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Abstract

Physics-Informed Machine Learning for Computational Imaging

by

Kristina Monakhova

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laura Waller, Chair

A key aspect of many computational imaging systems, from compressive cameras to low
light photography, are the algorithms used to uncover the signal from encoded or noisy
measurements. Some computational cameras encode higher-dimensional information (e.g.
different wavelengths of light, 3D, time) onto a 2-dimensional sensor, then use algorithms to
decode and recover this high-dimensional information. Others capture measurements that
are extremely noisy, or degraded, and require algorithms to extract the signal and make
the images usable by people, or by higher-level downstream algorithms. In each case, the
algorithms used to decode and extract information from raw measurements are critical and
necessary to make computational cameras function. Over the years the predominant meth-
ods, classic methods, to recover information from computational cameras have been based
on minimizing an optimization problem consisting of a data term and hand-picked prior
term. More recently, deep learning has been applied to these problems, but often has no
way to incorporate known optical characteristics, requires large training datasets, and re-
sults in black-box models that cannot easily be interpreted. In this dissertation, we present
physics-informed machine learning for computational imaging, which is a middle ground
approach that combines elements of classic methods with deep learning. We show how to
incorporate knowledge of the imaging system physics into neural networks to improve image
quality and performance beyond what is feasible with either classic or deep methods for sev-
eral computational cameras. We show several different ways to incorporate imaging physics
into neural networks, including algorithm unrolling, differentiable optical models, unsuper-
vised methods, and through generative adversarial networks. For each of these methods,
we focus on a different computational camera with unique challenges and modeling con-
siderations. First, we introduce an unrolled, physics-informed network that improves the
quality and reconstruction time of lensless cameras, improving these cameras and showing
photorealistic image quality on a variety of scenes. Building up on this, we demonstrate
a new reconstruction network that can improve the reconstruction time for compressive,
single-shot 3D microscopy with spatially-varying blur by 1,600×, enabling interactive pre-
viewing of the scene. In cases where training data is hard to acquire, we show that an
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untrained physics-informed network can improve image quality for compressive single-shot
video and hyperspectral imaging without the need for training data. Finally, we design a
physics-informed noise generator that can realistically synthesize noise at extremely high-
gain, low-light settings. Using this learned noise model, we show how we can push a camera
past its typical limit and take photorealistic videos at starlight levels of illumination for the
first time. Each case highlights how using physics-informed machine learning can improve
computational cameras and push them to their limits.
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1.1 Traditional vs. computational cameras. (a) A traditional camera directly
encodes information, requiring little to no post-processing. (b) A computational
camera encodes information from the scene, then uses algorithms to decode and
extract information. The process of going from a measurement to a recovered
object is called solving an inverse problem. . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example imaging systems. (a) A camera sensor measures light hitting it.
Without a lens, a bare camera sensor will measure the average light in the scene.
(b) A lens can be used to focus light from the world onto the camera sensor.
An ideal lens is free of aberrations and has a delta point spread function (PSF),
resulting in a clean and sharp image that perfectly matches the world. (c) In
low light conditions, the measurement will often be corrupted by noise. (d) Re-
alistically, most lenses add some amount of blurring to the measurement, due
to aberrations in the lens. (e) Structured, intentional blur can be intentionally
introduced to the camera, resulting in a measurement that does not look like the
original object, but enables reconstruction of the original object via a computa-
tional reconstruction algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Shift-invariant vs. spatially-varying imaging systems. (a) In a shift-
invariant system, the PSF remains the same for each shift of the point source.
This results in a simple calibration process and allows a convolutional forward
model to be used. (b) In a spatially-varying system, the PSF changes for different
shifts of the point source, complicating the calibration and mathematical model. 8

2.3 Underdetermined imaging systems. In an underdetermined imaging system,
we aim to solve for more unknowns than measurements, such as recovering a 3D
object from a 2D measurement. In this setting, our A matrix is wide, with
more columns than rows and there are infinite possible solutions so additional
constrains are needed for proper image recovery. . . . . . . . . . . . . . . . . . . 9
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2.4 Classic vs. deep vs. physics-informed methods. Classic methods incorpo-
rate system knowledge and hand-picked priors to solve imaging inverse problems,
but utilize no training data. Deep methods use neural networks and training data,
but do not incorporate system knowledge. Physics-informed machine learning is
a hybrid approach which incorporates system knowledge and neural networks
through physics-informed layers. By including both system knowledge and train-
ing data to refine and improve the result, physics-informed networks can provide
better results, require less training data, and maintain more interpretability than
deep methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Deep-learning-based reconstructions. Deep-learning-based methods consist
of two phases: training and testing. During training, a large dataset of labeled
image pairs are used to update the network weights based on the loss between
the ground truth label and the network output. After training is complete, the
network is fed new data that it did not see during training, and if all goes well,
the network should generalize and be able to solve the imaging inverse problem
for new scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Physics-informed supervised learning. For supervised learning in which we
have access to a dataset of paired measurements and labels, two common methods
for structuring physics-informed learning include (a) approximate physics-based
inversion followed by refinement with a neural network and (b) algorithm unrolling. 15

2.7 Physics-informed unsupervised learning. For physics-informed unsuper-
vised learning, the neural network structure can serve as an imaging prior. A
data-consistency loss (the difference between the real measurement and the guess
of the measurement based on our forward model) is computed, then used to
update the value of the network weights. . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Learning imaging forward models. We can use a generative adversarial net-
work (GAN) to help us calibrate imaging forward models. . . . . . . . . . . . . 18

3.1 DiffuserCam forward model. DiffuserCam is a mask-based, lensless camera
that consists of a thin diffuser placed close to the camera sensor. A point source
in the world maps to a high contrast, wavy pattern on the sensor (PSF). As the
point source moves laterally through the world, the PSF linearly shifts across the
sensor (shift-invariant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 1-1 imagers vs. 1-many imagers. (a) Comparing a 1-1 imager to a 1-many
imager. In the presence of sensor-plane erasures (b), the information from a 1-1
imager may be lost. On the other hand, a 1-many imager is resilient to erasures,
since information is spread across the sensor. After computational recovery, the
object can be almost fully recovered. (c) This is true for simple objects, as well
as more complicated scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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3.3 Compressive imaging systems: Our lensless 2D camera consists of a diffuser
placed a small distance away from the sensor. Each point in the world maps to a
high-contrast caustic pattern (PSF). (a) Since the PSF covers a large area of the
sensor, we can erase a random subset of the pixels and still recover the full image.
(b) The camera’s rolling shutter can be used to encode temporal information into
the measurement. As points flick on/off, the PSFs are filtered by the sensor’s
rolling shutter function, which reads one row at a time (or two in the case of
dual shutter, as shown here). The measurement is a sum of the rows captured at
different time points, each of which contains information from the entire 2D scene.
Hence, temporal information is encoded vertically across the sensor, with earlier
time points at the top and bottom of the image and later time points towards
the center. (c) Single-shot hyperspectral imaging is achieved with a spectral filter
array in front of the sensor, which maps each band of wavelengths to a subset of
the sensor pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Overview of the Spectral DiffuserCam imaging pipeline, which recon-
structs a hyperspectral datacube from a single-shot 2D measurement. The sys-
tem consists of a diffuser and spectral filter array bonded to an image sensor. A
one-time calibration procedure measures the point spread function (PSF) and fil-
ter function. Images are reconstructed using a non-linear inverse problem solver
with a sparsity prior. The result is a 3D hyperspectral cube with 64 channels
of spectral information for each of 448×320 spatial points, generated from a 2D
sensor measurement that is 448×320 pixels. . . . . . . . . . . . . . . . . . . . . 27

3.5 Motivation for multiplexing: A high-NA lens captures high-resolution spatial
information, but misses the yellow point source, since it comes into focus on a
spectral filter pixel designed for blue light. A low-NA lens blurs the image of each
point source to be the size of the spectral filter’s super-pixel, capturing accurate
spectra at the cost of poor spatial resolution. Our DiffuserCam approach mul-
tiplexes the light from each point source across many super-pixels, enabling the
computational recovery of both point sources and their spectra without sacrific-
ing spatial resolution. Note that a simplified 3×3 filter array is shown here for
clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Forward model. Image formation model for a scene with two point sources of
different colors, each with narrow-band irradiance centered at λy (yellow) and λr
(red). The final measurement is the sum of the contributions from each individual
spectral filter band in the array. Due to the spatial multiplexing of the lensless
architecture, all scene points v(x, y, λ) project information to multiple spectral
filters, which is why we can recover a high-resolution hyperspectral cube from a
single image, after solving an inverse problem. . . . . . . . . . . . . . . . . . . 31
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3.7 Experimental calibration of Spectral DiffuserCam. (a) The caustic PSF
(contrast-stretched and cropped), before passing through the spectral filter array,
is similar at all wavelengths. (b) The spectral response with the filter array only
(no diffuser). (Top left) Full measurement with illumination by a 458nm plane
wave. The filter array consists of 8×8 grids of spectral filters repeating in 28×20
super-pixels. (Top right) Spectral responses of each of the 64 color channels.
(Bottom) Spectral response of a single super-pixel as illumination wavelength is
varied with a monochromater. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Spatial resolution analysis. (a) The theoretical resolution of our system, de-
fined as the half-width of the autocorrelation peak at 70% its maximum value, is
0.19 super-pixels. (b) Experimental two-point reconstructions demonstrate 0.19
super-pixel resolution across all wavelengths (slices of the reconstruction shown
here), matching the theoretical resolution. . . . . . . . . . . . . . . . . . . . . . 36

3.9 Spectral resolution analysis. Sample spectra from hyperspectral reconstruc-
tions of narrow-band point sources, overlaid on top of each other, with shaded
lines indicating the ground-truth. For each case, the recovered spectral peak
matches the true wavelength within 5nm. . . . . . . . . . . . . . . . . . . . . . . 37

3.10 Condition number analysis for Spectral DiffuserCam, as compared to a low-
NA or high-NA lens. (a) Condition numbers for the 2D spatial case (single
spectral channel) are calculated by generating different numbers of points on a
2D grid, each with separation distance d. (b) Condition numbers for the full
spatio-spectral case are calculated on a 3D grid. A condition number below 40
is considered to be good (shown in green). The diffuser has a consistently better
performance for small separation distances than either the low-NA or the high-
NA lens. The diffuser can resolve objects as low as 0.3 super-pixels apart for more
complex scenes, whereas the low-NA lens requires larger separation distances and
the high-NA lens suffers errors due to gaps in the measurement. . . . . . . . . 38

3.11 Simulated hyperspectral reconstructions comparing our Spectral Diffuser-
Cam result with alternative design options. (a) Resolution target with different
sections illuminated by narrow-band 634nm (red), 570nm (green), 474nm (blue),
and broadband (white) sources. (b) Reconstruction of the target by Spectral Dif-
fuserCam, (c) a low-NA lens design, and (d) a high-NA lens design, each showing
the raw data, false-colored reconstruction and λy sum projection. The diffuser
achieves higher spatial resolution and better accuracy than the low-NA and the
high-NA lens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 Experimental Results. (a) Experimental reconstruction of a broadband resolu-
tion target, showing the xy sum projection (top) and λy sum projection (bottom),
demonstrating spatial resolution of 0.3 super-pixels. (b) Experimental reconstruc-
tion of 10 multi-colored LEDs in a grid with ∼0.4 super-pixels spacing (four red
LEDs on left, four green in middle, two blue at right). We show the xy sum
projection (top) and λy sum projection (bottom). The LEDs are clearly resolved
spatially and spectrally, and spectral line profiles for each color LED closely match
the ground truth spectra from a spectrometer. . . . . . . . . . . . . . . . . . . 40
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3.13 Experimental hyperspectral reconstructions. (a-c) Reconstructions of color
images displayed on a computer monitor and (d) Thorlabs plush toy placed in
front of the imager and illuminated by two Halogen lamps. The raw measurement,
false color images, xλ sum projections and spectral line profiles for four spatial
points are shown for each scene. The ground truth spectral line profiles, measured
using a spectrometer, are plotted in black for reference. Spectral line profiles in
(a,b) show the average and standard deviation spectral profiles across the area
of the box or letter in the object, whereas (c-d) show a line profile from a single
spatial point in the scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Overview of our imaging pipeline. During training, images are displayed on
a computer screen and captured simultaneously with both a lensed and a lensless
camera to form training pairs, with the lensed images serving as ground truth
labels. The lensless measurements are fed into a model-based network which in-
corporates knowledge about the physics of the imager. The output of the network
is compared with the labels using a loss function and the network parameters are
updated through backpropagation. During operation, the lensless imager takes
measurements and the trained model-based network is used to reconstruct the
images, providing a large speedup in reconstruction time and an improvement in
image quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Networks on a scale from classic to deep. We will present several net-
works specifically designed for lensless imaging (Le-ADMM, Le-ADMM*, and
Le-ADMM-U). We compare these to classic approaches, which have no learnable
parameters, and to purely deep methods which do not include any knowledge
of the imaging model. We will show the utility of using an algorithm in this
middle range compared to a purely classic or deep method. Θ summarizes the
parameters that are learned for each network as discussed in Section 4.4. . . . . 47

4.3 Model-based network architecture. The input measurement and the cali-
bration PSF are first fed into N layers of unrolled Le-ADMM. At each layer, the
updates corresponding to Sk+1 in Eq. (4.4) are applied. The output of this can
be fed into an optional denoiser network. The network parameters are updated
based on a loss function comparing the output image to the lensed image. Red
arrows represent backpropagation through the network parameters. . . . . . . . 49

4.4 Test set results, with the raw DiffuserCam measurement (contrast stretched)
and the ground truth images from the lensed camera for reference. Le-ADMM
(71 ms) has similar image quality to converged ADMM (1.5 s) and better image
quality than bounded ADMM (71 ms). Le-ADMM* and Le-ADMM-U have no-
ticeably better visual image quality. The U-Net by itself is unable to reconstruct
the appropriate colors and lacks detail. . . . . . . . . . . . . . . . . . . . . . . 54
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4.5 Network performance on test set. (a) Here we plot the MSE, LPIPS, and
Data Fidelity values for all image pairs in our test set. On average, our learned
networks (green) are more similar to the ground truth lensed images (lower MSE
and LPIPS) than 5 iterations of ADMM. Furthermore, our networks have com-
parable performance to ADMM (100), which takes 20× longer than Le-ADMM
and Le-ADMM-U. However, the data fidelity term is higher for the learned meth-
ods, indicating that these reconstructions are less consistent with the image for-
mation model. (b) Here we plot performance after each layer (or equivalently,
each ADMM iteration) in our network, showing that MSE and LPIPS gener-
ally decrease throughout the layers. The U-Net denoiser layer in Le-ADMM-U
significantly decreases the LPIPS and MSE values, at the cost of data fidelity. . 55

4.6 Network performance on objects in the wild (toys and a plant) captured
with our lensless camera. We show the raw measurement (contrast stretched)
on the top row, followed by converged ADMM, ADMM bounded to 5 iterations,
our learned networks, and U-Net for comparison. Our learned networks have
similar or better image quality as converged ADMM, and Le-ADMM-U has the
best image quality. For instance, Le-ADMM-U is able to capture the details in
the sideways plant (second column from left) and the eye of the toy duck (right).
The U-Net alone has good image quality, but is missing some colors and details
(e.g. the first image is washed out and the nose of the alligator toy is miscolored). 56

5.1 Spatially-varying Point Spread Functions (PSFs). (left) Simplified dia-
gram of Miniscope3D showing a lateral and axial scan of a point source through
the volumetric field-of-view (FoV) to capture the spatially-varying PSFs. (right)
Experimental images of the PSFs from different points in the volumetric FoV,
which are used to initialize the Wiener deconvolution layer of our MultiWienerNet
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 MultiWienerNet architecture. Our pipeline consists of two parts: 1) a learn-
able multi-Wiener deconvolution layer which is initialized with knowledge of the
system’s spatially-varying PSFs and outputs a set of deconvolved intermediate
images. 2) A U-Net refinement step which combines and refines the intermediate
images into a single output image. Both parts are jointly-optimized during train-
ing using simulated data. After training, experimental measurements are fed into
the optimized MultiWienerNet for fast spatially-varying deconvolution. . . . . . 63

5.3 Simulation and Experimental Results. Deconvolution results for (a) 2D and
(b) 3D, showing both simulated and experimental data. MultiWienerNet achieves
better performance than other deep learning-based approaches that do not incor-
porate knowledge of a spatially-varying PSF (U-Net and U-Net w/Wiener), and
achieves better and faster (625 − 1600× speedup) results than spatially-varying
FISTA, which has poor reconstruction quality at the edges of the FoV, where
spatially-varying aberrations are severe. For the 3D results, xy and xz maximum
projections are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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5.4 Spatially varying PSFs. Measured PSFs at different lateral positions for two
different depth planes. Due to field-varying aberrations in the system, the PSFs
change structure across the field-of-view (FoV). Note that the images are contrast
stretched to show detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Learned and initialized filters. Central learned and initialized filters at differ-
ent depths used for the 3D reconstruction. For visualization, we scale the learned
filters from 0 to 1. In general, the filters can contain negative values. Note that
the images are contrast stretched. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Wiener deconvolution with learned filters. (a) Using the central initial
filter only, with a shift-invariance assumption. (b) Using the central learned filter
with a shift invariance assumption results in sharper features in the deconvolved
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Comparison of different reconstruction approaches. (a) Traditional recon-
structions solve a convex optimization problem with a data-fidelity-term based
on the known forward model and a regularization term which acts as the image
prior. (b) Deep learning methods require thousands or more labeled image pairs
in order to train a neural network to approximate the reconstruction. (c) Our
untrained deep network (UDN) uses a neural network as the image prior, but does
not require any training data. The system forward model is used to calculate the
loss between the estimated image and the measurement, which is then used to
update the network weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Overview of our Untrained Deep Network (UDN) reconstruction pipeline.
An untrained network with randomly initialized weights takes in a fixed, random
input vector. The network outputs a sequence of images along the k-axis (for
video imaging, one image for each time point), and we pass this output volume
into our known imaging forward model (defined by the PSF calibration image
and known erasure function) to generate a single simulated measurement. We
compare the generated measurement with our captured measurement and use
the difference between the two to update the untrained network parameters. . . 73

6.3 2D Compressive imaging with erasures: simulation and experimental
results. Reconstruction results for increasing numbers of pixel erasures, showing
the measurement along with the best fast iterative shrinkage-thresholding algo-
rithm (FISTA) reconstruction (based on the LPIPS Alex metric) and the UDN
reconstruction for (a) simulated measurements and (b) experimental measure-
ments with synthetically added erasures. (c) and (d) compare our performance
against the ground truth for several quality metrics (arrows indicate which di-
rection is better), showing that in simulation UDN outperforms FISTA only at
99% erasures, whereas in experiments with real noise and non-idealities, UDN
outperforms FISTA on the perceptual image metrics, LPIPS Alex and MS-SSIM,
as well as on MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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6.4 Simulation results on single-shot video. We recover a 38-frame video from
a single measurement (bottom left). We show four sample reconstructed video
frames in the top four rows, and plot the quality metrics for all frames below.
Here we see that our reconstruction has sharper features across frames, enabling
superior recovery especially for the first and last frames, where FISTA has more
pronounced reconstruction artifacts. We achieve better MSE, LPIPS, and SSIM
scores across frames (bottom right). See Visualization 1 for the full video. . . . 77
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Chapter 1

Introduction

Imaging systems allow us to measure and understand the world. They are critical enablers
of science, allowing us to see and study anything from the smallest sub-cellular structures
(microscopes) to distant galaxies (telescopes). We use imaging systems to document our daily
lives (cameras) and get medical diagnostics (MRI, X-Ray, CT). We send imaging systems up
into space to monitor crop health and deforestation (hyperspectral cameras) and to peer into
the furthest depths of time (James Webb Space Telescope). If we can make imaging systems
that can see smaller, further, in more dimensions, that are faster, cheaper, and smarter,
there are boundless possibilities in what we can discover and do.

To improve imaging systems and push them past their native limits, we can use computa-
tional imaging. Computational imaging is the co-design of algorithms and camera hardware
(e.g. optics, sensors) to make more capable imagers. Traditional cameras are direct imagers,
in which the image that is captured is very close to the desired image—meaning that little
to no post-processing is required after the image is captured, Fig. 1.1(a). Alternatively, a
computational camera uses its hardware to ‘encode’ information about the scene into the
measurement. The raw measurement may look very little like the scene, but all the infor-
mation is there and algorithms can subsequently be used to extract, and ‘decode’ the object
of interest, Fig. 1.1(b).

It has been shown that we can encode and extract additional information into compu-
tational cameras, such as light-fields [162, 125], 3D [123, 8], hyperspectral [72, 130, 209],
polarization [203], and temporal information [90, 137]. In addition, computational cam-
eras can be designed to be small, compact, and cheap, such as by removing the bulky lens
component and replacing it with a low-cost diffuser [8, 114, 131]. By designing the algo-
rithms together with the optics, we can encode the most useful information for a specific
task, then leverage priors and clever algorithms to extract the most information from our
measurements.

A key part of computational cameras’ pipelines are inverse problems, which is how we
can reconstruct unknown signals and objects from our encoded measurements. Often times,
the operations applied by computational cameras are non-invertible. Recovering the encoded
information may be ill-posed, or underdetermined, making it challenging to recover a unique
solution [83, 35]. Throughout the years, a number of classic methods have been developed
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Figure 1.1: Traditional vs. computational cameras. (a) A traditional camera directly
encodes information, requiring little to no post-processing. (b) A computational camera
encodes information from the scene, then uses algorithms to decode and extract information.
The process of going from a measurement to a recovered object is called solving an inverse
problem.

to solve these imaging inverse problems by using optimization techniques which minimize a
data-fidelity term and a hand-designed prior based on the image statistics [52, 20, 28]. More
recently, deep learning-based approaches have shown significant improvements and surpassed
classic methods at many imaging tasks [127, 128, 163]. Neural networks have hundreds
of thousands of parameters which are updated using large datasets of image pairs [119].
These networks are able to learn complex scene statistics, but do not incorporate any prior
knowledge about the image formation process. Compared to classic iterative methods, deep
learning-based methods are hard to interpret, do not have convergence guarantees, and have
no structured way to incorporate knowledge of the imaging system physics.

In this dissertation, we introduce and analyze physics-informed machine learning in which
we leverage both our knowledge of the imaging system physics together with deep learning
to create better algorithms for computational cameras. Using differentiable optical models,
we incorporate knowledge of the image formation process into the neural networks, forming
physics-informed layers. We show significant improvement over classic and deep methods for
a variety of challenging imaging tasks, from compressive single-shot 3D and hyperspectral
imaging, to low-light video denoising. We showcase how blending the physics of the imaging
system with neural networks can help our algorithms converge faster, improve quality, and
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provide more interpretability.

1.1 Dissertation Outline

In this dissertation, we outline several different ways in which we can incorporate our knowl-
edge of imaging system physics into neural networks to better solve imaging inverse problems.
We will look at both supervised and unsupervised learning methods, as well as methods that
require real experimental datasets vs. methods that can generalize to real systems based
on simulated data. For each computational camera, there are unique requirements that
make certain physics-informed machine learning techniques more applicable than others.
Throughout the dissertation, we build up the foundation of physics-informed machine learn-
ing, showing how we can push computational cameras to their limits.

Chapter 2: This chapter provides relevant background necessary to understand the con-
tributions of this dissertation. We introduce imaging forward models and inverse problems.
Next, we discuss the different ways we can solve imaging inverse problems, including classic
methods, deep methods, as well as an intro to physics-informed machine learning methods.

Chapter 3: In this chapter, we dive into the modeling for compressive lensless cameras.
We first build intuition for how we can encode additional information (hyperspectral, time,
3D) into a computational camera and how we can use compressive sensing to recover this
information. Next, we go into detail for how to build one of these compressive cameras
and all of the design considerations that go into this, focusing on the hyperspectral imager
Spectral DiffuserCam. We exclusively look at classic methods in this chapter, giving a sense
of how well computational cameras can perform without physics-informed machine learning
models.

Chapter 4: In this chapter, we introduce a supervised method of physics-informed
machine learning for 2D lensless imaging. Our approach is based on algorithm unrolling and
uses a real dataset of experimentally captured lensed and lensless image pairs. We show how
combining physics-based modeling with data-driven reconstructions can improve the image
quality and reconstruction time for lensless cameras.

Chapter 5: We extend our notion of physics-informed machine learning to compressive
single-shot 3D microscopy. Microscopes often have spatially-varying aberrations, requiring
computationally expensive reconstruction algorithms to undo this field-varying blur. We
introduce a physics-informed reconstruction network that uses multiple differentiable Wiener
filters paired with a neural network refinement step to perform underdetermined spatially-
varying deconvolution. This method is a supervised learning technique, but uses entirely
simulated data and generalizes to real experimental data. With our network, we achieve
a 1,600× speedup in reconstruction times compared to classic methods, while maintaining
good resolution and image quality for single-shot 3D microscopy.

Chapter 6: In this chapter, we focus on a physics-based unsupervised learning technique.
For many computational cameras, it is difficult to obtain a large dataset with ground truth
data. We demonstrate an unsupervised reconstruction approach for single-shot video and
hyperspectral imaging that does not require training data. We use an untrained network
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as an imaging prior while solving an underdetermined inverse problem. We show that our
untrained network serves as a better prior than several classic priors, resulting in better
image quality.

Chapter 7: We introduce a learned, physics-informed noise model for low light photog-
raphy. In high gain, low light settings, noise is often non-Gaussian and hard to characterize.
We show how to use a small dataset of clean/noisy image pairs to train a generative adver-
sarial network to synthesize realistic noise in this regime. Our noise generator consists of a
few physics-informed parameters which are tuned from the data, essentially learning a noise
forward model from data. This noise model can subsequently be used to generate realistic
training data for low-light cameras. We use this noise model to push a camera designed
for low light to its limits, demonstrating photorealistic videography in submillilux levels of
illumination (starlight).

Chapter 8: Finally, we reflect on the themes in this dissertation and discuss a vision
for the future of computational cameras.
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Chapter 2

Background

This chapter provides background on modeling computational cameras and solving inverse
problems. In this chapter, we build the foundations for understanding how to mathematically
model linear imaging systems and how to solve imaging inverse problems. We introduce three
types of methods for solving inverse problems: classic, deep, and physics-informed machine
learning, with the latter being the focus of this dissertation.

2.1 Forward Model: Modeling Cameras as Linear

Systems

First, we need to understand how light from the world goes through our imager and gets
recorded by the sensor. This abstraction is called the forward model of the imaging system
and models the behavior of the optics, filters, sensor (e.g. quantization), or any other com-
ponents within the system. We assume that we can describe this behavior as a linear system
of equations, in which our measurement, y is a matrix-vector multiplication with our system
matrix, A, and our image intensity, x:

y︸︷︷︸
measurement

= A x︸︷︷︸
object

. (2.1)

In the presence of noise, n, this model becomes:

y = Ax + n (2.2)

A traditional camera consists of a sensor and a lens. The sensor records light hitting it.
Without a lens, light from the world hits the sensor from all different objects and directions,
resulting in an averaged measurement of the light intensity, Fig. 2.1(a). A lens focuses light
from the world, forming an image of the world on the sensor, Fig. 2.1(b). Given a perfect
lens, the system matrix is the identity operator, A = I. For this idealized camera, y = x,
and no further computation is needed.

For an idealized camera in the presence of noise, we have the following forward model:
y = x + n, Fig. 2.1(c). For this sort of camera, the image is corrupted by noise. This is a
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Figure 2.1: Example imaging systems. (a) A camera sensor measures light hitting it.
Without a lens, a bare camera sensor will measure the average light in the scene. (b) A
lens can be used to focus light from the world onto the camera sensor. An ideal lens is free
of aberrations and has a delta point spread function (PSF), resulting in a clean and sharp
image that perfectly matches the world. (c) In low light conditions, the measurement will
often be corrupted by noise. (d) Realistically, most lenses add some amount of blurring to
the measurement, due to aberrations in the lens. (e) Structured, intentional blur can be
intentionally introduced to the camera, resulting in a measurement that does not look like
the original object, but enables reconstruction of the original object via a computational
reconstruction algorithm.

very common problem in low-light photography and microscopy, where there is very little
light present in the scene. Removing the noise to extract the underlying signal in the image
is the well-studied problem of image denoising [32, 161], and is the focus of Chapter 7.

For a non-ideal camera, we must model the effect of the optics of the camera on the im-
age. Aberrations, or non-idealities, in the optics can lead to blurring at the image plane [87],
Fig. 2.1(d). This blur can be unintentional, resulting from imperfections in the optics [83,
186], or camera motion [47], or it can be intentionally designed to encode additional in-
formation [8], Fig. 2.1(e). Computational cameras with intentionally designed blur will be
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further discussed in Chapter 3, and the algorithms for these cameras will be elaborated on
in Chapters 4, 5, 6.

To model how light passes through a lens with aberrations or blur, we can measure the
impulse response function of the camera. To do this, we shine a point source, such as a
flash light placed far away from the camera, through our imaging system, and measure the
response on the camera. This is called the point spread function (PSF) of the camera. For
an ideal lens with no aberrations, the PSF will be a delta function, whereas for a real lens
with slight aberrations, the PSF will appear as a blurry point, Fig. 2.1(d). Systems with
intentionally-designed blur may have much larger PSFs that span the entire size of the sensor
and contain many sharp features, Fig. 2.1(e).

If one moves the point source around and the PSF remains constant, we can describe the
PSF as being shift-invariant, Fig. 2.2(a). When the PSF is shift-invariant, each shift in object
space results in a linear shift of the PSF. This provides us with a convenient mathematical
model for our system, which can be modeled as a convolution:

y = Ax = h ∗ x, (2.3)

where h is the PSF of the camera. If one moves the point source around and the PSF varies
with object lateral position, then the PSF is spatially-varying, Fig. 2.2(b). This leads to a
more complicated calibration process, since the PSF must be identified at each field point,
and to a more complicated forward model, since the convolutional model no longer applies.
Under certain assumptions, other forward models, such as revolution-invariance [107], local
convolutions [115], or low-rank approximations [223] can be used to simplify the calibration
and forward model for such systems.

Other kinds of computational imaging systems, such as magnetic resonance imaging
(MRI), computed tomography (CT), and phase retrieval, have distinct forward models that
can be modeled in a similar way, producing a y = Ax problem. Many methods and ideas
described here are applicable and can be transferred to those other domains.

2.2 Inverse Problem: Recovering the Object from the

Measurement

Given a measurement, y, and system matrix, A, we would like to recover the unknown
object, x. Naturally, the naive approach to solving this sort of inverse problem would be to
attempt to invert the system matrix, A, and to find:

x̂ = A−1y (2.4)

Unfortunately, this often does not work very well for imaging inverse problems due to
the size of the A matrix. For example, for a 12 megapixel camera, the size of A would be
(12× 106)× (12× 106), since the image must be vectorized. Assuming the matrix is stored
with each entry represented by an 8-bit integer value, this would result in 18 terabytes (TB)
just to store the A matrix. Such a matrix inversion would be extremely computational costly
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(a) Shift-invariant PSF

(b) Shift-varying PSF

light source

lens
camera 
sensor

measurement

Figure 2.2: Shift-invariant vs. spatially-varying imaging systems. (a) In a shift-
invariant system, the PSF remains the same for each shift of the point source. This results
in a simple calibration process and allows a convolutional forward model to be used. (b) In
a spatially-varying system, the PSF changes for different shifts of the point source, compli-
cating the calibration and mathematical model.

and difficult to run on most computers. Due to this, we often do not explicitly calculate the
A matrix, but rather implicitly define the operations associated with the A matrix.

Furthermore, we often aim to extract additional information for our encoded measure-
ments, such as 3D from an encoded 2D measurement, Fig. 2.3. In this setting, we must solve
an underdetermined system in which the number of unknowns is greater than the number
of measurements. For underdetermined systems, the A matrix is non-square and a sim-
ple matrix inverse cannot be performed. Since there are infinite possible solutions for an
underdetermined system, additional constraints are needed.

To solve inverse problems for imaging systems with large A matrices, that may be poorly
conditioned or underdetermined, we often formulate an optimization problem that consists
of a data fidelity term and a prior term,

x̂ = arg minD(x; y) + τP(x) (2.5)

Here D(x; y) is the data fidelity term which makes sure our object guess is consistent
with our measurement and our model of the system. The prior term, P(x) is hand-picked for
a given application and adds additional constraints. For the data fidelity term, it is common
to minimize the least square error between the measurement and the estimated measurement
given the forward model and object guess,



CHAPTER 2. BACKGROUND 9

=<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2D measurement
3D object

𝑛

𝑚

(𝑚 > 𝑛)

𝑛

𝑚

xz
y

zx

y

Figure 2.3: Underdetermined imaging systems. In an underdetermined imaging system,
we aim to solve for more unknowns than measurements, such as recovering a 3D object from
a 2D measurement. In this setting, our A matrix is wide, with more columns than rows
and there are infinite possible solutions so additional constrains are needed for proper image
recovery.

x̂ = arg min
x≥0

1

2
‖y −Ax‖2

2︸ ︷︷ ︸
data fidelity

+ τP (x)︸ ︷︷ ︸
prior

(2.6)

There are many possible choices for priors. When A is ill-conditioned, but not under-
determined, adding a quadratic penalty term is common (Tikhonov regularization [201]),
P(x) = ‖x‖2

2. For underdetermined problems, an l1 prior which promotes sparsity is a
common choice. According to compressive sensing theory, it is possible to find the exact
solution to an underdetermined system given two conditions are met: 1) signal sparsity in
some domain (e.g. an image of the night sky is sparse in the native basis, since it consists
of mostly zeros and a few non-zeros), and 2) incoherence in the measurement basis (e.g. a
random sensing matrix) [37, 35]. By compressive sensing theory, an underdetermined imaging
inverse problem that satisfies these conditions can be exactly recovered by minimizing,

x̂ = arg min
x≥0

1

2
‖y −Ax‖2

2 + τ‖Sx‖1 (2.7)

Where S is some sparsifying transform. For native sparsity, S = I. Other common sparsity
bases include wavelets and discrete cosine transforms. A common prior for imaging inverse
problems is total-variation (TV) regularization. This can be formulated as a penalty on the
image gradients, promoting sparse image gradients: P(x) = ‖∇xyx‖1.

This general strategy of formulating an optimization problem with system knowledge and
hand-picked priors has been used for many years to solve imaging inverse problems. We will
refer to this general strategy as classic methods. More recently, deep learning has also been
introduced for solving imaging inverse problems. In this setting, system knowledge and a
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hand-picked prior are replaced with a trainable network and lots of training data. A trainable
deep network serves as a function approximator, which aims to decode the measurement and
directly solve the inverse problem. This requires the network to learn how to ‘undo’ the
imaging system physics and learn a good imaging prior from the training data. We will
refer to these approaches as deep methods. In this dissertation, we will introduce a hybrid
approach called physics-informed machine learning in which system knowledge is built into
the deep network, forming physics-informed network layers. Here, the network does not need
to learn all of the imaging physics from scratch, and can instead use the training phase for
further forward model refinement and to learn a good imaging prior. Figure 2.4 outlines the
differences between these three methods.

Classic Methods Deep MethodsPhysics-informed machine learning

Inverse 
Problem

object guessmeasurement

system 
knowledge
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y = Ax

training data

Figure 2.4: Classic vs. deep vs. physics-informed methods. Classic methods incorpo-
rate system knowledge and hand-picked priors to solve imaging inverse problems, but utilize
no training data. Deep methods use neural networks and training data, but do not incor-
porate system knowledge. Physics-informed machine learning is a hybrid approach which
incorporates system knowledge and neural networks through physics-informed layers. By
including both system knowledge and training data to refine and improve the result, physics-
informed networks can provide better results, require less training data, and maintain more
interpretability than deep methods.

Classic Methods

With classical methods, we aim to solve the imaging inverse problem by minimizing a hand-
designed optimization problem that generally consists of a data fidelity term and a prior
term, Eq. 2.6. There are many methods that have been developed over the years for solving
these sorts of problems, such as Richardson Lucy [65], iterative shrinkage-thresholding algo-
rithm (ISTA) [52], fast iterative shrinkage-thresholding algorithm (FISTA) [20], alternating
direction method of multipliers (ADMM) [28], among others. Here, we will focus on two
common methods, FISTA and ADMM, which are both types of proximal algorithms and
generally perform well for large-scale imaging problems.

Proximal algorithms [166] are useful for solving optimization problems that have the
form:
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F (x) = f(x) + g(x), (2.8)

where f(x) is smooth and convex, but g(x) is convex and non-smooth. In our case, the l1
term promoting sparsity is non-smooth, resulting in an optimization problem that is convex,
but not differentiable. Subgradient methods can be used to solve this problem, but they
generally have poor convergence rates, O(1/

√
k). Proximal algorithms, which repeatedly

apply proximal operators, provide better convergence rates. Many proximal operators have
closed form solutions, which are easy to compute. For example, for the l1 norm, the proximal
operator is soft-thresholding, proxg(ui) = soft(ui, λ) = sign(ui) max(|ui|−λ, 0), which is easy
to compute.

One of the simplest proximal algorithms for imaging inverse problems is ISTA. ISTA
alternates between taking a gradient step with respect to f(x), and taking a proximal step
to enforce g(x) [219].

Algorithm 1 ISTA - proximal gradient method

Problem class: minx F (x) = f(x) + g(x)
f, g : Rn → R are convex, ∇f L-Lipschitz and g non-smooth
Initialize: x0 ∈ Rn

Repeat:
wk+1 ← xk − 1

L
∇f(xk) . Note: here the step size is 1/L

xk+1 ← proxg/L(wk)

When we plug in our imaging forward model, and the proximal operator for the l1 norm,
we obtain a simple algorithm that takes a gradient step, and then soft-thresholds the result
based on a tuning parameter, λ, which tunes the sparsity. This algorithm has a slightly
better convergence rate, O(1/k).

Algorithm 2 ISTA - proximal gradient method for compressive imaging inverse problems

Problem class: minx F (x) = f(x) + g(x)
where f(x) = 1

2
‖y −Ax‖2

2 and g(x) = τ‖x‖1

Initialize: x0 = 0
Repeat:

wk+1 ← xk − 1
L
AH(Axk − y)

xk+1 ← soft(wk, λ/L)

Fast iterative shrinkage-thresholding algorithm (FISTA) can be used to obtain an even
better convergence rate, O(1/k2), by taking a slightly more clever gradient step, Alg. 3.
FISTA is easy to implement, and works well off-the-shelf given access to a known, well-
calibrated forward model, A. Here the sparsity parameter, λ, can be hand-tuned to obtain
the best performance. In the past, using TV with FISTA required a nested optimization
loop, however recent work has shown that it is possible to approximate TV in a single step
with good precision, which is much faster [100].
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Algorithm 3 FISTA - accelerated proximal gradient

Problem class: minx F (x) = f(x) + g(x)
where f(x) = 1

2
‖y −Ax‖2

2 and g(x) = τ‖x‖1

Initialize: x0 ∈ Rn,p1 ← x0, and t1 ← 1
Repeat:

wk+1 ← pk − 1
L
AH(Apk − y)

xk+1 ← soft(wk+1, λ/L)

tk+1 ← 1+
√

1+4t2k
2

, βk ← tk−1
tk+1

pk+1 ← xk + βk(xk − xk−1)

We note that for this type of optimization problem and many others, we do not need to
explicitly generate the A matrix, and can instead implicitly model the operators associated
with A. For example, given a convolutional model, where A is a convolutional matrix
associated with the operation h ∗ x, we can represent A, and AH as:

Ax = h ∗ x = F−1(F(h) · F(x)) (2.9)

AHx = h ∗ x = F−1(F(hH) · F(x)) (2.10)

where F is the Fourier transform, and F−1 is the inverse Fourier transform. Therefore, we
only need to know our PSF, h, and be able to calculate the hermitian of h, which is simply
the conjugate transpose of h.

Another popular algorithm for imaging inverse problems is the alternating direction
method of multipliers (ADMM) [28]. For ADMM, the objective terms are handled com-
pletely separately, so it is more amenable to handling a variety of constraints. ADMM is
a popular choice for imaging inverse problems and for certain problems can speed up the
reconstruction process [8].

This framework of setting up the inverse problem as an optimization problem is useful
for a broad range of computational imaging problems with many different forward models.
Generally, classic approaches work quite well off-the-shelf, but they have several issues. First,
they rely on having a known forward model, A. If the imaging model is unknown, approx-
imated, or has noise/errors in it, then the solution will suffer. Next, these algorithms have
several tuning parameters that control the sparsity, or the weights on different constraints.
To find the best solution, a grid search on these parameters is often performed, which can
be computationally costly. Next, these methods rely on hand-picked priors which may not
be optimal for a given application, resulting in poor performance. Finally, these methods
optimize a heuristic (consisting of the data fidelity term and the prior term), which may not
result in the best image quality.
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Deep Methods

Recently, deep learning has been applied to copious different domains and achieved state-of-
the-art performance [119, 127, 128, 163]. For an imaging inverse problem, a deep-learning
based method attempts to solve the inverse problem through a deep network, which acts as
a universal function approximator. The measurement is often an input to the network, and
the network produces a guess of the object:

x̂ = N (y) (2.11)

For supervised machine learning, we must train our network before we can use it to
solve imaging inverse problems, Fig. 2.5. To train the network, we need a large dataset of
measurements and corresponding ground truth labels. It generally works best if this dataset
comes from real data from the camera; however, in practice in can be hard or impossible to
acquire aligned ground truth data for computational cameras. Alternatively, such a dataset
can be simulated, but requires a very accurate forward model simulator for the camera to
account for any effects that are present in the real system.

During training, we aim to solve the following optimization problem:

arg min
N

Nt∑
i=0

L(xi −N (yi)), (2.12)

where L is the loss function which calculates a distance between the network output, x̂i =
N (yi), and the ground truth label, xi. Some common loss functions include mean-squared
error, l1 loss, and perceptual losses such as Learned Perceptual Image Patch Similarity
(LPIPS), which outputs a perceptual metric [231]. Typically, the smaller the loss, the closer
the two images are to each other. During training, backpropagation is used to update the
network weights based on the gradient of the loss function with respect to the network
weights. The training phase lasts for many epochs, in which we cycle through all of the
images in our training dataset in a random order. After training is complete, the network
weights are held constant and the network should be able to solve the inverse problem for
new measurements that it did not see during training.

While the training phase can be very lengthy, taking hours or days for certain problems,
the testing phase can be very fast. One advantage of deep methods over classical methods is
that excluding training time, deep methods can solve the inverse problem much faster than
classic methods. While classic methods often solve an iterative optimization problem that
takes many iterations to converge, deep methods require only a single forward pass through
the network to solve the inverse problem, often resulting in order of magnitude speed ups
over classic methods.

Furthermore, deep methods may be able to provide better image quality than classic
methods. This is due to the fact that the training objective can be set to directly minimize
the distance to the ground truth image, optimizing for image quality rather than some
heuristic based on the data fidelity term and a hand-picked prior. In addition, the deep
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Figure 2.5: Deep-learning-based reconstructions. Deep-learning-based methods consist
of two phases: training and testing. During training, a large dataset of labeled image pairs
are used to update the network weights based on the loss between the ground truth label
and the network output. After training is complete, the network is fed new data that it did
not see during training, and if all goes well, the network should generalize and be able to
solve the imaging inverse problem for new scenes.

network may be able to learn a better prior based on the training data than an arbitrary
hand-picked prior.

On the other hand, deep methods are black-boxes and are limited by their datasets.
There are few guarantees for when a deep network will be able to accurately solve an imaging
inverse problem, and when it will hallucinate information. If the dataset is too small, or too
restrictive, the network may not generalize well to other types of data.

In addition, the training phase usually needs to be repeated for each different camera.
Acquiring a real ground truth dataset of image pairs can be costly and difficult, and this
process needs to be repeated for each camera, adding an expensive calibration step to the
computational imaging pipeline.

Physics-informed machine learning

In this dissertation, we focus on a middle ground approach which we call physics-informed
machine learning. We combine the best of classic and deep methods in order to solve our
imaging inverse problems. To leverage our knowledge of imaging system physics, we use
differentiable optical models. There are many ways of doing this, including algorithm un-
rolling [160, 228, 164], single-step physics-based inversion, and differentiable forward models.
We will separate the methods into three different categories: supervised learning for inverse
problems, unsuperivsed learning for inverse problems, and learning forward models.

Supervised learning for inverse problems

In the case of supervised learning for inverse problems, we assume that we have access to
a dataset of labeled data, consisting of measurements and their corresponding ground truth
image pairs. This dataset can be experimentally captured, simulated, or perhaps generated.
In addition, we assume that we have some knowledge of the imaging system physics—perhaps
we have calibrated our imaging system and know our forward model, A, or we know an
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approximate version of our forward model, Ã. Now, we aim to infuse some of this known
physics-based knowledge into our neural network, so that we do not have to learn what we
know or can model from scratch. In general, there are two common approaches to infusing
this knowledge into our neural network: approximate physics-based inversion, Fig. 2.6(a), or
algorithm unrolling Fig. 2.6(b).

(a) Approximate physics-based inversion

(b) Algorithm unrolling

network output
(image guess)

measurements
(inputs)
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xi
<latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit>

…
 …

 

N (·)
<latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit>

Ã�1
<latexit sha1_base64="kdzj8juoxQwjHa6MHtPvhu5KpG8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAV3FgSEXRZceOygn1AE8tkctMOnTyYmQglZuGvuHGhiFt/w51/46TNQqsHBg7n3Ms9c7yEM6ks68uoLCwuLa9UV2tr6xubW+b2TkfGqaDQpjGPRc8jEjiLoK2Y4tBLBJDQ49D1xleF370HIVkc3apJAm5IhhELGCVKSwNzz1GM+5A5IVEjL8CX+V12YucDs241rCnwX2KXpI5KtAbmp+PHNA0hUpQTKfu2lSg3I0IxyiGvOamEhNAxGUJf04iEIN1smj/HR1rxcRAL/SKFp+rPjYyEUk5CT08WMeW8V4j/ef1UBRduxqIkVRDR2aEg5VjFuCgD+0wAVXyiCaGC6ayYjoggVOnKaroEe/7Lf0nntGFbDfvmrN48LOuoon10gI6Rjc5RE12jFmojih7QE3pBr8aj8Wy8Ge+z0YpR7uyiXzA+vgGTC5Wy</latexit><latexit sha1_base64="kdzj8juoxQwjHa6MHtPvhu5KpG8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAV3FgSEXRZceOygn1AE8tkctMOnTyYmQglZuGvuHGhiFt/w51/46TNQqsHBg7n3Ms9c7yEM6ks68uoLCwuLa9UV2tr6xubW+b2TkfGqaDQpjGPRc8jEjiLoK2Y4tBLBJDQ49D1xleF370HIVkc3apJAm5IhhELGCVKSwNzz1GM+5A5IVEjL8CX+V12YucDs241rCnwX2KXpI5KtAbmp+PHNA0hUpQTKfu2lSg3I0IxyiGvOamEhNAxGUJf04iEIN1smj/HR1rxcRAL/SKFp+rPjYyEUk5CT08WMeW8V4j/ef1UBRduxqIkVRDR2aEg5VjFuCgD+0wAVXyiCaGC6ayYjoggVOnKaroEe/7Lf0nntGFbDfvmrN48LOuoon10gI6Rjc5RE12jFmojih7QE3pBr8aj8Wy8Ge+z0YpR7uyiXzA+vgGTC5Wy</latexit><latexit sha1_base64="kdzj8juoxQwjHa6MHtPvhu5KpG8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAV3FgSEXRZceOygn1AE8tkctMOnTyYmQglZuGvuHGhiFt/w51/46TNQqsHBg7n3Ms9c7yEM6ks68uoLCwuLa9UV2tr6xubW+b2TkfGqaDQpjGPRc8jEjiLoK2Y4tBLBJDQ49D1xleF370HIVkc3apJAm5IhhELGCVKSwNzz1GM+5A5IVEjL8CX+V12YucDs241rCnwX2KXpI5KtAbmp+PHNA0hUpQTKfu2lSg3I0IxyiGvOamEhNAxGUJf04iEIN1smj/HR1rxcRAL/SKFp+rPjYyEUk5CT08WMeW8V4j/ef1UBRduxqIkVRDR2aEg5VjFuCgD+0wAVXyiCaGC6ayYjoggVOnKaroEe/7Lf0nntGFbDfvmrN48LOuoon10gI6Rjc5RE12jFmojih7QE3pBr8aj8Wy8Ge+z0YpR7uyiXzA+vgGTC5Wy</latexit><latexit sha1_base64="kdzj8juoxQwjHa6MHtPvhu5KpG8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAV3FgSEXRZceOygn1AE8tkctMOnTyYmQglZuGvuHGhiFt/w51/46TNQqsHBg7n3Ms9c7yEM6ks68uoLCwuLa9UV2tr6xubW+b2TkfGqaDQpjGPRc8jEjiLoK2Y4tBLBJDQ49D1xleF370HIVkc3apJAm5IhhELGCVKSwNzz1GM+5A5IVEjL8CX+V12YucDs241rCnwX2KXpI5KtAbmp+PHNA0hUpQTKfu2lSg3I0IxyiGvOamEhNAxGUJf04iEIN1smj/HR1rxcRAL/SKFp+rPjYyEUk5CT08WMeW8V4j/ef1UBRduxqIkVRDR2aEg5VjFuCgD+0wAVXyiCaGC6ayYjoggVOnKaroEe/7Lf0nntGFbDfvmrN48LOuoon10gI6Rjc5RE12jFmojih7QE3pBr8aj8Wy8Ge+z0YpR7uyiXzA+vgGTC5Wy</latexit>

physics-based 
approximate 

inversion

CNN 
refinement

GD GD GD GD…
measurement

s
(inputs)

…
 …

 

N (·)
<latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit><latexit sha1_base64="d3zoLoKe3qe9tuqiTWaOIsQn21M=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQNyURQZcFN66kgn1AG8pkMmmHTiZh5kYpsZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z4yeCa3Ccb6u0tr6xuVXeruzs7u0f2NXDjo5TRVmbxiJWPZ9oJrhkbeAgWC9RjES+YF1/cp373QemNI/lPUwT5kVkJHnIKQEjDe3qICIwpkTg2/qABjGcDe2a03DmwKvELUgNFWgN7a9BENM0YhKoIFr3XScBLyMKOBVsVhmkmiWETsiI9Q2VJGLay+bRZ/jUKAEOY2WeBDxXf29kJNJ6GvlmMg+ql71c/M/rpxBeeRmXSQpM0sWhMBUYYpz3gAOuGAUxNYRQxU1WTMdEEQqmrYopwV3+8irpnDdcp+HeXdSauKijjI7RCaojF12iJrpBLdRGFD2iZ/SK3qwn68V6tz4WoyWr2DlCf2B9/gAwVpMu</latexit>

CNN 
refinement
(optional)

network 
output
(image 
guess)

<latexit sha1_base64="ZAapvn8+jmH3ZtNRJaMrVzHKKSM=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0GwCrsiahmwsbCIkBcmS7g7mU2GzM4uM7NCCPkLGwtFbP0bO//G2WQLTTwwcDjnXubcEySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKsqaNBax6gSomeCSNQ03gnUSxTAKBGsH49vMbz8xpXksG2aSMD/CoeQhp2is9NiL0IwoCnLfL1fcqjsHWSVeTiqQo94vf/UGMU0jJg0VqHXXcxPjT1EZTgWblXqpZgnSMQ5Z11KJEdP+dJ54Rs6sMiBhrOyThszV3xtTjLSeRIGdzBLqZS8T//O6qQlv/CmXSWqYpIuPwlQQE5PsfDLgilEjJpYgVdxmJXSECqmxJZVsCd7yyaukdVH1rqqXD5eVWiOvowgncArn4ME11OAO6tAEChKe4RXeHO28OO/Ox2K04OQ7x/AHzucPGKCQmw==</latexit>L
ground truth

(labels)

,x̂i
<latexit sha1_base64="gKa9Eu3bVoeN+MHQyac8cppAey0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXBjcsK9gFNCJPppB06mYSZiVpiP8WNC0Xc+iXu/BsnbRbaemDgcM693DMnTDlT2nG+rcra+sbmVnW7trO7t39g1w+7KskkoR2S8ET2Q6woZ4J2NNOc9lNJcRxy2gsn14Xfu6dSsUTc6WlK/RiPBIsYwdpIgV33xljnXoz1OIzQ4yxggd1wms4caJW4JWlAiXZgf3nDhGQxFZpwrNTAdVLt51hqRjid1bxM0RSTCR7RgaECx1T5+Tz6DJ0aZYiiRJonNJqrvzdyHCs1jUMzWWRUy14h/ucNMh1d+TkTaaapIItDUcaRTlDRAxoySYnmU0MwkcxkRWSMJSbatFUzJbjLX14l3fOm6zTd24tGC5V1VOEYTuAMXLiEFtxAGzpA4AGe4RXerCfrxXq3PhajFavcOYI/sD5/AF3xk/I=</latexit><latexit sha1_base64="gKa9Eu3bVoeN+MHQyac8cppAey0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXBjcsK9gFNCJPppB06mYSZiVpiP8WNC0Xc+iXu/BsnbRbaemDgcM693DMnTDlT2nG+rcra+sbmVnW7trO7t39g1w+7KskkoR2S8ET2Q6woZ4J2NNOc9lNJcRxy2gsn14Xfu6dSsUTc6WlK/RiPBIsYwdpIgV33xljnXoz1OIzQ4yxggd1wms4caJW4JWlAiXZgf3nDhGQxFZpwrNTAdVLt51hqRjid1bxM0RSTCR7RgaECx1T5+Tz6DJ0aZYiiRJonNJqrvzdyHCs1jUMzWWRUy14h/ucNMh1d+TkTaaapIItDUcaRTlDRAxoySYnmU0MwkcxkRWSMJSbatFUzJbjLX14l3fOm6zTd24tGC5V1VOEYTuAMXLiEFtxAGzpA4AGe4RXerCfrxXq3PhajFavcOYI/sD5/AF3xk/I=</latexit><latexit sha1_base64="gKa9Eu3bVoeN+MHQyac8cppAey0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXBjcsK9gFNCJPppB06mYSZiVpiP8WNC0Xc+iXu/BsnbRbaemDgcM693DMnTDlT2nG+rcra+sbmVnW7trO7t39g1w+7KskkoR2S8ET2Q6woZ4J2NNOc9lNJcRxy2gsn14Xfu6dSsUTc6WlK/RiPBIsYwdpIgV33xljnXoz1OIzQ4yxggd1wms4caJW4JWlAiXZgf3nDhGQxFZpwrNTAdVLt51hqRjid1bxM0RSTCR7RgaECx1T5+Tz6DJ0aZYiiRJonNJqrvzdyHCs1jUMzWWRUy14h/ucNMh1d+TkTaaapIItDUcaRTlDRAxoySYnmU0MwkcxkRWSMJSbatFUzJbjLX14l3fOm6zTd24tGC5V1VOEYTuAMXLiEFtxAGzpA4AGe4RXerCfrxXq3PhajFavcOYI/sD5/AF3xk/I=</latexit><latexit sha1_base64="gKa9Eu3bVoeN+MHQyac8cppAey0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlE0GXBjcsK9gFNCJPppB06mYSZiVpiP8WNC0Xc+iXu/BsnbRbaemDgcM693DMnTDlT2nG+rcra+sbmVnW7trO7t39g1w+7KskkoR2S8ET2Q6woZ4J2NNOc9lNJcRxy2gsn14Xfu6dSsUTc6WlK/RiPBIsYwdpIgV33xljnXoz1OIzQ4yxggd1wms4caJW4JWlAiXZgf3nDhGQxFZpwrNTAdVLt51hqRjid1bxM0RSTCR7RgaECx1T5+Tz6DJ0aZYiiRJonNJqrvzdyHCs1jUMzWWRUy14h/ucNMh1d+TkTaaapIItDUcaRTlDRAxoySYnmU0MwkcxkRWSMJSbatFUzJbjLX14l3fOm6zTd24tGC5V1VOEYTuAMXLiEFtxAGzpA4AGe4RXerCfrxXq3PhajFavcOYI/sD5/AF3xk/I=</latexit>

xi
<latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit><latexit sha1_base64="wfj25c+pY1hesbdQpyCBhvU7m+M=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeCF48VbCukoWy2m3bpZhN2X8QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYl+CKnhUijeQYGSP6Sa0ziUvBdObgq/98i1EYm6x2nKg5iOlIgEo2glvx9THIcReRqIQb3hNt05yCrxStKAEu1B/as/TFgWc4VMUmN8z00xyKlGwSSf1fqZ4SllEzrivqWKxtwE+TzyjJxZZUiiRNunkMzV3xs5jY2ZxqGdLCKaZa8Q//P8DKPrIBcqzZArtvgoyiTBhBT3k6HQnKGcWkKZFjYrYWOqKUPbUs2W4C2fvEq6F03PbXp3l40WKeuowgmcwjl4cAUtuIU2dIBBAs/wCm8OOi/Ou/OxGK045c4x/IHz+QMC05D0</latexit>

Unrolled, physics-based network

data-fit
layer

prior layer 

AH
<latexit sha1_base64="Qv4J6B/X5HUqtnfs78M3jAwcoh0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlx02UF+4B2LJk004ZmMmNyp1CGfocbF4q49WPc+Tem7Sy09UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKwecJJwP6IDJULBKFrJ70YUh0FIbh+z2rRXKrsVdw6ySryclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+L3dTwhLIRHfCOpYpG3PjZPPSUnFulT8JY26eQzNXfGxmNjJlEgZ2chTTL3kz8z+ukGN74mVBJilyxxaEwlQRjMmuA9IXmDOXEEsq0sFkJG1JNGdqeirYEb/nLq6R5WfHcind/Va6SvI4CnMIZXIAH11CFGtShAQye4Ble4c0ZOy/Ou/OxGF1z8p0T+APn8wdFuZGn</latexit><latexit sha1_base64="Qv4J6B/X5HUqtnfs78M3jAwcoh0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlx02UF+4B2LJk004ZmMmNyp1CGfocbF4q49WPc+Tem7Sy09UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKwecJJwP6IDJULBKFrJ70YUh0FIbh+z2rRXKrsVdw6ySryclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+L3dTwhLIRHfCOpYpG3PjZPPSUnFulT8JY26eQzNXfGxmNjJlEgZ2chTTL3kz8z+ukGN74mVBJilyxxaEwlQRjMmuA9IXmDOXEEsq0sFkJG1JNGdqeirYEb/nLq6R5WfHcind/Va6SvI4CnMIZXIAH11CFGtShAQye4Ble4c0ZOy/Ou/OxGF1z8p0T+APn8wdFuZGn</latexit><latexit sha1_base64="Qv4J6B/X5HUqtnfs78M3jAwcoh0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlx02UF+4B2LJk004ZmMmNyp1CGfocbF4q49WPc+Tem7Sy09UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKwecJJwP6IDJULBKFrJ70YUh0FIbh+z2rRXKrsVdw6ySryclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+L3dTwhLIRHfCOpYpG3PjZPPSUnFulT8JY26eQzNXfGxmNjJlEgZ2chTTL3kz8z+ukGN74mVBJilyxxaEwlQRjMmuA9IXmDOXEEsq0sFkJG1JNGdqeirYEb/nLq6R5WfHcind/Va6SvI4CnMIZXIAH11CFGtShAQye4Ble4c0ZOy/Ou/OxGF1z8p0T+APn8wdFuZGn</latexit><latexit sha1_base64="Qv4J6B/X5HUqtnfs78M3jAwcoh0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdFlx02UF+4B2LJk004ZmMmNyp1CGfocbF4q49WPc+Tem7Sy09UDgcM693JMTJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKwecJJwP6IDJULBKFrJ70YUh0FIbh+z2rRXKrsVdw6ySryclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+L3dTwhLIRHfCOpYpG3PjZPPSUnFulT8JY26eQzNXfGxmNjJlEgZ2chTTL3kz8z+ukGN74mVBJilyxxaEwlQRjMmuA9IXmDOXEEsq0sFkJG1JNGdqeirYEb/nLq6R5WfHcind/Va6SvI4CnMIZXIAH11CFGtShAQye4Ble4c0ZOy/Ou/OxGF1z8p0T+APn8wdFuZGn</latexit>

Physics-enhanced supervised learning 

…
 …

 

orS(·)
<latexit sha1_base64="rh68xEw4nl2C4Tdq7UR0/UCzMYU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh4LXjxWtB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3cz89hPXRiTqAccp92M6UCISjKKVOvfVHgsTPO+XK27NnYOsEi8nFcjR6Je/emHCspgrZJIa0/XcFP0J1SiY5NNSLzM8pWxEB7xrqaIxN/5kfu+UnFklJFGibSkkc/X3xITGxozjwHbGFIdm2ZuJ/3ndDKNrfyJUmiFXbLEoyiTBhMyeJ6HQnKEcW0KZFvZWwoZUU4Y2opINwVt+eZW0LmqeW/PuLit1ksdRhBM4hSp4cAV1uIUGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx87g49S</latexit><latexit sha1_base64="rh68xEw4nl2C4Tdq7UR0/UCzMYU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh4LXjxWtB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3cz89hPXRiTqAccp92M6UCISjKKVOvfVHgsTPO+XK27NnYOsEi8nFcjR6Je/emHCspgrZJIa0/XcFP0J1SiY5NNSLzM8pWxEB7xrqaIxN/5kfu+UnFklJFGibSkkc/X3xITGxozjwHbGFIdm2ZuJ/3ndDKNrfyJUmiFXbLEoyiTBhMyeJ6HQnKEcW0KZFvZWwoZUU4Y2opINwVt+eZW0LmqeW/PuLit1ksdRhBM4hSp4cAV1uIUGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx87g49S</latexit><latexit sha1_base64="rh68xEw4nl2C4Tdq7UR0/UCzMYU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh4LXjxWtB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3cz89hPXRiTqAccp92M6UCISjKKVOvfVHgsTPO+XK27NnYOsEi8nFcjR6Je/emHCspgrZJIa0/XcFP0J1SiY5NNSLzM8pWxEB7xrqaIxN/5kfu+UnFklJFGibSkkc/X3xITGxozjwHbGFIdm2ZuJ/3ndDKNrfyJUmiFXbLEoyiTBhMyeJ6HQnKEcW0KZFvZWwoZUU4Y2opINwVt+eZW0LmqeW/PuLit1ksdRhBM4hSp4cAV1uIUGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx87g49S</latexit><latexit sha1_base64="rh68xEw4nl2C4Tdq7UR0/UCzMYU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh4LXjxWtB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3cz89hPXRiTqAccp92M6UCISjKKVOvfVHgsTPO+XK27NnYOsEi8nFcjR6Je/emHCspgrZJIa0/XcFP0J1SiY5NNSLzM8pWxEB7xrqaIxN/5kfu+UnFklJFGibSkkc/X3xITGxozjwHbGFIdm2ZuJ/3ndDKNrfyJUmiFXbLEoyiTBhMyeJ6HQnKEcW0KZFvZWwoZUU4Y2opINwVt+eZW0LmqeW/PuLit1ksdRhBM4hSp4cAV1uIUGNIGBhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx87g49S</latexit>

�
<latexit sha1_base64="Rfq1Js5Ypmgdl9dinRo4WHfRToo=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+4A2lMlk0g6dTMLMjRBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmVjc2t7p7pb29s/ODyqH590TZJpxjsskYnuB9RwKRTvoEDJ+6nmNA4k7wXTu7nfe+LaiEQ9Yp5yP6ZjJSLBKFqpN5Q2GtJRveE23QXIOvFK0oAS7VH9axgmLIu5QiapMQPPTdEvqEbBJJ/VhpnhKWVTOuYDSxWNufGLxbozcmGVkESJtk8hWai/JwoaG5PHgU3GFCdm1ZuL/3mDDKNbvxAqzZArtvwoyiTBhMxvJ6HQnKHMLaFMC7srYROqKUPbUM2W4K2evE66V03PbXoP140WKeuowhmcwyV4cAMtuIc2dIDBFJ7hFd6c1Hlx3p2PZbTilDOn8AfO5w8yi49b</latexit><latexit sha1_base64="Rfq1Js5Ypmgdl9dinRo4WHfRToo=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+4A2lMlk0g6dTMLMjRBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmVjc2t7p7pb29s/ODyqH590TZJpxjsskYnuB9RwKRTvoEDJ+6nmNA4k7wXTu7nfe+LaiEQ9Yp5yP6ZjJSLBKFqpN5Q2GtJRveE23QXIOvFK0oAS7VH9axgmLIu5QiapMQPPTdEvqEbBJJ/VhpnhKWVTOuYDSxWNufGLxbozcmGVkESJtk8hWai/JwoaG5PHgU3GFCdm1ZuL/3mDDKNbvxAqzZArtvwoyiTBhMxvJ6HQnKHMLaFMC7srYROqKUPbUM2W4K2evE66V03PbXoP140WKeuowhmcwyV4cAMtuIc2dIDBFJ7hFd6c1Hlx3p2PZbTilDOn8AfO5w8yi49b</latexit><latexit sha1_base64="Rfq1Js5Ypmgdl9dinRo4WHfRToo=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+4A2lMlk0g6dTMLMjRBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmVjc2t7p7pb29s/ODyqH590TZJpxjsskYnuB9RwKRTvoEDJ+6nmNA4k7wXTu7nfe+LaiEQ9Yp5yP6ZjJSLBKFqpN5Q2GtJRveE23QXIOvFK0oAS7VH9axgmLIu5QiapMQPPTdEvqEbBJJ/VhpnhKWVTOuYDSxWNufGLxbozcmGVkESJtk8hWai/JwoaG5PHgU3GFCdm1ZuL/3mDDKNbvxAqzZArtvwoyiTBhMxvJ6HQnKHMLaFMC7srYROqKUPbUM2W4K2evE66V03PbXoP140WKeuowhmcwyV4cAMtuIc2dIDBFJ7hFd6c1Hlx3p2PZbTilDOn8AfO5w8yi49b</latexit><latexit sha1_base64="Rfq1Js5Ypmgdl9dinRo4WHfRToo=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+4A2lMlk0g6dTMLMjRBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmVjc2t7p7pb29s/ODyqH590TZJpxjsskYnuB9RwKRTvoEDJ+6nmNA4k7wXTu7nfe+LaiEQ9Yp5yP6ZjJSLBKFqpN5Q2GtJRveE23QXIOvFK0oAS7VH9axgmLIu5QiapMQPPTdEvqEbBJJ/VhpnhKWVTOuYDSxWNufGLxbozcmGVkESJtk8hWai/JwoaG5PHgU3GFCdm1ZuL/3mDDKNbvxAqzZArtvwoyiTBhMxvJ6HQnKHMLaFMC7srYROqKUPbUM2W4K2evE66V03PbXoP140WKeuowhmcwyV4cAMtuIc2dIDBFJ7hFd6c1Hlx3p2PZbTilDOn8AfO5w8yi49b</latexit>

��
<latexit sha1_base64="Xq2L2HTz6lSkSUja0Nn+WdwwFbw=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgxpKIoMuCG5cV7APaUCaTSTt0MokzN0IJ/Qk3LhRx6++482+ctllo64GBwznnMveeIJXCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb2d+54lrIxL1gJOU+zEdKhEJRtFK3Yu+tNmQDqo1t+7OQVaJV5AaFGgOql/9MGFZzBUySY3peW6Kfk41Cib5tNLPDE8pG9Mh71mqaMyNn8/3nZIzq4QkSrR9Cslc/T2R09iYSRzYZExxZJa9mfif18swuvFzodIMuWKLj6JMEkzI7HgSCs0ZyokllGlhdyVsRDVlaCuq2BK85ZNXSfuy7rl17/6q1iBFHWU4gVM4Bw+uoQF30IQWMJDwDK/w5jw6L86787GIlpxi5hj+wPn8AZzqj5I=</latexit><latexit sha1_base64="Xq2L2HTz6lSkSUja0Nn+WdwwFbw=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgxpKIoMuCG5cV7APaUCaTSTt0MokzN0IJ/Qk3LhRx6++482+ctllo64GBwznnMveeIJXCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb2d+54lrIxL1gJOU+zEdKhEJRtFK3Yu+tNmQDqo1t+7OQVaJV5AaFGgOql/9MGFZzBUySY3peW6Kfk41Cib5tNLPDE8pG9Mh71mqaMyNn8/3nZIzq4QkSrR9Cslc/T2R09iYSRzYZExxZJa9mfif18swuvFzodIMuWKLj6JMEkzI7HgSCs0ZyokllGlhdyVsRDVlaCuq2BK85ZNXSfuy7rl17/6q1iBFHWU4gVM4Bw+uoQF30IQWMJDwDK/w5jw6L86787GIlpxi5hj+wPn8AZzqj5I=</latexit><latexit sha1_base64="Xq2L2HTz6lSkSUja0Nn+WdwwFbw=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgxpKIoMuCG5cV7APaUCaTSTt0MokzN0IJ/Qk3LhRx6++482+ctllo64GBwznnMveeIJXCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb2d+54lrIxL1gJOU+zEdKhEJRtFK3Yu+tNmQDqo1t+7OQVaJV5AaFGgOql/9MGFZzBUySY3peW6Kfk41Cib5tNLPDE8pG9Mh71mqaMyNn8/3nZIzq4QkSrR9Cslc/T2R09iYSRzYZExxZJa9mfif18swuvFzodIMuWKLj6JMEkzI7HgSCs0ZyokllGlhdyVsRDVlaCuq2BK85ZNXSfuy7rl17/6q1iBFHWU4gVM4Bw+uoQF30IQWMJDwDK/w5jw6L86787GIlpxi5hj+wPn8AZzqj5I=</latexit><latexit sha1_base64="Xq2L2HTz6lSkSUja0Nn+WdwwFbw=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgxpKIoMuCG5cV7APaUCaTSTt0MokzN0IJ/Qk3LhRx6++482+ctllo64GBwznnMveeIJXCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb2d+54lrIxL1gJOU+zEdKhEJRtFK3Yu+tNmQDqo1t+7OQVaJV5AaFGgOql/9MGFZzBUySY3peW6Kfk41Cib5tNLPDE8pG9Mh71mqaMyNn8/3nZIzq4QkSrR9Cslc/T2R09iYSRzYZExxZJa9mfif18swuvFzodIMuWKLj6JMEkzI7HgSCs0ZyokllGlhdyVsRDVlaCuq2BK85ZNXSfuy7rl17/6q1iBFHWU4gVM4Bw+uoQF30IQWMJDwDK/w5jw6L86787GIlpxi5hj+wPn8AZzqj5I=</latexit>
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Figure 2.6: Physics-informed supervised learning. For supervised learning in which we
have access to a dataset of paired measurements and labels, two common methods for struc-
turing physics-informed learning include (a) approximate physics-based inversion followed
by refinement with a neural network and (b) algorithm unrolling.

For approximate physics-based inversion, we aim to first approximately invert the effect
of our optics, and then refine and improve our guess based on a neural network [105, 164].
Ideally, we could take the inverse of A, however this is often not possible as described earlier.
Rather than computing the inverse, the adjoint, AH , is often more feasible to compute and
can be useful in ‘unscrambling’ some of the information. Alternatively, other single-step
inversion methods, such as Wiener filters can be used in this step. Through differentiable
modeling, the physics-based inversion layer can also be parameterized and refined together
with the neural network. This is useful for when the optical model is not fully known
or is not perfect. This method of a physics-based approximate inversion followed by a
convolutional neural network (CNN) [81] for refinement is simple to implement and generally
works quite well in practice. We will demonstrate an example of this approach in Ch 5 for
the case of single-shot 3D microscopy with spatially-varying aberrations, showing how we can
use an approximate physics-based inversion based on an easier-to-model spatially-invariant
approximation and then refine this approximation through our CNN.

Another approach is to use algorithm unrolling to create physics-inspired layers. In this
approach, we can take an optimization algorithm, such as FISTA or ADMM, and ‘unroll’
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it [80, 184, 56, 228, 193]. For example, for ISTA, rather than applying the two update
steps in Alg. 2 over and over again until convergence, we can unroll the algorithm and
apply those steps N -times, where N is small. Figure 2.6(b) demonstrates this concept.
For our ISTA example, the data-fit layer corresponds to the update-step: wk+1 ← xk −
1
L
AH(Axk − y), and the prior layer corresponds to the update-step: xk+1 ← soft(wk, λ/L).

These update steps can be written in a differentiable way, and the parameters of these
unrolled layers can then be optimized. In this simplest case, the parameter λ, which is a
tuning parameter controlling sparsity, can be updated based on the dataset to achieve images
that are the most similar to the ground truth based on some loss metric. This parameter
could be globally set across the whole network, or optimized per layer. Alternatively, more
parameters, such as the sparsifying transform and the proximal function can be learned to
achieve the best performance, or the entire prior term can be replaced with a neural network,
alternating between a data-fit term and a neural network which enforces some prior on the
scene statistics.

When the forward model is unknown, or imperfect, A could also be parameterized and
updated to achieve the best reconstruction quality. In addition, a neural network can be
optionally added after the unrolled network and serve as an additional refinement step to fur-
ther improve image quality. Unrolled, physics-based networks are slightly more complicated
to implement than single-step inversions, but can achieve good performance. Compared to
classic methods, unrolled networks can be much faster, since we can bound the number of
layers and learn the best parameters for each layer, achieving comparable performance to
a fully converged algorithm in a fraction of the time. In their most basic form unrolled
algorithms with optionally learnable hyperparameters (e.g. λ) are interpretable and fairly
reliable. As the number of layers increases, memory also increases, making this network
potentially very memory-intensive. Techniques such as check-pointing and memory-efficient
learning can mitigate this [102]. In addition, recent work on implicit differentiation could
allow us to fully compute until convergence an optimization algorithm such as FISTA, while
still keeping certain parameters differentiable [23]. Unrolled optimization and implicit dif-
ferentiation show promise for interpretable end-to-end learning of optics, in which we aim
to learn the best optics given a reconstruction algorithm [103, 13]. We will demonstrate an
example of an unrolled, physics-based network based on ADMM in Ch. 4 for lensless imaging
reconstructions.

Unsupervised learning for inverse problems

Unsupervised learning is a promising area of research because it does not require a dataset
of measurements and corresponding ground truth images. Recently, a technique called Deep
Image Prior [204] showed remarkable results for a variety of tasks, such as super-resolution,
denoising, and image in-painting, using an untrained network. This demonstrates that the
structure of a neural network can function as a prior on the image statistics, even if the
network is not trained. For physics-informed unsupervised learning, we use the untrained
network as an image generator, constraining the domain of possible images to be the output
of our generator, x̂ = G(z;W ). We then feed the generated image through a differentiable
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optical forward model, A, to generate a measurement guess, ŷ = Ax̂, and compare our real
measurement, y, with our generated measurement. Using the loss between these two values,
we update the weights of the network through backpropagation until the measurement and
our generated measurement match, Fig. 2.7. This can be described as solving the following
optimization problem:

arg min
W

1

2
‖y −AG(z;W )‖2

2. (2.13)

When comparing this equation to Eq. 2.6, we can see that this is essentially optimizing the
data-consistency term. Rather than having an explicit prior, the prior is obtained through
the structure of the network, G(z;W ). Unsupervised learning has been shown to be useful
for a number of imaging inverse problems, such as MRI [76, 49, 98] and diffraction tomog-
raphy [236]. In addition, when A is partially known and parameterizable, this strategy has
shown success in jointly reconstructing and calibrating the forward model, A at the same
time [25].

Overall, unsupervised learning often has better image quality than classic methods, but
may have worse image quality than supervised approaches. In addition, the network must
often be retrained for each new measurement, which can be quite slow—slower than both
supervised methods and classic methods. Despite these disadvantages, the advantage of not
needing paired training data is a big one, and makes this class of reconstruction methods very
promising for a number of applications. We will demonstrate an example of an untrained
network for compressive hyperspectral imaging and video from stills in Ch. 6.

Physics-informed unsupervised learning 

network output
(image guess)

measurement
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G(z; W )

Figure 2.7: Physics-informed unsupervised learning. For physics-informed unsu-
pervised learning, the neural network structure can serve as an imaging prior. A data-
consistency loss (the difference between the real measurement and the guess of the mea-
surement based on our forward model) is computed, then used to update the value of the
network weights.

Learning forward models

Rather than using a neural network to solve an imaging inverse problem, it is sometimes
useful to use a neural network to help us learn, calibrate, or characterize an imaging forward
model, A. In this way, we can use a neural network to represent a complicated, hard to
compute, or perhaps non-linear imaging forward model. As a simple example, we can use
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data to calibrate a known imaging forward model. For instance, if we can easily parameterize
our imaging forward model, but do not know the values of the parameters (e.g. unknown
Zernike coefficients for aberrations), we could express our optical model in a differentiable
way, then use backpropagation to update our parameters based on the loss between the
real measurements and generated measurements from our optical model (given a dataset of
measurements and ground truth labels). For a more complicated system which we cannot
easily parameterize or model, it may be useful to parameterize and model as much as we
can, then combine this with a neural network to learn the rest, Fig. 2.8.
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Figure 2.8: Learning imaging forward models. We can use a generative adversarial
network (GAN) to help us calibrate imaging forward models.

For cases where there is lots of noise in the measurement, stochastic components within
the forward model (e.g. modeling noise), or a lack of paired training data, a generative
adversarial network (GAN) [77] can be used. This is useful when it is hard to compute
a pixel-wise loss between the measurements, yi, and generated measurements, ŷi, (e.g. in
the presence of noise). Rather than directly computing the loss between yi and ŷi, we
can instead feed these two images into a discriminator. The discriminator is another neural
network whose job is to decide whether a measurement is real or fake. The generator aims to
create plausible measurements that match the distribution of the real measurements, while
the discriminator aims to classify whether the measurements are real or not. These two
networks are trained together and compete with each other.

The generated measurement is: ŷi = G(xi). When updating the parameters of the
discriminator, we can calculate a loss based on how well the discriminator classifies the
generated measurements, ŷi, as being fake and the real measurements, yi, as being real.
When updating the parameters of the generator, we calculate a loss based on how well
the generator can fool the discriminator and get the discriminator to classify the generated
measurements as being real. At the end of training, the generator should be able to fool the
discriminator 50% of the time and the distribution of the generated measurements should
be indistinguishable from the real measurements.

In practice, GANs are notoriously difficult to train. Over the years, a number of methods,
such as Wasserstein GANs and gradient penalties have been introduced to improve the
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stability of GANs and make GANs easier to train and debug [82, 11]. Constraining the
generator in a GAN to learn only a few physics-inspired parameters rather than millions of
parameters in a CNN is a promising direction for making GANs easier to train and more
interpretable. We will demonstrate an example of using a physics-informed GAN to learn a
signal-dependant, camera-dependent extremely low light noise model in Ch. 7.
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Chapter 3

Compressive Lensless Imaging:
Single-shot Hyperspectral, 3D, and
Video

In this chapter, we introduce compressive, mask-based lensless cameras based on Diffuser-
Cam, a compact and inexpensive single-shot 3D camera [8]. First, we provide intuition for
how to encode additional information (hyperspectral, video, 3D) using a lensless camera and
examine the forward model for each case. Next, we summarize the classic inverse problem
for these cameras, discussing compressive sensing and the need for sparsity as well as good
priors. Finally, as a case study of lensless imagers, we take a deep dive into the design of
Spectral DiffuserCam1, which is a snapshot hyperspectral imager. We provide context for
this camera in the field of compressive hyperspectral imagers, provide design details, discuss
limitations, and showcase the performance of this camera when using classic reconstruction
methods.

3.1 Modeling Mask-based Lensless Cameras

Mask-based lensless imagers, often called lensless cameras, are a class of computational
cameras in which the lens is replaced with a phase or amplitude mask placed a short distance
in front of the sensor [8, 15]. Unlike conventional (lensed) cameras, which directly record a
one-to-one image of the scene, lensless cameras map each point in the scene to many sensor
pixels, indirectly encoding scene information into the sensor measurement. A reconstruction
algorithm is then used to recover the final image. This architecture enables small, cheap,
and light-weight designs which can be used for portable or in vivo imaging [14, 199, 8,
112, 222, 132, 113, 198]. Additionally, the inherent multiplexing of lensless cameras can
make them amenable to compressive measurement of higher-dimensional signals, such as

1This chapter is based on the published journal paper titled “Spectral DiffuserCam: lensless snapshot
hyperspectral imaging with a spectral filter array” and is joint work with Kyrollos Yanny, Neerja Aggarwal,
and Laura Waller [158].
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measurement

Figure 3.1: DiffuserCam forward model. DiffuserCam is a mask-based, lensless camera
that consists of a thin diffuser placed close to the camera sensor. A point source in the
world maps to a high contrast, wavy pattern on the sensor (PSF). As the point source moves
laterally through the world, the PSF linearly shifts across the sensor (shift-invariant).

3D volumetric [8, 91], hyperspectral [158], polarization [62], or video [9], from a single 2D
measurement.

To demonstrate the modeling and algorithms for mask-based lensless cameras, we will
focus our discussion on DiffuserCam [8, 113], which is a lensless camera based on a phase
mask, or diffuser. DiffuserCam is a compact, easy-to-build imaging system that consists only
of a diffuser (a transparent phase mask with pseudo-random, slowly-varying thickness) placed
a few millimeters in front of a standard image sensor (see Fig. 3.1). First, we will develop
a model for 2D imaging with DiffuserCam, then extend this to single-shot hyperspectral,
video, and 3D imaging.

2D lensless imaging

Light from a point source in the scene is refracted by the diffuser to create a high-contrast
caustic pattern on the sensor, which is the point spread function (PSF) of the system. Since
the diffuser is thin and the sensor is placed within the caustic plane of the diffuser [8], the
PSF can be modeled as shift-invariant: a lateral shift of the point source in the scene causes
a translation of the PSF in the opposite direction, Fig. 3.1. We can therefore model the
sensor response b[x, y] as a convolution of the scene x[x, y] with an on-axis PSF h[x, y]:

b[x, y] = crop
(
x[x, y] ∗ h[x, y])

)
(3.1)

= A2Dx, (3.2)

where [x, y] represents the discrete image coordinates, ∗ represents a discrete 2D linear
convolution and the crop function accounts for the finite sensor size. In practice, it is
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Figure 3.2: 1-1 imagers vs. 1-many imagers. (a) Comparing a 1-1 imager to a 1-many
imager. In the presence of sensor-plane erasures (b), the information from a 1-1 imager
may be lost. On the other hand, a 1-many imager is resilient to erasures, since information
is spread across the sensor. After computational recovery, the object can be almost fully
recovered. (c) This is true for simple objects, as well as more complicated scenes.

necessary to pad both the image and the PSF before performing the convolution since FFT-
based convolutions have circular boundary conditions, causing the edges of the field of view
to wrap around the other side. The crop function therefore brings the image and PSF sizes
back to the original size after the convolution is performed. For 2D imaging, we assume that
the PSF does not vary with depth—that is, as one moves objects closer or further from the
sensor, the PSF will remain the same. This assumption is true as long as objects are placed
beyond in the hyperfocal distance of the camera, which in the case of DiffuserCam can be
between a few centimeters to a few meters away from the camera [8].

2D imaging with erasures

To understand how we can encode additional, higher-dimensional information with Diffuser-
Cam, let us first consider a simpler problem: recovering information from a sensor that has
erasures, or pixel defects. A typical lens-based camera is a 1-1 mapper, so each point in the
world maps to a single point on the sensor, Fig. 3.2(a)(left). On the other hand, DiffuserCam
is a 1-many mapper, so each point in the world maps to a random pattern on the sensor,
which consists of many points across a large portion of the sensor, Fig. 3.2(a)(right). If we
destroy a square of pixels in the center of the sensor, a lens-based camera will not record
the light from the center of the field of view, Fig. 3.2(b)(left). When using a diffuser, light
from the center of the field of view will hit many pixels across the sensor, so even if the
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center pixels are destroyed, information from the center of the field of view is still measured,
Fig. 3.2(b)(right). We can imagine that given a good reconstruction algorithm, we could
recover the object from the incomplete, erased measurement in the case of DiffuserCam. In
the case of the lens, the information is not measured, so it cannot be recovered and must
instead be guessed. This concept can be extended to more complicated scenes, Fig. 3.2(c).

The forward model for a lensless camera with focal plane erasures is:

b[x, y] = M[x, y] · crop
(
x[x, y] ∗ h[x, y])

)
(3.3)

= A2D erasuresx. (3.4)

Where M[x, y] is a binary mask that zeros out a subset of the sensor pixels corresponding
to the erasure pattern. Although commercial sensors are screened to minimize dead pixels,
this scenario is useful to help us explore the limits of computational recovery with these
sorts of cameras. How many pixels can be erased while maintaining decent object recovery?
How does the reconstruction degrade as a function of pixel erasures? We will explore these
questions in detail in Chapter 6.

Since not all of the sensor pixels are needed to fully or almost fully recover the object,
one might ask: can we do something useful with the erased/unneeded pixels? This brings
us to our next concept of snapshot hyperspectral and video imaging, in which we can utilize
different subsets of pixels to accomplish different tasks. In the case of hyperspectral imaging,
we can encode different wavelengths of light into different subsets of pixels, then fully recover
a high-resolution object at each wavelength, Fig. 3.3(c). For the case of single-shot video,
we can encode different points in time across different pixels, recovering a full video from a
single image, Fig. 3.3(b).

Higher dimensions: single-shot video and hyperspectral imaging

Since each point in the world maps to many pixels on the sensor, we need only a sub-
set of the sensor pixels to reconstruct the full 2D image, given certain conditions such as
sufficient sparsity. This can be useful, for example, to compensate for dead sensor pixels,
which act like an erasure pattern; or, we can capture the full 2D sensor image and recover
higher-dimensional information. The higher-dimensional data (e.g. time, wavelength) must
be physically encoded into different subsets of the sensor pixels; then compressed sensing is
applied to recover a 3D datacube.

For single-shot video, we can use the rolling shutter of the camera to encode temporal
information into different rows of the camera, Fig. 3.3(b). Each row contains information
from different time points, then using algorithms, we can recover full images from each subset
of rows, forming a full, high-resolution video from a single image [9]. For hyperspectral
imaging, we can instead encode different wavelengths of light into different regions on the
sensor, then recover a full hyperspectral datacube from a single encoded image Fig. 3.3(c).
This can be accomplished with the use of spectral filter arrays attached to the imaging
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Figure 3.3: Compressive imaging systems: Our lensless 2D camera consists of a diffuser
placed a small distance away from the sensor. Each point in the world maps to a high-
contrast caustic pattern (PSF). (a) Since the PSF covers a large area of the sensor, we can
erase a random subset of the pixels and still recover the full image. (b) The camera’s rolling
shutter can be used to encode temporal information into the measurement. As points flick
on/off, the PSFs are filtered by the sensor’s rolling shutter function, which reads one row at
a time (or two in the case of dual shutter, as shown here). The measurement is a sum of the
rows captured at different time points, each of which contains information from the entire
2D scene. Hence, temporal information is encoded vertically across the sensor, with earlier
time points at the top and bottom of the image and later time points towards the center.
(c) Single-shot hyperspectral imaging is achieved with a spectral filter array in front of the
sensor, which maps each band of wavelengths to a subset of the sensor pixels.
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sensor [158]. In this way, rather than sampling only a subset of pixels in order to reconstruct
a 2D image, we instead can reconstruct 3D datacubes from fully-sampled 2D images.

To update our imaging model to account for higher-dimensions, we denote this extra
dimension (time/wavelength) generically as the k-dimension. Sequential recovery using Eq.
3.3 prevents incorporating priors along the k-dimension, so we use the following model that
depends on the full datacube:

b =

Nk∑
k=0

Mk[x, y] · crop
(
x[x, y, k]∗h[x, y]

)
(3.5)

= Ak-Dx. (3.6)

Here, Nk is the number of discrete points along the k-dimension, and Mk[x, y] is a masking
function, which depends on k, and selects the sensor pixels corresponding to each video
frame/wavelength. The convolution, ∗ is only over the two spatial dimensions.

For the high-speed video case, Mk[x, y], referred to as the shutter function, is based on
the rolling shutter. Sensors typically have either a single shutter or a dual shutter, which
we use in this work. For a single shutter, the sensor reads the pixels one horizontal line at a
time, moving from the top to the bottom of the sensor; for a dual-shutter, the sensor reads
pixels from two horizontal lines that move from the top and bottom of the sensor towards
the middle, Fig. 3.3(b).

For the hyperspectral case Mk[x, y], referred to as the filter function, is determined by
the spectral filter array. Each filter pixel acts as narrow-band spectral filter which integrates
light within a certain wavelength range and blocks out light at other wavelengths. We
approximate this as a finite sum across spectral bands with a non-binary filter function
which accounts for the spectral transmittance at each wavelength.

Higher dimensions: single-shot 3D

Rather than exploiting different regions of the sensor to encode higher-dimensional data, we
can also exploit the behavior of the PSF to encode additional information. For example, if
the PSF varies with depth [8, 223] or wavelength [75], this can be used to encode higher-
dimensional information into the measurement.

For a system with a depth-varying PSF, we have the following forward model:

b =
k∑
z=0

crop
(
x[x, y, z]∗h[x, y, z]

)
(3.7)

= A3-Dx. (3.8)

where the PSF, h[x, y, z], now varies with depth, and we sum across k discrete depth planes.
To successfully encode and decode depth information, the PSF must sufficiently vary with
depth. This can be measured by computing the correlation of PSFs at adjacent depths [8].
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Inverse problem for compressive imaging

Given our sensor measurement b, our goal is to recover the scene x. For the 2D erasures
scenario x is a 2D image, whereas for single-shot video x is a video consisting of two spa-
tial and one temporal dimension, for single-shot hyperspectral x is a hyperspectral volume
consisting of two spatial and one spectral dimension, and for single-shot 3D x is a volume
consisting of three spatial dimensions. In all cases, the problem is underdetermined, since
we aim to recover more pixels than we measure. When using a classic method, we can solve
the following optimization problem:

x̂ = arg min
x≥0

1

2
‖b−Ax‖2

2 + τ‖∇xykx‖1.

We can choose the sparsifying transform (e.g. native sparsity, wavelets, TV) that gives us
the best performance and then tune τ to trade off data-fidelity and our sparsity prior until
we achieve the best results. By compressive sensing theory, given certain assumptions about
scene sparsity in some domain and the incoherence of the imaging system, exact recovery of
the high-dimensional object from the encoded measurement is possible [35]. Alternatively,
this problem could be solved using deep learning or physics-informed learning if we have
access to a dataset of image pairs. For compressive imaging, acquiring a dataset of image
pairs can be tricky, since our ground truth data is 3D (hyperspectral, time, depth), while
our measurements are 2D.

3.2 Spectral DiffuserCam: a Compact Camera for

Snapshot Hyperspectral Imaging

Next, we go into depth on the design of a compressive camera, Spectral DiffuserCam, which
we developed for single-shot hyperspectral imaging. This next section highlights the design
choices for our camera, provides context for its place within the field of computational
imaging, and highlights the performance that is possible using classic methods.

Introduction

Hyperspectral imaging systems aim to capture a 3D spatio-spectral datacube containing
spectral information for each spatial location. This enables the detection and classification
of different material properties through spectral fingerprints, which cannot be seen with an
RGB camera alone. Hyperspectral imaging has been shown to be useful for a variety of
applications, from agricultural crop monitoring to medical diagnostics, microscopy, and food
quality analysis [53, 104, 138, 196, 78, 5, 139, 165, 93, 17]. Despite the potential utility,
commercial hyperspectral cameras range from $25,000–$100,000 (at the time of publication
of this dissertation). This high price point and the large size have limited the widespread
use of hyperspectral imagers.
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Traditional hyperspectral imagers rely on scanning either the spectral or spatial dimen-
sion of the hyperspectral cube with spectral filters or line-scanning [79, 71, 227]. These
methods can be slow and generally require precise moving parts, increasing the camera
complexity. More recently, snapshot techniques have emerged, enabling capture of the full
hyperspectral data cube in a single shot. Some snapshot methods trade-off spatial resolution
for spectral resolution by using a color filter array or splitting up the camera’s field-of-view
(FOV). Computational imaging approaches can circumvent this trade-off by spatio-spectrally
encoding the incoming light, then solving a compressive sensing inverse problem to recover
the spectral cube [209], assuming some structure in the scene. These systems are typically
table-top instruments with bulky relay lenses, prisms, or diffractive elements, suitable for
laboratory experiments, but not the real world. Recently, several compact snapshot hy-
perspectral imagers have been demonstrated that encode spatio-spectral information with a
single optic, enabling a practical form factor [180, 69, 95]. Using a single optic to control both
the spectral and spatial resolution, they are generally constrained to measuring contiguous
spectral bins within a given spectral band.
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Figure 3.4: Overview of the Spectral DiffuserCam imaging pipeline, which recon-
structs a hyperspectral datacube from a single-shot 2D measurement. The system consists
of a diffuser and spectral filter array bonded to an image sensor. A one-time calibration
procedure measures the point spread function (PSF) and filter function. Images are recon-
structed using a non-linear inverse problem solver with a sparsity prior. The result is a
3D hyperspectral cube with 64 channels of spectral information for each of 448×320 spatial
points, generated from a 2D sensor measurement that is 448×320 pixels.

Here, we propose a new encoding scheme that takes advantage of recent advances in
patterned thin film spectral filters [183], and lensless imaging, to achieve high-resolution
snapshot hyperspectral imaging in a small form factor. Our system consists of a tiled spectral
filter array placed directly onto the sensor and a randomizing phase mask (i.e. diffuser) placed
a small distance away from the sensor, as in the DiffuserCam architecture [8]. The diffuser
spatially multiplexes the incoming light, such that each spatial point in the world maps to
many pixels on the camera. The spectral filter array then spectrally encodes the incoming
light via a structured erasure function. The multiplexing effect of the diffuser allows recovery
of scene information from a subset of sensor pixels, so we are able to recover the full spatio-
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spectral cube without the loss in resolution that would result from using a non-multiplexing
optic, such as a lens.

Our encoding scheme enables hyperspectral recovery in a compact and inexpensive form
factor. The spectral filter array can be manufactured directly on the sensor, costing under
$5 for both the diffuser and the filter array at scale. A key advantage of our system over
previous compact snapshot hyperspectral imagers is that it decouples the spectral and spatial
responses, enabling a flexible design in which either contiguous or non-contiguous spectral
filters with user-selected bandwidths can be chosen. Given some conditions on scene sparsity
and the diffuser randomness, the spectral sampling is determined by the spectral filters and
the spatial resolution is determined by the autocorrelation of the diffuser response. This
should find use in task-specific/classification applications [181, 43, 122, 89], where one may
wish to tailor the spectral sampling to the application by measuring multiple non-contiguous
spectral bands, or have higher-resolution spectral sampling for certain bands.

We present theory for our system, simulations to motivate the need for a diffuser, and
experimental results from a prototype system, showing:

1. A novel framework for snapshot hyperspectral imaging that combines compressive sens-
ing with spectral filter arrays, enabling compact and inexpensive hyperspectral imag-
ing.

2. Theory and simulations analyzing the system’s spatio-spectral resolution for objects
with varying complexity.

3. A prototype device demonstrating snapshot hyperspectral recovery on real data from
natural scenes.

Related Work

Snapshot Hyperspectral Imaging

There have been a variety of snapshot hyperspectral imaging techniques proposed and
evaluated over the past decades. Most approaches can be categorized into the following
groups: spectral filter array methods, coded aperture methods, speckle-based methods, and
dispersion-based methods.

Spectral filter array methods use tiled spectral filter arrays on the sensor to recover
the spectral channels of interest [116]. These methods can be viewed as an extension of Bayer
filters for RGB imaging, since each ‘super-pixel’ in the tiled array has a grid of spectral filters.
As the number of filters increases, the spectral resolution increases and the spatial resolution
decreases. For instance, with an 8×8 filter array (64 spectral channels), the spatial resolution
is 8× worse in each direction than that of the camera sensor. Demosaicing methods have
been proposed to improve upon this in post-processing; however, they rely on intelligently
guessing information that is not recorded by the sensor [150]. Recently, photonic crystal slabs
have been demonstrated for compact spectroscopy based on random spectral responses (as
opposed to traditional passband responses) and extended to hyperspectral imaging through
the tiling of the photonic crystal slab pixels [215, 216]. While these methods have high
spectral accuracy, they have only been demonstrated in a 10×10 spatial pixel configuration.
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Our system uses a spectral filter array, but combines it with a randomizing diffuser in a
lensless imaging architecture, allowing us to recover close to the full spatial resolution of
the sensor, which is not possible with traditional lens-based methods. Our method uses
traditional pass-band spectral filters, but could be extended to photonic crystal slabs and
other spectral filter designs.

Coded aperture methods use a coded aperture, in combination with a dispersive
optical element (e.g. a prism or diffractive grating), in order to modulate the light and
encode spatial-spectral information [72, 130, 209, 38]. These systems are able to capture
hyperspectral images and videos but tend to be large table-top systems consisting of multiple
lenses and optical components. In contrast, our system has a much smaller form factor,
requiring only a camera sensor with an attached spectral filter array and a thin diffuser
placed close to the sensor.

Speckle-based methods use the wavelength dependence of speckle from a random
media to achieve hyperspectral imaging. This has been demonstrated for compact spec-
trometers [172, 41] and extended to hyperspectral imaging [180, 69]. These systems can
be compact, since they require only a sensor and scattering media as their optic; however
their spectral resolution is limited by the speckle correlation through wavelengths. This is
challenging to design for a given application, since the spatial and spectral resolutions are
highly coupled. In contrast, our system uses spectral filters that can easily be adjusted for
a given application and can be selected to have variable bandwidth or non-uniform spectral
sampling.

Dispersive methods utilize the dispersion from a prism or diffractive optic to encode
spectral information on the sensor. This can be accomplished opportunistically by a prism
added to a standard DSLR camera [18]. The resulting system has high spatial resolution,
equal to that of the camera sensor, but spectral information is encoded only at the edges of
objects in the scene, resulting in a highly ill-conditioned problem and lower spectral accuracy.
Other methods use a diffuser (as opposed to a prism) as the dispersive element [75]. This
can be more compact than prism-based systems and can have improved spatial resolution
when combined with an additional RGB camera [86]. To further improve compactness, [95]
uses a single diffractive optic as both the lens and the dispersive element, uniquely encoding
spectral information in a spectrally-rotating point spread function (PSF).

Our system uses a lensless architecture and a spectral filter array, together with sparsity
assumptions, to reconstruct 3D hyperspectral information across 64 wavelengths. The design
is most similar to [95] and achieves a similar compact size; however, our system achieves
better spectral accuracy, and the use of the color filter array and diffuser results in more
design flexibility, as our spectral and spatial resolutions are decoupled, enabling custom
sensors tailored to specific spectral filter bands that do not need to be contiguous.

Lensless Imaging

Lensless, mask-based imaging systems do not have a main lens, but instead use an amplitude
or phase mask in place of imaging optics. These systems have been demonstrated for very
compact, small form factor 2D imaging [15, 113, 199, 198]. They are generally amenable
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high NA lens low NA lens Spectral DiffuserCam

super-pixel
filter pixel

Figure 3.5: Motivation for multiplexing: A high-NA lens captures high-resolution spatial
information, but misses the yellow point source, since it comes into focus on a spectral filter
pixel designed for blue light. A low-NA lens blurs the image of each point source to be
the size of the spectral filter’s super-pixel, capturing accurate spectra at the cost of poor
spatial resolution. Our DiffuserCam approach multiplexes the light from each point source
across many super-pixels, enabling the computational recovery of both point sources and
their spectra without sacrificing spatial resolution. Note that a simplified 3×3 filter array is
shown here for clarity.

to compressive imaging, due to the multiplexing nature of lensless architectures; each point
in the scene maps to many pixels on the sensor, allowing a sparse scene to be completely
recovered from a subset of sensor pixels [64]. Or, one can reconstruct higher-dimensional
functions like 3D [8] or video [9] from a single 2D measurement. In this work, we use diffuser-
based lensless imaging to spatially-multiplex light onto a repeated spectral filter array, then
reconstruct 3D hyperspectral information. Because of the compressed sensing framework, our
spatial resolution is better than the array super-pixel size, despite the missing information
due to the array.

System Design Overview

Our system leverages recent advances in both spectral filter array technology and compressive
lensless imaging to decouple the spectral and spatial design. Furthermore, the spectral filter
arrays can be deposited directly on the camera sensor. With a diffuser as our multiplexing
optic, the system is compact and inexpensive at scale.

To motivate our need for a multiplexing optic instead of an imaging lens, let us con-
sider three candidate architectures: one with a high numerical aperture (NA) lens whose
diffraction-limited spot size is matched to the filter pixel size, one with a low-NA lens whose
diffraction-limited spot size is matched to the super-pixel size, and finally our design with a
diffuser as a multiplexing optic. Figure 3.5 illustrates these three scenarios with a simplified
example of a spectral filter array consisting of 3 × 3 spectral filters (9 total) repeated hor-
izontally and vertically. Assume that the monochrome camera sensor has square pixels of
lateral size Npixel, the spectral filter array has square filters of size Nfilter, and each 3×3 block
of spectral filters creates a super-pixel of size Nsuper-pixel, where Npixel < Nfilter < Nsuper-pixel.
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Figure 3.6: Forward model. Image formation model for a scene with two point sources
of different colors, each with narrow-band irradiance centered at λy (yellow) and λr (red).
The final measurement is the sum of the contributions from each individual spectral filter
band in the array. Due to the spatial multiplexing of the lensless architecture, all scene
points v(x, y, λ) project information to multiple spectral filters, which is why we can recover
a high-resolution hyperspectral cube from a single image, after solving an inverse problem.

In the high-NA lens case, a point source in the scene will be imaged onto a single filter
pixel of the sensor, and thus will only be measured if it is within the passband of that
filter; otherwise it will not be recorded, Fig. 3.5 (left). In the low-NA lens case, each point
source will be imaged to an area the size of the filter array super-pixel, and thus recorded
by the sensor correctly, but at the price of low spatial-resolution (matched to the the super-
pixel size), Fig. 3.5 (middle). In contrast, a multiplexing optic can avoid the gaps in the
measurement of the high-NA lens and achieve better resolution than the low-NA case.

A diffuser multiplexes the light from each point source such that it hits many filter pixels,
covering all of the spectral bands. And the spatial resolution of the final image can be on
the order of the camera pixel size, provided that conditions for compressed sensing are met,
Fig. 3.5 (right). In practice, the spatial resolution of our system will be bounded by the
autocorrelation of the point spread function (PSF), as detailed in Sec. 3.2, and the diffuser
PSF must span multiple super-pixels to ensure that each point in the world is captured. Since
compressive recovery is used to recover a 3D hyperspectral cube from a 2D measurement,
the resolution is a function of the scene complexity, as described in Sec. 3.2.

Imaging Forward Model

Given our design with a diffuser placed in front of a sensor that has a spectral filter array
on top of it, in this section we outline a forward model for the optical system, illustrated in
Fig. 3.6. This model is a critical piece of our iterative inverse algorithm for hyperspectral
reconstruction and will also be used to analyze spatial and spectral resolution.
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Spectral filter model

The spectral filter array is placed on top of an imaging sensor, such that the exposure on
each pixel is the sum of point-wise multiplications with the discrete filter function,

L[x, y] =
K−1∑
λ=0

Fλ[x, y] · v[x, y, λ], (3.9)

where · denotes point-wise multiplication, v[x, y, λ] is the spectral irradiance incident on
the filter array and Fλ[x, y] is a 3D function describing the transmittance of light through
the spectral filter for K wavelength bands, which we call the filter function. In this model,
we absorb the sensor’s spectral response into the definition of Fλ[x, y]. Our device’s filter
function is determined experimentally (see Sec 3.2.C) and shown in Fig. 3.7(b). This can be
generalized to any arbitrary spectral filter design and does not assume alignment between
the filter pixels and the sensor pixels. Here, we focus on the case of a repeating grid of
spectral filters, where each ‘super-pixel’ consists of a set of narrow-band filters. Our device
has a 8×8 grid of filters in each super-pixel; Fig. 3.6 illustrates a simplified 3×3 grid, for
clarity.

Diffuser model

The diffuser (a smooth pseudorandom phase optic) in our system achieves spatial multiplex-
ing; this results in a compact form factor and enables reconstruction with spatial resolution
better than the super-pixel size via compressed sensing. The diffuser is placed a small dis-
tance away from the sensor and an aperture is placed on the diffuser to limit higher angles.
The sensor plane intensity resulting from the diffuser can be modeled as a convolution of the
scene, v[x, y, λ] with the on-axis PSF, h[x, y] [113]:

w[x, y, λ] = crop
(
v[x, y, λ]

[x,y]∗ h[x, y])
)

(3.10)

where
[x,y]∗ represents a discrete 2D linear convolution over spatial dimensions. The crop

function accounts for the finite sensor size. We assume that the PSF does not vary with
wavelength and validate this experimentally in Sec. 3.2.B. However, this model can be easily
extended to include a spectrally-varying PSF, h[x, y, λ] if there is more dispersion across
wavelengths.

We assume that objects are placed beyond the hyperfocal distance of the imager, therefore
the PSF has negligible depth-variance and a 2D convolutional model is valid [113]. If objects
are placed within the hyperfocal distance, a 3D model will be needed to account for the
depth-variance of the PSF.

Combined model

Combining the spectral filter model with the diffuser model, we have the following discrete
forward model:
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b =
K−1∑
λ=0

Fλ[x, y] · crop
(
h[x, y]

[x,y]∗ v[x, y, λ]
)

(3.11)

=
K−1∑
λ=0

Fλ[x, y] ·w[x, y, λ] (3.12)

= Av. (3.13)

The linear forward model is represented by the combined operations in matrix A. Figure 3.6
illustrates the forward model for several point sources, showing the intermediate variable
w[x, y, λ], which is the scene convolved with the PSF, before point-wise multiplication by
the filter function. The final image is the sum over all wavelengths.

Hyperspectral Reconstruction

To recover the hyperspectral datacube from the 2D measurement, we must solve an under-
determined inverse problem. Since our system falls within the framework of compressive
sensing due to our incoherent, multiplexed measurement, we use l1 minimization. We use a
weighted 3D total variation (3DTV) prior on the scene, as well as a non-negativity constraint,
and a low-rank prior on the spectrum. This can be written as:

v̂ = arg min
v≥0

1

2
‖b−Av‖2

2 + τ1‖∇xyλv‖1 + τ2‖v‖∗, (3.14)

where ∇xyλ = [∇x∇y∇λ]
T is the matrix of forward finite differences in the x, y, and λ

directions, ‖ · ‖∗ represents the nuclear norm, which is the sum of singular values. τ1 and
τ2 are the tuning parameters for the 3DTV prior and low-rank priors, respectively. We use
the fast iterative shrinkage-thresholding algorithm (FISTA) [20] with weighted anisotropic
3DTV to solve this problem according to [100].

Implementation Details

We built a prototype system using a CMOS sensor, a hyperspectral filter array provided by
Viavi Solutions (Santa Rosa, CA)[183], and an off-the-shelf diffuser (Luminit 0.5°) placed
1cm away from the sensor. The sensor has 659×494 pixels (with a pixel pitch of 9.9µm),
which we crop down to 448×320 to match the spectral filter array size. The spectral filter
array consists of a grid of 28×20 super-pixels, each with an 8×8 grid of filter pixels (64 total,
spanning the range 386–898nm). Each filter pixel is 20µm in size, covering slightly more than
4 sensor pixels. The alignment between the sensor pixels and the filter pixels is unknown,
requiring a calibration procedure (detailed in Sec. 3.23.2). The exposure time is adjusted for
each image, ranging from 1ms-13ms, which is short enough for video-rate acquisition. The
computational reconstruction typically takes 12–24 minutes (for 500–1000 iterations) on an
RTX 2080-Ti GPU using MATLAB.
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Figure 3.7: Experimental calibration of Spectral DiffuserCam. (a) The caustic PSF
(contrast-stretched and cropped), before passing through the spectral filter array, is similar
at all wavelengths. (b) The spectral response with the filter array only (no diffuser). (Top
left) Full measurement with illumination by a 458nm plane wave. The filter array consists of
8×8 grids of spectral filters repeating in 28×20 super-pixels. (Top right) Spectral responses
of each of the 64 color channels. (Bottom) Spectral response of a single super-pixel as
illumination wavelength is varied with a monochromater.
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Filter Function Calibration

To calibrate the filter function (Fλ[x, y] in Eqn. 3.11), including the spectral sensitivity of
both the sensor and the spectral filter array, we use a Cornerstone 130 1/3m motorized
monochromator (Model 74004). The monochromater creates a narrow-band source of 5nm
full-width at half-maximum (FWHM) and we measure the filter response (without the dif-
fuser) while sweeping the source by 8nm increments from 386nm to 898nm. The result is
shown in Fig. 3.7(b).

PSF Calibration

We also need to calibrate the diffuser response by measuring the diffuser PSF pattern without
the spectral filter array. Because the diffuser is relatively smooth with large features (relative
to the wavelength of light), the PSF remains relatively constant as a function of wavelength,
as shown in Fig. 3.7(a). Hence, we only need to calibrate for a single wavelength by capturing
a single point source calibration image [8]. However, this is not trivial because the spectral
filter array is bonded to the sensor and cannot be removed easily. In our setup, we instead
take advantage of the fact that our filter array is smaller than our sensor, so we can measure
the PSF using the edges of the raw sensor, by shifting the point source to scan the different
parts of the PSF over the raw sensor area and stitching the sub-images together. In a
system where the filter size is matched to the sensor, this trick will not be possible, but an
optimization-based approach could be developed to recover the PSF from measurements.

System Non-idealities

Our reconstruction quality and spectral resolution are limited by two non-idealities in our
system. First, our camera development board performs an undefined and uncontrollable
non-linear contrast-stretching to all images. This makes the measurement non-linear and
impedes our imaging of dim objects (since the camera performs a larger contrast stretching
for dimmer images). Further, our spectral calibration may have errors, since each calibration
image cannot be normalized by the intensity of light hitting the sensor. This may cause
certain wavelength bands to appear brighter or dimmer than they should in our spectral
reconstructions. A better camera board without automatic contrast stretching should fix
this problem and provide more quantitative spectral profile reconstructions in the future.

Second, we used a simplified spectral calibration in which we measured the response with
uniform spectral sampling, instead of at the true wavelengths of the filters. Due to the
mismatch between our calibration scheme (measured every 8nm with constant bandwidth)
and the actual spectral filters (center wavelengths spaced 5–12nm apart with bandwidths
between 6–23nm), sometimes our calibration wavelengths fall between two filters, resulting
in an ambiguity. Given this non-ideal calibration, our effective spectral bands are limited to
49 bands, instead of 64. In our results, we show all 64 bands, but note that some will have
overlapping spectral responses. In the future, we will calibrate at the design wavelengths of
the filter to fix this issue. Further, the deposition of the spectral filters directly on-top of the
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camera pixels (requiring precise placement during the manufacturing stage) would alleviate
the need for this calibration entirely.

Resolution Analysis

Here, we derive our theoretical resolution and experimentally validate it with our prototype
system. First, we discuss spectral resolution, which is set by the filter bandwidths, and then
we compute the expected two-point spatial resolution, based on the PSF autocorrelation.
Since our resolution is scene-dependent, we expect the resolution to degrade with scene
complexity. To characterize this, we present theory for multi-point resolution based on the
condition number analysis introduced in [8]. We compare our system against those with a
high-NA and low-NA lens instead of a diffuser. Our results demonstrate two-point spatial
resolution of ∼0.19 super-pixels and multi-point spatial resolution of ∼0.3 super-pixels for 64
spectral channels ranging from 386–898nm.

b. Experimental Spatial Resolution
λ = 618 nm λ = 466 nmλ = 522 nm

a. Theoretical Spatial Resolution
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Figure 3.8: Spatial resolution analysis. (a) The theoretical resolution of our system,
defined as the half-width of the autocorrelation peak at 70% its maximum value, is 0.19 super-
pixels. (b) Experimental two-point reconstructions demonstrate 0.19 super-pixel resolution
across all wavelengths (slices of the reconstruction shown here), matching the theoretical
resolution.

Spectral Resolution

Spectral resolution is determined by the spectral channels of the filter array. As such, we
expect to be able to resolve the 64 spectral channels present in our spectral filter array. The
filters have an average spacing of 8nm across a 386–898nm range with bandwidths between
6–23nm. To validate our spectral resolution, we scan a point source across those wavelengths
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using a monochrometer. Figure 3.9 shows a sampling of spectral reconstructions overlaid
on top of each other, with the shaded blocks indicating the ground-truth monochrometer
spectra. Our reconstructions all match the ground-truth peaks within 5nm of the true
wavelength. The small red peaks around 400nm are artifacts from the monochrometer,
which emitted a 2nd peak around 400nm for the longer wavelengths.
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Figure 3.9: Spectral resolution analysis. Sample spectra from hyperspectral reconstruc-
tions of narrow-band point sources, overlaid on top of each other, with shaded lines indicating
the ground-truth. For each case, the recovered spectral peak matches the true wavelength
within 5nm.

Two-point Spatial Resolution

Spatial resolution of our system, in terms of the two-point resolution, will be bounded by
that of a lensless imager with the diffuser only (without the spectral filter array). The ex-
pected resolution can be defined as the autocorrelation peak half-width at 70% the maximum
value [113], Fig. 3.8(a). For our system, this is ∼3 sensor pixels, or 0.19 super-pixels. To
experimentally measure the spatial resolution of our system, we image two point sources at
three different wavelengths (618 nm, 522 nm, 466 nm). The reconstructions in Fig. 3.8 show
that we can resolve two point sources that are 0.19 super-pixels apart for each wavelength and
orientation, as determined by applying the Rayleigh criterion. This demonstrates that our
system achieves sub-super-pixel spatial resolution, consistent with the expected resolution
that would be achieved without the spectral filter array.

Multi-point resolution

Because our image reconstruction algorithm contains nonlinear regularization terms, our re-
construction resolution will be object dependent. Hence, two-point resolution measurements
are not sufficient for fully characterizing the system resolution, and should be considered
a best case scenario. To better predict real-world performance, we perform a local condi-
tion number analysis, as introduced in [8], that estimates resolution as a function of object
complexity. The local condition number is a proxy for how well the forward model can be
inverted, given known support, and is useful for systems such as ours in which the full A
matrix is never explicitly calculated [36].
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Figure 3.10: Condition number analysis for Spectral DiffuserCam, as compared to a low-
NA or high-NA lens. (a) Condition numbers for the 2D spatial case (single spectral channel)
are calculated by generating different numbers of points on a 2D grid, each with separation
distance d. (b) Condition numbers for the full spatio-spectral case are calculated on a 3D
grid. A condition number below 40 is considered to be good (shown in green). The diffuser
has a consistently better performance for small separation distances than either the low-NA
or the high-NA lens. The diffuser can resolve objects as low as 0.3 super-pixels apart for
more complex scenes, whereas the low-NA lens requires larger separation distances and the
high-NA lens suffers errors due to gaps in the measurement.

The local condition number theory states that given knowledge of the a priori support of
the scene, v, we can form a sub-matrix consisting only of columns of A corresponding to the
non-zero voxels. The reconstruction problem will be ill-posed if any of the sub-matrices of
A are ill-conditioned, which can be quantified by the condition number of the sub-matrices.
The worst-case condition number will be when sources are near each other, therefore we
compute the condition number for a group of point sources with a separation varying by an
integer number of voxels and repeat this for increasing numbers of point sources.

In Fig. 3.10, we calculate the local condition number for two cases: the 2D spatial
reconstruction case, considering only a single spectral channel, and the 3D case, considering
points with varying spatial and spectral positions. For comparison, we also simulate the
condition number for a low-NA and high-NA lens, as introduced in Sec. 3.2. The results
show that our diffuser design has a consistently lower condition number than either the low-
or high-NA lens, having a condition number below 40 for separation distances of greater
than ∼0.3 super-pixels. The low-NA lens needs a separation distance closer to ∼1 super-
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Figure 3.11: Simulated hyperspectral reconstructions comparing our Spectral Diffuser-
Cam result with alternative design options. (a) Resolution target with different sections illu-
minated by narrow-band 634nm (red), 570nm (green), 474nm (blue), and broadband (white)
sources. (b) Reconstruction of the target by Spectral DiffuserCam, (c) a low-NA lens design,
and (d) a high-NA lens design, each showing the raw data, false-colored reconstruction and
λy sum projection. The diffuser achieves higher spatial resolution and better accuracy than
the low-NA and the high-NA lens.

pixel, as expected, and the high-NA lens has an erratic condition number due to the missing
information in the measurement.

From this analysis, we can see that, beyond 0.3 super-pixels separation, the condition
number for the diffuser does not get arbitrarily worse for increasing scene complexity. Thus,
our expected spatial resolution is approximately 0.3 super-pixels.
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Simulated Resolution Target Reconstruction

Next, we validate the results of our condition number analysis through simulated reconstruc-
tions of a resolution target with different spatial locations illuminated by different sources
(red, green, blue and white light), as shown in Fig. 3.11. For each simulation, we add
Gaussian noise with a variance of 1× 10−5 and run the reconstruction for 2,000 iterations of
FISTA with 3DTV. Our system resolves features that are 0.3 super-pixels apart, whereas the
low-NA lens can only resolve features that are roughly 1 super-pixel apart and the high-NA
lens results in gaps, validating our predicted performance.
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Figure 3.12: Experimental Results. (a) Experimental reconstruction of a broadband
resolution target, showing the xy sum projection (top) and λy sum projection (bottom),
demonstrating spatial resolution of 0.3 super-pixels. (b) Experimental reconstruction of 10
multi-colored LEDs in a grid with ∼0.4 super-pixels spacing (four red LEDs on left, four
green in middle, two blue at right). We show the xy sum projection (top) and λy sum
projection (bottom). The LEDs are clearly resolved spatially and spectrally, and spectral
line profiles for each color LED closely match the ground truth spectra from a spectrometer.
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Experimental Results

We start with experimental reconstructions of simple objects with known properties—a
broadband USAF resolution target displayed on a computer monitor, and a grid of RGB
LEDs (Fig. 3.12). We resolve points that are ∼.3 super-pixels apart, which matches our
expected multi-point resolution based on the condition number analysis above. For the
RGB LED scene, the ground truth spectral profiles of the LEDs are measured using a
spectrometer, and our recovered spectral profile closely matches the ground truth, as shown
in Fig. 3.12(b).

Next, we show reconstructions of more complex objects, either displayed on a computer
monitor or illuminated with two halogen lamps (Figure 3.13). We plot the ground truth
spectral line profiles, as measured by a Thorlabs CCS200 spectrometer, from four points in
the scene, showing that we can accurately recover the spectra. A reference RGB scene is
shown for each image, demonstrating that the reconstructions spatially match the expected
scene.

Discussion

A key advantage of our design over previous work is its flexibility to choose the spectral
filters in order to tailor the system to a specific application. For example, one can non-
linearly sample a wide range of wavelengths (which is difficult with many previous snapshot
hyperspectral imagers). In future, we plan to design implementations specific to various task-
based applications, which could make hyperspectral imaging more easily adopted, especially
since the price is several orders-of-magnitude lower than currently available hyperspectral
cameras.

Currently, we experimentally achieve a spatial resolution of ∼0.3 super-pixels, or 5 sensor
pixels. In future designs, we should be able to achieve the full sensor resolution (along with
better quality reconstructions) by optimizing the randomizing optic, instead of using an
off-the shelf diffuser. This could be achieved by end-to-end optical design [188, 168].

Our system has two main limitations: light-throughput and scene-dependence. Due to
the use of narrow-band spectral filters, much of the light is filtered out by the filters. This
provides good spectral accuracy and discrimination, but at the cost of low light throughput.
In addition, since the light is spread by the diffuser over many pixels, the signal-to-noise ratio
(SNR) is further decreased. Hence, our imager is not currently suitable for low-light condi-
tions. This light-throughput limitation can be mitigated in the future by the use of photonic
crystal slabs instead of narrowband filters, in order to increase light-throughput while main-
taining spatio-spectral resolution and accuracy [216]. In addition, end-to-end design of both
the spectral filters and the phase mask should improve efficiency, since application-specific
designs can use only the set of wavelengths necessary for a particular task, without sampling
the in-between wavelengths. Reducing the number of spectral bands improves both light
throughput (because more sensor area will be dedicated to each spectral band) and spatial
resolution (because the super-pixels will be smaller).
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Figure 3.13: Experimental hyperspectral reconstructions. (a-c) Reconstructions of
color images displayed on a computer monitor and (d) Thorlabs plush toy placed in front of
the imager and illuminated by two Halogen lamps. The raw measurement, false color images,
xλ sum projections and spectral line profiles for four spatial points are shown for each scene.
The ground truth spectral line profiles, measured using a spectrometer, are plotted in black
for reference. Spectral line profiles in (a,b) show the average and standard deviation spectral
profiles across the area of the box or letter in the object, whereas (c-d) show a line profile
from a single spatial point in the scene.

Our second limitation is scene-dependence, as our reconstruction algorithm relies on ob-
ject sparsity (e.g. sparse gradients). Because of the non-linear regularization term, it is
difficult to predict performance, and one might suffer artifacts if the scene is not sufficiently
sparse. Recent advances in machine learning and inverse problems seek to provide better
signal representations, enabling the reconstruction of more complicated, denser scenes [134,
24]. In addition, machine learning could be useful in speeding up the reconstruction algo-
rithm [156] as well as potentially utilizing the imager more directly for a higher-level task,
such as classification [55].
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Conclusion

Our work presents a new hyperspectral imaging modality that combines a color filter array
and lensless imaging techniques for an ultra-compact and inexpensive hyperspectral cam-
era. The spectral filter array encodes spectral information onto the sensor and the diffuser
multiplexes the incoming light such that each point in the world maps to many spectral
filters. The multiplexed nature of the measurement allows us to use compressive sensing
to reconstruct high spatio-spectral resolution from a single 2D measurement. We provided
an analysis for the expected resolution of our imager and experimentally characterized the
two-point and multi-point resolution of the system. Finally, we built a prototype and demon-
strated reconstructions of complex spatio-spectral scenes, achieving up to 0.19 super-pixel
spatial resolution across 64 spectral bands.
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Chapter 4

Physics-informed Supervised Learning
for 2D Lensless Photography

In this chapter1, we demonstrate how physics-informed machine learning can be used to
improve reconstructions for 2D lensless computational cameras. We showcase how classic and
deep methods can be combined by taking a classic method, and unrolling it. Through this
process, we can create a bounded, differentiable reconstruction method that can be optimized
to produce the best image quality within a bounded number of iterations. Furthermore, our
differentiable unrolled network can be easily combined with existing deep networks to further
improve performance. We use a dataset of real experimentally captured lensed and lensless
images to train our dataset, showing a 20× speedup and 3× improvement in perceptual
image quality over classic methods.

4.1 Related Work

Image reconstruction methods for lensless cameras fall into two general categories: single-
step and iterative reconstructions. Single-step reconstructions can be fast, but often require
custom fabricated masks that must be carefully aligned to the sensor [14, 99, 73, 199]. In
addition, it is difficult to incorporate priors and leverage compressed sensing in single-step
reconstructions. Iterative reconstructions are much slower, but do not impose stringent re-
strictions on the mask itself, generally produce better results, and allow priors to be used [113,
191]. However, due to imperfect system modeling, these methods may still give significant
reconstruction artifacts. Additionally, the high complexity of the computation precludes
interactive previewing of the scene and requires expensive, bulky compute hardware. In this
work, we focus on iterative methods, improving both the image quality and speed with a
new reconstruction framework that incorporates the advantages of both deep learning and
physical models, making lensless cameras more practical for everyday imaging.

1This chapter is based on the published journal paper titled “Learned reconstructions for practical mask-
based lensless imaging” and is joint work with Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos Yanny,
and Laura Waller [156].
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The classical approach to image recovery is to use convex optimization to iteratively min-
imize a loss function [20, 28] consisting of a data-fidelity term and an optional hand-picked
regularization term. The data-fidelity term enforces that the recovered image, with the
known imaging model applied to it, matches the measurement. The regularization term en-
forces prior knowledge of image statistics (e.g. non-negative, sparse gradients) and serves to
regularize ill-conditioned problems. Iterative approaches are interpretable, but are sensitive
to reconstruction artifacts due to model mismatch, calibration errors, hand-tuned parame-
ters, and hand-picked regularizers which are not necessarily representative of the data. Each
of these contributes to reconstruction artifacts and degrades image quality. Furthermore,
these methods can take hundreds to thousands of iterations to converge, which is often too
slow for real-time imaging.

Recently, deep learning-based methods for image reconstruction have risen in popularity.
In deep methods, a convolutional neural network (CNN) is used for image reconstruction [127,
128, 163]. Networks have hundreds of thousands of parameters which are updated using large
datasets of image pairs. These networks are able to learn complex scene statistics, but do
not incorporate any prior knowledge about the image formation process. Compared to iter-
ative methods, deep learning-based methods are hard to interpret, do not have convergence
guarantees, and have no structured way to incorporate knowledge of the imaging system
physics.

Unrolled optimization represents a middle-ground between classic and deep methods. In
unrolled optimization, a fixed number of iterations from a classic algorithm is interpreted as
a deep network, with each iteration serving as a layer in the network. In each layer, if the pa-
rameters of the algorithm are differentiable with respect to the output, they can be optimized
for a given loss function through backpropagation. In this framework, the sparsifying fil-
ters, hyper-parameters, or shrinkage function can be learned from the training examples [80,
184]. Unrolled optimization has shown promising results for image denoising [55, 56], sparse
coding [80], and MRI reconstructions [193].

Here, we unroll the iterative alternating direction method of multipliers (ADMM) al-
gorithm with a variable splitting specific for lensless imaging [28, 8]. This allows us to
incorporate knowledge of the image formation process into the neural network as well as
learn the network parameters based on the data. To train our network, we experimentally
capture a large dataset of lensed and lensless images (Fig. 4.1). We train our network on
a perceptual similarity metric in order to produce images that are visually similar to those
from our ground truth lensed camera. We present several variations of networks along the
spectrum between classic methods and deep methods, by varying the number of trainable pa-
rameters (Fig. 4.2). Specifically, we introduce three architectures, Le-ADMM, Le-ADMM*,
and Le-ADMM-U, each with increasing numbers of trainable parameters, explained in detail
in Sec. 4.4. All of our networks have a bounded compute that can be adjusted according to
the application. The networks trade-off data fidelity and image perceptual quality, producing
more visually appealing images at the price of decreased data-fidelity.

We test our network using DiffuserCam [113] as our prototypical lensless camera, built
with off-the-shelf components and a low-end camera sensor. Although our network is trained
using images from a computer monitor, we demonstrate the generalization of our network to



CHAPTER 4. PHYSICS-INFORMED SUPERVISED LEARNING FOR 2D LENSLESS
PHOTOGRAPHY 46

dataset acquisition
ground truth

1. training

model-based 
network

measurements

in the wild

2. operation
reconstructionsmeasurements

reconstructions

backprop

lensed 
camera

screen

lensless 
camera 

…

system model

b = Hv
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

psf

loss 
function

Figure 4.1: Overview of our imaging pipeline. During training, images are displayed
on a computer screen and captured simultaneously with both a lensed and a lensless camera
to form training pairs, with the lensed images serving as ground truth labels. The lensless
measurements are fed into a model-based network which incorporates knowledge about the
physics of the imager. The output of the network is compared with the labels using a
loss function and the network parameters are updated through backpropagation. During
operation, the lensless imager takes measurements and the trained model-based network is
used to reconstruct the images, providing a large speedup in reconstruction time and an
improvement in image quality.

measurements of natural objects taken in the wild. We believe that this exploratory work
shows the promise of using unrolled neural networks for lensless imaging, and our results
suggest the utility of combining knowledge of the physics together with deep learning for the
best performance.

Our contributions include:
1. A bounded-time trainable network architecture that incorporates knowledge of the

physical model for lensless imaging.
2. An experimental dataset of 25,000 aligned lensed and lensless image pairs taken using

a beamsplitter and computer screen.
3. A demonstration of 20× speedup and 3× improvement in perceptual similarity for

lensless imaging reconstructions on an experimental system.
4. Generalization of the network to images taken in the wild on a prototype lensless

camera.

4.2 Lensless Imaging Forward Model

First, we describe our lensless imaging forward model for DiffuserCam. Based on this,
we formulate our traditional model-based reconstruction (Sec. 4.3), before moving on to
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Figure 4.2: Networks on a scale from classic to deep. We will present several networks
specifically designed for lensless imaging (Le-ADMM, Le-ADMM*, and Le-ADMM-U). We
compare these to classic approaches, which have no learnable parameters, and to purely deep
methods which do not include any knowledge of the imaging model. We will show the utility
of using an algorithm in this middle range compared to a purely classic or deep method. Θ
summarizes the parameters that are learned for each network as discussed in Section 4.4.

modifications that span the spectrum from model-based to deep learning-based algorithms
(Fig. 4.2) in Sec. 4.4.

DiffuserCam [8, 113] is a compact, easy-to-build imaging system that consists only of
a diffuser (a transparent phase mask with pseudo-random slowly varying thickness) placed
a few millimeters in front of a standard image sensor (see Fig. 4.1). Light from a point
source in the scene is refracted by the diffuser to create a high-contrast caustic pattern on
the sensor, which is the point spread function (PSF) of the system (Fig. 4.1). Since the
diffuser is thin, the PSF can be modeled as shift-invariant: a lateral shift of the point source
in the scene causes a translation of the PSF in the opposite direction. We model the scene
as a collection of point sources with varying color and intensity. Assuming all points are
incoherent with each other, the sensor measurement, b, can be described as:

b(x, y) = crop[h(x, y) ∗ x(x, y)]

= CHx,
(4.1)

where h is the system PSF, x represents the scene, and (x, y) are the sensor coordinates.
Here, ∗ denotes 2D discrete linear convolution, which returns an array that is larger than both
the scene and the PSF. Therefore, a crop operation restricts the output to the physical sensor
size. This relation is represented compactly in matrix-vector notation with crop denoted as
C and convolution with the PSF denoted as H. Equation (4.1) is computed separately for
each color channel.

Our goal is to recover the scene, x, from the measurement b. We assume the PSF is
known, as it can easily be measured experimentally with an LED point source [8]. Tradi-
tional model-based methods for recovering x solve a regularized optimization problem of the
following form:



CHAPTER 4. PHYSICS-INFORMED SUPERVISED LEARNING FOR 2D LENSLESS
PHOTOGRAPHY 48

x̂ = arg min
x≥0

1

2
‖b−CHx‖2

2 + τ‖Ψx‖1, (4.2)

where Ψ is a sparsifying transform, such as finite differences for total variation (TV) denois-
ing, and τ is a tuning parameter that adjusts the sparsity level.

4.3 Model-based Inverse Algorithm

The traditional model-based inverse solver relies on the known physics of the forward model
to solve Eq. (4.2), minimizing the difference between the actual and predicted measure-
ments, while satisfying any additional constraints. This problem can be solved efficiently
by ADMM [28] with a variable splitting that leverages the structure of the problem [8]. In
ADMM, the problem is reformulated as:

x̂ = arg min
w≥0,u,v

1

2
‖b−Cv‖2

2 + τ‖u‖1,

s.t. v = Hx, u = Ψx, w = x.

(4.3)

This variable splitting allows closed-form updates for each step, as derived in [8]. The update
equations in each iteration become:

uk+1 ← Tτ/µ2(Ψxk + αk2/µ2) sparsifying soft-threshold

vk+1 ← (CTC + µ1I)−1(αk1 + µ1Hxk + CTb) least-squares update

wk+1 ← max(αk3/µ3 + xk, 0) enforce non-negativity

xk+1 ← (µ1H
TH + µ2Ψ

TΨ + µ3I)−1rk least-squares update

αk+1
1 ← αk1 + µ1(Hxk+1 − vk+1) dual for v

αk+1
2 ← αk2 + µ2(Ψxk+1 − uk+1) dual for u

αk+1
3 ← αk3 + µ3(xk+1 − wk+1) dual for w

where rk = ((µ3w
k+1 − αk3) + ΨT(µ2u

k+1 − αk2) + HT(µ1v
k+1 − αk1)). Here, α1, α2, and α3

are the Lagrange multipliers, or dual variables, respectively associated with u, v, and w, and
µ1, µ2, and µ3 are scalar penalty parameters. Tτ/µ2 denotes vectorial soft-thresholding with
parameter τ/µ2.

This traditional method is based on the physical model of the imaging system (Eq. (4.1))
and requires no additional calibration data beyond the PSF. However, it depends heavily
on hand-chosen values, such as the sparsifying transform Ψ and its associated parameter,
τ . The optimization parameters, µ1, µ2, and µ3, are either hand-tuned or auto-tuned based
on the primal and dual residuals at each iteration [28]. The method performs well under
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Figure 4.3: Model-based network architecture. The input measurement and the cal-
ibration PSF are first fed into N layers of unrolled Le-ADMM. At each layer, the updates
corresponding to Sk+1 in Eq. (4.4) are applied. The output of this can be fed into an optional
denoiser network. The network parameters are updated based on a loss function comparing
the output image to the lensed image. Red arrows represent backpropagation through the
network parameters.

correctly chosen sparsifying transforms and with the proper hand-tuned parameters. How-
ever, in practice ADMM takes hundreds of iterations to converge and produces images with
reconstruction artifacts. In the next section, we will outline how we unroll ADMM into a
neural network in order to learn the hyper-parameters from the data and seamlessly interface
with existing deep learning pipelines.

4.4 Learned Reconstruction Networks

Next, we present several variations of neural networks that jointly incorporate known phys-
ical models and deep learning principles. Each network is based on unrolling the iterative
ADMM algorithm, such that each iteration comprises a layer of the network, with the tun-
able parameters learned from the training data. Thus, the physical model is inherently built
into the network architecture, making it more efficient.

We present three variations of networks, each having a different number of learned pa-
rameters. Learned ADMM (Le-ADMM) has trainable tuning and hyper-parameters. Le-
ADMM* extends Le-ADMM by adding a trainable CNN instead of a hand-tuned sparsifying
transform. Finally, Le-ADMM-U adds a trainable deep denoiser based on a CNN as the
last layer of the Le-ADMM network, learning both the hyper-parameters of Le-ADMM as
well as the denoiser. Figure 4.2 summarizes these methods and where they fall on a scale
from classic to deep, and the following sections describe them in detail. Each method has
progressively more trainable parameters, and therefore needs a larger training dataset. All
networks use 5 iterations of unrolled ADMM, in order to target a 20× speed improvement,
which would speed up each reconstruction from 1.5 s to 75 ms, giving a practical speed for
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real world imaging.

Learned ADMM (Le-ADMM)

In the simplest of our unrolled networks, Le-ADMM (learned ADMM), we model each kth

iteration of ADMM as a layer in a neural network, outlined in Fig. 4.3. In Le-ADMM, the
optional denoiser step depicted in Fig. 4.3 is omitted. We denote the collection of update
equations at the kth step of ADMM as Sk. These update equations are given by:

Sk+1 ←



uk+1 ← T
τ k

(Ψ(xk) + αk2/ µ
k
2 ) sparsifying soft-thresholding

vk+1 ← (CTC + µ1I)−1(αk1 + µk1 Hxk + CTb) least-squares update

wk+1 ← max(αk3/ µ
k
3 + xk, 0) enforce non-negativity

xk+1 ← ( µk1 HTH + µk2 ΨTΨ + µk3 I)−1rk least-squares update

αk+1
1 ← αk1 + µk1 (Hxk+1 − vk+1) dual for v

αk+1
2 ← αk2 + µk2 (Ψ(xk+1)− uk+1) dual for u

αk+1
3 ← αk3 + µk3 (xk+1 − wk+1) dual for w

where rk = (( µk3 w
k+1 − αk3) + ΨT( µk2 u

k+1 − αk2) + HT( µk1 v
k+1 − αk1)).

(4.4)

The trainable parameters are outlined in blue and can be summarized by Θ = {µk1, µk2, µk3, τ k},
where k represents the iteration number. For 5 unrolled layers, we have a total of 20 learned
parameters. After a fixed number of ADMM iterations the reconstruction is compared to the
ground truth (lensed) image using the loss function described in Section 4.4. The trainable
parameters are updated using backpropagation to minimize this loss across multiple training
examples. Le-ADMM can be interpreted as a data-tuned ADMM where the parameters that
are typically hand-tuned or auto-tuned are now updated based on the data in order to
minimize a data-driven loss function.

Le-ADMM*, with learned regularizer

Le-ADMM* has the same overall structure as Le-ADMM, but also includes a learnable
regularizer based on a CNN. The new update steps are summarized below:
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Sk+1 ←



uk+1 ← N (xk) network regularizer

vk+1 ← (CTC + µ1I)−1(αk1 + µk1 Hxk + CTb) least-squares update

wk+1 ← max(αk3/ µ
k
3 + xk, 0) enforce non-negativity

xk+1 ← ( µk1 HTH + µk2 I + µk3 I)−1rk least-squares update

αk+1
1 ← αk1 + µk1 (Hxk+1 − vk+1) dual for v

αk+1
3 ← αk3 + µk3 (xk+1 − wk+1) dual for w

where rk = (( µk3 w
k+1 − αk3) + µk2 u

k+1 + HT( µk1 v
k+1 − αk1)).

(4.5)

N represents a learnable network, applied at each ADMM iteration. For this learnable
transform, we use a small U-Net based on [176] consisting of a single encoding and decoding
step (complete architecture is available in Appendix A.1). Because N does not represent
the solution to a well-defined convex problem, we drop α2, the dual variable associated with
u. The learnable parameters for Le-ADMM* are thus given by Θ = {µk1, µk2, µk3,N }, which
is a total of 32,135 learned parameters. The added learned parameters allow Le-ADMM*
to learn a better prior on the data and account for model-mismatch errors in the forward
model, at the price of requiring additional training data.

Le-ADMM-U

Our third variation of unrolled networks is Le-ADMM followed by a learned denoiser, as
shown in Fig. 4.3. Here, a U-Net is used as the denoiser [176]. This method has the most
learnable parameters, having a total of 10,605,927 learned parameters, all but 20 of which
are from the U-Net. The parameters of Le-ADMM-U, given by Θ = {µk1, µk2, µk3, τ k,U}, are
jointly updated throughout training. The Le-ADMM portion of the network performs the
bulk of the deconvolution and includes knowledge of the forward model, while the U-Net
denoises the final image, is able to correct model mismatch errors, and makes the images
look more visually appealing. Our denoiser network architecture is described in Appendix
A.1.

U-Net

For completeness, we also compare to a purely deep method with no knowledge of the system
physics in the reconstruction. For this, we directly use the U-Net architecture from [176],
resulting in 10,605,907 learned parameters. We summarize this network architecture in
Appendix A.1.

Loss functions

The loss function must be carefully selected because it dictates the parameter updates
throughout the training process. In classic methods, ground truth is unavailable, so the
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loss is a function of the consistency of the final image, x̂, with the measurement model and
any image priors. With the inclusion of ground truth training data pairs, we now have access
to another class of loss functions that directly compare a given reconstructed image to its
associated ground truth image, xgt. One common loss is the mean-squared error (MSE) loss
with respect to the ground truth, ‖xgt − x̂‖2

2. However, MSE favors low frequencies and
generally results in learned reconstructions that are blurry and lack detail [231]. Here, we
will use the Learned Perceptual Image Patch Similarity metric (LPIPS) that uses deep fea-
tures and aims to quantify a perceptual distance between two images, as introduced in [231].
During training, we use a combination of both MSE and LPIPS, as outlined in Section 4.5.
These loss functions are summarized in Table 4.1.

Table 4.1: Loss functions

Data Fidelity 1
2
‖b−CHx̂‖2

2

Consistency of the measurement with our
knowledge of the imaging system

MSE ‖xgt − x̂‖2
2

Pixel-wise difference between reconstruction
and ground truth

LPIPS LPIPS(xgt, x̂)
Perceptual distance between reconstruction

and ground truth [231]

4.5 Implementation

For training, we simultaneously collect a set of lensless and ground truth image pairs using an
experimental setup consisting of a lensed camera, a DiffuserCam, a beamsplitter, and com-
puter monitor (Fig. 4.1). The cameras and computer monitor are simultaneously triggered,
which allows us to display and capture all the training pairs in the dataset overnight.

Our DiffuserCam prototype consists of an off-the-shelf diffuser (Luminit 0.5◦) with a
laser-cut paper aperture placed approximately 9 mm from a CMOS sensor. The lensed
camera is focused at the plane of the computer screen, approximately 10 cm away. We
capture a calibration PSF (see Fig. 4.1) using an LED point source placed at the distance of
the computer screen, which sets the focal plane of the DiffuserCam. For both DiffuserCam
and the ground truth camera, we use Basler Dart (daA1920-30uc) sensors. We use a 6 mm
S-mount lens for the ground truth camera and calibrate the lens distortion using OpenCV’s
undistort camera calibration procedure [29]. To achieve pixel-wise alignment between the
image pairs, we first optically align the two cameras, then further calibrate by displaying a
series of points on the computer monitor that span the field-of-view. We reconstruct these
point images and compute the homography transform needed to co-align both cameras’
coordinate systems. This transform is applied to all subsequent images.

Our dataset consists of 25,000 images from the MirFlickr dataset [94]. The raw data from
each sensor is 1920×1080 pixels, but is down-sampled by a factor of 4 in each direction, to
480×270. This is necessary due to moiré fringes from the screen which degrade our lensed



CHAPTER 4. PHYSICS-INFORMED SUPERVISED LEARNING FOR 2D LENSLESS
PHOTOGRAPHY 53

image quality. We split the dataset up into 24,000 training images and 1,000 test images.
Our networks are implemented in PyTorch and trained on a Titan X GPU, using an ADAM
optimizer throughout training [106]. We find that using a combined loss based on MSE and
LPIPS works best in practice. We weight MSE more heavily during earlier epochs and weight
LPIPS more heavily during later epochs for further refinement. Source code is available at
[157]. When displaying the final images, we crop to 380×210 pixels to avoid displaying areas
beyond the borders of the computer monitor.

4.6 Results

After training, we compare the performance of our unrolled networks against both classic
ADMM and the fully deep U-Net. Since the number of iterations of ADMM affects both
speed and quality of the result, we compare against both ADMM run until convergence (100
iterations) as well as ADMM bounded to 5 iterations. Bounded ADMM takes a similar
time to run as our unrolled networks and converged ADMM sets a baseline for the best
performance classic algorithms can achieve. On the deep side, we compare against a U-Net
which is trained using our raw DiffuserCam measurements and ground truth labels.

The reconstruction results of images in our test set (taken by the monitor setup, but
not used during training) show that our fastest learned networks are able to produce similar
or better images than converged ADMM in the same amount of time as bounded ADMM
(5 iterations), a 20× speedup while achieving comparable or better image quality. Further-
more, we show reconstructions of natural images in the wild (not from a computer monitor),
demonstrating that our networks are able to generalize to 3D objects with variable lighting
conditions.

Table 4.2: Network performance on test set

Reconstruction Data Fidelity MSE LPIPS
Time on

GPU
(ms)

#
Training
Images

ADMM (converged) 13.62 .0622 .5711 1,520 none
ADMM (bounded) 11.32 .1041 .6309 71 none

Le-ADMM 13.70 .0618 .4434 71 100
Le-ADMM* 16.21 .0309 .327 200 100

Le-ADMM-U 22.14 .0074 .1904 75 23,000
U-Net 19 .0154 .2461 10 23,000

Test set results

Table 4.2 summarizes the reconstruction performance and speed of our learned networks on
the test set. Here we can see that our fastest networks (Le-ADMM and Le-ADMM-U) are
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Figure 4.4: Test set results, with the raw DiffuserCam measurement (contrast stretched)
and the ground truth images from the lensed camera for reference. Le-ADMM (71 ms) has
similar image quality to converged ADMM (1.5 s) and better image quality than bounded
ADMM (71 ms). Le-ADMM* and Le-ADMM-U have noticeably better visual image quality.
The U-Net by itself is unable to reconstruct the appropriate colors and lacks detail.

20× faster than classic reconstruction algorithms (ADMM converged) and have similar or
better average MSE and LPIPS scores. Le-ADMM* is slightly slower due to its inclusion of
a CNN on the uncropped image in each unrolled layer, however is still an order of magnitude
faster than converged ADMM. As we move on the scale from classic to deep (Le-ADMM →
Le-ADMM* → Le-ADMM-U), our networks have better MSE and LPIPS scores, but have
worse data fidelity.

Figure 4.4 shows several sample images from our test set reconstructions. Here we can
see that our networks (Le-ADMM, Le-ADMM*, Le-ADMM-U) produce images that are
of equal or better quality than converged ADMM. We can see that bounded ADMM has
streaky artifacts, but our learned networks do not. Le-ADMM-U has the best reconstruction
performance overall and produces images that are visually similar to the ground truth images.
Overall, Le-ADMM-U has 3× better image quality than converged ADMM as measured by
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a) Test Set Performance
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Figure 4.5: Network performance on test set. (a) Here we plot the MSE, LPIPS, and
Data Fidelity values for all image pairs in our test set. On average, our learned networks
(green) are more similar to the ground truth lensed images (lower MSE and LPIPS) than 5
iterations of ADMM. Furthermore, our networks have comparable performance to ADMM
(100), which takes 20× longer than Le-ADMM and Le-ADMM-U. However, the data fidelity
term is higher for the learned methods, indicating that these reconstructions are less con-
sistent with the image formation model. (b) Here we plot performance after each layer (or
equivalently, each ADMM iteration) in our network, showing that MSE and LPIPS gener-
ally decrease throughout the layers. The U-Net denoiser layer in Le-ADMM-U significantly
decreases the LPIPS and MSE values, at the cost of data fidelity.

the LPIPS metric. The U-Net does not perform as well as Le-ADMM-U, having inconsistent
colors and missing higher frequencies. This shows the utility in combining model-based and
deep methods.

Figure 4.5(a), plots the distribution of MSE, LPIPS, and Data Fidelity scores for the test
set. We can see that Le-ADMM-U has the best LPIPS and MSE scores and outperforms
converged ADMM, whereas Le-ADMM has similar LPIPS and MSE scores to converged
ADMM with many fewer training pairs. Here we can clearly see the trend of data fidelity
increasing as MSE and LPIPS decrease, showing that there is a trade-off between image
quality and matching the imaging model. We interpret this as our system model being
imperfect, which prevents purely model-based algorithms from achieving the best image
quality. As we increase the number of learned parameters, we are able to correct artifacts
introduced by model mismatch, producing more visually appealing images that better match
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Figure 4.6: Network performance on objects in the wild (toys and a plant) captured
with our lensless camera. We show the raw measurement (contrast stretched) on the top
row, followed by converged ADMM, ADMM bounded to 5 iterations, our learned networks,
and U-Net for comparison. Our learned networks have similar or better image quality as
converged ADMM, and Le-ADMM-U has the best image quality. For instance, Le-ADMM-U
is able to capture the details in the sideways plant (second column from left) and the eye of
the toy duck (right). The U-Net alone has good image quality, but is missing some colors
and details (e.g. the first image is washed out and the nose of the alligator toy is miscolored).

the lensed camera. Figure 4.5(b) analyzes what happens to the reconstruction throughout
the layers of the learned network. The MSE and LPIPS scores tend to decrease with each
iteration, while data fidelity increases. For Le-ADMM-U, the U-Net greatly improves the
LPIPS and MSE values at the cost of data fidelity.

Generalization to images in the wild

Next, we remove the computer monitor and capture DiffuserCam images of natural objects.
Figure 4.6 shows some example reconstructions using our learned networks. Again, we
see that our networks produce images of similar or higher visual quality than converged
ADMM. In particular, Le-ADMM-U again produces the most visually appealing images and
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has better image quality than converged ADMM. This shows that our learned networks
are able to generalize beyond imaging a computer monitor to situations with dramatically
different lighting conditions.

4.7 Discussion

Our work presents a preliminary analysis of using unrolled, model-based neural networks on
a real experimental lensless imaging system. We show that it is favorable to choose a network
that combines classic and deep methods. We can perform comparably to classic algorithms
at a fraction of the speed using only a few learned parameters, and we can greatly improve
image quality when increasing the number of learned parameters. In addition, the number
of learned parameters in the network could be varied depending on the application. For
instance, scientific imaging applications might choose to have fewer learned parameters to
prevent overfitting to the training data. Meanwhile, photography applications may prefer a
deeper method with more parameters, potentially producing more visually appealing images
at the expense of possibly hallucinating details not present in the scene.

The quality and resolution of our reconstructions is bounded by that of our training
dataset, including any potential imperfections in the physical system. For instance, any
aberrations introduced by our lensed camera or beamsplitter will affect the learned recon-
structions, since the lensed images are used as the ground truth when updating the network
parameters. However, in practice we correct for aberrations such as distortion before training;
other effects (e.g. chromatic aberration, field curvature) are negligible at our reconstruction
grid size. Possible future work includes training on scenes with larger depth content to yield
reconstructions with desirable defocus blurs, such as seen in a lensed camera.

4.8 Conclusion

We presented several unrolled, model-based neural networks for lensless imaging with a
varying number of trainable parameters. Our networks jointly incorporate the physics of the
imaging model as well as learned parameters in order to use both the known physics and
the power of deep learning. We presented an experimental system with a prototype lensless
camera that was used to rapidly acquire a dataset of aligned lensless and lensed images for
training. Each of our networks are able to produce similar or better image quality compared
to standard algorithms, with the fastest offering a 20× improvement. In addition, our deeper
method, Le-ADMM-U has 3× better image quality than standard algorithms on the LPIPS
perceptual similarity scale. Our learned network is fast enough for interactive previewing of
the scene and also produces visually appealing images, addressing two of the big limitations
of lensless imagers. Our work suggests that using such model-based neural networks could
greatly improve imaging speed and quality for lensless imaging at the cost of a training step
before camera operation.
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Chapter 5

Physics-informed Learning for
Single-shot 3D Imaging with
Spatially-varying Deconvolution

In this chapter1, we introduce a physics-informed reconstruction network for spatially-varying
deconvolution. Spatially-varying aberrations complicate imaging inverse problems since con-
volutional models do not hold for spatially-varying systems, making reconstruction algo-
rithms more computationally intensive. Unfortunately, many real microscopes have spatially-
varying aberrations. We tackle the problem of spatially-varying deconvolution by introduc-
ing a physics-informed network that first approximately inverts the effects of the spatially-
varying blur using multiple differentiable Wiener filters, then refines the estimate using a
CNN. This is an example of using an approximate physics-based inversion followed by a CNN
for refinement. We train our physics-informed network using entirely simulated data, then
validate the performance on experimental data. Overall, we demonstrate a 625× speedup for
2D deconvolutions and a 1600× speedup for 3D deconvolutions compared to classic meth-
ods, while providing better performance than other deep-learning-based methods that do
not account for spatially-varying blur.

Deconvolution is integral to many modern imaging systems. Imperfections in the op-
tics may inadvertently blur the image (e.g. aberrations) and deconvolution can be used to
computationally undo some of this blur [186, 179]. In microscopy, deconvolution can reduce
out-of-focus fluorescence to provide sharper 3D images [149, 22, 182]. Alternatively, dis-
tributed point spread functions (PSFs) can be intentionally designed into an imaging system
in order to enable new capabilities, such as single-shot 3D [223, 114, 131, 8, 15] or hyper-
spectral imaging [158, 95]. In this case, multiplexing optics encode 2D or 3D information by
mapping each point in object space to a distributed pattern on the image sensor, then de-
convolution is used to recover the encoded image or volume. In either case, a deconvolution
algorithm is needed in order to recover a clear image or volume from the blurred or encoded

1This chapter is based on the published journal paper titled “Deep learning for fast spatially varying
deconvolution” and is joint work with Kyrollos Yanny, Richard Shuai, and Laura Waller [221].
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measurement.
A variety of algorithms have been utilized for deconvolution over the years. Classical

methods range from closed-form approaches such as Wiener filtering to iterative optimiza-
tion approaches, such as Richardson-Lucy and the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA). Many methods incorporate hand-picked priors, such as Total Variation
(TV) and native sparsity, to improve image quality. These approaches often assume that
the system is shift-invariant, meaning that all parts of the image have the same blur ker-
nel. Shift-invariance allows the forward model to be efficiently expressed as a convolution
between the PSF and the object. However, most imaging systems will have a blur that
varies across the field-of-view (FoV)—that is, they have spatially-varying PSFs, usually due
to field-varying aberrations. This motivates the use of spatially-varying deconvolution, for
which several methods have been proposed [10, 167, 141, 21, 54, 223, 114]. Unfortunately,
many of these algorithms are prohibitively slow and computationally intensive, making them
unsuitable for real-time image reconstruction. Furthermore, these methods can suffer from
poor image quality, especially for highly multiplexed imaging systems that have PSFs with
large spatial extent, or for poorly chosen priors. Recently, deep-learning based deconvolution
methods have been demonstrated to improve both image quality and reconstruction speed,
providing a promising improvement over iterative approaches [156, 197, 176, 105]. However,
to date, these methods rely on a shift-invariant PSF approximation and do not generalize
well to optical systems with field-varying aberrations.

5.1 Method Overview

In this work, we propose a new deep-learning based approach for fast, spatially-varying
deconvolution. Our network, termed MultiWienerNet, consists of multiple learnable Wiener
deconvolutions followed by a refinement convolutional neural network (CNN). The Wiener
deconvolution layer performs multiple Fourier-space deconvolutions, each with a different
PSF from a particular field point, yielding several intermediate images which have sharp
features in different regions of the image. These intermediate images are then fed into the
refinement CNN which fuses and refines them to create the final sharp deconvolved image.
The learnable Wiener deconvolution filters are initialized with PSFs captured at several
locations in the FoV, but then allowed to update throughout training to learn the best filters
and noise regularization parameters. This allows us to incorporate knowledge of the field-
varying aberrations into the network, providing a physically-informed initialization that is
further refined throughout training. The end result is a fast spatially-varying deconvolution
that is 625−1600× faster than the baseline iterative method (Spatially-Varying FISTA [223]),
enabling real-time image reconstruction. In addition, incorporating the field-varying PSFs
allows our network to have better image quality near the edges of the FoV than is achieved
by existing deep learning based methods which assume shift-invariance.

Our approach consists of the following steps: 1) generating a simulated training dataset
by applying measured PSFs to images from open-source microscopy datasets, 2) initializ-
ing and training the MultiWienerNet using the simulated data, and 3) utilizing the trained
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network for fast shift-varying deconvolutions, where the input to the network is a single mea-
surement. To demonstrate, we choose the challenging example of single-shot 3D microscopy
with Miniscope3D [223] as our test case. Miniscope3D uses a phase mask that consists of
a random array of multi-focal microlenses to encode 3D information in a 2D image. The
system maps each object point in the FoV to a unique pseudorandom pattern on the sensor,
then decodes the captured images by solving a sparsity-constrained inverse problem. We se-
lect this system both for its spatially and depth-varying PSFs, Fig. 5.1, and its high degree
of multiplexing, which creates a particularly challenging deconvolution problem. We demon-
strate our approach on both 2D deconvolution, where the goal is to recover a 2D image from
a 2D measurement, as well as 3D deconvolution, where the goal is to recover a 3D volume
from a single 2D measurement.

5.2 Spatially-varying Forward Model

To generate simulated datasets, we first need a forward model that can faithfully relate how
a 3D object is mapped to a 2D measurement in our microscope system, taking into account
the effects of spatially-varying blur introduced by the system. To establish this forward
model, the volumetric object intensity is treated as a 3D grid of voxels, v[x, y, z]. Each voxel
produces a PSF, h[x′, y′;x, y, z], on the camera sensor, where [x′, y′] are image space indices.
Since the object voxels are mutually incoherent, the measurement can be expressed as a
linear combination of the PSFs from each voxel in the object:

b[x′, y′] =
∑
z

∑
x,y

v[x, y, z]h[x′, y′;x, y, z]

= Av,

(5.1)

where b is the measurement and A is a matrix that maps the 3D volume to the 2D mea-
surement. For the shift-invariant case—where the PSF is the same at all points within the
FoV for each depth—Eq. 5.1 reduces to a sum over 2D convolutions:

b[x′, y′] =
∑
z

∑
x,y

v[x, y, z]
[x,y]∗ h[x, y, z], (5.2)

where
[x,y]∗ represents a 2D convolution. However, this shift-invariant assumption is gen-

erally not true and its corresponding convolutional forward model will lead to inaccurate
deconvolution. There are multiple ways to approximate the image formation model for shift-
invariant PSFs (e.g. locally convolutional, low-rank models, etc. [10, 141, 21, 54, 223, 66,
114]). Any of these techniques is applicable to our pipeline. In particular, we choose to use
the low-rank model from [223], approximating the spatially-varying PSFs as a weighted sum
of shift-invariant kernels:

b[x′, y′] =
∑
z

K∑
r=1

{
(v[x, y, z]wr[x, y, z])

[x,y]∗ gr[x, y, z]

}
[x′, y′] , (5.3)
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Figure 5.1: Spatially-varying Point Spread Functions (PSFs). (left) Simplified dia-
gram of Miniscope3D showing a lateral and axial scan of a point source through the volumet-
ric field-of-view (FoV) to capture the spatially-varying PSFs. (right) Experimental images
of the PSFs from different points in the volumetric FoV, which are used to initialize the
Wiener deconvolution layer of our MultiWienerNet method.

where the weights {wr} and the kernels {gr} are computed from a singular value decom-
position (SVD) of sparsely sampled PSFs from different positions in the FoV and the inner
sum is over the K largest values in the SVD. Note that in the 2D imaging case, the object is
a thin slice in the z-dimension, so the outer sum over z is not included in the forward model.

5.3 Simulating a Realistic Dataset

Using this forward model, we can simulate measurements from our microscope to use in
training datasets. We run images from online microscopy datasets [109, 12, 136, 234] through
the low-rank forward model (see below), generating pairs of ground truth volumes/images
and simulated measurements. For the 3D dataset, the CytoPacq [40] simulator is particularly
helpful in obtaining time-series 3D volumes.

Given a good system forward model, it is possible to generate any number of image
pairs, which we can use to train our MultiWienerNet. We generate both 2D and 3D training
datasets; the 2D dataset contains 2D target objects with dimensions (x,y,z) of (336,480,1),
representing a FoV of 700× 1000 µm2, while the 3D datasets contain 3D target objects with
dimensions (x,y,z) of (336,480,32), representing a FoV of 700×1000×320 µm3. We generate
5, 000 2D and 15, 000 3D training images, with an 80/20 training/testing split.

System Calibration

A simple calibration procedure based on scanning a fluorescent bead (point source) across the
field-of-view (FoV) can be used to characterize the spatially-varying behavior of the system.
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Rather than calibrating the PSF for every possible field point, we adopt the calibration
method presented in [223], and sparsely sample the PSFs across the field, then use a low-
rank forward model to account for the shift-variance. In this work, we sample the PSF at 64
locations across the FoV for each depth. This can be done by simply scanning a bead and
taking 64 calibration images across an 8×8 grid. If the bead is particularly dim, or there is
noticeable noise present in the image, averaging multiple images together can help reduce
noise and provide a better calibration image. If 3D deconvolution is desired, this calibration
must be repeated for each depth of interest. In our case, we repeat this procedure for 32
different depths within the depth range of the microscope. To save time on calibration, it is
also possible to do this calibration using a sample of unstructured beads instead of a single
calibration bead [115].

Simulating measurements

The following pre-processing steps are used to generate our simulated measurements:

1. Resize the image/volume to fit the Miniscope3D image/volume size which is 336 ×
480× 1 for 2D reconstruction and 336× 480× 32 for 3D reconstruction

2. Using the sparsely sampled calibration PSFs, compute the weights {wr}, and the
kernels {gr}, from a singular value decomposition (SVD) procedure outlined in [223].

3. Simulate measurements by running the resized data through the low-rank forward
model in Eq. 3 of main text

4. Add appropriate levels of Gaussian and Poisson noise to the simulated measurement.

These pre-processing steps can be adapted to a new system by altering the desired im-
age/volume size and using the calibrated PSFs for the new system.

5.4 Physics-informed Network Architecture

Our network consists of two components: a differentiable Wiener deconvolution layer, and
a refinement CNN, Fig. 5.2. Wiener deconvolution is a fast and simple approach that is
used for linear shift-invariant systems given a known PSF and noise level. It consists of a
single Fourier filtering step, which can be efficiently computed using FFTs. However, when
the assumption of shift-invariance does not hold, Wiener deconvolution results in degraded
image quality in the areas of the image in which the PSF differs from the one assumed.
Hence, instead of performing Wiener deconvolution with a single PSF [105], we approximate
the behavior of our spatially-varying system using M PSFs taken from different field points.
Our Wiener deconvolution layer thus performs M Wiener deconvolutions, resulting in M
intermediate deconvolved images, as shown in Fig. 5.2. Each will have sharp features in a
different region of the image, corresponding to the area in the FoV from which the PSF was
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Figure 5.2: MultiWienerNet architecture. Our pipeline consists of two parts: 1) a learn-
able multi-Wiener deconvolution layer which is initialized with knowledge of the system’s
spatially-varying PSFs and outputs a set of deconvolved intermediate images. 2) A U-Net re-
finement step which combines and refines the intermediate images into a single output image.
Both parts are jointly-optimized during training using simulated data. After training, exper-
imental measurements are fed into the optimized MultiWienerNet for fast spatially-varying
deconvolution.

taken. These M intermediate images are then fed into the refinement CNN which combines
and refines the images to produce the final image/volume.

Mathematically, our differentiable Wiener deconvolution layer can be described as follows:

V̂i(u, v) =
H∗i (u, v)B(u, v)

|Hi(u, v)|2 + λi
, i = 1, 2, ...,M, (5.4)

where (u, v) are frequency-space coordinates, B(u, v) is the Fourier transform of the mea-
surement, V̂i(u, v) is the ith Fourier transform of the estimated scene intensity, Hi(u, v) is
the Fourier transform of the ith PSF, ∗ denotes a complex conjugate and λi is a regulariza-
tion parameter related to the signal-to-noise ratio (SNR) of the measurement. Note that the
intermediate images are obtained after taking an inverse Fourier transform, v̂i = F−1(V̂i).
Here, the Hi(u, v) are initialized using the M PSFs measured from different points in the
FoV. For 3D deconvolution, PSFs are sampled at multiple depth planes. Both Hi(u, v) and
λi are learnable and optimized during training. Finally, the M intermediate images are
fed into the U-Net refinement step which consists of a 2D U-Net for the 2D deconvolution
problem or a 3D U-Net for the 3D problem [176].

For 2D deconvolution, Hi is initialized with measured PSFs from field points sampled on
a 3×3 grid across the FoV, giving M = 9. For 3D, the PSFs are sampled on a 3×3×32 grid
across the FoV, giving M = 288. After the model is initialized with the M measured PSFs,
the simulated pairs of measurements and ground truth volumes/images are used in training
to update the parameters of the MultiWienerNet, including Hi, λi, and all the parameters
in the U-Net. We use a structural similarity index measure (SSIM) loss and L1 loss, which
generally outperforms mean squared error (MSE) or L1 loss on its own.
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Model initialization and network architecture

Before training, the MultiWienerNet must be initialized with the spatially-varying PSFs, hi,
and additionally with regularization parameters, λi. Here, we utilize 9 PSFs from a 3×3
grid from each depth plane in our FoV to initialize hi. The number of initialized filters
can be updated based on the level of spatial-variance of the system. Given more spatial-
variance, a larger number of filters should be used; however, this comes at the price of added
computational complexity. We found that 9 filters was sufficient for the Miniscope3D. For
the U-Net architecture, our contracting path consists of four repeated applications of two
3×3 convolutions, followed by a Scaled Exponential Linear Unit (SELU) and a convolutional
down-sampling layer with stride 2. The expansive path consists of four repeated applications
of two 3 × 3 convolutions, followed by a SELU and a transposed convolution up-sampling
layer with strides 2.

Training and Testing Details

We train for 25 epochs for the 3D reconstruction case and 100 epochs for the 2D case, using
a learning rate of 10−4. We use the ADAM optimizer [106] with default parameters through-
out training. We allow the Wiener deconvolution filters and regularization parameters to
update throughout training. We tested having the Wiener filters and/or the regularization
parameters be fixed throughout training, but the best results were obtained when they were
allowed to change. Our loss function is an average of a structural similarity index measure
(SSIM) loss and L1 loss. For SSIM, we use an 11 × 11 Gaussian filter of width 1.5. We
test the performance on both simulated and experimental data. The experimental sample
in main-text Figure 3(a) is a 1951 USAF fluorescent resolution target, and in 3(b) is a freely
moving stained tardigrade (water bear) captured at 40 frames per second.

5.5 Results and Analysis

After training, we test our model on 1, 000 images in a held-out test set from the online
datasets, and on experimental data from the Miniscope3D setup. We compare our results
against iterative spatially-varying FISTA, a U-Net, and the U-Net with a single Wiener
deconvolution [105]. Our results show that the MultiWienerNet achieves more than 625×
speedup in 2D reconstruction and 1600× speedup in 3D reconstruction as compared to
FISTA, while also providing better PSNR and image quality, especially towards the edges
of the FoV, where off-axis aberrations dominate. Our network also outperforms current
deep-learning approaches while only being slightly slower. In addition, despite being trained
solely on simulated data, the MultiWienerNet generalizes well to experimental data. Though
FISTA achieves slightly higher resolution near the center of the FoV (Fig. 5.3(a)), Multi-
WienerNet performs better overall.
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Figure 5.3: Simulation and Experimental Results. Deconvolution results for (a) 2D
and (b) 3D, showing both simulated and experimental data. MultiWienerNet achieves better
performance than other deep learning-based approaches that do not incorporate knowledge
of a spatially-varying PSF (U-Net and U-Net w/Wiener), and achieves better and faster
(625− 1600× speedup) results than spatially-varying FISTA, which has poor reconstruction
quality at the edges of the FoV, where spatially-varying aberrations are severe. For the 3D
results, xy and xz maximum projections are shown.

Timing results

We compare our reconstruction time against FISTA with a spatially-varying model and
existing deep learning based models (U-Net, U-Net w/Wiener) by averaging over 100 runs
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on GPU. The results are summarized in Table 5.1. We can see that our method is significantly
faster than existing spatially-varying methods, and has comparable speeds to existing deep
learning based methods. For 2D, we can perform reconstructions at 30 fps for 336×480
images. For 3D, we can perform reconstructions at 2.4 fps for 336×480×32 volumes. This
is significantly faster than what is possible without using deep learning-based methods (0.05
fps for 2D, 0.0015 fps for 3D), and could enable interactive previewing. Timing results were
performed on an RTX 2080 Ti GPU. The stopping criterion for FISTA was chosen to avoid
unnecessary iterations. FISTA terminates if the solution is stable within a certain threshold,
the loss is below a certain threshold, or the number of iterations exceeds a certain threshold.

Table 5.1: Reconstruction timing comparisons (GPU)

FISTA U-Net WienerNet MultiWeinerNet
2D 20s 0.021s 0.029s 0.032s
3D 665s 0.33s 0.34s 0.41s

Learned filters

We allow the network to learn the Wiener deconvolution filters. We initialize the network
with a grid of measured filters, 3 × 3 for 2D and 3 × 3 × 32 for 3D, each is centered on a
different region in the FoV. Fig. 5.4 shows initial filters at different positions demonstrat-
ing the shift-variance of the system. By allowing the network to update the filters, the
network can find filters that better approximate the shift-variance or better recover certain
frequencies. Fig. 5.5, shows the initialized and learned filters. The learned filters maintain
similar structure in the central region as the initialized ones, while adding more information
towards the edges of the filter. At first glance, it is unclear if the extra information added
to the learned filters is useful. However, by examining the intermediate result of the Wiener
deconvolution step using both the initialized and learned filter in Fig. 5.6, we find that the
deconvolved image using the learned filter has much sharper features than the one using
the initialized filter. This allows the multiple learnable Wiener deconvolutions to provide
the CNN with sharp intermediate images that the CNN can further refine to remove low
frequency artifacts. Note that we do not require the learned filters to be positive.

5.6 Conclusions

In summary, we propose a new network architecture to perform fast deconvolution for mi-
croscopes with spatially-varying PSFs. Given knowledge of the system’s spatially-varying
PSFs, our proposed network is trained in simulation, fusing known system parameters in the
form of multiple differentiable Wiener deconvolutions with a CNN refinement step. After
training, our network provides a 625 − 1600× speedup over existing spatially-varying de-
convolution algorithms and improved reconstruction quality, especially at the edges of the
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Figure 5.4: Spatially varying PSFs. Measured PSFs at different lateral positions for two
different depth planes. Due to field-varying aberrations in the system, the PSFs change
structure across the field-of-view (FoV). Note that the images are contrast stretched to show
detail.

FoV. The code is open-source and can be utilized for imaging system with spatially-varying
aberrations.
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Figure 5.5: Learned and initialized filters. Central learned and initialized filters at
different depths used for the 3D reconstruction. For visualization, we scale the learned
filters from 0 to 1. In general, the filters can contain negative values. Note that the images
are contrast stretched.

(a) Wiener deconvolution with initialized filter

(b) Wiener deconvolution with learned filter

measurement initialized filter deconvolved image

measurement learned filter deconvolved image
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Figure 5.6: Wiener deconvolution with learned filters. (a) Using the central initial
filter only, with a shift-invariance assumption. (b) Using the central learned filter with a
shift invariance assumption results in sharper features in the deconvolved image.
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Chapter 6

Unsupervised Learning for
Compressive Lensless Photography

In this chapter1, we introduce a physics-informed unsupervised method for the reconstruc-
tion of compressive, single-shot hyperspectral and video imaging. For many computational
cameras, obtaining a large dataset of image pairs for training can be challenging. In this
work, we show how we can use unsupervised machine learning to improve reconstruction
performance, without the need for any training data.

Compressive imagers aim to recover more samples than they measure by leveraging com-
pressive sensing, which guarantees signal recovery for underdetermined systems given certain
assumptions about signal sparsity as well as incoherence in the measurement domain [35, 37].
For optical imaging, compressive imagers have been demonstrated for many applications, in-
cluding single-pixel and coded-aperture cameras [59, 210, 92]. These imagers have been
shown to be effective for a number of compressive sensing tasks, such as single-shot lightfield
imaging [146], 3D imaging [123], hyperspectral [209, 72], and high-speed video imaging [90,
173, 137, 70]. Recently, there has been a push to make compressive imagers more accessible
by using inexpensive and compact hardware [95, 135]. One such promising method includes
lensless, mask-based imagers, which remove the lens of a traditional camera and instead place
a phase or amplitude mask near the sensor to randomize the measurement, approximately
achieving the measurement domain incoherence required for compressive sensing. These lens-
less mask-based cameras can be incredibly compact, with the mask only millimeters from
the sensor, and assembly does not require precise alignment [15, 8, 185]. Mask-based lensless
imagers have been demonstrated for compact single-shot 3D fluorescence microscopy [4, 114,
223, 131], hyperspectral imaging [158], and high speed single-shot video [9]. These sorts
of cameras are very promising for a number of imaging modalities; however, their perfor-
mance depends on the fidelity of the reconstruction algorithm. Since the algorithm must
solve an underdetermined inverse problem with assumptions on signal sparsity, the choice of
algorithm and imaging priors used can significantly impact results.

1This chapter is based on the published journal paper titled “Untrained networks for compressive lensless
photography” and is joint work with Vi Tran, Grace Kuo, and Laura Waller [159].
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Traditionally, images from compressive cameras are recovered by solving a convex opti-
mization problem, minimizing both a least-squares loss based on the physics of the imaging
system and a hand-chosen prior term, which enforces sparsity in some domain, Fig. 6.1(a).
For successful image recovery by compressive sensing, there must be both incoherence in
the sensing basis and sufficient sparsity in the sample domain. Lensless mask-based cameras
utilize multiplexing optics to fulfill the incoherent sampling requirement, mapping each pixel
in the scene to many sensor pixels in a pseudo-random way. The prior term enforces sparsity
and ensures successful signal recovery. Over the years, a number of different hand-picked
priors have been used for compressive imaging, such as sparsity in wavelets, total-variation
(TV), and learned dictionaries. TV, which is based on gradient sparsity, has been particu-
larly popular [126]. These methods are effective at solving imaging inverse problems, however
they have recently been outperformed by deep learning-based methods, which incorporate
non-linearity and network structures that may be better suited to image representation [97].
Recent work on plug and play (PnP) priors [178, 207, 230, 175] offers some hope of combin-
ing inverse problems with state of the art denoisers (both deep and not, e.g. BM3D [51]);
however, PnP still relies on using hand-picked denoisers or pre-trained networks that may
not be well-suited for a given application.

Recently, several deep-learning based approaches have shown improved reconstruction
quality for imaging inverse problems [97, 187, 148]; however, they rely on having a large
dataset of experimental labeled ground truth and measurement pairs. In these methods,
a deep neural network is used to approximate the imaging inverse problem, Fig. 6.1(b).
The network is typically trained end-to-end and requires large datasets of labeled image
and ground truth pairs. The network can be agnostic to the imaging system physics, or
the network can incorporate knowledge of the physics for faster convergence and reduced
training data requirements [156, 105]. For high-dimensional imaging applications, such as
3D and hyperspectral lensless imaging, obtaining ground truth datasets can be impractical,
costly, or impossible. While there has been some work in training networks from synthetic
data, these methods can suffer from model-mismatch if the synthetic data does not match
the experimental system [232].

Recent work using unsupervised learning with untrained networks is especially promising
for a number of imaging applications—leveraging the structure of neural networks without
needing any training data. Untrained networks, such as deep image prior [204] and deep
decoder [88], have shown that the structure of neural networks can be effective at serving as
a prior on image statistics without any training. An untrained deep network with randomly
initialized weights is used as an image generator, outputting the recovered image. The
network weights are updated through a loss function comparing the generated image with
the input data, for example, a noisy image. This method and several related papers have
been shown to be particularly effective for simulated image denoising, deblurring, and super-
resolution [147, 133]. For many computational imaging problems, the measurements do not
resemble the reconstructed image; instead, the scene is related to the measurement through
a forward model that describes the physics of the image formation problem. For this class
of problems, untrained networks can be paired with differentiable imaging forward models
in which the network weights are updated based on a loss between the measurement and
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Figure 6.1: Comparison of different reconstruction approaches. (a) Traditional re-
constructions solve a convex optimization problem with a data-fidelity-term based on the
known forward model and a regularization term which acts as the image prior. (b) Deep
learning methods require thousands or more labeled image pairs in order to train a neural
network to approximate the reconstruction. (c) Our untrained deep network (UDN) uses a
neural network as the image prior, but does not require any training data. The system for-
ward model is used to calculate the loss between the estimated image and the measurement,
which is then used to update the network weights.

the generated measurement from the network output passed through the imaging forward
model, Fig. 6.1(c). This has been shown to be effective on several imaging modalities, such
as phase imaging [25], MRI [76, 49, 98], diffraction tomography [236], and several small-scale
compressive sensing problems [206]. Here, we extend this framework to compressive lensless
photography.

We propose a reconstruction method for compressive lensless imaging based on untrained
networks, which we call untrained deep network (UDN) reconstructions. Our approach uses
a deep network for the image prior, but requires no training data. We present a general
differentiable imaging model that could be used for multiple types of compressive lensless
imaging, and test it on three different cases: 2D lensless imaging with erasures, single-shot
video, and single-shot hyperspectral imaging.
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To the best of our knowledge, untrained networks have not been used for compressive
optical imaging before, thus providing both a stress test of untrained deep networks on
several challenging underdetermined experimental systems, as well as bringing improved
image quality to compressive lensless imaging. We provide simulation and experimental
results, showing improved performance over existing methods that do not utilize training
data. Our results indicate that untrained networks can serve as effective image priors for
these systems, providing better reconstructions in cases where it is not possible to obtain
labeled ground truth data.

6.1 Imaging Inverse Problem

We demonstrate our UDN on two examples of three-dimensional data recovery from a single-
shot 2D measurement: (1) high-speed video [9] and (2) hyperspectral imaging [158]. The
high-speed video example takes advantage of the sensor’s built-in rolling shutter, which
exposes different rows of pixels at each time point, Fig. 3.3(b), effectively acting like an
erasure pattern at each time point. From this data, one can use compressed sensing to
recover a separate 2D image for each time point; the result is a full-resolution video at the
framerate of the rolling shutter (the line scan rate). For the hyperspectral imaging example,
the DiffuserCam device has an added spectral filter array in front of the sensor, with 64
different color channels, Fig. 3.3(b). Each of the 64 wavelengths thus map to a different
subset of the sensor pixels, similarly acting like an erasure pattern for each wavelength. From
this data, one can use compressed sensing to recover a hyperspectral datacube (2D spatial
+ 1D spectral) from a single 2D measurement. In both examples, we choose to reconstruct
the full datacube simultaneously, rather than a sequential set of 2D reconstructions, since
this allows us to add priors along the time/wavelength dimension. For more information on
the forward model for these cameras, see Ch. 3. The forward models for these cameras will
be used to create the differential forward model within our network architecture.

Given our sensor measurement b, our goal is to recover the scene v. For the 2D era-
sures scenario v is a 2D image, whereas for single-shot video v is a video consisting of two
spatial and one temporal dimension, and for single-shot hyperspectral v is a hyperspectral
volume consisting of two spatial and one spectral dimension. In all cases, the problem is
underdetermined, since we aim to recover more than we measure. First, we describe the
traditional reconstruction methods based on convex optimization which will serve as our
baseline comparison, and then we describe our untrained network reconstruction method.

Traditional inverse problem

Due to incoherence of the measurement system that comes from our use of a multiplex-
ing phase optic (diffuser), compressive sensing can be utilized to recover the image. By
compressive sensing theory, we can formulate our inverse problem as follows:

v̂ = arg min
v≥0

1

2
‖b−Av‖2

2 + τR(v), (6.1)
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Figure 6.2: Overview of our Untrained Deep Network (UDN) reconstruction
pipeline. An untrained network with randomly initialized weights takes in a fixed, ran-
dom input vector. The network outputs a sequence of images along the k-axis (for video
imaging, one image for each time point), and we pass this output volume into our known
imaging forward model (defined by the PSF calibration image and known erasure function)
to generate a single simulated measurement. We compare the generated measurement with
our captured measurement and use the difference between the two to update the untrained
network parameters.

where R(v) is a prior on the scene, and is often of the form ‖Dv‖1, where D is a sparsifying
transform. A is our forward model, which can be of the form A2D, A2D erasures, or Ak-D.

In practice, 2D or 3D TV priors work well for a variety of scenes, and are implemented by
defining the regularizer term as R(v) = ‖∇xykv‖1, where ∇xyk = [∇x∇y∇k]

T is the matrix
of forward finite differences in the x, y, and k directions. Convex optimization approaches
such as fast iterative shrinkage-thresholding algorithm (FISTA) [20] or alternating direction
method of multipliers (ADMM) [28] can be used to efficiently solve this problem. In each
case, the prior is hand-tuned for the given application by varying the amount of regulariza-
tion through the tuning parameter τ , which trades off data-fidelity and regularization. As
a baseline comparison, we use FISTA with 2DTV for our 2D imaging with erasures prob-
lem and weighted anisotropic 3DTV for our single-shot video and single-shot hyperspectral
imaging [100]. We include an additional comparison using PnP-BM3D, PnP-BM4D [143],
and a pretrained PnP denoiser network [230] in Appendix A.2.

Untrained network

In this work, we propose to instead use an untrained network for the image reconstruction.
It has been shown that neural networks are good at representing and generating natural
images; thus, minimizing an image generator network instead of directly solving for the
image could be a good way to effectively regularize with a custom deep prior.
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Rather than solving for the image v directly as before, we solve for the image indirectly
as the output of the generator network G(z; W). This output image vgen is then passed
through our imaging forward model A and compared against the measured image b. The
network weights are updated based on the difference between the generated measurement
and the true measurement, which corresponds to solving the following problem:

W∗ = arg min
W

1

2
‖b−AG(z; W)‖2

2 (6.2)

= arg min
W

1

2
‖b−Avgen‖2

2, (6.3)

where our network G(z; W) has a fixed input z and randomly initialized weights W. The
network output vgen is the reconstructed image. z can be thought of as a latent code
to our generator network and is randomly initialized and held constant. We update the
weights of the network via backpropogation in order to minimize the loss between the actual
measurement and the generated measurement (Fig. 6.2). This process must be repeated for
each image reconstruction, since there are no ‘training’ and ‘testing’ phases as there are for
deep learning methods with labeled data.

As in [204], we utilize an encoder-decoder architecture with skip connections and keep
the input to the network fixed. See Appendix A.2 for details on our network architecture
and hyperparameters for each experiment.

6.2 Implementation Details

For the 2D erasures case, we utilize an existing 2D lensless imaging dataset which consists
of pairs of 2D lensless camera measurements and corresponding lensed camera ground truth
images [156]. This dataset is advantageous because it includes experimental lensless mea-
surements with real sensor noise and other non-idealities, but also provides labeled ground
truth data from an aligned lensed camera. For our simulation results, we utilize the ground
truth images from the dataset to generate simulated measurements using the forward model
in Eq. 3.3; for our experimental results, we directly use the lensless camera measurements.
For both, we synthetically add erasures to the measurement by point-wise multiplying it
with an erasure function with 0%, 50%, 90%, 95%, and 99% erasures, picking a random
subset of indices to erase.

For single-shot video and single-shot hyperspectral imaging, there does not exist exper-
imental data with associated ground truth. For our experimental data analysis, we utilize
experimental raw sensor measurements from [9] and [158]. This includes measurements taken
from a PCO Edge 5.5 sCMOS camera with a dual rolling shutter and a homemade random
diffuser (for single-shot video), and measurements from a hyperspectral DiffuserCam with a
spectral filter array and Luminit diffuser [140] (for hyperspectral imaging). For our simula-
tions, we use the PSF and shutter/filter functions from these systems to simulate our sensor
measurements.
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We implement our network and differentiable forward model with mean square error
(MSE) loss in Pytorch and run our reconstructions on a Titan X GPU with the ADAM op-
timizer throughout training. We perform early stopping to obtain the best reconstructions,
as described in [204], with reconstructions ranging from 1,000–100,000 iterations, which gen-
erally takes several hours. This process must be completed for every new image; unlike with
deep learning methods that use training data, there is no distinction between training and
testing and instead the network parameters must be re-optimized for every reconstruction.
For reproducibility, training code is available here: https://github.com/Waller-Lab/UDN/ .

6.3 Results

We compare the results of our untrained reconstruction method against the standard FISTA
reconstruction with TV regularization. For all three cases, we present both simulation re-
sults as well as experimental validation. For the FISTA reconstructions, we reconstructed
images with three different amounts of TV regularization, since more regularization leads
to improved image quality and lower mean squared error, but tends to blur high-frequency
information. Less regularization reveals high-frequency information, but at the price of in-
creased reconstruction artifacts. When ground truth is available (in all simulations and in
experiment for 2D erasures), we compare our reconstructed images to the ground truth via
a variety of quality metrics: mean squared error (MSE), learned perceptual similarity metric
(LPIPS) based on AlexNet and VGG [231], the structural similarity index measure (SSIM),
and the multi-scale structural similarity measure (MS-SSIM) [214]. MSE is a standard im-
age metric, but tends to favor low-frequency information. SSIM and MS-SSIM are both
perception-based metrics, with MS-SSIM using multiple image scales and achieving better
perceptual performance than SSIM. Both LPIPS metrics are learned perpetual similarity
metrics based on deep networks, with LPIPS VGG being closer to a traditional perceptual
similarly metric. Each method has its strengths and weaknesses, and therefore we provide
comparisons using each of the metrics when possible (MS-SSIM requires a certain mini-
mum image size which precludes us from using it for the single-shot video and single-shot
hyperspectral cases, and LPIPS only works on RGB color images, so we cannot use it for
single-shot hyperspectral). For MSE, LPIPS Alex, and LPIPS VGG, a lower score is better,
whereas for SSIM and MS-SSIM, a higher score is better.

2D compressive imaging

Simulation

First, we simulate a noise-free 2D measurement with increasing numbers of randomly-
distributed pixel erasures (0%, 50%, 90%, 95%, and 99%), then compare reconstruction
results using both FISTA and our UDN (Fig. 6.3). FISTA uses high, medium, and low
amounts of TV corresponding to τ= 10−4, 5.5× 10−4, 10−5, respectively.

We compare our performance against the ground truth images on our five image quality
metrics for an increasing percentage of erasures in Fig. 6.3(b) and show the corresponding
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Figure 6.3: 2D Compressive imaging with erasures: simulation and experimen-
tal results. Reconstruction results for increasing numbers of pixel erasures, showing the
measurement along with the best fast iterative shrinkage-thresholding algorithm (FISTA)
reconstruction (based on the LPIPS Alex metric) and the UDN reconstruction for (a) simu-
lated measurements and (b) experimental measurements with synthetically added erasures.
(c) and (d) compare our performance against the ground truth for several quality metrics
(arrows indicate which direction is better), showing that in simulation UDN outperforms
FISTA only at 99% erasures, whereas in experiments with real noise and non-idealities,
UDN outperforms FISTA on the perceptual image metrics, LPIPS Alex and MS-SSIM, as
well as on MSE.
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Figure 6.4: Simulation results on single-shot video. We recover a 38-frame video from
a single measurement (bottom left). We show four sample reconstructed video frames in
the top four rows, and plot the quality metrics for all frames below. Here we see that our
reconstruction has sharper features across frames, enabling superior recovery especially for
the first and last frames, where FISTA has more pronounced reconstruction artifacts. We
achieve better MSE, LPIPS, and SSIM scores across frames (bottom right). See Visualization
1 for the full video.
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images in Fig. 6.3(a) for our method vs. the best FISTA result (based on the LPIPS-Alex
metric). From this, we can see that FISTA and our method perform similarly well for 0%-
95% erasures, but our method has improved performance for 99% erasures. This shows that
TV regularization is a sufficient prior for smaller numbers of erasures in the absence of noise
or model non-idealities, but as the problem becomes severely underdetermined, our UDN
provides a better image prior than TV and leads to improved image quality on all of our
performance metrics.

Experimental

Using experimentally captured images from [156], we synthetically add random pixel erasures
to the measured data and compare our reconstructions against the ground truth lensed
images using the five image metrics described above. As a baseline, we compare against
FISTA with high, medium, and low amounts of TV (τ= 0.1, 0.01, 0.001), shown in Fig. 6.3(d).
A visual comparison with the best FISTA reconstruction (based on the LPIPS-Alex metric) is
shown in Fig. 6.3(c). Unlike in the noise-free simulation, our method consistently performs
better than FISTA for all amounts of erasures on the MSE, LPIPS Alex, and MS-SSIM
metric, resulting in a clearer and sharper reconstruction. Thus, our method gives better
performance improvements over FISTA for real-world datasets, likely because the UDN
provides a better image prior and outperforms TV in the presence of real measurement
noise and imaging non-idealities.

TV is a very commonly used prior that is computationally efficient, but other priors can
be incorporated using the PnP framework. See Appendix A.2 for additional comparisons
against PnP-BM3D and a PnP pretrained denoiser network, demonstrating that the UDN
outperforms these methods as well.

Single-shot Video

Simulation

Using an experimentally captured PSF and shutter function from [9], we simulate a com-
pressive video measurement, shown in Fig. 6.4 top left, using a 38-frame video. Fig. 6.4
shows the results of our reconstruction compared to the FISTA result for several frames of
the video (with τ = 10−2, 10−3, 5×10−4 for FISTA). It is evident that our method generates
a more visually appealing result with fewer artifacts, while preserving high-resolution fea-
tures throughout the frames. This is quantified in Fig. 6.4(bottom), showing that UDN has
a significantly better performance on all metrics. For each of the FISTA results, the values
are worse at the beginning and end of the video sequence, which is consistent with [9]. Our
method similarly has worse performance for the first and last frames, but the difference is
not as pronounced, resulting in more uniform image quality throughout the recovered video.
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Figure 6.5: Experimental results on single-shot video. We recover 72 frames from a
single measurement (top left). The rows show four sample reconstructed frames from our 72-
frame reconstruction, with both our UDN method and FISTA with three different amounts
of TV. Here we see that our reconstruction has sharper features across frames and better
captures motion within the video. See Visualization 2 for the full video and Visualization 3
for a second experimental example.
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Figure 6.6: Simulation results on hyperspectral data. We display a false-color image of
the recovered 64-channel hyperspectral volume (top row), along with four selected spectral
slices. The quality metrics are plotted for each wavelength at bottom right. Here we see
that our reconstruction has sharper features and fewer artifacts than FISTA, and achieves a
better MSE and SSIM score across all wavelengths. In addition, UDN achieves better cosine
similarity (θavg) to the ground truth spectra than FISTA. See Visualization 4 for the full
hyperspectral volume.
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Figure 6.7: Experimental results on hyperspectral data. We show a false-color im-
age of the recovered 32-channel hyperspectral volume (top row), along with four spectral
slices. Here we see that our reconstruction has sharper features and fewer artifacts across
wavelengths. See Visualization 5 for the full hyperspectral volume.

Experimental

Next, we recover 72-frame videos from a single experimental measurement, Fig. 6.5. When
compared to the FISTA reconstructions (with τ = 0.01, 0.001, 0.0001), we can see that our
method has more uniform image quality throughout. The foam dart has significant artifacts
in the FISTA reconstruction for the first and last scenes of the video, even disappearing
for low TV. Our method appears to capture the dart motion throughout the video frames
and has fewer noticeable artifacts than the FISTA reconstruction. There is no ground truth
available for this data, but our method seems to produce a more realistic and visually
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appealing reconstruction than FISTA in terms of the dart motion. FISTA with smaller
amounts of TV is able to better recover the text on the book in the scene, but at the
expense of reduced image quality and more artifacts throughout the video. Our method
is not quite able to recover the book text, but has more uniform image quality and better
captures the motion in the scene.

Single-shot hyperspectral

Simulation

Finally, we recover a hyperspectral volume with 64 wavelengths from a single simulated
measurement. We simulate the measurement using an experimentally captured PSF and
filter function from [158], along with a ground truth hyperspectral image from [63] with 64
spectral channels. Figure 6.6 shows the results of our reconstruction compared to FISTA
with high, medium, and low amounts of TV (τ= 3×10−7, 6×10−7, and 3×10−6). We can see
that UDN preserves more features across wavelengths and has fewer artifacts than FISTA.
We compare the MSE and SSIM across the methods, Fig. 6.6(bottom). We can see that UDN
has significantly better MSE and SSIM values than FISTA across wavelengths. In addition,
we report the average cosine distance between the spectral profiles in the reconstruction and
ground truth images (Fig. 6.6). The cosine distance is especially important for hyperspectral
imaging due to its role in hyperspectral classification. UDN provides a lower average cosine
distance than FISTA, indicating that UDN achieves a better recovery of the spectral profiles.
We note that FISTA with high TV achieves a better cosine distance than FISTA with low
TV, but at the price of worse spatial resolution. Our UDN method achieves both better
spatial quality (MSE and SSIM) as well as better spectral performance (cosine distance)
than FISTA.

Experimental

We test our performance on an experimentally captured measurement [158] of a Thorlabs
plush dog illuminated by a broadband lightsource, recovering 32 spectral channels from a
single measurement (downsampled 2× spectrally). We compare against FISTA with low and
high TV (τ= 3× 10−4 and 5× 10−5) along with the best reconstruction from [158] (FISTA
TV + low rank), down-sized to match our reconstruction size. While ground truth images
do not exist for this data, UDN appears to provide more consistent image quality and retains
more of the details across wavelengths than FISTA, Fig. 6.7.

6.4 Discussion

Untrained networks offer a number of distinct advantages for compressive lensless imaging.
First, they do not require any training data, as opposed to deep learning-based methods.
Training data is especially hard or impossible to acquire for higher-dimensional imaging, such
as for high-speed video, hyperspectral, or 3D imaging, so this feature is particularly useful.
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Untrained networks can serve as a better prior for certain high-dimensional imaging problems
off-the-shelf, potentially enabling better reconstructions for a number of compressive imaging
modalities.

Currently, the main limitations of untrained networks are: 1) memory-constraints and 2)
speed. First, many of our reconstructions are GPU memory limited. To take advantage of
accelerated GPU processing, the entire untrained network must fit in memory on the GPU,
limiting the size of reconstructions that we can process, and we find that we can process much
larger images and volumes with FISTA than we can with UDN. In this work, our single-shot
video and single-shot hyperspectral measurements are downsized between 2–16× from the
original size in order to fit in the GPU, limiting our resolution. Looking forward, larger GPU
sizes or clever computational techniques to better utilize GPUs for memory-limited problems
could improve this and enable the reconstruction of larger images and volumes. Next, the
speed of the untrained network reconstructions is generally an order-of-magnitude slower
than standard FISTA reconstructions. Thus, our method is best suited for applications
where a real-time reconstruction is not needed, since typical untrained reconstructions take
between 1–5 hours. As machine learning speeds and processors improve, we expect these
factors to be less limiting.

Given the benefits and limitations of untrained networks, we envision this reconstruction
method to be useful for a certain subset of problem where it is difficult or impossible to
obtain ground truth data for training, but where there are little or no time constraints on
the reconstruction. Given the fact that no training data is needed, this method can be
applied to many different imaging problems without needing to collect new datasets. UDNs
are especially promising for imaging dense, natural scenes where TV can be a poor prior.

One interesting open problem for untrained reconstructions is the network choice. In
our experiments, we utilized a convolutional network with an encoder-decoder structure and
found that this worked well; however, our network tended to blur out high frequency fea-
tures and there may be other architectures that could potentially provide better priors. For
instance, deep decoder [88] has been demonstrated for similar tasks, but we found that for
our application it required more iterations to converge and was outperformed by an encoder-
decoder structure, demonstrating that the choice of network architecture is important and
application-specific. Although our network worked well for photographic scenes, other net-
work architectures may be more appropriate for other types of images, such as fluorescent
biological targets which may have very different statistics than photographic scenes.

6.5 Conclusion

We have demonstrated that untrained networks can improve the image quality for lensless
compressive imaging systems. We tested untrained networks on 2D lensless imaging with
varying amounts of erasures, and we demonstrated their effectiveness on single-shot compres-
sive video and single-shot hyperspectral imaging, in which we recover a full 72-frame video
or 32 to 64 spectral slices, respectively, from a single measurement. In each case, we showed
both in simulation and experiment that untrained networks can have better image quality
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than compressive-sensing-based minimization using total-variation regularization, demon-
strating that non-linear networks can be a better prior than TV for dense, natural scenes.
We believe that untrained networks are especially promising for situations in which training
data is difficult or impossible to obtain, providing a better imaging prior for underdetermined
reconstructions.
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Chapter 7

Learning a Physics-informed Noise
Model for Extreme Low-light Imaging

In this chapter1, we formulate a physics-informed, low light noise model for extreme low light
videography. Noise in extremely low light, high gain sensor settings is non-Gaussian and hard
to quantify. To tackle this, we formulate a noise generator that, after training, can generate
realistic sensor noise. This noise generator is based on a generative adversarial network,
but is constrained to learn a few physics-informed noise parameters that are commonly used
to quantify sensor noise. We then apply this noise generator to synthesize a dataset of
noiseless/noisy videos with significant motion, and use this to train a video denoiser that
operates at submillilux (starlight) levels of illumination, showing photorealistic videos in
starlight for the first time.

Some animals, such as hawkmoths and carpenter bees, can effectively navigate on the
darkest moonless nights by the light of the stars (< 0.001 lx) [190, 217, 101], while our best
CMOS cameras generally require at least 3/4 moon illumination (> 0.1 lx) to image moving
objects at night [34]. Seeing in the darkest settings (moonless, clear nights) is extremely
challenging due to the minuscule amounts of light present in the environment. In such dark
settings, photographers can use long exposure times (e.g. 20s or higher) to collect enough
light from the scene. This approach works well for still images, but severely limits the
temporal resolution and precludes imaging of moving objects. Alternatively, cameras can
increase the gain, making each pixel effectively more sensitive to light. This allows shorter
exposures, but greatly increases the noise present in each frame. In this setting, motion
might be perceptible, but noise overwhelms the images.

1This chapter is based on the published conference paper titled “Dancing under the stars: video denoising
in starlight” and is joint work with Stephan Richter, Laura Waller, and Vladlen Koltun [155].
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Figure 7.2: Method overview. (a) First we train our noise generator along with a discrim-
inator, which aims to distinguish between real and synthetic noise. We use a limited dataset
of long exposure/low gain and short exposure/high gain non-moving image pairs during this
training process. After training, the noise generator can synthesize realistic noise. (b) Next,
we train our denoiser using a combination of synthetic clean/noisy video clips produced using
our noise generator as well as real still clips from our camera. This allows us to train a video
denoiser without needing experimental motion-aligned video pairs.

(a) raw video clip, 10Hz (c) denoised video clip(b) raw video clip, contrast stretched

Figure 7.1: Video denoising in submillilux. (a) Raw noisy video clip (10fps video) taken
between 0.6–0.7 mlx (millilux) on a clear, moonless night with no external illumination. (b)
Result after contrast stretching the video clip. (c) Denoised video using our denoiser.

Denoising algorithms can be used to improve the image quality in noisy images. Over
the years, a number of denoising algorithms have been developed, from classic methods
(e.g. BM3D [50], V-BM4D [144]) to deep learning based approaches [229]. Each of these
methods attempt to extract the signal from the noise based on some assumptions about the
distribution of the image and noise. While successful for certain denoising tasks, most of
these methods are built upon a simplistic noise model (Gaussian or Poisson-Gaussian noise),
which does not apply in extremely low light settings. When high sensor gain is used in
low light images, the noise is often non-Gaussian, non-linear, sensor-specific, and difficult to
model or characterize. Without having a good understanding of the structure of the noise in
the images, denoising algorithms may fail to denoise the image – mistaking the structured
noise for a real signal in the image.
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Recently, several deep learning-based approaches have provided remarkable denoising
performance in low light down to 0.1–0.3 lux [44, 45]. Rather than assuming a certain noise
model, these methods trained a denoiser using real clean/noisy image pairs from a camera.
Such an approach automatically accounts for the low light noise through deep learning,
however this comes at the price of needing to capture thousands of training image pairs. Such
a dataset is camera-dependent and would need to be retaken for a different sensor, since noise
can be highly camera-specific. In addition, while it is possible to capture clean/noisy image
pairs for non-moving objects by changing the exposure/gain settings, capturing clean/noisy
image pairs for moving scenes adds additional complexities (e.g. needing a second camera,
aligning motion), making this experimentally impractical [96].

To achieve submillilux video denoising for the first time, we propose to use a combination
of three things: 1) a very good camera optimized for low-light imaging and set to the highest
gain setting (Sec. 7.3), 2) learning our camera’s noise model using a physics-inspired noise
generator and easy to obtain still noisy images from our camera (Sec. 7.2), and 3) using this
noise model to generate synthetic clean/noisy video pairs to train a video denoiser (Sec. 7.4).
Since our physics-based noise generator is trained using a limited dataset of still clean/noisy
burst, we do not need to acquire experimental motion-aligned clean/noisy video clips, greatly
simplifying the experimental setup and decreasing the amount of data we need to collect.
After noise generator training, we hold the noise generator fixed and train our video denoising
using a combination of real still clean/noisy image bursts paired with synthetic video clips
(Sec. 7.4). Fig. 7.2 summarizes this two-stage training approach for our noise generator and
denoiser.

We demonstrate the effectiveness of our denoising network on 5–10fps videos taken on a
moonless clear night in 0.6 mlx, showing photorealistic video denoising in submillilux levels of
illumination for the first time. We present several challenging scenes with extensive motion,
in which subjects dance by only the light of the milky way as a meteor shower rains down
from above.

7.1 Related Work

Image and video denoising. A variety of techniques for image and video denoising have
been proposed and studied throughout the years. Many of the classic denoising methods
rely on specific image priors, such as sparsity [170, 61], smoothness [177], or Gaussian mix-
ture models [224, 57]. Others utilize a non-local strategy to collaboratively denoise similar
patches across an image [31, 118, 50, 144]. More recently, deep learning based approaches
have been applied to image denoising, in which an image prior is learned from the data
rather than explicitly assumed [33, 60, 48, 200, 205]. These methods have shown significant
improvements over classic methods in terms of image quality, however they often make sim-
plistic assumptions on the noise statistics, such as i.i.d Gaussian. When trained with these
simplistic assumptions, classic techniques such as BM3D often outperform deep learning
based methods on real photographs with real noise [169]. In this regard, several datasets of
noisy and clean image pairs from real cameras have been created to benchmark and improve
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the performance of deep learning-based denoisers on real cameras [6, 169, 3]. In addition,
some work has focused on “unprocessing” online image datasets to better match RAW image
distributions in order to generate more synthetic data for training RAW image denoisers [30].

Alternatively, another line of deep learning based denoising focuses on unsupervised learn-
ing, in which no ground truth images are used to train the denoiser. Such methods either
assume that the structure of a deep network can act as a prior for the image denoising [204],
or assume statistical independence of the noise to train a denoiser using samples drawn
from one [19, 110, 111, 171] or multiple [120] noisy image frames. While this line of work
is promising since it does not require ground truth data and therefore can be adapted for
different camera sensors, these methods are not easily adaptable to the more structured or
signal-dependent noise that is present in low light settings under high gain, such as banding
noise.
Low light photography. A number of methods focus particularly on the challenging case of
denoising for low light and night photography. A popular method for low light photography
is burst denoising, in which multiple images are merged and denoised. This technique is used
in HDR+ as well as Google Night Sight [85, 129]. These methods require robust alignment
techniques to account for any motion in the scene, which is difficult in the presence of extreme
noise. A number of deep learning-based approaches have emerged that attempt to do this
burst-alignment step automatically through deep learning [151, 74]. Often, the final goal of
burst denoising is to obtain a single clean image from the noisy burst. In our work, we aim
to obtain a full video from a noisy set of images.

Recently, a number of deep learning based methods attempt to address low light photog-
raphy by learning to denoise images in the presence of extreme noise. These methods learn a
denoiser and image enhancer network for underexposed low light images by first collecting a
training dataset of clean/noisy image pairs [44, 96, 45]. These methods have demonstrated
remarkable results for low light conditions down to 0.1 lx. Our work pushes this limit down
by two orders of magnitude, demonstrating video denoising below 1 mlx.

Furthermore, these methods rely on a camera-specific dataset of ground truth/noisy
image pairs for training, which is particularly challenging for video denoising. Our approach
only requires a limited dataset of still image pairs for video denoising, eliminating the need
for a large experimental dataset of noisy/clean aligned videos.
Noise models. A Gaussian noise model is commonly used to model noise in an imaging
system, however this is not a very realistic representation of real-world sensor noise [169].
Signal-dependent models, such as Poisson-Gaussian [68, 67] or a heteroscedastic Gaussian
model [84] are more realistic as they account for the effect of shot noise in cameras. However,
there are many more effects, such as clipping [68], fixed pattern noise, and banding noise that
these models do not account for [108, 26]. Additional work has focused on characterizing
sensor noise in low light environments by fitting to certain distributions for different noise
components [212, 218]. In general, noise modeling for extremely low light imaging is com-
plicated and it is difficult to accurately characterize and synthesize realistic camera noise,
since the noise can be highly structured and sensor-dependent [16, 108].

Recently, rather than characterizing the noise present in a sensor, several methods have
attempted to learn to synthesize realistic noise using generative adversarial networks [46,
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202] and normalizing flow models [2]. However, recent work suggests that physics-based
statistical methods outperform DNN-based methods [233]. We combine physics-based sta-
tistical methods with GAN-based training techniques to learn to approximate the sensor
noise in a data-driven manner, without the need for hand-calibrating a noise model.

7.2 Physics-inspired Noise Generator

Cameras aim to exactly measure and record the light intensity of a scene, converting photons
to voltage readings, which are then converted to bits by an analog to digital converter
(ADC). Throughout this process, noise is inadvertently added to the measurement both as a
function of photon statistics and the circuitry of the sensor. In well-lit environments, sensor
noise is well understood and can be modeled as a combination of two primary components:
shot noise, which originates from photon arrival statistics, as well as read noise, which is
caused by imperfections in the sensor readout circuitry [84]. In low light settings, this noise
approximation breaks down and does not adequately describe the complex noise statistics
of the scene. Previous work has shown that noise in low-light settings can be expressed as
a combination of photon shot noise, read noise, row noise, and quantization noise, which
can be obtained through a rigorous calibration process [218]. Inspired by this work, we
propose a physics-inspired noise generator which consists of several learned statistical noise
parameters. Rather than calibrating the noise parameters by hand, we automatically learn
the optimal parameters using a GAN that is fed several pairs of calibration clean (long
exposure, low gain)/noisy (short exposure/high gain) image pairs. Using this framework,
our noise generator is trained to synthesize realistic noise in extremely low light and high
gain settings, see Figure 7.3.

Physics-inspired parameters

Our noise generator contains several physics-inspired parameters, mainly consisting of vari-
ance terms for random distributions, as well as a CNN to capture any additional effects,
known or unknown, that are difficult to specifically model. Both components are jointly
optimized during training. First, we parameterize the contributions of read and shot noise.
Shot noise is a function of the light intensity hitting the sensor and is often modeled as a
Poisson random variable, whereas read noise can be approximated as a zero-mean Gaussian
random variable [68, 67]. Together, these are commonly approximated using a single het-
eroscedastic Gaussian random variable, where the mean is equal to the true signal, x, and
the variance is parameterized by the read, λread, and shot noise, λshot:

Ns +Nr ∼ N (µ = x, σ2 = λread + λshotx) (7.1)

Low-light imaging often suffers from banding noise, which is a camera-dependent noise
that results from the camera circuitry and is particularly prominent at high ISO settings.
Banding noise often appears as horizontal or vertical lines in the measurement [108, 26]. We
model this as a fixed offset added to each column/row, where the fixed offset is drawn from
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Figure 7.3: Physics-inspired noise generator. Our noise generator takes in a clean image
and produces a synthetic noisy image. During training, our physics-inspired statistical noise
parameters are optimized along with a U-Net to produce a synthetic noisy image that is
indistinguishable from a real noisy image.

a zero-mean Gaussian random variable with variance λrow, see Fig. 7.3. Banding noise is
generally independent for each frame, however we have noticed that in extreme low light
and high gain settings some banding patterns are consistent across a number of frames. To
model this, we also include a time-consistent banding pattern noise which is static across
each set of frames. As with the original banding noise, this time-consistent noise is modeled
as a zero-mean Gaussian random variable with variance λrow,t.

In addition to this, at extreme gain settings, we notice that the measurements suffer from
periodic noise, potentially due to ADC imperfections/effects at these high gain settings. This
periodic noise appears as spikes in the frequency domain of the raw noisy measurements,
corresponds to adding a 1 or 2 pixel period sinusoidal pattern to the image with a random
amplitude, Fig. 7.3. We parameterize this random amplitude by learned parameters: λf1,
λf2, λf3. See Appendix A.3 for further implementation details and discussion.

Next, we add a uniform noise component, to approximate quantization noise in the sensor:

Nq ∼ U(λquant) (7.2)

Where λquant is our parameter for the quantization noise interval. Generally, this noise
component is well-defined based on the number of bits used by the camera sensor. However,
we find that allowing this noise parameter to vary can improve our noise generator. Finally,
we include a fixed pattern noise component, Nf that stays constant throughout all images.
We measure this experimentally using an average of several image sequences. We find that
letting this fixed pattern noise be learned can improve the KL divergence between the real
noise and generated noise, but this parameter is prone to overfitting and we achieve the best
denoising performance when leaving this parameter fixed and experimentally measured.

Thus, our physics-inspired noise model consists of the following components:

N = Ns +Nr +Nrow +Nrow,t +Nq +Nf +Np (7.3)
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Where Nshot, Nread, Nrow, Nrow,t, Nq, Nf , and Np approximate the contributions of shot
noise, read noise, row noise, temporal row noise, quantization noise, fixed pattern, and
periodic noise.

After initial noise is added to a clean image using the physics-inspired parameters, the
intermediate noisy image is passed through a CNN, which aims to improve the initial noise
estimate and capture any effects that were not captured by the physics-inspired noise model.
We utilize a residual 2D U-Net [176] for this (See Appendix A.3 for architecture details). The
final output of our noise generator is clipped to [0, 1]. Together, we have a total of 8 physics-
inspired parameters (λread, λshot, λquant, λrow, λrowt , λf1, λf2, λf3), as well as the parameters
of the U-Net. All parameters are optimized during training to produce a realistic synthetic
noisy image from a noiseless image. Figure 7.3 shows our physics-guided noise generator
with a sample for each noise component.

GAN training

We want our noise generator to produce different noise samples at each forward pass. This
is incompatible with direct supervision where each clean image would be paired to a ground
truth noisy image. Thus, to train our noise generator, we resort to an adversarial setup [77],
consisting in this case of our noise generator and a discriminator, which evaluates the realism
of synthesized noisy images.

Our discriminator operates on noise patches of size 64. For our training objective, we uti-
lize a standard Wasserstain GAN with a gradient penalty framework [82], which is optimized
with the following objective function:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

‖(∇x̂D(x̂)‖2 − 1)2], (7.4)

where Pr is the real noisy data distribution, Pg is the model distribution defined by the
generator, x̃ = G(z), z is a noiseless image patch, and D is our discriminator. See Appendix
A.3 for full training details.

7.3 Camera Selection and Data Collection

To meet our objective of producing photo-realistic videos at submillilux illumination levels,
we need to carefully choose an appropriate camera sensor and lens. Generally, larger pixel
sizes are preferable for low-light imaging, since each pixel has more photons hitting it than for
a smaller pixel. In addition, near infrared (NIR) sensitivity is useful for nighttime imaging
because there are more detectable photons in NIR than at RGB wavelengths at night [121,
208].

We choose to use a Canon LI3030SAI Sensor, which is a 2160 x 1280 sensor with 19µm
pixels, 16 channel analog output, and increased quantum efficiency in NIR. This camera
has a Bayer pattern consisting of red, green, blue (RGB), and NIR channels (800–950nm).
Each RGB channel has an additional transmittance peak overlapping with the NIR channel
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to increase light throughput at night. During daylight, the NIR channel can be subtracted
from each RGB channel to produce a color image, however at night when NIR is dominant,
subtracting out the NIR channel will remove a large portion of the signal. Due to the
prevalence of NIR at night, our night videos often have muffled colors. We pair this sensor
with a ZEISS Otus 28mm f/1.4 ZF.2 lens, which we choose due to its large aperture and
wide field of view.

We capture 3 sets of datasets from our camera: bursts of paired clean (low gain, long
exposure)/noisy (high gain, short exposure) static scenes, clean videos of moving objects,
and noisy videos of moving objects in submillilux conditions. The paired dataset of static
scenes is used to train our noise generator. Both the paired dataset and the clean videos
of moving objects are used to train the denoiser. The final dataset is reserved for testing
the performance of our denoiser in the most challenging setting. Our datasets will be open-
sourced and can be used as a challenge for future denoising algorithms.

Paired clean/noisy bursts of static scenes. We collect 10 clips of grayscale and color
targets, each with one clean image along with a burst of 100–900 noisy images, resulting in
a dataset with 2558 noisy images. We use this dataset exclusively for the noise generator
training. In addition to this, we acquire a more complex dataset of 67 clean/noisy image
pairs consisting of 16 noisy bursts for each clean image. This second dataset contains indoor
and outdoor scenes with various lighting conditions. We use this dataset both for our noise
generator and denoiser training.

Unpaired clean RGB+NIR videos. With our trained noise generator, we can generate
unlimited amounts of clean/noisy pairs from clean videos. Given an absence of RGB+NIR
RAW datasets, we collect our own dataset of noiseless video clips (unpaired). We collect
10 video sequences which we break into 166 video clips for training and 10 for testing. The
videos are taken at different frame rates of both indoor and outdoor scenes. We capture
these images at a low gain setting during the daytime.

To augment our dataset, we utilize 329 video clips from the MOT video challenge [117],
which we then unprocess [30] to resemble RAW video clips. While these video clips have
significant motion, they have a different distribution of colors than the raw data from our
camera. Due to this, we utilize the MOT videos during our initial pre-training step, then
refine our denoiser using only the video clips from our camera.

Submillilux RGB+NIR videos. To test our method in the lowest light settings, we
collected videos in a remote location on a clear, moonless night (outside of most of the
night-glow from cities). Throughout our experiments, no outside light sources were used to
illuminate the scene. The illuminace, measured by a PR-810 Prichard Photometer, ranged
between 0.6 mlx–0.7 mlx, which is within the range expected for a clear moon-less night.
Videos were taken with exposures ranging from 0.1–0.2ms per image, corresponding to 10–5
fps. All videos were taken with the largest lens aperture to maximize the amount of light
hitting the sensor, and at the highest gain settings for the camera.
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7.4 Video Denoising

Now that we can generate clean/video pairs, our next step is to train a denoiser that will gen-
eralize well to real noisy video clips from our camera. Inspired by burst-denoising, in which
a burst of multiple noisy frames are used together the denoise a central frame, we choose
a network architecture that can operate on multiple frames at a time. This is beneficial
because denoising a burst of images can improve PSNR over single-image denoising, espe-
cially in photon-starved regimes. In addition, video-denoising can help us maintain temporal
consistency across frames and reduce flickering throughout the denoised video.

HRNet 1

raw noisy frames

raw denoised frames

time

post-processing

processed denoised frames

𝑡0 𝑡" 𝑡#𝑡$# 𝑡$" 𝑡%𝑡$%

𝑡0 𝑡" 𝑡#𝑡$# 𝑡$" 𝑡%𝑡$%

𝑡0 𝑡" 𝑡#𝑡$# 𝑡$" 𝑡%𝑡$%

HRNet 1 HRNet 1

HRNet 2

Figure 7.4: Denoising network. Our denoising network has a similar overall structure to
FastDVDnet, sequentially taking in 5 noisy RAW images to produce 1 denoised RAW image.
After denoising, off the shelf post-processing (e.g. white-balancing, histogram equalization)
is applied to produce the final denoised video.

Denoising Network

For our denoising network, we build off of FastDVDNet [200], which is a state of the art
video denoiser that implicitly handles motion estimation within the network. We modify
this network by replacing the U-Net denoising blocks with an HRNet from [195], which we
find leads to better temporal consistency across our denoised video than the original U-Net
architecture. Our denoiser operates on RAW video sequences, Fig. 7.4, and off the shelf
post-processing is used produce the final output. See Appendix A.3 for our full denoiser
network architecture and our evaluation against the original FastDVDNet architecture.
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Figure 7.5: Noise model comparison. We show an example image patches with our noise
model vs. alternative noise models, as well as the mean of this image patch over 5 samples.
Our synthetic noise appears more similar to the real noise than alternative methods and
closely matches the average noise as well.

Training

We train the denoiser on a combination of synthetic noisy video clips and real still images
from camera. First, we pretrain our network for 500 epochs using a combination of real
paired stills, synthetic noisy clips from our camera, and synthetic noisy clips from the MOT
dataset to help prevent overfitting. After pretraining, we refine the model for 817 epochs
on our real still images and synthetic clips from our camera. All images are cropped to
512×512 patches throughout training. We use a combination a perceptual loss (LPIPS) [231]
with an l1 loss for our training objective, choosing only the first 3 RAW channels for the
LPIPS loss, which requires a 3-channel image. We gamma correct our ground truth images
with gamma= (1/2.2), thereby training the denoising network to output a gamma-corrected
image. We found that this outperformed applying the gamma correction after denoising.
For both pretraining and refinement, we utilize the Adam optimizer [106] with learning rate
10−4 and all default parameters.

Post-processing

Our denoiser is trained on the raw images from the camera. In doing so, this system can
work with a number of different post-processing pipelines. To display our final images,
we apply the following post-processing steps: demosaicing via bilinear interpolation, white
balancing, and histogram equalization. We note that our denoised images are already in a
gamma-corrected space. We display the RGB channels of the video clips, omitting the NIR
channel in our visualization. We expect that manual post-processing in Adobe Lightroom
or a comparable platform could further improve the contrast and perceptual quality of our
images.
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7.5 Evaluation

First, we evaluate our noise generator performance against several existing noise models for
low light imaging, as well as perform an ablation on the components of our noise model.
Next, we compare our noise generator + video denoiser pipeline against several existing
denoising schemes. We quantitatively compare on a held-out dataset of still noisy/clean
image pairs. Finally, we qualitatively compare on our submillilux dataset of noisy videos,
which do not contain ground truth labels for a quantitative comparison.

Noise generator

After training our noise generator, we assess its performance on a held-out dataset consisting
of 832 128×128 video patches. Each patch has 4 color channels and 5 temporal channels. We
calculate the KL divergence between our synthetic noise and the real noisy clips after sub-
tracting the clean image. We compare against a non-deep low light noise model (ELD) [218],
as well as two deep-learning-based noise models, CA-GAN [42] and Noise Flow [2]. ELD
is hand-calibrated using dark frames and grayscale frames to fit to several distributions for
different noise sources. Following this calibration scheme, we found that our noise distribu-
tions are very different from those described in [218], likely due to our extremely high gain
settings, predominant fixed pattern noise, and periodic components, leading to poor perfor-
mance of this model. CA-GAN is a camera-aware noise model that takes in a clean image, an
estimated shot and read noise image, as well as an example real noisy image from the camera
in order to synthesize a signal-dependent noisy image. We use this model off-the-shelf, but
find that it generalizes poorly to our camera and noise. Similarly, Noise Flow is designed
to work with multiple gain settings and lighting conditions, but does not generalize to our
extreme low-light, high gain setting. We summarize our findings in Table 7.1, and show an
example synthetic noisy patch from each method in Fig. 7.5. We can clearly see that both
Noise Flow and CA-GAN miss the significant banding noise (column offsets) present in our
real noisy clips. ELD captures the banding noise pattern well, but misses other components
of the noise and does match the real noisy clips visually or in terms of KL divergence.
Ablation of noise parameters. We ablate different noise components of our generator in
Table 7.1 and show a qualitative comparison in Figure 7.5. As before, we calculate the KL
divergence between synthetic and real noisy patches, and we find that each component of
our noise model improves the KL divergence. Specifically, shot, read, quantization, and row
noise, were all used ELD [218], but were hand-calibrated. Here, we automatically calibrate
the different noise components through our GAN training, resulting in better performance
than the hand-calibrated model. In addition, our model takes into account the noise behavior
over time by including components that are constant over multiple image patches (temporal
row noise, fixed pattern noise). As seen in the 5-images averages on the bottom of Figure 7.5,
our noise model closely matches the average noise, which is important for video denoising.
Adding a periodic noise component makes our noise better match the Fourier spectrum of the
real noise, which has several prominent peaks in Fourier space (see Appendix A.3 for details).
Adding our measured fixed pattern, Nf , improves the behavior over time, and learning the
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Noise model KLD

ELD [218] 1.361
Noise Flow [2] 0.386
CA-GAN model [42] 0.513

Ours (ablation)

Nr (Gaussian) 0.400
Ns + Nr (shot + read noise) 0.400
Ns + Nr + Nq 0.122
Ns + Nr + Nq + Nrow + Nrowt 0.118
Ns + Nr + Nq + Nrow + Nrow,t + Np 0.113
Ns + Nr + Nq + Nrow + Nrow,t + Np + Nf 0.138
Ns + Nr + Nq + Nrow + Nrow,t + Np + Nf∗ 0.084

Full model: 0.0691

Table 7.1: We compare our noise generator to prior work, representative of different ap-
proaches to modeling noise distributions. Our method significantly outperforms all baselines.
We also present an ablation of components modeled by our noise generators. See Figure 7.5
for a visual comparison.

fixed pattern, Nf∗ further improves the KL divergence, but at the price of risking over-fitting
since this is a pixel-wise addition of an image to the synthetic noise. In our final model, we
use a measured fixed pattern and a learned U-Net which can account for noise that we do not
specifically model, such as chromatic effects, or enhance our Gaussian noise approximations
to better match the true noise distributions. Our final noise model produces synthetic noise
that closely matches the real noise for a single noise instance, over time, and in Fourier space.

Full pipeline: video denoising

Next, we evaluate our video denoiser trained using combination real and synthetic noisy
samples against existing denoisers. First, we quantitatively compare against several alterna-
tive methods using our dataset of 21 still clean/noisy bursts (since we do not have ground
truth for our noisy video clips). We split up our comparison into two categories: single-image
denoising methods and video denoising methods, which take in multiple clips at a time.

For single-image denoising, we compare against two pre-trained deep denoising methods:
Unprocessing [30], which operates on RAW images and is trained using different read and
shot noise levels, as well as L2SID [44] which takes in a raw noisy image and jointly denoises
and processes the image. Both of these methods do not perform well on our dataset, due
to the extreme noise in our raw measurements. We also retrained L2SID [44] using our
still image pairs, resulting in better performance single-images, but significant flickering over
time for video (see Appendix A.3 for example). Noise2Self, a self-supervised approach, does
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Method PSNR SSIM LPIPS

Single Image Methods:

Noise2Self [19] 20.11 0.210 0.545

Unprocesing [30] 12.86 0.249 0.355

L2SID (pretrained) [44] 13.6 0.512 0.338

L2SID (retrained) [44] 26.9 0.892 0.198

Video Methods:

V-BM4D [144] 16.2 0.322 0.419

pretrained PaCNet [205] 13.65 0.512 0.338

pretrained FastDVDnet [200] 23.8 0.618 0.282

ours 27.7 0.931 0.078

Table 7.2: Performance on still images from test set.

poorly with our noise due to its highly structured content (e.g. correlated lines for the row
offsets), and results in denoised images with prominent line artifacts. These results are
summarized in Table 7.2, with full images shown in Appendix A.3.

input oursV-BM4D FastDVDnet

Figure 7.6: Video Results. Results on noisy video clips taken at 10fps in 0.0006 lx.
The input sequence (left), V-BM4D, pretrained FastDVDnet, and our results are shown.
Our method maintains more details throughout the clip and does not contain the preva-
lent streaking artifacts that are present in V-BM4D and the pretrained FastDVDnet. See
Appendix A.3 for full video clips. (Digital zoom recommended.)

For video-denoising, we feed in 5 noisy clips to each denoiser, then compare against
a single still ground truth image. We compare our method against V-BM4D (a classic
video denoising method), as well as two pretrained state of the art deep video-denoisers,
FastDVDnet [200] and PaCNet [205]. Both of these models use additive Gaussian noise,
so as expected, they do not perform well for our real noisy clips. FastDVDnet, which is
designed to operate at multiple noise levels, outperforms PaCNet [205], which is designed
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FastDVDnet

ours
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Figure 7.7: Video Results. Results on noisy video clip, showing performance over time for
a video taken at 10fps in 0.6 mlx. Our method achieves better temporal consistency than
V-BM4D or the pretrained FastDVDnet, and also has fewer artifacts within each frame. See
Appendix A.3 for full video clips. (Digital zoom recommended.)

for a specific Gaussian noise level. Our denoising method, which is based on a modified
FastDVDnet and trained using our noise generator, achieves the best performance. This
demonstrates the importance of having a realistic noise model during denoiser training.

Next, we qualitatively compare our performance on our unlabeled dataset of submillilux
video clips. We show the performance of our method as compared to V-BM4D and the pre-
trained FastDVDnet in Figure 7.6, with additional video comparisons available in Appendix
A.3. Here we can see that our method had fewer horizontal streak artifacts than the other
methods, maintains more details such as stars, and has better overall image quality. We can
clearly see the milky way in the denoised videos, and our method is robust to fast-moving
objects in the background (e.g. we capture a shooting star in Fig. 7.6). When viewing the ad-
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jacent frames in the video clip, Fig. 7.7, we can see that our method has less flickering than
V-BM4D and the pretrained FastDVDnet, which both have significant flickering between
frames, likely due to the significant noise present in the raw data.

Finally, we perform a perceptual experiment with blind randomized A/B tests between
our method, V-BM4D, FastDVDNet, and L2SID using 10 clips from our video dataset.
Throughout 300 comparisons with 10 workers, our method is rated as having superior image
quality than the alternative methods over 95% of the time (details in Appendix A.3).

7.6 Conclusion and Discussion

We have demonstrated photorealistic video denoising at submillilux levels of illumination
for the first time. We achieved this through a combination of excellent camera hardware (a
low light optimized RGB+NIR camera), a physics-inspired noise generator used to generate
realistic noisy video clips, and a video trained using a combination of real still images and
synthetic noisy video clip. Our work showcases the power of deep-learning-based denoising
for extremely low light settings. We hope that this work leads to future scientific discoveries
in extremely low light levels (e.g. studying nocturnal animal behavior in moonless conditions
or under a forest canopy), and will help push the limits of robot vision and exploration in
extremely dark settings. Potential misuse of this work includes night-time surveillance or
use in conjunction with weapons systems.

Our approach has limitations. First, our noise generator is limited to producing noise
that mimics a single gain setting (in this case, the highest gain). Future work could expand
the noise generator model to work with multiple camera gains/ISOs. Next, our denoised
night videos have muffled colors due to the dominance of NIR over RGB at night. Work
in style transfer and recoloring could further improve the visual appearance of the denoised
video clips by enhancing embedded color cues or synthesizing realistic-looking colors. Fi-
nally, the performance of the denoiser may be improved in the future through class-aware
denoising [174] and joint denoising/segmentation.
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Chapter 8

Conclusion

This dissertation explored how we can combine knowledge of imaging system physics together
with deep learning to better solve imaging inverse problems. Using this strategy, we demon-
strated improved performance for several different compressive computational cameras, from
single-shot 3D microscopy to snapshot hyperspectral imaging and video from stills. We also
demonstrated improvements for extremely low light photography, pushing cameras to their
limits and showing photorealistic video denoising at submillilux levels of illumination for the
first time.

We envision that the next generation of cameras, microscopes, and telescopes will be
designed through the lens of computational imaging to create better, smaller, and more-
capable cameras that fuel scientific discovery, art, and medicine. Physics-informed machine
learning will have a role to play in making this happen. In this chapter, we focus on some
existing themes, challenges, and provide suggestions for future work that we believe will be
pivotal for the field of computational imaging.

8.1 Challenges and Open Questions

Capturing, simulating, or generating datasets for computational
cameras

As we saw throughout this dissertation, most deep learning-based approaches require large,
custom datasets during the training phase. Through physics-informed machine learning, we
can potentially reduce the size of the training dataset, but not entirely curb our reliance of
training data (at least for supervised learning). Obtaining a custom dataset of real, aligned
training pairs can be difficult, necessitate complicated and expensive hardware setups, and
may be impossible to obtain for certain settings. Furthermore, a new dataset may be needed
for each new computational camera, even ones with the same design, creating a complicated
calibration process to get a new computational camera up and running.

As we demonstrated in Ch. 5, if we have a very well-calibrated imaging forward model, we
can simulate a dataset by running existing images/volumes through our forward model or op-
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tical simulator. This removes the need for an experimentally-acquired dataset of image pairs,
but necessitates an accurate calibration of a camera/microscope and the ability to accurately
simulate realistic measurements from said camera/microscope. For cameras/microscopes
that can be described as linear systems with known forward models, this is possible and
practical to do. However, for more complicated optical systems, perhaps with nonlinearities
or unknown and hard to characterize forward models, this may not be feasible.

In Ch. 7, we demonstrated how we can learn a forward model for a computational cam-
era using a small dataset of calibration pairs, then use this to generate a synthetic dataset.
We believe this is a very powerful technique—we can model and use data to tune anything
we know a priori about the camera, then pair this with a neural network that can poten-
tially learn anything else about our system that we do not know, or that is hard to model,
such as nonlinearities. In the end, we can have very expressive neural models of how our
cameras/microscopes behave in extremely challenging settings, such as nonlinear regimes,
or extremely high noise/high gain settings. These models can then be used to synthesize
realistic training data, or perhaps be used more directly in inverse problems. We believe
that this kind of physics-inspired, deep-learning-based calibration process will be useful in
pushing cameras to and beyond their current limits.

Hand-designed priors or hand-designed networks?

Unsupervised learning, as we saw in Ch. 6, is very promising for a variety of settings since
it removes the need for a dataset. Instead of learning a prior or how to solve the inverse
problem, the network itself can act as a prior on the imaging inverse problem without any pre-
training. Having a good imaging prior is especially important for underdetermined inverse
problems, so having a network architecture that serves as a good prior is critical. This brings
about several questions: which network architecture makes for the best image prior? Will
the optimal network architecture vary with application/task? How can we pick the right
architecture for a given imaging application? These are all open questions, and are related
to the age-old question in imaging of how to choose the best imaging prior. Just as there were
many decades of research on hand-designed priors, such as wavelet sparsity, discrete cosine
transforms, TV, dictionary learning, etc., we envision that there will be copious research on
which networks serve as the best priors for given tasks.

Robustness and Guarantees

A camera/microscope that you cannot trust is unsuitable for most scientific and clinical
applications. For machine-learning-based reconstruction algorithms, knowing definitely when
the algorithm works and when you can trust the reconstruction is difficult. The structure of
the network and the training data used can impact the solution and potentially introduce
artifacts that are indistinguishable from signal. When there is not enough training data,
networks can over-fit, hallucinating information. Moreover, if there is a distribution shift
between your training data and your testing data, the network can under-perform, or not
generalize to the new setting.
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We are hopeful that some of these challenges will be addressed by research in deep
learning theory on uncertainty quantification [1, 7] and robustness. Quantifying uncertainty
for deep-learning-based inverse problems is a step in the right direction [220], but needs to
be taken further to provide additional guarantees and point out any potential artifacts that
are caused by our reconstruction algorithms. In signal processing, many algorithms and
methods have convergence guarantees and a notion of robustness. For example, compressive
sensing is well studied and has guarantees based on certain conditions, such as sparsity and
incoherence. We are encouraged by some of the recent work in applying signal processing
theory and ideas to deep learning [192]. With a better notion of convergence, uncertainty,
and robustness, we can hopefully trust our networks, even for the most important tasks,
such as scientific discovery and medical imaging.

What is the right way to combine physics with deep learning?

Throughout this dissertation, we demonstrated several different ways of building in our
knowledge of the imaging system physics together with neural networks, but our exploration
was by no means exhaustive, and there are many other ways of combining physics with deep
learning. So, is there a right way of blending our physics models with deep networks? Are
some methods better than others, or does it depend on the specific use case and application?
These are all open questions, and we believe will be important research questions moving
forward. In this work, most of our network architectures tended to have a physics-based
layer followed by a more traditional CNN for further refinement. However, perhaps there
are better, more tightly coupled ways of blending the physics together with neural networks.
Furthermore, the neural network architecture is also up for debate—historically, CNNs have
performed quite well, but recently they have been surpassed at many tasks by transform-
ers [226, 39, 213]. We expect the neural network architecture choice to change through the
years, and perhaps the methods used to blend physics with the deep network will change
depending on the network architecture, since each network may have unique strengths and
weaknesses. For example, the small convolutional kernel size of CNNs makes them bad
at tackling large, full-image-sized deconvolutions (as is the case for DiffuserCam), making
our Fourier-space, differentiable deconvolutional step in Ch. 5 especially useful. Transform-
ers, or other network architectures, such as with Fourier-space convolutions, may be better
suited for these problems and have different ways of best incorporating physics into them.
How to best combine physics with deep learning is an open problem and perhaps has many
possibilities.

8.2 Outlook and Future Directions

Task-specific cameras using end-to-end learning

As machine learning advances, raw camera measurements are no longer predominantly looked
at by humans, rather, the measurements are used directly for higher-level tasks (automated
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pathology diagnostics, classification, 3D localization, etc.) [142, 27, 145, 154]. Despite the
advances in AI, cameras are generally designed to take the most visually appealing images
for humans, not to capture the most useful information for AI. By encoding additional
information (e.g. depth cues, polarization, specific hyperspectral wavelengths) into camera
measurements and designing algorithms to leverage this information, we can have better
informed autonomous systems and enable more robust decision making.

Throughout this dissertation, we focused on differentiable reconstruction algorithms for
computational cameras—however, this is only one part of the picture. With differentiable
physical models for cameras, we can also treat optical design as a learnable layer within a
neural network, Fig. 8.1. Then, we can end-to-end optimize the whole camera pipeline—the
optics, the algorithms, together with the higher-level task. In this way, we can optimize the
camera for higher-level performance (classification, segmentation, tracking, etc.) rather than
for the best image quality.

As an example, certain camera parameters can be optimized, such as the lens or microlens
surface profile, locations, and any aberrations (e.g. parameterized as Zernike coefficients).
Light can be computationally propagated through the lens to the sensor (e.g. with Fresnel
propagation) to compute the PSF of the system. This PSF can be used in the forward
model, which can also include any sensor effects (e.g. Bayer filter, spectral filters) to generate
simulated measurements, which can then be fed into the reconstruction algorithm and/or
network controlling the higher-level task. Based on the higher-level loss, the gradients can
be backpropagated through this entire network to update both the optical parameters and
reconstruction parameters. Manufacturing and physical constraints can be incorporated
into the optical model, making sure that the learned designs can be easily manufactured and
potentially meet certain requirements, such as limits in size and weight.

We believe this concept of end-to-end design for higher-level tasks, of which physics-
inspired machine learning is a key part, will be very useful in designing the next generation
of computational cameras. End-to-end optical design and physics-inspired machine learning
reconstructions share many common challenges and open questions. In addition to this,
end-to-end design has a few unique additional challenges and considerations.

Datasets for end-to-end design

Just as for physics-informed inverse problems, learning the optics and the reconstruction
algorithm faces the issue of needing good datasets. However, for a given task, we do not
necessarily know what is the right data to make the most informed decision. Does a robot
navigating through the world benefit from having hyperspectral information for each point
in the world? How about a microscope trying to classify skin cancer? When are polarization
or phase information important and useful?

To find out the answers to these questions, we need to collect all of this information for real
systems, needing multiple complicated imaging systems to gather the light field, polarization,
depth, hyperspectral profile, and phase for coherent imaging systems. Once this is collected,
we additionally need the data to be annotated for each task (e.g. segmentation). This
process could be sped up through unsupervised approaches to data annotation. Alternatively,
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Figure 8.1: Designing cameras for tasks: end-to-end design of imaging systems.
Through differentiable optical models and reconstruction algorithms, we can treat all aspects
of the camera capture (encoding) and algorithms (decoding) process as a neural network with
learnable parameters. Then, using backpropagation, we can learn the camera parameters
and algorithms together to optimize a higher-level objective function, such as classification
or segmentation performance. This would allow cameras to be designed to encode the most
useful features from the world (e.g. different wavelengths of light, polarization, 3D, etc.) for
a given task, rather than designed to take the sharpest image.

physics-based simulators could be used to train cameras based solely on synthetic data. This
has shown promise in self-driving vehicle research, where high-quality physics-based world
simulators synthesize realistic sensor data that is used to train algorithms for self-driving
vehicles [58]. For computational imaging and microscopy, such simulators could also be
used, but often have unique challenges in each domain. For example in microscopy, this
sort of simulator may need to include complex light interaction, multiple-scatting, contain
interesting, realistic biological samples. This is a bit of chicken and the egg problem, where
we want to use our computational cameras to study and understand the world, but to
design/build these cameras, it would help if we already had good models of the world and
could realistically simulate the world.

Neural representations

Over the last few years, there has been an explosion of papers and interest in using neural
representations for a variety of tasks [153, 189, 152]. Rather than solving for images or
volumes as a grid of pixels or voxels, with neural representations, the images/volume is the
output of a neural network. We have already seen these concepts applied to imaging inverse
problems [124, 235], and we expect to see these methods gain popularity for other imaging
inverse problems.
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Appendix A

Appendix

A.1 Supplemental Materials for Supervised Learning

for 2D Lensless Photography

Network architecture

We outline our U-Net network architecture (used for Le-ADMM-U as well as for the U-Net
comparison) below in Table A.1 for completeness. This is based on the architecture specified
in [176]. Here k represents the kernel size, s is the stride, channels in/out represents the
number of input and output channels for the layer, and input is the input of the layer, with
‘,’ representing concatenation. Here the encoding steps, enc, consist of two convolutional
layers, each of which consists of a 2D convolution, followed by a batch-norm and ReLU. The
decoding steps, dec, consist of three convolutional layers with the same architecture. Here,
up(·) stands for bilinear upsampling. conv1 consists of a convolutional layer, batch-norm,
and ReLU, whereas conv2 consists only of a convolutional layer.

Next, we outline our smaller U-Net that is used for Le-ADMM*. The encoding and
decoding steps are the same as described in Table A.1. Finally, we include a skip connection,
adding the input of the network to the output. The network architecture is described as
follows:

Effect of training size

In Fig. A.1 we study the effect of the number of training images on the network performance.
We show that our model-based network, Le-ADMM-U, is able to perform much better than
the deep method (U-Net) with fewer training images because it incorporates knowledge of
the imaging system into the network.
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Table A.1: Network architecture for U-Net used in Le-ADMM-U

layer k s channels in/out input
enc1 3 1 3/24 input
pool1 2 2 24/24 enc1
enc2 3 1 24/64 pool1
pool2 2 2 64/64 enc2
enc3 3 1 64/128 pool2
pool3 2 2 128/128 enc3
enc4 3 1 128/256 pool3
pool4 2 2 256/256 enc4
enc5 3 1 256/512 pool4
pool5 2 2 512/512 enc5
conv1 3 1 512/512 pool5
dec5 3 1 512/256 up(conv1), enc5
dec4 3 1 256/128 up(dec5) enc4
dec3 3 1 128/64 up(dec4), enc3
dec2 3 1 64/24 up(dec3), enc2
dec1 3 1 24/24 up(dec2), enc1

conv2 1 1 24/3 dec1

Table A.2: Network architecture for U-Net used in Le-ADMM*.

layer k s channels in/out input
enc1 3 1 3/24 input
pool1 2 2 24/24 enc1
conv1 3 1 24/24 pool1
dec1 3 1 24/24 up(conv1), enc1

conv2 1 1 24/3 dec1

A.2 Supplemental Materials for Unsupervised

Learning for Compressive Lensless Photography

Throughout, our default network architecture is a 5-layer skip network, like the default
network architecture used in [204]. The upsampling layer has nu filters with kernel size ku,
the downsampling layer has nd filters with kernel size kd, and the skip layer has ns filters
with kernel size ks. Our default activation function (act func) is a Leaky ReLU. At each
iteration, we perturb our input with an additive normal noise σp, as described in [204]. We
also add a small amount of regularization tv weight to our loss before backtracking. The
default parameters are given below in Table A.3.
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Figure A.1: Effect of Training Size. Here we vary the number of images in the training
set and plot the LPIPS score after 5 epochs. Here we see that Le-ADMM-U performs better
and converges faster than a U-Net alone. Le-ADMM does not improve as the number of
training images increases, since it has so few parameters.

nu = nd = [16, 32, 64, 128]
ku = kd = [3, 3, 3, 3, 3]
ns = [4, 4, 4, 4, 4]

σp = 0.05
LR = 10−3

tv weight=10−20

act func = LeakyReLU
upsampling = bilinear

Table A.3: Default Network parameters

2D imaging with erasures

To reconstruct an RGB image of size (3 ×W × H), we feed a random input of size (80 ×
2W × 2H) to the network to get an output of size (3 × 2W × 2H) and then crop it for
the final result. The size doubling is due to our lensless forward model. The measurements
are downsampled by a factor of 4 from the original measurement size, thus recovering an
image with size W = 480 and H = 270. We run between 100, 000 − 700, 000 iterations
for the simulated data and 50, 000 − 100, 000 for the experimental data. The learning rate
(LR) ranges from 10−3 to 10−4 (high erasures needs a small learning rate to produce smooth
reconstructions)

For experimental data, early-stopping is necessary to prevent the network from overfitting
to noise in the measurement, as described in detail in [204]. An example of this early stopping
can be seen in Fig. A.2.
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Single-shot video

For our simulations, we reconstruct an image of size (3× 38× 134× 160), which corresponds
to a color image for each of the 38 video frames. For this, we utilize a PSF and shutter
function from [9] downsized by 16× spatially and 2× temporally. We utilize an input size
of (3 × 38 × 134 × 160) and a 3D Skip network (with 3D convolutions instead of 2D con-
volutions). The parameters are the same as the defaults in Table A.3 with the exception of
upsampling=trilinear, LR = 0.01, tv weight = 0, and we run 20,000 iterations for this task.
We find that 3D Skip networks outperform 2D Skip networks for certain reconstructions,
however take up more GPU memory and therefore limit us to smaller reconstruction sizes.

For our experimental data, we reconstruct the video (3×72×270×480) from a still RGB
image of size (3 × 270 × 480), we run the reconstruction for each color channel separately
and then combine the color channels together for the final result. The measurement is
downsampled by a factor of 8 from the original measurement from [9]. For each color channel,
the network input is of size (120× 540× 960) with 15,000 iterations, and we utilize 2D Skip
networks (with default parameters in Table 1) in order to maintain a larger reconstruction
size.

Single-shot hyperspectral

For our simulations, we reconstruct an image of size (64 × 150 × 200), which we obtain by
cropping the PSF and mask function from [158] and spatially downsampling by 2×. This
corresponds to a grayscale image for each of the 64 wavelengths. We obtain our ground truth
spectral image from [63] and bin the wavelengths from the dataset to match the wavelengths
of the hyperspectral imager from [158]. We use input shape (32 × 150 × 200) and a 2D Skip
network with the same parameters as in Table A.3, but with a learning rate of LR = 0.01
and TV weight of 0. We plot the reconstruction after 100,000 iterations.

For our experimental data, we reconstruct an image of size (32 × 160 × 160), which is
spatially and spectrally downsampled by 2×, and cropped. We use a network input shape of
(32 × 160 × 160) and a 3D Skip network (with 3D convolutions instead of 2D convolutions)
with the default network parameters, with the exception of upsampling = triliear, LR =
0.01, tv weight = 0, and we run 4600 iterations for this task.

Early stopping during training

As mentioned in [204], early stopping is needed to prevent overfitting to noise. In our
reconstructions on experimental data, the reconstruction improves and then degrades after
a certain number of iterations. Choosing an appropriate stopping point is necessary to
achieve the best image quality. Figure A.2 shows an example of this on data from our 2D
reconstruction with 0% erasures. Here we can see that all of our image metrics improve,
and then begin to degrade after 30,000 iterations. We choose to stop the reconstruction at
around 30,000 iterations, when the image has the most details (e.g. the dots in the butterfly
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wings) without too much noise. As the reconstruction progresses to 80,000 iterations, more
noise is visible in the image.

Figure A.2: Early stopping for 2D experimental images. The reconstruction gets
noisier after converging to the lowest LPIPS score. In the main paper, we show results with
early stopping for our experimental data; interestingly we don’t see this effect on simulation
data perhaps due to the lack of noise and model mismatch.
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Figure A.3: 2D Compressive imaging with erasures, compared against three
amounts of TV. (a) Simulation measurements and (b) experimental measurements com-
paring our UDN with FISTA using three different amounts of TV. (In the main text, only
the reconstruction with the best TV value is shown.) We can see that in the experimen-
tal reconstructions, too much TV tends to blur out the reconstruction while too little TV
maintains noise in the reconstruction.

Additional Reconstructions

In this section, we provide several additional reconstructions using our UDN method. First,
we show our 2D erasures simulation and experimental reconstruction compared to all of the
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Figure A.4: Additional 2D reconstructions with increasing percentage of erasures
for (a) simulated measurements and (b) experimental measurements. For each set of erasures,
the first column shows FISTA reconstructions, the second column shows UDN reconstruc-
tions, the last column quantifies the performance against the ground truth using 5 different
metrics. Generally, UDN outperforms FISTA when there are more erasures.
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Figure A.5: 2D imaging with erasures, with and without TV regularization. We
compare the 2D UDN experimental reconstructions at 0%, 50%, 90%, 95%, 99% erasures
with and without TV. We find that the UDN serves as an effective prior alone, but a small
amount of TV consistently provides a slight improvement in image quality.
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Figure A.6: 2D Compressive imaging with erasures, compared against Plug and
Play Priors. Experimental reconstructions comparing our UDN with FISTA using two
different Plug and Play Priors (PnP): BM3D and a pre-trained U-Net. Here we can see
that PnP BM3D does quite well at higher erasures, but our UDN is able to maintain higher
frequency features and outperforms PnP BM3D on most perceptual metrics. PnP U-Net
has worse image quality than either of the other two methods.
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Figure A.7: Comparison against Plug and Play Priors on hyperspectral data. Ex-
perimental reconstructions comparing our UDN with PnP BM4D. Here we can see that PnP
BM4D is not able to adequately regularize our hyperspectral data, resulting in prominent
reconstruction artifacts (stripes) across the image.

FISTA levels, as opposed to only the best TV amount according to the LPIPS-Alex metric,
as shown in the paper, Fig. A.3. Here we can see that TV becomes ineffective for 99%
erasures both in simulation and experiment for all levels of regularization. Next, we show
reconstructions of two additional 2D measurements with erasures, Fig. A.4. As before, we
see a similar trend in the simulated reconstructions, showing that UDN provides a better
prior on the image reconstruction for extreme erasures. On the experimental data, UDN
appears to provide a better prior with a better LPIPS-Alex and LPIPS-VGG score for all
levels of erasure.

Adding a small amount of TV regularization to the UDN can improve network perfor-
mance, an observation that was studied in detail in [133]. We compare our UDN’s perfor-
mance with and without TV on the task of 2D imaging with erasures in experiment, shown
in Fig. A.5. We see that the network alone serves as an effective prior, but adding TV can
provide a slight enhancement; this matches the observations of [133].

We also compare UDN against two Plug and Play Priors (PnP): BM3D and a pre-trained
U-Net [230] for image denoising, Fig. A.6. We can see that PnP BM3D provides a slightly
better prior for 2D imaging with erasures, but is outperformed by UDN for perceptual
image quality and ability to maintain high frequency content. PnP U-Net does not perform
very well, likely due to the fact that it’s pre-trained for additive white Gaussian noise,
and does not generalize very well our imaging system and to reconstruction artifacts. In
addition, we compare against PnP BM4D for hyperspectral imaging in Fig. A.7. Due to
the computational complexity and lack of GPU acceleration for BM4D, we spatially and
spectrally downsize by 2×. Overall, we can see that PnP BM4D is not able to produce as



APPENDIX A. APPENDIX 113

FISTA, TV low FISTA, TV medium FISTA, TV high UDN (Ours)

t = 14

t = 21

t = 43

t = 71

measurement

Figure A.8: Additional experimental results on rolling shutter data. Here we see
that our reconstruction better captures the motion in the video (e.g. the ball movement),
whereas the FISTA reconstruction has noticeable artifacts and the ball even disappears for
lower TV values. See Visualization 3 for the full video.

clean of a reconstruction as UDN and has prominent artifacts visible in the reconstruction.
At our reduced resolution, PnP BM4D takes around 24 hours for a reconstruction, making
tuning this algorithm difficult. Performing the reconstruction at full resolution would take
multiple days, which is not practical, and notably slower than our UDN reconstruction.

Finally, we show another single-shot video experimental result in Fig. A.8. We can see
that UDN provides more uniform image quality throughout the video, and also is better at
capturing the scene motion. FISTA has more noticeable artifacts, however is able to recover
slightly sharper features (e.g. the book text) at the cost of more artifacts throughout the
video.
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A.3 Supplemental Materials for Learning a

Physics-informed Noise Model

Additional implementation details

Noise Generator and Discriminator

First, we provide additional details about the noise generator and discriminator. In our noise
generator, we include a periodic noise component. This periodic noise component is modeled
as follows in the frequency domain as:

n[M,N ] = F−1


X1, if N = 0

X2 +X3j, N = Nt/4

X2 −X3j, N = 3Nt/4

0, otherwise

Where X1, X2, and X3 are zero mean Gaussian random variables with optimized vari-
ances λf1, λf2, λf3, Nt is the total number of columns in the image, and M,N index the
rows/columns of the image. This essentially corresponds to adding a 1 or 2 pixel period si-
nusoidal pattern to the image with a random amplitude that is determined by the optimized
variance parameter. We demonstrate the effect of this noise in Figure A.9, showing a central
slice of the Fourier transform of the clean vs. noisy images. We can see that our full model
better matches the real noise than our partial model which does not consider the periodic
noise component.

real noiseoursours (no periodic) clean
Noise patches in Fourier space

pixels

in
te

ns
ity

Figure A.9: Fourier transform of the noise. Fourier transform of clean and noisy patches,
showing the prominent spike in Fourier space that we see in the real noisy images. Our full
model captures this behaviour.

For the CNN in our noise generator, we use a standard 2D residual U-Net architecture,
with 4 input and output channels, 4 upsampling and downsampling layers, stride-2 convo-
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lutional downsampling layers, stride-2 transpose convolutional upsampling layers, and SeLU
activations. The number of channels in our 4 downsampling and upsampling layers are 32,
64, 128, and 256.

We initialize our shot, read, row, and row temporal noise parameters to 0.2, 0.02, and
0.002, and 0.0002 respectively. We initialize our uniform noise parameter to 0.1, and our
periodic parameters to 5. In general, we note that the initialized value of these parameters
did not seem to effect the final converged value as long as the initial values were small.

Our discriminator’s architecture is outlined in Fig. A.10. We feed in images with a patch
size of 64 into the discriminator during training. We use an Adam optimizer [106] with a
learning rate of 0.0002, with β1 = 0.5 and b2 = 0.999 for both the generator and discrimi-
nator. For each experiment in our generator ablation study, we feed both the noisy patch
as well as the Fourier transform of the noisy patch into the discriminator, which we found
resulted in better performance than using either the image or the Fourier transform of the
image alone. For the final two comparisons in the ablation (all the noise parameters with
U-Net and all the noise parameters without the U-Net) we use only the Fourier transform of
the image in the discriminator, which resulted in the best performance given those param-
eters. In all experiments, we add an LPIPS loss to our generator loss. We take a gradient
step on the generator after every 5 gradient steps on the discriminator.

Conv2d (3x3, stride 1),
spectral norm, Leaky ReLU
Conv2d (3x3, stride 2), 
spectral norm, Leaky ReLU
fully connected layer 
(linear, spectral norm, 
Sigmoid)

synthetic/real 
noise

output

Figure A.10: Discriminator architecture. We use our discriminator during our noise
generator training.

Denoiser details

We base our denoiser on FastDVDnet [200]. We modify the FastDVDnet architecture in two
ways. First, we increase the number of channels to 4 instead of 3 to facilitate processing our
RAW images. Next, we modify the denoiser blocks. The original implementation of FastD-
VDnet uses a U-Net architecture for the denoising blocks. We replace this architecture with
HRNet blocks. In our raw high gain, low light videos, we often see flashing and differences
in colors between frames (Figure A.11). Experimentally, we found that using HRNet blocks
reduces the flickering across frames that we see at our lowest light settings. Figure A.11
shows an example of this with a FastDVDNet denoiser using U-Net blocks vs. as FastDVD-
net denoising with HRNet blocks. When plotting the mean intensity over time, we can see
that version with HRNet blocks has less variance in the intensity, effectively smoothing out
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the flickering over frames, whereas the FastDVDNet with U-Net blocks is not effective at
reducing flickering, having a higher variance in the mean intensity over time.

Following from FastDVDnet, our denoiser architecture consists of two denoising blocks.
Each block takes in 3 images with 4 channels each (12 channels total) and outputs a single
image with 4 channels. We use an HRNet designed for semantic segmentation [194, 211, 225]
and slightly modify it to work on our images by replacing the initial stride-2 convolutions
to stride-1 convolutions. Our HRNet has 4 stages. The first stage consists of a Bottleneck
block, while the remaining stages consists of Basic blocks. We summarize the number of
branches (Nbr), number of channels (Nc), number of modules (Nm), and number of blocks
(Nbl) in each stage in the Table A.4.

Stage Nbr Nc Nm Nbl

1 1 [64] 1 [4]
2 2 [18, 36] 1 [4,4]
3 3 [18, 36, 72] 3 [4,4,4]
4 4 [18, 36, 72, 144] 3 [4,4,4,4]

Table A.4: HRNet architecture

Camera details

For all noisy sequences, we use the highest camera gain: 16× column amplifier gain), 6dB
CDS Gain, and 1023 VGA gain. In addition, all images are stored as RAW unprocessed
images with RGB+NIR channels. The clean images were taken at 1× column amplifier
gain, 6dB CDS Gain, and 10 VGA gain. For all images, the exposure on the clean/noisy
images was set to approximately match their intensities ( 1000×). For all sets of images,
a scalar offset to correlate the mean intensity for the clean/noisy pairs was calculated and
applied to each clean image to match the mean to that of the noisy images.

Additional Results

Simplified Noise Model results

Next, we perform an additional ablation in which we keep our denoiser constant and use
a different noise generator to synthesize our noisy video clips. We compare using our full
noise generator against our full noise generator without the U-Net and with only read, shot,
and uniform noise in Table A.5, showing the performance on our stills dataset. We can
see that our full model with the U-Net performs the best. We anticipate that the U-Net is
able to learn additional features of the noise that we do not explicitly model (e.g. chromatic
effects in the noise) and perhaps augment any simplifications in our noise mode (e.g. using
a heteroscedastic Gaussian noise model rather than a Poisson model for shot noise). Given
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better synthetic noise, our denoiser can successfully tackle sensor-specific noise and produce
the best denoised images.

Method PSNR SSIM LPIPS

Ours (Shot+read+uniform) 23.8 0.861 0.111

Ours no U-Net 25.5 0.910 0.115

ours (full) 27.7 0.931 0.078

Table A.5: Performance on still images from test set.

Stills Results

Next we provide additional images to showcase our results on our stills dataset. We com-
pare against V-BM4D, L2SID, N2S, and FastDVDNet. We compare both against pretrained
L2SID as well as L2SID retrained using our stills dataset. Two example images are shown
in Figure A.12. Here we can see that V-BM4D and N2S both have significant line artifacts
throughout the images. Pretrained L2SID has issues with color, since our camera has an
additional NIR channel rather than only RGB channels, and also blurs out features due to dif-
ferences in our camera noise. When we pretrain L2SID using our own data, the performance
improves substantially for still images as expected. Since L2SID is a single-image method
and ours uses 5 images to collaboratively denoise an image, we still outperform L2SID in
dark regions of the image (e.g. the text on the cans in clip 2). Furthermore, retrained L2SID
results in severe flickering and poor performance on moving videos (see attached video clips).
Similarly, pretrained FastDVDNet contains stripe artifacts and has reduced resolution since
it is trained using a Gaussian noise model. Our method closely matches the ground truth
images, maintaining the image features while suppressing the noise.

See attached supplemental video for a video comparison between our method, V-BM4D,
L2SID (retrained on our stills data), and FastDVDNet. All videos are downsized by 2× from
the full resolution and cropped by 880×630 pixels (full resolution is 2160×1280). In addition,
we provide a video with a compilation of denoised clips from our submillilux dataset. In these
videos, we demonstrate the performance of our denoiser at the most challenging low light
setting with significant motion.

Perceptual Experiments

We perform a perceptual experiment with blind randomized A/B tests between our method,
V-BM4D, FastDVDNet, and L2SID. We show 10 clips from our submillilux dataset. Each
clip is 30 frames long and is cropped to a 400×400 region which shows significant motion.
During the experiment, we show 2 video clips side by side in a randomized order and workers
are asked which clip they prefer. We run 300 comparisons in total with 10 workers. The
results are summarized below:

• 95.0 [+/- 4.27]% prefer our method over FastDVDNet.
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• 99.0 [+/- 1.95]% prefer our method over L2SID.

• 97.0 [+/- 3.34]% prefer our method over V-BM4D.

As we can see, in all the experiments, video clips produced by our method are preferred
over alternative methods by a large margin.
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Figure A.11: Architecture comparison: FastDVDnet + U-Net vs FastDVDnet + HRnet.
Here we can see that original FastDVDnet results in more flickering between frames than
our modified FastDVDnet (with HRnet).
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Figure A.12: Denoising comparison on two noisy bursts of still objects from our test set.
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