
were tuned based on empirical experiments on the validation split of the dataset.

5.2.2 Quick, Draw! Dataset

The Quick, Draw! dataset consists of sketch strokes of 345 concept categories created
by human users in a game in 20 seconds [91]. We trained our 34 Object Sketchers on 34
categories of Quick, Draw! data to create sketches of individual objects.

Each sketch stroke in Quick, Draw! was first converted to the Stroke-5 format. ∆xs and
∆ys of the sketch strokes were normalized with their standard deviations for all sketches
in their respective categories. Each category consists of 75,000/2,500/2,500 sketches in the
training/validation/test set.

The loss function of the conditional Sketch-RNN Ls consists of the reconstruction loss
LR and KL loss LKL:

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 64

Ls = λKLLKL + LR (5.6)

The KL loss LKL is the Kullback-Leibler divergence between the encoded z from the
encoder and N(0, 1)128. The reconstruction loss LR is the negative log-likelihood of the
ground-truth strokes under the GMM and a categorical distribution parameterized by the
model. We refer interested readers to a detailed description of Ls in the original Sketch-
RNN paper [62]. The initial learning rate of the training procedure was lr = 1.0 × 10−3

and exponentially decayed to 1.0 × 10−5 at a rate of 0.9999. λKL was initially 0.01 and
exponentially increased to 0.53 at a rate of 0.99995. The models were also trained with
gradient clipping of 1.0.

5.3 Results

To compare the effectiveness of Scones at generating scene sketches with existing models
and human-level performance, we quantitatively evaluated its performance in an iterative
scene authoring task. Moreover, as Scones uses generative models to produce object sketches,
we qualitatively evaluated a large number of examples generated by the two components of
Scones.

5.3.1 Scene Composition Modification State-of-the-Art

To evaluate the output of the Scene Composer against the models introduced with the
CoDraw dataset, we adapted its output to match that expected by the well-defined evaluation
metrics proposed by the original CoDraw paper [98]. The original task described in the
CoDraw paper involves only proposing and modifying high-level object representations in
scenes agnostic to their appearance. The performance of a “Drawer” (a human or machine
which generates scene compositions) can be quantified by a similarity metric constrained
between 0 and 5 (higher is more similar) by comparing properties of and relations between
objects in the generated scene and objects in the ground truth from the dataset.

Running our Scene Composer on the CoDraw test set, we achieved an average similar-
ity metric of 3.55. This exceeded existing state-of-the-art performance (Table 5.1) on the
iterative scene authoring task using replayed text instructions (script) from CoDraw.

To provide an illustrative example of our Scene Composer’s output on this task, we
visualize two example scenes generated from the CoDraw validation set in Figure 5.4. In
scene a), the Scene Composer extracted the class (slide), direction (faces right), and position
relative to parts of the object (ladder along left edge) from the text instruction, to place
a slide in the scene. Similarly, it was able to place the bear in between the oak and pine
trees in scene b), with the bear touching the left edge of the pine tree. It is important to

3For some object categories, we found that increasing the KL weight to 1.0 improves the authors’ per-
ceived quality of generated sketches.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 65

Table 5.1: Test set performance of various models on the CoDraw task.

Teller Drawer Similarity ↑ (out of 5)

Script Scones 3.55
Script Neural Network [98] 3.39
Script Nearest-Neighbor [98] 0.94

Script Human 3.83

Current Scene Modified SceneText Instruction

large slide . faces right .
ladder along left edge .
horizon above third
rung .

sun sun

slide

just a little to the right
of the left edge . to the
right of the oak tree is a
large bear about a 1 4
(¼) inch form(from) the
trunk

oak tree

oak tree

bear

pine treepine tree

a)

b)

Figure 5.4: Example generated scenes for the scene layout modification task. The Scene
Composer was able to improve state-of-the-art performance for modifying object represen-
tations in scene compositions.

note the Scene Composer completely regenerates the entire scene at each conversation turn.
This means it correctly preserved object attributes from previous scenes while making the
requested modifications from the current turn. In these instances, the sun in scene a) and
the trees in scene b) were left mostly unchanged while other attributes of the scenes were
modified.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 66

5.3.2 Sketches with Clip Art Objects as Mask and Ratio
Guidance

The Object Sketchers are designed to generate sketches that respect high-level scene
layout information under the guidance of the mask and aspect ratio conditions. To inform
generated object sketches with pose suggestions from scene composition layouts, we built
outline masks from clip art objects and computed aspect ratios using the same method as
building them for training sketches described in Section 5.1.2. We demonstrate the Object
Sketchers’ performance in two important scenarios that allow Scones to adapt to specific
subclass and pose contexts.

Generating objects for closely related classes While the Scene Composer classifies
objects as one distinct class out of 58, some of these classes are closely related and are not
differentiated by the Object Sketchers. In these cases, object masks can be used by an
Object Sketcher to effectively disambiguate the desired output subclass. For instance, Scene
Composer generates trees as one of three classes: Oak tree (tall and with curly edges), Apple
tree (round and short), and Pine tree (tall and pointy); while there is only a single Object
Sketcher trained on a general class of all types of tree objects. We generated three different
masks and aspect ratios based on three clip art images and used them as inputs to a single
tree-based Object Sketcher to generate appropriate tree objects (by sampling z ∼ N(0, 1)128).
The Object Sketcher was able to sketch trees with configurations corresponding to input
masks from clip art objects (Figure 5.5). The generated sketches for pine trees were pointy;
for apple trees, had round leaves; and for oak trees, had curved edges.

Generating objects with direction-specific poses The Scene Composer can specify
the horizontal orientation of the objects (pointing left or right). As such, the Object Sketchers
are required to sketch horizontally asymmetric objects (e.g., racquets, airplanes) with specific
poses to follow users’ instructions. We show the ability of an Object Sketcher to produce
racquets at various orientations in Figure 5.6. The generated racquet sketches conformed to
the orientation of the mask, facing the specified direction at similar angles.

5.3.3 Complete Sessions with Composition Layouts and Sketches

We show the usage of Scones in six turns of conversation from multiple sessions in Fig-
ure 5.7. We curated these sessions by interacting with the system ourselves to demonstrate
various capabilities of Scones. In session a), Scones was able to draw and move the duck to
the left, sketch a cloud in the middle, and place and enlarge the tree on the right, following
instructions issued by the user. In session b), Scones was similarly able to place and move a
cat, a tree, a basketball and an airplane, but at different positions from session a). For in-
stance, the tree was placed on the left as opposed to the right, and the basketball was moved
to the bottom. We also show the ability of Scones to flip objects horizontally in session
b), such that the plane was flipped horizontally and regenerated given the instructions of

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 67

Clip Art Mask Generated Sketches

Figure 5.5: Sketch generation results of trees conditioned on masks. The Object Sketcher
was able to sketch trees of three different classes based on mask and aspect ratio inputs.

Clip Art Mask Generated Sketches

Figure 5.6: Sketch generation results of racquets conditioned on masks. The Object Sketcher
was able to sketch racquets at two orientations consistent to the masks.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 68

“flip the plane to point to the right instead”. This flipping action demonstrates the Object
Sketcher’s ability to generate objects with the required poses by only sharing the latent vec-
tors z, such that the flipped airplane exhibits similar characteristics as the original airplane.
In both sessions, Scones was able to correlate multiple scene objects, such as placing the owl
on the tree in session (a), and basketball under the tree in session b).

5.3.4 Interpreting Transformer’s Attention Maps

We can further verify the relationships between text and object representations learned by
the model by visualizing attention weights computed by the Transformer model of the Scene
Composer. These weights also create the unique possibility of generalizing and prompting
for sketches of new objects specified by users.

The Transformer model in the Scene Composer uses masked self-attention to attend to
scene objects and instructions from previous time steps most relevant to generating the
object specification at the current time step. We explore the attention weights of the first
two turns of a conversation from the CoDraw validation set. In the first turn, the user
instructed the system, “top left is an airplane medium size pointing left”. When the model
generated the first object, it attended to the “airplane” and “medium” text tokens to select
class and output size (Figure 5.8). In the second turn, the user instructed the model to place
a slide facing right under the airplane. The model similarly attended to the “slide” token the
most, it also significantly attended to the “under” and “plane” text tokens, and the airplane
object. These objects and tokens are important for situating the slide object at the desired
location relative to the existing airplane object (Figure 5.9).

These attention weights could potentially be used to handle unknown scene objects en-
countered in instructions. When the model does not output any scene objects, but only a oe
(scene end) token, we can inspect the attention weights for generating this token to identify a
potentially unknown object class, and ask the user for clarification. For example, when a user
requests an unsupported class, such as a ‘sandwich’ or ‘parrot’ (Figure 5.10), Scones could
identify this unknown object by taking the text token with the highest attention weight, and
prompting the user to sketch it by name.

5.4 Exploratory User Evaluation

To determine how effectively Scones can assist users in creating sketches from natural
language, we conducted an exploratory evaluation of Scones. We recruited 50 participants
from English-speaking countries on Amazon Mechanical Turk (AMT) for our study. We
collected quantitative and qualitative results from user trials with Scones, as well as sugges-
tions for improving Scones. Participants were given a maximum of 20 minutes to complete
the study and were compensated $3.00 USD. Participants were only allowed to complete the
task once.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 69

draw a duck in the middle

move the duck to the left

add a cloud in the middle

put a tree on the right

make the tree larger

there is an owl on the tree

there is a cat on the bottom right

draw a tree on the left

add a basketball under the tree

move the basketball lower

put a small airplane near the tree

flip the plane to point to the
right instead

Scones SconesUserUser

a) b)

Figure 5.7: Complete sketching sessions with Scones curated by the authors.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 70

Tr
an

sf
or

m
er

 L

ay
er

 #

1
2
3
4
5
6

to
p is an

air
pla
ne

me
diu

m

<sta
rt>

<end>
<sta

rt>
<end>

siz
e

left

po
int
ing left

<sta
rt>

0.012 0.411

Figure 5.8: Attention map of the Transformer across object and text tokens for the generation
of an airplane, the first object in the scene.

left

<end>
un
de
r

pla
neth
e

<sta
rt> ais

sli
de

fac
ing rig
ht ,

to
p

jus
t

go
es int
o

blu
e

ab
ou
t a

ce
nt
im
ete
r

<sta
rt>

...

Tr
an

sf
or

m
er

 L
ay

er
 #

1

2
3
4
5
6

0.006 0.227

Figure 5.9: Attention map of the Transformer across object and text tokens for the generation
of slide in the second turn of conversation. We observed that the Transformer model attended
to the corresponding words and objects related to the newly generated ‘slide’ object.

<start> <end> add a sandwich to the scene . <start>

<start> <end> there is a parrot on the top left . <start>

0.392 1.396

0.227 1.526

Figure 5.10: Attention map of the Transformer for text instructions that specify unseen
objects.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 71

5.4.1 Method

The participants were asked to recreate one of five randomly chosen target scene sketches
by providing text instructions to Scones in the chat window. Each target scene had between
four and five target objects from a set of 17 possible scene objects. Participants were informed
that the final result did not have to be pixel perfect to the target scene, and to mark the
sketch as complete once they were happy with the result. Instructions supplied in the chat
window were limited to 500 characters, and submitting an instruction was considered as
taking a “turn”. The participants were only given the sketch strokes of the target scene
without class labels, to elicit natural instructions.

Figure 5.11: Screenshot of Scones’ evaluation user interface.

Participants were first shown a short tutorial describing the canvas, chat interface, and
target scene in the Scones interface (Figure 5.11), and were asked to give simple instructions
in the chat window to recreate the target scene. Only two sample instructions were given
in the tutorial: “add a tree”, and “add a cat next to the table”. At each turn, participants
were given the option to redraw objects which remained in the scene for over three turns
using a paintbrush-based interface. After completing the sketch, participants filled out an

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 72

exit survey with Likert-scale questions on their satisfaction with the sketch and enjoyment
of the system, and open-ended feedback on the system.

5.4.2 Results

Participants Satisfied with Sketches, Enjoyment Was Bimodal Participants were
generally satisfied with their final sketches (µ = 3.38, σ = 1.18), and enjoyed the task
(µ = 4.0, σ = 1.12). In open-ended feedback, participants praised Scones’s ability to parse
their instructions: “it was able to similarly recreate the image with commands that I typed”
(P25); “I liked that it would draw what I said. it was simple and fun to use” (P40). Some
participants even felt Scones was able to intuitively understand their instructions. P15
remarked, “I thought it was cool how quickly and intuitively it responded,” while P35 said,
“It had an intuitive sense of what to draw, and I did not feel constrained in the language I
used”.

While enjoyment was high on average, we found responses to enjoyment followed a bi-
modal distribution (Figure 5.12). By reviewing qualitative feedback and instructions to
Scones, we observe that many instances of low enjoyment (score ≤ 2) come from class con-
fusion in target scene sketches. Some participants confused the tent in a target scene as a
“pyramid” in their instructions, which Scones does not support: “There is a pyramid on the
left side a little ways up from the bottom” (P44). P49 tried five times to add a “pyramid”
to the scene.

Re
sp

on
se

s

0
4
8

12
16
20
24

1 2 3 4 5

8

19

11
8

4

Satisfaction: I am satisfied with the final
sketch I produced together with the system.

0
4
8

12
16
20
24

1 2 3 4 5

21
17

4
7

1

Enjoyment: I enjoyed the conversational
sketching task.

Figure 5.12: Survey results from user sessions with Scones.

P17, who strongly disagreed with enjoying the task (1/5), faced repeated class confusion
issues, mentioning, “it was very frustrating that it wouldn’t draw the circle by the cloud . . . It
wouldn’t draw anything besides the plane, cloud, tent, and fire. Was that not a person up by
the cloud?” Scones does not support “circle” or “person” classes—the target sketch had the
sun next to the cloud. When Scones is asked to draw an unsupported object, the canvas will
be left unchanged. Providing participants with an explicit list of classes in the target image

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 73

or adding error messages could mitigate these frustrations. Furthermore, attention-based
methods mentioned in Section 5.3.4 could be used when an unrecognized class is detected
to prompt users to provide sketch strokes with corresponding labels.

Participants Communicate with Scones at Varying Concept Abstraction Levels
On average, participants completed the sketching task in under 8 turns (µ = 7.56, σ = 3.42),
with a varied number of tokens (words in instructions) per turn (µ = 7.66, σ = 3.35).
Several participants only asked for the objects themselves (turns delimited by commas):
“helicopter, cloud, swing, add basketball” (P25). Other participants made highly detailed
requests: “There is a sun in the top left, There is an airplane flying to the right in the top
right corner, There is a cat standing on it’s hind legs in the bottom right corner, Move the cat
a little to the right, please, . . . ” (P14). Participants who gave instructions at the expected
high-level detail produced satisfying results, “draw a tree in the middle, Draw a sun in the
top left corner, A plane in the top right, A cat with a pizza under the tree” (P32). The
recreation of this participant is shown on the top right of Figure 5.13.

Target User Recreations

Figure 5.13: Recreated scenes during the user study. Users combined Scones-generated
outputs with their own sketch strokes to reproduce the target scenes presented to them.

The longest conversations were often from participants with mismatched expectations for
Scones, who repeated commands: “Draw a cloud in the upper left corner with three round
edges., Change the cloud to have 3 round edges., Draw only 3 round waves around the edge of
the cloud., . . .Draw a snowman to the left of the table., . . .Draw a circle touching the middle
circle., . . . ” (P23). This trial reflects the need for Scones to make clearer expectations of
input to users. P23’s 16-instruction session contains expectations for the system to mod-
ify low-level aspects of the sketches (changing the number of edges in the cloud), exhibits

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 74

class confusion (snowman and circles with shovel), and has mismatched concept abstraction
levels (drawing a shovel versus constructing a shovel from visual primitives, i.e., circles). A
potentially simple mitigation method for these hurdles would be to introduce more detailed
tutorial content for a wider deployment of Scones.

Scones as a Tool for Collecting Iterative Sketching Data The results of our study
show significant potential for Scones to be used as a Game With a Purpose (GWAP) [1]
to collect sketch critiques (natural-language-specified modifications to an input sketch to
match a target sketch) and user-generated sketch strokes. 26 (52% of) participants redrew
objects in their sketches when prompted (µ = 0.98, σ = 1.19), and participants who redrew
objects expressed their appreciation for this feature: “I liked that I could redraw the image”
(P48); “I liked being able to draw parts myself because it was relaxing and I felt I was more
accurate” (P11). Most participants who redrew objects also kept output from Scones in their
final sketches, reflecting Scones’s potential as a mixed-initiative design tool. Redrawing was
voluntary in our task, and these results suggest Scones may be useful for collecting user-
generated sketches in addition to natural language critique in a GWAP. Further motivating
this application, 14 participants described the task as “fun” in open-ended feedback, e.g.,
“This was a very fun task” (P23); “[I liked] Playing the game and describing the drawing.
It was fun!” (P42).

5.4.3 Participants’ Feedback for Improving Scones

Participants offered suggestions for how they would improve Scones, providing avenues
for future work.

Object Translations and Spatial Relationships A major theme of dissatisfaction
came from the limited ability of our system to respond to spatial relationships and
translation-related instructions at times: “It does not appear to understand spatial relation-
ships that well” (P35); “you are not able to use directional commands very easily” (P11).
These situations largely originate from the CoDraw dataset [98], in which users had a re-
stricted view of the canvas, resulting in limited relative spatial instructions. This limitation
is discussed further in Section 5.5.3.

To improve the usability of Scones, participants suggest its interface could benefit from
the addition of direct manipulation features, such as selecting and manually transforming
objects in the scene: “I think that I would maybe change how different items are selected
in order to change of modify an object in the picture. (P33); “maybe there should be a
move function, where we keep the drawing the same but move it” (P40). Moreover, some
participants also recommended adding an undo feature, “Maybe a separate button to get
back” (P31), or the ability to manually invoke Scones to redraw an object, “I’d like a way
to ask the computer to redraw a specific object” (P3). These features could help participants

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 75

express corrective feedback to Scones, potentially creating sketches that better match their
intent.

More Communicative Output Some participants expected Scones to provide natural
language output and feedback to their instructions. Some participants asked questions di-
rectly to elicit Scones’s capabilities: “In the foreground is a table, with a salad bowl and a jug
of what may be lemonade. In the upper-left is a roughly-sketched sun. Drifting down from the
top-center is a box, tethered to a parachute., Did you need me to feed you smaller sentences?
. . . ” (P38). P23 explicitly suggested users should be able to ask Scones questions to refine
their intentions: “I would like the system to ask more questions if it does not understand
or if I asked for several revisions. I feel that could help narrow down what I am asking to
be drawn”. Other participants used praise between their sketching instructions, which could
be used as a cue to preserve the sketch output and guide further iteration: “. . .Draw an
airplane, Good try, Draw a table . . . ” (P1); “Draw a sun in the upper left corner, The
sun looks good! Can you draw a hot air balloon in the middle of the page, near the top?
. . . ” (P15). Providing additional natural language output and prompts from Scones could
enable users to refine Scones’s understanding of their intent and understand the system’s
capabilities. A truly conversational interface with a sketching support tool could pave the
way for advanced mixed-initiative collaborative design tools.

5.5 Limitations

5.5.1 Underspecified Masks

While mask conditioning effectively guides the Object Sketchers in creating sketches with
desired configurations, they can be underspecified for the poses exhibited by objects of some
classes. As shown in Figure 5.14, the mask of the right-facing body of a sitting cat can be
similar to the face of a cat. The current mask generation algorithm is also not able to capture
all the curves of the snake, resulting in ambiguous sketches of snakes. Future iterations of
Scones can improve on the mask generation algorithms with more advanced techniques.

5.5.2 Limited Variation of Sketches

Scones currently supports a limited number of sketched object classes and poses due to
its discrete representation of object configurations used by the Scene Composer. Future work
should explore models conditioned on continuous representations of classes and poses from
word embeddings for a flexible number of object classes. Moreover, Scones currently supports
only limited stylistic modifications (i.e., it may not support ‘sketch the leaves on the tree
with more details’). A future iteration of the Scene Composer could output a continuous
embedding that contains objects’ class, pose, and stylistic information to fully support a
wide range of sketches.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 76

Clipart Mask Generated Sketches

Figure 5.14: Sketches generated by the Object Sketcher with underspecified masks of the
Snake and Cat classes.

5.5.3 Data Mismatch Between CoDraw and Target Task

There are differences between the task protocol used to collect the CoDraw dataset and
the user interactions in Scones. The conversation in CoDraw only offers the Teller one chance
to ‘peek’ at the Drawer’s canvas, which significantly decreases the number of modifications to
existing scene objects. As a result, Scones performs well at adding objects of correct classes at
appropriate sizes, but is not as advanced at modifying or removing objects. Future work can
explore data augmentation techniques, such as super-sampling randomly-perturbed rounds
with modifications, or adding removal rounds that mirror the addition of scene objects, to
improve the ability of Scones to handle these tasks.

5.6 Towards End-to-End Generation

Two of the main limitations of Scones mentioned in Section 5.5.2—underspecification of
masks and limited fine-grained variation of sketches—originates from its two-stage system
design and that these stages were not trained end-to-end. As a result, modifications to
details of the scene objects are constrained by the representation of objects that are shared
between the Scene Composer and the Object Sketchers, which currently only includes several
discrete sizes, orientations, masks, and aspect ratios beyond continuous positions for each
object.

Towards advancing Scones to become truly flexible in considering and editing objects at
the stroke and point level, we conducted additional research in an attempt to train Scones-
like models in an end-to-end manner. We collected TranSketch, a new dataset of text-based
fine-grained modifications for the tree class, and combined it with CoDraw [98] and Quick,

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 77

Draw! [91] datasets at the stroke level and investigated behaviors of Transformer models
trained directly to generate new strokes given all existing strokes in the original scene and
text tokens. In this section, we describe in detail the development of the dataset, models,
and metrics, and present some baseline results for this task. We hope that this investigation
can serve as a strong starting point for future research towards end-to-end sketch generation
and modification based on natural language critique.

5.6.1 Dataset Development

While there are no end-to-end scene modification datasets currently publicly available,
we synthesized such a dataset in two steps to mimic partial features of this dataset. We first
collected TranSketch, a new dataset that consists of text descriptions of pairs of individual
tree sketches. This creates some data examples in our final combined dataset that needs to be
modified at the stroke level. We then created the sketched scenes by taking the composition
of CoDraw, and placing various Quick, Draw! sketch objects onto the canvas according to
that composition. We finally combined all the strokes in a single long sequence for both the
original and the final scene to enable end-to-end scene sketch modification.

TranSketch Dataset

The TranSketch dataset contains unique pairs of sketched trees from the Quick, Draw!
dataset. Each individual tree is encoded in the same pen-event-based vector format as in
Quick, Draw!, and each pair consists of a source sketch and a target sketch. These pairs are
presented to crowd-workers on Amazon Mechanical Turk, and the task for crowd-workers is
to come up with a short text description summarizing the changes required to modify the
source sketch to the target sketch for each sketch pair. The source and target sketch differs
at the stroke level but are both trees, hence representing a semantically complex sketch
modification task.

We collected 20,032 triplets of a source sketch, a target sketch, and a text description.
Each text description in the dataset contains 13.2 words on average, and we filter out outlier
descriptions that are either too short or too long. This dataset was primarily investigated
by my mentee Luming Chen, and we refer interested readers to a detailed description of this
dataset in Luming’s master’s thesis [23].

Combining CoDraw, TranSketch and Quick, Draw Datasets

To build the final dataset for our end-to-end task, we combine scene compositions from
the CoDraw dataset used to train the original Scene Composer in Scones, and the object
sketches in both the TranSketch dataset and the Quick, Draw! dataset.

The first step is to pre-process the object sketches. We additionally filter out object
sketches that are of low quality and/or are not in suitable poses for composition (e.g., a
dog sketch that only depicts the head but not the entirety of the dog). To perform filtering

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 78

on these criteria, we utilize a pre-trained classification model on all 345 classes of sketches
available in the Quick, Draw! dataset. To identify sketches with correct poses, we first
hand-labeled a small number of sketches from the particular class of concern to be examples
of either ‘accepted’ or ‘rejected’ sketches. We then compute model embeddings at the penul-
timate layer for all of these labeled sketches, and filter out sketches that have embeddings
that are closer on average to the ‘rejected’ sketches than the ‘accepted’ sketches.

Then, to further filter out low-quality sketches, we consider the classification probability
as a proxy for the recognizability and sketch quality of the sketches. We pick the sketches
that are both within the top-N (N being the number of sketches needed from that particular
class in the CoDraw dataset) classification probabilities from each class and have correct
poses based on the filtering procedure above.

After performing these filtering steps, we use compositions from the CoDraw dataset to
resize and position sketch strokes on the canvas. Using notations from Section 5.1.1, we
expand each object (o) to not only be a fixed-length vector representation, but a sequence
of sketch stroke events (q1...n) that is used in Section 5.1.2. For each sketched scene, we
randomly sample a single sketched object for each type of objects, meaning that the dog
sketch in the original scene, for example, would use the exact same strokes as the dog
sketch in the final scene (note that the strokes, however, can be resized based on object
specifications). We then position and resize the strokes to maximally but completely fit into
each object’s bounding box in the corresponding scene. This forms a longer final sequence
representation of the data such that each stroke is a single unique time-step in the entire
scene, as opposed to in a single object. The text representation remains the same in this
new dataset, except with shorter padding at the beginning to reflect the smaller size of the
pen-event data format of the strokes. We reduce the number of turns (n) to a single turn to
fit into common context-window sizes of Transformers in our experiments. We will formally
define these transformation steps in the following Section 5.6.2.

We also randomly shuffle the orders of strokes in the input sketch, to remove any bias
on the orders of drawing by users on the input side. On the output side, we explore a
few random and non-random ordering options for model-generated strokes. We will further
discuss these order variants of our data in Section 5.6.3.

For each composition in our final dataset, we sampled 10 different object sketches, result-
ing in a final dataset with 122,816/42,624/42,624 examples for train/validation/test splits.
Figure 5.15 shows some examples from this final combined dataset (along with the predicted
scenes by our model).

5.6.2 Task Formulation and Model Architectures

We formally define the learning task and training objectives in this section. As mentioned
in Section 5.6.1, each input data example consumed by the model now consists of the full
sketch sequence of the entire scene. We first update our index notation of the strokes such
that it additionally includes the object index. Each sketched object Q(i,j) is now represented

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 79

by q(i,j,1)...(i,j,h(i,j)), with h(i,j) being the length of strokes of j-th sketched object at round i,
and would correspond to the symbolic object o(i,j).

We similarly have to reconcile text and sketch embeddings as inputs. We base our defi-
nition on Equation 5.1, but we now update the stroke representation instead so it becomes:

q′(i,j,k) = [q(i,j,k),0(300)] (5.7)

All strokes from each object within a single scene are then combined and concatenated
to represent the full scene. We can re-index the strokes from 1 to h(i,j) (which corresponds
to the original object o(i,j)), to 1 to hi =

∑
j h(i,j) to include combined lengths of all objects’

strokes. The sketches of the entire scene now become q′(i,1)...(i,hi)
. Note that the new index

can be ordered in various ways, meaning that the strokes in the new scene can be drawn in
different orders which we will discuss in detail in Section 5.6.3. With this new notation, we
define the new model inputs and outputs to be:

S ′
i = [q(i,1)...(i,hi)] = Transformer([q′(i−1,1), ...q

′
(i−1,h(i−1))

, t′(i,1), ...t
′
(i,li)

, q′(i,1)]) (5.8)

In this experiment, we also only consider the previous turn (n = 1 according to the
original notation) due to limitations of computational resources which affects the maximum
context size in the Transformer that we were able to support.

To train our model, since the output now is in the raw stroke format that was defined
by the Object Sketchers, we use the same negative log-likelihood loss function:

L = − log p(S ′
i) =

hi∑
k=1

− log p(q(i,k)) (5.9)

The likelihood P is defined by either Gaussian Mixture Models (GMMs) or categorical
distributions that we parameterized with the specific Transformer’s outputs. This GMM
paradigm is the same as the Object Sketcher and prior work in sketch modeling, and was
described in detail in Section 2.4. Each of these choices is considered with either continuous
or discrete coordinates mentioned in Section 5.6.3.

The Transformer architecture we used in this set of experiments is a Transformer with
masked self-attention similar to GPT-2 similar to the Scene Composer (Section 5.1.1). How-
ever, we scaled up the Transformer to have 512 hidden units and 8 attention blocks and 8
attention heads, since this model needs to additionally handle the raw sketching mechan-
ics that were previously handled by the Object Sketchers. There are 10 distributions in
the Gaussian Mixture Models we used (only applicable to models with continuous coordi-
nates). The model was trained using an Adam Optimizer [99] with an initial learning rate
of lr = 6×10−4, and had a linear warm-up and decay schedule similar to that of the original
Transformer model [184]. The model was trained on our newly compiled dataset for 125
epochs in which the validation loss converged by the end of training.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 80

5.6.3 Task Variants

We have conducted experiments on several variants of the task. These variants primarily
differ by the order of input and output strokes given that there is ambiguity on how strokes
of different objects are concatenated into a single long sequence that represents the sketch
scene. The variants also differ by the representation of geometric coordinates of the pen
events.

We first consider different input and output orders of pen events in our model variants’
learning task. For all variants, we group pen events into strokes, such that all pen events
(time-steps) within the same strokes are ordered identically as they were in individual object
sketches. For input strokes of all variants, we first randomly shuffle the order of strokes
so that there are no prior assumptions on how users might draw various strokes of various
objects in the scenes. We then experimented with several different orders for output strokes.
The first order we explored is obtained by first grouping the strokes by their original objects,
and then sorting the objects by their y coordinates, finally tie-breaking by their x coordinates.
This corresponds to the procedure where top-left objects are drawn first before objects at
the bottom right of the canvas. We also experimented with an order where the objects are
randomly shuffled, but the orders of strokes within each object were preserved.

We then experimented with various representations of pen event coordinates: absolute
coordinates with reference to the top left of the canvas, and relative coordinates with refer-
ence to the end of the previous pen events. Note that in all variants, the absolute coordinates
are provided as additional information to the model regardless of the actual coordinate rep-
resentation.

We further experimented with discrete and continuous coordinates, and trained models
with continuous coordinate data with GMMs and models with discrete coordinate data with
categorical distributions.

5.6.4 Metrics

To effectively measure task success, we adapted a well-known metric to our context to
ensure both the nature of our task is reflected, and this metric is compatible with various
stroke output formats of our model variants. We additionally prefer metrics that are ex-
tensible to future pixel-based models, given the high performance of pixel-based, general
text-to-image methods such as DALL-E [150, 151] and Imagen [165].

Our metrics are centered around the Chamfer Distance, which given a set of points to
be measured and a set of reference points, for each point in the sequence to be measured
we pair it up with the reference point that produces the least Euclidean Distance to that
particular measured point. We then take the average over all measured points’ minimum
Euclidean Distances to be one measurement value. This process is repeated by swapping
the reference and measured sequence. The final metric value is the sum of the two values in
the two measurements. In our application, when we consider the ground-truth pen events

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 81

(Q = {q}) and the predicted pen events (Q̂ = {q̂}), the definition of Chamfer Distance would
be:

Chamfer(Q, Q̂) =
1

|Q|
∑
q∈Q

min
q̂∈Q̂

d(q, q̂) +
1

|Q̂|

∑
q̂∈Q̂

min
q∈Q

d(q̂, q) (5.10)

with d being the distance function. This is the Euclidean Distance between the absolute
coordinates of the end-points of the two pen events in our computation in our case.

At a high level, this metric represents how well the reference points are represented by the
measured points and in the opposite direction symmetrically. We extend this computation
to two choices and aggregations of Q and Q̂. We compute Chamfer Distance when Q and
Q̂ are either 1) all pen events in the sequence, or 2) all starting points of the strokes in the
sequence. We also aggregate these values differently across the sequence, including taking
the average value per point and the average value per stroke.

5.6.5 Baseline Results

Quantitative Metrics

For each of the proposed task variants in Section 5.6.3, we compute each aggregation
variant of the metrics described in Section 5.6.4. Table 5.2 summarizes the metric values on
the test set of our proposed dataset in this task. We found that the model that uses Discrete
and Relative coordinates, with a fixed, Sorted output order of the predicted strokes (i.e.,
predicting the top left object first) yields the best Chamfer Distance in all aggregation
variants. With Chamfer Distance at 0.0784 when aggregated and averaged across all points
in the predicted and ground-truth pen event coordinates, this model outperformed other
model variants with continuous and absolute coordinates and those with a random output
order.

Table 5.2: Chamfer Distances for end-to-end sketch critique, lower is better.
D - Discrete Coordinates, C - Continuous Coordinates,
A - Absolute Coordinates, R - Relative Coordinates
N - RaNdomized Output Objects, S - Sorted Output Objects

Chamfer -
All Points

Chamfer -
Stroke Start
Points

Chamfer - Average by
Stroke

C + R + S 0.176 0.275 0.159
D + R + N 0.174 0.263 0.164
D + A + S 0.258 0.296 0.217

D + R + S 0.156 0.242 0.148

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 82

We hope all statistics of the aforementioned model variants that we included in Table 5.2
can serve as baselines for future end-to-end scene sketch modification models. We would also
like to acknowledge that the usage of Chamfer Distance allowed us to fairly compare models
that output continuous and discrete coordinates, given that they are trained with different
losses which can yield significantly different values.

We additionally split the set of evaluated points into points that are ‘copied’ from the
original scene belonging to objects that already exist in the original scene (note that these
points can move or scale in the new scene, and these include the ‘TranSketch turns’ which
contain trees in the original scene), and points that are ‘added’ which did not exist in the
original scene. However, since we only have this point partition knowledge for ground-truth
points, we are only able to compute an asymmetric part of the Chamfer Distance outlined
in Equation 5.10. We define this as partial Chamfer Distance in the following equation:

Partial Chamfer(Q, Q̂) =
1

|Q|
∑
q∈Q

min
q̂∈Q̂

d(q, q̂) (5.11)

Table 5.3 shows the results separately for the ‘copied’ and ‘added’ points based on the
Partial Chamfer Distance defined above. We observe that the discrete model is better at
copying points, while the continuous model is better at generating new points. Therefore, we
believe one promising future research direction is to combine the strengths of a continuous
model in creating new objects with the accuracy of a discrete model in copying original
objects. We can potentially achieve this by introducing the inductive bias in the continuous
models’ Gaussian distributions, into the discrete model by changing its target categorical
distributions to be Gaussian-like.

Table 5.3: Partial Chamfer Distances (from ground-truth to predicted points) for copy and
added objects, lower is better. Both models used Relative coordinates and Sorted output
object order.

Partial Chamfer - All
Points - Copy

Partial Chamfer - All
Points - Add

Continuous Coordinates 0.0558 0.116
Discrete Coordinates 0.0540 0.141

We finally analyze Chamfer Distances separately for examples that correspond to the new
TranSketch dataset and the other examples that correspond to the original CoDraw dataset.
Recall that the examples in the TranSketch dataset require stroke-level modifications of
tree objects in the scenes based on text descriptions. Table 5.4 shows the quantitative
results separately for TranSketch and non-TranSketch examples. We observe that TranSketch
examples appear to have significantly lower Chamfer Distance compared to other examples.
We believe this might be related to the fact that the positions of trees are already defined

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 83

in the original scenes in TranSketch turns, and that the only task of the model is to redraw
the tree at the same location but with different strokes. We believe such statistics reflect
that additional metrics might be required to further understand stroke-level modification
performance. At the very least, however, an effective evaluation might require researchers
to separately compare TranSketch and non-TranSketch examples similar to this part of the
analysis.

Table 5.4: Chamfer Distances for TranSketch rounds and Non-TranSketch rounds, lower is
better. Both models used Relative coordinates and Sorted output object order.

Chamfer - All Points -
TranSketch

Chamfer - All Points - Oth-
ers

Continuous Coordinates 0.137 0.193
Discrete Coordinates 0.0864 0.186

Qualitative Exploration

We also reflect qualitatively the performance of our models in this end-to-end sketch
modification task. Figure 5.15 shows various examples that include original scenes, ground-
truth target edited scenes, and the predictions made by our model. We included the ground-
truth scene to demonstrate the resulting scenes in this dataset generated by our proposed
procedures in Section 5.6.1. The model that performed the prediction in Figure 5.15 was the
best-performing variant quantitatively—the model with discrete and relative coordinates,
and a sorted output order. In a), b), and c), we see that the model is capable of generating
individual objects at appropriate positions, with the sun at the top right in a) and the cloud
on the top left for b). We additionally see that the model is able to handle more complex
sketches with many strokes (i.e., pen lifting and re-drawing again) with the raindrops in the
rain-cloud in c) differentiated against a simpler cloud shown in b). In d) and e), we observe
the model is able to copy original scenes with high accuracy, while adding the appropriate
new classes of objects such as tents, tables, and trees.

Finally, in f), we observe that the model is sometimes able to handle stroke-level mod-
ifications for trees that we extracted from the TranSketch dataset. This example refers to
the stroke-level modification task where the model needs to make the trunk skinnier and the
leaves less hand-like, and we observe the model was able to make such stroke-level changes
in the predicted scene in this case. Nevertheless, we have also observed that the model failed
to follow more complex text instructions in other cases, prompting future research on the
consistency of modeling correspondences between fine-grained text and strokes.

Since all of these scenes are consumed and generated from scratch in an end-to-end
manner by a single Transformer with masked self-attention, with no explicit or hand-crafted
copying mechanisms, this reflects the current ability of our trained model to handle sketches

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 84

'right top corner big sun .
orange part gone'

Current Scene Modified SceneText Instruction

Current Scene Modified SceneText Instruction

right top corner big sun
. orange part gone

ok upper left corner
medium cloud partially
cut off

a)

b)

medium rainy cloud on
center left , top a little
hide .

medium picnic table at
bottom in middle

c)

d)

big tent facing left .

for the tree, the trunk
needs to need skinnier
and the leaves less
hand like

e)

f)

Ground-truth Scene

Figure 5.15: Generated and ground-truth scenes for the end-to-end sketch modification task.
The end-to-end model is able to copy sketched objects from the original scene, and modify
and add sketched objects into the output predicted scene.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 85

of various concept classes and to copy original scene objects. This also shows the potential
for Transformers to support more complex, stroke-level edits of scene sketches shall the data
become available in the future.

We additionally qualitatively review the correspondence between our primary metric—
Chamfer Distance, and the similarity between predicted and ground-truth sketched scenes.
Figure 5.16 shows two example pairs of predicted and ground-truth sketched scenes, one
with a low Chamfer Distance (Figure 5.16a) at 1.40 × 10−3, and another one with high
Chamfer Distance (Figure 5.16b) at 0.449. The scene pair in Figure 5.16a was taken from
our preliminary model which only learns to copy exactly from the ground-truth scene. We
observe a high degree of similarity between the copied scene and the original scene in this case,
and this is reflected by the low Chamfer Distance. Conversely, we observe in Figure 5.16b
that when the model mispredicts and leaves one important object (the tree) off the scene,
the Chamfer Distance between this pair of scenes is high. This reflects a reasonable ability
of Chamfer Distance to represent perceptual scene similarity, especially when some objects
and/or strokes are obviously missing.

(a) Chamfer Distance = 1.40× 10−3 (Low) (b) Chamfer Distance = 0.449 (High)

Figure 5.16: Predicted and ground-truth scenes with (a) low and (b) high Chamfer Distances.

5.6.6 Key Research Challenges

Through developing these baseline models for end-to-end sketch modification, we reflect
on several key research challenges that we believe future research in this area could focus on.
The first important challenge is the appropriate re-use of original strokes in the scene. We
observe that some models have encountered difficulty in even copying over existing sketch
strokes that do not need to be modified. While we intentionally shuffle the input stroke orders
to reflect realistic use-cases that users might sketch the scene in any orders, this creates great
difficulty for some models (especially the model that uses continuous coordinates) to copy
over identical objects—some strokes were missing, and others were repeated in the output
scenes generated by these models. This issue becomes even more apparent when the output
scenes do not need an exact copy of certain objects, but require resized and/or moved copies
of existing sketched objects from the original scenes.

CHAPTER 5. SCONES: ITERATIVE SKETCH AUTHORING WITH TEXT 86

Another key research challenge is related to the original limitation of the CoDraw dataset,
which was unbalanced with various classes of objects and consists of significantly more turns
that add new objects into the scene than turns that only move or edit existing objects in
the scene (discussed in detail in Section 5.5.3).

Finally, we believe while Chamfer Distance is a good starting point to fairly compare
models with various architectures and output formats on this task, we believe additional
normalization would be helpful across scenes with different numbers of points: scenes with
higher numbers of ground-truth points are denser, hence it would be easier for even randomly
plotted points to achieve low Chamfer Distances. A potential normalization can use sets of
randomly sampled points of similar lengths to the ground-truth points as prediction baselines
to more fairly evaluate similarities between predicted scenes and ground-truth scenes.

87

Chapter 6

Words2ui: User Interface Prototype
Generation and Retrieval from Text

Beyond building systems to support sketching for non-experts, we believe the benefits of
deep-learning (DL) models can be extended to building systems that support professional
design domains. Our first attempt is to support user interface (UI) design, a complex process
that requires significant domain-specific expertise gathered from years of education and ex-
perience. One critical step of this process is to produce low-fidelity mock-up prototypes from
high-level specifications of requirements (as described in Section 2.1.2 and prior literature [5,
134, 145, 189]), and this step often involves professional designers dedicating extensive time
and effort. Many small-scale app developers and amateur designers, however, might not
have the resources and/or expertise for such a design task, leading to lower-quality end
products. While producing these mock-ups from scratch might be difficult, specifying high-
level requirements for these UIs in natural language requires less design expertise. These
specifications might even already exist in these practitioners’ current development processes.

As such, we believe computational systems that can create concrete UI design mock-ups
guided by high-level text descriptions can greatly benefit UI design practitioners. Moreover,
these computational systems can be helpful in communicating and discussing designs with
clients and/or other non-experts, as the generated design artifacts can be useful for them
to ground their discussions on (see Section 2.1.3 for a detailed discussion on sketches’ role
as a communication medium). Producing diverse sets of UIs relevant to specifications still
takes significant effort and time even for professional designers, and such a system can help
reduce professional designers’ workload, allowing them to make more important decisions in
the design process.

The first step towards such a system is developing methods that can robustly, coherently,
and diversely generate plausible UI design mock-ups from brief text descriptions about the
desired UIs. Coupling recent advancements in the DL community on effective text-to-image
retrieval and generation models with large datasets of pairs of UIs and captions [186], we

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 88

introduce two DL-based retrieval and generation models1 that are first of their classes to be
able to create UI mock-ups based on a wide range of natural language descriptions (see also
a brief overview in Figure 6.1):

• We introduce UI Generator, the first deep generative model that is able to generate
UI mock-ups from scratch with only a high-level text description about the desired UI,
and a set of post-processing techniques to filter and present high-quality UI designs to
users.

• We introduce Multi-modal Retriever, the first DL model that learns cross-modality
correspondence and latent representation to retrieve design examples from a large UI
corpus using high-level text descriptions about the desired UIs.

In this chapter, we first describe our methods towards developing each of these models.
We then developed a set of benchmark metrics to better assess this novel task effectively
and quantitatively, especially when comparing to existing and future approaches. We then
present quantitative and qualitative results of our generative and retrieval models. Towards
the end of this chapter, we report feedback provided by experts after inspecting artifacts
generated by our system. We additionally outline several applications that we envision to
support in the future based on this feedback.

“sign in page”

User-specified
Text Description

Embedding
Space Retrieved UIs

(Vector graphics)

BERT Vectors

Nearest
Neighbour

ti tj

Dataset Pair

Generative Deep
Neural Network

Generated UIs

Deep-neural-network
Embedding Spaces

Retrieved UIs

Text-UI
Dataset

Figure 6.1: High-level overview of the two proposed retrieval and generative methods for
creating UI mock-ups from text descriptions with deep neural networks.

6.1 UI Generation and Retrieval Methods

In this section, we describe our two proposed methods towards generating and retrieving
UI mock-ups from text descriptions in detail. Figure 6.2 illustrates the commonalities and
differences between the two methods. The UI Generator is a generative model that learns

1Part of the work presented in this Chapter was presented as a workshop paper at the Computational
UI workshop at CHI 2022 [79].

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 89

to synthesize UIs entirely from scratch only from high-level text descriptions. The Multi-
modal Retriever includes a dual-encoder [140] that is capable of processing (embedding)
a text description provided by a user into a common embedding space that is populated
with both text and UI embeddings. We can then directly retrieve the nearest UIs in this
space. We describe and discuss different processes of dataset selection and processing, model
architectures, training configurations, and resources required by each of these methods.

Multi-modal
Retriever

“welcome page”

User-specified
Text Description Embedding

Space Retrieved UIs

(Vector graphics)

1) TextEncoder

Nearest
Neighbour

li ri

Text-UI Dataset
(UI)

Generated UIs

“welcome page”

1) Transformer + GMM

User-specified
Text Description Generated UI

Elements

(Filtering)

2) Filtering and Rendering

(Snap to grid) (Vector graphics)
[0.50, 0.08, 0.27, 0.06, “text”]

UI
Generator

2) Rendering

2) Rendering

Text-only
Retriever

“welcome page”

User-specified
Text Description Embedding

Space
Retrieved UIs

(Vector graphics)

1) Pooled BERT Vectors

Nearest
Neighbour

ti tj

Text-UI Dataset

Dataset Pair

(text)

Figure 6.2: Side-by-side comparison of overall workflows of each of our proposed methods.

6.1.1 Datasets

While both methods use different modalities and features for training, they all commonly
use the screen2words dataset2 [186], a large-scale dataset with more than 112,000 high-level
text descriptions corresponding to detail attributes and screenshots of more than 22,000 UIs
in the RicoSCA dataset [117]. To our knowledge, it is the only large-scale dataset that
contains pairs of high-level text descriptions and UI examples. These pairs are required by
our target task of text-based creation of UI mock-ups.

We used the original dataset splits with 15,7123/2,364/4,310 UIs in the training/
validation/test sets. The UIs in each of the splits are captured from different apps. Each
UI is captioned by five crowd-workers, producing five English sentences with under 10 text
tokens. We also embed text descriptions using a pre-trained BERT model [39]. We extract
one BERT embedding ti for each token ei in a text description sequence.

2https://github.com/google-research/google-research/tree/master/screen2words
3The original screen2words training set contains 15,743 UIs. However, there are 31 UIs that we were

unable to process, and hence we excluded them in our training set.

https://github.com/google-research/google-research/tree/master/screen2words

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 90

6.1.2 UI Generator

Generative models are central to our investigation because they can learn from existing
designs to synthesize novel UIs. These generated UIs are potentially unconsidered by human
designers based on unseen and flexible text descriptions. This ability of a successfully trained
text-to-UI generative model represents a deep understanding of the design space and can
enable new applications for UI Design. Therefore, we built Transformer-based generative
models to generate UI element attributes directly from text descriptions.

Additional Pre-processing

While each UI example in the combined RicoSCA and screen2words datasets includes
detailed attributes of all UI elements, most prior work uses a more semantically meaningful
subset of UI elements with additional annotations from [122]. This subset reduces the task
difficulty yet retains the most meaningful part of the UI generation task, so we adopt this
common workflow. These UI elements are then flattened within each UI by sorting them
based on their approximate Y coordinates, and tie-broken with X coordinates. We also filter
out UIs with more than 128 elements, like in [60].

Task Formulation and Model Training

Once we have pairs of clean and sorted UI element attribute sequences and text descrip-
tions, we formulate the machine learning task as follows. Our model takes k BERT vectors of
a text description t1...k and generates n UI elements u1...n. Each UI element is represented by
combining normalized X and Y coordinates and width and height values [x, y, w, h] relative
to the screen dimensions, with a one-hot vector e(c) that is 1 at the index of the seman-
tic class number that the UI element belongs to, and 0 anywhere else. This gives us one
ui = [xi, yi, wi, hi, e

(c)
i] vector for each UI element.

We can then consider this problem as a typical sequence-to-sequence translation problem
where we ‘translate’ a sequence of text tokens to a sequence of UI elements. We explore two
Transformer-based methods for UI elements to interact with input text tokens.

The first method is implemented as a Transformer Encoder-Decoder model, where text
descriptions t are encoded with an independent, separate set of encoder weights into final
layer embeddings (one for each text token). Similarly, the UI elements are also decoded using
a decoder exclusive to UI element inputs u, but they interact with the encoder embeddings
using cross-attention at each attention block. This approach is more common in sequence-
to-sequence modeling problems, especially those that operate on two separate modalities
such as image captioning. Figure 6.3 illustrates this model architecture variant in detail,
including the employed pre-processing and loss computation steps.

The second method is implemented as a Transformer decoder-only model, where text
token inputs t are prepended to UI element inputs u (after passing through embedding
layers specific to UI or text) and masked attention is applied at each time-step. In this case,
all inputs are modeled with the same set of weights, and each attention block has access to

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 91

UI Example

[-, -, -, -, “start”]

Filtered + Sorted UI Element Sequence
[x, y, w, h, class]

“sign in page”

c1 c2 c3

[0.50, 0.19, 0.77, 0.29, “placeholder”]

[0.50, 0.19, 0.73, 0.06, “image”]

[0.50, 0.89, 0.77, 0.07, “button”]

...

Text Description

u1

u2

u3

un-1

Transformer
Decoder
(64 x 6)

Transformer
Encoder
(64 x 6)

t1
t2

t3
Cross-Attention

p(u2)GMM

GMM

GMM

GMM

p(u3)

p(u4)

p(un)

Generated
Distribution

u2

u3

u4

un

Loss Computation
L(Transformer)

Full Transformer + GMM

Text token
BERT Vectors

BERT Embedding

Training Model Architecture

Ground-truth next
UI element

Figure 6.3: Model architecture of the UI Generator (Transformer Encoder-Decoder variant).

all intermediate representations of both text and UI element inputs. This approach is similar
to language modeling tasks that are typically used to model data in a single modality [16],
but have recently also found success in cross-modality modeling tasks [151].

While we can train the decoder to generate exact coordinates and classes of UI elements,
a generative model commonly outputs a distribution instead of a specific token in the inputs’
format for each time-step. Because each UI element has continuous attributes x, y, w, h and
a discrete attribute e(c), we split the output of the decoder so that one part of it is used
to parameterize distributions for continuous attributes while the other is to parameterize
distributions for discrete class attributes. For the first part that parameterizes the distribu-
tion of continuous attributes, we explore two options: 1) Gaussian Mixture Models (GMM),
which forms a Mixture Density Network [13] with the Transformer (described in detail in
Section 2.4); 2) categorical distribution with discretized coordinates. The other part of the
outputs is treated as logits of a categorical distribution of the UI element class.

At a high level, this allows us to generate a distribution of output UIs instead of a single
prediction. This is especially important for our problem because the text descriptions are
often underspecified—a single text description, such as ’login page’, can correspond to many
potential candidate UI designs. Overall the Transformers generate a probability distribution
of each predicted output UI element:

p(ui) = p(ui|θ), ui = [xi, yi, wi, hi, e
(c)], θ = Transformer(u1...i−1, t1...k) (6.1)

To train these generative models, we minimize the total negative log-likelihood of the ground-
truth UI element sequence given the probability distribution above (note that we don’t have
to train p(u1) as it is always the start token).

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 92

L(Transformer) = −
n∑

i=2

log(p(ui)) (6.2)

This is a typical training process for generating continuous, low-dimensional attributes
with a sequence model. The specific definition of the likelihood p(ui) depends on whether
discrete or GMM-based parametrization is used to model the continuous positional attributes
of the UI elements. A detailed description of the optimization process for GMMs can be
found in Section 2.4, and discrete distributions are optimized with typical cross-entropy loss
functions (equivalent to optimizing Equation 6.2 directly with corresponding model outputs
as likelihoods).

We choose hyperparameters (dmodel ∈ {128, 64, 32}, nlayers ∈ {6, 4}) of our models based
on performance on the validation set. We trained our models using an effective batch size
of 1024 with an Adam optimizer with a starting learning rate of 10−3 and we manually
decreased it to 10−4 when the validation loss plateaued. We implemented our model using
Trax and trained them on Google Cloud TPU v3 with 32 cores.

Sampling UIs

Once a generative model is trained, we can generate all the elements on a UI given a
text description autoregressively. At each time-step we feed the Transformer all previously
generated elements along with the text description, and sample the Transformer for the next
predicted UI element ûi from the distribution p(ui|Transformer(u1...i−1, t1...k)). We repeat
the process until the model outputs a special token of EOS to indicate the end of the genera-
tion process. For our methods that model continuous attributes with GMMs, we use greedy
sampling and apply the temperature parameter of τ = 1.0 or 0.1 to both the categorical
distribution of UI element classes (by rescaling the logits) and the GMM distribution (by
rescaling the variances). This temperature parameter controls the stochasticity of the model
that translates to diversity of generated UIs for a given description. For models that dis-
cretize all UI attributes, we use nucleus sampling with cutoff p = 0.9 for a fair comparison
with prior work. The sequences of numeric and categorical attributes of the generated UI
elements are taken as final outputs of the model.

6.1.3 Multi-modal Retriever

While generative models enable novel designs to be generated, one important interaction
that is similarly important in the UI design process is to search and find inspirational designs
from large corpora of real designs [70, 110, 157]. This allows designers to understand the
design landscape and comparatively evaluate their design against prior art. Towards this
goal, we developed a Multi-modal Retriever that enables designers to retrieve existing UIs
by providing text descriptions. This method embeds both text descriptions and UIs into a
shared embedding space using a contrastive-learning method, and then performs retrieval

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 93

across the modalities directly in this space. To our knowledge, this is the first cross-modality
text-to-UI DL retrieval model.

Investigating cross-modality retrieval also aids in the evaluation of generative models
that we developed in Section 6.1.2. This is because a crucial part of evaluating text-to-
UI task success is measuring the relevance between the generated UIs to their input text
descriptions. However, this correspondence is hard to be directly quantified with simple
rules or metrics. Hence, a cross-modality retrieval model that learns correspondence and
distances between artifacts in the two modalities (text and UIs) needs to be developed and
used to evaluate text-UI relevance of the generative models. Some of the most established
metrics in text-to-image generation (e.g., R-precision) similarly require the development of
a text-image cross-modality retrieval model [140].

Additional Pre-processing

We included a large amount of information from both the text descriptions and the
paired UIs from the screen2words dataset to obtain cross-modality embeddings that encode
more nuanced and detailed UI knowledge in the Multi-modal Retriever. We flattened UIs
to element attribute sequences and added a start token, an end token, and a token that
contains pooled BERT embedding of the text description of the UI’s app to each sequence.
For each element in the UI (including intermediate elements), we embed the dimensions
(x, y, w, h), the element type (same as the ones used in the screen2words dataset), and a
single pooled BERT embedding of the element’s text content. This gives us detailed content-
based, semantic, and geometric information of each element in the UIs. We also filter out
UIs that are longer than 512 tokens.

Note that to support the evaluation of the UI Generator, we train an additional variant
of the Multi-modal Retriever that uses the same pre-processing method as the UI Generator
described in 6.1.2. This dual-encoder is based on only UI layout attributes without the
content of the UIs, so that generated UIs can be used as inputs to this model. This variant
is employed instead of the full Multi-modal Retriever in Section 6.3.1 since it takes the same
input format as the output format of the UI Generator.

Model Architecture and Training

The Multi-modal Retriever encodes text descriptions and UIs respectively using two
sub-modules TextEncoder and UIEncoder, which is adapted from a dual-encoder [140]
used for text-to-image retrieval. Each of TextEncoder and UIEncoder is a Transformer
Encoder with hidden-layer size of 64, intermediate size of 256, and 4 layers (chosen by
performance on the validation set).

Given a text description, we obtain the BERT embeddings t1...k for each of the k text
tokens from the pre-processing step. From these embeddings we can use the TextEncoder
to obtain a single, fixed-length text embedding et = TextEncoder(t1...k) by taking only the
output of the special start token as the ‘pooled vector’ of the sequence. Similarly, from the

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 94

pre-processing step we obtain the flattened sequence of n UI element attribute vectors u1...n.
From this we can obtain a single, fixed-length UI embedding eU = UIEncoder(u1...n) at the
start token position similar to the TextEncoder.

With pairs of corresponding embeddings et and eU , we obtain a mini-batch of K pairs of
embeddings et,1...K and eU,1...K . We follow the Contrastive Learning paradigm (described in
detail in Section 2.5) and formulate a loss function that would minimize the distance between
matching pairs of et and eU and maximize the distance between unmatching pairs. We
minimize the following bidirectional in-batch sampled softmax loss defined in Equation 2.14.
Translating into the original notations in Equation 2.14, we define fU = UIEncoder and
ft = TextEncoder, that the distance function S(et, eU) is the dot product between the text
and UI embeddings.

We use an Adam Optimizer [99] with a constant learning rate of 0.001 to train our model
with this loss. We implemented our model using Trax4 and trained it on Google Cloud TPU
v3 with 32 cores with mini-batches of 64 samples per replica.

Embedding and Retrieval

To retrieve UIs given a user’s text description td, we compute et,d = TextEncoder(td)
and find the nearest neighboring UI embeddings eU in the set of UIs to be retrieved using
the dot-product similarity metric. The sequences of numeric and categorical attributes of
the UI elements of the retrieved UIs are taken as final outputs of the model.

6.1.4 Rendering

The final step of all proposed methods is to render the produced UIs in the representation
of low-fidelity mock-ups. Low-fidelity mock-ups are commonly used in early stages of UI
design because they enable designers to focus on essential design ideas instead of being
distracted by details. Since the UIs outputted by both methods are sequences of numeric and
categorical attributes, converting them into the mock-up format more familiar to designers
enables them to be potentially more effective in supporting design applications.

We first adjust the numeric outputs from the UI Generator that uses GMMs for con-
tinuous attributes to better aligned values. We snap each UI element to one of 32 discrete
grids along each dimension to remove minor alignment discrepancies as the model estimates
continuous values for each of the continuous variables (x, y, w, h).

For both methods, we then curated a set of SVG elements from the Material Design
guidelines [57], and programmatically modified specific graphic attributes within these SVG
elements for each individual UI element (e.g., only resizing the length of the bar of a slider
instead of stretching the circle selector). These enhancements allow us to accommodate
different aspect ratios of the UI elements to avoid stretching, producing coherent final UI
mock-ups compiled as HTML documents. Note that for retrieval-based methods, we can

4https://github.com/google/trax

https://github.com/google/trax

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 95

optionally provide the original screenshots of the UIs in addition to the mock-ups as these
UIs are taken directly from the dataset.

6.2 Benchmark Metrics for Generative UI Models

Prior to measuring the performance of our proposed methods quantitatively, we inves-
tigate and define novel quantitative metrics specifically for generative methods. This is
because while measuring the performance of the Multi-modal Retriever can be done with
standard information-retrieval-based metrics (e.g., Top-k Accuracy, Mean Average Preci-
sion), measuring a generative model’s performance is much more difficult and non-trivial,
especially for such a new task as text-to-UI generation as ours.

Our novel benchmark for the UI Generator consists of a set of metrics that are adopted or
modified from related work for quantitatively comparing and contrasting various approaches.
Specifically, we define success of our text-conditioned UI generation task to have three critical
aspects:

Well-formedness What is the quality and realism of the generated UIs on their own?
This can be measured using existing metrics for UI quality used in prior unconditional models
and serves as a check that our model is able to generate convincing UIs comparable to prior
models.

Relevance How relevant are the UIs to the text descriptions? This aspect is novel to
our task since we have the additional requirement of conditioning the generated UIs on text.
We adapt several metrics from the text-to-image literature and outline important reasons
for the required modifications for these metrics to be applied to our problem.

Diversity How diverse (while still being relevant to the text description) are the generated
UIs? This is typically measured with the similarity of the distributions of the generated UIs
and the dataset distributions. We additionally condition these distribution similarity metrics
on text-UI relevance to ensure the metrics’ relevance to our task.

6.2.1 Well-formedness

One of the most important properties of a UI generation model is to be able to generate
convincing and realistic UI layouts of interest to design applications. We adopted three
existing well-formedness metrics defined in literature that are used as evaluation metrics to
effectively compare our models with prior work [7, 60, 111]. This also serves as a check that
our model is comparable to the ‘baselines’ in UI generation performance regardless of the
text conditions. These metrics are respectively:

• Overlap—the percentage of area on the entire UI that is occupied by at least two
elements.

• IOU—the average intersection-over-union between any two elements in the UI.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 96

• Alignment—a metric introduced in [111] that approximates the average inter-element
alignment distance between elements in the UI.

6.2.2 Relevance

The most important contribution in terms of evaluation of our work is the introduction
of several new text-UI metrics modified from prior work. This is because an important new
requirement for our novel task is to have the generated UIs be relevant to text descriptions.
Moreover, there are significant differences between text descriptions used to describe UIs
over ones used to describe natural images.

R-precision

R-precision (RP) is a major existing metric to measure cross-modality relevance com-
monly used in text-to-image generation models. It relies on a cross-domain distance function
that measures the distance between a particular output (in prior work this could be an im-
age, and in our use case this would be a UI) and a text description. This function is typically
implemented using neural networks because of the complex correspondences between text
and UIs. Typically, a retrieval model between UI and text (i.e., a dual-encoder [140]) similar
to the Multi-modal Retriever will be used. Therefore, our previously developed Multi-modal
Retriever can be repurposed to help with evaluating the generative model as mentioned in
Section 6.1.3. With this trained model, RP reports the proportion of generated UIs û that
rank their corresponding text prompt tp as the nearest (top-1) neighbor in the dual-encoder’s
embedding space.

Limitations of R-precision for Text-to-UI Generation

One primary limitation that we found with using the original RP for text-to-UI generation
is that RP only rewards cases when the paired text of the UI is ranked as the top example
by the dual-encoder. This means the text needs to be uniquely qualified to describe the
particular paired UI. In our domain, however, a single text description can correspond to
many UIs, and the same UI can correspond to many text descriptions. This is demonstrated
by our observation that screen2words text descriptions are more high-level and could describe
more contextual and/or background information about the UIs, especially when compared
to text descriptions of natural images. For instance, a login-screen UI is often paired with
the description ’login screen of an app’, instead of being specific at the element level where
it describes the number and/or positions of certain types of UI elements.

To quantitatively verify our hypothesis of non-unique matching between UIs and their
paired text descriptions, we present two findings: 1) a quantitative performance comparison
between text-UI and text-image models; and 2) the average text embedding distance between
captions within the dataset.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 97

For 1) a quantitative performance comparison between text-UI and text-image models,
we randomly sample 100 pairs of different text and images and report top-1 and top-10 accu-
racies of the retrieval performance of a dual-encoder trained on text-UI pairs in screen2words
in Table 6.1. We also used the same code to train a dual-encoder on the COCO dataset [121],
a standard dataset for image captioning. We observe that the model trained on the COCO
dataset has a significantly higher top-1 accuracy. This observation further verifies our hy-
pothesis of the prevalence of non-unique text-UI matches specific to the screen2words dataset.

Table 6.1: Dual-encoder accuracies for models trained on COCO and screen2words datasets.

Top-1 Top-10

screen2words (Multi-modal Retriever) 13.1% 50.7%
COCO 64.1% 97.9%

For 2) the average text embedding distance between captions within the dataset, we
measure the self-similarity (using BLEU score [139]) between any particular text description
in the dataset against all other text descriptions that describe other artifacts for both the
COCO and the screen2words dataset. This metric is called self-BLEU and is commonly
used in generative models’ literature to measure generation diversity [196]. In addition, we
also take the average BERT pooled embedding distance [39] of the top-10 nearest neighbors
of each caption to verify the self-BLEU metric. For our computation, we took a subset of
10,000 captions from each dataset, and each of the captions corresponds to different UIs or
natural images. Despite this attempt to minimize duplication, we found that screen2words
captions are less specific than COCO, and such specificity is distributed more irregularly.

Figures 6.4a and 6.4b show distributions of self-BLEU metrics for captions of the COCO
and screen2words dataset. We observe the average self-BLEU score for COCO of 0.699 to be
lower than the average of screen2words of 0.755. In addition, we observe that a substantial
number of captions (examples) in screen2words have self-BLEU scores closer to 1.0, and the
distribution is more irregular over the sampled captions. This provided additional evidence
for our hypothesis that screen2words captions are less specific than COCO.

We believe these observations are consistent with the data-collection instructions of the
screen2words dataset, such that the annotators are instructed to provide short (less than
10 words) and high-level descriptions. We believe this is also more aligned to the language
used in certain types of design applications where designers would only want to specify high-
level text descriptions of the desired UIs, and that more specific specifications will be better
described using direct manipulation tools where designers can add elements directly onto a
draft UI canvas. However, as mentioned above, this results in a significant underestimation
of the model’s performance by R-precision, i.e., in many cases, even the paired ground-truth
text would not be ranked as top-1 of a particular ground-truth UI.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 98

Self-BLEU Score

N
um

be
r o

f E
xa

m
pl

es

(a) COCO

Self-BLEU Score

N
um

be
r o

f E
xa

m
pl

es

(b) screen2words

Figure 6.4: Self-BLEU distributions for examples in COCO and screen2words datasets.

Hardness-normalized R-precision

To overcome the limitations described above, we introduce Hardness-normalized R-
Precision (HRP), a novel relevance metric that builds upon RP. This metric normalizes
against the performance of the dual-encoder on particular UIs and allows us to adapt to the
‘hardness’ of the UIs5. We first define the distance computed by the dual-encoder between
a pair of text and UI in the following equation:

DE(t, u) = d(et, eU), et = ft(t), eU = fU(u) (6.3)

with the definitions of the text encoder ft and UI encoder fU following Section 6.1.3,
and d as a distance function. We then relax the top-1 requirement of RP to also ‘accept’ a
generated UI if it is closer to the text prompt than that prompt’s corresponding ground-truth
UI pairing, according to the dual-encoder distance (DE(t, u)):

HRP =
c

of test set examples
(6.4)

where c is the number of examples with DE(tp, û) ≤ DE(tp, up)
6 or tp is the nearest

neighbor of û.

5We consider the ‘hardness’ of a certain UI to be the distance between a text prompt and its corresponding
ground-truth UI.

6This definition assumes d defined in Equation 6.3 is a distance function. The condition should be flipped
if d is a similarity function, such as the dot-product (S) used in definitions in Sections 6.1.3 and 2.5.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 99

6.2.3 Diversity

To effectively measure diversity, distributional distances between real data and synthe-
sized data are typically used, such as Wasserstein Distance (WD). In our use case, however,
the distributions of UIs need to be additionally conditioned to the text prompt used to gen-
erate them. Existing work compares the distribution of UIs in the entire test set UT with
a distribution of generated UIs {û} = Û using the Wasserstein distance W (Û , UT). We
derive a conditional version of Wasserstein distance (CWD) where we consider the distribu-
tion of UIs in the test set to be weighted by the distance between their corresponding text
description and the prompt text description that the generated UIs are conditioned on.

As an example, for a particular text prompt tp, we sample a distribution of generated

UIs from the model {û|tp} = Û |tp, then we compare this distribution with the weighted
distribution of ground-truth UIs: Uw = {(1 − Dtext(t

′, tp)u
′}, (t′, u′) ∈ T . We compute the

final conditional wasserstein distance to be:

CWD = W (Û |tp, Uw) (6.5)

To make this computation tractable, we consider all coordinates and the class attributes
as multiple 1D distributions. We also only sample 2n closest neighbors to a particular
prompt to measure for n = 10 generated UIs from the same prompt. We use BERT pooled
embedding distance normalized between [0, 1] against the dataset as Dtext.

6.3 Results

The analysis of our results consists of two parts. First, we separately analyze the UI
Generator and the Multi-modal Retriever with different appropriate quantitative metrics.
We then consider the final products of both models rendered by the common rendering
pipeline for a qualitative analysis to compare the characteristics of both models. Such
comparison also resonates with the user study we then conduct with experts on various
text-to-UI methods in Section 6.4.

6.3.1 UI Generator Quantitative Results

We computed the aforementioned quantitative metrics in our benchmark (Section 6.2)
on the test set for different variants of the UI Generator. These variants uses either an
encoder-decoder (Enc.-Dec.) or decoder-only (Dec.-only) architecture, and the continuous
coordinates are either discretized (D) or modeled by GMMs continuously (C) as mentioned
in Section 6.1.2.

We first compare our model’s performance on the well-formedness metrics against prior
work. This serves as a check that our conditional model is still able to generate reasonable
UIs compared to prior models. Table 6.2 shows that all of our variants are able to obtain
comparable scores for both IoU and overlap metrics. Our model performs slightly worse

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 100

Table 6.2: Benchmark for Text-to-UI Generation (Lower is better for all metrics, except HRP
and RP), D - Discretized coordinates, C - Continuous coordinates (modeled with GMMs),
10 samples per caption in screen2words test set, * - real data, ** - published performance
on Rico

IoU Overlap Alignment HRP ↑ RP ↑

Ours (Enc.-Dec., D) 0.101 0.133 0.508 29.2% 2.85%
Ours (Enc.-Dec., C) 0.102 0.0891 0.483 30.8% 2.92%
Ours (Dec.-only, D) 0.0705 0.0634 0.512 22.7% 1.04%
Ours (Dec.-only, C) 0.0980 0.0573 0.445 30.9% 3.16%

Ours (Dec.-only, C,
τ = 0.1) 0.0699 0.0261 0.355 40.1% 5.69%

LayoutTransformer** 0.086 0.145 0.366 - -
VTN** 0.115 0.165 0.373 - -

screen2words* 0.0307 0.0500 0.407 - -
Rico* 0.0496 0.170 0.406 - -

CWDbbox CWDclass WDbbox WDclass

Ours (Enc.-Dec., D) 0.0114 0.0135 0.0348 0.00849
Ours (Enc.-Dec., C) 0.0118 0.0126 0.0211 0.00597
Ours (Dec.-only, D) 0.0157 0.0150 0.0336 0.0115
Ours (Dec.-only, C) 0.0111 0.0129 0.0186 0.00479

Ours (Dec.-only, C,
τ = 0.1) 0.0207 0.0285 0.0433 0.0162

LayoutTransformer** - - 0.023 0.004
VTN** - - 0.018 0.007

screen2words* - - - -
Rico* - - - -

at the alignment metric, which might be due to alignment being harder to learn from the
smaller screen2words dataset.

We also compare the performance between all variants of our models on benchmark
metrics that reflect our target task of text-to-UI generation. In our experiments, we found
that models that model continuous coordinates with GMMs typically outperform similar
variants that use discretized coordinates. We believe this is also due to the small dataset
size of screen2words, such that modeling continuous coordinates with GMMs offers useful

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 101

inductive biases for models to bootstrap learning with. We also observe that decoder-only
models tend to perform better than encoder-decoder models. We believe this might be due
to the flexibility for decoder-only models to allocate different numbers of weights to model
either text-only, UI-only, or joint distributions in the data. As an additional experiment,
we lowered the sampling temperature of our best-performing model, and the generated UIs
from the low-temperature model have improved quality and relevance but reduced diversity.
This trade-off matched our intuition about the effects of the temperature parameter on the
model.

Moreover, the proposed benchmark offers a deeper view of the generative models’ rele-
vance and diversity performance compared to prior metrics (also reported in Table 6.2). For
relevance, HRP varies less than RP as expected, since requiring a similar text-UI pair to
be ranked top-1 would introduce significant variance for spaces where many-to-many pair-
ings are plausible (i.e., many ‘login screens’). We further observe that while RP reflects our
decoder-only model with discretized coordinates to be significantly inferior in relevance to
other models, HRP reflects that additional investigation into individual cases might be nec-
essary since the differences were not as large. Similarly, we observe CWD does not exactly
follow the trends of WD. This could mean models follow specific conditional distributions
to a different degree than the overall prior distribution of UIs. Finally, comparing WD of
our proposed methods with prior work, we attain similar performance in covering the entire
dataset distribution with the distribution of generated UIs. We hope all of these quantitative
results can serve as a benchmark and baseline for future work in this area.

In-domain and Out-of-domain Analysis

Beyond holistically considering our results for the dataset as a whole, we further con-
sider descriptions from the ‘in-domain’ test set that are most represented by the training
set, measured by average top-10 neighboring distances in BERT embedding-space. Simi-
larly, the captions that have the highest BERT embedding average distances are consid-
ered ‘out-of-domain’. The ‘in-domain’ examples have an average BERT embedding distance
of 0.161, while the ‘out-of-domain’ examples have an average distance of 2.04. We sam-
ple 10% of each set of examples and compute their well-formedness and relevance metrics.
We found that the ‘out-of-domain’ examples only perform slightly worse in most metrics
of the benchmarks. In our Decoder-only model with τ = 0.1, the ‘in-domain’ examples
obtained 0.0621/0.0224/0.333 (for IoU/Overlap/Alignment) over ‘out-of-domain’ examples’
0.0710/0.0268/0.362 for well-formedness metrics. For relevance, ‘in-domain’ and ‘out-of-
domain’ examples respectively obtained 6.02/42.0 and 5.24/40.6 (RP/HRP), which increases
our confidence in the model’s generalization ability.

6.3.2 Multi-modal Retriever Quantitative Results

To evaluate the performance of our Multi-modal Retriever quantitatively, we used a
standard information-retrieval metric commonly used to evaluate retrieval models in general:

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 102

Table 6.3: Cross-modality retrieval accuracy results.

Top-1 Top-10

Multi-modal Retriever (5 subsets avg.) 23.2% 65.0%
Swire 15.9% 60.9%

Multi-modal Retriever (entire test set) 2.80% 4.84%

Top-k Accuracy. As our dataset consists of ground-truth pairs of query text and UIs, this
accuracy represents the number of pairs where the paired UIs are considered to be within
the k-nearest neighbors of the text descriptions, measured with the embeddings created by
our Multi-modal Retriever.

Following this metric, we compute the embeddings of text descriptions and UIs in the
test set and show retrieval accuracy in Table 6.3. While the overall performance is relatively
low, this is because the number of text and UI pairs in the entire dataset is quite high
(4310 UIs × 5 descriptions each) and similar descriptions might be paired with different UIs
as investigated in Section 6.2.2, increasing the difficulty of this evaluation scenario. How-
ever, when comparing our method with an established cross-modality sketch-to-UI retrieval
method—Swire [78], we obtain better performance than Swire from the same number of
candidates—over the average of five random subsets of the same size as Swire’s test set (276
candidates).

6.3.3 Qualitative and Comparative Analysis

After reporting quantitative metrics for each set of methods as a concrete reference, we
qualitatively and comparatively investigated the characteristics of results of our proposed
methods. Overall, we observe that most UI mock-ups created by our methods are well-
formed and comprehensible, and are within the general categories of UIs that we would
expect based on the text descriptions. In this section, we analyze the results acquired by
each method for two text descriptions from the test set7: “screen displaying list of topics
under pocket physics” (see Figure 6.5) and “pop up displaying an image and other options”
(see Figure 6.6).

UI Generator Qualitative Results

For the results synthesized from scratch by the UI Generator, we observe that this method
is good at making small but coherent variations within the same theme for both cases
in Figures 6.5 and 6.6. Figure 6.5 shows minor changes the UI Generator made to vary

7These captions are also within the set that was used in Section 6.4, which were chosen with mock-up
results unseen to us prior to selection.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 103

list structures. Similarly, we observe popups with varying layouts that follow the same
theme in Figure 6.6. Nevertheless, such subtle variations can lead to the lack of large
thematic variations and lower diversity of UIs in these sets of results. However, this issue
can be addressed by hyper-parameter tuning: the UI Generator contains a tunable sampling
temperature hyper-parameter (set to a fixed value of 0.1 for the presented results) that can
be explored in the future to vary the balance between diversity and well-formedness of the
UIs. It is worth noting that while it is easy for retrieval-based methods to return well-formed
UIs, it is non-trivial for a generative method to return sensible UIs because such a method
needs to synthesize complete UIs from scratch instead of using an existing UI.

Multi-modal Retriever Qualitative Results

The Multi-modal Retriever, on the other hand, excels at matching specific details de-
scribed in text. For instance, only this method was able to retrieve pop-ups with empha-
sized large images specified in “pop up displaying an image...”. We believe this is because
the Multi-modal Retriever has access to text-based features of individual elements and text
descriptions in the UIs. Nevertheless, this method also has access to content-specific text
details that might be confusing for retrieval given some text descriptions. For example, the
model retrieved a UI with a large block of text that seemingly conflicts with “a list of topics”
at Figure 6.5(c). However, this UI originated from an app presenting business topics and
ideas which contain text content related to “lists”. This provides an example where matching
text content on the screen and within the app might not necessarily lead to matching design
concepts.

6.4 Expert Feedback

To further solidify our assessments of the characteristics of results gathered by each of our
proposed methods in Section 6.3.3, we conducted a user study to gauge expert UI designers
and practitioners’ preferences on mock-ups created by our methods.

6.4.1 Procedure

To solicit our participants’ preferences for the mock-ups our methods have created, we
manually chose five text descriptions from the test dataset that cover diverse design scenarios
(two of the descriptions were included in the qualitative results in Section 6.3.3). We then
used each of our proposed methods to create 5 UI mock-ups for each of these descriptions. We
did not inspect the mock-ups created by these methods prior to selecting these descriptions.
In addition to the two methods introduced in this chapter, we included a baseline Text-only
Retriever, which uses the pre-trained BERT embeddings of the paired text descriptions of
the UIs in our dataset to perform retrieval in only the text-BERT embedding space.

These baseline and proposed methods allow us to form 3 sets of 5 created UI mock-ups
for each of the 5 text descriptions. In the study, we frame each text description as a design

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 104

"screen displaying list of topics under pocket physics"

(a) (b) (c) (d) (e)

Text-only
Retriever

Multi-modal
Retriever

UI
Generator

Figure 6.5: UI mock-ups created by the baseline Text-only Retriever and our methods in
response to the text description “screen displaying list of topics under pocket physics”.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 105

"pop up displaying an image and other options"

Text-only
Retriever

Multi-modal
Retriever

UI
Generator

(a) (b) (c) (d) (e)

Figure 6.6: UI mock-ups created by the baseline Text-only Retriever and our methods in
response to the text description “pop up displaying an image and other options”.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 106

goal. The participants were first presented with a ground-truth high-fidelity screenshot
corresponding to the design goal in text. They were then presented with a scrambled 3x5
grid of all 15 UI designs generated across 3 methods. The positions of these design mock-ups
are randomized. Based on these UIs, they would then answer the following two questions by
choosing a specific mock-up for each and explaining their rationales.

• Q1. Which mock-up in the collection best resembles the hi-fidelity design?

• Q2. Select the mock-up in the collection that presents the best design alternative for
the given design goal.

At the end of the survey, we also obtained the participants’ opinions on the following
questions on AI-assisted design in general, followed by them providing open-ended comments
or suggestions for Words2ui.

• Qa. If an AI system is built to suggest UIs from text description inputs just as the
ones presented in this study, how might it help / not help with your design workflow?

• Qb. Following the above question, if such an AI system that suggests UIs from text
is developed, what do you think are the most important features this system should
have?

6.4.2 Participants

We recruited 15 professional User Interface and Experience (UI/UX) practitioners to
complete this survey from a mailing-list. The participants self-reported an average of 9.8
years of industrial UI/UX design experience. Their professions include UI/UX Designer, and
UX Engineer, Interaction Designer, UX Researcher, and are located in the United States and
the United Kingdom. All participants completed the survey at their own pace remotely, and
were each compensated with a $20 USD gift card upon completion of the survey. Each
participant took roughly 20 minutes to complete the survey.

6.4.3 Results and Discussion

We split our analysis of the study results by the five design goals (i.e., text description
conditions). Q1s of each design goal serve as warm-up questions for participants to familiarize
themselves with the mock-ups’ representation. These questions also gauge the created UIs’
relevance and diversity as perceived by designers, because a relevant and diverse set of
UI suggestions has a higher chance of covering the high-fidelity UI associated with the
design goal. We found that for a given design goal (description), each of our methods is
more frequently chosen by participants than other methods (Chi-square goodness-of-fit test,
p < 0.05 for each case, with equal expected frequency across methods) for exactly one design

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 107

goal, while results are insignificant for the other two design goals. This result shows that
each of the methods is competitive for specific scenarios.

Q2s in our study are more important for evaluating the overall quality and relevance of
UI suggestions. Similar to the first question, each method was more frequently chosen by
participants (p < 0.05) than the other methods in one of the three descriptions, while the
other two descriptions have insignificant results. The particular designs chosen by partici-
pants align with our understanding of the characteristics of each of the methods presented
in Section 6.3.3. For instance, our participants considered the Multi-modal Retriever to
have provided the best design alternatives (Figure 6.6) for “pop up displaying an image and
other options” (the middle chart in Figure 6.7). They prefer these mock-ups due to their
high relevance to the text description for including an image, as commented by a participant
(P8): “[this design] allows users to focus on the main image”.

Select the mock-up in the collection that presents the best design alternative for the given design goal.

 “blank history page in app” * “pop up displaying an image and
other options” *

UI
Generator

Multi-modal
Retriever

Text-only
Retriever

UI
Generator

Multi-modal
Retriever

Text-only
Retriever

UI
Generator

Multi-modal
Retriever

Text-only
Retriever

"screen displaying list of topics under
pocket physics" *

Figure 6.7: The study results for best alternative designs for three of the five design goals
(Q2.). We observe that each of our methods is preferred in one of the design goals. The
design goals are shown at the top of each chart.

In another example, the results based on the description “blank history page in app”
(see Figure 6.7) indicate that most participants preferred the mock-ups created by the UI
Generator, citing that it is nice to have an empty state illustration instead of nothing (P4).
The mock-up generated by the UI Generator still retains the general structure of an empty
UI but with an extra-large illustration. This result showed the benefit of the generative
method which allows variations under the same theme given a text description.

While we have evaluated a diverse set of UI suggestions and design goals, we acknowledge
that our evaluation is limited in that we only investigated a small set of design cases that
can potentially benefit from our methods. We suggest future work to more comprehensively
understand general trends that exist across large-scale datasets for these methods. The open-
ended questions regarding AI-assisted design systems at the end of the survey also provided us
with a number of actionable suggestions for developing our methods into AI-driven systems.
We discuss participants’ responses to these questions in the following Section 6.5 for potential
applications.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 108

6.5 Envisioned Applications

Our ultimate goal of developing these methods is to provide intelligent design support for
UI designers and developers with relevant design artifacts given high-level text descriptions.
We discuss several potential applications that can utilize our methods based on open-ended
comments provided by participating UI/UX practitioners in the user study.

6.5.1 Early-Stage Design Sketch Rendering

A major theme emerged from the participants’ feedback for Qa. is that the UI suggestions
presented to participants would be good for initial stages of design, such that they can be
good starting points for higher-fidelity designs in their design processes. P2 mentioned
that these designs can be “providing some quick, initial mocks that I could leverage for
higher fidelity design solutions early on in my design process.” P9 commented that “this
can in turn help in brainstorming and generating a greater variety of designs.” As such,
one potential application is to further develop systems catered specifically for early-stage
design. For instance, we can adjust our rendering engine to display sketch-like mock-ups
which could encourage more high-level early feedback. Sketch-based rendering would allow
designers to discuss these generated designs as early-stage artifacts and interact with them
directly with pen strokes. As mock-ups created by our methods contain attributes of each
UI element, this application can be realized by replacing the set of rendering elements with
sketched elements introduced in the UISketch dataset [170].

6.5.2 Interactive and Steerable UI Generation

On the other hand, one of the most requested features by the participants, as reflected
by their responses to Qb., is to provide designers with more control over these AI-assisted
methods. P7 mentioned that it “should be able to generate other layouts and substitutions if
I pin certain controls or elements.” Similarly, P8 requested these methods to “allow people
to quickly modify the AI-generated design and maybe even control the design directions.”
These features can be achieved by further developing the UI Generator as it generates one
new UI element at a time based on all previously generated elements. We can simply
feed elements that are already designed by the designer, instead of only using the model’s
previously predicted elements, as inputs to the autoregressive decoder. This enables designers
to control the design process with their own designs. Moreover, as the UI Generator outputs
UI elements using a sampling-based approach, it can generate multiple candidate elements
each time and allow designers to select their preferred elements. Designers can also adjust
the candidate diversity of the model by changing the temperature parameter that controls
the stochasticity of the sampling process as discussed in Section 6.1.2. These features could
provide designers with rich control over the mock-up creation process as requested in the
user study.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 109

6.5.3 Combining Multiple UI Suggestion Methods

As we discovered in the previous sections, our two proposed methods are suitable for
obtaining designs of varying levels and types of diversity, and hence are suited for different
stages of the design process. We envision a final system that combines all of these methods
to support various stages of the design process. A designer might start with the Text-only
Retriever for high-level design inspirations from the mock-ups and optionally concrete UI
screenshots examples that it can retrieve. With the gradual convergence of design details,
the system can use the Multi-modal Retriever to retrieve more closely related and specific
designs. Finally, the designer can use the UI Generator to innovate on design artifacts based
on existing designs they prefer.

6.6 Limitations

While we have shown that our models are competitive in generating and retrieving well-
formed, relevant, and diverse UIs based on our quantitative metrics, and have generated
mock-ups considered to be potentially helpful by experts, we discuss several limitations of
our proposed methods in this section.

6.6.1 Supporting Design-Specific Language

The primary limitation of our work is related to partial misalignment between the de-
scriptions in the dataset that we use and the type of descriptions we aim to support. The
screen2words dataset is collected by asking crowd-workers to summarize UI screenshots in
natural language. The type of language that crowd-workers use to describe UI screenshots
might not be perfectly aligned with how designers would articulate design goals. For exam-
ple, a text description in this dataset might include content-based details which could be
less important to the design goal, or lack information about design constraints that designers
might use to describe desired UIs. Nevertheless, our work made a valuable contribution by in-
vestigating two novel methods applicable to other paired text-UI datasets that might become
available in the future. Investigating the degree of such misalignment and the effectiveness
of our methods on design-specific language remain future work.

6.6.2 Addressing Rare and Intermediate UI Elements

Another limitation of our methods originates from the use of DL-driven approaches, such
that it is more infrequent for them to generate or retrieve types of UI elements that are rare in
the dataset. Only text, image, and button elements are common in the datasets the models
were trained on, and as a result, generated/retrieved UIs more frequently contain these
types of elements. Other types of elements, such as checkboxes, and sliders, are more rarely
seen in the generated UIs. This issue is particularly apparent in the UI Generator method.

CHAPTER 6. WORDS2UI: UI GENERATION AND RETRIEVAL FROM TEXT 110

Future work could explore data augmentation methods to improve such class imbalance in
the dataset.

Moreover, we only considered a relatively flat structure of the UI elements (which orig-
inates from the processing of the [122] dataset) that are often leaf nodes with the UI Gen-
erator. Some intermediate nodes in the UI hierarchy that group these elements together
might also be significant for design processes. We believe effectively extracting these useful
elements in addition to the semantically labeled elements is an important direction for future
work.

111

Chapter 7

Discussion and Future Research
Opportunities

Throughout this dissertation, we described several methods and systems for generating
sketches and prototypes. In this chapter, I outline several directions of future research that
I believe are important and impactful towards improved capability of both understanding
human guidance and generating artifacts in creative activities.

7.1 Machine Guidance and Tutorial for Sketching and

Prototyping

This dissertation explored multiple human-guided interactions of generating sketches
and prototypes, such as text-to-sketch and text-to-user-interface (text-to-UI) generation. I
believe it would also be interesting to explore the inverse interaction, where machines provide
guidance to users in the form of tutorials and suggestions, acting as tutors and/or critics to
guide users to create better output sketches and prototypes in their creative processes. While
direct generation of sketches and prototypes, like interactions supported by our proposed
systems, could reduce users’ workload, suggestive systems that indirectly steer users (through
another modality such as natural language) might help them become better at creating
relevant artifacts and/or explore alternative ideas previously unconsidered by themselves.

Pursuing this area of research, however, shall include a thorough investigation of the
human-AI collaboration dynamics during sketching and prototyping beyond making tech-
nical advancements on models that perform the inverse tasks of generating text from user-
provided artifacts. This investigation might include carefully studying the types of advice
that the targeted user group might desire, and the modalities and tones to deliver them in,
for the final machine-generated guidance to be respectful, productive, and effective. Fol-
lowing this thorough characterization study of guidance and the thoughtful design of such
AI-guided interaction, data collection and model development efforts should follow users’
demands and opinions in the study, and researchers shall continuously work with users to

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 112

support their desired interactions. I believe there are ample research opportunities in all of
the aspects mentioned above surrounding the automatic generation of guidance for humans’
creative processes.

7.2 From Cross-modality to Multi-modality

As mentioned in previous sections, our current models primarily support cross-modality
interactions, transforming artifacts in one modality (e.g., natural language descriptions) to
those in another modality (e.g., UI prototypes). While Scones (Chapter 5) has touched
upon some concepts of being multi-modal to flexibly understand multiple modalities (e.g.,
scene objects and text descriptions), I believe there is further research work required to
achieve true multi-modality. The investigation of a simplistic system that handles the inverse
interaction detailed in the Section 7.1 constitutes merely one aspect of the investigation on
multi-modality.

Extending on the example interaction of text-to-sketch generation supported by Sketch-
forme and Scones, a truly multi-modal system needs to be able to additionally generate text
responses that tie to its own or users’ sketch-generation process (since users might sketch
parts of the scene). These processes might also be ill-formed in turn-taking, such that a sys-
tem might need to generate a text response given a text instruction by the user (a text-to-text
interaction, e.g., asking clarifying questions), and the user might choose to demonstrate as a
response to the systems’ questions (a sketch-to-sketch interaction, e.g., showing the system
how to draw an icon). These interactions would result in a highly heterogeneous and inter-
active environment, where sketch-to-sketch, text-to-sketch, sketch-to-text, and text-to-text
interactions need to be all modeled by the future multi-modal system effectively. This system
also needs to select the appropriate interactions to engage users with during the co-creation
processes. There is hence a need to model the overall creative process itself beyond just any
specific individual interactions listed above.

Achieving the capabilities of a multi-modal system mentioned above requires data, mod-
eling, and interaction support. Clean and balanced datasets of all of the above interactions
would be helpful for the development of new models. It is also preferable for models to
be compact, interpretable, and effective in understanding and generating data in modali-
ties involved in the interaction. Finally, clearly communicating the systems’ limitations and
capabilities to the users, and allowing for fall-back interaction modes (e.g., exposing the
isolated interaction capability of the system in any of the directions) can help users establish
reasonable expectations and prevent frustration when interacting with the system.

7.3 Large Multi-modal Models

One approach towards significantly advancing multi-modal systems’ data support and
modeling capability required in Section 7.2 above is leveraging recent large language models

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 113

that have demonstrated impressive general knowledge in the domain of natural language.
These models are shown to be highly capable of modeling text in many topics and could
consequently reduce the amount of data needed to support individual domain-specific appli-
cations through fine-tuning or few-shot learning (see Section 2.3.6 for a detailed description).
To understand the applicability of such knowledge towards reasoning in modalities other than
natural language, various experiments have been conducted to understand large language
models’ knowledge of the visual domain highly relevant to sketching and prototyping. Re-
searchers have found that these models possess a certain degree of knowledge of the visual
world, and such visual knowledge can be interacted with if visual data can be first trans-
lated (typically via another domain-specific image captioning model) to the natural language
domain. Some examples that have gained significant attention include zero-shot VQA by
coupling large language models with image captioning models, and UI-generation-from-text
experiments via language-based structural representation of UIs in the JSON format.

To gauge these models’ proficiency in knowledge in creative domains, we had attempted
some informal prompt-engineering experiments with GPT-3 directly on geometric and UI
data by asking it to generate and manipulate natural scene layouts and UI layouts in the
form of numerical attributes. We have attempted multiple formats (JSON, XML, Plain text)
as input representations and few-shot prompts to the model. We observe that while GPT-3
was able to follow the format of our prompts in its responses, these responses do not contain
any meaningful natural scenes or UI geometries at all. GPT-3 was unable to generate objects
with even simple constraints on the horizontal direction order (from the prompt ‘an [X] on
the left of [Y]’), or on counts of UI elements (from the prompt ‘there are [X] of [Y] type of
UI elements in a UI that does [Z]’). Nevertheless, we observe that it is occasionally able to
generate reasonable semantic types of UI elements given a text description of the entire UI
(i.e., a description of a map UI as input to the model gives the MapView UI element class
as part of the output).

I believe this presents great opportunities for future research to build upon large language
models’ extraordinary ability in maintaining fluent natural language interactions, to support
creative processes. Enabling creative support applications by these models would require
in-depth understanding and extraction of creative-content knowledge embedded in these
models. Some other research opportunities also include developing novel generative, fine-
tuning, and few-shot prompting approaches to leverage such multi-modal knowledge from
large language models.

Furthermore, another potential research area is to train large models with multi-modal
data and tasks from scratch. There is an increasing amount of research literature on large
‘language’ models developed with an inherent multi-modal focus, such as DALL-E [151],
Flamingo [4], and MUM [132]. These large models can help overcome both data and modeling
challenges listed above, by having models that are designed and trained to perform multi-
modal tasks without requiring explicit translation. I believe this area of research could
benefit from the interactions contributed by this dissertation, along with the accompanying
tasks, metrics, and observations. I also believe these large multi-modal models are significant
steps towards the final goal of developing multi-task, multi-modal systems that are capable

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 114

of supporting sketching and prototyping interactions in diverse creative domains.

7.4 Novel Architecture and Task Design

This dissertation presented multiple novel learning tasks to support sketching and proto-
typing applications. I believe there are numerous architectural and task improvements that
shall be explored to further improve the models’ performance in these target applications.
This is because as we handle users’ guidance in a different modality as the generated arti-
facts, these modalities are unlikely to require the same amount of representational power.
Hence, models that use different numbers of parameters or even types of architectures for
each of the guidance and generation modalities should be considered for these cross-modal
tasks (i.e., the most effective text-to-sketch models might not have symmetric text and sketch
encoders). Moreover, such asymmetric architectural design could be an important method
for biasing the models with our knowledge of the target task that it is intended to support,
improving both model training and final performance.

One special case of this exploration was the system architecture of Sketchforme (Chapter
4) and Scones (Chapter 5), where we take a two-stage approach to separately train a model
to propose composition layouts of various objects, and another model to generate individual
sketched objects based on applicable conditions that fit the compositions. Each of these
models has a different architecture optimized for each of their distinct learning tasks. These
architectures were designed to vaguely model the planning process in sketching and to over-
come the lack of end-to-end data from text descriptions/critique to sketch strokes. I believe
such exploration should be more extensive in all of the proposed architectures. For our ex-
ample models in Words2ui (Chapter 6), at a small scale, this could be exploring different
numbers of layers (blocks) and numbers of hidden units in each layer for approaches that
encode text and UIs/sketches separately with sub-networks; there could also be a broader
exploration by customizing attention layers and connections, or building special-purpose
modules to consume domain-specific data, such as graph-convolutional-network for UI con-
straints or hierarchical architectures for UI element trees. Further, I believe one most recent
promising direction of research is to augment GAN-based and/or Diffusion-based generative
models to handle structural information that often exists in prototypes in their generation
and up-sampling processes, to generate prototypes more effectively.

Other than modeling improvements, I believe performing multi-task learning on interme-
diate representations could also improve generative models’ performance even when end-to-
end data has become increasingly available. For instance, for a text-to-multi-object-sketch
task, I speculate that training the models to additionally predict the intermediate object
representation can not only help them better understand structure in data to improve perfor-
mance, but would also allow users to interact with higher-level composition in the generation
process, improving the interpretability and usability of these models in creativity support
applications.

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 115

7.5 New Domains and Modalities

In this dissertation, we showed that computational systems can support sketching and
prototyping for non-experts and professional UI designers. I believe many of our findings
can aid in the development of future applications in other creative domains, such as indus-
trial design, architectural design, mechanical engineering, presentation layout design, and
storyboarding for visual media. As sketches and prototypes are extensively used in these
domains as media for creative problem-solving, I believe the unique challenges in these new
domains create great opportunities for innovation in sketch-based design and engineering
applications.

I also think there are significant research opportunities in other modalities complementary
to sketching and prototyping. For instance, finer details in the generated artifacts, such as
colors and animations, are useful for sketching and prototyping applications. I envision
Scones and Sketchforme might be extended in the future to consider the colors of sketches,
which can be derived from the compositional data in natural images and objects within
them. The animations of sketches could also be inferred from dense video segmentation
datasets [143] which provide data in the form of animated masks for the sketches. Animations
in UIs, which can be obtained from the RICO dataset, are another important modality that
relates to an important step in the design workflow and can be explored in the future.
One important challenge in these research areas is to maintain coherence between various
artifacts generated in the same task and/or interaction, such as maintaining consistent color
and animation style across various frames of the same generated drawing.

While it might be currently time-consuming to pursue all of these new domains and
modalities from scratch with Deep Learning (DL) such as the proposed methods in this
dissertation, I speculate the exploration of these new models and applications would become
easier and faster given the improvement of software and hardware infrastructure for ML. I
believe such exploration in the future would become a quick and iterative design process on
its own, converging to more novel and effective DL-driven interactions. I also believe the use
of current Large Language Models (described in Section 2.3.6) and future Large Multi-modal
Models (proposed above in Section 7.3) could help bootstrap applications in new domains
with their extensive breadth of general knowledge, further shortening the development time
of new DL-driven systems. Researchers have already proposed to use Large Language Models
as prototyping tools for ML-driven interactive systems [87], and I expect this approach to
become more prolific for exploring new application domains given its lower requirement for
in-domain data.

7.6 Integration with Application in Real Usage

Scenarios

While we have made technical contributions in this dissertation towards the goal of sup-
porting sketching and prototyping processes, I believe a significant area of future research is

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 116

to deploy these systems in real-usage scenarios to understand their advantages and limita-
tions in supporting real sketching and prototyping processes. These insights would provide
important future directions for further technical improvements to sketching and prototyp-
ing models, and help reconcile potential discrepancies between users’ mental models and
the computational models’ reasoning and generation processes. Moreover, given how our
systems have created entirely new affordances (e.g., conversational authoring in Scones),
researching real-world interactions between the user and these deployed systems allows us
to better understand users’ preferences, such as choices of modalities across different stages
of design and human-AI collaboration dynamics (further discussed in the following Sec-
tion 7.7). These findings can potentially provide valuable guidance (such as those needed in
Section 7.1) towards the design of future creativity support systems with the assistance of
the latest machine-learning (ML) techniques.

I also believe real-world deployments could be used to improve current systems’ perfor-
mance by providing in-domain, in-context usage data. For instance, the Words2ui models
(Chapter 6) were only trained on UI captioning data. Deploying these models to real design
processes could help us simultaneously collect real natural language descriptions that design-
ers use in such a workflow (hence overcoming our limitations mentioned in Section 6.6.1),
and consequently improve our proposed models by re-training and/or active learning. These
systems already have a certain degree of intelligence, and our users have expressed interest
in exploring their utility in their design processes. I believe this provides great opportunities
for these models to continually benefit both the proposed systems’ users, given the incentives
of improving users’ workflow that they provide and their further improved future iterations
with new user data.

7.7 Dynamics and Research of Future Designer-AI

Interaction

As all research systems proposed by this dissertation are heavily motivated by design
applications, the discussion of future research opportunities would not be complete without
our speculation about the dynamics of Designer-AI interaction in future design processes.

I speculate that the future development of generative systems for design sketches and pro-
totypes, such as Words2ui introduced in this dissertation (Chapter 6), would significantly
change the interaction dynamics between designers and these design-support computational
systems, especially when these systems become increasingly capable and pervasive in their fu-
ture iterations. Sketching and drawing had previously been considered as an important skill
and ability that is unique to expert designers (further discussed in Section 2.1.3). However,
as our proposed systems are novelly capable of automatically generating sketches, I believe
designers might offload some of the more mundane drawing and/or prototyping tasks to
these generative systems. Delegating these tasks would leave designers with extra time and
mental capacity to consider the wider context, broader problem definition, and explore newer

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 117

directions towards solving the ‘wicked’ design problem1 [18, 158], resulting in more compre-
hensive design considerations and better designs. I also speculate that in the near future, this
capability of designing solutions that the clients ‘never dreamed [they] wanted’ [29] might be
difficult for computational systems to achieve, and hence such ability to explore new problem
definitions and innovative solutions would remain unique and become a more important role
for designers to take in their collaboration with these new generative systems. Therefore, as
proposed in previous sections in this chapter, I believe a promising future research direction
is to validate whether such a shift in interaction dynamics would exist with the introduction
of these generative systems into realistic use-cases and workflows, or if there is a certain
requirement of these systems’ generative ability for such shift to happen.

Moreover, the usage of these generated artifacts of sketches and prototypes in realistic
design processes shall be further explored, such that whether they will be integrated as-is into
design documentations as artifacts to replace all manually-created artifacts, or have multiple
machine-generated artifacts combined and further modified by designers, or only taken as
reference for designers to manually create their final artifacts with. Given sketches and
prototypes are important not only as an artifact itself, but also as a thinking tool for problem
comprehension and solving in design [5, 29, 55, 177], it would be important to investigate
the renewed purpose and intensity of sketching and prototyping activities under these new
AI-assisted sketching workflows. Associated with this investigation would be researching the
nature of guidance and control that designers hope to have on the computational generation
processes of sketches and prototypes. This is also a requirement for future systems suggested
by experts who participated in our user studies in Words2ui (Section 6.4). Further, this
research might need to additionally consider novice and intermediate users that are now
empowered by generative systems to create sketches and prototypes, because I believe these
generative systems will promote wider participation in design and introduce a new user group
that we shall consider for.

Finally, based on the results of all proposed future investigations above, other types of
design-support interactions should be researched beyond those introduced in this disserta-
tion. While in this dissertation we chose to first investigate a conversational process (i.e.,
elementary sketch/critique cycles introduced by Scones in Chapter 5) because sketching is
often characterized as ‘dialogues’ and ‘conversation’ for designers [29, 169], I believe more
practical and useful interactions would arise in future systems. I believe these systems will
contribute diverse and comprehensive design alternatives and ideas, moving beyond their cur-
rent assistive and tool-based roles to designers, and participate in the often social processes
of design [17, 29, 175].

1Wicked problems are complex problems that are often ill-formed and do not contain singular, correct,
and optimal solutions. It has been used extensively to characterize design and planning problems.

118

Chapter 8

Conclusion

In this dissertation, we explored several methods and systems to generate non-expert
sketches and user interface (UI) prototypes with human guidance. Such guidance
takes the forms of natural language and existing sketches, enabling non-experts and profes-
sionals to effortlessly and promptly generate relevant artifacts in their creative activities.

We first developed Sketchforme, which is the first deep-learning (DL) system to
be able to generate complex sketched scenes consisting of multiple objects given
a single text description. The core technical architecture of Sketchforme is a two-stage
process, in which we successfully adapted Recurrent-Neural-Networks and Transformers to
model both scene compositions and sketching mechanics of individual objects. These models
are then connected with each other via relevant conditions based on aspect ratios of the
objects. This design avoided the need to train our system with end-to-end text-to-sketch
datasets that were previously unavailable. The generated sketches were considered to be
realistic and relevant by human raters, and were shown to have successfully supported a
language learning application and a sketching assistant.

We then improved upon Sketchforme to develop Scones, which presents a new inter-
action paradigm of conversational authoring of sketches. Scones continuously iterate
on sketched scenes by adding and editing sketched objects in the scenes over
multiple turns where users would provide multiple text instructions. It enables
sketch/critique cycles, a more powerful paradigm to customize the output sketches progres-
sively according to users’ guidance than only generating individual scenes with a single text
description in Sketchforme. Scones also improved upon Sketchforme’s technical architecture
and adapted Transformer models to achieve new state-of-the-art quantitative performance
in an established scene composition task with its first stage. The second stage of Scones now
additionally considers object masks that better describe the poses of the object sketches. In
our exploratory user study, users enjoyed interacting with Scones and were also generally
satisfied with the final sketches that they were instructed to co-create with it.

Beyond non-expert sketches, we developed Words2ui, which consists of a set of gener-
ative and retrieval models for low-fidelity UI prototypes based on high-level text
descriptions. This is a novel task for UI generation models, in which we adapted state-of-

CHAPTER 8. CONCLUSION 119

the-art Transformer architectures and developed novel metrics to fully establish the research
landscape in this area. We found that these adapted Transformer models were able to gen-
erate well-formed UIs of similar quality as those generated by unconditional models, and are
qualitatively relevant to the text descriptions that they are based on. The retrieval mod-
els also enable quantitative evaluation of the generative models, and by themselves support
the important application of exploring inspirational design examples in UI design processes.
Experts who reviewed the generated prototypes considered them to be potentially helpful in
their current design processes, and provided suggestions for further adoption of Words2ui.

With these three projects, we have demonstrated how DL models can help generate
sketches and prototypes (primarily using the Transformer architecture) that users might not
be proficient or familiar with, guided by natural language that users can more easily specify.
These systems operate at various abstraction levels, including high-level composition and
low-level sketching mechanics, to overcome data challenges and to enable practical interac-
tions such as object-level manipulation. The models introduced along with these systems
also establish new state-of-the-art performance in existing tasks and enable new affordances
and interactions that users enjoy and could benefit from in their creative processes.

We believe all of the proposed systems can encourage wider participation, enable greater
self-expression, and reduce required effort in creative activities. With the increasing avail-
ability of large-scale datasets and prevalence of more capable language and text-to-visual
generative models, we are optimistic about future datasets, models, and interactive appli-
cations that can be developed to further advance the state-of-the-art of creativity support
tools. We are excited about a future where desirable, realistic, and compelling artifacts can
be generated by machines in various creative activities for users of diverse backgrounds and
skill levels.

120

Bibliography

[1] Luis von Ahn and Laura Dabbish. “Designing Games with a Purpose”. In: Commun.
ACM 51.8 (Aug. 2008), pp. 58–67. issn: 0001-0782. doi: 10.1145/1378704.1378719.
url: http://doi.acm.org/10.1145/1378704.1378719.

[2] Shaaron Ainsworth, Vaughan Prain, and Russell Tytler. “Drawing to Learn in Sci-
ence”. In: Science 333.6046 (2011), pp. 1096–1097. doi: 10.1126/science.1204153.
eprint: https://www.science.org/doi/pdf/10.1126/science.1204153. url:
https://www.science.org/doi/abs/10.1126/science.1204153.

[3] Emre Aksan et al. “CoSE: Compositional Stroke Embeddings”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 10041–10052. url: https://proceedings.neurips.cc/pape
r/2020/file/723e8f97fde15f7a8d5ff8d558ea3f16-Paper.pdf.

[4] Jean-Baptiste Alayrac et al. “Flamingo: a Visual Language Model for Few-Shot Learn-
ing”. In: CoRR abs/2204.14198 (2022). doi: 10.48550/arXiv.2204.14198. arXiv:
2204.14198. url: https://doi.org/10.48550/arXiv.2204.14198.

[5] An Introduction to Design Thinking Process. Hasso Plattner Institute of Design at
Stanford. url: https://web.stanford.edu/~mshanks/MichaelShanks/files/509
554.pdf.

[6] Rahul Arora et al. “SketchSoup: Exploratory Ideation Using Design Sketches”. In:
Computer Graphics Forum (2017). url: http://www-sop.inria.fr/reves/Basili
c/2017/ADNBS17.

[7] Diego Mart́ın Arroyo, Janis Postels, and Federico Tombari. “Variational Transformer
Networks for Layout Generation”. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foun-
dation / IEEE, 2021, pp. 13642–13652. url: https://openaccess.thecvf.com/co
ntent/CVPR2021/html/Arroyo_Variational_Transformer_Networks_for_Layout

_Generation_CVPR_2021_paper.html.

[8] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”.
In: CoRR abs/1607.06450 (2016). arXiv: 1607.06450. url: http://arxiv.org/abs
/1607.06450.

https://doi.org/10.1145/1378704.1378719
http://doi.acm.org/10.1145/1378704.1378719
https://doi.org/10.1126/science.1204153
https://www.science.org/doi/pdf/10.1126/science.1204153
https://www.science.org/doi/abs/10.1126/science.1204153
https://proceedings.neurips.cc/paper/2020/file/723e8f97fde15f7a8d5ff8d558ea3f16-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/723e8f97fde15f7a8d5ff8d558ea3f16-Paper.pdf
https://doi.org/10.48550/arXiv.2204.14198
https://arxiv.org/abs/2204.14198
https://doi.org/10.48550/arXiv.2204.14198
https://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf
https://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf
http://www-sop.inria.fr/reves/Basilic/2017/ADNBS17
http://www-sop.inria.fr/reves/Basilic/2017/ADNBS17
https://openaccess.thecvf.com/content/CVPR2021/html/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Arroyo_Variational_Transformer_Networks_for_Layout_Generation_CVPR_2021_paper.html
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450

BIBLIOGRAPHY 121

[9] Benjamin Bahr. Prototyping of User Interfaces for Mobile Applications. 1st. Springer
Publishing Company, Incorporated, 2018. isbn: 3319850911.

[10] Chongyang Bai et al. “UIBert: Learning Generic Multimodal Representations for UI
Understanding”. In: Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montréal, Canada, 19-27 August
2021. Ed. by Zhi-Hua Zhou. ijcai.org, 2021, pp. 1705–1712. doi: 10.24963/ijcai.2
021/235. url: https://doi.org/10.24963/ijcai.2021/235.

[11] Mira Balaban, Eli Barzilay, and Michael Elhadad. “Abstraction as a Means for End-
User Computing in Creative Applications”. In: IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 32.6 (2002), pp. 640–653. doi: 10.1
109/TSMCA.2002.807042.

[12] Michel Beaudouin-Lafon and Wendy Mackay. “Prototyping Tools and Techniques”.
In: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technolo-
gies and Emerging Applications. USA: L. Erlbaum Associates Inc., 2002, pp. 1006–
1031. isbn: 0805838384.

[13] Christopher M Bishop. “Mixture Density Networks”. In: Neural Computing Research
Group Report NCRG/94/004 (Feb. 1994). url: https://publications.aston.ac
.uk/id/eprint/373/1/NCRG_94_004.pdf.

[14] Nathalie Bonnardel. “Creativity in design activities: The role of analogies in a con-
strained cognitive environment”. In: Proceedings of the 3rd Conference on Creativity
& Cognition. C&C ’99. Loughborough, United Kingdom: ACM, 1999, pp. 158–165.
isbn: 1-58113-078-3. doi: 10.1145/317561.317589. url: http://doi.acm.org/10
.1145/317561.317589.

[15] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Training for
High Fidelity Natural Image Synthesis”. In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019. url: https://openreview.net/forum?id=B1xsqj09Fm.

[16] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 1877–1901. url: https://proceedings.neurips.cc/paper/2
020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[17] Louis L. Bucciarelli. Designing Engineers. Inside Technology. Cambridge, Mass: MIT
Press, 1994. isbn: 0262023776.

[18] Richard Buchanan. “Wicked Problems in Design Thinking”. In: Design Issues 8
(1992), p. 5.

[19] Bill Buxton. Sketching User Experiences: Getting the Design Right and the Right
Design. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. isbn:
9780123740373.

https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.1109/TSMCA.2002.807042
https://doi.org/10.1109/TSMCA.2002.807042
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://doi.org/10.1145/317561.317589
http://doi.acm.org/10.1145/317561.317589
http://doi.acm.org/10.1145/317561.317589
https://openreview.net/forum?id=B1xsqj09Fm
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

BIBLIOGRAPHY 122

[20] Bradley Camburn et al. “Design prototyping methods: state of the art in strategies,
techniques, and guidelines”. In: Design Science 3 (2017), e13. doi: 10.1017/dsj.20
17.10.

[21] Alexandre Carlier et al. “DeepSVG: A Hierarchical Generative Network for Vector
Graphics Animation”. In: Advances in Neural Information Processing Systems. Ed.
by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 16351–16361. url:
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c9

50b702341-Paper.pdf.

[22] Angel X. Chang et al. “ShapeNet: An Information-Rich 3D Model Repository”. In:
CoRR abs/1512.03012 (2015). arXiv: 1512.03012. url: http://arxiv.org/abs/15
12.03012.

[23] Luming Chen. “TranSketch Dataset: Learning to Transform Sketches”. Master’s the-
sis. EECS Department, University of California, Berkeley, May 2020. url: http://w
ww2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-92.html.

[24] Mark Chen et al. “Generative Pretraining From Pixels”. In: Proceedings of the 37th In-
ternational Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh.
Vol. 119. Proceedings of Machine Learning Research. PMLR, July 2020, pp. 1691–
1703. url: https://proceedings.mlr.press/v119/chen20s.html.

[25] Yunjey Choi et al. “StarGAN v2: Diverse Image Synthesis for Multiple Domains”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation / IEEE,
2020, pp. 8185–8194. doi: 10.1109/CVPR42600.2020.00821. url: https://opena
ccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image

_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html.

[26] Aakanksha Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”.
In: CoRR abs/2204.02311 (2022). doi: 10.48550/arXiv.2204.02311. arXiv: 2204
.02311. url: https://doi.org/10.48550/arXiv.2204.02311.

[27] Pinaki Nath Chowdhury et al. “FS-COCO: Towards Understanding of Freehand
Sketches of Common Objects in Context”. In: CoRR abs/2203.02113 (2022). doi:
10.48550/arXiv.2203.02113. arXiv: 2203.02113. url: https://doi.org/10.485
50/arXiv.2203.02113.

[28] Jamie Combs and Brenda Hoddinott. Drawing for dummies. Wiley, 2011.

[29] Nigel Cross. Design Thinking: Understanding How Designers Think and Work. Berg
Publishers, 2011. isbn: 9781847886361. url: https://books.google.com/books?i
d=Ndu48n8Ik9UC.

[30] Nigel Cross. Designerly Ways of Knowing. Springer London, 2006. isbn: 97818462830
17. url: https://books.google.com/books?id=lvWP3jEW6RAC.

https://doi.org/10.1017/dsj.2017.10
https://doi.org/10.1017/dsj.2017.10
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-92.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-92.html
https://proceedings.mlr.press/v119/chen20s.html
https://doi.org/10.1109/CVPR42600.2020.00821
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://doi.org/10.48550/arXiv.2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2203.02113
https://arxiv.org/abs/2203.02113
https://doi.org/10.48550/arXiv.2203.02113
https://doi.org/10.48550/arXiv.2203.02113
https://books.google.com/books?id=Ndu48n8Ik9UC
https://books.google.com/books?id=Ndu48n8Ik9UC
https://books.google.com/books?id=lvWP3jEW6RAC

BIBLIOGRAPHY 123

[31] R. Davies and R.J. Talbot. “Experiencing ideas: identity, insight and the imago”. In:
Design Studies 8.1 (1987), pp. 17–25. issn: 0142-694X. doi: https://doi.org/10.1
016/0142-694X(87)90027-5. url: https://www.sciencedirect.com/science/ar
ticle/pii/0142694X87900275.

[32] Stephen Boyd Davis and Magnus Moar. “The Amateur Creator”. In: Proceedings of
the 5th Conference on Creativity & Cognition. C&C ’05. London, United Kingdom:
Association for Computing Machinery, 2005, pp. 158–165. isbn: 1595930256. doi:
10.1145/1056224.1056247. url: https://doi.org/10.1145/1056224.1056247.

[33] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. “ERICA: Interaction Mining Mo-
bile Apps”. In: Proceedings of the 29th Annual Symposium on User Interface Software
and Technology. UIST ’16. Tokyo, Japan: ACM, 2016, pp. 767–776. isbn: 978-1-4503-
4189-9. doi: 10.1145/2984511.2984581. url: http://doi.acm.org/10.1145/298
4511.2984581.

[34] Biplab Deka et al. “Rico: A Mobile App Dataset for Building Data-Driven Design
Applications”. In: Proceedings of the 30th Annual ACM Symposium on User Inter-
face Software and Technology. UIST ’17. Québec City, QC, Canada: Association for
Computing Machinery, 2017, pp. 845–854. isbn: 9781450349819. doi: 10.1145/3126
594.3126651. url: https://doi.org/10.1145/3126594.3126651.

[35] Johanna Delanoy et al. “3D Sketching Using Multi-View Deep Volumetric Predic-
tion”. In: Proc. ACM Comput. Graph. Interact. Tech. 1.1 (July 2018). doi: 10.1145
/3203197. url: https://doi.org/10.1145/3203197.

[36] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: 2009
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2009), 20-25 June 2009, Miami, Florida, USA. IEEE Computer Society,
2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848. url: https://doi.org/10
.1109/CVPR.2009.5206848.

[37] Design Thinking. IDEO. url: https://www.ideou.com/pages/design-thinking.

[38] Sebastian Deterding et al. “Mixed-Initiative Creative Interfaces”. In: Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems. CHI EA ’17. Denver, Colorado, USA: Association for Computing Machinery,
2017, pp. 628–635. isbn: 9781450346566. doi: 10.1145/3027063.3027072. url:
https://doi.org/10.1145/3027063.3027072.

[39] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1
423. url: https://aclanthology.org/N19-1423.

https://doi.org/https://doi.org/10.1016/0142-694X(87)90027-5
https://doi.org/https://doi.org/10.1016/0142-694X(87)90027-5
https://www.sciencedirect.com/science/article/pii/0142694X87900275
https://www.sciencedirect.com/science/article/pii/0142694X87900275
https://doi.org/10.1145/1056224.1056247
https://doi.org/10.1145/1056224.1056247
https://doi.org/10.1145/2984511.2984581
http://doi.acm.org/10.1145/2984511.2984581
http://doi.acm.org/10.1145/2984511.2984581
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3203197
https://doi.org/10.1145/3203197
https://doi.org/10.1145/3203197
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.ideou.com/pages/design-thinking
https://doi.org/10.1145/3027063.3027072
https://doi.org/10.1145/3027063.3027072
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423

BIBLIOGRAPHY 124

[40] Stephanie Dick. “AfterMath: The Work of Proof in the Age of Human–Machine Col-
laboration”. In: Isis 102 (2011), pp. 494–505.

[41] Claudia Eckert et al. “Sketching across design domains: Roles and formalities”. In: Ar-
tificial Intelligence for Engineering Design, Analysis and Manufacturing 26.3 (2012),
pp. 245–266. doi: 10.1017/S0890060412000133.

[42] Mathias Eitz, James Hays, and Marc Alexa. “How Do Humans Sketch Objects?” In:
ACM Trans. Graph. 31.4 (July 2012). issn: 0730-0301. doi: 10.1145/2185520.2185
540. url: https://doi.org/10.1145/2185520.2185540.

[43] Judith Fan. “Drawing to Learn: How Producing Graphical Representations enhances
Scientific Thinking”. In: Translational Issues in Psychological Science 1 (June 2015),
pp. 170–181. doi: 10.1037/tps0000037.

[44] Eugene S. Ferguson. Engineering and the Mind’s Eye. Cambridge, Mass: MIT Press,
1992. isbn: 0262061473.

[45] Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. “Sketch-sketch Revolu-
tion: An Engaging Tutorial System for Guided Sketching and Application Learning”.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology. UIST ’11. Santa Barbara, California, USA: ACM, 2011, pp. 373–382.
isbn: 978-1-4503-0716-1. doi: 10.1145/2047196.2047245. url: http://doi.acm.o
rg/10.1145/2047196.2047245.

[46] Michael H. Fischer, Richard R. Yang, and Monica S. Lam. “ImagineNet: Restyling
Apps Using Neural Style Transfer”. In: CoRR abs/2001.04932 (2020). arXiv: 2001.0
4932. url: https://arxiv.org/abs/2001.04932.

[47] Kevin Frans, Lisa B. Soros, and Olaf Witkowski. “CLIPDraw: Exploring Text-to-
Drawing Synthesis through Language-Image Encoders”. In: CoRR abs/2106.14843
(2021). arXiv: 2106.14843. url: https://arxiv.org/abs/2106.14843.

[48] Chengying Gao et al. “SketchyCOCO: Image Generation From Freehand Scene
Sketches”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foun-
dation / IEEE, 2020, pp. 5173–5182. doi: 10.1109/CVPR42600.2020.00522. url: h
ttps://openaccess.thecvf.com/content_CVPR_2020/html/Gao_SketchyCOCO_Im

age_Generation_From_Freehand_Scene_Sketches_CVPR_2020_paper.html.

[49] Henry Gasser. “From Pencil Note to Painting”. In: Design 61.2 (1959), pp. 68–71.
doi: 10.1080/00119253.1959.10744001. eprint: https://doi.org/10.1080/0011
9253.1959.10744001. url: https://doi.org/10.1080/00119253.1959.10744001.

[50] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm of
Artistic Style”. In: CoRR abs/1508.06576 (2015). arXiv: 1508.06576. url: http:
//arxiv.org/abs/1508.06576.

https://doi.org/10.1017/S0890060412000133
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1037/tps0000037
https://doi.org/10.1145/2047196.2047245
http://doi.acm.org/10.1145/2047196.2047245
http://doi.acm.org/10.1145/2047196.2047245
https://arxiv.org/abs/2001.04932
https://arxiv.org/abs/2001.04932
https://arxiv.org/abs/2001.04932
https://arxiv.org/abs/2106.14843
https://arxiv.org/abs/2106.14843
https://doi.org/10.1109/CVPR42600.2020.00522
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_SketchyCOCO_Image_Generation_From_Freehand_Scene_Sketches_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_SketchyCOCO_Image_Generation_From_Freehand_Scene_Sketches_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_SketchyCOCO_Image_Generation_From_Freehand_Scene_Sketches_CVPR_2020_paper.html
https://doi.org/10.1080/00119253.1959.10744001
https://doi.org/10.1080/00119253.1959.10744001
https://doi.org/10.1080/00119253.1959.10744001
https://doi.org/10.1080/00119253.1959.10744001
https://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576

BIBLIOGRAPHY 125

[51] Songwei Ge et al. “Creative Sketch Generation”. In: 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. url: https://openreview.net/forum?id=gwnoVHIES05.

[52] Philippe Gervais et al. “The DIDI dataset: Digital Ink Diagram data”. In: CoRR
abs/2002.09303 (2020). arXiv: 2002.09303. url: https://arxiv.org/abs/2002.09
303.

[53] Arnab Ghosh et al. “Interactive Sketch & Fill: Multiclass Sketch-to-Image Trans-
lation”. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp. 1171–
1180. doi: 10.1109/ICCV.2019.00126. url: https://doi.org/10.1109/ICCV.201
9.00126.

[54] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. “End-to-End Retrieval
in Continuous Space”. In: CoRR abs/1811.08008 (2018). arXiv: 1811.08008. url:
http://arxiv.org/abs/1811.08008.

[55] Vinod Goel and Jordan Grafman. “Role of the Right Prefrontal Cortex in Ill-
structured Planning”. In: Cognitive Neuropsychology 17.5 (2000). PMID: 20945189,
pp. 415–436. doi: 10.1080/026432900410775. eprint: https://doi.org/10.1080
/026432900410775. url: https://doi.org/10.1080/026432900410775.

[56] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates,
Inc., 2014. url: https://proceedings.neurips.cc/paper/2014/file/5ca3e9b12
2f61f8f06494c97b1afccf3-Paper.pdf.

[57] Google. Material Design. 2021. url: https://material.io/.

[58] Yulia Gryaditskaya et al. “OpenSketch: A Richly-Annotated Dataset of Product De-
sign Sketches”. In: ACM Trans. Graph. 38.6 (Nov. 2019). issn: 0730-0301. doi: 10.1
145/3355089.3356533. url: https://doi.org/10.1145/3355089.3356533.

[59] Kelleher Guerin et al. “Adjutant: A Framework for Flexible Human-Machine Collab-
orative Systems”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, September 14-18, 2014. IEEE, 2014, pp. 1392–1399.
doi: 10.1109/IROS.2014.6942739. url: https://doi.org/10.1109/IROS.2014.6
942739.

[60] Kamal Gupta et al. “LayoutTransformer: Layout Generation and Completion with
Self-attention”. In: 2021 IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 984–994.
doi: 10.1109/ICCV48922.2021.00104. url: https://doi.org/10.1109/ICCV4892
2.2021.00104.

https://openreview.net/forum?id=gwnoVHIES05
https://arxiv.org/abs/2002.09303
https://arxiv.org/abs/2002.09303
https://arxiv.org/abs/2002.09303
https://doi.org/10.1109/ICCV.2019.00126
https://doi.org/10.1109/ICCV.2019.00126
https://doi.org/10.1109/ICCV.2019.00126
https://arxiv.org/abs/1811.08008
http://arxiv.org/abs/1811.08008
https://doi.org/10.1080/026432900410775
https://doi.org/10.1080/026432900410775
https://doi.org/10.1080/026432900410775
https://doi.org/10.1080/026432900410775
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://material.io/
https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1109/IROS.2014.6942739
https://doi.org/10.1109/IROS.2014.6942739
https://doi.org/10.1109/IROS.2014.6942739
https://doi.org/10.1109/ICCV48922.2021.00104
https://doi.org/10.1109/ICCV48922.2021.00104
https://doi.org/10.1109/ICCV48922.2021.00104

BIBLIOGRAPHY 126

[61] David Ha, Andrew M. Dai, and Quoc V. Le. “HyperNetworks”. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. url: https://openrev
iew.net/forum?id=rkpACe1lx.

[62] David Ha and Douglas Eck. “A Neural Representation of Sketch Drawings”. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. 2018. url: https:
//openreview.net/forum?id=Hy6GHpkCW.

[63] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. doi: 10.1
109/CVPR.2016.90. url: https://doi.org/10.1109/CVPR.2016.90.

[64] Zecheng He et al. “ActionBert: Leveraging User Actions for Semantic Understanding
of User Interfaces”. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 5931–
5938. url: https://ojs.aaai.org/index.php/AAAI/article/view/16741.

[65] Marti A. Hearst. “Mixed-Initiative Interaction”. In: IEEE Intelligent Systems (Sept.
1999), pp. 14–24.

[66] Kathryn Henderson. “Flexible Sketches and Inflexible Data Bases: Visual Commu-
nication, Conscription Devices, and Boundary Objects in Design Engineering”. In:
Science, Technology, & Human Values 16.4 (1991), pp. 448–473. doi: 10.1177/016
224399101600402. eprint: https://doi.org/10.1177/016224399101600402. url:
https://doi.org/10.1177/016224399101600402.

[67] Kathryn Henderson. On Line and on Paper: Visual Representations, Visual Culture,
and Computer Graphics in Design Engineering. Cambridge, MA, USA: MIT Press,
1998. isbn: 0262082691.

[68] James W. Hennessey et al. “How2Sketch: Generating Easy-to-Follow Tutorials for
Sketching 3D Objects”. In: I3D ’17. San Francisco, California: Association for Com-
puting Machinery, 2017. isbn: 9781450348867. doi: 10.1145/3023368.3023371. url:
https://doi.org/10.1145/3023368.3023371.

[69] Christopher Henshilwood et al. “An abstract drawing from the 73,000-year-old levels
at Blombos Cave, South Africa”. In: Nature 562 (Oct. 2018). doi: 10.1038/s41586
-018-0514-3.

https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=Hy6GHpkCW
https://openreview.net/forum?id=Hy6GHpkCW
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://ojs.aaai.org/index.php/AAAI/article/view/16741
https://doi.org/10.1177/016224399101600402
https://doi.org/10.1177/016224399101600402
https://doi.org/10.1177/016224399101600402
https://doi.org/10.1177/016224399101600402
https://doi.org/10.1145/3023368.3023371
https://doi.org/10.1145/3023368.3023371
https://doi.org/10.1038/s41586-018-0514-3
https://doi.org/10.1038/s41586-018-0514-3

BIBLIOGRAPHY 127

[70] Scarlett R. Herring et al. “Getting Inspired!: Understanding How and Why Examples
Are Used in Creative Design Practice”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’09. Boston, MA, USA: ACM, 2009,
pp. 87–96. isbn: 978-1-60558-246-7. doi: 10.1145/1518701.1518717. url: http:
//doi.acm.org/10.1145/1518701.1518717.

[71] D. L. Hoffmann et al. “U-Th dating of carbonate crusts reveals Neandertal origin of
Iberian cave art”. In: Science 359 (Feb. 2018), p. 912. url: http://science.scien
cemag.org/content/359/6378/912.abstract.

[72] Jan Hoftijzer et al. “A typology of design sketches, defined by communication factors:
The case study of the Thule Yepp nexxt child bike seat”. English. In: Proceedings of
the 20th International Conference on Engineering and Product Design Education, E
and PDE 2018. Ed. by Stephen Green et al. Institution of Engineering Designers, The
Design Society, 2018. url: https://epde.info/epde2018/.

[73] Seunghoon Hong et al. “Inferring Semantic Layout for Hierarchical Text-to-Image
Synthesis”. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Founda-
tion / IEEE Computer Society, 2018, pp. 7986–7994. doi: 10.1109/CVPR.2018.008
33. url: http://openaccess.thecvf.com/content_cvpr_2018/html/Hong_Infer
ring_Semantic_Layout_CVPR_2018_paper.html.

[74] Eric Horvitz. “Principles of Mixed-Initiative User Interfaces”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’99. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 1999, pp. 159–166. isbn:
0201485591. doi: 10.1145/302979.303030. url: https://doi.org/10.1145/3029
79.303030.

[75] Stephanie Houde and Charles Hill. “Chapter 16 - What do Prototypes Prototype?”
In: Handbook of Human-Computer Interaction (Second Edition). Ed. by Marting G.
Helander, Thomas K. Landauer, and Prasad V. Prabhu. Second Edition. Amsterdam:
North-Holland, 1997, pp. 367–381. isbn: 978-0-444-81862-1. doi: https://doi.org
/10.1016/B978-044481862-1.50082-0. url: https://www.sciencedirect.com/s
cience/article/pii/B9780444818621500820.

[76] Ruizhen Hu et al. “Predictive and Generative Neural Networks for Object Function-
ality”. In: ACM Trans. Graph. 37.4 (July 2018). issn: 0730-0301. doi: 10.1145/319
7517.3201287. url: https://doi.org/10.1145/3197517.3201287.

[77] Forrest Huang and John F. Canny. “Sketchforme: Composing Sketched Scenes from
Text Descriptions for Interactive Applications”. In: Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. UIST ’19. New Or-
leans, LA, USA: Association for Computing Machinery, 2019, pp. 209–220. isbn:
9781450368162. doi: 10.1145/3332165.3347878. url: https://doi.org/10.1145
/3332165.3347878.

https://doi.org/10.1145/1518701.1518717
http://doi.acm.org/10.1145/1518701.1518717
http://doi.acm.org/10.1145/1518701.1518717
http://science.sciencemag.org/content/359/6378/912.abstract
http://science.sciencemag.org/content/359/6378/912.abstract
https://epde.info/epde2018/
https://doi.org/10.1109/CVPR.2018.00833
https://doi.org/10.1109/CVPR.2018.00833
http://openaccess.thecvf.com/content_cvpr_2018/html/Hong_Inferring_Semantic_Layout_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hong_Inferring_Semantic_Layout_CVPR_2018_paper.html
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/https://doi.org/10.1016/B978-044481862-1.50082-0
https://doi.org/https://doi.org/10.1016/B978-044481862-1.50082-0
https://www.sciencedirect.com/science/article/pii/B9780444818621500820
https://www.sciencedirect.com/science/article/pii/B9780444818621500820
https://doi.org/10.1145/3197517.3201287
https://doi.org/10.1145/3197517.3201287
https://doi.org/10.1145/3197517.3201287
https://doi.org/10.1145/3332165.3347878
https://doi.org/10.1145/3332165.3347878
https://doi.org/10.1145/3332165.3347878

BIBLIOGRAPHY 128

[78] Forrest Huang, John F. Canny, and Jeffrey Nichols. “Swire: Sketch-Based User In-
terface Retrieval”. In: Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI ’19. Glasgow, Scotland, UK: Association for Comput-
ing Machinery, 2019. isbn: 9781450359702. doi: 10.1145/3290605.3300334. url:
https://doi.org/10.1145/3290605.3300334.

[79] Forrest Huang et al. “Creating User Interface Mock-ups from High-Level Text De-
scriptions with Deep-Learning Models”. In: CoRR abs/2110.07775 (2021). arXiv: 21
10.07775. url: https://arxiv.org/abs/2110.07775.

[80] Forrest Huang et al. “Scones: Towards Conversational Authoring of Sketches”. In:
Proceedings of the 25th International Conference on Intelligent User Interfaces. IUI
’20. Cagliari, Italy: Association for Computing Machinery, 2020, pp. 313–323. isbn:
9781450371186. doi: 10.1145/3377325.3377485. url: https://doi.org/10.1145
/3377325.3377485.

[81] Forrest Huang et al. “Sketch-Based Creativity Support Tools Using Deep Learning”.
In: Artificial Intelligence for Human Computer Interaction: A Modern Approach. Ed.
by Yang Li and Otmar Hilliges. Cham: Springer International Publishing, 2021. isbn:
978-3-030-82681-9. doi: 10.1007/978-3-030-82681-9_12. url: https://doi.org
/10.1007/978-3-030-82681-9_12.

[82] Holly Huey et al. “Developmental Changes in the Semantic Part Structure of Drawn
Objects”. In: Proceedings of the Annual Meeting of the Cognitive Science Society.
Vol. 44. 2022.

[83] Emmanuel Iarussi, Adrien Bousseau, and Theophanis Tsandilas. “The Drawing As-
sistant: Automated Drawing Guidance and Feedback from Photographs”. In: Proceed-
ings of the 26th Annual ACM Symposium on User Interface Software and Technology.
UIST ’13. St. Andrews, Scotland, United Kingdom: Association for Computing Ma-
chinery, 2013, pp. 183–192. isbn: 9781450322683. doi: 10.1145/2501988.2501997.
url: https://doi.org/10.1145/2501988.2501997.

[84] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Net-
works”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 2017,
pp. 5967–5976. doi: 10.1109/CVPR.2017.632. url: https://doi.org/10.1109
/CVPR.2017.632.

[85] Ajay Jain et al. “Zero-Shot Text-Guided Object Generation With Dream Fields”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). June 2022, pp. 867–876.

[86] Shagun Jhaver et al. “Human-Machine Collaboration for Content Regulation: The
Case of Reddit Automoderator”. In: ACM Trans. Comput.-Hum. Interact. 26.5 (July
2019). issn: 1073-0516. doi: 10.1145/3338243. url: https://doi.org/10.1145/3
338243.

https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3290605.3300334
https://arxiv.org/abs/2110.07775
https://arxiv.org/abs/2110.07775
https://arxiv.org/abs/2110.07775
https://doi.org/10.1145/3377325.3377485
https://doi.org/10.1145/3377325.3377485
https://doi.org/10.1145/3377325.3377485
https://doi.org/10.1007/978-3-030-82681-9_12
https://doi.org/10.1007/978-3-030-82681-9_12
https://doi.org/10.1007/978-3-030-82681-9_12
https://doi.org/10.1145/2501988.2501997
https://doi.org/10.1145/2501988.2501997
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1145/3338243
https://doi.org/10.1145/3338243
https://doi.org/10.1145/3338243

BIBLIOGRAPHY 129

[87] Ellen Jiang et al. “PromptMaker: Prompt-Based Prototyping with Large Language
Models”. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems. CHI EA ’22. New Orleans, LA, USA: Association for Computing
Machinery, 2022. isbn: 9781450391566. doi: 10.1145/3491101.3503564. url: http
s://doi.org/10.1145/3491101.3503564.

[88] Shuhui Jiang and Yun Fu. “Fashion Style Generator”. In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. 2017,
pp. 3721–3727. doi: 10 . 24963 / ijcai . 2017 / 520. url: https : / / doi . org / 10
.24963/ijcai.2017/520.

[89] Y. Jing et al. “Neural Style Transfer: A Review”. In: IEEE Transactions on Visu-
alization & Computer Graphics 26.11 (Nov. 2020), pp. 3365–3385. issn: 1941-0506.
doi: 10.1109/TVCG.2019.2921336.

[90] John Constable’s sketches. Victoria and Albert Museum. url: https://www.vam.ac
.uk/articles/john-constables-sketches.

[91] Jonas Jongejan et al. The Quick, Draw! - A.I. Experiment. 2016. url: https://qui
ckdraw.withgoogle.com/ (visited on 10/03/2019).

[92] Mandar Joshi et al. “TriviaQA: A Large Scale Distantly Supervised Challenge Dataset
for Reading Comprehension”. In: Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, July 2017, pp. 1601–1611. doi: 10.18653
/v1/P17-1147. url: https://aclanthology.org/P17-1147.

[93] Catherine Kaplun. “Children’s drawings speak a thousand words in their transition
to school”. In: Australasian Journal of Early Childhood 44.4 (2019), pp. 392–407. doi:
10.1177/1836939119870887. eprint: https://doi.org/10.1177/183693911987088
7. url: https://doi.org/10.1177/1836939119870887.

[94] Phyllis Katz.Drawing for Science Education: An International Perspective. SensePub-
lishers, 2017. isbn: 9789463008754. url: https://books.google.com/books?id=Lq
N0DgAAQBAJ.

[95] Rubaiat Habib Kazi et al. “DreamSketch: Early Stage 3D Design Explorations with
Sketching and Generative Design”. In: Proceedings of the 30th Annual ACM Sympo-
sium on User Interface Software and Technology. UIST ’17. Québec City, QC, Canada:
ACM, 2017, pp. 401–414. isbn: 978-1-4503-4981-9. doi: 10.1145/3126594.3126662.
url: http://doi.acm.org/10.1145/3126594.3126662.

[96] Rhoda Kellogg. Analyzing Children’s Art. Palo Alto, Calif: National Press Books,
1969. isbn: 0874841968.

https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.24963/ijcai.2017/520
https://doi.org/10.24963/ijcai.2017/520
https://doi.org/10.24963/ijcai.2017/520
https://doi.org/10.1109/TVCG.2019.2921336
https://www.vam.ac.uk/articles/john-constables-sketches
https://www.vam.ac.uk/articles/john-constables-sketches
https://quickdraw.withgoogle.com/
https://quickdraw.withgoogle.com/
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://aclanthology.org/P17-1147
https://doi.org/10.1177/1836939119870887
https://doi.org/10.1177/1836939119870887
https://doi.org/10.1177/1836939119870887
https://doi.org/10.1177/1836939119870887
https://books.google.com/books?id=LqN0DgAAQBAJ
https://books.google.com/books?id=LqN0DgAAQBAJ
https://doi.org/10.1145/3126594.3126662
http://doi.acm.org/10.1145/3126594.3126662

BIBLIOGRAPHY 130

[97] Andruid Kerne and Eunyee Koh. “Creativity Support: The Mixed-Initiative Compo-
sition Space”. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital
Libraries. JCDL ’07. Vancouver, BC, Canada: Association for Computing Machinery,
2007, p. 509. isbn: 9781595936448. doi: 10.1145/1255175.1255309. url: https:
//doi.org/10.1145/1255175.1255309.

[98] Jin-Hwa Kim et al. “CoDraw: Collaborative Drawing as a Testbed for Grounded
Goal-driven Communication”. In: Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, July 2019, pp. 6495–6513. doi: 10.18653/v1/P19-1651. url:
https://www.aclweb.org/anthology/P19-1651.

[99] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[100] Amy J. Ko et al. “The State of the Art in End-User Software Engineering”. In: ACM
Comput. Surv. 43.3 (Apr. 2011). issn: 0360-0300. doi: 10.1145/1922649.1922658.
url: https://doi.org/10.1145/1922649.1922658.

[101] Sebastian Koch et al. “ABC: A Big CAD Model Dataset for Geometric Deep Learn-
ing”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 9601–9611. doi: 10.1109/CVPR.2019.00983. url: http://openaccess.thecvf
.com/content_CVPR_2019/html/Koch_ABC_A_Big_CAD_Model_Dataset_for_Geome

tric_Deep_Learning_CVPR_2019_paper.html.

[102] Jing Yu Koh et al. “Text-to-Image Generation Grounded by Fine-Grained User At-
tention”. In: IEEE Winter Conference on Applications of Computer Vision, WACV
2021, Waikoloa, HI, USA, January 3-8, 2021. IEEE, 2021, pp. 237–246. doi: 10.11
09/WACV48630.2021.00028. url: https://doi.org/10.1109/WACV48630.2021.00
028.

[103] Ranjay Krishna et al. “Visual Genome: Connecting Language and Vision Using
Crowdsourced Dense Image Annotations”. In: Int. J. Comput. Vision 123.1 (May
2017), pp. 32–73. issn: 0920-5691. doi: 10.1007/s11263-016-0981-7. url: https:
//doi.org/10.1007/s11263-016-0981-7.

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012. url:
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e9

24a68c45b-Paper.pdf.

https://doi.org/10.1145/1255175.1255309
https://doi.org/10.1145/1255175.1255309
https://doi.org/10.1145/1255175.1255309
https://doi.org/10.18653/v1/P19-1651
https://www.aclweb.org/anthology/P19-1651
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/CVPR.2019.00983
http://openaccess.thecvf.com/content_CVPR_2019/html/Koch_ABC_A_Big_CAD_Model_Dataset_for_Geometric_Deep_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Koch_ABC_A_Big_CAD_Model_Dataset_for_Geometric_Deep_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Koch_ABC_A_Big_CAD_Model_Dataset_for_Geometric_Deep_Learning_CVPR_2019_paper.html
https://doi.org/10.1109/WACV48630.2021.00028
https://doi.org/10.1109/WACV48630.2021.00028
https://doi.org/10.1109/WACV48630.2021.00028
https://doi.org/10.1109/WACV48630.2021.00028
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

BIBLIOGRAPHY 131

[105] Multi-Modal Search for Inspirational Examples in Design. Vol. Volume 6: 33rd Inter-
national Conference on Design Theory and Methodology (DTM). International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. V006T06A020. Aug. 2021. doi: 10.1115/DETC2021-71825. eprint: htt
ps://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-

CIE2021/85420/V006T06A020/6801617/v006t06a020-detc2021-71825.pdf. url:
https://doi.org/10.1115/DETC2021-71825.

[106] James A. Landay. “SILK: Sketching Interfaces Like Krazy”. In: Conference Compan-
ion on Human Factors in Computing Systems. CHI ’96. Vancouver, British Columbia,
Canada: ACM, 1996, pp. 398–399. isbn: 0-89791-832-0. doi: 10.1145/257089.2573
96. url: http://doi.acm.org/10.1145/257089.257396.

[107] Walter S. Lasecki et al. “Apparition: Crowdsourced User Interfaces That Come to
Life As You Sketch Them”. In: Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM,
2015, pp. 1925–1934. isbn: 978-1-4503-3145-6. doi: 10.1145/2702123.2702565. url:
http://doi.acm.org/10.1145/2702123.2702565.

[108] Irving Lavin. “Picasso’s Bull(s): Art History in Reverse”. In: Art in America 81.3
(1993), pp. 76–93.

[109] Bryan Lawson. Design in Mind. Butterworth Architecture, 1994. isbn: 978075061211
1. url: https://books.google.com/books?id=aQdQAAAAMAAJ.

[110] Brian Lee et al. “Designing with Interactive Example Galleries”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’10. Atlanta,
Georgia, USA: ACM, 2010, pp. 2257–2266. isbn: 978-1-60558-929-9. doi: 10.1145/1
753326.1753667. url: http://doi.acm.org/10.1145/1753326.1753667.

[111] Hsin-Ying Lee et al. “Neural Design Network: Graphic Layout Generation with Con-
straints”. In: Computer Vision - ECCV 2020 - 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part III. Ed. by Andrea Vedaldi et al.
Vol. 12348. Lecture Notes in Computer Science. Springer, 2020, pp. 491–506. doi:
10.1007/978-3-030-58580-8_29. url: https://doi.org/10.1007/978-3-030-58
580-8_29.

[112] Yong Jae Lee, C. Lawrence Zitnick, and Michael F. Cohen. “ShadowDraw: Real-time
User Guidance for Freehand Drawing”. In: ACM Trans. Graph. 30.4 (July 2011),
27:1–27:10. issn: 0730-0301. doi: 10.1145/2010324.1964922. url: http://doi.ac
m.org/10.1145/2010324.1964922.

[113] Sebastian Leitner. So Lernt Man Lernen. Angewandte Lernpsychologie ein Weg zum
Erfolg. Herder, 1972. isbn: 9783451162657. url: https://books.google.com/book
s?id=sD3AAQAACAAJ.

https://doi.org/10.1115/DETC2021-71825
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2021/85420/V006T06A020/6801617/v006t06a020-detc2021-71825.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2021/85420/V006T06A020/6801617/v006t06a020-detc2021-71825.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2021/85420/V006T06A020/6801617/v006t06a020-detc2021-71825.pdf
https://doi.org/10.1115/DETC2021-71825
https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/257089.257396
http://doi.acm.org/10.1145/257089.257396
https://doi.org/10.1145/2702123.2702565
http://doi.acm.org/10.1145/2702123.2702565
https://books.google.com/books?id=aQdQAAAAMAAJ
https://doi.org/10.1145/1753326.1753667
https://doi.org/10.1145/1753326.1753667
http://doi.acm.org/10.1145/1753326.1753667
https://doi.org/10.1007/978-3-030-58580-8_29
https://doi.org/10.1007/978-3-030-58580-8_29
https://doi.org/10.1007/978-3-030-58580-8_29
https://doi.org/10.1145/2010324.1964922
http://doi.acm.org/10.1145/2010324.1964922
http://doi.acm.org/10.1145/2010324.1964922
https://books.google.com/books?id=sD3AAQAACAAJ
https://books.google.com/books?id=sD3AAQAACAAJ

BIBLIOGRAPHY 132

[114] Bo Li et al. “Sketch-Based 3D Model Retrieval Utilizing Adaptive View Clustering
and Semantic Information”. In: Multimedia Tools Appl. 76.24 (Dec. 2017), pp. 26603–
26631. issn: 1380-7501. url: https://doi.org/10.1007/s11042-016-4187-3.

[115] Jianan Li et al. “LayoutGAN: Generating Graphic Layouts with Wireframe Discrim-
inators”. In: 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. url: https://open
review.net/forum?id=HJxB5sRcFQ.

[116] Toby Jia-Jun Li et al. “Screen2Vec: Semantic Embedding of GUI Screens and GUI
Components”. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. CHI ’21. Yokohama, Japan: Association for Computing Machin-
ery, 2021. isbn: 9781450380966. doi: 10.1145/3411764.3445049. url: https://do
i.org/10.1145/3411764.3445049.

[117] Yang Li et al. “Mapping Natural Language Instructions to Mobile UI Action Se-
quences”. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Linguistics, July 2020,
pp. 8198–8210. doi: 10.18653/v1/2020.acl-main.729. url: https://aclantholo
gy.org/2020.acl-main.729.

[118] Antonios Liapis et al. “Can Computers Foster Human Users’ Creativity? Theory and
Praxis of Mixed-Initiative Co-Creativity”. In: Digital Culture & Education 8 (2016).

[119] Alex Limpaecher et al. “Real-time Drawing Assistance Through Crowdsourcing”. In:
ACM Trans. Graph. 32.4 (July 2013), 54:1–54:8. issn: 0730-0301. doi: 10.1145/246
1912.2462016. url: http://doi.acm.org/10.1145/2461912.2462016.

[120] James Lin et al. “DENIM: Finding a Tighter Fit Between Tools and Practice for
Web Site Design”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’00. The Hague, The Netherlands: ACM, 2000, pp. 510–517.
isbn: 1-58113-216-6. doi: 10.1145/332040.332486. url: http://doi.acm.org/10
.1145/332040.332486.

[121] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: Computer
Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V. Ed. by David J. Fleet et al. Vol. 8693. Lecture Notes
in Computer Science. Springer, 2014, pp. 740–755. doi: 10.1007/978-3-319-10602
-1_48. url: https://doi.org/10.1007/978-3-319-10602-1_48.

[122] Thomas F. Liu et al. “Learning Design Semantics for Mobile Apps”. In: Proceedings of
the 31st Annual ACM Symposium on User Interface Software and Technology. UIST
’18. Berlin, Germany: Association for Computing Machinery, 2018, pp. 569–579. isbn:
9781450359481. doi: 10.1145/3242587.3242650. url: https://doi.org/10.1145
/3242587.3242650.

[123] Bria Long, Judith E. Fan, and Michael C. Frank. “Drawings as a window into devel-
opmental changes in object representations”. In: Cognitive Science (2018).

https://doi.org/10.1007/s11042-016-4187-3
https://openreview.net/forum?id=HJxB5sRcFQ
https://openreview.net/forum?id=HJxB5sRcFQ
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.18653/v1/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://doi.org/10.1145/2461912.2462016
https://doi.org/10.1145/2461912.2462016
http://doi.acm.org/10.1145/2461912.2462016
https://doi.org/10.1145/332040.332486
http://doi.acm.org/10.1145/332040.332486
http://doi.acm.org/10.1145/332040.332486
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650

BIBLIOGRAPHY 133

[124] Ellen Yi-Luen Do. “Design sketches and sketch design tools”. In: Knowledge-Based
Systems 18.8 (2005). Computational Approaches for Early Stages of Design, pp. 383–
405. issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2005.07.001.
url: https://www.sciencedirect.com/science/article/pii/S09507051050007
05.

[125] Tony McCaffrey and Lee Spector. “An approach to human–machine collaboration in
innovation”. In: Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing 32.1 (2018), pp. 1–15. doi: 10.1017/S0890060416000524.

[126] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In:
CoRR abs/1411.1784 (2014). arXiv: 1411.1784. url: http://arxiv.org/abs/1411
.1784.

[127] Shigeru Miyagawa, Cora Lesure, and Vitor A. Nóbrega. “Cross-Modality Information
Transfer: A Hypothesis about the Relationship among Prehistoric Cave Paintings,
Symbolic Thinking, and the Emergence of Language”. In: Frontiers in Psychology 9
(2018). issn: 1664-1078. doi: 10.3389/fpsyg.2018.00115. url: https://www.fron
tiersin.org/article/10.3389/fpsyg.2018.00115.

[128] Kaichun Mo et al. “PartNet: A Large-Scale Benchmark for Fine-Grained and Hier-
archical Part-Level 3D Object Understanding”. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pp. 909–918. doi: 10.1109/CVPR.2
019.00100. url: http://openaccess.thecvf.com/content_CVPR_2019/html/Mo
_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Par

t-Level_3D_CVPR_2019_paper.html.

[129] Gillian M. Morriss-Kay. “The evolution of human artistic creativity”. In: Journal of
Anatomy 216 (2010).

[130] Nasrin Mostafazadeh et al. “A Corpus and Cloze Evaluation for Deeper Understand-
ing of Commonsense Stories”. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California: Association for Computational Linguistics,
June 2016, pp. 839–849. doi: 10.18653/v1/N16-1098. url: https://aclantholog
y.org/N16-1098.

[131] Sifat Muin and Khalid Mosalam. “Human-machine collaboration framework for struc-
tural health monitoring and resiliency”. In: Engineering Structures 235 (May 2021),
p. 112084. doi: 10.1016/j.engstruct.2021.112084.

[132] Pandu Nayak. MUM: A new AI milestone for understanding information. Google,
May 2021. url: https://blog.google/products/search/introducing-mum/.

https://doi.org/https://doi.org/10.1016/j.knosys.2005.07.001
https://www.sciencedirect.com/science/article/pii/S0950705105000705
https://www.sciencedirect.com/science/article/pii/S0950705105000705
https://doi.org/10.1017/S0890060416000524
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.3389/fpsyg.2018.00115
https://www.frontiersin.org/article/10.3389/fpsyg.2018.00115
https://www.frontiersin.org/article/10.3389/fpsyg.2018.00115
https://doi.org/10.1109/CVPR.2019.00100
https://doi.org/10.1109/CVPR.2019.00100
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
https://doi.org/10.18653/v1/N16-1098
https://aclanthology.org/N16-1098
https://aclanthology.org/N16-1098
https://doi.org/10.1016/j.engstruct.2021.112084
https://blog.google/products/search/introducing-mum/

BIBLIOGRAPHY 134

[133] Irene Neilson and John Lee. “Conversations with graphics: implications for the de-
sign of natural language/graphics interfaces”. In: International Journal of Human-
Computer Studies 40.3 (1994), pp. 509–541. issn: 1071-5819. doi: https://doi.org
/10.1006/ijhc.1994.1024. url: https://www.sciencedirect.com/science/art
icle/pii/S107158198471024X.

[134] Donald A. Norman. The Design of Everyday Things. USA: Basic Books, Inc., 2002.
isbn: 9780465067107.

[135] David G. Novick and Stephen Sutton. “What is mixed-initiative interaction”. In:
In Procedings of the AAAI Spring Symposium on Computational Models for Mixed
Initiative Interaction. 1997, pp. 114–116.

[136] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation Learning with
Contrastive Predictive Coding”. In: CoRR abs/1807.03748 (2018). arXiv: 1807.037
48. url: http://arxiv.org/abs/1807.03748.

[137] Nicolas Padoy and Gregory D. Hager. “Human-Machine Collaborative Surgery Using
Learned Models”. In: IEEE International Conference on Robotics and Automation,
ICRA 2011, Shanghai, China, 9-13 May 2011. IEEE, 2011, pp. 5285–5292. doi: 10
.1109/ICRA.2011.5980250. url: https://doi.org/10.1109/ICRA.2011.5980250.

[138] Denis Paperno et al. “The LAMBADA dataset: Word prediction requiring a broad
discourse context”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 1525–1534. doi: 10.18653/v1/P16-1
144. url: https://aclanthology.org/P16-1144.

[139] Kishore Papineni et al. “BLEU: a Method for Automatic Evaluation of Machine
Translation”. In: Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computa-
tional Linguistics, July 2002, pp. 311–318. doi: 10.3115/1073083.1073135. url:
https://aclanthology.org/P02-1040.

[140] Zarana Parekh et al. “Crisscrossed Captions: Extended Intramodal and Intermodal
Semantic Similarity Judgments for MS-COCO”. In: Proceedings of the 16th Confer-
ence of the European Chapter of the Association for Computational Linguistics: Main
Volume. Online: Association for Computational Linguistics, Apr. 2021, pp. 2855–2870.
url: https://aclanthology.org/2021.eacl-main.249.

[141] Taesung Park et al. “Semantic Image Synthesis With Spatially-Adaptive Normal-
ization”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE,
2019, pp. 2337–2346. doi: 10.1109/CVPR.2019.00244. url: http://openaccess.t
hecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Sp

atially-Adaptive_Normalization_CVPR_2019_paper.html.

https://doi.org/https://doi.org/10.1006/ijhc.1994.1024
https://doi.org/https://doi.org/10.1006/ijhc.1994.1024
https://www.sciencedirect.com/science/article/pii/S107158198471024X
https://www.sciencedirect.com/science/article/pii/S107158198471024X
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://doi.org/10.1109/ICRA.2011.5980250
https://doi.org/10.1109/ICRA.2011.5980250
https://doi.org/10.1109/ICRA.2011.5980250
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://aclanthology.org/P16-1144
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/2021.eacl-main.249
https://doi.org/10.1109/CVPR.2019.00244
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html

BIBLIOGRAPHY 135

[142] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vec-
tors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://aclanthology.org/D14-1162.

[143] Federico Perazzi et al. “A Benchmark Dataset and Evaluation Methodology for Video
Object Segmentation”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer
Society, 2016, pp. 724–732. doi: 10.1109/CVPR.2016.85. url: https://doi.org/1
0.1109/CVPR.2016.85.

[144] A.W.G. Pike et al. “U-Series Dating of Paleolithic Art in 11 Caves in Spain”. In:
Science (New York, N.Y.) 336 (June 2012), pp. 1409–13. doi: 10.1126/science.12
19957.

[145] Stuart Pugh, Don Clausing, and Ron Andrade. Creating Innovative Products Using
Total Design: The Living Legacy of Stuart Pugh. Engineering Design. Addison-Wesley
Publishing Company, 1996. isbn: 9780201634853. url: https://books.google.co
m/books?id=sv9TAAAAMAAJ.

[146] A.T. Purcell and J.S. Gero. “Drawings and the design process: A review of protocol
studies in design and other disciplines and related research in cognitive psychology”.
In: Design Studies 19.4 (1998), pp. 389–430. issn: 0142-694X. doi: https://doi.or
g/10.1016/S0142-694X(98)00015-5. url: https://www.sciencedirect.com/sci
ence/article/pii/S0142694X98000155.

[147] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”. In: 4th In-
ternational Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2016. url: http://arxiv.org/abs/1511.06434.

[148] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:
(2019).

[149] Alec Radford et al. “Learning Transferable Visual Models From Natural Language Su-
pervision”. In: Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 8748–8763.
url: http://proceedings.mlr.press/v139/radford21a.html.

[150] Aditya Ramesh et al. “Hierarchical Text-Conditional Image Generation with CLIP
Latents”. In: CoRR abs/2204.06125 (2022). doi: 10.48550/arXiv.2204.06125.
arXiv: 2204.06125. url: https://doi.org/10.48550/arXiv.2204.06125.

https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.1109/CVPR.2016.85
https://doi.org/10.1109/CVPR.2016.85
https://doi.org/10.1109/CVPR.2016.85
https://doi.org/10.1126/science.1219957
https://doi.org/10.1126/science.1219957
https://books.google.com/books?id=sv9TAAAAMAAJ
https://books.google.com/books?id=sv9TAAAAMAAJ
https://doi.org/https://doi.org/10.1016/S0142-694X(98)00015-5
https://doi.org/https://doi.org/10.1016/S0142-694X(98)00015-5
https://www.sciencedirect.com/science/article/pii/S0142694X98000155
https://www.sciencedirect.com/science/article/pii/S0142694X98000155
http://arxiv.org/abs/1511.06434
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.48550/arXiv.2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/arXiv.2204.06125

BIBLIOGRAPHY 136

[151] Aditya Ramesh et al. “Zero-Shot Text-to-Image Generation”. In: Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 2021, pp. 8821–8831. url: http://proceedings.mlr.p
ress/v139/ramesh21a.html.

[152] Gonzalo A. Ramos et al. “Interactive Machine Teaching: a human-centered approach
to building machine-learned models”. In: Hum. Comput. Interact. 35.5-6 (2020),
pp. 413–451. doi: 10.1080/07370024.2020.1734931. url: https://doi.org
/10.1080/07370024.2020.1734931.

[153] James V. Rauff. “Rock Art Tallies: Mathematics on Stone in Western North America”.
In: Journal of Humanistic Mathematics 3.2 (2013), pp. 76–87.

[154] Pradyumna Reddy et al. “Im2Vec: Synthesizing Vector Graphics Without Vector
Supervision”. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 2021,
pp. 7342–7351. url: https://openaccess.thecvf.com/content/CVPR2021/html
/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision

_CVPR_2021_paper.html.

[155] Scott Reed et al. “Generative Adversarial Text to Image Synthesis”. In: Proceedings of
The 33rd International Conference on Machine Learning. Ed. by Maria Florina Balcan
and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New
York, New York, USA: PMLR, June 2016, pp. 1060–1069. url: https://proceedin
gs.mlr.press/v48/reed16.html.

[156] Leo Sampaio Ferraz Ribeiro et al. “Sketchformer: Transformer-Based Representation
for Sketched Structure”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 2020, pp. 14141–14150. doi: 10.1109/CVPR42600.2020
.01416. url: https://openaccess.thecvf.com/content_CVPR_2020/html/Ribei
ro_Sketchformer_Transformer-Based_Representation_for_Sketched_Structur

e_CVPR_2020_paper.html.

[157] Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R. Klemmer. “d.tour: Style-Based
Exploration of Design Example Galleries”. In: Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology. UIST ’11. Santa Barbara,
California, USA: Association for Computing Machinery, 2011, pp. 165–174. isbn:
9781450307161. doi: 10.1145/2047196.2047216. url: https://doi.org/10.1145
/2047196.2047216.

[158] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Plan-
ning”. In: Policy Sciences 4.2 (June 1973), pp. 155–169. doi: doi:10.1007/BF01405
730. url: http://dx.doi.org/doi:10.1007/BF01405730.

http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1080/07370024.2020.1734931
https://doi.org/10.1080/07370024.2020.1734931
https://doi.org/10.1080/07370024.2020.1734931
https://openaccess.thecvf.com/content/CVPR2021/html/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.html
https://proceedings.mlr.press/v48/reed16.html
https://proceedings.mlr.press/v48/reed16.html
https://doi.org/10.1109/CVPR42600.2020.01416
https://doi.org/10.1109/CVPR42600.2020.01416
https://openaccess.thecvf.com/content_CVPR_2020/html/Ribeiro_Sketchformer_Transformer-Based_Representation_for_Sketched_Structure_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ribeiro_Sketchformer_Transformer-Based_Representation_for_Sketched_Structure_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ribeiro_Sketchformer_Transformer-Based_Representation_for_Sketched_Structure_CVPR_2020_paper.html
https://doi.org/10.1145/2047196.2047216
https://doi.org/10.1145/2047196.2047216
https://doi.org/10.1145/2047196.2047216
https://doi.org/doi:10.1007/BF01405730
https://doi.org/doi:10.1007/BF01405730
http://dx.doi.org/doi:10.1007/BF01405730

BIBLIOGRAPHY 137

[159] Adam Roberts et al. “Magenta Studio: Augmenting Creativity with Deep Learning
in Ableton Live”. In: Proceedings of the International Workshop on Musical Metacre-
ation (MUME). 2019. url: http://musicalmetacreation.org/buddydrive/file
/mume_2019_paper_2/.

[160] Scott Robertson and Thomas Bertling. How to Draw: Drawing and Sketching Ob-
jects and Environments from Your Imagination. Design Studio Press, 2013. isbn:
9781933492759. url: https://books.google.com/books?id=2w40LgEACAAJ.

[161] Alex Robinson. “sketch2code: Generating a website from a paper mockup”. In: CoRR
abs/1905.13750 (2019). arXiv: 1905.13750. url: http://arxiv.org/abs/1905.137
50.

[162] Amélie Royer et al. “XGAN: Unsupervised Image-to-Image Translation for Many-to-
Many Mappings”. In: Domain Adaptation for Visual Understanding. Ed. by Richa
Singh et al. Cham: Springer International Publishing, 2020, pp. 33–49. isbn: 978-3-
030-30671-7. doi: 10.1007/978-3-030-30671-7_3. url: https://doi.org/10.100
7/978-3-030-30671-7_3.

[163] Olga Russakovsky, Li-Jia Li, and Li Fei-Fei. “Best of both worlds: human-machine
collaboration for object annotation”. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Com-
puter Society, 2015, pp. 2121–2131. doi: 10.1109/CVPR.2015.7298824. url: https
://doi.org/10.1109/CVPR.2015.7298824.

[164] Marco de Sá and Lúıs Carriço. “Low-Fi Prototyping for Mobile Devices”. In: CHI ’06
Extended Abstracts on Human Factors in Computing Systems. CHI EA ’06. Montréal,
Québec, Canada: Association for Computing Machinery, 2006, pp. 694–699. isbn:
1595932984. doi: 10.1145/1125451.1125592. url: https://doi.org/10.1145/11
25451.1125592.

[165] Chitwan Saharia et al. “Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding”. In: CoRR abs/2205.11487 (2022). doi: 10.48550/arXiv
.2205.11487. arXiv: 2205.11487. url: https://doi.org/10.48550/arXiv.2205
.11487.

[166] Aneeshan Sain et al. “Cross-Modal Hierarchical Modelling for Fine-Grained Sketch
Based Image Retrieval”. In: 31st British Machine Vision Conference 2020, BMVC
2020, Virtual Event, UK, September 7-10, 2020. BMVA Press, 2020. url: https://w
ww.bmvc2020-conference.com/assets/papers/0102.pdf.

[167] Patsorn Sangkloy et al. “Scribbler: Controlling Deep Image Synthesis with Sketch
and Color”. In: (2017), pp. 6836–6845. doi: 10.1109/CVPR.2017.723. url: https:
//doi.org/10.1109/CVPR.2017.723.

http://musicalmetacreation.org/buddydrive/file/mume_2019_paper_2/
http://musicalmetacreation.org/buddydrive/file/mume_2019_paper_2/
https://books.google.com/books?id=2w40LgEACAAJ
https://arxiv.org/abs/1905.13750
http://arxiv.org/abs/1905.13750
http://arxiv.org/abs/1905.13750
https://doi.org/10.1007/978-3-030-30671-7_3
https://doi.org/10.1007/978-3-030-30671-7_3
https://doi.org/10.1007/978-3-030-30671-7_3
https://doi.org/10.1109/CVPR.2015.7298824
https://doi.org/10.1109/CVPR.2015.7298824
https://doi.org/10.1109/CVPR.2015.7298824
https://doi.org/10.1145/1125451.1125592
https://doi.org/10.1145/1125451.1125592
https://doi.org/10.1145/1125451.1125592
https://doi.org/10.48550/arXiv.2205.11487
https://doi.org/10.48550/arXiv.2205.11487
https://arxiv.org/abs/2205.11487
https://doi.org/10.48550/arXiv.2205.11487
https://doi.org/10.48550/arXiv.2205.11487
https://www.bmvc2020-conference.com/assets/papers/0102.pdf
https://www.bmvc2020-conference.com/assets/papers/0102.pdf
https://doi.org/10.1109/CVPR.2017.723
https://doi.org/10.1109/CVPR.2017.723
https://doi.org/10.1109/CVPR.2017.723

BIBLIOGRAPHY 138

[168] Patsorn Sangkloy et al. “The Sketchy Database: Learning to Retrieve Badly Drawn
Bunnies”. In: ACM Trans. Graph. 35.4 (July 2016), 119:1–119:12. issn: 0730-0301.
doi: 10.1145/2897824.2925954. url: http://doi.acm.org/10.1145/2897824.29
25954.

[169] Donald A. Schön. The Reflective Practitioner: How Professionals Think in Action.
An Ashgate Book. Ashgate, 1991. isbn: 9781857423198. url: https://books.goog
le.com/books?id=E85qAAAAMAAJ.

[170] Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Matthias Jarke. “UISketch: A
Large-Scale Dataset of UI Element Sketches”. In: Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems. New York, NY, USA: Association
for Computing Machinery, 2021. isbn: 9781450380966. url: https://doi.org/10.1
145/3411764.3445784.

[171] Mohammad Javad Shafiee et al. “Human-Machine Collaborative Design for Acceler-
ated Design of Compact Deep Neural Networks for Autonomous Driving”. In: BMVC
Workshop on Visual AI and Entrepreneurship (2019). arXiv: 1909.05587. url: htt
p://arxiv.org/abs/1909.05587.

[172] Piyush Sharma et al. “Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text
Dataset For Automatic Image Captioning”. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguistics, July 2018, pp. 2556–
2565. doi: 10.18653/v1/P18-1238. url: https://aclanthology.org/P18-1238.

[173] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention with Relative Posi-
tion Representations”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers). New Orleans, Louisiana: Association for Compu-
tational Linguistics, June 2018, pp. 464–468. doi: 10.18653/v1/N18-2074. url:
https://aclanthology.org/N18-2074.

[174] Ben Shneiderman. “Creating Creativity: User Interfaces for Supporting Innovation”.
In: ACM Trans. Comput.-Hum. Interact. 7.1 (Mar. 2000), pp. 114–138. issn: 1073-
0516. doi: 10.1145/344949.345077. url: https://doi.org/10.1145/344949.345
077.

[175] Ben Shneiderman. “Creativity Support Tools: Accelerating Discovery and Innova-
tion”. In: Commun. ACM 50.12 (Dec. 2007), pp. 20–32. issn: 0001-0782. doi: 10.1
145/1323688.1323689. url: https://doi.org/10.1145/1323688.1323689.

[176] Monika Simmler and Ruth Frischknecht. “A taxonomy of human–machine collabora-
tion: capturing automation and technical autonomy”. In: AI Soc. 36.1 (Mar. 2021),
pp. 239–250. issn: 0951-5666. doi: 10.1007/s00146-020-01004-z. url: https://d
oi.org/10.1007/s00146-020-01004-z.

https://doi.org/10.1145/2897824.2925954
http://doi.acm.org/10.1145/2897824.2925954
http://doi.acm.org/10.1145/2897824.2925954
https://books.google.com/books?id=E85qAAAAMAAJ
https://books.google.com/books?id=E85qAAAAMAAJ
https://doi.org/10.1145/3411764.3445784
https://doi.org/10.1145/3411764.3445784
https://arxiv.org/abs/1909.05587
http://arxiv.org/abs/1909.05587
http://arxiv.org/abs/1909.05587
https://doi.org/10.18653/v1/P18-1238
https://aclanthology.org/P18-1238
https://doi.org/10.18653/v1/N18-2074
https://aclanthology.org/N18-2074
https://doi.org/10.1145/344949.345077
https://doi.org/10.1145/344949.345077
https://doi.org/10.1145/344949.345077
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1007/s00146-020-01004-z
https://doi.org/10.1007/s00146-020-01004-z
https://doi.org/10.1007/s00146-020-01004-z

BIBLIOGRAPHY 139

[177] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and Refine
User Interfaces. ITPro collection. Elsevier Science, 2003. isbn: 9781558608702. url:
https://books.google.com/books?id=YgBojJsVLGMC.

[178] Kihyuk Sohn. “Improved Deep Metric Learning with Multi-class N-pair Loss Objec-
tive”. In: Advances in Neural Information Processing Systems. Ed. by D. Lee et al.
Vol. 29. Curran Associates, Inc., 2016. url: https://proceedings.neurips.cc/pa
per/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

[179] Qingkun Su et al. “EZ-sketching: Three-level Optimization for Error-tolerant Image
Tracing”. In: ACM Trans. Graph. 33.4 (July 2014), 54:1–54:9. issn: 0730-0301. doi:
10.1145/2601097.2601202. url: http://doi.acm.org/10.1145/2601097.260120
2.

[180] Romal Thoppilan et al. “LaMDA: Language Models for Dialog Applications”. In:
CoRR abs/2201.08239 (2022). arXiv: 2201.08239. url: https://arxiv.org/abs/2
201.08239.

[181] David G. Ullman, Stephen Wood, and David Craig. “The importance of drawing in
the mechanical design process”. In: Computers & Graphics 14.2 (1990), pp. 263–274.
issn: 0097-8493. doi: https://doi.org/10.1016/0097-8493(90)90037-X. url:
https://www.sciencedirect.com/science/article/pii/009784939090037X.

[182] Héléne Valladas et al. “Evolution of prehistoric cave art”. In: Nature 413 (Nov. 2001),
p. 479. doi: 10.1038/35097160.

[183] Remko van der Lugt. “How sketching can affect the idea generation process in design
group meetings”. In: Design Studies 26.2 (2005), pp. 101–122. issn: 0142-694X. doi:
https://doi.org/10.1016/j.destud.2004.08.003. url: https://www.scienced
irect.com/science/article/pii/S0142694X04000778.

[184] Ashish Vaswani et al. “Attention Is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c

1c4a845aa-Paper.pdf.

[185] Jeffrey D. Wammes, Melissa E. Meade, and Myra A. Fernandes. “The drawing effect:
Evidence for reliable and robust memory benefits in free recall”. In: The Quarterly
Journal of Experimental Psychology 69.9 (2016). PMID: 26444654, pp. 1752–1776.
doi: 10.1080/17470218.2015.1094494. eprint: https://doi.org/10.1080/17470
218.2015.1094494. url: https://doi.org/10.1080/17470218.2015.1094494.

[186] Bryan Wang et al. “Screen2Words: Automatic Mobile UI Summarization with Multi-
modal Learning”. In: The 34th Annual ACM Symposium on User Interface Software
and Technology. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 498–510. isbn: 9781450386357. doi: 10.1145/3472749.3474765. url: https:
//doi.org/10.1145/3472749.3474765.

https://books.google.com/books?id=YgBojJsVLGMC
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://doi.org/10.1145/2601097.2601202
http://doi.acm.org/10.1145/2601097.2601202
http://doi.acm.org/10.1145/2601097.2601202
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/https://doi.org/10.1016/0097-8493(90)90037-X
https://www.sciencedirect.com/science/article/pii/009784939090037X
https://doi.org/10.1038/35097160
https://doi.org/https://doi.org/10.1016/j.destud.2004.08.003
https://www.sciencedirect.com/science/article/pii/S0142694X04000778
https://www.sciencedirect.com/science/article/pii/S0142694X04000778
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1080/17470218.2015.1094494
https://doi.org/10.1080/17470218.2015.1094494
https://doi.org/10.1080/17470218.2015.1094494
https://doi.org/10.1080/17470218.2015.1094494
https://doi.org/10.1145/3472749.3474765
https://doi.org/10.1145/3472749.3474765
https://doi.org/10.1145/3472749.3474765

BIBLIOGRAPHY 140

[187] Benjamin Wilkins. Sketching Interfaces - Generating code from low fidelity wire-
frames. Airbnb. url: https://airbnb.design/sketching-interfaces/.

[188] Karl D. D. Willis et al. “Fusion 360 Gallery: A Dataset and Environment for Program-
matic CAD Construction from Human Design Sequences”. In: ACM Trans. Graph.
40.4 (July 2021). issn: 0730-0301. doi: 10.1145/3450626.3459818. url: https://d
oi.org/10.1145/3450626.3459818.

[189] Chui Yin Wong, Chee Weng Khong, and Kimberly Chu. “Interface Design Prac-
tice and Education Towards Mobile Apps Development”. In: Procedia - Social and
Behavioral Sciences 51 (2012). The World Conference on Design, Arts and Educa-
tion (DAE-2012), May 1-3 2012, Antalya, Turkey, pp. 698–702. issn: 1877-0428. doi:
https://doi.org/10.1016/j.sbspro.2012.08.227. url: https://www.scienced
irect.com/science/article/pii/S1877042812033654.

[190] Jun Xie et al. “PortraitSketch: Face Sketching Assistance for Novices”. In: Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology.
UIST ’14. Honolulu, Hawaii, USA: ACM, 2014, pp. 407–417. isbn: 978-1-4503-3069-
5. doi: 10.1145/2642918.2647399. url: http://doi.acm.org/10.1145/2642918
.2647399.

[191] Xianghao Xu et al. “Inferring CAD Modeling Sequences Using Zone Graphs”. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. Computer Vision Foundation / IEEE, 2021, pp. 6062–6070. url: h
ttps://openaccess.thecvf.com/content/CVPR2021/html/Xu_Inferring_CAD_Mo

deling_Sequences_Using_Zone_Graphs_CVPR_2021_paper.html.

[192] Yuxiang Ye, Bo Li, and Yijuan Lu. “3D Sketch-based 3D Model Retrieval with Convo-
lutional Neural Network”. In: 23rd International Conference on Pattern Recognition,
ICPR 2016, Cancún, Mexico, December 4-8, 2016. IEEE, 2016, pp. 2936–2941. doi:
10.1109/ICPR.2016.7900083. url: https://doi.org/10.1109/ICPR.2016.79000
83.

[193] Han Zhang et al. “Cross-Modal Contrastive Learning for Text-to-Image Generation”.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 2021, pp. 833–842.
url: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Cross-
Modal_Contrastive_Learning_for_Text-to-Image_Generation_CVPR_2021_pape

r.html.

[194] Xiaoyi Zhang et al. “Screen Recognition: Creating Accessibility Metadata for Mobile
Applications from Pixels”. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Comput-
ing Machinery, 2021. isbn: 9781450380966. doi: 10.1145/3411764.3445186. url:
https://doi.org/10.1145/3411764.3445186.

https://airbnb.design/sketching-interfaces/
https://doi.org/10.1145/3450626.3459818
https://doi.org/10.1145/3450626.3459818
https://doi.org/10.1145/3450626.3459818
https://doi.org/https://doi.org/10.1016/j.sbspro.2012.08.227
https://www.sciencedirect.com/science/article/pii/S1877042812033654
https://www.sciencedirect.com/science/article/pii/S1877042812033654
https://doi.org/10.1145/2642918.2647399
http://doi.acm.org/10.1145/2642918.2647399
http://doi.acm.org/10.1145/2642918.2647399
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_Inferring_CAD_Modeling_Sequences_Using_Zone_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_Inferring_CAD_Modeling_Sequences_Using_Zone_Graphs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_Inferring_CAD_Modeling_Sequences_Using_Zone_Graphs_CVPR_2021_paper.html
https://doi.org/10.1109/ICPR.2016.7900083
https://doi.org/10.1109/ICPR.2016.7900083
https://doi.org/10.1109/ICPR.2016.7900083
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Cross-Modal_Contrastive_Learning_for_Text-to-Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Cross-Modal_Contrastive_Learning_for_Text-to-Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Cross-Modal_Contrastive_Learning_for_Text-to-Image_Generation_CVPR_2021_paper.html
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186

BIBLIOGRAPHY 141

[195] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017,
pp. 2242–2251. doi: 10.1109/ICCV.2017.244. url: https://doi.org/10.1109
/ICCV.2017.244.

[196] Yaoming Zhu et al. “Texygen: A Benchmarking Platform for Text Generation Mod-
els”. In: The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association for Comput-
ing Machinery, 2018, pp. 1097–1100. isbn: 9781450356572. doi: 10.1145/3209978.3
210080. url: https://doi.org/10.1145/3209978.3210080.

[197] C. Lawrence Zitnick and Devi Parikh. “Bringing Semantics into Focus Using Visual
Abstraction”. In: 2013 IEEE Conference on Computer Vision and Pattern Recogni-
tion, Portland, OR, USA, June 23-28, 2013. IEEE Computer Society, 2013, pp. 3009–
3016. doi: 10.1109/CVPR.2013.387. url: https://doi.org/10.1109/CVPR.2013
.387.

[198] Changqing Zou et al. “SketchyScene: Richly-Annotated Scene Sketches”. In: Com-
puter Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part XV. Ed. by Vittorio Ferrari et al. Vol. 11219. Lecture
Notes in Computer Science. Springer, 2018, pp. 438–454. doi: 10.1007/978-3-030-
01267-0_26. url: https://doi.org/10.1007/978-3-030-01267-0_26.

https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1109/CVPR.2013.387
https://doi.org/10.1109/CVPR.2013.387
https://doi.org/10.1109/CVPR.2013.387
https://doi.org/10.1007/978-3-030-01267-0_26
https://doi.org/10.1007/978-3-030-01267-0_26
https://doi.org/10.1007/978-3-030-01267-0_26

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Overview
	Statement of Prior Publications and Authorship

	Background
	Sketching and Prototyping in Creative Processes
	The History of Sketching and Its Significance for Communication, Self-expression, and Art
	Human-Centered Design Process and Artifacts
	Sketching in Human-Centered Design
	Prototyping in Human-Centered Design

	Creativity Support
	Definitions of Creativity
	Target Applications and Users
	Human-Machine Collaboration and Mixed-Initiative Interfaces

	Transformers
	Notation and Task
	Building Blocks of the Transformer Network
	Transformer Block
	Position Embeddings
	Practical Concerns
	Large Language Models

	Mixture Density Networks
	Contrastive Learning
	Recent Approaches
	Applications

	Sketch and Prototype Datasets
	Sketching Datasets
	Abstract Objects with Text Descriptions and Conversations
	UI Layout Datasets

	Related Work
	Natural and Artistic Image Generation
	Neural Style Transfer
	Generating Images with Generative Adversarial Networks (GANs)
	Conditional Image Generation with GANs
	Transformer-Based Image Generation
	Generative Image Diffusion Models

	Sketch and Vector Graphics Generation
	Sketch Generation
	Vector Graphics Generation

	Automatic Sketching Tutorial and Assistance
	User Interface Prototype Retrieval and Generation
	User Interface Retrieval
	Generating UI Designs

	Sketch-Based Prototyping Tools
	3D Model Retrieval and Generation

	Sketchforme: Sketch Generation from Individual Text Descriptions
	System Description
	Scene Composer: Generating Composition Layouts
	Object Sketcher: Generating Individual Sketches

	Model Training and Data Sources
	Experiments and Results
	Composition Layout Generation
	Generating Individual Object Sketches at Various Aspect Ratios
	Complete Scene Sketches
	Human Perception User-Study
	Sketch Interpretation User Study

	Applications
	Sketch-Assisted Language Learning
	Intelligent Sketching Assistant

	Limitations
	Occlusions and Layer Order
	Aspect Ratios might be Weak Signals for Object Poses

	Scones: Sketch Generation and Iterative Refinement in Critique Cycles
	System Architecture
	Scene Composer
	Object Sketchers

	Datasets and Model Training
	CoDraw Dataset
	Quick, Draw! Dataset

	Results
	Scene Composition Modification State-of-the-Art
	Sketches with Clip Art Objects as Mask and Ratio Guidance
	Complete Sessions with Composition Layouts and Sketches
	Interpreting Transformer's Attention Maps

	Exploratory User Evaluation
	Method
	Results
	Participants' Feedback for Improving Scones

	Limitations
	Underspecified Masks
	Limited Variation of Sketches
	Data Mismatch Between CoDraw and Target Task

	Towards End-to-End Generation
	Dataset Development
	Task Formulation and Model Architectures
	Task Variants
	Metrics
	Baseline Results
	Key Research Challenges

	Words2ui: User Interface Prototype Generation and Retrieval from Text
	UI Generation and Retrieval Methods
	Datasets
	UI Generator
	Multi-modal Retriever
	Rendering

	Benchmark Metrics for Generative UI Models
	Well-formedness
	Relevance
	Diversity

	Results
	UI Generator Quantitative Results
	Multi-modal Retriever Quantitative Results
	Qualitative and Comparative Analysis

	Expert Feedback
	Procedure
	Participants
	Results and Discussion

	Envisioned Applications
	Early-Stage Design Sketch Rendering
	Interactive and Steerable UI Generation
	Combining Multiple UI Suggestion Methods

	Limitations
	Supporting Design-Specific Language
	Addressing Rare and Intermediate UI Elements

	Discussion and Future Research Opportunities
	Machine Guidance and Tutorial for Sketching and Prototyping
	From Cross-modality to Multi-modality
	Large Multi-modal Models
	Novel Architecture and Task Design
	New Domains and Modalities
	Integration with Application in Real Usage Scenarios
	Dynamics and Research of Future Designer-AI Interaction

	Conclusion
	Bibliography

