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Abstract

Validity Challenges in Machine Learning Benchmarks

by

John Patterson Miller

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Moritz Hardt, Co-chair

Professor Benjamin Recht, Co-chair

Over the last decade, machine learning practitioners in fields like computer vision and natural
language processing have devoted vast resources to building models that successively improve
performance numbers on a small number of prominent benchmarks. While performance on
these benchmarks has steadily increased, real-world deployments of learning systems continue
to encounter difficulties with robustness and reliability. The contrast between the optimistic
picture of progress painted by benchmark results and the challenges encountered by real
systems calls into question the validity of benchmark datasets, that is, the extent to which
benchmark findings generalize to new settings. In this thesis, we probe the validity of machine
learning benchmarks from several perspectives.

We first consider the statistical validity of machine learning benchmarks. Folk-wisdom in
machine learning says that repeatedly reusing the same dataset for evaluation invalidates
standard statistical guarantees and can lead to overoptimistic estimates of performance.
We test this hypothesis via a dataset reconstruction experiment for the Stanford Question
Answering Dataset (SQuAD). We find no evidence of overfitting from test-set reuse. This
result is consistent with a growing literature which finds no evidence of so-called adaptive
overfitting in benchmarks using image and tabular data. We offer a new explanation for
this phenomenon based on the observed similarity between models being evaluated, and we
formally show this type of model similarity offers improved protection against overfitting.

While statistical validity appears to be less of a concern, our experiments on SQuAD re-
veal that predictive performance estimates are extremely sensitive to small changes in the
distribution of test examples, which threatens the external validity of such benchmarks.
To understand the breadth of this issue, we conduct a large-scale empirical study of more
100,000 models across 60 different distribution shifts in computer vision and natural lan-
guage processing. Across these many distribution shifts, we observe a common phenomenon:
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small changes in the data distribution lead to large and uniform performance drops across
models. Moreover, this drop is often governed by a precise linear relationship between the
performance on the benchmark and performance on new data that holds across model ar-
chitectures, training procedures, and dataset size. Consequently, sensitivity to distribution
shift is likely an intrinsic property of existing benchmark datasets and not something that
is easily addressed by algorithmic or modeling innovations.

Taken together, these results highlight the difficulties with using narrow, static benchmarks
to build and evaluate systems deployed in a dynamic world. In the final part of the thesis,
we present two new resources to improve the evaluation of such systems. In the context of
algorithmic fairness, we present a new collection of datasets derived from US Census data
that explicitly includes data across multiple years and all US states. This allows researchers
to evaluate new models and algorithms in presence population changes due to temporal
shift and geographic variation. In the context of causal inference, we introduce a simulation
framework that repurposes dynamical system models from climate science, economics, and
epidemiology for the evaluation of causal inference tools across a variety of data generating
distributions both when the assumptions of such tools are satisfied and when they are not.
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Chapter 1

Introduction

The benchmark dataset paradigm is central to modern machine learning practice. In com-
puter vision, results on the ImageNet benchmark [62, 200] kicked off a decade of work and
massive industrial investment in deep learning. In natural language processing, benchmark
datasets like SQuAD [187] and GLUE [239] have garnered thousands of citations and are
among the first testbeds for new ideas. In all areas of machine learning, it is now de rigueur
for practitioners to compare the quantitative performance of algorithms on common test
sets, using fixed and automatically calculated evaluation metrics. These benchmarks play a
number of complex and important roles in the machine learning ecosystem. At a basic level,
benchmarks provide data for model builders to train and compare models. More subtly,
benchmark also implicitly formulate problems, organize research communities, drive funding
and investment decisions, and serve as a ready interface between academic and industrial
work [92].

A driving force behind the adoption of the benchmark dataset paradigm was the belief
that focusing on benchmark evaluation would lead to progress in machine learning. The
benchmark paradigm came into prominence in the 1980’s under the influence of DARPA
program manager Charles Wayne and Fred Jelinek as part of the common task framework.
From the beginning, these men envisioned a focus on benchmark results would remove the
element of “deceit-and-glamour” from evaluation and provide funding agencies with a con-
crete, numerical measure of progress over time [51, 139].

Over the last decade, Wayne and Jelinek’s vision has been realized on a grand scale.
Thousands of researchers build models for and compare results on an ever-growing set of
new benchmarks in areas like computer vision [62, 200, 141, 123, 29, 75, 120, 14, 9, 50],
natural language processing [187, 239, 71, 115, 242, 240], and robotics [33, 232, 40]. The
field as a whole is increasingly empirical and evaluation-driven. New methods and techniques
come equipped with few theoretical guarantees, and their ultimate justification is whether
or not they improve performance numbers on a particular benchmark.

At first glance, this relentless focus on benchmarks has been an unmitigated success.
In computer vision, since 2012, top-1 accuracy on ImageNet has risen dramatically from
63% [125] to 91% [255]. Similarly, in natural language processing, on the popular SQuAD
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question answering benchmark, since 2016, F1 accuracy numbers have jumped from around
50 [187] to over 95 [252]. Collectively, the machine learning community is remarkably adept
at hill-climbing on common benchmarks.

Despite the optimistic picture of progress portrayed in benchmark results, deployments
of machine learning systems continue to fail in important applications. Learning systems to
detect pneumonia or sepsis fail dramatically when trained on data from one hospital and
used in another [256, 243]. Self-driving cars still have difficulty navigating new environ-
ments [206]. Speech recognition systems have significantly higher error rates on minority
populations [119]. Models for home-price prediction can go wildly awry and cause nine-
figure losses [219]. In essence, machine learning systems today are repeatedly deployed in
high-stakes environments, and their performance underwhelms what one would expect from
benchmark numbers alone.

In light of these conflicting observations, we revisit and interrogate the basic assumption
of the benchmark paradigm: that progress on machine learning benchmarks leads to progress
more generally. In this thesis, we probe the validity of machine learning benchmarks [156].
We first consider the statistical validity of benchmark results, that is, we test whether or not
benchmark performance estimates reliably measure the performance of a model on the same
distribution of examples as the benchmark test set. We then consider questions of external
validity, that is, whether benchmark findings generalize to new experimental settings. Fi-
nally, we use insights from these experiments to construct new benchmarks and improve the
state of empirical evaluation in algorithmic fairness and causal inference.

1.1 Statistical validity of benchmarks

Most machine learning benchmarks rely on the holdout method to evaluate models. Prac-
titioners split their datasets into two parts: the training set used for model development
and the “held-out”test set used for model evaluation. In principle, the test set is used only
once and provides an unbiased estimate of the model’s performance. In practice, the test
set is repeatedly used as practitioners evaluate a model’s performance on the test set and
then use this feedback to tweak the model on the training set. This feedback invalidates
the common statistical guarantees of the holdout method. Indeed, Hastie et al. [95] warn
this practice can lead to overfitting and “the test set error of the final chosen model will un-
derestimate the true test error, sometimes substantially.” A primary worry about machine
learning benchmarks is then that ever improving benchmark performance numbers are not
real improvement, but rather the product of adaptive overfitting from test set reuse.

In Chapter 2, we test whether this type of adaptive overfitting has occurred on the
popular SQuAD question answering benchmark [187]. To do this, we resurrect the original
dataset construction pipeline, generate a new dataset with a distribution closely matching
the original, and evaluate a testbed of models from the SQuAD leaderboard on the new
dataset. Despite more than five years of heavy test set reuse, we find no evidence of adaptive
overfitting.
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Our findings on SQuAD are in line with similar dataset reproduction efforts in computer
vision on ImageNet [190] and MNIST [249], as well as recent a meta-analysis of Kaggle com-
petitions [195]. In Chapter 3, we seek to better understand the resilience of benchmarks to
test set reuse. Concretely, we observe that many of the models evaluated on computer vision
test sets like CIFAR-10 and ImageNet have extremely high similarity in their predictions,
and we prove that this type of model similarity offers protection against overfitting.

1.2 External validity of benchmarks

Next, we turn our attention to the external validity of machine learning benchmarks. In
particular, we study the extent to which the findings of a particular benchmark generalize
to new populations and experimental contexts. To study this phenomenon rigorously in
as many experimental settings as possible, we build new datasets and conduct large-scale
evaluations of both classical and state-of-the-art deep learning models in natural language
processing and computer vision.

In Chapter 2, using the same dataset construction pipeline, we generate three new tests
for SQuAD using text data from different domains than the original Wikipedia articles and
evaluate the ability of leaderboard models to generalize to new data. Across a broad range
of models, we observe large and uniform performance drops. Interestingly, we observe an
extremely precise linear relationship between model performance on the original test set and
model performance on the new test set. Consequently, while model performance numbers
themselves are brittle and unreliable, the relative ranking between models is often preserved.

In Chapter 4, we study this observed linear trend relationship more carefully. We con-
duct a large-scale evaluation of more than 100,000 models on more than 60 natural and
synthetic distribution shifts on CIFAR-10 [123], ImageNet [63], the Stanford Wilds Bench-
mark [120], and a synthetic data testbed based on the YCB-Objects [40], among others.
In most cases, we find both sensitivity to distribution shifts and the associated linear trend
relationship holds across model architectures, model hyperparameters, training dataset sizes,
optimization algorithms, and robustness interventions. The regularity of this phenomenon
leads us to conjecture the linear trend is intimately related to properties of the benchmark
datasets themselves and performance drops out of distribution are unlikely to be addressed
with purely new algorithmic or modeling innovations.

Beyond distribution shifts of the types explored above, there are other challenges to ex-
ternal validity. The UCI Adult dataset [121] is one of the most widely used benchmarks
in algorithmic fairness. In Chapter 5, we demonstrate that idiosyncratic details of dataset
construction and choice of target variable limit it’s utility for fairness research. Indeed, a
standard logistic regression model has higher accuracy on the black and female subpopula-
tions than the general population overall, which is a rather peculiar situation for fairness
research.

Overall, one the key results of our inquiry is that while the reported results of machine
learning benchmarks are typically statistically valid, benchmarks themselves face significant
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challenges with external validity.

1.3 New resources for model evaluation

A primary source of external validity issues is that benchmarks themselves are often nar-
rowly scoped and test only a limited range of experimental conditions. In the final part of
this thesis, we attempt to address this issue by introducing two new experimental resources
for evaluation. In Chapter 5, we build new datasets for algorithmic fairness from US Census
data that rectify the issues we identified with UCI Adult and explicitly include temporal
and geographic variation in populations. Finally, in Chapter 6, we introduce a new exper-
imental framework that repurposes simulation environments from fields like economics and
epidemiology to stress test the performance of causal inference tools in new environments
and probe their robustness or lack thereof to violations of their key assumptions.
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Chapter 2

Benchmark Case Study: The Stanford
Question Answering Dataset

2.1 Introduction

In this chapter, we use the Stanford Question Answering Dataset (SQuAD) [187] as represen-
tative case study for validity issues facing modern machine learning benchmarks. Since its
release in 2016, SQuAD has generated intense interest from the natural language processing
community. At first glance, this intense interest has lead to impressive results. The best
performing models in 2020 [65, 252] have F1 scores that are more than 40 points higher than
the baseline presented by Rajpurkar et al. [187]. At the same time, it remains unclear to
what extent progress on these benchmark numbers is a reliable indicator of progress more
broadly.

The goal of building question answering systems is not merely to obtain high scores on
the SQuAD leaderboard, but rather to generalize to new examples beyond the SQuAD test
set. However, the competition format of SQuAD puts pressure on the validity of leaderboard
scores. It is well-known that repeatedly evaluating models on a held-out test set can give
overly optimistic estimates of model performance, a phenomenon known as adaptive overfit-
ting [72]. Moreover, the standard SQuAD evaluation only measures model performance on
new examples from the same distribution, i.e., paragraphs derived from Wikipedia articles.
Nevertheless, we often use and deploy systems in settings different from the one in which
they were trained. While Jia and Liang [113] demonstrated that SQuAD models are not ro-
bust to adversarial distribution shifts, one might still hope that the models are more robust
to natural distribution shifts, for instance changing from Wikipedia to newspaper articles.

This state of affairs raises two important questions:

Are SQuAD models overfit to the SQuAD test set?
Are SQuAD models robust to natural distribution shifts?

In this work, we address both questions by replicating the SQuAD dataset creation
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Figure 2.1: Model and human F1 scores on the original SQuAD v1.1 test set compared to
our new test sets. Each point corresponds to a model evaluation, shown with 95% Student’s-
t confidence intervals (mostly covered by the point markers). The plots reveal three main
phenomena: (i) There is no evidence of adaptive overfitting on SQuAD, (ii) all of the models
suffer F1 drops on the new datasets, with the magnitude of the drop strongly depending
on the corpus, and (iii) humans are substantially more robust to natural distribution shifts
than the models. The slopes of the linear fits are 1.0, 1.03, 1.06, and 1.13, respectively. This
means that every point of F1 improvement on the original dataset translates into roughly 1
point of improvement on our new datasets.

process and generating four new SQuAD test sets on both the original Wikipedia domain, as
well as three new domains: New York Times articles, Amazon product reviews, and Reddit
posts.

We first show that there is no evidence of adaptive overfitting on SQuAD. Across a large
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collection of SQuAD models, there is little to no difference between the F1 scores from the
original SQuAD test set and our replication. This even holds when comparing scores from
the SQuAD development set (which was publicly released with answers) to our new test set.
The lack of adaptive overfitting is consistent with recent replication studies in the context of
image classification [190, 249]. These studies leave open the possibility that this phenomenon
is specific to the data or models typical in computer vision research benchmarks. Our result
demonstrates this same phenomenon also holds for natural language processing.

Beyond adaptive overfitting, we also demonstrate that SQuAD models exhibit robustness
to some of our natural distribution shifts, though they still suffer substantial performance
degradation on others. On the New York Times dataset, models in our test bed on average
drop 3.0 F1 points. On the Reddit and Amazon datasets, the drop is on average 12.6 and 14.0
F1 points, respectively. All of our datasets were collected using the same data generation
pipeline, so this degradation can be attributed purely to changes in the source text rather
than differences in the annotation procedures across datasets.

We complement each of these experiments with a strong human baseline comprised of
the author of this chapter and two collaborators. On the original SQuAD data, our human
accuracy numbers are on par with the best SQuAD models [252] and significantly better
than the Mechanical Turk baseline reported by Rajpurkar et al. [187]. On each of the test
sets with distribution shift, human performance is essentially unchanged and significantly
higher than the best SQuAD models.

Figure 2.1 summarizes the main results of our experiments. Humans show consistent
behavior on all four test sets, while models are substantially less robust against two of the
distribution shifts. Although there has been steady progress on the SQuAD leaderboard,
there has been markedly less progress in this robustness dimension.

To enable future research, all of our new tests sets are freely available online.1

2.2 Background

In this section, we briefly introduce the SQuAD dataset and present a formal model for
reasoning about performance drops between our test sets.

Stanford Question Answering Dataset

SQuAD is an extractive question answering dataset introduced by Rajpurkar et al. [187].
An example in SQuAD consists of a passage of text, a question, and one or more spans of
text within the passage that answer the question. An example is given in Figure 2.2.

Model performance is evaluated using one of two metrics: exact match (EM) or F1. Exact
match measures the percentage of predictions that exactly match at least one of the ground
truth answers. F1 measures the maximum overlap between the tokens in the predicted span

1https://modestyachts.github.io/squadshifts-website/
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Passage: “In our neighborhood, we were 
the small family, at least among the 
Irish and Italians… We could almost field 
a full baseball team. But the Flynns, 
they could put an entire football lineup… 
We loved Robert F. Kennedy’s family: 11 
kids, and Ethel looks great. Bobby 
himself was the seventh of nine.”

Question: How many kids did Robert F. 
Kennedy have?
Answer: 11

Question: The author believes his family 
could fill a team of which sport?
Answer: baseball

Figure 2.2: Question and answer pairs from a sample passage in our New York Times SQuAD
test set. Answers are text spans from the passage that answer the question.

and any of the ground truth answers, treating both the prediction and each answer as a bag
of words. Both metrics are described formally in Appendix 2.8.

After releasing the original SQuAD v1.1 dataset, Rajpurkar, Jia, and Liang [186] in-
troduced a new variant of the dataset, SQuAD 2.0, that includes unanswerable questions.
Since SQuAD v1.1 has been public for longer and potentially subjected to more adaptivity,
we focus on SQuAD v1.1 and refer to it as the SQuAD dataset throughout this chapter.
The SQuAD v1.1 test set is not publically available. Therefore, while we use public test set
evaluation numbers, we otherwise use the public SQuAD v1.1 development set for analysis.

A Model for Generalization

Although progress on SQuAD is measured through performance on a held-out test set, the
implicit goal is not to achieve high F1 scores on the test set, but rather to generalize to unseen
examples. Our experiments test the extent to which this assumption holds—if models with
high leaderboard scores on the test set continue to perform well on new examples, whether
from the same or different distributions.

To be more formal, suppose the original test set S is sampled from some underlying distri-
bution D, and consider a model f submitted to the SQuAD leaderboard. Let LS(f) denote
the empirical loss of model f on the sample S, and let LD(f) denote the corresponding pop-
ulation loss. In our experiment, we gather a new dataset of examples S ′ from a distribution
D′, potentially different from D. We wish for the loss on the new sample, LS′(f) to be close
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to the original, LS(f). Omitting f , we can decompose this gap into three terms [190].

LS − LS′ = (LS − LD)︸ ︷︷ ︸
Adaptivity gap

+ (LD − LD′)︸ ︷︷ ︸
Distribution gap

+ (LD′ − LS′)︸ ︷︷ ︸
Generalization gap

The adaptivity gap LS −LD measures how much adapting the model to the held-out test
set S biases the estimate of the population loss. Since recent models are in part chosen on
the basis of past test set information, the model f is not independent of S. Hence LS(f)
can underestimate LD(f), a phenomenon called adaptive overfitting. The distribution gap
measures how much changing the distribution from D to D′ affects the model’s performance.
Finally, the generalization gap LS′−LD′ captures the difference between the sample and the
population losses due to random sampling of S ′. Since S ′ is sampled independently of the
model, this gap is typically small and well-controlled by standard concentration results.

In the sequel, we empirically measure both the adaptivity gap and the distribution gap for
a wide range of SQuAD models by collecting new test sets from a variety of distributions D′.
We first review related work that motivates our choice of SQuAD and natural distribution
shifts.

2.3 Related work

Adaptive data analysis. Although repeated test-set reuse puts pressure on the statistical
guarantees of the holdout method [72], a series of replication studies established there is no
adaptive overfitting on popular classification benchmarks like MNIST [249], CIFAR-10 [190],
and ImageNet [190]. Furthermore, Roelofs et al. [195] also found little to no evidence of
adaptive overfitting in a host of classification competitions on the Kaggle platform. These
studies either concern image classification or smaller competitions that have not been subject
to intense, multi-year community scrutiny. Our work establishes similar results for natural
language processing on a heavily studied benchmark.

A number of works have proffered explanations for why adaptive overfitting does not
occur in the standard machine learning workflow [26, 153, 76, 264]. Complementary to these
results, our work provides a new data point with which to validate and deepen our conceptual
understanding of overfitting.

Datasets for question answering. Beyond SQuAD, a number of works have proposed
datasets for question answering [193, 19, 115, 236, 71, 251, 127]. We focus our analysis on
SQuAD for two reasons. First, SQuAD has been the focus of intense research for almost four
years, and the competitive nature of the leaderboard format makes it an excellent example
to study adaptive overfitting in natural language processing. Second, SQuAD requires all
submissions to be uploaded to CodaLab [54], which ensures reproducibility and makes it
possible to evaluate every submission on our new datasets using the same configuration and
environment as the original evaluation.
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Generalization in question answering. Given the plethora of question-answering datasets,
Yogatama et al. [253] and Talmor and Berant [226] evaluate the extent to which models
trained on SQuAD generalize to other question-answering datasets. In a similar vein, Fisch
et al. [78] conduct a shared task competition that evaluates how well models trained on
a collection of six datasets generalize to unseen datasets at test time. In both cases, the
datasets encountered at test time vary across a number of dimensions: the question col-
lection procedure, the origin of the input text, the question answering interface, the crowd
worker population, etc. These differences are confounding factors that make it difficult to
interpret performance differences across datasets. For example, human performance differs
by 10 F1 points between SQuAD v1.1 and NewsQA [236]. In contrast, our datasets focus
on a single factor of variation—the input text corpus. In this controlled setting, free of con-
founding factors, we observe non-trivial F1 drops across a large collection of models, while
human F1 scores are essentially constant.

From a different perspective, both Jia and Liang [113] and Ribeiro, Singh, and Guestrin
[192] consider robustness to adversarial dataset corruptions. While we instead focus on nat-
ural distribution shifts, we also evaluate adversarial distribution shift for our model testbed
in Appendix 2.9. We find that robustness under natural and adversarial distribution shifts
exhibits qualitatively different phenomena, making natural distribution shifts interesting to
study in their own right.

2.4 Collecting new test sets

In this section, we describe our data collection methodology. Data collection primarily
proceeds in two stages: curating passages from a text corpus and crowdsourcing question-
answer pairs over the passages. In both of these stages, we take great care to replicate the
original SQuAD data generating process. Where possible, we obtained and used the original
SQuAD generation code kindly provided by Rajpurkar et al. [187]. We ran our dataset
creation pipeline on four different corpora: Wikipedia articles, New York Times articles,
Reddit posts, and Amazon product reviews.

Passage Curation

The first step in the dataset generation process is selecting the articles from which the
passages or contexts are drawn.

Wikipedia. We sampled 48 articles uniformly at random from the same list of 10,000
Wikipedia articles as Rajpurkar et al. [187], ensuring that there is no overlap between our
articles and those in the SQuAD v1.1 training or development sets. To minimize distribution
shift due to temporal language variation, we extracted the text of the Wikipedia articles from
around the publication date of the SQuAD v1.0 dataset (June 16, 2016). For each article, we
extracted individual paragraphs and stripped out images, figures, and tables using the same
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Table 2.1: Dataset statistics of our four new test sets compared to the original SQuAD 1.1
development and test sets.

Dataset Total Articles Total Examples

SQuAD v1.1 Dev 48 10,570
SQuAD v1.1 Test 46 9,533
New Wikipedia 48 7,938
New York Times 797 10,065
Reddit 1969 9,803
Amazon 1909 9,885

data processing code as Rajpurkar et al. [187]. Then, we subsampled the resulting paragraphs
to match the passage length statistics of the original SQuAD dataset.2 See Appendix 2.11
for a detailed comparison of the paragraph distribution of the original SQuAD dev set and
our new SQuAD test set.

New York Times. We sampled New York Times articles from the set of all articles pub-
lished in 2015 using the NYTimes Archive API. We scraped each article using the Wayback
Machine, using the same snapshot timestamp as our Wikipedia dataset, and removing for-
eign language articles. Since the average paragraph length for NYT articles is significantly
shorter than the average paragraph length for Wikipedia articles, we merged each NYT para-
graph with its subsequent paragraph with some probability. Then we subsampled the merged
paragraphs to match the character length statistics of the original SQuAD v1.1 dataset.

Reddit Posts. We sampled Reddit posts from the set of all posts across all subreddits
during the month of January 2016 in the Pushshift Reddit Corpus [13]. Then we restricted
the set of posts to those marked as “safe for work” and manually removed inappropriate
posts from the remaining ones. We concatenated each post’s title with its body, removed
Markdown, and replaced all links with the string LINKREMOVED. We then subsampled the
posts to match the passage length statistics of the original SQuAD v1.1 dataset.

Amazon Product Reviews. We sampled Amazon product reviews belonging to the
“Home and Kitchen” category from the dataset released by McAuley et al. [157]. As in
the previous datasets, we then subsampled the reviews to match the passage length statis-
tics of SQuAD v1.1.

2The minimum 500 character per paragraph rule mentioned in Rajpurkar et al. [187] was adopted midway
through their data collection, and hence the original dataset also includes shorter paragraphs [185].
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Crowdsourcing Question-Answer Pairs

We employed crowdworkers on Amazon Mechanical Turk (MTurk) to ask and answer ques-
tions on the passages in each dataset. We followed a nearly identical protocol to the original
SQuAD dataset creation process. We used the same MTurk user interface, task instructions,
MTurk worker qualifications, time per task, and hourly rate (adjusted for inflation) as Ra-
jpurkar et al. [187]. For full details and examples of the user interface, refer to Appendix 2.11.

For each paragraph, one crowdworker first asked and answered up to five questions on
the content of the paragraph. Then, we obtained at least two additional answers for each
question using separate crowdworkers.

There are two points of discrepancy between our crowdsourcing protocol and the one used
to create the original SQuAD dataset. First, we interfaced directly with MTurk rather than
via the Daemo platform.3 Second, in the original SQuAD task, workers asked and answered
questions for an entire article, whereas in our task workers asked and answered questions
for at most five paragraphs at a time. Although each difference is a potential source of
distribution shift, in Section 2.5 we show that the effect of these changes is negligible—all
models achieve roughly the same scores on both the original and new Wikipedia datasets.

After gathering question and answer pairs for each paragraph, we apply the same post-
processing and data cleaning as SQuAD v1.1. We adjusted answer whitespace for consistency,
filtered malformed answers, and removed all documents that had less than an average of two
questions per paragraph after filtering. Table 2.1 summarizes the overall statistics of our
datasets.

Human Evaluation

Although both SQuAD and our new test sets have answers from MTurk workers, it is not
clear whether these answers represent a compelling human baseline. At minimum, workers
are not familiar with the typical style of answers in SQuAD (e.g., how much detail to include),
and they receive no feedback on their performance. To obtain a stronger human baseline, the
author and two collaborators also answered approximately 1,000 questions on each of the four
new test sets and the original SQuAD development set, following the same procedure and
using the same UI as the MTurk workers. To take feedback into account, each participant
first labelled 500 practice examples from the training set and compared their answers with
the ground truth.

2.5 Main results

We use the four new datasets generated in the previous part to test for adaptive overfitting
on SQuAD and probe the robustness of SQuAD models to natural distribution shifts.

3The Daemo platform has been discontinued.
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Table 2.2: Comparision of model F1 scores on the original SQuAD test set and our new
Wikipedia test set. Rank refers to the relative ordering of the 25 models in our testbed using
the original SQuAD v1.1 F1 scores, new rank refers to the ordering using the new Wikipedia
test set scores, and ∆ rank is the relative difference in ranking from the original test set to
the new test set. The confidence intervals are 95% Student-T intervals. A complete table
with data for the entire model testbed, references, and analogous data for EM scores is in
Appendix 2.10.

New-Wiki F1 Score Summary

Name Rank SQuAD New-Wiki New Rank ∆ Rank

XLNET-123 1 94.9 92.6 [92.1, 93.1] 1 0
Tuned BERT-1seq Large 2 93.3 91.4 [90.9, 92.0] 2 0
BERT-Large Baseline 3 92.7 91.3 [90.7, 91.8] 3 0
BiDAF+SelfAttn+ELMo 13 85.9 84.2 [83.5, 85.0] 14 -1
Jenga 18 82.8 80.6 [79.7, 81.4] 19 -1
AllenNLP BiDAF 22 77.3 77.0 [76.1, 77.9] 22 0

We evaluated a broad set of 25 models submitted to the SQuAD leaderboard, including
state-of-the-art models like XLNet [252] and BERT [65], as well as older, but popular models
like BiDAF [208]. All of the models were submitted to the CodaLab platform, and we
evaluate every model using the exact same configuration (model weights, hyperparameters,
command-line arguments, execution environment) as the original submission. Tables 2.2
and 2.3 contain a brief summary of the results for key models.

Adaptive Overfitting

The SQuAD models in our testbed come from a long sequence of papers that incrementally
improve F1 and EM scores over a period of several years. Consequently, if there is adaptive
overfitting, we should expect the later models to have large drops in F1 scores because they
are the result of more interaction with the testset. In this case, the higher F1 scores are
partially the result of a larger adaptivity gap, and we would expect that, as the observed
scores LS continue to rise, the population scores LD would begin to plateau.

To check for adaptive overfitting, we plot the SQuAD v1.1 test F1 scores against F1
scores our new Wikipedia test set. Figure 2.1 in Section 2.1 provides strong evidence against
the adaptive overfitting hypothesis. Across the entire model collection, the F1 scores on the
new test set closely replicate the original F1 scores. The observed linear fit is in contrast
to the concave curve one would expect from adaptive overfitting. We use 95% Student’s-t
confidence intervals, which make a large-sample Gaussian assumption, to capture the error
in the new test F1 scores due to random variation. No such confidence intervals are available
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Figure 2.3: Comparison of F1 scores between the SQuAD v1.1 dev set and the SQuAD v1.1
test set. Despite heavy use of the dev set during model development, the dev set and test
set scores closely match, with the exception of a single model that explicitly trained on the
dev set [179]. The slope of the linear fit is 0.99.

for the original test set scores since the test set is not publicly available. A similar plot for
EM is provided in Appendix 2.10.

Not only is there little evidence for adaptive overfitting on the test set, there is also little
evidence of adaptive overfitting on the development set. In Figure 2.3, we plot F1 scores on
the SQuAD v1.1 development set against F1 scores on the SQuAD v1.1 test set. With the
exception of a single model, the F1 scores on the dev set closely match the scores on the test
set, despite the fact that the development set is aggressively used during model selection.
Moreover, the model that does not lie on the linear trend line, Common-sense Governed

BERT-123, was directly trained on the development set [179].

Robustness to Natural Distribution Shifts

Given the correspondence between the old and new Wikipedia test set F1 scores, the adap-
tivity gap and the distribution gap are small or non-existent. Consequently, there is minimal
distribution shift stemming from our data generation pipeline. This allows us to probe the
sensitivity of the SQuAD models to a set of controlled distribution shifts, namely the choice
of text corpus. Since all of the datasets are constructed with the same preprocessing pipeline,
crowd-worker population, and post-processing, the datasets are free of confounding factors
that would otherwise arise when comparing model performance across different datasets.

Figure 2.1 in Section 2.1 shows F1 scores of on the SQuAD v1.1 test set versus the F1
scores on each of the new test sets for each model. All models experience an F1 drop on
the new test sets, though the magnitude is both test-set dependent and smaller than might
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Figure 2.4: Comparison of the linear fits for each of our new test sets. Markers indicate
average human performance on each dataset. By varying the dataset, we can vary the
gap between perfect robustness and the observed linear fit and change the difficulty of the
distribution shift problem. In each case, human performance is higher than the linear fit,
suggesting a substantial difference in robustness.

Table 2.3: Comparision of model F1 scores on the original SQuAD test set and our new
Amazon test set. Rank refers to the relative ordering of the 25 models in our testbed using
the original SQuAD v1.1 F1 scores, new rank refers to the ordering using the Amazon test
set scores, and ∆ rank is the relative difference in ranking from the original test set to the
new test set. The confidence intervals are 95% Student-T intervals. A complete table with
data for the entire model testbed, the New York Times and Reddit datasets, and EM scores
scores is in Appendix 2.10.

Amazon F1 Score Summary

Name Rank SQuAD Amazon New Rank ∆ Rank

XLNET-123 1 94.9 87.1 [86.5, 87.7] 1 0
Tuned BERT-1seq Large 2 93.3 84.3 [83.6, 84.9] 2 0
BERT-Large Baseline 3 92.7 82.5 [81.8, 83.2] 3 0
BiDAF+SelfAttention+ELMo 13 85.9 70.4 [69.5, 71.3] 12 1
Jenga 18 82.8 65.5 [64.6, 66.4] 18 0
AllenNLP BiDAF 22 77.3 57.8 [56.8, 58.7] 23 -1
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otherwise be expected. On New York Times, for instance, the top performing XLNet only
drops around 1.5 F1 points, whereas it drops around 8 F1 points on Amazon and 9 F1 points
on Reddit. Table 2.3 summarizes the F1 scores for a select set of models. Full results for all
models, datasets, and EM scores are given in Appendix 2.10.

F1 scores on the original SQuAD test set are highly predictive of F1 scores on the new
test sets, and, interestingly, the relationship is well-captured by a linear fit even under
distribution shifts. Similar to Recht et al. [190], we observe the linear fits are better under a
probit scaling of F1 scores, see Appendix 2.10. The gap between perfect robustness, y = x,
and the observed linear fits varies with the dataset in a way that roughly corresponds to
problem difficulty: 3.0 F1 points for New York Times and 12.6 points for Reddit and 14.0
F1 for Amazon. This relationship is summarized in Figure 2.4. In Appendix 2.10, we further
show the magnitude of the gap is controlled by another measure of task difficulty– agreement
between human answers—and we can systematically vary the size of the gap by varying this
measure of task specificity. In each case, higher performance on SQuAD v1.1 translates into
higher performance on these natural distribution shift instances, in contrast to adversarial
distribution shifts. We discuss this relation further in Appendix 2.9.

Despite the robustness demonstrated by the models, on all of the distribution test sets,
human performance is substantially higher than model performance and well above the
linear fits described in Figure 2.4. This rules out the possibility that the shift in F1 scores
are entirely due to an increase in noise in the data. Moreover, it points towards substantial
room for improvement for models on our new test sets.

2.6 Further analysis

In this section, we further explore the properties of our new test sets. We first study the
extent to which common measures of dataset difficulty can explain the performance drops on
our new test sets. Then, we evaluate whether training models with more, and more diverse,
data improves robustness to our distribution shifts.

Are The New Test Sets Harder Than The Original?

One hypothesis for the performance drops observed in Section 2.5 is that our new dataset are
harder in some sense. For instance, the diversity of answers may be greater among Reddit
comments than Wikipedia articles. To better understand this, we compare the original
SQuAD development set along with our four new test sets using the three difficulty measures
introduced in Rajpurkar et al. [187].

Answer diversity. Following Rajpurkar et al. [187], we automatically categorize each
answer into numerical and non-numerical answers, named entities, and constituents using
Spacy [106] and the constituency parser from Kitaev and Klein [117]. Histograms of answer
types for each data are shown in Figure 2.5. Since the original pipeline is not available,
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our implementation differs slightly from Rajpurkar et al. [187] and we include results on
the SQuAD dev set for comparison. Both the original and our new Wikipedia test set have
very similar answer type histograms. The distribution shift datasets have slight variations in
the answer distributions. For instance, NYT has more person answers, whereas Amazon has
more adjective phrases. However, there is little that systematically explains the performance
differences between the datasets. In Appendix 2.10, we show a simple model that predicts
F1 scores on our new test sets using model F1 scores on each of the answer types and the
relative frequency of each answer type in our new test sets explains little of the performance
differences across test sets.
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Figure 2.5: Comparison of the types of answers in the original and new datasets. We auto-
matically partition our answers into the same categories as Rajpurkar et al. [187]. Although
there are differences between the datasets, e.g. New York Times has more person answers,
the four datasets are very similar, and there is little that systematically explains the perfor-
mance drops.
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Syntactic divergence. We also stratify our datasets using the automatic syntactic di-
vergence measure of Rajpurkar et al. [187]. Syntactic divergence measures the similarity
between the syntactic dependency tree structure of both the question and answer sentences
and provides another metric of example difficulty. In Figure 2.6, we compare the histograms
of syntactic divergence for the SQuAD dev set and our new test sets. All of the datasets
have similar histograms, though both the Reddit and Amazon datasets have slightly more
examples with small syntactic divergence. As Rajpurkar et al. [187] note, however, examples
with small syntactic divergence are not necessarily easier if there are many other candidate
answers with small divergence.
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Figure 2.6: Histograms of syntactic divergence between question and answer sentences for
both the original and new datasets. All of the datasets have a similar distribution of syntactic
divergence, though the Reddit and Amazon datasets have more question-answers pairs with
small (1-2) syntactic divergence.

Reasoning required. Finally, we compare our new test sets in terms of the reasoning
required to answer each question-answer pair, using the same non-mutually exclusive cat-
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egories as Rajpurkar et al. [187]. For each dataset, as well as the SQuAD dev set, we
randomly sampled and manually labeled 192 examples. The results for each dataset are
presented in Table 2.4. Both the Amazon and Reddit dataset have more examples requiring
world knowledge to resolve lexical variation, while the New York Times dataset has more
examples requiring multisentence reasoning.

Table 2.4: Manual comparison of the reasoning required to answer each question-answer pair
on a random sample of 192 examples from each dataset using the categories from Rajpurkar
et al. [187]. The Reddit and Amazon datasets have more examples requiring world knowledge
to resolve lexical variation, whereas the New York Times dataset requires more multi-sentence
reasoning.

Reasoning Type SQuAD New Wiki NYT Reddit Amazon

Lexical Variation (Synonomy) 37.2 38.0 34.1 38.0 43.4
Lexical Variation (World Knowledge) 10.9 6.2 10.1 22.5 18.6
Syntactic Variation 49.6 46.5 50.4 55.0 50.4
Multiple Sentence Reasoning 12.4 11.6 17.1 12.4 10.1
Ambiguous 0.8 2.3 0.8 1.6 0.0

Are Models Trained with More Data More Robust to Natural
Distribution Shifts?

High performance on our new datasets requires models to generalize to data distributions
that may be different from those on which they were trained. Our primary evaluation only
concerns the robustness on SQuAD models, and a natural follow-up is whether models trained
on more data, or explicitly trained for out-of-distribution question-answering, perform better
on our new test sets.

To test this claim, we evaluated a collection of models from the Machine Reading for
Question Answering (MRQA) 2019 Shared Task on Generalization [78]. In the shared task,
models were trained on 6 question-answering datasets, including SQuAD v1.1, and then eval-
uated on 12 held-out datasets. The datasets simultaneously differed not just in the passage
distribution, as in our experiments, but also in confounders like the question distribution,
and the relationship between questions and passages.

In Figure 2.7, we plot the F1 scores of MRQA models on the SQuAD v1.1 dataset against
the F1 scores on each of our new test sets, along with the linear fits from Figure 2.1. On the
Reddit and Amazon test sets, the best MRQA model in our testbed, Delphi [146], achieves
higher F1 scores than any SQuAD model and is substantially above the linear fit. However,
many of the models trained on more data exhibit no improved robustness. In addition, all
of the models are still substantially below the human F1 scores and robustness.
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Figure 2.7: Model from the MRQA Shared Task 2019, trained on 5 datasets beyond SQuAD,
and human F1 scores on the original SQuAD test set and each of our new test sets. The error
bars are 95% Student’s-t confidence intervals. Although the MRQA models still lag human
performance and robustness across datasets, these models, particularly those with high F1
scores on the original SQuAD, exhibit increased robustness and generalization across each
of the datasets compared to models that are only trained on SQuAD.

2.7 Discussion

Despite years of test set reuse, we find no evidence of adaptive overfitting on SQuAD.
Though limits on the rate of resubmission and the bit precision of test set scores may
partially explain the test set results, such explanations do not apply to the development set.
Our findings demonstrate natural language processing benchmarks like SQuAD continue to
support progress much longer than than reasoning from first principles might have suggested.

While SQuAD models generalize surprisingly well to new examples from the same dis-
tribution, results on our three natural distribution shift datasets suggest robustness to dis-
tribution shifts remains a problem. On each of our new test sets, a strong human baseline
is unchanged, but SQuAD models suffer non-trivial and nearly uniform performance drops.
While question answering models have made substantial progress on SQuAD, there has been
much less progress towards closing the robustness gap under non-adversarial distribution
shifts. This highlights the need to move beyond model evaluation in the standard, i.i.d.
setting, and explicitly incorporate distribution shifts into evaluation. We hope our new test
sets offer a helpful starting point.
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2.8 Appendix: Evaluation metrics

In this section, we formally define the evaluation metrics used throughout our experiments.
Let (p, q, (a1, . . . , an) denote a passage p, a question q, and a set of n answers (a1, . . . , an).
Let S denote the sampled dataset, let f denote some model, and f(p, q) = â be its predicted
answer.

F1 Score. F1 measures the average overlap between the prediction and the ground-truth
answer. Given answer a and prediction â, consider a and â as bags of words (sets), and let
v(a, â) be their associated F1 score, i.e. the harmonic mean of precision and recall between
the two sets. Then,

F1(f) =
1

|S|
∑

(p,q,(a1,...,an))∈S

max
i=1,...,n

v(ai, f(p, q)).

Exact match. Exact match measures the percentage of predictions that exactly match
any one of the ground truth answers.

ExactMatch(f) =
1

|S|
∑

(p,q,(a1,...,an))∈S

max
i=1,...,n

1{f(p, q) = ai}.

All of our results are reported using the evaluation script provided by Rajpurkar et al.
[187], which ignores punctation and the articles “a”, “an”, and “the” when computing the
above metrics.

2.9 Appendix: Comparing natural and adversarial

distribution shifts

To contrast natural and adversarial distribution shifts, we evaluated all of the models in
our testbed against the adversarial attacks described in Jia and Liang [113] on the original
SQuAD v1.1 dataset.

AddSent. In the AddSent attack, for every passage, question, and answer pair (p, q, a),
Jia and Liang [113] procedurally generate up to five new sentences to append to the passage
p that do not contradict the correct answer. Each of the sentences are generated to be
similar to the correct answer, and ungrammatical or contradictory sentences are removed by
crowdworkers. This results in a set of new examples (p̃1, q, a), . . . , (p̃5, q, a) for each original
example. The adversary evaluates the model f on each of the 5 examples and picks the one
that gives the lowest score, mini=1,...,5 s(f(p̃i, q), a), where s is the scoring function (exact
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Figure 2.8: Comparison of F1 and EM scores on the original SQuAD test set versus the
adversarial AddSent attack from Jia and Liang [113]. In contrast to natural distribution
shifts, the trend is no longer clearly linear, and models with the same F1 scores on SQuAD
v1.1 can have substantially different robustness properties. For F1 scores, the slope of the
linear fit is 1.28, and, for models with F1 scores greater than 80, the slope of the linear fit is
2.27. For EM, the slopes are 1.04 and 2.6.

match or F1). In Figure 2.8, we compare F1 and EM scores on the original SQuAD v1.1
test set with F1 and EM scores against the adversarial AddSent attack.

In contrast to our natural distribution shift examples, we observe qualitatively different
phenomenon. A linear fit no longer well captures the relationship between original test
F1 scores and adversarial test F1 scores. For instance, a collection of models with 90 F1
scores on the original test distribution have a spread of 10 F1 points on the adversarial
distributions. Furthermore, improvements on the original test set need not translate to
improved robustness. Models between 60 and 80 F1 on SQuAD v1.1. have the same 40
F1 under AddSent. Moreover, the models with F1 scores greater than 80 have a linear fit
with slope 2.27, suggesting that each 1 points F1 improvement on the original SQuAD v1.1.
dataset translates into 2.27 point of F1 in terms of adversarial loss. This slope is significantly
higher than those observed in our new test sets.

AddOneSent. The AddOneSent attack similar to the AddSent attack. However, rather
than take the worst of the 5 altered passages, it randomly selects one of the five on which
to evaluate the model. In Figure 2.9, we compare F1 and EM scores on the original SQuAD
v1.1 test set with F1 and EM scores against the adversarial AddSent attack. Since this attack
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does not require model access or evaluations, it is closer in spirit to the natural distribution
shifts we consider. However, we observe much the same phenomenon as we see with AddSent.
The linear model is no longer a good fit, and there is a threshold phenomenon around 80 F1
and EM whereby the slope sharply increases.
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Figure 2.9: Comparison of F1 and EM scores on the original SQuAD test set versus the
adversarial AddOneSent attack from Jia and Liang [113]. We observe similar phenomenon
as with AddSent. In contrast to our natural distribution shifts, the linear model is no longer
a good description of the data. For F1 scores, the slope of the linear fit is 1.21, and, for
models with F1 scores greater than 80, the slope of the linear fit is 2.03. For EM, the slopes
are 1.10 and 2.51.

2.10 Appendix: Detailed results

In this appendix, we present complete detailed results for our main distribution shift exper-
iments.

Exact Match Scatterplots

Similar to Figure 2.1 in Section 2.1, we compare the EM scores of all models in our testbed
on the SQuAD v1.1 test set versus the EM scores of all models on each of the new test sets.
The results are shown in Figure 2.10. In each case, we observe a more pronounced drop than
the F1 scores with average drops of 4.7, 4.7, 18.3, and 20.7 for each of the new Wikipedia,
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New York Times, Reddit, and Amazon datasets, respectively. However, the primary trends
are the same. In particular, we observe little evidence of overfitting on Wikipedia (the
linear model nicely describes the data and the slope is approximately one), and we observe
a similar ranking of magnitudes of the drop on each of the other three datasets, New York
Times exhibits a small drop, followed by larger drops on Reddit and Amazon.
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Figure 2.10: Model and human EM scores on the original SQuAD test set compared to our
new test sets (shown with 95% Clopper-Pearson confidence intervals). The slopes of the
linear fits are 1.00, 1.00, 0.95, and 0.99, respectively.

Probit Fits

In many cases, a linear model of F1 or EM scores is not a good fit when the scores span a
wide range. In these cases, we find that a probit model describes the data better. Figure 2.11
shows the F1 scores for the Amazon dataset on both the linear scale used throughout the data
and a probit scale obtained by transforming all of the F1 scores with the inverse Gaussian
CDF. We observe a better linear fit for our data. Figures 2.12 and Figures 2.13 show similar
probit models for each of our new datasets.

Labeler Agreement

Answer Category Shifts
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Figure 2.11: Comparison of model and human F1 scores on the original SQuAD v1.1 test set
and our new Amazon test set. Each datapoint corresponds to one model in the testbed and
is shown with 95% Student’s-T confidence intervals. The left plot shows the model F1 scores
under a linear scaling, whereas the right plot uses an probit scale. In other words, model F1
score x appears at Φ−1(x), where Φ−1 is the inverse Gaussain CDF. Visual inspection shows
the linear fit is much better in the probit domain.
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Figure 2.12: Probit scaling of model and human F1 scores on the original SQuAD test set
compared to F1 scores on our new test sets. The slopes of the linear fit are 0.93, 0.94, 0.82,
and 0.89, respectively.
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Figure 2.13: Probit scaling of model and human EM scores on the original SQuAD test set
compared to EM scores on our new test sets. The slopes of the linear fit are 0.91, 0.93, 0.82,
and 0.86, respectively.
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Figure 2.14: Model and human F1 scores on the original SQuAD v1.1 test set compared to
our new test sets, stratified by the agreement between the answers given by the labelers,
e.g. if three labelers agree, then three labelers provided identical (up to text normalization)
answers to the question. Each point corresponds to a model evaluation. Label agreement
roughly corresponds to question difficulty (and ambiguity). For clear and simple questions,
all of the labelers typically agree. For more subtle or potentially ambiguous questions, the
labeler’s answers are more varied and tend to disagree more often. Across each dataset,
when the questions are easier or less ambiguous (as measured by higher labeler agreement),
the models experience proportionally smaller drops on the new dataset.
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Figure 2.15: Change in answer type distributions introduced in Section 2.6 explain little of
the observed performance differences across our new datasets. For each model, we compute
the F1 score on each of the answer types on the SQuAD v1.1 dev set, and then we predict
the F1 score on the new test set by reweighing these F1 scores based on the frequency of
answer types in the new test set. Concretely, if SQuAD v1.1 was 50% NP answers and 50%
Places answers, and a model has average F1 scores of 100 for NP and 75 for Places, then if a
new dataset had 30% NP answers and 70% Places answers, the predicted F1 score would be
82.5 (versus 87.5 for the original). Then y = x line represents a perfect model. For each of
the distribution shift datasets, predictions based on answer category shifts are exceedingly
optimistic and explain little of the observed drops. For instance, on the Reddit dataset,
answer category shifts suggest models would lose, on average, 2-3 F1 points. However, the
observed shift is 12.6 F1 points.
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Models Evaluated

We evaluated a representative subset of 25 models submitted to the SQuAD leaderboard since
2016. All of the models were submitted to the CodaLab platform, and thus we evaluate every
model in the exact same configuration (weights, hyperparameters, command-line arguments,
execution environment, etc.) as the original submission. Below, we list all of the models we
evaluated with references, where available, and links to the Codalab submission bundle.

1. XLNET-123 (single model) [252]
worksheets.codalab.org/bundles/0x8d330aabc5394f239749ca75a97e9087

2. Tuned BERT-1seq Large Cased (single model)
worksheets.codalab.org/bundles/0xf776d7935d8e4989880ea77cb821291b

3. MMIPN(Single)
worksheets.codalab.org/bundles/0x02ef30c852ac422cbe77590e8533f94c

4. EAZI (ensemble)
worksheets.codalab.org/bundles/0xfaf5f109a572470ba188877fab8fcdc5

5. BiDAF + Self Attention + ELMo (single model) [175]
worksheets.codalab.org/bundles/0x11f631b3e7cb4a0f8acbd60491f729b6

6. AVIQA (single model)
worksheets.codalab.org/bundles/0xe821c3b185d44105b6542a07e0f76dab

7. DPN (single model)
worksheets.codalab.org/bundles/0x37efc3e1594f4262b0384decbd2f964f

8. UnsupervisedQA V1
worksheets.codalab.org/bundles/0xe1c53a62c8644e9b9d9fdfd18feb6a85

9. M-NET (single)
worksheets.codalab.org/bundles/0x08c0461cde4c448e9a2e91a1b734c7aa

10. SimpleBaseline (single model)
worksheets.codalab.org/bundles/0x8d070eba996a4e32b4840c0578544966

11. Original BERT Large Cased
worksheets.codalab.org/bundles/0x91bd55572ea6456a9f6f775393c9e96c

12. Common-sense Governed BERT-123 (single model)
worksheets.codalab.org/bundles/0x69acafc6ee734cdc969607da5059ba37

13. RQA+IDR (single model)
worksheets.codalab.org/bundles/0x54e292cee87d4b1488b9cf0df15aeeec
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14. BERT-Large Baseline (single model) [65]
worksheets.codalab.org/bundles/0xcd68d4f224b0425ab2b8b34ffb140a75

15. InfoWord-Base (single model)
worksheets.codalab.org/bundles/0xa41e1de495f84786a1c84d6f6036af0d

16. MARS (single model)
worksheets.codalab.org/bundles/0x86b64ac049d74c7e9b8af73dfc1ca207

17. BISAN (single model)
worksheets.codalab.org/bundles/0xfd43e046161f4ba89716d5d48b25ca2f

18. UQA (single model)
worksheets.codalab.org/bundles/0x64206b3164ea47e7a3d8a2df833c8f9b

19. EAZI (single model)
worksheets.codalab.org/bundles/0xad2056e99a0a484f8b8e4bcc2b1b0c14

20. MEMEN (single model) [164]
worksheets.codalab.org/bundles/0xe97e265eff8b437b8ca2b24e460cc066

21. gqa (single model)
worksheets.codalab.org/bundles/0xc8548cd7df0547dd9003a02e5505dd77

22. BERT+Sparse-Transformer(single model)
worksheets.codalab.org/bundles/0xd4b07885a4c244dcaf22dac21d283813

23. Jenga (single model)
worksheets.codalab.org/bundles/0x38bce62d659e43d19f56fc2ba34c3c4d

24. AllenNLP BiDAF (single model) [208]
worksheets.codalab.org/bundles/0x034e030aa6204c09a91b300508f8d18b

25. DNET (single model)
worksheets.codalab.org/bundles/0xe50b1f4f7d674f138b6a0a384f33b356

We also evaluated a subset of five models from the Machine Reading for Question An-
swering (MRQA) Shared Task [78] on our new test sets. As in our primary experiments, all
of the models were submitted to the CodaLab platform, and we evaluated every model in
the exact same configuration as the original submission. Below, we list all of the models we
evaluated with references and links to the submission bundle.

1. Delphi [146]
worksheets.codalab.org/bundles/0x9a53e9c50f1244699c4a24aee483bd4c

2. HierAtt [163]
worksheets.codalab.org/bundles/0x8d851db3255b485c97646c5c0ba812a2
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3. Bert-Large+Adv Train [132]
worksheets.codalab.org/bundles/0xa113983bc3fc42ff89bf3838a6177a0c

4. BERT-cased-whole-word

worksheets.codalab.org/bundles/0x456676760aae452cb44ade00bb515b64

5. BERT-Multi-Finetune

worksheets.codalab.org/bundles/0x5716df3b477a452a997bcebb9e179c89

The remaining models submitted to the competition were either not publically accessible or
otherwise unable to run on Codalab.

2.11 Appendix: Dataset collection details

In this section, we provide further details regarding our data collection pipeline.

Passage Length Statistics

We report statistics on various text length statistics. We split each paragraph into individual
sentences, words, and characters using Spacy [106] and used those components to compute
the statistics.

Figures 2.16, 2.17, and 2.18 show the paragraph lengths in sentences, words, and char-
acters across each dataset respectively. Figures 2.19 and 2.20 show the sentence lengths in
words and characters across each dataset respectively. Figure 2.21 shows the word length in
characters across each dataset.

MTurk Experiment

Worker Details. Crowdworkers were required to have a 97% HIT acceptance rate, a
minimum of 1000 HITs, and be located in the United States or Canada. Workers were asked
to spend four minutes per paragraph when asking questions and one minute per question
when answering questions. We paid workers $9.60 per hour for the amount of time required
to complete each task, using an inflation rate of 6.52% between 2016 and 2019.

UI Examples. The task directions and website UI are identical to the original SQuAD
data collection setup with the sole exception that the original tasks had workers ask and
answer questions for all of the paragraphs for each article, whereas our tasks limit each worker
to at most 5 paragraphs. Figures 2.22 and 2.23 show the directions and an example HIT for
the Ask task, whereby workers pose questions for the article. Figures 2.24 and 2.25 show
the directions and an example HIT for the Answer task, whereby workers answer questions
posed during the Ask task.
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Figure 2.16: Histograms of the number of sentences in each paragraph for both the original
and new datasets. The new Wikipedia dataset matches the original dataset, while all other
new datasets have different histograms.
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Figure 2.17: Histograms of the number of words in each paragraph for both the original and
new datasets. The histograms all match closely, although the Amazon and Reddit datasets’
paragraphs have slightly more words.
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Figure 2.18: Histograms of the number of characters in each paragraph for both the original
and new datasets. The histograms lengths match exactly since we sample in a way that
ensures the character length will match for each new dataset.
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Figure 2.19: Histograms of the number of words in each sentence for both the original and
new datasets. The Amazon and Reddit datasets both have significantly shorter sentences
than the original dataset, while the NYT dataset has slightly shorter sentences. The new
Wikipedia dataset matches the sentence length of the original dataset.
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Figure 2.20: Histograms of the number of characters in each sentence for both the original
and new datasets. The Amazon and Reddit datasets both have significantly shorter sentences
than the original dataset, while the NYT dataset has slightly shorter sentences. The new
Wikipedia dataset matches the sentence length of the original dataset.



CHAPTER 2. BENCHMARK CASE STUDY: THE STANFORD QUESTION
ANSWERING DATASET 37

5

15

25

35

P
er

ce
n

ta
g

e

SQuAD v1.1 New Wikipedia

5

15

25

35

P
er

ce
n

ta
g

e

NYT

0 4 8 12 16 20

Amazon

0 4 8 12 16 20

5

15

25

35

P
er

ce
n

ta
g

e

Reddit

Figure 2.21: Histograms of the number of characters in each word for both the original and
new datasets. All datasets have similar histograms when it comes to worth length, although
the Amazon and Reddit word lengths decay slightly faster.
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Figure 2.22: Ask task directions.
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Figure 2.23: Ask task example.
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Figure 2.24: Answer task directions.
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Figure 2.25: Answer task example.
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Chapter 3

Model Similarity Mitigates Test-set
Reuse

3.1 Introduction

Be it validation sets for model tuning, popular benchmark data, or machine learning compe-
titions, the holdout method is central to the scientific and industrial activities of the machine
learning community. As compute resources scale, a growing number of practitioners evaluate
an unprecedented number of models against various holdout sets. These practices, collec-
tively, put significant pressure on the statistical guarantees of the holdout method. Theory
suggests that for k models chosen independently of n test data points, the holdout method
provides valid risk estimates for each of these models up to a deviation on the order of√

log(k)/n [72]. But this bound is the consequence of an unrealistic assumption. In prac-
tice, models incorporate prior information about the available test data since human analysts
choose models in a manner guided by previous results.

Adaptivity significantly complicates the theoretical guarantees of the holdout method.
A simple adaptive strategy, resembling the practice of selectively ensembling k models, can
bias the holdout method by as much as

√
k/n [72]. If this bound were attained in prac-

tice, holdout data across the board would rapidly lose its value over time. Nonetheless, in
the previous chapter, we observed that despite years of heavy test set reuse, the SQuAD
benchmark showed no signs of adaptive overfitting. Recent replication studies give similar
evidence that popular machine learning benchmarks continue to support progress despite
years of extensive reuse [190, 247].

In this chapter, we contribute a new explanation for why the adaptive bound is not at-
tained in practice and why even the standard non-adaptive bound is more pessimistic than
it needs to be. Our explanation centers around the phenomenon of model similarity. Prac-
titioners evaluate models that incorporate common priors, past experiences, and standard
practices. As we show empirically, this results in models that exhibit significant agreement in
their predictions, well beyond what would follow from their accuracy values alone. Comple-
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menting our empirical investigation of model similarity, we provide a new theoretical analysis
of the holdout method that takes model similarity into account, vastly improving over known
bounds in the adaptive and non-adaptive cases when model similarity is high.

Our contributions

Our contributions are two-fold. On the empirical side, we demonstrate that a large number of
proposed ImageNet [63, 201] and CIFAR-10 [123] models exhibit a high degree of similarity:
Their predictions agree far more than we would be able to deduce from their accuracy
levels alone. Complementing our empirical findings, we give new generalization bounds that
incorporate a measure of similarity. Our generalization bounds help to explain why holdout
data has much greater longevity than prior bounds suggest when models are highly similar,
as is the case in practice. Figure 3.1 summarizes these two complementary developments.

Underlying Figure 3.1a is a family of representative ImageNet models whose pairwise
similarity we evaluate. The mean level of similarity of these models, together with a refined
union bound, offers a 4× improvement over a carefully optimized baseline bound that does
not take model similarity into account. In Figure 3.1b we compare our guarantee on the
number of holdout reuses with the baseline bound. This illustrates that our bound is not
just asymptotic, but concrete—it gives meaningful values in the practical regime. Moreover,
in Section 3.5 we discuss how an additional assumption on model predictions can boost the
similarity based guarantee by multiple orders of magnitude.

Investigating model similarity in practice further, we evaluate similarity of models en-
countered during the course of a large random hyperparamter search and a large neural
architecture search for the CIFAR-10 dataset. We find that the pairwise model similarities
throughout both procedures remain high. The similarity provides a counterweight to the
massive number of model evaluations, limiting the amount of overfitting we observe.

Related work

Recht et al. [190] recently created new test sets for ImageNet and CIFAR10, carefully fol-
lowing the original test set creation processes. Reevaluating all proposed models on the new
test sets showed that while there was generally an absolute performance drop, the effect of
overfitting due to adaptive behavior was limited to non-existent. Indeed, newer and better
models on the old test set also performed better on the new test set, even though they had in
principle more time to adapt to the test set. Also, Yadav and Bottou [247] recently released
a new test set for the seminal MNIST task, on which they observed no overfitting.

Dwork et al. [72] recognized the issue of adaptivity in holdout reuse and provided new
holdout mechanisms based on noise addition that support quadratically more queries than
the standard method in the worse case. There is a rich line of work on adaptive data analysis;
Smith [215] offers a comprehensive survey of the field.

We are not the first to proffer an explanation for the apparent lack of overfitting in
machine learning benchmarks. Blum and Hardt [26] argued that if analysts only check if
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Figure 3.1: (a) shows the empirical pairwise similarity between Imagenet models and the hy-
pothetical similarity between models if they were making mistakes independently. (b) plots the
number of testable models on Imagenet such that the population error rates for all models are
estimated up to ±1% error with probability 0.95. We compare the guarantee of the standard union
bound with that of a union bound which considers model similarities.

they improved on the previous best model, while ignoring models that did not improve,
better adaptive generalization bounds are possible. Zrnic and Hardt [264] offered improved
guarantees for adaptive analysts that satisfy natural assumptions, e.g. the analyst is unable
to arbitrarily use information from queries asked far in the past. More recently, Feldman,
Frostig, and Hardt [77] gave evidence that the number of classes in a classification problem
helps mitigate overfitting in benchmarks. We see these different explanations as playing
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together in what is likely the full explanation of the available empirical evidence. In parallel
to our work, Yadav and Bottou [247] discussed the advantages of comparing models on the
same test set; pairing tests can provide tighter confidence bounds for model comparisons in
this setting than individual confidence intervals for each model.

3.2 Problem setup

Let f : X → Y be a classifier mapping examples from domain X to a label from the set
Y . Moreover, we consider a test set S = {(x1, y1), . . .} of n examples sampled i.i.d. from a
data distribution D. The main quantity we aim to analyze is the gap between the accuracy
of the classifier f on the test set S and the population accuracy of the same classifier under
the distribution D. If the gap between the two accuracies is large, we say f overfit to the
test set.

As is commonly done in the adaptive data analysis literature [12], we formalize interac-
tions with the test set via statistical queries q : X × Y → R. In our case, the queries are
{0, 1}-valued; given a classifier f we consider the query qf defined by qf (z) = 1{f(x) 6= y},
where z = (x, y). Then, we denote the empirical mean of query qf on the test set S (i.e., f ’s
test error) by ES[qf ] = 1

n

∑n
i=1 qf (zi). The population mean (population error) is accordingly

defined as ED[q] = Ez∼Dq(z).
When discussing overfitting, we are usually interested in a set of classifiers, e.g., obtained

via a hyperparameter search. Let f1, . . . , fk be such a set of classifiers and q1, . . . , qk be the
set of corresponding queries. To quantify the probability that overfitting occurs (i.e., one of
the fi has a large deviation between test and population accuracy), we would like to upper
bound the probability

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
. (3.1)

A standard way to bound (3.1) is to invoke the union bound and treat each query separately:

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
≤

k∑
i=1

P (|ES[qi]− ED[qi]| ≥ ε) (3.2)

We can then utilize standard concentration results to bound the right hand side. However,
such an approach inherently cannot capture dependencies between the queries qi (or classifiers
fi). In particular, we are interested in the similarity between two queries q and q′ measured
by P (q(z) = q′(z)) (the probability of agreement between the 0-1 losses of the corresponding
two classifiers). The main goal of this chapter is to understand how high similarity can lead
to better bounds on (3.1), both in theory and in numerical experiments with real data from
ImageNet and CIFAR-10.
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3.3 Non-adaptive classification

We begin by analyzing the effect of the classifier similarity when the classifiers to be evaluated
are chosen non-adaptively. For instance, this is the case when the algorithm designer fixes
a grid of hyperparameters to be explored before evaluating any of the classifiers on the test
set. To draw valid gains from the hyperparameter search, it is important that the resulting
test accuracies reflect the true population accuracies, i.e., probability (3.1) is small.

Bound (3.2) is sharp when the events {|ES[qi] − ED[qi]| ≥ ε} are almost disjoint, which
is not true when the queries are similar to each other. To address this issue, we modify our
use of the union bound. We consider the left tails Ei = {ES[qi]−ED[qi] ≥ ε}. For any t ≥ 0,
we obtain

P

(
k⋃
i=1

Ei
)
≤ P

(
{ES[q1]− ED[q1] ≥ ε− t}

k⋃
i=2

Ei
)

(3.3)

= P (ES[q1]− ED[q1] ≥ ε− t) + P

(
k⋃
i=2

Ei ∩ {ES[q1]− ED[q1] < ε− t}
)

≤ P (ES[q1]− ED[q1] ≥ ε− t) +
k∑
i=2

P (Ei ∩ {ES[q1]− ED[q1] < ε− t}) .

Intuitively, the terms P (Ei ∩ {ES[q1]− ED[q1] < ε− t}) are small when the queries q1 and qi
are similar: if P(q1(z) = qi(z)) is large, we cannot simultaneously have ES[q1] < ED[q1]+ε−t
and ES[qi] ≥ ED[qi] + ε since the deviations go into opposite directions. In the rest of this
section, we make this intuition precise in and derive an upper bound on (3.1) in terms of
the query similarities. Before we state our main result, we introduce the following notion of
a similarity covering.

Definition 1. Let F be a set of queries. We say a query set M is a η similarity cover of
F if for any query q ∈ F there exist q′, q′′ ∈ M such that ED[q′] ≤ ED[q], ED[q′′] ≥ ED[q],
P(q′(z) = q(z)) ≥ η, and P(q′′(z) = q(z)) ≥ η ( M does not necessarily have to be a subset
of F). Let Nη(F) denote the size of a minimal η similarity cover of F (when the query set
F is clear from context we use the simpler notation Nη).

Theorem 2. Let F = {q1, q2, . . . , qk} be a collection of queries qi : Z → {0, 1} independent
of the test set {z1, z2, . . . , zn}. Then, for any η ∈ [0, 1] we have

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
≤ 2Nηe

−nε
2

2 + 2ke−
nε
4

log(1+ ε
4(1−η)). (3.4)

Then, for all η ≤ 1−max

{
2 log(4k/δ)

n
,
√

log(4Nη/δ)

2n

}
, we have with probability 1− δ

max
1≤i≤k

|ES[qi]− ED[qi]| ≤ max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log (4k/δ)

n

}
. (3.5)
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Moreover, if ε =
√

log((2Nη+1)/δ)

n
and η ≥ 1− ε

4
(
e2ε(2k)

4
nε−1

) , we have with probability 1− δ

max
1≤i≤k

|ES[qi]− ED[qi]| ≤ ε. (3.6)

To elucidate how model similarity η controls the number of queries k for which Theo-
rem (2) gives a non-trivial bound, consider the case where Nη = 1, i.e. at least one model is
η-similar to all of the others. As the similarity η of the model collection grows, the number
of queries k grows as well, as the following simple result shows.

Corollary 3. Let F = {q1, q2, . . . , qk} be a collection of k queries qi : Z → {0, 1} fixed
independently of the test set. Choose η? so that Nη? = 1. Suppose n ≥ c1 max {ε−1, ε−2} and
the number of queries k satisfies

k ≤ c2ε

(1− η?)

for positive constants c1, c2. Then, with probability 3/4, max1≤i≤k |ES[qi]− ED[qi]| ≤ ε.

The proof of Theorem (2) starts with the refined union bound (3.3), or a standard triangle
inequality, and then applies the Chernoff concentration bound shown in Lemma 4 for random
variables which take values in {−1, 0, 1}. We defer the proof details of both the lemma and
the theorem to Appendix 3.7.

Lemma 4. Suppose Xi are i.i.d. discrete random variables which take values −1, 0, and
1 with probabilities p−1, p0, and p1 respectively, and hence EXi = p1 − p−1. Then, for any
t ≥ 0 such that p1 − p−1 + t/2 ≥ 0 we have

P

(
1

n

n∑
i=1

Xi > p1 − p−1 + t

)
≤ e

−nt
2

log
(
1+ t

2p1

)
.

Discretization arguments based on coverings are standard in statistical learning theory.
Covers based on the population Hamming distance P(q′(z) 6= q(z)) have been previously
studied [66, 129] (Note that for {0, 1}-valued queries the Hamming distance is equal to the
L2 and L1 distances). An important distinction between our result and prior work is that
prior work requires η to be greater than 1−ε. Theorem 2 can offer an improvement over the
standard guarantee

√
log(k)/n even when η is much smaller than 1−ε. First of all note that

(3.5) holds for η bounded away from one. Moreover, since e2ε ≈ 1 + 2ε, if (2k)
4
nε ≤ 1 +

√
ε

(the choice of 1+
√
ε is somewhat arbitrary), we see the requirement on η for (3.6) is satisfied

when η is on the order of 1−√ε.
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3.4 Adaptive classification

In the previous section, we showed similarity can prevent overfitting when the sequence of
queries is chosen non-adaptively, i.e. when the queries {q1, q2, . . . , qn} are fixed independently
of the test set S. In the adaptive setting, we assume the query qt can be selected as a function
of the previous queries {q1, q2, . . . , qt−1} and estimates {ES[q1],ES[q2], . . . ,ES[qt−1]}. Even
when queries are chosen adaptively, we show leveraging similarity can provide sharper bounds
on the probability of overfitting, P (max1≤i≤k |ES[qi]− ED[qi]| ≥ ε).

In the adaptive setting, the field of adaptive data analysis offers a rich technical repertoire
to address overfitting [72, 215]. In this framework, analogous to the typical machine learning
workflow, an analyst iteratively selects a classifier and then queries a mechanism to provide
an estimate of test-set performance. In practice, the mechanism often used is the Trivial
Mechanism which computes the empirical mean of the query on the test set and returns the
exact value to the analyst. For simplicity, we study how similarity improves the performance
of the trivial mechanism.

The empirical mean of any query can take at most n+ 1 values, and thus a deterministic
analyst might ask at most (n + 1)k−1 queries in k rounds of interaction with the Trivial
Mechanism. Let F denote the set of (n+ 1)k−1 possible queries. Then, we apply Theorem 2
to F .

Corollary 5. Let F be the set of queries that a fixed analyst A might query the Trivial
Mechanism. We assume that the Trivial Mechanism has access to a test set of size n. Let
α ∈ [0, 1],

ε =

√
4(k1−α log(n+ 1) + log(2/δ))

n
,

and η = 1− ε
4(eεkα−1) . If Nη(F) ≤ (n+ 1)k

1−α
, we have with probability 1− δ

max
1≤i≤k

|ES[qi]− ED[qi]| ≤ ε,

for any queries q1, q2, . . . qk chosen adaptively by A.

Proof. Note that when η = 1 − ε
4(eεkα−1) we have log

(
1 + ε

4(1−η)

)
≥ εkα. Then, the result

follows from the first part of Theorem 2.

In Corollary 5, the parameter α quantifies the strength of the similarity assumption. For
α = 0, there is no similarity requirement, and Corollary 5 always applies. In this case, the
bound matches standard results for the trivial mechanism with ε = Õ(

√
k/n). However, as

α grows, the similarity requirement becomes restrictive while the corresponding confidence
interval becomes increasingly tight. In particular, for any α > 0, if F permits a similarity
cover Nη(F) ≤ (n+1)k

1−α
for η = 1−(ε/4)(eεk

α−1)−1, we obtain a super linear improvement

in the dependence on k. For instance, if α = 1/2, then ε = Õ(
√
k1/2/n), and we obtain a
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quadratic improvement in the number of queries for a fixed sample size. This improvement is
similar to that achieved by the Gaussian mechanism [12, 72]. Moreover, since our technique
is essentially tightening a union bound, this improvement easily extends to other mechanisms
that rely on compression-based arguments, for instance, the Ladder Mechanism [26].

3.5 Empirical results

So far, we have established theoretically that similarity between classifiers allows us to eval-
uate a larger number of classifiers on the test set without overfitting. In this section, we
investigate whether these improvements already occur in the regime of contemporary ma-
chine learning. We specifically focus on ImageNet and CIFAR-10, two widely used machine
learning benchmarks that have recently been shown to exhibit little to no adaptive overfit-
ting in spite of almost a decade of test set re-use [190]. For both datasets, we empirically
measure two main quantities: (i) The similarity between a wide range of models, some of
them arising from hyperparameter search experiments. (ii) The resulting increase in the
number of models we can evaluate in a non-adaptive setting compared to a baseline that
does not utilize the model similarities.

Similarities on Imagenet

We utilize the model testbed from Recht et al. [190],1 who collected a dataset of 66 image
classifiers that includes a wide range of standard ImageNet models such as AlexNet [126],
ResNets [96], DenseNets [108], VGG [213], Inception [221], and several other models. As a
baseline for the observed similarities between these models, we compare them to classifiers
with the same accuracy but otherwise random predictions: given two models f1 and f2 with
population error rates µ1 and µ2, we know that the similarity P(1{f1(x) 6= y} = 1{f2(x) 6=
y}) equals µ1µ2 + (1 − µ1)(1− µ2) if the random variables 1{f1(x) 6= y} and 1{f2(x) 6= y}
are independent. Figure 3.1a in the introduction shows these model similarities assuming
the models make independent mistakes and also the empirical data for the

(
66
2

)
= 2,145 pairs

of models. We see that the empirical similarities are significantly higher than the random
baseline (mean 0.85 vs 0.62).

The corresponding Figure 3.1b shows two lower bounds on the number of models that
can be evaluated for the empirical ImageNet data. In particular, we use n = 50,000 (the
size of the ImageNet validation set) and a target probability δ = 0.05 for the overfitting
event (3.1) with error ε = 0.01. We compare two methods for computing the number of
non-adaptively testable models: a guarantee based on the simple union bound (3.2) and a
guarantee based on our more refined union bound derived from our theoretical analysis in
Section 3.3. Later in this section, we introduce an even stronger bound that utilizes higher-
order interactions between the model similarities and yields significantly larger improvements
under an assumption on the structure among the classifiers.

1Available at https://github.com/modestyachts/ImageNetV2.
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To obtain meaningful quantities in the regime of ImageNet, all bounds here require signif-
icantly sharper numerical calculations than the standard theoretical tools such as Chernoff
bounds. We now describe these calculations at a high level and defer the details to Appendix
3.8. After introducing the three methods, we compare them on the ImageNet data.

Standard union bound. Given n, ε, and the population error rate of all models ED[qi],
we can compute the right hand side of (3.2) exactly.2 It is well known that higher accuracies
lead to smaller probability of error and hence allow for a larger number of test set reuses.
We assume all models have population accuracy 75.6%, the average top-1 accuracy of the 66
Imagenet models. In this case, the vanilla union bound (3.2) guarantees that k = 257,397
models can be evaluated on a test set of size 50,000 so that their empirical accuracies would
lie in the confidence interval 0.756± 0.01 with probability at least 95%.

Similarity Union Bound. While the union bound (3.2) is easy to use, it does not lever-
age the dependencies between the random variables 1{fi(x) 6= y} for i ∈ {1, 2, . . . k}. To
exploit this property, we utilize the refined union bound (3.3) which is guaranteed to be an
improvement over (3.2) when the parameter t is optimized. In order to use (3.3), we must
compute the probabilities

P ({ES[q2]− ED[q2] ≤ α2} ∩ {ES[q1]− ED[q1] ≥ α1}) (3.7)

for given α1, α2, ED[q1], ED[q2], and similarity P(q1(z) = q2(z)). In Appendix 3.8, we show
that we can compute these probabilities efficiently by assigning success probabilities to three
independent Bernoulli random variables X1, X2, and W such that (X1W,X2W ) is equal to
(q1(z), q2(z)) in distribution. Let pw := P(W = 1). Then, given i.i.d. draws X1i, X2i, and
Wi, we condition on the values of Wi to express probability (3.7) as

P ({ES[q2]− ED[q2] ≤ α2} ∩ {ES[q1]− ED[q1] ≥ α1}) (3.8)

=
n∑
j=0

(
n

j

)
pjw(1− pw)n−jP

(
j∑
i=1

X2i ≤ bn(p2 + α2)c
)
P

(
j∑
i=1

X1i ≥ dn(p1 + α1)e
)
.

We refer the reader to Appendix 3.8 for more details. The two tail probabilities for X1i and
X2i can be computed efficiently with the use of beta functions. Using (3.8) and (3.3) with a
binary search over t, we can compute the probability of making an error ε when estimating the
population error rates of k models with given error rates and pairwise similarities. Figure 3.1b
shows the maximum number of models k that can be evaluated on the same test set so that
the probability of making an ε = 0.01 error in estimating all their error rates is at most 0.05
when the models satisfy ED[qi] = 0.244 and P(qi(z) = qj(z)) ≥ 0.85 for all 1 ≤ i, j ≤ k. The
figure shows that our new bound offers a significant improvement over the guarantee given
by the standard union bound (3.2).

2After an additional union bound to decouple the left and right tails.
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Similarity union bound with a Naive Bayes assumption. While the previous com-
putation uses the pairwise similarities observed empirically to offer an improved guarantee
on the number of allowed test set reuses, it does not take into account higher order depen-
dencies between the models. In particular, Figure 3.4 in Appendix 3.9 shows that 27.8%
of test images are correctly classified by all the models, 55.9% of test images are correctly
classified by 60 of the 66 models considered, and 4.7% of test images are incorrectly classified
by all the models. We now show how this kind of agreement between models enables a larger
number of test set reuses. Inspired by the coupling used in (3.8), we make the following
assumption.

Assumption A1 (Naive Bayes). Let q1, q2, . . . qk be a collection of queries such that ED[qi] =
p and P(qi(z) = qj(z)) = η for some p and η, for all 1 ≤ i, j ≤ k. We say such a collection has
a Naive Bayes structure if there exist px and pw in [0, 1] such that (q1(z), q2(z), . . . , qk(z))
is equal to (X1W,X2W, . . . , XkW ) in distribution, where W , X1, . . .Xk are independent
Bernoulli random variables with P(W = 1) = pw and P(Xi = 1) = px for all 1 ≤ i ≤ k.

Intuitively, a collection of queries 1{fi(x) 6= y} has a Naive Bayes structure if the data
distribution D generates easy examples (x, y) with probability 1−pw such that all the models
fi classify correctly, and if an example is not easy, the models make mistakes independently.
As mentioned before, Figure 3.4 supports the existence of such an easy set. When a test
point in the ImageNet test set is not an easy example, the models do not make mistakes
independently. Therefore, Assumption A1 is not exactly satisfied by existing ImageNet
models. However, we know that independent Bernoulli trials saturate the standard union
bound (3.2). This effect can also be observed in Figure 3.2. As the similarity between
the models decreases, i.e. 1 − pw decreases, the models make mistakes independently and
the guarantee with Assumption A1 converges to the standard union bound guarantee. So
while Assumption A1 is not exactly satisfied in practice, the violation among the ImageNet
classifiers likely implies an even better lower bound on the number of testable models.

Assumption A1 is computationally advantageous. It allows us to compute the overfitting
probability (3.1) exactly, as we detail in Appendix 3.8. Figure 3.2 is an extension of Fig-
ure 3.1b; it shows the relative improvement of our bounds over the standard union bound in
terms of the number of testable models when ε = 0.01 and δ = 0.01. Moreover, Figure 3.2
also shows that the relative improvement of our bounds increases quickly with ε. According
to Figure 3.2, Assumption A1 implies that we can evaluate 108 models on the test set in the
regime of ImageNet without overfitting. While this number of models might seem unneces-
sarily large, in Section 3.4 we saw that when models are chosen adaptively we must consider
a tree of possible models, which can easily contain 108 models.

Similarities on CIFAR-10

Practitioners often evaluate many more models than the handful that ultimately appear in
publication. The choice of architecture is the result of a long period of iterative refinement,
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Figure 3.2: Left figure shows the multiplicative gains in the number of testable models, as a function
of model similarity, over the guarantee offered by the standard union plus binomial bound, with
ε = 0.01 and δ = 0.05. Right figure shows the same multiplicative gains, but as a function of ε,
when δ = 0.05 and the pairwise similarity is η = 0.85.

and the hyperparameters for any fixed architecture are often chosen by evaluating a large grid
of plausible models. Using data from CIFAR-10, we demonstrate these common practices
both generate large classes of very similar models.

Random hyperparameter search. To understand the similarity between models evalu-
ated in hyperparameter search, we ran our own random search to choose hyperparameters for
a ResNet-110. The grid included properties of the architecture (e.g. type of residual block),
the optimization algorithm (e.g. choice of optimizer), and the data distribution (e.g. data
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Figure 3.3: Model similarities and covering numbers for random hyperparameter search on CI-
FAR10.

augmentation strategies). A full specification of the grid is included in Appendix 3.10. We
sample and train 320 models, and, for each model, we select 10 checkpoints evenly spaced
throughout training. The best model considered achieves accuracy of 96.6%, and, after re-
stricting to models with accuracy at least 50%, we are left with 1,235 model checkpoints.
In Figure 3.3, we show the similarity for each pair of checkpoints and compute an upper
bound on the corresponding similarity covering number Nη(F) for each possible value of η.
As in the case of ImageNet, CIFAR10 models found by random search are significantly more
similar than random chance would suggest.

Neural architecture search. In the random search experiment, all of the models were
chosen non-adaptively—the grid of models is fixed in advance. However, similarity protects
against overfitting also in the adaptive setting. To illustrate this, we compute the similarity



CHAPTER 3. MODEL SIMILARITY MITIGATES TEST-SET REUSE 54

Table 3.1: Neural Architecture Search Similarities

Models Mean Accuracy Mean Similarity Increase in Testable Models
SB NBB

20 Random 96.8% 97.5% 9.9× 1.6 · 104×
20 Highest Scoring 96.9% 97.6% 12.0× 3.4 · 104×

for models evaluated by automatic neural architecture search. In particular, we ran the
DARTS neural architecture search pipeline to adaptively evaluate a large number of plausible
models in search of promising configurations [137, 143]. In Table 3.1, we report the mean
accuracies and pairwise similarities for 20 randomly selected configurations evaluated by
DARTS, as well as the top 20 scoring configurations according to DARTS internal scoring
mechanism. Table 3.1 also shows the multiplicative gains in the number of testable models
offered by our similarity bound (SB) and our naive Bayes bound (NBB) over the standard
union bound are between one and four orders of magnitude. Therefore, even in a high
accuracy regime we can guarantee a significantly higher number of test set reuses without
overfitting when taking into account model similarities.

3.6 Conclusions and future work

We have shown that contemporary image classification models are highly similar, and that
this similarity increases the longevity of the test set both in theory and in experiment.
It is worth noting that model similarity does not preclude progress on the test set: two
models that are 85% similar can differ by as much as 15% in accuracy (for context: the
top-5 accuracy improvement from the seminal AlexNet to the current state of the art on
ImageNet is about 17%). In addition, it is well known that higher model accuracy implies a
larger number of test set reuses without overfitting. So as the machine learning practitioner
explores increasingly better performing models that also become more similar, it can actually
become harder to overfit.

There are multiple important avenues for future work. First, one natural question is
why the classification models turn out to be so similar. In addition, it would be insightful to
understand whether the similarity phenomenon is specific to image classification or also arises
in other classification tasks. There may also be further structural dependencies between
models that mitigate the amount of overfitting. Finally, it would be ideal to have a statistical
procedure that leverages such model structure to provide reliable and accurate performance
bounds for test set re-use.
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3.7 Appendix: Proofs for Section 3.3

Lemma 4. Suppose Xi are i.i.d. discrete random variables which take values −1, 0, and
1 with probabilities p−1, p0, and p1 respectively, and hence EXi = p1 − p−1. Then, for any
t ≥ 0 such that p1 − p−1 + t/2 ≥ 0 we have

P

(
1

n

n∑
i=1

Xi > p1 − p−1 + t

)
≤ e

−nt
2

log
(
1+ t

2p1

)
.

Proof. We assume p1 > 0. The result follows by continuity when p1 = 0. We prove the more
general case since the first part of the lemma is a particular case. By standard Chernoff
methods we have

P

(
1

n

n∑
i=1

Xi > p1 − p−1 + t

)
≤ e−nλ(t+p1−p−1)

(
p0 + p1e

λ + p−1e
−λ)n ,

for any λ ∈ [0,∞). Let r > 0 to be chosen later. Now, we would like to choose λ to be
nonnegative and as large as possible so that

p0 + p1e
λ + p−1e

−λ ≤ eλr. (3.9)

By changing variables to eλ = z + 1 for some z ≥ 0 we want to find z as large as possible so
that

p0(z + 1) + p1(z + 1)2 + p−1 ≤ (z + 1)1+r.

Then, by Bernoulli’s inequality it suffices if z satisfies the inequality

p0(z + 1) + p1(z + 1)2 + p−1 ≤ 1 + (1 + r) z,

which is equivalent to

p0 + p1z + 2p1 ≤ 1 + r.

Hence, the desired inequality (3.9) is satisfied if z ≤ p−1−p1+r
p1

, which can be satisfied by

choosing z = p−1−p1+r
p1

when p−1 − p1 + r ≥ 0. In this case, we would be able to set

λ = log
(

1 + p−1−p1+r
p1

)
and obtain

P

(
1

n

n∑
i=1

Xi > p1 − p−1 + t

)
≤ e

−n log
(
1+

p−1−p1+r
p1

)
(t+p1−p−1−r).

Set r = p1 − p−1 + t/2 and by the assumption on t we are guaranteed that r ≥ 0 and
p−1 − p1 + r ≥ 0. The conclusion follows.
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Theorem 2. Let F = {q1, q2, . . . , qk} be a collection of queries qi : Z → {0, 1} independent
of the test set {z1, z2, . . . , zn}. Then, for any η ∈ [0, 1] we have

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
≤ 2Nηe

−nε
2

2 + 2ke−
nε
4

log(1+ ε
4(1−η)). (3.4)

Then, for all η ≤ 1−max

{
2 log(4k/δ)

n
,
√

log(4Nη/δ)

2n

}
, we have with probability 1− δ

max
1≤i≤k

|ES[qi]− ED[qi]| ≤ max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log (4k/δ)

n

}
. (3.5)

Moreover, if ε =
√

log((2Nη+1)/δ)

n
and η ≥ 1− ε

4
(
e2ε(2k)

4
nε−1

) , we have with probability 1− δ

max
1≤i≤k

|ES[qi]− ED[qi]| ≤ ε. (3.6)

Proof. First we prove (3.4) and we start with the right tails. We have

P

(
k⋃
i=1

{ES[qi]− ED[qi] ≥ ε}
)
≤ P

 k⋃
i=1

{ES[qi]− ED[qi] ≥ ε}
⋃
q̃∈M

{ES[q̃]− ED[q̃] ≥ ε}

 ,

where M is a minimal η similarity cover of F . Then, there exists a partition of F into subsets
Rq̃, with q̃ ∈ M , such that for any q ∈ F there exists q̃ such that q ∈ Rq̃, ED[q] ≥ ED[q̃],
and P(q(z) = q̃(z)) ≥ η. Since Rq̃ is a partition of F , we have

∑
q̃∈M |Rq̃| = k. Therefore,

following the same argument as in (3.3), we have

P

(
k⋃
i=1

{ES[qi]− ED[qi] ≥ ε}
)
≤
∑
q̃∈M

P
(
ES[q̃]− ED[q̃] ≥ ε

2

)
+
∑
q̃∈M

∑
q∈Rq̃

P ({ES[q̃]− ED[q̃] ≤ ε/2} ∩ {ES[q]− ED[q] ≥ ε})

≤
∑
q̃∈M

P
(
ES[q̃]− ED[q̃] ≥ ε

2

)
+
∑
q̃∈M

∑
q∈Rq̃

P (ES[q̃]− ED[q̃] + ε/2 ≤ ES[q]− ED[q]) .

Now, for every q̃ ∈ M and any q ∈ Rq̃ we use a standard Chernoff bound and Lemma 4 to
show

P
(
ES[q̃]− ED[q̃] ≥ ε

2

)
≤ e−

nε2

2 and P (ES[q̃]− ED[q̃] + ε/2 ≤ ES[q]− ED[q]) ≤ e−
nε
4

log(1+ ε
4(1−η)).
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To see why we can apply Lemma 4 note that q(z)− q̃(z) takes values in {−1, 0, 1} with the
probability of 0 being at least η, and ED[q − q̃] ≥ 0 by the choice of the covering set. Since
|M | = Nη and since

∑
q̃∈M |Rq̃| = k, we find

P

(
k⋃
i=1

{ES[qi]− ED[qi] ≥ ε}
)
≤ Nηe

−nε
2

2 + ke−
nε
4

log(1+ ε
4(1−η)).

An analogous argument for the left tails yields (3.4). Now, we turn to showing (3.5). The
goal is to find ε such that

2Nηe
−nε

2

2 ≤ δ

2
and 2ke−

nε
4

log(1+ ε
4(1−η)) ≤ δ

2
. (3.10)

The first inequality is satisfied if ε ≥
√

2 log(4Nη/δ)

n
. To find ε that satisfies the second

condition we make use of the inequality log(1 + t) ≥ t
t+1

for all t ≥ 0. We search for ε that
also satisfies ε ≤ 4(1− η). Then,

nε

4
log

(
1 +

ε

4(1− η)

)
≥ nε2

32(1− η)
,

and we would like the right hand side to be at least log(4k/δ). If we choose

ε = max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log(4k/δ)

n

}
,

the condition ε ≤ 4(1−η) is satisfied because of the assumption on η. In this case, both con-
ditions (3.10) are satisfied and (3.5) is proven. Finally, note that when η ≥ 1− ε

4(e2ε(2k)
4
nε−1)

we have

2ke−
nε
4

log(1+ ε
4(1−η)) ≤ e−

nε2

2 .

Then, (3.6) follows by choosing ε =
√

log((2Nη+1)/δ)

n
. This completes the proof.

Corollary 3. Let F = {q1, q2, . . . , qk} be a collection of k queries qi : Z → {0, 1} fixed
independently of the test set. Choose η? so that Nη? = 1. Suppose n ≥ c1 max {ε−1, ε−2} and
the number of queries k satisfies

k ≤ c2ε

(1− η?)

for positive constants c1, c2. Then, with probability 3/4, max1≤i≤k |ES[qi]− ED[qi]| ≤ ε.
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Proof. Choose η? so that Nη? = 1. Using equation (3.4) from Theorem (2),

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
≤ 2Nηe

−nε
2

2 + 2ke−
nε
4

log(1+ ε
4(1−η)).

Consider each term separately. If n ≥ log(4/δ)
ε2

, then the first term 2Nη?e
−nε2/2 ≤ δ/2. Now,

we choose k so that the second term is at most δ/2, i.e.

2ke−
nε
4

log(1+ ε
4(1−η?)) ≤ δ

2
,

which is equivalent to requiring

k ≤ δ

4

(
1 +

ε

4(1− η?)

)nε/4
.

If n ≥ 4
ε
, then the right hand side can be lower bounded by

δ

4

(
1 +

ε

4(1− η)

)nε/4
≥ δ

4

(
1 +

ε

4(1− η?)

)
≥ δ

4

(
ε

4(1− η?)

)
,

and the conclusion follows from plugging in δ = 1/4.

3.8 Appendix: Tail probability of two dependent

binomials

In this section we detail the computations of the two similarity union bounds (with and
without the Naive Bayes assumption).

Similarity Union Bound. We wish to compute the probability

P ({ES[q2]− ED[q2] ≤ α2} ∩ {ES[q1]− ED[q1] ≥ α1}) ,

where q1(z) and q2(z) have some joint distribution over {0, 1}2. Let use denote p1 = ED[q1],
p2 = ED[q2], and η = P(q1(z) = q2(z)) respectively. These three quantities fully determine
the joint probability distribution of q1(z) and q2(z). Specifically, we have

P(q1(z) = 1, qq(z) = 1) =
p1 + p2 + η − 1

2
, P(q1(z) = 1, qq(z) = 0) =

1 + p1 − p2 − η
2

P(q1(z) = 0, qq(z) = 1) =
1 + p2 − p1 − η

2
, P(q1(z) = 0, qq(z) = 0) =

1 + η − p1 − p2
2

.

We denote these four probabilities by p11, p10, p01, and p00 respectively. We aim to find
three independent Bernoulli random variables X1, X2, and W such that (X1W,X2W ) equals
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(q1(z), q2(z)) in distribution. It turns out we can achieve this whenever p11 ≥ (p10+p11)(p01+
p11), a condition that is always satisfied in the settings we consider, by setting

P(X1 = 1) =
p11

p01 + p11
, P(X2 = 1) =

p11
p10 + p11

, P(W = 1) =
(p10 + p11)(p01 + p11)

p11
.

Then, given i.i.d. draws X1i, X2i, and Wi, probability (3.7) equals

P

({
n∑
i=1

X2iWi ≤ bn(p2 + α2)c
}⋂{

n∑
i=1

X1iWi ≥ dn(p1 + α1)e
})

.

Denote pw = P(W = 1). Then, we condition on the possible values of Wi to obtain

P ({ES[q2]− ED[q2] ≤ α2} ∩ {ES[q1]− ED[q1] ≥ α1})

=
n∑
j=0

(
n

j

)
pjw(1− pw)n−jP

(
j∑
i=1

X2i ≤ bn(p2 + α2)c
)
P

(
j∑
i=1

X1i ≥ dn(p1 + α1)e
)
.

The two tail probabilities for X1i and X2i can be computed efficiently with the use of beta
functions.

Similarity union bound with a Naive Bayes assumption. In this section we wish to
compute directly the overfitting probability

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
when the query vector (q1(z), q2(z), . . . , qk(z)) is equal in distribution to (X1W,X2W, . . . , XkW )
for some independent Bernoulli random variables W , X1, . . .Xk. Recall that we assume that
all queries qi have equal error rates ED[qi]; let us denote it µ = ED[qi]. Moreover, for any
two queries qi and qj we have P(qi(z) = qj(z)) = η.

Suppose we are given i.i.d. draws Wi and i.i.d. draws X`i for 1 ≤ i ≤ n and 1 ≤ ` ≤ k.
Then, if pw := P(W = 1), by conditioning on the values of the random variables Wi we
obtain

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
=

n∑
j=1

(
n

j

)
pjw(1− pw)n−jP

(
k⋃
`=1

∣∣∣∣∣ 1n
j∑
i=1

X`i − µ
∣∣∣∣∣ ≥ ε

)
.

The random variables
∑j

i=1X`i have the same distribution for all ` and are independent.
Then,

P

(
k⋃
`=1

∣∣∣∣∣ 1n
j∑
i=1

X`i − µ
∣∣∣∣∣ ≥ ε

)
= 1− P

(
k⋂
`=1

∣∣∣∣∣ 1n
j∑
i=1

X`i − µ
∣∣∣∣∣ < ε

)

= 1− P

(∣∣∣∣∣ 1n
j∑
i=1

X1i − µ
∣∣∣∣∣ < ε

)k

.
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Therefore, we have

P
(

max
1≤i≤k

|ES[qi]− ED[qi]| ≥ ε

)
=

n∑
j=1

(
n

j

)
pjw(1− pw)n−j

1− P

(∣∣∣∣∣ 1n
j∑
i=1

X1i − µ
∣∣∣∣∣ < ε

)k
 .

3.9 Appendix: Empirical distribution of image

difficulty in ImageNet
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Figure 3.4: The empirical “difficulty” distribution of the 50,000 images in the ImageNet
validation set as measured by the classifiers in the testbed from Recht et al. [190]. The
plot shows how many of the images are misclassified by at most a certain number of the
models. For instance, about 27.8% of the images are correctly classified by all models, and
55.9% of the images are correctly classified by 60 of the 66 models. 4.7% of the images are
misclassified by all models. The plot shows that a significant fraction of images is classified
correctly by all or almost all of the models. These empirical findings support the Naive
Bayes assumption in Section 3.5.

3.10 Appendix: CIFAR-10 random hyperparameter

grid search

We conducted a large hyperparameter search on a ResNet110. All of our experiments build
on the ResNet implementation and training code provided by https://github.com/hysts/
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pytorch\_image\_classification. In Table 3.2, we specify the grid used in the experi-
ments. If not explicitly stated, all other hyperparameters are set to their default settings.
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Table 3.2: Random grid search hyperparameters.

Parameter Sampling Distribution

Number of base channels Uniform{4, 8, 16, 32}
Residual block type Uniform{”Basic”, ”Bottleneck”}
Remove ReLu before residual units Uniform{True, False}
Add BatchNorm after last convolutions Uniform{True, False}
Preactivation of shortcuts after downsampling Uniform{True, False}
Batch size Uniform{32, 64, 128, 256}
Base learning rate Uniform[1e-4, 0.5]

Weight decay 10Uniform[−5,−1]

Use weight decay with batch norm Uniform{True, False}
Optimizer Uniform{SGD, SGD with Momentum,

Nesterov GD, Adam}
Momentum (SGD with momentum) Uniform{0.6, 0.99}
β1 (Adam) Uniform[0.8, 0.95]
β2 (Adam) Uniform[0.9, 0.999]
Learning rate schedule Uniform{Cosine, Fixed Decay}
Learning rate decay point 1 (Fixed Decay) Uniform{40, 60, 80, 100}
Learning rate decay point 2 (Fixed Decay) Uniform{120, 140, 160, 180}
Use random crops Uniform{True, False}
Random crop padding Uniform{2, 4, 8}
Use horizontal flips Uniform{True, False}
Use cutout Uniform{True, False}
Cutout size Uniform{8, 12, 16}
Use dual cutout augmentation Uniform{True, False}
Dual cutout α Uniform[0.05, 0.3]
Use random erasing Uniform{True, False}
Random erasing probability Uniform[0.2, 0.8]
Use mixup data augmentation Uniform{True, False}
Mixup α Uniform[0.6, 1.4]
Use label smoothing Uniform{True, False}
Label smoothing ε Uniform[0.01, 0.2]
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Chapter 4

The Strong Correlation Between
Out-of-Distribution and
In-Distribution Generalization

4.1 Introduction

The standard benchmark paradigm to measure generalization is to evaluate a model on a
single test set drawn from the same distribution as the training set. But this paradigm
provides only a narrow in-distribution performance guarantee: a small test error certifies
future performance on new samples from exactly the same distribution as the training set.
In many scenarios, it is hard or impossible to train a model on precisely the distribution it
will be applied to. Hence a model will inevitably encounter out-of-distribution data on which
its performance could vary widely compared to in-distribution performance. Understanding
the performance of models beyond the benchmark training distribution raises the following
fundamental question of external validity: how does out-of-distribution performance relate
to in-distribution performance?

Classical theory for generalization across different distributions provides a partial an-
swer [155, 16]. For a model f trained on a distribution D, known guarantees typically relate
the in-distribution test accuracy on D to the out-of-distribution test accuracy on a new
distribution D′ via inequalities of the form

|accD(f)− accD′(f)| ≤ d(D,D′)

where d is a distance between the distributions D and D′ such as the total variation distance.
Qualitatively, these bounds suggest that out-of-distribution accuracy may vary widely as a
function of in-distribution accuracy unless the distribution distance d is small and the accu-
racies are therefore close (see Figure 1 (top-left) for an illustration). More recently, empirical
studies have shown that in some settings, models with similar in-distribution performance
can indeed have different out-of-distribution performance [158, 261, 59].
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In Chapter 2, we observed models from the SQuAD benchmark showed a much more reg-
ular pattern. The new out-of-distribution accuracies were almost perfectly linearly correlated
with the original in-distribution accuracies for a range of deep neural networks. This trend
was also observed in other dataset reproduction experiments involving CIFAR-10, MNIST,
and ImageNet [190, 248, 147]. Importantly, this correlation holds despite the substantial gap
between in-distribution and out-of-distribution accuracies (see Figure 1 (top-middle) for an
example). However, it is currently unclear how widely these linear trends apply since they
have been mainly observed for dataset reproductions and common variations of convolutional
neural networks.

In this chapter, we conduct a broad empirical investigation to characterize when precise
linear trends such as in Figure 1 (top-middle) may be expected, and when out-of-distribution
performance is less predictable as in Figure 1 (top-left). Concretely, we make the following
contributions:

• We show that precise linear trends occur on several datasets and associated distribution
shifts (see Figure 1). Going beyond the dataset reproductions in earlier work, we find
linear trends on

– popular image classification benchmarks (CIFAR-10 [124], CIFAR-10.1 [190],
CIFAR-10.2 [147], CIFAR-10-C [98], CINIC-10 [61], STL-10 [52], ImageNet [62],
ImageNet-V2 [190]),

– a pose estimation testbed based on YCB-Objects [39],

– and two distribution shifts derived from concrete applications of image classifica-
tion: satellite imagery and wildlife photos via the FMoW-WILDS and iWildCam-
WILDS variants from WILDS [50, 14, 120].

• We show that the linear trends hold for many models ranging from state-of-the-art
methods such as convolutional neural networks, visual transformers, and self-supervised
models, to classical methods like logistic regression, nearest neighbors, and kernel ma-
chines. Importantly, we find that classical methods follow the same linear trend as more
recent deep learning architectures. Moreover, we demonstrate that varying model or
training hyperparameters, training set size, and training duration all result in models
that follow the same linear trend.

• We also identify three settings in which the linear trends do not occur or are less
regular: some of the synthetic distribution shifts in CIFAR-10-C (e.g., Gaussian noise),
the Camelyon17-WILDS shift of tissue slides from different hospitals, and a version of
the aforementioned iWildCam-WILDS wildlife classification problem with a different
in-distribution train-test split [14]. We analyze these cases in detail via additional
experiments to pinpoint possible causes of the linear trends.

• Pre-training a model on a larger and more diverse dataset offers a possibility to increase
robustness. Hence we evaluate a range of models pre-trained on other datasets to study
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the impact of pre-training on the linear trends. Interestingly, even pre-trained models
sometimes follow the same linear trends as models trained only on the in-distribution
training set. Two examples are ImageNet pre-trained models evaluated on CIFAR-
10 and FMoW-WILDS. In other cases (e.g., iWildCam-WILDS), pre-training yields
clearly different relationships between in-distribution and out-of-distribution accura-
cies.

• As a starting point for theory development, we provide a candidate theory based on
a simple Gaussian data model. Despite its simplicity, this data model correctly iden-
tifies the covariance structure of the distribution shift as one property affecting the
performance correlation on the Gaussian noise corruption from CIFAR-10-C.

Overall, our results show a striking linear correlation between the in-distribution and
out-of-distribution performance of many models on multiple distribution shifts. This raises
the intriguing possibility that, despite their different creation mechanisms, a diverse range of
distribution shifts may share common phenomena. In particular, improving in-distribution
performance reliably improves out-of-distribution performance as well. However, it is cur-
rently unclear whether improving in-distribution performance is the only way, or even the
best way, to improve out-of-distribution performance. More research is needed to understand
the extent of the linear trends observed in this work and whether robustness interventions
can improve over the baseline given by empirical risk minimization. We hope that our work
serves as a step towards a better understanding of distribution shift and how we can train
models that perform robustly out-of-distribution.

Chapter outline. Next, we introduce our main experimental framework that forms the
backbone of our investigation. The following sections instantiate this framework for multiple
distribution shifts.

Section 4.3 shows results on a wide range of distribution shifts where precise linear trends
do occur. Section 4.4 then turns to distribution shifts where the linear trends are less regular
or do not exist. Section 4.5 investigates the role of pretraining in more detail since models
pre-trained on a different dataset sometimes – but not always – deviate from the linear
trends.

After our experiments, we briefly summarize the empirical phenomena in Section 4.6 and
then present our theoretical model in Section 4.7. Section 4.8 describes related work and
Section 4.9 concludes with a discussion of our results, possible implications for research on
reliable machine learning, and directions for future work.



CHAPTER 4. THE STRONG CORRELATION BETWEEN OUT-OF-DISTRIBUTION
AND IN-DISTRIBUTION GENERALIZATION 66

10 30 50 70 90
In-distribution accuracy

10

30

50

70

90

Ou
t-o

f-d
ist

rib
ut

io
n 

ac
cu

ra
cy Sketch of theoretical bounds

Potential model

OOD / ID discrepancy
measure

10 30 50 70 90
CIFAR-10 test accuracy

10

30
50
70

90

CI
FA

R-
10

.2
 te

st
 a

cc
ur

ac
y

CIFAR-10.2

10 20 30 40 50 65
In-distribution test accuracy

5

10

20

30
40
50

OO
D 

te
st

 w
or

st
 re

gi
on

 a
cc

ur
ac

y fMoW-WILDS

5 20 35 50 65 80
ImageNet accuracy

5

20
35
50
65
80

Im
ag

eN
et

V2
 a

cc
ur

ac
y

ImageNetV2

10 30 50 70 90
CIFAR-10 test accuracy

10

30
50
70

90

Fo
g 

ac
cu

ra
cy

CIFAR-10-C fog

10 20 30 40 50 60 70
ID test macro F1

5

10

20
30
40
50

OO
D 

te
st

 m
ac

ro
 F

1

iWildCam-WILDS

5 20 35 50 65 80
YCB in-distribution accuracy

5

20
35
50
65
80

YC
B 

OO
D 

ac
cu

ra
cy

YCB-Objects

10 30 50 70 90
CIFAR-10 test accuracy

10

30
50
70

90

CI
NI

C-
10

 te
st

 a
cc

ur
ac

y

CINIC-10
y= x
Linear Fit
Neural Network
ImageNet Pretrained Network
Random Features
Random Forest
KNN
SVM
Linear Model
AdaBoost

Figure 4.1: Out-of-distribution accuracies vs. in-distribution accuracies for a wide range of
models, datasets, and distribution shifts. Top left: A sketch of the current bounds from
domain adaptation theory. These bounds depend on distributional distances between in-
distribution and out-of-distribution data, and they are loose in that they limit the deviation
away from the y = x diagonal but do not prescribe a specific trend within these wide bounds
(see Section 4.8). Remaining panels: In contrast, we show that for a wide range of models
and datasets, there is a precise linear trend between out-of-distribution accuracy and in-
distribution accuracy. Unlike what we might expect from theory, the linear trend does not
follow the y = x diagonal. The different panels represent different pairs of in-distribution
and out-of-distribution datasets. Within each panel, we plot the performances of many dif-
ferent models, with different model architectures and hyperparameters. These datasets cap-
ture a variety of distribution shifts from dataset reproduction (CIFAR-10.2, ImageNet-V2);
a real-world spatiotemporal distribution shift on satellite imagery (FMoW-WILDS); using
a different benchmark test dataset (CINIC-10); synthetic perturbations (CIFAR-10-C and
YCB-Objects); and a real-world geographic shift in wildlife monitoring (iWildCam-WILDS).
Interestingly, for iWildCam-WILDS, models pretrained on ImageNet follow a different linear
trend than models trained from scratch in-distribution, and we plot a separate trend line for
ImageNet pretrained models in the iWildCam-WILDS panel.
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4.2 Experimental setup

In each of our main experiments, we compare performance on two data distributions. The
first is the training distribution D, which we refer to as “in-distribution” (ID). Unless noted
otherwise, all models are trained only on samples from D (the main exception is pre-training
on a different distribution). We compute ID performance via a held-out test set sampled
from D. The second distribution is the “out-of-distribution” (OOD) distribution D′ that we
also evaluate the models on. For a loss function ` (e.g., error or accuracy), we denote the
loss of model f on distribution D with `D(f) = Ex,y∼D [`(f(x), y)].

Experimental procedure. The goal of this chapter is to understand the relationship
between `D(f) and `D′(f) for a wide range of models f (convolutional neural networks,
kernel machines, etc.) and pairs of distributions D,D′ (e.g., CIFAR-10 and the CIFAR-10.2
reproduction). Hence for each pair D,D′, our core experiment follows three steps:

1. Train a set of models {f1, f2, . . .} on samples drawn from D. Apart from the shared
training distribution, the models are trained independently with different training set
sizes, model architectures, random seeds, optimization algorithms, etc.

2. Evaluate the trained models fi on two test sets drawn from D and D′, respectively.

3. Display the models fi in a scatter plot with each model’s two test accuracies on the
two axes to inspect the resulting correlation.

An important aspect of our scatter plots is that we apply a non-linear transformation to
each axis. Since we work with loss functions bounded in [0, 1], we apply an axis scaling that
maps [0, 1] to [−∞,+∞] via the probit transform. The probit transform is the inverse of the
cumulative density function (CDF) of the standard Gaussian distribution, i.e., ltransformed =
Φ−1(l). Transformations like the probit or closely related logit transform are often used in
statistics since a quantity bounded in [0, 1] can only show linear trends for a bounded range.
The linear trends we observe in our correlation plots are substantially more precise with the
probit (or logit) axis scaling. Unless noted otherwise, each point in a scatter plot is a single
model (not averaged over random seeds) and we show each point with 95% Clopper-Pearson
confidence intervals for the accuracies.

We assembled a unified testbed that is shared across experiments and includes a multitude
of models ranging from classical methods like nearest neighbors, kernel machines, and random
forests to a variety of high-performance convolutional neural networks. Our experiments
involved more than 3,000 trained models and 100,000 test set evaluations of these models
and their training checkpoints. Due to the size of these experiments, we defer a detailed
description of the testbed used to Appendix 4.10.
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ID Dataset OOD Dataset
R2 of linear fit

(probit domain)
Number of models

evaluated

CIFAR-10 CIFAR-10.1 0.995 1,060

CIFAR-10.2 0.997 1,060

CINIC-10 0.991 949

STL-10 0.995 456

CIFAR-10-C Fog 0.990 790

CIFAR-10-C Brightness 0.940 519

ImageNet ImageNet-V2 0.996 219

YCB-Objects YCB-Objects OOD 0.975 39

iWildCam-WILDS ID iWildCam-WILDS OOD 0.881 (0.536) 66 (63)

FMoW-WILDS ID FMoW-WILDS OOD 0.984 162

Table 4.1: Summary of ID and OOD pairs where we observe precise linear trends in our
experiments. Number of models evaluated is the number of models trained on the ID training
set, evaluated on the ID and OOD test sets, and used to compute the linear fits. For brevity,
we list only two CIFAR-10-C shifts; see Appendix 4.12 for a complete list. As discussed
in Section 4.5, on iWildCam-WILDS, ImageNet pretrained models exhibit a different linear
trend than models trained from scratch. Therefore, for iWildCam-WILDS, we report the
number of models and R2 for pretrained models and models trained from scratch (given in
parentheses) separately.

4.3 The linear trend phenomenon

In this section, we show precise linear trends between in-distribution and out-of-distribution
performance occur across a diverse set of models, data domains, and distribution shifts.
Moreover, the linear trends holds not just across variations in models and model architec-
tures, but also across variation in model or training hyperparameters, training dataset size,
and training duration.

Distribution shifts with linear trends

We find linear trends for models in our testbed trained on five different datasets—CIFAR-
10, ImageNet, FMoW-WILDS, iWildCam-WILDS, and YCB-Objects—and evaluated on
distribution shifts that fall into four broad categories. These trends are summarized in
Table 4.1.

Dataset reproduction shifts. Dataset reproductions involve collecting a new test
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set by closely matching the creation process of the original. Distribution shift arises as a
result of subtle differences in the dataset construction pipelines. Recent examples of dataset
reproductions are the CIFAR-10.1 and ImageNet-V2 test sets from Recht et al. [190], who
observed linear trends for deep models on these shifts. In Figure 4.1, we extend this result
and show both deep and classical models trained on CIFAR-10 and evaluated on CIFAR-
10.2 [147] follow a linear trend. In Appendix 4.11, we further show linear trends occur for
deep and classical CIFAR-10 models evaluated on CIFAR-10.1 and for ImageNet models
evaluated on ImageNet-V2.

Distribution shifts between machine learning benchmarks. We also consider
distribution shifts between distinct benchmarks which are drawn from different data sources,
but which use a compatible set of labels. For instance, both CIFAR-10 and CINIC-10 [61]
use the same set of labels, but CIFAR-10 is drawn from TinyImages [234] and CINIC-10 is
drawn from ImageNet [62] images. We show CIFAR-10 models exhibit linear trends when
evaluated on CINIC-10 (Figure 4.1) or on STL-10 [52] (Appendix 4.11).

Synthetic perturbations. Synthetic distribution shifts arise from applying a perturba-
tion, such as adding Gaussian noise, to existing test examples. CIFAR-10-C [98] applies 19
different synthetic perturbations to the CIFAR-10 test set. For many of these perturbations,
we observe linear trends for CIFAR-10 trained models, e.g. the Fog shift in Figure 4.1. How-
ever, there are several exceptions, most notably adding isotropic Gaussian noise. We give
further examples of linear trends on synthetic CIFAR-10-C shifts in Appendix 4.11, and we
more thoroughly discuss non-examples of linear trends in Section 4.4. In Figure 4.1, we also
show that pose-estimation models trained on rendered images of YCB-Objects [39] follow
a linear trend when evaluated on a images rendered with perturbed lighting and texture
conditions.

Distribution shifts in the wild. We also find linear trends on two of the real-world dis-
tribution shifts from the WILDS benchmark [120]: FMoW-WILDS and iWildCam-WILDS.
FMoW-WILDS is a satellite image classification task derived from Christie et al. [50] where
in-distribution data is taken from regions (e.g., the Americas, Africa, Europe) across the
Earth between 2002 and 2013, the out-of-distribution test-set is sampled from each region
during 2016 to 2018, and models are evaluated by their accuracy on the worst-performing
region. In Figure 4.1, we show models trained on FMoW-WILDS exhibit linear trends when
evaluated out-of-distribution under both of these temporal and subpopulation distribution
shifts.

iWildCam-WILDS is an image dataset of animal photos taken by camera traps deployed
in multiple locations around the world [120, 14]. It is a multi-class classification task, where
the goal is to identify the animal species (if any) within each photo. The held-out test
set comprises photos taken by camera traps that are not seen in the training set, and the
distribution shift arises because different camera traps vary markedly in terms of angle,
lighting, and background. In Figure 4.1, we show models trained on iWildCam-WILDS also
exhibit linear trends when evaluated OOD across different camera traps.
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Figure 4.2: The linear trend between ID and OOD accuracy is invariant to changes in model
hyperparameters, the number of training steps, and training set size. In each panel, we
compare models with the linear fit from Figure 4.1. Left: For each model family, we vary
model-size, regularization, and optimization hyperparameters. Middle: We evaluate each
network after every epoch of training. Right: We train models on randomly sampled subsets
of the training data, ranging from 1% to 80% of the CIFAR-10 training set size. In each
setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.

Variations in model hyperparameters, training duration, and
training set size

The linear trends we observe hold not just across different models, but also across variation
in model and optimization hyperparameters, training dataset size, and training duration.

In Figure 4.2, we train and evaluate both classical and neural models on CIFAR-10 and
CIFAR-10.2 while systematically varying (1) model hyperparameters, (2) training duration,
and (3) training dataset size. When varying hyperparameters controlling the model size,
regularization, and the optimization algorithm, the model families continue to follow the
same trend line (R2 = 0.99). We also find models lie on the same linear trend line throughout
training (R2 = 0.99). Finally, we observe models on trained on random subsets of CIFAR-
10 lie on the same linear trend line as models trained on the full CIFAR-10 training set,
despite their corresponding drop in in-distribution accuracy (R2 = 0.99). In each case,
hyperparameter tuning, early stopping, or changing the amount of i.i.d. training data moves
models along the trend line, but does not alter the linear fit.

While we focus here on CIFAR-10 models evaluated on CIFAR-10.2, in Appendix 4.11, we
conduct an identical set of experiments for CINIC-10, CIFAR-10-C Fog, YCB-Objects, and
FMoW-WILDS. We find the same invariance to hyperparameter, dataset size, and training
duration shown in Figure 4.2 also holds for these diverse collection of datasets.
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Figure 4.3: A range of neural network and random feature models trained on Camelyon17-
WILDS and evaluated on the ID and OOD test sets. OOD accuracy is highly variable across
the spectrum of ID accuracies, and there is no precise linear trend.

4.4 Distribution shifts with weaker correlations

We now investigate distribution shifts with a weaker correlation between ID and OOD perfor-
mance than the examples presented in the previous section. We will discuss the Camelyon17-
WILDS tissue classification dataset and specific image corruptions from CIFAR-10-C. Fur-
ther discussion of a version of the iWildCam-WILDS wildlife classification dataset with a
different in-distribution train-test split can be found in Appendix 4.12.

Camelyon17-WILDS

Camelyon17-WILDS [7, 120] is an image dataset of metastasized breast cancer tissue samples
collected from different hospitals. It is a binary image classification task where each example
is a tissue patch. The corresponding label is whether the patch contains any tumor tissue.
The held-out OOD test set contains tissue samples from a hospital not seen in the training
set. The distribution shift largely arises from differences in staining and imaging protocols
across hospitals.

In Figure 4.3, we plot the results of training different ImageNet models and random
features models from scratch across a variety of random seeds. There is significant variation
in OOD performance. For example, the models with 95% ID accuracy have OOD accuracies
that range from about 50% (random chance) to 95%. This high degree of variability holds
even after averaging each model over ten independent training runs (see Appendix 4.12).

Appendix 4.12 also contains additional analyses exploring the potential sources of OOD
performance variation, including ImageNet pretraining, data augmentation, and similarity
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Figure 4.4: When the out-of-distribution data covariance matches the in-distribution data
covariance, the linear fit is significantly better. Left: A collection of models trained on
CIFAR-10 and evaluated in-distribution on CIFAR-10 and out-of-distribution on CIFAR-10
images corrupted with isotropic Gaussian noise. Right: The same collection of models
evaluated out-of-distribution on CIFAR-10 images corrupted with Gaussian noise with the
same covariance as CIFAR-10.

between test examples. Specifically, we observe that ImageNet pretraining does not increase
the ID-OOD correlation, while strong data augmentation significantly reduces, but does not
eliminate, the OOD variation. Another potential reason for the variation is the similarity
between images from the same slide / hospital, as similar examples have been shown to result
in analogous phenomena in natural language processing [261]. We explore this hypothesis in
a synthetic CIFAR-10 setting, where we simulate increasing the similarity between examples
by taking a small seed set of examples and then using data augmentations to create multiple
similar versions. We find that in this CIFAR-10 setting, shrinking the effective test set size
in this way increases OOD variation to a substantially greater extent than shrinking the
effective training set size.

CIFAR-10-Corrupted

CIFAR-10-C [98] corrupts the CIFAR-10 test set with various image perturbations. The
choice of corruption can have a significant impact on the correlation between ID and OOD
accuracy. Appendix 4.12 provides plots and R2 values for each corruption. We already
showed an example of one of the more precise fits, fog corruption, in Figure 4.1 (bottom
middle). Interestingly, the mathematically easy to describe corruption with Gaussian noise
is one of the corruptions with worst ID-OOD correlation (see Figure 4.4 left).

We also investigate how the relationship between the ID and OOD data covariances
impacts the linear trend. The theoretical model discussed in Section 4.7 predicts linear fits
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occur if the data covariances between ID and OOD are the same up to a constant scaling
factor. Thus, in Figure 4.4, we compare adding isotropic Gaussian noise to the CIFAR-
10 test set versus adding Gaussian noise with the same covariance as data examples from
CIFAR-10. We find that when the OOD covariance matches the ID covariance the linear
fit is substantially better (R2 = 0.93 vs. R2 = 0.44). This finding is consistent with the
theoretical model we propose and discuss in Section 4.7.

In Appendix 4.12, we also compare CIFAR-10-C to ImageNet-C and notice that each cor-
ruption displays a more linear trend on ImageNet-C compared to CIFAR-10-C. Investigating
this discrepancy further is an interesting direction for future work.

4.5 The effect of pretrained models

In this section, we expand our scope to methods that leverage models pretrained on a third
auxiliary distribution different from the ones we refer to in-distribution (ID) and out-of-
distribution (OOD). Fine-tuning pretrained models on the task-specific (ID) training set is a
central technique in modern machine learning [68, 188, 122, 176, 64], and zero-shot prediction
(using the pretrained model directly without any task-specific training) is showing increasing
promise as well [34, 182]. Therefore, it is important to understand how the use of pretrained
models affects the robustness of models to OOD data, and whether fine-tuning and zero-shot
inference differ in that respect.

The dependence of the pretrained model on auxiliary data makes the ID/OOD distinction
more subtle. Previously, “ID” simply referred to the distribution of the training set, while
OOD referred to an alternative distribution not seen in training. In this section, the training
set includes the auxiliary data as well, but we still refer to the task-specific training set
distributions as ID. This means, for example, that when fine-tuning an ImageNet model
on the CIFAR-10 training set, we still refer to accuracy on the CIFAR-10 test set as ID
accuracy. In other words, the “ID” distributions we refer to in this section are precisely the
“ID” distributions of the previous sections (displayed on the x-axes in our scatter plots), but
the presence of auxiliary training data alters the meaning of the term.

With the effect of auxiliary data on the meaning of “ID” in mind, it is reasonable to
expect that ID/OOD linear trends observed when training purely on ID data will change
or break down when pretrained models are used. In this section we test this hypothesis
empirically and reveal a more nuanced reality: the task and the use of the pretrained model
matter, and sometimes models pre-trained on seemingly broader distributions still follow
the same linear trend as the models trained purely on in-distribution data. We first present
our findings for fine-tuning pretrained ImageNet models and subsequently discuss results for
zero-shot prediction. See Appendix 4.13 for more experimental details.

Fine-tuning pretrained models on ID data. Figure 4.5 plots OOD performance vs.
ID performance for models trained from-scratch (purely on ID data) and fine-tuned models
whose initialization was pretrained on ImageNet. Across the board, pretrained models attain
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Figure 4.5: The effect of pre-training with additional data on CIFAR-10.2 (left), FMoW-
WILDS (middle), and iWildCam-WILDS (right). On CIFAR-10.2 and FMoW-WILDS, fine-
tuning pretrained models moves the models along the predicted ID-OOD line. However,
on CIFAR-10.2, zero-shot prediction using pretrained models deviates from this line. On
iWildCam-WILDS, fine-tuning pretrained models changes the ID-OOD relationship observed
for models trained from scratch. Moreover, the weight decay hyperparameter affects the ID-
OOD relationship in fine-tuned models.

better performance on both the ID and OOD test sets. However, fine-tuning affects ID-
OOD correlations differently across tasks. In particular, for CIFAR-10 reproductions and for
FMoW-WILDS, fine-tuning produces results that lie on the same ID-OOD trend as purely
ID-trained models (Figure 4.5 left and center). On the other hand, a similar fine-tuning
procedure yields models with a different ID-OOD relationship on iWildCam-WILDS than
models trained from scratch on this dataset. Moreover, the weight decay used for fine-tuning
seems to also affect the linear trend (Figure 4.5 right).

One conjecture is that the qualitatively different behavior of fine-tuning on iWildCam-
WILDS is related to the fact that ImageNet is a more diverse dataset that may encode
robustness-inducing invariances that are not represented in the iWildCam-WILDS ID train-
ing set. For instance, both ImageNet and iWildCam-WILDS contain high-resolution images
of natural scenes, but the camera perspectives in iWildCam-WILDS may be more limited
compared to ImageNet. Hence ImageNet classifiers may be more invariant to viewpoint,
which may aid generalization to previously unseen camera viewpoints in the OOD test set of
iWildCam-WILDS. On the other hand, the satellite images in FMoW-WILDS are all taken
from an overhead viewpoint, so learning invariance to camera viewpoints from ImageNet
might not be as beneficial. Investigating this and related conjectures (e.g., invariances such
as lighting, object pose, and background) is an interesting direction for future work.

Zero-shot prediction on pretrained models. A common explanation for OOD perfor-
mance drop is that training on the ID training set biases the model toward patterns that
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are more predictive on the ID test set than on its OOD counterpart. With that explanation
in mind, the fact that fine-tuned models maintain the same ID/OOD linear trend as from-
scratch models is surprising: once could reasonably expect that an initialization determined
independently of either ID or OOD data would produce models that are less biased toward
the former. Indeed, in the extreme scenario that no fine-tuning takes place, the model should
have no bias toward either distribution, and we therefore expect to see a different ID/OOD
trend.

The CIFAR-10 allows us directly test this expectation directly by performing zero-shot
inference on models pretrained on ImageNet: since the CIFAR-10 classes form a subset of
the ImageNet classes, we simply feed (resized) CIFAR-10 images to these models, and limit
the prediction to the relevant class subset. The resulting classifiers have no preference for
either the ID or OOD test set because they depend on neither distribution. We plot the
zero-shot prediction results in Figure 4.5 (left) and observe that, as expected, they deviate
from the basic linear trend. Moreover, they form a different linear trend closer—but not
identical—to x = y. The fact that the zero-shot linear trend is closer to x = y supports the
hypothesis that the performance drop partially stems from bias in ID training. However,
the fact that this trend is still below x = y suggests that the drop is also partially due to
CIFAR-10 reproductions being harder than CIFAR-10 for current methods (interestingly,
humans show similar performance on both test sets [190, 161, 210]). These finding agree
with prior work [147].

As another test of zero-shot inference, we apply two publically-available CLIP mod-
els on CIFAR-10 by creating last-layer weights out of natural language descriptions of the
classes [182]. As Figure 4.5 (left) shows, these models are slightly above the basic ID/OOD
linear trend, but below the trend of zero-shot inference with ImageNet models.

Additional experiments. In Appendix 4.13 we describe additional experiments with
pretrained models. To explore a middle ground between zero-shot prediction and full-model
fine-tuning, we consider a linear probe on CLIP for both CIFAR-10 and FMoW-WILDS. For
CIFAR-10, we also consider models trained on a task-relevant subset of ImageNet classes [61]
and models trained in a semi-supervised fashion using unlabeled data from 80 Million Tiny
Images [234, 41, 5]. Generally, we find that, compared to zero-shot prediction, these tech-
niques deviate less from the basic linear trend. We also report results on additional OOD
settings, namely CIFAR-10.1 and different region subsets for FMoW-WILDS, and reach
similar conclusions.

4.6 Summary of empirical phenomena

The previous sections have presented a variety of empirical phenomena concerning the rela-
tionship between in-distribution and out-of-distribution performance. To summarize these
phenomena, we now briefly highlight the key observations. These observations will also guide
the development of our theoretical model of distribution shift in the next section.
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The key observations are:

1. The linear trend between in-distribution and out-of-distribution performance applies
to a wide range of model families and holds under variation in architecture, hyperpa-
rameters, and training duration (Section 4.3).

2. The linear trends are more precise after applying a probit or logit scaling on both axes
of the scatter plotes.

3. Changing the amount of in-distribution training data does not affet the linear trend
(Section 4.3). On the other hand, pre-training on a different data distribution can –
but does not always – yield a different trend (Section 4.5).

4. Some distribution shifts show precise linear trends while others do so only for subsets
of models or not at all (Section 4.4).

4.7 Theoretical models for linear fits

In this section we propose and analyze a simple theoretical model that distills several of the
empirical phenomena from the previous sections. Our goal here is not to obtain a general
model that encompasses complicated real distributions such as the images in CIFAR-10.
Instead, our focus is on finding a simple model that is still rich enough to exhibit some of
the same phenomena as real data distributions.

A simple Gaussian distribution shift setting

We consider a simple binary classification problem where the label y is distributed uniformly
on {−1, 1} both in the original distribution D and shifted distribution D′. Conditional on
y, we consider D such that x ∈ Rd is an isotropic Gaussian, i.e.,

x | y ∼ N (µ · y; σ2Id×d),

for mean vector µ ∈ Rd and variance σ2 > 0.
We model the distribution shift as a change in σ and µ. Specifically, we assume that the

shifted distribution D′ corresponds to shifted parameters

µ′ = α · µ+ β ·∆ and σ′ = γ · σ (4.1)

where α, β, γ > 0 are fixed scalars and ∆ is uniformly distributed on the sphere in Rd. Note
that in our setting D′ is a random object determined by the draw of ∆.

Within the setup describe above, we focus on linear classifiers of the form x 7→ sign(θ>x).
The following theorem states that, as long as θ depends only on the training data and is
thereby independent of the random shift direction ∆, the probit-transformed accuracies on
D and D′ have a near-linear relationship with slope α/γ. (Recall that the probit transfrom
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Figure 4.6: Illustration of the theoretical distribution shift model in Section 4.7 with d = 105,
α = 0.7, β = 0.5 and γ = 1 (see Appendix 4.14 for details). The accuracies for linear models
(logistic and ridge regression) agree with the prediction of Theorem 6. Moreover, nonlinear
models (nearest neighbors and random features) exhibit the same probit trend we prove for
linear classifiers.

is the inverse of the standard Normal cdf Φ(x) =
∫ x
−∞

1√
2π
e−t

2/2dt). The deviation from

linearity is of order d−1/2 and vanishes in high dimension.

Theorem 6. In the setting described above where ∆ is independent of θ, let δ ∈ (0, 1). With
probability at least 1− δ, we have∣∣∣∣Φ−1(accD′(θ))− α

γ
Φ−1(accD(θ))

∣∣∣∣ ≤ β

γσ

√
2 log 2/δ

d
.

The theorem is a direct consequence of the concentration of measure; see proof in Ap-
pendix 4.14.

We illustrate Theorem 6 by simulating its setup and training different linear classifiers by
varying the loss function and regularization. Figure 4.6 shows good agreement between the
performance of linear classifiers and the theoretically-predicted linear trend. Furthermore,
conventional nonlinear classifiers (nearest neighbors and random forests) also satisfy the
same linear relationship, which does not directly follow from our theory. Nevertheless, if the
decision boundary of the nonlinear becomes nearly linear in our setting a similar theoretical
analysis might be applicable. Our simple Gaussian setup thus illustrates how linear trends
can arise across a wide range of models.

Modeling departures from the linear trend

In the previous section, we identified a simple Gaussian setting that showed linear fits across
a large range of models. Now we discuss small changes to the setting that break linear
trends and draw parallels to the empirical observations on complex datasets presented in
this chapter. In Appendix 4.14, we discuss each of these modifications in further detail.
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Adversarial distribution shifts. Previously, the direction ∆ which determines the
distribution shift as defined above in eq. (4.1), was chosen independent of the tested models
θ1, . . . ,θk. However, when ∆ is instead chosen by an adversary with knowledge of the tested
models, the ID-OOD relationship can be highly non-linear. This is reminiscent of adversarial
robustness notions where models with comparable in-distribution accuracies can have widely
differing adversarial accuracies depending on the training method.

Pretraining data. Additional training data from a different distribution available for
pretraining could contain information about the shift ∆. In this case, the pretrained models
are not necessarily independent of ∆ and these models could lie above the linear fit of
classifiers without pretraining. See Section 4.5 for a discussion of when such behavior arises
in practice.

Shift in covariance. Previously, we assumed that x | y is always an isotropic Gaussian.
Instead consider a setting where the original distribution is of the form x|y ∼ N (µy; Σ)
where Σ is not scalar (i.e., has distinct eigenvalues). Then, the linear trend breaks down
even when the distribution shift is simple additive white Gaussian noise corresponding to
x|y ∼ N (µy; Σ + (σ′)2Id×d). For example, ridge regularization turns out to be an effective
robustness intervention in this setting. However, if the shifted distribution is of the form
x|y ∼ N (µy; γΣ) for some scalar γ > 0, it is straightforward to see that a linear trend holds.

These theoretical observations suggest that a covariance change in ID/OOD the distri-
bution shift could be a possible explanation for some departures from the linear trends such
as additive Gaussian noise corruptions in CIFAR-10-C. To test this hypothesis, we created a
new distribution shift by corrupting CIFAR-10 with noise sampled from the same covariance
as the original CIFAR-10 distribution. As discussed in Section 4.4, we find that the corre-
lation between ID and OOD accuracy is substantially higher with the covariance-matched
noise than with isotropic Gaussian noise with similar magnitude.

While the theoretical setting we study in this work is much simpler than real-world
distributions, the analysis sheds some light on when to expect linear trends and what leads
to departures. Ideally, a theory would precisely explain what differentiates CIFAR-10.2,
CINIC-10, and the CIFAR-10-C-Fog shift (see Figure 4.1) where we see linear trends from
simply adding Gaussian noise to the images as in CIFAR-10-C-Gaussian where we do not
observe linear trends. A possible direction may be to characterize shifts by their generation
process, and we leave this to future work.

4.8 Related work

Due to the large body of research on distribution shifts, domain adaptation, and reliable
machine learning, we only summarize the most directly related work here. Appendix 4.15
contains a more detailed discussion of related work.

Domain generalization theory. Prior work has theoretically characterized the per-
formance of classifiers under distribution shift. Ben-David et al. [17] provided the first VC-
dimension-based generalization bound. They bound the difference between a classifier’s error
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on the source distribution (D) and target distribution (D′) via a classifier-induced divergence
measure. Mansour, Mohri, and Rostamizadeh [155] extended this work to more general loss
functions and provided sharper generalization bounds via Rademacher complexity. These
results have been generalized to include multiple sources [25, 105, 154]. See the survey
of Redko et al. [191] and the references therein for further discussion of these results. The
philosophy underlying these works is that robust models should aim to minimize the induced
divergence measure and thus guarantee similar OOD and ID performance.

The linear trends we observe in this chapter are not captured by such analyses. As
illustrated in Figure 1 (top-left), the bounds described above can only state that OOD
performance is highly predictable from ID performance if they are equal (i.e., when the gray
region is tight around the x = y line). In contrast, we observe that OOD performance is both
highly predictable from ID performance and significantly different from it. Our Gaussian
model in Section 4.7 demonstrates how the linear trend phenomenon can come about in a
simple setting. However, unlike the above-mentioned domain generalization bounds, it is
limited to particular distributions and the hypothesis class of linear classifiers.

Mania and Sra [152] proposed a condition that implies an approximately linear trend
between ID and OOD accuracy, and empirically checked their condition in dataset repro-
duction settings. The condition is related to model similarity, and requires the probability of
certain multiple-model error events to not change much under distribution shift. An inter-
esting question for future work is whether their condition can shed light on what distribution
shifts show linear trends, and what axes transformations lead to the most precise trends.

Empirical observations of linear trends. Precise linear trends between in-distribution
and out-of-distribution generalization were first discovered in the context of dataset repro-
duction experiments. Recht et al. [189, 190], Yadav and Bottou [248], and Miller et al. [161]
constructed new test sets for CIFAR-10 [124], ImageNet [62, 200], MNIST [131], and SQuAD
[187] and found linear trends similar to those in Figure 1.

However, these studies were limited in their scope, as they only focused on dataset
reproductions. Taori et al. [228] later showed that linear trends still occur for ImageNet
models on datasets like ObjectNet, Vid-Robust, and YTBB-Robust [9, 209]. On ImageNet,
Shankar et al. [211] showed that linear trends also occur between the original top-k accuracy
metrics and a multi-label accuracy metric based on a new set of multi-label annotations.
All of these experiments, however, were limited to ImageNet or ImageNet-like tasks. We
significantly broaden the scope of the linear trend phenomenon by including a range of
additional distribution shifts such as CINIC-10, STL-10, FMoW-WILDS, and iWildCam-
WILDS, as well as identifying negative examples like Camelyon17-WILDS and some CIFAR-
10-C shifts. In addition, we also include a pose estimation task with YCB-Objects. The
results show that linear trends not only occur in academic benchmarks but also in distribution
shifts coming from applications “in the wild.” Furthermore, we show that linear trends hold
across different learning approaches, training durations, and hyperparameters.

Kornblith, Shlens, and Le [122] study linear fits in the context of transfer learning and
train or fine-tune models on the distribution corresponding to the y-axis in our setting.
On a variety of image classification tasks, they show that a model’s ImageNet test accuracy
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linearly correlates with the model’s accuracy on the new task after fine-tuning. The similarity
between their results and ours suggest that they may both be part of a broader phenomenon
of predictable generalization in machine learning.

In concurrent work, Andreassen et al. [3] study the impact of fine-tuning on the effective
robustness of pre-trained models, i.e., how much a pre-trained model is above the linear trend
given by models trained only on in-distribution data [228]. At a high level, this investigation
is similar to Section 4.5 in this chapter, but the datasets are complementary: Andreassen
et al. [3] focus on distribution shifts in the context of CIFAR-10 and ImageNet while we
also study the effect of pre-training on the three distribution shifts from WILDS (FMoW-
WILDS, iWildCam-WILDS, and Camelyon17-WILDS). Andreassen et al. [3] measure how
the effective robustness of a model evolves during fine-tuning and find that models gain
accuracy but lose effective robustness over the course of fine-tuning. In addition, Andreassen
et al. [3] investigate how data diversity in the pre-training data along with other factors like
model size impact the effective robustness achieved by fine-tuning.

4.9 Discussion

Initial research on dataset reproductions found that many neural networks follow a linear
trend in scatter plots relating in-distribution to out-of-distribution performance. Our work
and concurrent work on object detection, natural language processing, and magnetic res-
onance imaging [36, 144, 60] show that such linear trends are not a peculiarity of dataset
reproductions but occur for many types of models and distribution shifts. The striking reg-
ularity of these trends raises the possibility that for certain classes of distribution shifts and
models, out-of-distribution performance is solely a function of in-distribution performance.

While our work and related work give many examples of model types and distribution
shifts with such a universal trend, our experiments have also demonstrated datasets where
linear trends do not occur. This naturally raises the question for what model types and dis-
tribution shifts out-of-distribution performance is a function of in-distribution performance.
As a starting point for future work in this direction, we now formalize the precise relationship
between in-distribution and out-of-distribution performance as correlation property.

Definition 7 (Correlation property). A pair of distributions D, D′ and a family of models
M have the α-approximate correlation property under loss function ` (e.g., accuracy) and
monotone transform function γ : R→ R (e.g., a linear function in probit domain) if for all
models f ∈M we have∣∣∣∣ γ ( E

x,y∼D
[`(f(x), y)]

)
− E

x,y∼D′
[`(f(x), y)]

∣∣∣∣ ≤ α .

With the correlation property in place, we can now state a candidate hypothesis for
specific distribution shifts such as the shift from CIFAR-10 to CIFAR-10.1.
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Conjecture 1. The distribution shift from CIFAR-10 to CIFAR-10.1 (or ImageNet to
ImageNet-V2, or FMoW-WILDS, etc.) has the 1%-approximate correlation property with
loss function accuracy and transform

γ(l) = Φ
(
slope · Φ−1(l) + offset

)
for models that are trained with empirical risk minimization (ERM) on the respective training
distribution.

The restriction to models trained on in-distribution data is important since for instance
ImageNet models applied to CIFAR-10 in a zero-shot manner follow a different trend (re-
call Section 4.5). Our experiments with a wide range of ERM models give evidence for
these conjectures, but are not ultimate proof. An interesting direction for future work is
understanding which distributions shifts have the correlation property for ERM models.

Question 1. What pairs of distributions D, D′ have the correlation property for models
trained via empirical risk minimization only on D?

Beyond exploring the data distribution question, another dimension of the correlation
property is what models it applies to. There is evidence that statements similar to Conjec-
ture 1 hold for a wider range of models than ERM. For instance, nearest neighbor models
follow the same trend as ERM models on several distribution shifts studied in this chapter
(see Figure 4.1). Moreover, earlier work found that a wide range of robustness interven-
tions (e.g., adversarial training, data augmentation, filtering layers, distributionally robust
optimization) do not improve over ERM baselines on the ImageNet-V2, ObjectNet, and
FMoW-WILDS distribution shifts [228, 120, 89]. On the other hand, it is also easy to con-
struct models that do not follow the same trend as the ERM baseline. Interpolating between
a CIFAR-10 model on the linear trend and a random classifier yields models above the linear
trend.1 This leads to the following question:

Question 2. For the CIFAR-10→ CIFAR-10.1 distribution shift (or ImageNet to ImageNet-
V2, or FMoW-WILDS, etc.), what models satisfy the correlation property?

Beyond interpolating with a random classifier, we are currently not aware of models
that violate the correlation property on the aforementioned distribution shifts by a sub-
stantial amount. Interpolating with a random classifier is a peculiar intervention since it
decreases both in-distribution and out-of-distribution performance. Hence a stronger version
of Conjecture 1 that applies to a wider range or even all “useful” models trained only on
in-distribution data is plausible. However, we currently do not have a satisfying way to make
this stronger conjecture precise. We hope that future work further investigates Questions
1 and 2 (and their combination) both empirically and theoretically to shed light on the
relationship between in-distribution and out-of-distribution generalization.

1To interpolate between the two classifiers, draw a sample from a Bernoulli with success probability p.
If the sample is 0, classify with the original classifier. Otherwise classify with the random classifier. Varying
p in [0, 1] interpolates between the two classifiers.
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Possible implications

If the correlation property holds for relevant distribution shifts and models, it can be a
valuable guide for building reliable machine learning systems. An important point here is
that – at least empiricially – the correlation property often holds not only for a single pair of
distributions, but for an entire range of distribution shifts (e.g., from CIFAR-10 to CIFAR-
10.1, CIFAR-10.2, CINIC-10, and STL-10 or for temporal and spatial distribution shifts in
FMoW-WILDS). So when a practitioner encounters a linear trend between in-distribution
and out-of-distribution performance, it is reasonable to expect that similar distribution shifts
will also exhibit a linear trend.

We now briefly describe three implications that arise when the correlation property holds
for a range of distribution shifts. We note that these implications are conditional and more
research is needed to understand their extent.

• Model selection. Practitioners are often faced with the challenge of selecting a model
that performs well not only on a specific test set but also on future unseen data that
may come from different distributions. If the shifted distributions have the correlation
property with respect to the training distribution, selecting the best model under these
distribution shifts reduces to selecting the best model on the in-distribution test set.

• Baseline for measuring out-of-distribution robustness. A central goal of re-
search on reliable machine learning is to develop models that perform well on out-
of-distribution data. There are two natural ways to quantify this goal: (i) perfor-
mance on out-of-distribution data, and (ii) the gap between in-distribution and out-
of-distribution performance.

The correlation property for empirical risk minimization implies that optimizing for
in-distribution performance also provides corresponding gains in out-of-distribution
performance. Hence existing work on improving in-distribution performance already
improves the robustness of a model according to criterion (i) without explicitly target-
ing robustness. So if a proposed training technique claims to improve the robustness
of a model as a quantity distinct from in-distribution performance, the proposed tech-
nique should not only improve out-of-distribution performance, but also reduce the gap
between in-distribution and out-of-distribution performance – criterion (ii) – beyond
what current methods optimizing for in-distribution performance achieve. Graphically
in terms of our scatter plots, the proposed technique promoting robustness should
produce a model that lies above the linear trend given by empirical risk minimization.2

To better compare new training techniques to prior work in terms of robustness, we
recommend that papers illustrate the effect of their technique with a scatter plot of

2Improving the out-of-distribution performance of a model by improving its in-distribution performance
is also clearly a valid way to improve robustness according to criterion (i). But the proposed technique should
then be compared to existing methods for improving in-distribution performance (architecture variations,
training schedules, etc.) and ideally improve over the out-of-distribution performance achieved by state-of-
the-art methods for in-distribution performance.
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relevant models (e.g., the evaluations in Taori et al. [228], this chapter, and Section
3.3 of Radford et al. [182]). In addition, papers should report both in-distribution and
out-of-distribution performance of their technique so that the effect on both quantities
is clear. We also refer the reader to Taori et al. [228], who formalize the concept of
“robustness beyond a baseline” as “effective robustness”.

• Guide for algorithmic interventions to improve robustness. If we can char-
acterize for what set of training approaches the correlation property holds, research
aiming to decrease the gap between in-distribution and out-of-distribution performance
can focus on other approaches. For instance, our experiments suggest that architecture
variations in neural network may not affect the gap between in-distribution and out-
of-distribution performance, but better pre-training datasets can at least sometimes
reduce this gap.

Frequently asked questions

In conversations with colleagues and reviewers, certain questions about our work appeared
repeatedly. To clarify our perspective on these issues, we answer the three most common
questions below:

Q: Do all distribution shifts have linear trends?

No. Section 4.4 gives concrete examples of distribution shifts that do not follow a linear
trend. Before our work, it was already clear that adversarial distribution shifts such as
`∞-robustness do not follow a linear trend because models trained with ERM usually have
little to no robustness to adversarial examples while multiple approaches give non-trivial
robustness, e.g., [150, 55, 184, 244]. Since multiple non-adversarial and natural (i.e., not
synthetically constructed) distribution shifts do show linear trends for a wide range of models,
the main question is what distribution shifts have linear trends.

Q: Should we only work on improving in-distribution performance?

No. As mentioned above, not all distribution shifts have linear trends. Moreover, more work
is needed to understand whether new robustness interventions can improve over the linear
trends observed for empirical risk minimization and existing robustness interventions [228,
120]. In addition, Section 4.13 suggests pre-training as a promising direction for improving
out-of-distribution performance, as also shown by the recent CLIP model [182].

Q: Is it is possible to construct models that violate the linear trend?

Yes, when the linear trend is on a non-linear transformation of the accuracy such as the
probit transform we use in this chapter. This is due to the fact that we can always construct
a family of models with a linear ID/OOD performance relationship (without the probit
transform) by randomly switching between two base models.
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Concretely, let f be a model with non-trivial performance and consider the following
interpolations between f and a trivial random classifier: given input x, output f(x) with
probability p and output a random class label with probability 1−p. Let C be the number of
classes and let accD(f) and accD′(f) be the in-distribution and out-of-distribution accuracies
of f , respectively. Then, as we vary p from 0 to 1, the in- and out-of-distributions accuracies
of the interpolating model trace a line from (1/C, 1/C) to (accD(f), accD′(f)). Therefore,
if we apply a non-linear transformation to these accuracies (such as a probit transform),
the in- and out-of-distribution performance of these models no longer follows a linear trend.
Characterizing for which models the linear trend (approximately) holds is an important
direction for future work.

4.10 Appendix: Omitted details about experimental

testbed

A rigorous empirical investgation of the correlation between in-distribution and out-of-
distribution performance requires a broad set of experiments. To measure the behavior
of many models on a variety of datasets, we utilized three different experimental “testbeds.”
A testbed consists of a collection of one or more “dataset universes” and a compatible set of
models that can be trained and evaluated on these “universes.” Each dataset universe itself
consists of a training set (e.g. CIFAR-10 train), an in-distribution test-set (CIFAR-10 test),
and a collection of out-of-distribution test-sets (e.g. CIFAR-10.2, CIFAR-10-C, etc). Within
a universe, models trained on one dataset can be tested on all other datasets, with each test
set representing a different distribution. The three testbeds we use are:

1. A new custom-built test for experiments with CIFAR-10 and WILDS (FMoW-WILDS,
Camelyon17-WILDS, and iWildCam-WILDS)

2. An ImageNet testbed based on Taori et al. [228], and

3. A testbed for pose estimation in the context of the YCB-Objects dataset [39].

In the rest of this section, we first detail the custom-built CIFAR-10 and WILDS testbed
since it forms the basis for most experiments in this chapter. We then describe our modifi-
cations to the ImageNet testbed of Taori et al. [228] in Section 4.10, and finally we describe
our testbed for YCB-Objects in Section 4.10.

CIFAR-10 and WILDS testbed

We now describe the datasets in our main testbed and summarize the models it contains.
Our main testbed contains four distinct “universes.” Each universe consists of at least
three datasets that we use for training and testing models both in-distribution and out-of-
distribution.



CHAPTER 4. THE STRONG CORRELATION BETWEEN OUT-OF-DISTRIBUTION
AND IN-DISTRIBUTION GENERALIZATION 85

The four universes are CIFAR-10, FMoW-WILDS, Camelyon17-WILDS, and iWildCam-
WILDS, which we now describe in more detail. The latter three datasets are taken from the
WILDS benchmark [120], and we use the train/test splits and evaluation procedures therein.

CIFAR-10 and related datasets

The CIFAR-10 universe comprises 32× 32 pixel color images used in an image classification
task. The ten classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The CIFAR-10 universe contains the following datasets:

• CIFAR-10 is the main dataset in the CIFAR-10 universe and was introduced by
Krizhevsky [124]. CIFAR-10 is derived from the larger Tiny Images dataset [234]. Since
its introduction, CIFAR-10 has become one of the most widely used image classification
benchmarks.

• CIFAR-10.1 is a reproduction of the CIFAR-10 dataset. Recht et al. [190] closely
followed the dataset creation process of CIFAR-10 and assembled a new dataset also
using Tiny Images as a source. CIFAR-10.1 contains only about 2,000 images and is
therefore usually used only as a test set. The distribution shift from CIFAR-10 to
CIFAR-10.1 poses an interesting challenge since many parameters of the data gen-
eration process are held constant but a standard ResNet model still sees an 8 to 9
percentage points accuracy drop.

• CIFAR-10.2 is a second reproduction of the CIFAR-10 dataset. Lu et al. [147]
again closely followed the dataset creation process of CIFAR-10 to assemble a new
dataset from Tiny Images, this time with different annotators compared to CIFAR-
10.1. CIFAR-10.2 contains 12,000 images with a suggested split into 10,000 training
images and 2,000 test images. We conduct all of our experiments using the 2,000 im-
age test set. Similar to CIFAR-10.1, CIFAR-10.2 is a distribution shift arising from
changes in the filtering process conducted by the human annotators.

• CINIC-10 [61] is a dataset in CIFAR-10 format that supplements CIFAR-10 with
additional images from the full ImageNet dataset (not only the 2012 competition set).
In total, CINIC-10 contains 270,000 images. Here, we limit CINIC-10 to the images
coming from ImageNet in order to keep the distribution more clearly separate from
CIFAR-10. The resulting test set has size 70,000. CINIC-10 represents a distribution
shift because the source of the images changed from Tiny Images to ImageNet.

• STL-10 [52] is another CIFAR-10-inspired dataset derived from ImageNet. Since the
focus of STL-10 is unsupervised learning, the dataset contains 100,000 unlabeled and
13,000 labeled images. We only use the labeled subset because we are mainly interested
in STL-10 as a test set with distribution shift (as in CINIC-10, the data source changed
from Tiny Images to ImageNet). The class structure of STL-10 is slightly different
from the CIFAR-10 classes: instead of the frog class, STL-10 contains a monkey class.
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When experimenting with STL-10, we therefore limit the dataset to the remaining nine
classes. This yields an overall test set size of 11,700.

• CIFAR-10-C contains a range of synthetic distribution shifts derived from CIFAR-10.
Hendrycks and Dietterich [98] created CIFAR-10-C by applying perturbations such as
Gaussian noise, motion blur, or synthetic weather patterns (fog, snow, etc.) to the
CIFAR-10 test set. In total, CIFAR-10-C contains 19 different perturbations, each
with five different severity levels.

FMoW-WILDS

In FMoW-WILDS, which is adapted from the Functional Map of the World dataset [50], the
task is to classify land or building use from satellite images taken in different geographical
regions (Africa, Americas, Oceania, Asia, and Europe) and in different years. Specifically,
the input is an RGB satellite image and the label is one of 62 different land or building use
categories (e.g., ‘shopping mall’ or ‘road bridge’).

The training set comprises 76,863 images taken around the world between 2002 and 2013.
The in-distribution test set comprises 11,327 images from the same distribution, i.e., also
taken around the world between 2002 and 2013, and we evaluate models by their average
accuracy. The out-of-distribution validation set comprises 19,915 images taken around the
word between 2013 and 2016, and the out-of-distribution test set consists of 22,108 images
taken around the world between 2016 and 2018.

We evaluate models out-of-distribution by either their average accuracy or their worst
accuracy over all five geographical regions. When evaluating models using their worst-region
accuracy, the out-of-distribution test set reflects both a distribution shift across time (from
2002–2013 to 2016–2018) and across regions (from images that are distributed across the
world to images that are only from a given region). In our experiments, the worst-performing
region is generally Africa, which has the second smallest number of training examples, ahead
of Oceania.

Camelyon17-WILDS

In Camelyon17-WILDS, which is a patch-based variant of the CAMELYON17 dataset [7],
the task is to classify whether a given patch of tissue contains any tumor tissue. Specifically,
the input is a 96 × 96 patch of tissue extracted from a whole-slide image (WSI) of a breast
cancer metastasis in a lymph node section, and the label is whether any pixel in the central 32
× 32 region of the patch has been labeled as part of a tumor in the ground-truth pathologist
annotations.

The training set comprises 302,436 patches taken from 30 WSIs across 3 hospitals (10
WSIs per hospital). The in-distribution test set comprises 33,560 patches taken from the
same set of 30 WSIs; this corresponds to the “in-distribution validation set” in the WILDS
benchmark [120]. The out-of-distribution test set comprises 85,054 patches taken from 10
WSIs from a different hospital. All of the above sets are class-balanced. We evaluate models
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by their average accuracy; performance on the out-of-distribution test set reflects a model’s
ability to generalize to different hospitals from the ones it was trained on.

iWildCam-WILDS

In iWildCam-WILDS, which is adapted from the iWildCam 2020 Competition Dataset [14],
the task is to classify which animal species (if any) is present in a camera trap photo.
Specifically, the input is a (resized) 448× 448 pixel color image from a camera trap, and the
label is one of 182 animal species (including “no animal”).

The training set comprises 129,809 images taken by 243 camera traps; the in-distribution
test set comprises 8,154 images taken by those same 243 camera traps; and the out-of-
distribution training set comprises 42,791 images taken by 48 different camera traps. As
images taken by different camera traps can vary greatly in terms of camera angle, illumina-
tion, background, and animal distribution, the performance on the out-of-distribution test
set reflects a model’s ability to generalize to different camera traps from the ones it was
trained on.

While we study the current version of iWildCam-WILDS unless noted otherwise, we also
study an earlier version of iWildCam-WILDS with a different in-distribution train-test split
in 4.12.

Evaluation metric and confidence interval calculation. Following Koh et al. [120],
we evaluate models by their macro F1 score, as this better captures model performance on
rare species. Macro F1 is the average of the per class F1 scores for all classes appearing in
the test data. We obtain confidence interval for this metric using the following heuristic.
Suppose class i has empirical F1 score fi and ni examples in the test set. As an approximate
confidence interval for the F1 score of this class, we consider [fi− δi, fi + δi] where δi is such
that [0.5− δi, 0.5 + δi] is a 95% Clopper-Pearson confidence interval for a Bernoulli success
probability given ni/2 positive observation out of ni total observations. The size of this
confidence interval is guaranteed to be larger than the size of the confidence intervals for
both recall and precision for this class. Since the F1 score is the harmonic mean of recall and
precision, the interval should provide adequate coverage for the F1 score as well. Finally,
we combine the per class intervals to obtain a macro F1 confidence interval of the form
[f̄ − C−1/2δ̄, f̄ + C−1/2δ̄], where C is the number of classes in the test data and f̄ , δ̄ are the
averages of f1, . . . , fC and δ1, . . . , δC , respectively. This expression makes the approximation
that individual F1 estimates are independent, which is not entirely accurate because the
per-class precision estimates rely on overlapping samples.

As Figures 4.1 and 4.11 show, the confidence intervals computed with the above heuristic
are fairly large. This may be in part due to a somewhat pessimistic approximation of the
individual F1 confidence intervals, but it also reflects the fact that many of the iWildCam-
WILDS classes are very rare (with 10 or fewer examples in the test set), and we simply do
not have a good estimate for how models perform on them. The high level of class rarity was
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also the reason we chose not to use a bootstrap confidence interval: re-sampling the test sets
with replacement leads to entire classes being dropped and biases the macro F1 estimates.

Label noise reduction. The iWildCam-WILDS labels contain errors that stem primarily
due to the fact they are derived from video-level annotation indicating whether a motion-
activation event contains a particular animal. As consequence, many video frames that are
in fact empty (showing no animal) are mislabeled as containing an animal that appeared in
a temporally adjacent frame. To reduce this noise, we used auxiliary the auxiliary MegaDe-
tector data provided as part of iWildCam 2020 Competition Dataset. More specifically, we
performed our evaluation only on frames that were either labeled as empty or contained a
MegaDetector detection with confidence at least 0.95.3 This filtering step provided a mod-
est improvement to strength of the observed correlations (with R2 increasing by one or two
points).

Models for CIFAR-10 and WILDS Experiments

To probe how widely the linear trend phenomena apply, we integrated a large number of
classification models into our testbed. At a high level, we divide these models into two
types: deep neural networks (predominantly convolutional neural networks) and classical
approaches. Due to the wide range of neural network architectures and training approaches
emerging over the past decade, we further subdivide the neural network models based on
their training set.

Convolutional neural networks for CIFAR-10. We integrated the following model
architectures into our testbed. Unless noted otherwise, we used the implementations from
https://github.com/kuangliu/pytorch-cifar. The models span a range of manually
designed architectures and the results of automated architecture searches. We refer the
reader to the respective references for details about the individual architectures.

• DenseNet, with depths 121 and 169 [108].

• Dual Path Networks (DPN), with depths 26 and 92 [47].

• EfficientNet, specifically the B0 variant [227].

• GoogLeNet, a member of the Inception family [222].

• MobileNet, both the original and the MobileNetV2 variant [202].

• MyrtleNet, which are optimized for particularly fast training times. The code for
these networks is from https://github.com/davidcpage/cifar10-fast.

3 We still performed the model training using precisely the same data, splits and labels as Koh et al.
[120]; the filtering step was done at the evaluation stage only.
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• PNASNet, both A and B variants [142].

• RegNet, configurations X 200, X 400, and Y 400 [183].

• ResNet, varying the number of layers (18, 34, 50, and 101), and including the PreAct
variant for each depth [96, 97].

• ResNeXT models with various widths and depths (2x64d, 32x4d, 4x64d) [246].

• Squeeze-and-Excitation Networks with 18 layers [107].

• ShuffleNet, specifically the G2, G3, and V2 variants, with network scale factors 0.5,
1, 1.5, and 4 for the ShuffleNetV2 architecture [258, 148].

• VGG with 11, 13, 16, and 19 layers [213].

Convolutional neural networks pre-trained on ImageNet. We explored the use of
models pre-trained on ImageNet both in the CIFAR-10-universe and in the WILDS datasets.
In some experiments, we also trained the following architectures from scratch to quantify
the effect of pre-training in detail (see Section 4.5). The code for the following models is
from https://github.com/creafz/pytorch-cnn-finetune.

• AlexNet [125].

• DenseNet with 121, 161, 169, and 201 layers [108]

• Dual Path Networks (DPN), variants 68, 68b, and 92 [47].

• GoogLeNet, a member of the Inception family [222].

• MobileNetV2 [202].

• Neural Architecture Search Networks (NASNets), specifically NASNet-A-Large
and PNASNet-5-Large [263, 142]

• ResNet with 18, 34, 50, 101, and 152 layers [96, 97].

• ResNeXT, configurations 50 32x4d and 101 32x4d [246].

• Squeeze-and-Excitation Networks, specifically se resnext50 32x4d and se resnext101 32x4d [107].

• ShuffleNetV2, scale factors 0.5 and 1 [258, 148].

• SqueezeNet, version 1.0 and 1.1 [109].

• VGG with 11, 13, and 16 layers, including variants with batch normalization for 13
and 16 layers [213].
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Convolutional neural networks only trained on ImageNet. For the zero-shot gen-
eralization experiments in Section 4.5, we also utilized a set of models trained on Im-
ageNet without any further fine-tuning to CIFAR-10. As above, the models are from
https://github.com/creafz/pytorch-cnn-finetune.

• AlexNet [125]

• DenseNet with 121, 161, 169, and 201 layers [108].

• Dual Path Networks (DPN), variants 68, 68b, 92, 98, 107, and 131 [47].

• Inception models: GoogleNet, InceptionV3, and InceptionResNetV2 [222, 225, 223].

• MobileNetV2 [202].

• PolyNet [259].

• ResNet with 18, 34, 50, 101, and 152 layers [96, 97].

• Squeeze-and-Excitation Networks specifically senet154, se resnet50, se resnet101,
se resnet152, se resnext50 32x4d, and se resnext101 32x4d [107].

• ShuffleNetV2, scale factors 0.5 and 1 [258, 148].

• SqueezeNet, version 1.0 and 1.1 [109].

• ResNeXT, configurations 50 32x4d, 101 32x4d, 101 32x8d, and 101 64x4d [246].

• VGG with 11, 13, 16, and 19 layers, all with and without batch normalization [213].

• Xception [48].

Further models trained on extra data. To measure the effect of extra training data
more broadly than only relying on ImageNet for pre-training, we also included the following
three models utilizing data from different sources:

• CLIP: We evaluate the two publicly released CLIP models [182]. These models were
trained with 400 million image-caption pairs scraped from the web. We evaluate the two
ResNet50 and VisionTransformer variants released by the CLIP team. CLIP models
are particularly interesting since they can be evaluated zero-shot: image classification
labels can be turned into textual prompts so that the model can be evaluated on
downstream tasks without needing to look at the training data.

• Self-training on 80 Million Tiny Images: Carmon et al. [41] introduced robust self-
training (RST) and showed that unlabeled data can improve adversarial robustness. In
the context of their work, they also trained baseline CIFAR-10 models that used data
from 80 Million Tiny Images [234] in addition to the standard CIFAR-10 training set.
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This baseline model is an interesting addition to our testbed since the extra training
data from a potentially more diverse source may move the model away from the linear
trend given by models only trained on CIFAR-10.

• Out-distribution aware self-training (ODST): Augustin and Hein [5] develop an
iterative self-training approach to leverage unlabeled data when some of the unlabeled
data is not relevant to the classification task of interest. They also instantiate their
approach on CIFAR-10, using 80 Million Tiny Images as an unlabeled data source.
As before, the ODST models are relevant for our experiments because they use extra
training data beyond the standard CIFAR-10 training set.

Classical methods. In addition to the neural network methods discussed previously, we
also integrated several classical, non-neural network methods into our testbed. Unless noted
otherwise, we used the implementations from scikit-learn [172]. Each of these methods works
directly on the image pixels, which are each scaled to have zero-mean and unit variance on
the training set. We included the following methods into our testbed:

• Random features [53], using the implementation from github.com/modestyachts/

nondeep.

• AdaBoost from Hastie et al. [94], using an scikit-learn decision tree classifier to build
the boosted ensemble.

• Ridge regression classifiers with varying `2 regularization parameter

• Support vector machines with linear, gaussian, and polynomial kernels and varying
regularization penalty term.

• Logistic regression with varying regularization parameter and using both `1 and `2
regularization.

• Quadratic discriminant analysis.

• Random forests [32] with varying maximum tree depth, number of trees in the forest,
and using both entropy and gini impurity as the splitting criterion.

• Nearest neighbor with varying number of k nearest-neighbors and using `2 distance
between points.

Summary statistics

The following two tables give a brief overview of the number of experiments we ran with our
testbed. Table 4.2 shows how many distinct models we trained for each of our training sets
(a total of about 3,000). Each of these models was then evaluated on a range of test sets to
generate the scatter plots in this chapter.
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Dataset Number of trained models

CIFAR-10 1,895

iWildCam-WILDS 197

FMoW-WILDS 592

Camelyon17-WILDS 461

Table 4.2: Number of trained models (of all types) by training set. The model counts include
only fully trained models, not intermediate checkpoints.

Dataset Number of model evaluations

CIFAR-10 6,814

CIFAR-10.1 5,315

CIFAR-10.2 11,212

CIFAR-10-C 39,677

CINIC-10 4,259

STL-10 507

iWildCam-WILDS 15,147

FMoW-WILDS 12,127

Camelyon17-WILDS 7,056

Table 4.3: Number of model evaluations by test set type. Some of the rows, e.g., CIFAR-
10-C, correspond to multiple individual test sets. We count evaluations of a model and its
training checkpoints separately here.

Table 4.3 shows the total number of evaluations for each family of datasets. Besides being
tested on multiple datasets, one trained model can also have led to several evaluations since
we sometimes evaluated all training checkpoints of a model on multiple datasets as well to
study whether the linear trends are reliable when varying training duration (see Section 4.3).
This lead to an overall total of about 100,000 model evaluations, each of which corresponds
to one point in a scatter plot in this chapter.
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ImageNet Testbed

Datasets

We include all of the natural distribution shifts from the testbed of Taori et al. [228], ex-
cluding the consistency shifts since those are somewhat adversarial in nature.

ImageNet-V2. ImageNet-V2 is a reproduction of the ImageNet test set collected by Recht
et al. [190].

ObjectNet. ObjectNet is a test set of objects in a variety of scenes, poses, and lighting
conditions with 113 classes that overlap with ImageNet [9].

ImageNet-Vid-Anchors and YTBB-Anchors. These are two datasets introduced by
Shankar et al. [209] that measure accuracy on frames taken from video clips. They contain
30 and 24 super-classes of the ImageNet class hierarchy, respectively. For evaluation, we
measure accuracy using the pm-0 metric as defined in Shankar et al. [209], which measures
accuracy over the anchor frames of the video clips.

ImageNet-A. ImageNet-A [99] is an adversarially collected dataset, constructed by down-
loading labeled images from a variety of online sources and then selecting the subset that
was misclassified by a ResNet-50 model.

ImageNet Testbed Models

We include all of the existing models in the testbed from Taori et al. [228], and add a few
others:

1. CLIP: We add the two CLIP models released by Radford et al. [182] and evaluate
them zero-shot using the publicly released textual prompts.

2. Self-supervised models: We add models trained using a few different self-supervised
methods: SimSiam [46], SimCLRv2 [45], and SwAV [42]. For SimSiam and SwAV,
we use the ResNet50 variants pretrained on ImageNet without labels and then final-
layer finetuned on ImageNet. For SimCLRv2, we use a ResNet50 and a ResNet152
variant, and for each use a model final-layer finetuned and whole-network finetuned on
ImageNet.

3. Classical models: We add four low-accuracy classical models: random features [53],
random forests [32], one-nearest neighbors, and a linear model trained with least
squares. The random forests model, the linear model, and the one-nearest neighbors
model were trained directly on pixels of images downsampled to 32x32.
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4. Low accuracy ConvNets: We add a multitude of low-accuracy ResNet models
trained for various epochs and on various subsets of the training set.

YCB-Objects Testbed

We describe the 6D pose estimation task, our synthetic dataset, and the models in our
testbed below.

6D Pose Estimation

In 6D pose estimation, the task is to determine the three-dimensional position and orientation
of an object in a scene. Concretely, for our purposes, models are given as input a single
128×128 RGB image of an object and must determine the object’s 6 degree-of-freedom pose
(rotation and translation) relative to the scene. For more background on pose estimation,
see Lepetit and Fua [133] or Xiang et al. [245] and the references therein.

We evaluate each model using the accuracy metric from Hinterstoisser et al. [104]. Specif-
ically, given a ground truth rotation R and translation t, estimated rotation R̃ and trans-
lation t̃, and a 3D model M consisting of m points x ∈ M, then average distance (ADD)
metric of Hinterstoisser et al. [104] is the mean of the distances between 3D model points
transformed under the ground-truth and estimated poses

ADD =
1

m

∑
x∈M

‖(Rx+ t)− (R̃x+ t̃)‖2.

An estimated 6D pose is consider to be correct if the ADD is less than 10% of the diameter
of the 3D model M.

YCB-Objects Datasets.

Similar to Xiang et al. [245] and Tremblay et al. [235], we construct a synthetic datasets
for 6D pose estimation by rendering images of known object models from Calli et al. [39]
and Hashimoto et al. [93] using Blender [24]. We use the subset of 16 non-symmetric YCB
objects from Xiang et al. [245], as well as the two non-symmetric objects from Hashimoto
et al. [93] in our experiments.

In our datasets, each object is placed on a plane with one of 60 textures from
texturehaven.com and rendered with lighting from one of 60 HDRIs from hdrihaven.com.
To generate distribution shift, we separate the textures into two, non-overlapping subsets
based on their material properties. The in-distribution test set uses one subset of textures,
and the out-of-distribution test set uses the other. See Figure 4.13 for example images
corresponding to the in and out-of-distribution textures and corresponding datasets.

We generate datasets by uniformly sampling an object, a background lighting environ-
ment, a background texture (from the in or out-of-distribution subset), an object pose, and
a camera pose. We generate in-distribution training sets of 50,000 and 100,000 images and
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both in and out-of-distribution test sets of 10,000 images. In this section, we use the 50,000
example training set for our experiments. We use the 100,000 example training set to explore
the effect of adding more i.i.d. training set in Appendix 4.11.

In simulation, the object model, the object pose, and the camera pose are all known in
advance, so we can easily compute a ground truth pose for each object relative to the scene.
We additionally annotate each image in our dataset with 9 2D keypoints corresponding to
projection of the 3D bounding box and the 3D center of the object onto the 2D image.
Figure 4.13 visualizes these annotations for a random sample of images from the training
set.

YCB-Objects Models

The neural pose estimation models in our testbed are all based on semantic segmentation
networks for predicting 2D keypoints. In essence, each network takes as input the entire
image of the scene and predicts the nine keypoints previously described and shown in Fig-
ure 4.13. Some implementations in the literature first estimate bounding boxes of the objects
in the scene before passing the images to the keypoint prediction network. Since our scenes
only contain a single object, the networks in our testbed do not perform this step.

Given 2D keypoints predictions, each model then uses the PnP algorithm [134] to recover
the 3D object pose. This approach, developed by Rad and Lepetit [181] and Pavlakos et al.
[168] is also used in high-performing implementations like Tremblay et al. [235]. Our testbed
contains several models for the semantic segmentation backbone. Unless otherwise noted,
the implementation is taken from github.com/qubvel/segmentation_models.pytorch.

1. UNet [196] with ResNet [96], MobileNet [202], and EfficientNet-b7 [227] as the encoder.

2. UNet++ [262].

3. FCN ResNet with varing depths 18, 34, 50, and 101 [145], using the implementation
from github.com/pytorch/vision/tree/master/torchvision/models/segmentation.

4. LinkNet [43].

5. PSPNet [260].

6. PoseNet [116].

7. 2-layer CNN

Each of these models outputs a set of nine heatmaps, one corresponding to each keypoint
prediction. For each model, we use the PnP implementation from Bradski [30].
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4.11 Appendix: Further experiments on the linear

trend phenomenon

In this section, we present additional examples of linear trends between in-distribution and
out-of-distribution performance across each of the testbeds discussed in Appendix 4.10. In
Appendix 4.11, we first highlight examples of linear trends across a variety of distribution
shifts for models in each of the CIFAR-10, FMoW-WILDS, ImageNet, and the YCB-Objects
“universes” discussed previously. Then, in Appendix 4.11, we show these linear trends are
invariant to changes in model hyperparameters, training duration, and training set size.

Further examples of linear trends

CIFAR-10

Dataset reproduction shifts. In Figure 4.7, we plot out-of-distribution test accuracy vs.
in-distribution CIFAR-10 test accuracy for each of the CIFAR-10 testbed models described
in Appendix 4.10 on two different dataset reproduction shifts: CIFAR-10.1, CIFAR-10.2.
For each shift, the relationship between in-distribution and out-of-distribution test accuracy
for both classical and neural models is well captured by a linear fit, and the corresponding
R2 statistic is greater than 0.99 for each example.

Distribution shifts between machine learning benchmarks. In Figure 4.7, we also
plot out-of-distribution test accuracy vs. in-distribution CIFAR-10 test accuracy for each of
the CIFAR-10 testbed models described in Appendix 4.10 on two different machine learning
benchmark shifts: CINIC-10, and STL-10. The class structure of STL-10 differs slightly from
CIFAR-10 and includes a monkey class instead of a frog class. For the STL-10 experiment
we therefore consider nine-class variants of STL-10 and CIFAR-10, omitting instances with
monkey or frog labels, and, for each model, we mask the frog class (or logit) and predict
only among the remaining nine classes. The relationship between ID and OOD accuracy is
well-captured by a linear fit and the R2 statistic is greater than 0.99 in each case.

Synthetic perturbations. In Figure 4.8, we plot out-of-distribution test accuracy vs. in-
distribution CIFAR-10 test accuracy for the same collection of CIFAR-10 testbed models on
a subset of eight different synthetic dataset shifts from CIFAR-10-C [98] where very clean
linear trends occur— fog, brightness, snow, defocus blur, spatter, elastic transform, frost,
and saturate. For each shift, the linear fit well-approximates the relationship between in-
distribution and out-of-distribution accuracy, and the R2 statistic is greater than 0.94 for
each example. However, the fits are not as clean as the machine learning benchmark shifts
discussed previously, and, moreover, for several of the synthetic perturbations in CIFAR-10-
C, there is no linear trend at all. We discuss examples from CIFAR-10-C where linear trends
fail to hold further in Section 4.4 and Appendix 4.12.
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Figure 4.7: Out-of-distribution accuracies vs. in-distribution CIFAR-10 test accuracies for
a wide range of models across two different dataset reproduction shifts, CIFAR-10.1 and
CIFAR-10.2, as well as two different shifts between machine learning benchmarks, CINIC-
10, and STL-10. Each point corresponds to a model evaluation, shown with 95% Clopper-
Pearson confidence intervals (mostly covered by the point markers). For the STL-10 exper-
iment, we consider nine-class subsets of both STL-10 and CIFAR-10, omitting the monkey
and frog class, respectively, and restrict each model to predict only from the remaining nine-
classes.

FMoW-WILDS

In Figure 4.9, we plot out-of-distribution test accuracy vs. in-distribution FMoW-WILDS
test accuracy for both the classical methods and the ImageNet networks from the main
testbed described in Appendix 4.10. We evaluate each model on both the out-of-distribution
validation and the out-of-distribution test set from FMoW-WILDS using two metrics: aver-
age accuracy and worst accuracy over five geographical regions (for more details on FMoW-
WILDS, see Appendix 4.10). To remove noise from very low accuracy models, we restrict
our attention to models with FMoW-WILDS test set accuracy at least 10%. Across both
out-of-distribution datasets and both metrics, the linear fit well-captures the relationship
between in and out-of-distribution performance with an R2 statistic of a least 0.98.

Experimental details. Below, we provide additional technical details about our FMoW-
WILDS experiments.

• Datasets. We train each model on the training split of the FMoW-WILDS dataset [50]
defined by Koh et al. [120], and perform testing on the in-distribution (ID) and out-
of-distribution (OOD) validation and test splits defined by Koh et al. [120].

• Worst-region accuracy confidence intervals. We heuristically obtain confidence
intervals for the worst-region accuracy by computing standard 95% Clopper-Pearson
confidence intervals for accuracy in the region with the lowest accuracy on the test set
for each model.
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Figure 4.8: Out-of-distribution accuracies vs. in-distribution CIFAR-10 test accuracies for a
wide range of models from our CIFAR-10 testbed across eight synthetic perturbation shifts
from CIFAR-10-C. Each point corresponds to a model evaluation, shown with 95% Clopper-
Pearson confidence intervals (mostly covered by the point markers).

• Training hyperparameters. Unless otherwise noted, we train all of the neural mod-
els using learning rate 10−4 and weight decay 0 for 50 epochs. We use Adam throughout
with all other parameters set to their default PyTorch values.
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Figure 4.9: Out-of-distribution accuracies vs. in-distribution FMoW-WILDS test accura-
cies for a wide range of classical methods and ImageNet networks from our main testbed.
Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson confidence
intervals (mostly covered by the point markers). Left: In the left two plots, we evaluate
each model on the FMoW-WILDS OOD validation set using both average and worst-region
accuracy. Right: In the right two plots, we evaluate each model on the FMoW-WILDS
OOD test set using both average and worst-region accuracy. In all four cases, a linear fit
well captures the relationship between in-distribution and out-of-distribution performance
with R2 statistics greater than 0.98 in each setting.

ImageNet

In Figure 4.10, we plot the existing models from Taori et al. [228] alongside the new models
in our testbed (CLIP, self-supervised models, and classical methods like random features,
random forests, nearest neighbors, and linear regression) on the ImageNet natural distribu-
tion shifts. First, we observe that the two CLIP models are significantly robust on all shifts
(these models are the two green points above the line at around 60% ImageNet accuracy).
This is interesting and is in line with our conclusions that pretraining on extra data can in-
crease model robustness to distribution shift. Second, we observe that all three low-accuracy
models lie relatively near the predicted fit line for ImageNetV2, ImageNet-Vid-Anchors,
ImageNet-Sketch, and ImageNet-R. Note that this line is fit only to the standard neural
networks (blue points). Understanding why the fit isn’t as predictive in the low-accuracy
regime for ObjectNet, YTBB-Anchors, and ImageNet-A is an interesting direction for future
work. Note that the fit to ImageNet-A is performed piecewise around the ResNet-50 model
accuracy following the procedure in Taori et al. [228].
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Figure 4.10: Model accuracies on the ImageNet natural distribution shifts [228]: Ima-
geNetV2, ObjectNet, ImageNet-Vid-Anchors, YTBB-Anchors, ImageNet-Sketch, ImageNet-
R, and ImageNet-A. Each point corresponds to a model evaluation, shown with 95% Clopper-
Pearson confidence intervals. The axes are scaled via logit scaling, and the linear fit is fit
only to standard networks following [228].
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iWildCam-WILDS

Experiment details. The models reported in the iWildCam-WILDS panel of Figure 4.1
were obtained using the following parameters. We trained 10 neural network architectures on
the iWildCam-WILDS training set (see legend of Figure 4.11 below). For each architecture,
we perform both training from scratch and fine-tuning from a model pretrained on ImageNet.
The fine-tuning configurations are similar to the setting of Koh et al. [120]: we train for 12
epochs with batch size 16 using Adam and sweep over learning rate and weight decay values
in the grid {3 ·10−5, 10−4, 10−3, 10−2}×{0, 10−3, 10−2}. The other Adam parameters were set
to the Pytorch defaults. For models trained from scratch we use the same hyperparameter
grid except we train for 15 epochs, which seems to suffice for convergence for each model
with at least some of the learning rates. For details on error bar calculation and label noise
reduction, see Appendix 4.10.

Architecture variation with fixed weight decay. Figure 4.11 provides a more detailed
view of the iWildCam-WILDS experiments, wherein we plot the final epoch performance of
the models we train, where the weight decay is set to zero. As the figure shows, the error
bars for all model intersect the fitted linear trend line (in probit domain), with the exception
of AlexNet when training from scratch, which is slightly below the linear trend. Varying
the weight decay parameter appears to affect the ID/OOD trend of fine-tuned model; see
Section 4.5 and Appendix 4.13 for additional discussion and plots.
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Figure 4.11: OOD vs. ID macro F1 scores for iWildCam-WILDS models trained from scratch
(left) or fine-tuned from pretrained ImageNet models (right), with varying model architecture
and learning rate, but weight decay fixed to zero. Contrast with Figure 4.32 for results when
varying the weight decay parameter.
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YCB-Objects

In Figure 4.12, we plot out-of-distribution accuracy versus in-distribution accuracy for a
synthetic 6D pose estimation task using the YCB object models from Calli et al. [39] and a
testbed of neural models for 6D pose estimation. As in the previous examples, a linear fit
well-approximates the relationship between in and out-of-distribution accuracy with an R2

statistic of 0.99.
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Figure 4.12: Out-of-distribution accuracy vs. in-distribution accuracy for a synthetic 6D pose
estimation task based on the YCB object models from Calli et al. [39] across a testbed of
neural pose estimation networks. Each point corresponds to a model evaluation shown with
95% Clopper-Pearson confidence intervals. The distribution shift corresponds to varying the
background texture for rendered images of the YCB objects. See Figure 4.13 for example
images both in and out-of-distribution. Appendix 4.11 describes the dataset and the model
testbed in more detail.

Experimental details. We train two variants of each model. The first variant is trained
with standard `2 loss on the distance between the predicted heatmap and the ground truth
keypoint location (with a Gaussian blur of σ = 0.2). These models predict keypoint locations
by taking an arg max over the heatmap. The other variant is trained with and makes
predictions using the integral pose regression technique of [220]. We train each model using
SGD with momentum and learning rate annealing. For each model, we optimized the learning
rate in [10−4, 10−1] and weight decay in [10−4, 1].
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(a) Example images from the YCB-Objects in-
distribution test set. Each object is rendered on
a background whose texture has similar material
properties.

(b) Example images from the YCB-Objects out-
of-distribution test set. The distribution shift cor-
responds to rendering objects on a held out set of
textures with a different set of material proper-
ties than the in-distribution textures. Aside from
the texture change, the set of objects, the light-
ing environments, and the sampling distribution
for objects, poses, and lighting is held fixed be-
tween datasets.

(c) Examples images from the YCB-Objects in-distribution
test set shown with keypoint annotations. Each image is an-
notated with nine keypoints corresponding to the corners of
the 3D bounding box and the object center. Models in the
testbed predict these keypoints, and the object’s 6D pose
is recovered from keypoints using the PnP algorithm [134].

Figure 4.13: Examples images and keypoint annotations from the YCB-Objects in-
distribution and out-of-distribution (texture shift) datasets.
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Variations in model hyperparameters, training duration, and
training dataset size

In this section, we explore the sensitivity of the linear trends discussed in Appendix 4.11 to
variation in model hyperparameters, training duration, and training set size.

We focus much of our exploration on two datasets CIFAR-10 and FMoW-WILDS. We
selected CIFAR-10 for ease of experimentation, and we selected FMoW-WILDS in order
to understand the sensitivity of the linear trends outside the context of machine learning
benchmark or synthetic shifts.

CIFAR-10

In Figures 4.14, 4.15, and 4.16, we probe the sensitivity of the linear trend between in and
out-of-distribution test accuracy for CIFAR-10 models to three types of variation: variation
in hyperparameters, variation in training duration, and variation in training set size. For ease
of visualization, we focus our experiments on three model families spanning low, moderate,
and high accuracy regimes: a ridge regression classifier on image pixels, the random feature
model from Coates, Ng, and Lee [52], and a ResNet [97]. The results are virtually identical,
but harder to visualize, when considering a larger number of model families simultaneously.

We systematically vary the hyperparameters, number of training epochs (for ResNets),
and the size of the training set for models from each class. We plot model evaluations on the
same linear trend line as found in Appendix 4.11. We show variation along these three di-
mensions moves models along the linear trend line for each dataset, but does not change the
linear fit. For each of the dataset reproduction shift CIFAR-10.2 (Figure 4.14), the bench-
mark shift CINIC-10 (Figure 4.15), and the synthetic CIFAR-10-C fog shift (Figure 4.16),
the R2 statistic of the fit is greater than 0.99.

Experimental details. We briefly provide details about the specific variations we consider
for each model class.

1. Hyperparameter variation: For the ridge regression classifier, we vary the `2 reg-
ularization parameter in [10−6, 1010]. For the random features models, we vary the `2
regularization parameter in [10−4, 106] and the number of random features in [20, 214].
For the ResNet model, we vary network depth in {18, 34, 50, 101}, learning rate in
[10−5, 10], momentum in [0.33, 0.99], and weight decay in [10−5, 105].

2. Training duration variation: To understand sensitivity to training duration, we
save and evaluate each ResNet model after every epoch of training. We train each
model for 350 epochs, giving 350 evaluations per run.

3. Training set size variation: To understand sensitivity to the amount of training
data, we subsample the CIFAR-10 dataset from the original 50,000 samples to i.i.d.
class-balanced subsets of size 1000, 5000, 10000, 15000, 25000, and 40000 examples. We
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train each of the hyperparameter configurations for each model class on each of the 6
subsets of the original dataset and evaluate them on the same in and out-of-distribution
test sets as before.
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Figure 4.14: Out-of-distribution CIFAR-10.2 accuracies vs. in-distribution CIFAR-10 test
accuracies under variations in model hyperparameters, training duration, and the size of the
training set. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson
confidence intervals (mostly covered by the point markers). In each panel, we compare models
with the linear trend line from Appendix 4.11. Left: For each model family, we vary model-
size, regularization, and optimization hyperparameters. Middle: We evaluate each network
after every epoch of training. Right: We train models on randomly sampled subsets of the
training data, ranging from 2% to 80% of the original CIFAR-10 training set size. In each
setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.
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Figure 4.15: Out-of-distribution CINIC-10 accuracies vs. in-distribution CIFAR-10 test
accuracies under variations in model hyperparameters, training duration, and the size of the
training set. Each point corresponds to a model evaluation, shown with 95% Clopper-Pearson
confidence intervals (mostly covered by the point markers). In each panel, we compare models
with the linear trend line from Appendix 4.11. Left: For each model family, we vary model-
size, regularization, and optimization hyperparameters. Middle: We evaluate each network
after every epoch of training. Right: We train models on randomly sampled subsets of the
training data, ranging from 2% to 80% of the original CIFAR-10 training set size. In each
setting, variation in hyperparameters, training duration, or training set size moves models
along the trend line, but does not affect the linear fit.
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Figure 4.16: Out-of-distribution CIFAR-10-C fog accuracies vs. in-distribution CIFAR-
10 test accuracies under variations in model hyperparameters, training duration, and the
size of the training set. Each point corresponds to a model evaluation, shown with 95%
Clopper-Pearson confidence intervals (mostly covered by the point markers). In each panel,
we compare models with the linear trend line from Appendix 4.11. Left: For each model
family, we vary model-size, regularization, and optimization hyperparameters. Middle: We
evaluate each network after every epoch of training. Right: We train models on randomly
sampled subsets of the training data, ranging from 2% to 80% of the original CIFAR-10
training set size. In each setting, variation in hyperparameters, training duration, or training
set size moves models along the trend line, but does not affect the linear fit.
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FMoW-WILDS

As in the previous section, in Figure 4.17, we probe the sensitivity of the linear trend for
FMoW-WILDS models to variation in hyperparameters, variation in training duration, and
variation in training set size. For ease of visualization, we focus our experiments on three
model families spanning low, moderate, and high accuracy regimes: a random forest model
on image pixels, the random feature model from Coates, Ng, and Lee [52], and a ResNet [97].
We plot model evaluations on the same linear trend line as found in Appendix 4.11. We
show variation along these three dimensions moves models along the linear trend line for
each dataset, but does not change the linear fit: the R2 statistic of the fit is greater than
0.99 for every setting under the accuracy metric and greater than 0.91 for the worst-region
accuracy metric.

Experimental details. We briefly provide details about the specific variations we consider
for each model class.

1. Hyperparameter variation: For the random forest classifier, we vary the maximum
depth in {1, 3, 10, 20}, the number of trees in {10, 20, 50, 200}, and the splitting cri-
terion between entropy and gini impurity. For the random features models, we vary
the `2 regularization parameter in [10−4, 106] and the number of random features in
[20, 28]. For the ResNet model, we vary network depth in {18, 34, 50, 101}, learning
rate in [10−5, 10], momentum in [0.33, 0.99], and weight decay in [10−5, 105].

2. Training duration variation. We train each configuration of the ResNet for 70
epochs and evaluate each model after every epoch of training.

3. Training set size variation. We i.i.d. subsample the FMoW-WILDS train dataset
from the original 76,863 examples to subsets of size 1000, 5000, 10000, 20000, and
50000 examples. We train each of the hyperparameter configurations for each model
class on each of the 5 subsets of the original dataset and evaluate them on the same
in and out-of-distribution test sets as before.
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Figure 4.17: Out-of-distribution FMoW-WILDS test accuracies vs. in-distribution FMoW-
WILDS test accuracies under variations in model hyperparameters, training duration, and
the size of the training set. Each point corresponds to a model evaluation, shown with
95% Clopper-Pearson confidence intervals. In each panel, we compare models with the
linear trend line from Appendix 4.11. The top row compares model trends using average
accuracy as the OOD metric, and the bottom rows uses worst-region accuracy as the OOD
metric. Left: For each model family, we vary model-size, regularization, and optimization
hyperparameters. Middle: We evaluate each network after every epoch of training. Right:
We train models on randomly sampled subsets of the training data, ranging from 2% to 80%
of the original CIFAR-10 training set size. In each setting, variation in hyperparameters,
training duration, or training set size moves models along the trend line, but does not affect
the linear fit.

YCB-Objects

In Figure 4.18, we see that the linear fit for the YCB-Objects experiment from Appendix 4.11
is also invariant to changes in the amount of training data.
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Figure 4.18: Out-of-distribution YCB-Objects test accuracies vs. in-distribution YCB-
Objects test accuracies under variations in training set size. Each point corresponds to
a model evaluation, shown with 95% Clopper-Pearson confidence intervals. The linear trend
line is the same as Figure 4.12. The linear trend still well explains the data (R2 = 0.98),
and increasing training set size moves models along the linear trend, but does not affect the
linear fit.

Comparison of axis scaling
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Figure 4.19: OOD test accuracies vs. ID test accuracies for several pairs of ID and OOD
test sets visualized with three different axis scalings. Left: The left column shows model
accuracies with a linear axis scaling. Middle: The middle column shows model accuracies
with a probit scale on both axes. In other words, model accuracy x appears at Φ−1(x)
where Φ−1 is the inverse Gaussian CDF. Right: The right column shows model accuracies
with a logit scale on both axes: model accuracy x appears at σ−1(x) where σ−1 is the
inverse logistic function. Visual inspection shows the linear fit is better in the logit or
probit domain, especially when model accuracies span a wide range. Quantitatively, the R2
statistics are higher in the probit or logit domains than with linear axis scaling. For instance,
on ImageNetV2 and CIFAR-10.2, the R2 is 0.98 in the linear domain compared to 1.0 in the
probit or logit domains.
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4.12 Appendix: Details on distribution shifts with

weaker correlations

Camelyon17-WILDS

In this section, we first explore the role of training randomness on the observed ID-OOD
correlation for Camelyon17-WILDS. Remember that in Figure 4.3, we found a very high
degree of variability between ID and OOD performance. To see if the performance variation
was due to training randomness, we train each model ten times and then average the final
model accuracies together. The result of these averaged runs is displayed in Figure 4.20
(left). The R2 value for the averaged runs comes in at R2 = 0.39, which is approximately
equivalent to the R2 value in Figure 4.3 (R2 = 0.40); this suggests that training randomness
is not enough to account for the performance variability.

In Figure 4.20 (right), we also attempted early-stopping each trained model on a separate
OOD validation set (different in distribution from the OOD test set), as is recommended
in [120], before averaging model accuracies; the result is largely unchanged and comes in
at R2 = 0.46. Early-stopping on the in-distribution validation set, however, does increase
ID-OOD correlation significantly to R2 = 0.77, as seen in Figure 4.20 (middle); further
investigating the mechanisms at play here is an interesting direction for future work.
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Figure 4.20: Model accuracies on the Camelyon17-WILDS distribution shift. Each point
gives average accuracies for models trained with ten different random seeds, and error bars
give the standard deviation. Left: Models trained to convergence and then averaged over
seeds. Middle: Each model is early-stopped on the ID validation set then averaged over
seeds. Right: Each model is early-stopped on the OOD validation set then averaged over
seeds.

As a next step, to study the role of the training data distribution on the observed trends,
we conduct two specific training-time interventions: pretraining on ImageNet, and training
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Figure 4.21: Model accuracies on the Camelyon17-WILDS distribution shift. Left: Im-
ageNet pretrained models finetuned to convergence. Middle Left: ImageNet pretrained
model accuracies averaged over ten random seeds. Middle Right: Models trained with
targeted color jitter data augmentation. Right: Data augmentation model accuracies aver-
aged over ten random seeds.

using a specific color-jitter data augmentation.
We show results for models pretrained on ImageNet in Figure 4.21 (left). As is evident,

the variability in model performance is still extremely high (R2 = 0.05). Averaging over
training randomness does not seem to help either (R2 = 0.14).

We also train using a domain-specific color-jitter data augmentation designed to mimic
the visual differences in samples from different hospitals, a technique that has previously
been found to have been beneficial on a similar task [230, 229]. As seen in Figure 4.21
(middle right), training with the data augmentation both considerably increases average
OOD performance and significantly reduces the amount of OOD accuracy variation (R2 =
0.77). However, even with the targeted data augmentation, large OOD accuracy fluctuations
still exist. Averaging over training randomness greatly increases the correlation further and
mitigates these fluctuations (R2 = 0.95), as seen in Figure 4.21 (right); however, the data
augmentation causes all models to have relatively high ID accuracy, and it is unclear whether
this tight trend would hold for models in the low accuracy regime as well.

One possible reason for the high variation in accuracy is the correlation across image
patches. Image patches extracted from the same slides and hospitals are correlated because
patches from the same slide are from the same lymph node section, and patches from the
same hospital were processed with the same staining and imaging protocol. In addition,
patches in Camelyon17-WILDS are extracted from a relatively small number of slides (the
dataset includes 50 slides total, and there are 10 slides from a single hospital in the OOD
test set [120]). Prior work in the context of natural language processing tasks have shown
that these correlations can result in instabilities in both training and evaluation [261], and
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investigating their effect on OOD variation in Camelyon17-WILDS is interesting future work.
As an initial exploration of the effect of highly correlated test examples, we observe that

correlated examples can result in high OOD variation in a simulated environment on CIFAR-
10 and CIFAR-10.2. Concretely, we subsample CIFAR-10 and CIFAR-10.2 and then apply
data augmentation to each example to generate a test set of the same size as the original
but with significant correlation between examples. In each panel in Figure 4.22, we train
models on CIFAR-10 and then evaluate them on CIFAR-10 and CIFAR-10.2 with effective
test size k for varying k. Concretely, we subsample k images from each class, and then
apply RandAugment rand-m9-mstd0.5-inc1 [58] to each example to generate test sets of
size 10,000. We work with a binary version of CIFAR-10 and CIFAR-10.2, restricting both
datasets to two classes: airplanes and cats. When the effective test set size is small, e.g.
k = 1 or k = 2, the linear fit is very poor. However, as the effective test set size k increases
to k = 100 or k = 500, the linear fit is much better (R2 = 0.94 vs. R2 = 0.66), and the
variance between model evaluations is substantially smaller.

In contrast to highly correlated test examples, highly correlated training examples ap-
pears to have substantially less effect on the amount of OOD variation or the quality of the
linear fit. Using the same simulated CIFAR-10 and CIFAR-10.2 environment as the previous
paragraph, we generate a sequence of training sets with varying degrees of correlation be-
tween training examples. Concretely, we subsample the CIFAR-10 and CIFAR-10.2 training
sets and then apply data augmentation (RandAugment [58]) to each example to generate a
training set of the same size as the original but with significant correlation between exam-
ples. In each panel in Figure 4.23, we train models on CIFAR-10 and then evaluate them on
CIFAR-10. Even with the effective training set size is small, e.g. k = 2, the linear fit is fairly
good (R2 = 0.89), and there is substantially smaller variance between model evaluations
than in the corresponding effective test-size experiment.
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Figure 4.22: Models trained on CIFAR-10 and evaluated on CIFAR-10.2 for binary clas-
sification: airplanes vs cats. Each panel depicts evaluating the models with varying
effective test set sizes k, where k images are subsampled from each class and then repeated
data-augmented using RandAugment [58] to generate a consistent test set size of 10,000
examples. For smaller effective test set sizes, the linear fit is very poor, and this variance
decreases substantially for larger k.
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Figure 4.23: Models trained on CIFAR-10 and evaluated on CIFAR-10.2 for binary classifi-
cation: airplanes vs cats. Each panel depicts evaluating the models with varying effective
train set sizes k, where k images are subsampled from each class and then repeatedly data-
augmented using RandAugment [58] to generate a consistent train set size of 50,000 examples.
In contrast to varying the effective test set size (see Figure 4.23), varying the effective train
set has little effect on the quality of the linear fit. For instance, with as few as two effective
examples per class, the linear fit is fairly precise (R2 = 0.89).
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CIFAR-10-C

In this section, we look at distribution shifts induced by image corruptions in more detail.
Specifically, in Figures 4.24–4.28, we plot neural networks trained on either CIFAR-10 or
ImageNet and evaluated on a similar set of image corruptions. Interestingly, the choice of
corruption can have a significant effect on the strength of the linear trend between ID and
OOD accuracy, as we have already explored in Sections 4.3 and 4.4. Comparing the plots in
Figures 4.24–4.28 side-by-side, we also observe that many corruptions behave more linearly
on ImageNet-C than on CIFAR-10-C. Investigating this discrepancy further is an interesting
direction for future work.
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Figure 4.24: Models trained on either CIFAR-10 (left) or ImageNet (right) and evaluated
under distribution shift due to image corruptions. This figure continues for the next few
pages.
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Figure 4.25: Continuation of the corruption plots.
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Figure 4.26: Continuation of the corruption plots.
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Figure 4.27: Continuation of the corruption plots.
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Figure 4.28: Continuation of the corruption plots.

iWildCam-WILDS-v1.0

We now study version 1.0 of iWildCam-WILDS (from WILDS version 1.0), which has a
different split between training and ID test sets, compared to the version of iWildCam-
WILDS we have studied thus far (iWildCam-WILDS version 2.0 from WILDS version 1.1).
In version 1.0, images from training cameras are assigned uniformly at random between
the train and ID test sets, whereas images are randomly partitioned by date between train
and ID test splits in version 2.0. Since the images tend to be taken in bursts, the earlier
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version of the dataset contains some training and ID test examples that are taken within
the same image sequence, and these images tend to be similar because they often capture
the same animal at the same location. In other words, we are changing how we measure in-
distribution performance, and in this way, our investigation on ID/OOD correlations study
different distribution shifts between the two versions. Nevertheless, both versions of the
dataset measure out-of-distribution performance in the same way, with train and OOD test
splits containing images from disjoint cameras.

While we use version 2.0 in all other sections, it is still interesting to understand how a
different in-distribution train-test split affects the ID/OOD correlation. In Figure 4.29, we
repeat the experiment reported in Figure 4.11 on the v1.0 split.4 As the figure shows, the
ID/OOD correlation is far less pronounced when using the v1.0 split. Moreover, the fine-
tuned models show a near-vertical line, with models concentrated around high ID accuracy
values but spread across many OOD values, and this could potentially be explained by the
high image similarity between train and ID test sets.

Finally, we remark that while the v2.0 split eliminates overlap in image sequence be-
tween train and ID test sets, some near-duplicates inevitably persist in that version as well,
particularly for empty frames taken during similar times in the day by the same camera.
Investigating the effect of this on the linear trend on iWildCam-WILDS v2.0, in which we
observe higher variation in performance than in other datasets, is interesting future work.

4.13 Appendix: Details on the effect of pretrained

models

Detailed findings for CIFAR-10

In Figure 4.30 (left) we reproduce the results shown in Figure 4.5 and add to it a number
of additional models; Figure 4.30 (right) graphs the performance of the same model when
measuring their OOD performance on CIFAR-10.1 instead of CIFAR-10.2. Let us describe
the additional models and their relationship to the linear trend.

First, as a middle ground between zero-shot use of ImageNet models (which is above
the line) and fine-tuning (which is on the line), we consider neural network models trained
only on the subset of CINIC-10 that originates from ImageNet (as opposed to CIFAR-10).
It is worth noting that in this case, the CINIC-10 subset includes images from ImageNet-
21k, which is a superset of the more common ImageNet-1k dataset containing approximately
21,000 classes. Similar to the zero-shot case, these models use only ImageNet data and so we
expect their accuracy to not obey the same CIFAR-10/CIFAR-10.2 relationship of models
trained on CIFAR-10 data (in fact, for these models both CIFAR-10 and CIFAR-10.2 are

4 There are some differences in training hyper-parameters: Our v1.0 experiments used images with
resolution 224x224, slightly different learning rates and number of epochs, and no label noise reduction via
MegaDetector-based filtering as described in Appendix 4.10. Nevertheless, we are confident that the primary
cause for the difference between Figures 4.29 and 4.11 is the change in test/train split.
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Figure 4.29: OOD vs. ID macro F1 scores for iWildCam-WILDS-v1.0 models trained from
scratch (left) or fine-tuned from pretrained ImageNet models (right), with varying model
architecture and learning rate, but weight decay fixed to zero. Contrast with Figure 4.11 for
results on the v2.0 ID test/train split.

OOD). Similar to fine-tuned models, these models are specialized to the task of classifying
only the 10 CIFAR-10 classes (as opposed to the 1000 ImageNet classes), and so we expect
them to have better accuracy. Figure 4.30 lists these models as “Training on ImageNet
data,” and confirms our expectations: these models are above the linear fit and have better
accuracy than the ImageNet zero-shot models. However, in comparison to the zero-shot
models, they appear to lie closer to the linear fit for CIFAR-10-trained models.

Second, we consider two publicly released CLIP models [182], based on ResNet 50 and
Vision Transformer, respectively. Both zero-shot application of CLIP and the training of
only its final layer (denoted “linear probe”) produce performance that is above the line,
particularly for the higher-performing Vision Transformer. See below for additional details
on the use of CLIP in our experiments.

Finally, we consider models trained on auxiliary unlabeled data originating from the 80
Million Tiny Images [234], abbreviated 80MTI below, which is a superset of both CIFAR-
10 and its reproductions CIFAR-10.1 and CIFAR-10.2. In particular, we consider a model
trained via self-training using a subset of TinyImages [41], listed as 80MTI ST in Figure 4.30),
and two models trained via out-distribution aware self-training [5], listed as 80MTI ODST.
As the figure shows, despite using auxiliary data, the “80MTI ST” performance is precisely on
the CIFAR-10-only linear trend. This might be due to the fact that Carmon et al. [41] filter
80MTI, using a model supervised with the CIFAR-10 training set, thereby possibly losing



CHAPTER 4. THE STRONG CORRELATION BETWEEN OUT-OF-DISTRIBUTION
AND IN-DISTRIBUTION GENERALIZATION 125

the additional diversity of TinyImages.5 The performance of the ODST models appear to
deviate from the linear trend. However, the direction of the deviation is inconsistent, being
below the line on CIFAR-10.2 and above the line on CIFAR-10.1. Since these are the highest-
accuracy models in our testbed it is not completely clear whether these deviations are due
to use of extra data or a deviation of the overall ID-OOD trend from a perfect probit linear
fit at high accuracies.

Experiment details. Below we provide some additional details on out CIFAR-10 auxil-
liary data experiments.

• Zero-shot classification with ImageNet models. To investigate models that are
minimally affected by the CIFAR-10 training set, we utilized pre-trained ImageNet
models directly for the CIFAR-10 classification task without any fine-tuning (“zero-
shot”). A complication here is that the CIFAR-10 classes do not match the ImageNet
classes. For instance, ImageNet contains more than 100 different dog classes corre-
sponding to different breeds while CIFAR-10 contains only one dog class. To address
this point, we manually constructed a mapping from CIFAR-10 classes to ImageNet
classes. Our mapping roughly followed the WordNet hierarchy with some refinements
from the class structure used in the human annotation experiments conducted by [210].
We then evaluated the ImageNet models using only the logits for classes appearing in
this mapping and picked the CIFAR-10 class as prediction that corresponded to the
ImageNet class with the largest logit.

• Zero-shot classification with CLIP models. For the models described as “CLIP
zero-shot”, we use the publicly released CLIP package, which includes the ResNet and
VisionTransformer models as well as the text tokenizer and encoder used to encode
the zero-shot text prompts. We obtained the CIFAR-10 prompts through private
correspondence with the OpenAI team. For each CIFAR-10 class, we ensembled the
prompts by averaging the embeddings of the prompts together before using it for final
classification.

• Linear probes. In the models described above as “linear probes” we train only the
last layer of a pre-trained neural network by performing (exact) least-squares linear re-
gression of 1-hot class representation using the activations of the network’s penultimate
layer.

Detailed findings for FMoW-WILDS

Figure 4.31 shows a reproductions of Figure 4.5 (middle) when using different combination
of worst-region and average-region accuracy metric for the ID and OOD data (recall that

5We also note that the additional unlabeled data used to train this model potentially contains images
from CIFAR-10.1 and CIFAR-10.2; if it does, they seem to do little to help its performance on that dataset.



CHAPTER 4. THE STRONG CORRELATION BETWEEN OUT-OF-DISTRIBUTION
AND IN-DISTRIBUTION GENERALIZATION 126

30 50 70 85 95 99
CIFAR-10 accuracy

30

50

70

85

95

CI
FA

R-
10

.2
 a

cc
ur

ac
y

CIFAR-10.2

30 50 70 85 95 99
CIFAR-10 accuracy

30

50

70

85

95

99

CI
FA

R-
10

.2
 a

cc
ur

ac
y

CIFAR-10.1

From-scratch training
ImageNet fine-tuning

ImageNet zero-shot
Training on ImageNet data

CLIP zero-shot
CLIP linear probe

80MTI ODST
80MTI ST

Figure 4.30: The effect of additional training data on OOD accuracy on CIFAR-10.2 (left)
and CIFAR-10.1 (right).

the ID/OOD split is based on time). As the figure shows, the effect of fine-tuning pre-
trained models is consistent across the four combinations: fine-tuning improves performance
without deviating from the line. We also consider a linear probe of CLIP (see description
in the previous subsection). Unlike the result on CIFAR-10, here the CLIP models do not
significantly deviate from the linear trend. A possible explanation for this difference is
that the web images on which CLIP was trend contain far more images of objects relevant
for the CIFAR-10 classification task than they do for the FMoW-WILDS satellite image
classification task.

Detailed findings for iWildCam-WILDS

Figure 4.32 shows the same models plotted in the iWildCam-WILDS panel of Figure 4.1,
but separating the models trained from scratched and the fine-tuned models, and coloring
points by the weight decay parameters. (For each weight decay we vary model architecture
and learning rate). For fine-tuned models, there is a clear difference in the ID/OOD linear
between model using weight decay 0 and models using nonzero weight decay. In particular,
points with nonzero weight decay seem to lie above the zero weight decay linear trend. For
models trained from scratch the macro F1 measurement error does not allow us to conclude
with confidence whether weight decay affects the linear trend. Finally, it is worth noting
that—even though increasing weight decay appears to move models above the zero weight
decay line—the models with the best performance, both ID and OOD, do not use weight
decay.
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Figure 4.31: The effect of additional training and different accuracy metrics on FMoW-
WILDS ID/OOD performance.
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Figure 4.32: OOD vs. ID macro F1 scores for iWildCam-WILDS models trained from
scratch (left) or fine-tuned from pretrained ImageNet models (right), with varying model
architecture, learning rates, and weight decay. We observe that fine-tuned models exhibit a
different linear trend than models trained from scratch, and moreover that the weight decay
parameters affects the ID/OOD correlation, at least for fine-tuned models.

4.14 Appendix: Details on theoretical models for

linear fits

Proof of Theorem 6

Proof. We begin by deriving expression for the accuracy of linear classifiers in our Gaussian
distributional model. Under distribution D, the accuracy of linear classifier θ is

accD(θ) = Pr
(
sign(θ>x) = y

)
= Pr

(
y · θ>x ≥ 0

)
= Pr

(
N (θ>µ; ‖θ‖2σ2) ≥ 0

)
= Pr

(
‖θ‖σ · N (0; 1) ≥ −θ>µ

)
= Φ

(
θ>µ

‖θ‖σ

)
,

where we recall that Φ(t) =
∫∞
−t

1√
2π
e−s

2/2ds =
∫ t
−∞

1√
2π
e−s

2/2ds is the standard Normal cdf.

Similarly, for the shifted distribution D′ we have

accD′(θ) = Φ

(
θ>µ′

‖θ‖σ′
)

= Φ

(
α

γ
· θ
>µ

‖θ‖σ +
β

γσ
· θ
>∆

‖θ‖ .
)

Therefore, ∣∣∣∣Φ−1(accD′(θ))− α

γ
Φ−1(accD(θ))

∣∣∣∣ =
β

γσ

∣∣(θ/‖θ‖)>∆
∣∣. (4.2)
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Since θ is independent of ∆ and θ/‖θ‖ is a unit vector, the inner product (θ/‖θ‖)>∆ is
distributed identically to the first coordinate of ∆. A standard concentration bound on the
sphere [see, e.g., 6, Lemma 2.2] states that

Pr(|∆1| > z) ≤ 2e−dz
2/2

for all z ≥ 0. Substituting z =
√

2d−1 log 2
δ

completes the proof.

Remarks. We conclude this subsection with two additional remarks on the application of
Theorem 6.

• Classifiers trained on samples from D. We note that any mapping of samples
from D to a linear classifier results by definition in a classifier independent on ∆, and
consequently Theorem 6 applies to it. In particular, it applies to the linear classifier
we train in the simulation described in Figure 4.6.

• A guarantee for multiple models. Given N linear classifiers θ1, . . . ,θK such that
each one is independent of ∆, we may apply Theorem 6 with probability parameter
δ/N in conjunction with a union bound to conclude that, with probability at least 1−δ
we have

∣∣∣Φ−1(accD′(θi))− α
γ
Φ−1(accD(θi))

∣∣∣ ≤ β
γσ

√
2 log 2N/δ

d
for all i = 1, . . . , N . This

precisely implies a linear trend in scatter plots such as Figure 4.6.

Departures from the linear trend

We now detail a number of modifications to our distribution model which break the linear
trend predicted by Theorem 6 and shown in Figure 4.6. In each case, we mathematically
define the modified model, provide intuition for why the linear trend no longer holds, and
demonstrate the departure from the linear trend via simulation where train prediction models
using samples from D and evaluate them on D′. We defer the full simulation details to the
next subsection. The modifications we describe are not the only possible way to depart from
the linear fit, but we focus on them because we believe they potentially represent departures
from the trend seen in practice,

More data. Section 4.5, as well as prior work, show that using additional training data
from a broader distribution can cause departure form the linear trend. To simulate such
a scenario, we consider a third distribution D′′ defined by x|y ∼ N (µ′′ · y; (σ′′)2I), with
µ′′ = µ′ + β∆̃ and ∆̃ uniformly distributed on the unit sphere and independent of ∆.
(Recall that µ′ = αµ + β∆). Since D′′ is more similar to D′, we expect that including D′′

samples in the training will result in better OOD performance. However, this inclusion could
harm ID performance.

We demonstrate these effects in Figure 4.33 (left), where we train logistic regression
models using samples from D and 0, 50 or 100 samples from D′, with σ′′ =

√
2σ and all
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Figure 4.33: Modifications to our theoretical model showcasing departures from the linear
trend. Left: training on auxiliary data related to D′ (this plot only shows logistic regression
models). Middle: choosing the parameter ∆ adversarially to reduce the OOD performance
of a particular targeted model. Right: changing the noise covariance to be non-isotropic.

other parameters identical to the experiment shown in Figure 4.6. As expected, the extra
data results in better OOD performance but worse ID performance. Moreover, the models
trained on each amount of external training data appear to roughly follow linear trends
(the plot shows empirical probit linear fits). However, we note that our theoretical analysis
does not guarantee such linear fit, because the training data used to compute the classifier
depends on ∆ through the samples from D′′.

Adversarial distribution shift. As previously mentioned, the randomization of the dis-
tribution shift was crucial for our assumption, because if we allow ∆ to be a fix deterministic
vector we cannot rule out that it depends adversarially on the trained classifier. Let us
now spell out the implications of this possibility, by allowing ∆ to be any arbitrary vector
of norm at most 1. Given some target classifier given a target classifier θ, suppose pick

∆ = c · θ/‖θ‖ = c · θ/‖θ‖ for some c ∈ [−1, 1]. This makes the inner product θ̂
>
∆ = c.

Recalling Eq. (4.2), this clearly implies a large departure from the linear trend when |c| is
close to 1. In particular, by picking negative c we may substantially reduce the performance
of the model on D′. We note that this form of distribution shift is precisely the Gaussian
model of adversarial examples proposed by Schmidt et al. [205].

In Figure 4.33 (middle), we demonstrate this technique by selecting one of the linear
classifiers shown in Figure 4.6, call it θ?, and letting ∆ = −0.03θ?/‖θ?‖. As the figure
shows, the linear trend breaks substantially, particularly for the targeted classifier.
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Non-isotropic covariance shifts. Finally, we consider the case where the noise covari-
ance under D is not isotropic. That is, we let x|y ∼ N (µ · y; Σ) for some Σ that is not a
multiple of the identity. Instead of considering shifts to the mean µ, we consider random
covariance shifts of the form

Σ′ = Σ + (σ′)2Id×d,

i.e., simple additive white Gaussian noise with variance σ′. Under this distribution shift
model, the probit accuracies are

Φ−1(accD(θ)) =
θ>µ√
θ>Σθ

and Φ−1(accD′(θ)) =
θ>µ√
θ>Σ′θ

For a the linear ID-OOD probit accuracy relationship to hold for all θ, we must have that
Φ−1(accD(θ))/Φ−1(accD′(θ)) is a constant independent of θ, which happens if and only if

θ>Σ′θ

θ>Σθ
= 1 +

σ′2‖θ‖2
θ>Σθ

is a constant independent of θ. However, this only holds when Σ is a multiple of the
identity, contradictory to our assumptions. Indeed, whenever Σ is not a multiple of the
identity, there could be a tradeoff between ID and OOD performance: the former favors
θ with small Σ-weighted norms, while the latter also depends on the standard Euclidean
norm ‖θ‖2. Consequently, we expect regularization that limits ‖θ‖2 to provide better OOD
performance.

Figure 4.33 (right) demonstrates this phenomenon via simulation. In the figure, we set
Σ to be diagonal with a portion of the entries close to zero so that giving the corresponding
coordinates of θ larger weight results in better ID accuracy. For the distribution shift we
let (σ′)2 = tr(Σ)/d. As the figure shows, the linear trend no longer holds, despite the
fact that the distribution shift is “only” adding isotropic Gaussian noise to the covariates.
Moreover, as the above discussion predicts, the logistic and ridge regression models that
attain strong OOD performance are those with stronger `2 regularization. We also show
logistic regression trained classifiers with `1 regularization—these classifiers do not achieve
good OOD performance.

Simulation details

Below, we provide additional details about the simulations described in Figures 4.6 and 4.33.

Training parameters. We fit logistic regression, ridge regression, nearest neighbors and
random forest models using their scikit-learn implementations [172]. For logistic regression
we use values of the inverse-regularization parameter C ranging from 10−6 to 1; we use `2
penalty throughout except the covariance shift experiment where we also consider `1 penalty.
For ridge regression we use values of the regularization parameter α ranging from 10−3 to
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10. For both types of linear models we do not fit an intercept. For nearest neighbors we
use 1 or 3 nearest neighbors, and for random forests we use 3, 30 or 100 estimators. The
remaining parameters are set to their scikit-learn defaults.

In addition to varying the learning hyperparameters described above, to produce models
with varying accuracy we also modulate the training set size and dimensionality reduction.
To reduce the training set size to size nsub, we pick the first nsub entries from a fixed training
set generated once. To reduce dimensionality down to dproj, we simply pick the first dproj
coordinates of x. For the all simulations except covariance shift, we let nsub range between
30 and 100, and use dproj in the range 50 to 3000. In the covariance shift simulation we use
nsub ∈ [100, 2000] and fix dproj = d = 500.

Accuracy measurement. For linear models we compute the accuracy exactly (see Sub-
section 4.14 for closed-form expressions). Consequently, we do not show error bars for these
models. For the remaining models we estimate the accuracy on samples from the appro-
priate distributions and use error bars to show 95% Clopper-Pearson confidence intervals,
consistently with the rest of the chapter.

Distribution model parameter setting. Throughout, we pick µ to be random unit
vector (i.e., with the same distribution as ∆). For all simulations except covariance shift,
we let d = 105, σ = 10−1.5, α = 0.7, β = 0.5 and γ = 1. For the covariance shift simulation,
we found that using a smaller dimension and more training points lead to more noticeable
effects. Therefore, for this simulation we let d = 500 (recall that α, β and γ do not exist in
the covariance shift model). We let the covariance matrix Σ be diagonal, with 490 diagonal
entries of size 1/2 and the remainder of size 1/200; the locations of the small entries were
chosen at random. The shifted covariance is Σ′ = Σ + 1

8
Id×d.

4.15 Appendix: Additional related work

We now summarize some of the additional work related to the phenomena we study in this
chapter. Our focus here is mostly on recent work. For early work on distribution shift, we
refer the reader to [180, 233].

PAC-Bayesian analysis of distribution shift. Performance under distribution shift
has also been characterized under the PAC-Bayesian setting where the learning algorithm
outputs a posterior distribution over the h hypothesis class [138, 85, 84]. Li and Bilmes [138]
directly bound the error on the target distribution (OOD) in terms of the empirical error on
a small number of labeled samples from the target and a “divergence prior” which measures
some divergence between the source and target domains. Germain et al. [85] relate the OOD
performance to the ID performance via a disagreement measure induced by the hypothesis
class. These bounds do not explain the linear trends we find in this chapter—Li and Bilmes
[138] do not relate the source and target error directly, and the bounds in Germain et al. [85]
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are functionally similar to those of Ben-David et al. [17] where the ID performance is highly
predictive of the OOD performance only if they are equal (Figure 1). Germain et al. [84]
present a different analysis where the domain divergence appears as a multiplicative term
rather than an additive one like in previous bounds. However, this bound expresses a linear
relation between the OOD performance and some exponent of the “expected joint error”
on the source domain which is different from the ID performance. Furthermore, the bound
is an inequality which only provides an upper bound on the OOD performance, while our
empirical results require a bound in the other direction as well.

Reliability of machine learning benchmarks. When assessing the reproducibility and
reliability of statistical findings, Yu [254] advocates for considerations of stability of statistical
results under perturbations of the model and data. Key to this account is a notion of a
stability target that is estimated under changes to the data used to estimate the target.
Viewed in this light, our experimental methodology of training models on one distribution
and evaluating them on a collection of out-of-distribution test sets corresponds to testing the
stability of an appropriately chosen target under perturbations to the test set. The consistent
accuracy drops we observe across out-of-distribution test sets suggests that model accuracies
are not stable; however, the precise linear trends we find suggest that model rankings are in
fact stable. As a consequence, benchmarks like CIFAR-10 or ImageNet where we observe
precise linear trends may provide more reliable knowledge about relative model performance
than absolute performance on new out-of-distribution test sets.

Theoretical models for linear trends in earlier work on dataset reproduction.
Both Recht et al. [189] and Recht et al. [190] contain simple models for the linear fits
observed in their reproductions of CIFAR-10 and ImageNet. Recht et al. [189] propose a
mixture model with an “easy” and “hard” component and model the distribution shift as
a change in the weigts of these two components. Their model does indeed give a linear fit,
but only with linear axis scaling. As we have seen several times throughout this chapter, the
scatter plots show cleaner linear trends with logit or probit scaling on the axes. It is also
not clear what the “easy” and “hard” components correspond to in distribution shifts such
as CIFAR-10.1.

Recht et al. [190] developed their model further. Instead of discrete mixture components,
each distribution is now parametrized by a Gaussian distribution over the “hardness” of
each image. In addition, every model has a scalar “skill” parameter that determines the
probability of a model classifying an image with a given hardness correctly. This model now
produces linear fits in the probit domain, which yields a closer fit to empirical results. While
a continuous hardness parametrization also is more plausible, it is again unclear what this
hardness corresponds to.

Neither the models of Recht et al. [189, 190] nor our model of Section 4.7 allow us
to predict where linear trends occur in actual data; such predictive power is important
because—as we demonstrate—some distributions do not yield linear trends. However, our
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theoretical analysis is based on a concrete generative is based on a concrete generative, rather
than postulated abstract properties of data and classifiers. One advantage of this fact is that
it allows us to consider modifications of our generative models which show departures from
the linear trend, as we do in Appendix 4.14.

Linear trends in image classification with natural language supervision. Among
other results, Radford et al. [182] show two important phenomena that are closely related
to this chapter. First, their training approach (contrastive language image pre-training,
“CLIP”), which combines a large training set and natural language supervision, produces
image classifiers substantially above the linear trend given by a wide range of ImageNet
model in the distribution shift testbed of Taori et al. [228]. This result provides further
evidence for the hypothesis that training data plays an important role in the linear trends
we describe in this chapter. Second, Radford et al. [182] find that once their training set is
fixed and they vary model architecture (ResNet variants and Vision Transformers [70]) and
compute available for training, the resulting models again follow a clear linear trend. This
demonstrates that linear trends between in-distribution and out-of-distribution accuracy
occur in a diverse range of settings.

Linear trends under sub-population shift. One specific type of distribution shift
is sub-population shift. In sub-population shift, each class is composed of a set of sub-
populations, e.g., the “dog” class in an image classification task may be composed of images
from a specific set of dog breeds. A natural goal then is that a trained classifier should gen-
eralize to previously unseen dog breeds and still correctly labels them as “dog”. Hendrycks
and Dietterich [98] found that a set of eight convolutional neural networks follow a linear
trend on a sub-population shift derived from ImageNet-22K. Santurkar, Tsipras, and Madry
[203] construct a range of sub-population shifts from ImageNet and find approximately lin-
ear trends for several of the shifts they consider. Their testbed contained 13 convolutional
neural networks, some of them with interventions such as adversarial training [150]. Some of
the plots in [203] are not directly comparable to ours since they display a relative accuracy
measure on the y-axes, not the absolute accuracy (i.e., average 0-1 loss).

Underspecification as defined in D’Amour et al. [59]. D’Amour et al. [59] conduct
a broad empirical study and show that out-of-distribution performance can vary widely even
for models with the same in-distribution performance. Since this result may at first glance
disagree with our results here, we now discuss their empirical results most relevant to this
chapter in detail. In particular, we focus on their results in computer vision domains.

• D’Amour et al. [59] point out ImageNet-C as an example of underspecification in
image classification. Similar to [228], we also find in Figure 4.24 that some of the
perturbations in ImageNet-C show substantial variation as a function of ImageNet
accuracy. In addition, we find that this variation occurs in CIFAR-10-C. As mentioned
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before, not all shifts in ImageNet-C and CIFAR-10-C are affected by underspecification,
with some shifts exhibiting comparatively clean linear trends.

• The second example for underspecification in image classification is ObjectNet [9].
While it is indeed true that the accuracy variation on ObjectNet may increase com-
pared to ImageNet, overall ObjectNet still shows predictable behavior as a function of
ImageNet accuracy. See Figure 2 in [228].

• In addition to standard computer vision benchmarks, D’Amour et al. [59] also investi-
gate two medical imaging datasets, which give an important complementary perspec-
tive. In the first dataset (ophthalmological imaging), they find evidence of underspec-
ification. In the second dataset (dermatological imaging), the evidence is less clear
since the tests for statistically significant variation in the four domains give p-values
of 0.54, 0.42, 0.29, and 0.03. While the fourth p-value is below 0.05, the authors did
not correct for multiple hypothesis testing and remark that this is an exploratory data
analysis.

Overall, we find that the empirical evidence for underspecification in computer vision tasks
is nuanced. As in our work, some distribution shifts studied by D’Amour et al. [59] exhibit
stronger correlation between in-distribution and out-of-distribution than others. Hence there
is no clear contradiction between our results and those of D’Amour et al. [59]. Understanding
when precise linear trends occur and when underspecification is dominant is an important
direction for future work.

Further distribution shifts without universal linear trends. While we have seen sev-
eral distribution shifts with clean linear trends between in-distribution and out-of-distribution
generalization in this chapter, there are also obvious counterexamples. One prominent coun-
terexample are adversarial distribution shifts, e.g., `p adversarial examples [21, 224, 20].
For models trained without a robustness intervention, it is usually easy to construct adver-
sarial examples that cause the model to misclassify most inputs despite high accuracy on
unperturbed examples. While adversarial robustness is far from solved, it is now possible to
train CIFAR-10 networks with about 65% accuracy against the common `∞ adversary with
ε = 8/255 and standard (unperturbed) accuracy of 91% [86]. Since CIFAR-10 classifiers
without a robustness intervention have only 0–10% robust accuracy in this setting, it is clear
that there cannot be a precise linear trend between in-distribution and out-of-distribution
accuracy. Adversarial distribution shifts can bring about departures from the linear trend in
our theoretical setup as well, as we discuss in Appendix 4.14. We refer the reader to Taori
et al. [228] and Hendrycks et al. [100] for additional examples of models not following a linear
trend in ImageNet variants, e.g., on some of the ImageNet-C corruptions and ImageNet-R.

Benchmarks for distribution shift. Recently several groups conducted broad empirical
surveys of distribution shift, comparing a wide range of available methods. Most closely
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related to this chapter is Taori et al. [228], where the authors also find clean linear trends
on multiple distribution shifts related to ImageNet. Djolonga et al. [67] also observed high
correlations on the same distribution shifts for a smaller number of models. Both experiments
were limited to ImageNet as in-distribution test set and convolutional neural networks. Here
we study multiple different in-distribution datasets for image classification, an additional
task (pose estimation), and several models beyond convolutional neural networks.

Gulrajani and Lopez-Paz [89] conduct a broad survey of algorithms for the closely related
problem of domain generalization. In domain generalization, the training set is drawn from
multiple distinct domains, and the learning algorithm has access to the domain labels. At
test time, the trained models is evaluated on samples from a new domain. Gulrajani and
Lopez-Paz [89] found that on a range of datasets, current domain generalization algorithms
perform only as well or worse as an empirical risk minimization baseline that ignores the
domain structure. At a high level, this result is similar to the aforementioned distribution
shift benchmarks that also found small or no gains from current robustness interventions on
most distribution shifts.

Our results raise similar questions as these benchmarks for distribution shift and domain
generalization: when and how is it possible to improve over empirical risk minimization as a
baseline for robustness to distribution shift, i.e., to “go above the line” in our scatter plots?

Training methods to improve robustness. Researchers have proposed a large number
of robustness interventions over the past few years. Due to the volume of papers, we only
refer to recent surveys here. Methods for improving robustness divide into two categories:
those which use samples from the target distribution (which we refer to as the OOD data),
and those that do not. The former methods are usually called transfer learning and domain
adaptation methods [165, 241]. These methods typically assume that the target distribution
data is more constrained than the in-distribution data, either lacking labels or having smaller
quantity, and algorithms focus on mitigating these issues. The linear trends observed by
Kornblith, Shlens, and Le [122] in the context of transfer learning suggest that there may
be important similarities. See Robey, Pappas, and Hassani [194] for one example applying
such techniques to the WILDS OOD shifts considered in this work.

While domain adaptation and transfer learning techniques are helpful in many settings,
they are not always applicable. For instance, when we want an autonomous vehicle to drive
safely in a new town it has not visited before, we have no additional training data available
to adapt the car’s perception system. Such scenarios motivate our study of the correla-
tion between in-distribution and out-of-distribution generalization in this chapter. The sec-
ond category of training methods—sometimes referred to as domain robustness or domain
generalization—attempt to learn models that are reliable in the presence of distribution
shifts for which there is no direct training data. Instead, these methods often leverage data
from multiple other, related domains. Gulrajani and Lopez-Paz [89] provide an overview of
current methods for domain generalization.
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Chapter 5

Retiring Adult: New Datasets for Fair
Machine Learning

5.1 Introduction

Influential works relating to the ethics and fairness of machine learning recognize the cen-
trality of datasets, pointing to significant harms associated with data, as well as urging
better data practices [35, 83, 114, 162, 167]. While the previous chapters have thus far
prioritized cognitive domains such as vision, speech, or language, numerous consequential
applications of predictive modeling and risk assessment involve bureaucratic, organizational,
and administrative records best represented as tabular data [166, 74, 18].

When it comes to tabular data, surprisingly, most research papers on algorithmic fairness
continue to involve a fairly limited collection of datasets, chief among them the UCI Adult
dataset [121]. Derived from the 1994 Current Population Survey conducted by the US Census
Bureau, this dataset has made an appearance in more than three hundred research papers
related to fairness where it served as the basis for the development and comparison of many
algorithmic fairness interventions.

We begin this chapter with a critical examination of the UCI Adult dataset—its origin,
impact, and limitations. To guide this investigation we identify the previously undocumented
exact source of the UCI Adult dataset, allowing us to reconstruct a superset of the data from
available US Census records. This reconstruction reveals a significant idiosyncrasy of the
UCI Adult prediction task that limits its external validity.

While some issues with UCI Adult are readily apparent, such as its age, limited doc-
umentation, and outdated feature encodings, a significant problem may be less obvious at
first glance. Specifically, UCI Adult has a binary target label indicating whether the income
of a person is greater or less than fifty thousand US dollars. This income threshold of $50k
US dollars corresponds to the 76th quantile of individual income in the United States in
1994, the 88th quantile in the Black population, and the 89th quantile among women. We
show how empirical findings relating to algorithmic fairness are sensitive to the choice of
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the income threshold, and how UCI Adult exposes a rather extreme threshold. Specifically,
the magnitude of violations in different fairness criteria, trade-offs between them, and the
effectiveness of algorithmic interventions all vary significantly with the income threshold. In
many cases, the $50k threshold understates and misrepresents the broader picture.

Turning to our primary contribution, we provide a suite of new datasets derived from US
Census data that extend the existing data ecosystem for research on fair machine learning.
These datasets are derived from two different data products provided by the US Census
Bureau. One is the Public Use Microdata Sample of the American Community Survey,
involving millions of US households each year. The other is the Annual Social and Economic
Supplement of the Current Population Survey. Both released annually, they represent major
surveying efforts of the Census Bureau that are the basis of important policy decisions, as
well as vital resources for social scientists.

We create prediction tasks in different domains, including income, employment, health,
transportation, and housing. The datasets span multiple years and all states of the United
States, in particular, allowing researchers to study temporal shift and geographic variation.
Alongside these prediction tasks, we release a Python package called folktables which
interfaces with Census data sources and allows users to both access our new predictions
tasks and create new tasks from Census data through a simple API1.

We contribute a broad initial sweep of new empirical insights into algorithmic fairness
based on our new datasets. Our findings inform ongoing debates and in some cases challenge
existing narratives about statistical fairness criteria and algorithmic fairness interventions.
We highlight three robust observations:

1. Variation within the population plays a major role in empirical observations and how
they should be interpreted:

(a) Fairness criteria and the effect size of different interventions varies greatly by state.
This shows that statistical claims about algorithmic fairness must be qualified
carefully by context, even though they often are not.

(b) Training on one state and testing on another generally leads to unpredictable
results. Accuracy and fairness criteria could change in either direction. This
shows that algorithmic tools developed in one context may not transfer gracefully
to another.

(c) Somewhat surprisingly, fairness criteria appear to be more stable over time than
predictive accuracy. This is true both before and after intervention.

2. Algorithmic fairness interventions must specify a locus of intervention. For example, a
model could be trained on the entire US population, or on a state-by-state basis. The
results differ significantly. Recognition of the need for such a choice is still lacking, as

1The datasets and Python package are available for download at https://github.com/zykls/

folktables.
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is scholarship guiding the practitioner on how to navigate this choice and its associated
trade-offs.

3. Increased dataset size does not necessarily help in reducing observed disparities. Nei-
ther does social progress as measured in years passed. This is in contrast to intuition
from cognitive machine learning tasks where more representative data can improve
metrics such as error rate disparities between different groups.

Our observations apply to years of active research into algorithmic fairness, and our work
provides new datasets necessary to re-evaluate and extend the empirical foundations of the
field.

5.2 Archaeology of UCI Adult: Origin, Impact,

Limitations

Archaeology organises the past to understand the present. It lifts the dust-cover off a world
that we take for granted. It makes us reconsider what we experience as inevitable.

— Ian Hacking

Although taken for granted today, the use of benchmark datasets in machine learning
emerged only in late 1980s [91]. Created in 1987, the UCI Machine Learning Repository
contributed to this development by providing researchers with numerous datasets each with
a fixed training and testing split [130]. As of writing, the UCI Adult dataset is the second
most popular dataset among more than five hundred datasets in the UCI repository. An
identical dataset is called “Census Income Data Set” and a closely related larger dataset
goes by “Census-Income (KDD) Data Set”.

At the outset, UCI Adult contains 48,842 rows each apparently describing one individual
with 14 attributes. The dataset information reveals that it was extracted from the “1994
Census database” according to certain filtering criteria. Since the US Census Bureau provides
several data products, as we will review shortly, this piece of information does not identify
the source of the dataset.

The fourteen features of UCI Adult include what the fairness community calls sensitive or
protected attributes, such as, age, sex, and race. The earliest paper on algorithmic fairness
that used UCI Adult to our knowledge is a work by Calders et al. [37] from 2009. The
availability of sensitive attributes contributed to the choice of the dataset for the purposes
of this work. An earlier paper in this context by Pedreschi et al. [174] used the UCI German
credit dataset, which is smaller and ended up being less widely used in the community.
Another highly cited paper on algorithmic fairness that popularized UCI Adult is the work
of Zemel et al. [257] on learning fair representations (LFR). Published in 2013, the work
introduced the idea of changing the data representation to achieve a particular fairness
criterion, in this case, demographic parity, while representing the original data as well as
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possible. This idea remains popular in the community and the LFR method has become a
standard baseline.

Representation learning is not the only topic for which UCI Adult became the standard
test case. The dataset has become broadly used throughout the area for purposes including
the development of new fairness criteria, algorithmic interventions and fairness promoting
methods, as well as causal modeling. Major software packages, such as AI Fairness 360 [15]
and Fairlearn [22], expose UCI Adult as one of a few standard examples. Indeed, based
on bibliographic information available on Google Scholar there appear to be more than 300
papers related to algorithmic fairness that used the UCI Adult dataset at the time of writing.

Reconstruction of UCI Adult

Creating a dataset involves a multitude of design choices that substantially affect the validity
of experiments conducted with the dataset. To fully understand the context of UCI Adult
and explore variations of its design choices, we reconstructed a closely matching superset
from the original Census sources. We now describe our reconstruction in detail and then
investigate one specific design choice, the income binarization threshold, in Section 5.2.

The first step in our reconstruction of UCI Adult was identifying the original data source.
As mentioned above, the “1994 census database“ description in the UCI Adult documenta-
tion does not uniquely identify the data product provided by the US Census Bureau. Based
on the documentation of the closely related “Census-Income (KDD) Data Set,”2 we decided
to start with the Current Population Survey (CPS) data, specifically the Annual Social and
Economic Supplement (ASEC) from 1994. We utilized the IPUMS interface to the CPS data
[79] and hence refer to our reconstruction as IPUMS Adult.

The next step in the reconstruction was matching the 15 features in UCI Adult to the
CPS data. This was a non-trivial task: the UCI Adult documentation does not mention any
specific CPS variable names and IPUMS CPS contains more than 400 candidate variables for
the 1994 ASEC. To address this challenge, we designed the following matching procedure that
we repeated for each feature in UCI Adult: First, identify a set of candidate variables in CPS
via the IPUMS keyword search. For each candidate variable, use the CPS documentation
to manually derive a mapping from the CPS encoding to the UCI Adult encoding. Finally,
match each row in UCI Adult to its nearest neighbor in the partial reconstruction assembled
from previous exact variable matches.

We only included a candidate variable if the nearest neighbor match was exact, i.e., we
could find an exact match in the IPUMS CPS data for each row in UCI Adult that matched
both the candidate variable and all earlier variables also identified via exact matches. There
were only two exceptions to this rule. We discuss them in Appendix 5.6. After completing
the variable matching, our reconstruction has 49,531 rows when we use the same inclusion
criteria as UCI Adult to the extent possible, which is slightly more than the 48,842 rows in
UCI Adult. The discrepancy likely stems from the fact that UCI Adult used the variable

2Ron Kohavi is a co-creator of both datasets.
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Figure 5.1: Fairness interventions with varying income threshold on IPUMS Adult. We com-
pare three methods for achieving demographic parity: a pre-processing method (LFR), an
in-training method based on Agarwal et al. [2] (ExpGrad), and a post-processing adjustment
method [90]. We apply each method using a gradient boosted decision tree (GBM) as the
base classifier. Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95%
Newcombe intervals for DP.

“fnlwgt” in its inclusion criteria and we did not due to the lack of an exact match for this
variable. This made our inclusion criteria slightly more permissive than those of UCI Adult.
The fact that we found exact matches for 13 of the 15 UCI Adult variables and a very close
match for “native-country” is evidence that our reconstruction of UCI Adult is accurate.

Varying income threshold

The goal in the UCI Adult dataset is to predict whether an individual earns greater than
50,000 US dollars a year. The choice of the 50,000 dollar threshold is idiosyncratic and
potentially limits the external validity of UCI Adult as a benchmark for algorithmic fairness.
In 1994, the median US income was 26,000 dollars, and 50,000 dollars corresponds to the
76th quantile of the income distribution, and the 88th and 89th quantiles of the income
distribution for the Black and female populations, respectively. Consequently, almost all of
the Black and female instances in the dataset fall below the threshold and models trained
on UCI adult tend to have substantially higher accuracies on these subpopulations. For
instance, a standard logistic regression model trained on UCI Adult dataset achieves 85%
accuracy overall, 91.4% accuracy on the Black instances, and 92.7% on Female instances.
This is a rather untypical situation since often machine learning models perform more poorly
on historically disadvantaged groups.

To understand the sensitivity of the empirical findings on UCI Adult to the choice of
threshold, we leverage our IPUMS Adult reconstruction, which includes the continuous,
unthresholded income variable, and construct a new collection of datasets where the income
threshold varies from 6,000 to 70,000. For each threshold, we first train a standard gradient
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boosted decision tree and evaluate both its accuracy and its violation of two common fairness
criteria: demographic parity (equality of positive rates) and equal opportunity (equality of
true positive rates). See the text by Barocas, Hardt, and Narayanan [10] for background.
The results are presented in Figure 5.1, where we see both accuracy and the magnitude of
violations of these criteria vary substantially with the threshold choice.

We then evaluate how the choice of threshold affects three common classes of fairness
interventions: the preprocessing method LFR [257] mentioned earlier, an in-processing or
in-training method based on the reductions approach in Agarwal et al. [2], and the post-
processing method from Hardt, Price, and Srebro [90]. In Figure 5.1, we plot model accuracy
after applying each intervention to achieve demographic parity as well as violations of both
demographic parity and equality of opportunity as the income threshold varies. In Ap-
pendix 5.6, we conduct the same experiment for methods to achieve equality of opportunity.
There are three salient findings. First, the effectiveness of each intervention depends on the
threshold. For values of the threshold near 25,000, the accuracy drop needed to achieve de-
mographic parity or equal opportunity is significantly larger than closer to 50,000. Second,
the trade-offs between different criteria vary substantially with the threshold. Indeed, for
the in-processing method enforcing demographic parity, as the threshold varies, the equality
of opportunity violation is monotonically increasing. Third, for high values of the threshold,
the small number of positive instances substantially enlarges the confidence intervals for
equality of opportunity, which makes it difficult to meaningfully compare the performance
of methods for satisfying this constraint.

5.3 New datasets for algorithmic fairness

At least one aspect of UCI Adult is remarkably positive. The US Census Bureau invests
heavily in high quality data collection, surveying methodology, and documentation based
on decades of experience. Moreover, responses to some US Census Bureau surveys are
legally mandated and hence enjoy high response rates resulting in a representative sample.
In contrast, some notable datasets in machine learning are collected in an ad-hoc manner,
plagued by skews in representation [233, 27, 38, 250], often lacking copyright [135] or consent
from subjects [177], and involving unskilled or poorly compensated labor in the form of crowd
workers [87].

In this work, we tap into the vast data ecosystem of the US Census Bureau to create new
machine learning tasks that we hope help to establish stronger empirical evaluation practices
within the algorithmic fairness community.

As previously discussed, UCI Adult was derived from the Annual Social and Economic
Supplement (ASEC) of the Current Population Survey (CPS). The CPS is a monthly survey
of approximately 60,000 US households. It’s used to produce the official monthly estimates
of employment and unemployment for the United States. The ASEC contains additional
information collected annually.
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Table 5.1: New prediction task details instantiated on 2018 US-wide ACS PUMS data

Task Features Datapoints
Constant

predictor acc
LogReg acc GBM acc

ACSIncome 10 1,664,500 63.1% 77.1% 79.7%
ACSPublicCoverage 19 1,138,289 70.2% 75.6% 78.5 %
ACSMobility 21 620,937 73.6% 73.7% 75.7%
ACSEmployment 17 3,236,107 56.7% 74.3% 78.5%
ACSTravelTime 16 1,466,648 56.3% 57.4% 65.0%

Another US Census data product most relevant to us are the American Community
Survey (ACS) Public Use Microdata Sample (PUMS). ACS PUMS differs in some significant
ways from CPS ASEC. The ACS is sent to approximately 3.5 million US households each year
gathering information relating to ancestry, citizenship, education, employment, language
proficiency, income, disability, and housing characteristics. Participation in the ACS is
mandatory under federal law. Responses are confidential and governed by strict privacy
rules. The Public Use Microdata Sample contains responses to every question from a subset
of respondents. The geographic information associated with any given record is limited to
a level that aims to prevent re-identification of survey participants. A number of other
disclosure control heuristics are implemented. Extensive documentation is available on the
websites of the US Census Bureau.

Available prediction tasks

We use ACS PUMS as the basis for the following new prediction tasks:
ACSIncome: predict whether an individual’s income is above $50,000, after filtering

the ACS PUMS data sample to only include individuals above the age of 16, who reported
usual working hours of at least 1 hour per week in the past year, and an income of at least
$100. The threshold of $50,000 was chosen so that this dataset can serve as a replacement
to UCI Adult, but we also offer datasets with other income cutoffs.

• ACSPublicCoverage: predict whether an individual is covered by public health
insurance, after filtering the ACS PUMS data sample to only include individuals under
the age of 65, and those with an income of less than $30,000. This filtering focuses the
prediction problem on low-income individuals who are not eligible for Medicare.

• ACSMobility: predict whether an individual had the same residential address one
year ago, after filtering the ACS PUMS data sample to only include individuals between
the ages of 18 and 35. This filtering increases the difficulty of the prediction task, as
the base rate of staying at the same address is above 90% for the general population.
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• ACSEmployment: predict whether an individual is employed, after filtering the ACS
PUMS data sample to only include individuals between the ages of 16 and 90.

• ACSTravelTime: predict whether an individual has a commute to work that is longer
than 20 minutes, after filtering the ACS PUMS data sample to only include individuals
who are employed and above the age of 16. The threshold of 20 minutes was chosen
as it is the US-wide median travel time to work in the 2018 ACS PUMS data release.

All our tasks contain features for age, race, and sex, which correspond to protected cate-
gories in different domains under US anti-discrimination laws [11]. Further, each prediction
task can be instantiated on different ACS PUMS data samples, allowing for comparison
across geographic and temporal variation. We provide datasets for each task correspond-
ing to 1) all fifty US states and Puerto Rico, and 2) five different years of data collection:
2014–2018 inclusive, resulting in a total of 255 distinct datasets per task to assess distribu-
tion shift. We also provide US-wide datasets for each task, constructed from concatenating
each state’s data. Table 5.1 displays more details about each prediction task as instantiated
on the 2018 US-wide ACS PUMS data sample. Our new tasks constitute a diverse collec-
tion of prediction problems ranging from those where machine learning achieves significantly
higher accuracy than a baseline constant predictor to other potentially low-signal problems
(ACSMobility) where accuracy improvement appears to be more challenging.

These prediction tasks are by no means exhausitive of the potential tasks one can con-
struct using the ACS PUMS data. The folktables package we introduce provides a simple
API that allows users to construct new tasks using the ACS PUMS data, and we encour-
age the community to explore additional prediction tasks beyond those introduced in this
chapter.

Scope and limitations

One distinction is important. Census data is often used by social scientists to study the ex-
tent of inequality in income, employment, education, housing or other aspects of life. Such
important substantive investigations should necessarily inform debates about discrimination
in classification scenarios within these domains. However, our contribution is not in this
direction. We instead use census data for the empirical study of algorithmic fairness. This
generally may include performance claims about specific methods, the comparison of dif-
ferent methods for achieving a given fairness metric, the relationships of different fairness
criteria in concrete settings, causal modeling of different scenarios, and the ability of different
methods to transfer successfully from one context to another. We hope that our work leads
to more comprehensive empirical evaluations in research papers on the topic, at the very
least reducing the overreliance on UCI Adult and providing a complement to the flourish-
ing theoretical work on the topic. The distinction we draw between benchmark data and
substantive domain-specific investigations resonates with recent work that points out issues
with using data about risk assessments tools from the criminal justice domain as machine
learning benchmarks [8].
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Figure 5.2: The effect size of fairness interventions varies by state. Each panel shows the
change in accuracy and demographic parity on the ACSIncome task after applying a fair-
ness intervention to an unconstrained gradient boosted decision tree (GBM). Each arrow
corresponds to a different state distribution. The arrow base represents the (accuracy, DP)
point corresponding to the unconstrained GBM, and the head represents the (accuracy, DP)
point obtained after applying the intervention. The arrow for HI in the LFR plot is entirely
covered by the start and end points.

A notable if obvious limitation of our work is that it is entirely US-centric. A richer
dataset ecosystem covering international contexts within the algorithmic fairness community
is still lacking. Although empirical work in the Global South is central in other disciplines,
there continues to be much need for the North American fairness community to engage with
it more strongly [1].

5.4 A tour of empirical observations

In this section, we highlight an initial sweep of empirical observations enabled by our new
ACS PUMS derived prediction tasks. Our experiments focus on three fundamental issues
in fair machine learning: (i) variation within the population of interest, e.g., how does the
effectiveness of interventions vary between different states or over time?, (ii) the locus of
intervention, e.g. should interventions be performed at the state or national level?, and (iii)
whether increased dataset size or the passage of time mitigates observed disparities?

Our experiments are not exhaustive and are intended to highlight the perspective a
broader empirical evaluation with our new datasets can contribute to addressing questions
within algorithmic fairness. The goal of the experiments is not to provide a complete overview
of all the questions that one can answer using our datasets. Rather, we hope to inspire other
researchers to creatively use our datasets to further probe these question as well as propose
new ones leveraging the ACS PUMS data.
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Figure 5.3: Transfer from one state to another gives unpredictable results in terms of predic-
tive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained
on a particular state on the ACSIncome task and evaluated both in-distribution (ID) on the
same state and out-of-distribution (OOD) on the 49 other states in terms of accuracy and
demographic parity violation. Bottom: Each panel shows an GBM with post-processing to
enforce demographic parity on the state on which it was trained and evaluated both ID and
OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson intervals for accuracy
and 95% Newcombe intervals for demographic parity.

Variation within the population

The ACS PUMS prediction tasks present two natural axes of variation: geographic variation
between states and temporal variation between years the ACS is conducted. This variation
allows us to both measure the performance of different fairness interventions on a broad
collection of different distributions, as well as study the performance of these interventions
under geographical and temporal distribution shift when the test dataset differs from the
one on which the model was trained.

Due to space constraints, we focus our experiments in this section on the ACSIncome
prediction task with demographic parity as the fairness criterion of interest. We present
similar results for our other prediction tasks and fairness criteria, as well as full experimental
details in Appendix 5.8.

Intervention effect sizes vary across states. The fifty US states which comprise the
ACS PUMS data present a broad set of different experimental conditions on which to eval-
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uate the performance of fairness interventions. At the most basic level, we can train and
evaluate different fairness interventions on each of the states and compare the interventions’
efficacy on these different distributions. Concretely, we first train an unconstrained gradi-
ent boosted decision tree (GBM) on each state, and we compare the accuracy and fairness
criterion violation of this unconstrained model with the same model after applying one of
three common fairness intervention: pre-processing (LFR), the in-processing fair reductions
methods from Agarwal et al. [2] (ExpGrad), and the simple post-processing method that
adjusts group-based acceptance thresholds to satisfy a constraint [90]. Figure 5.2 shows the
result of this experiment for the ACSIncome prediction task for interventions to achieve
demographic parity. For a given method, performance can differ markedly between states.
For instance, LFR decreases the demographic parity violation by 10% in some states and
in other states the decrease is close to zero. Similarly, the post-processing adjustment to
enforce demographic parity incurs accuracy drops of less than 1% in some states, whereas in
others the drop is closer to 5%.

Training and testing on different states leads to unpredictable results. Beyond
training and evaluating interventions on different states, we also use the ACS PUMS data to
study the performance of interventions under geographic distribution shift, where we train a
model on one state and test it on another. In Figure 5.3, we plot accuracy and demographic
parity violation with respect to race for both an unconstrained GBM and the same model
after applying a post-processing adjustment to achieve demographic parity on a natural suite
of test sets: the in-distribution (same state test set) and the out-of-distribution test sets for
the 49 other states. For both the unconstrained and post-processed model, model accuracy
and demographic parity violation varies substantially across different state test sets. In
particular, even when a method achieves demographic parity in one state, it may no longer
satisfy the fairness constraint when naively deployed on another.

Fairness criteria are more stable over time than predictive accuracy. In con-
trast to the unpredictable results that occur under geographic distribution shift, the fairness
criteria and interventions we study are much more stable under temporal distribution shift.
Specifically, in Figure 5.4, we plot model accuracy and demographic parity violation for GBM
trained on the ACSIncome task using US-wide data from 2014 and evaluated on the test
sets for the same task drawn from years 2014-2018. Perhaps unsurprisingly, model accuracy
degrades slightly over time. However, the associated fairness metric is stable and essentially
constant over time. Moreover, this same trend holds for the fairness interventions previously
discussed. The same base GBM with pre-processing (LFR), in-processing (ExpGrad), or
post-processing to satisfy demographic parity in 2014, all have a similar degradation in ac-
curacy, but the fairness metrics remain stable. Thus, a classifier that satisfies demographic
parity on the 2014 data continues to satisfy the constraint on 2015-2018 data.
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Figure 5.4: Fairness criteria are more stable over time than accuracy. Left: Models trained
in 2014 on US-wide ACSIncome with and without fairness interventions to achieve demo-
graphic parity and evaluated on data in subsequent years suffer a drop in accuracy over
time. Right: However, the violation of demographic parity remains essentially constant
over time. Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95%
Newcombe intervals for demographic parity.

Specifying a locus of intervention

On the ACSPUMs prediction task, fairness interventions can be applied either on a state-
by-state basis or on the entire US population. In Table 5.2, we compare the performance of
LFR and the post-processing adjustment method applied at the US-level with the aggregate
performance of both methods applied on a state-by-state basis, using a GBM as the base
classifier. In both cases, applying the intervention on a state-by-state improves US-wide
accuracy while still preserving demographic parity (post-processing) or further mitigating
violations of demographic parity (LFR).

Increased dataset size doesn’t necessarily mitigate observed
disparities

To mitigate disparities in error rates, commonly suggested remedies include collecting a)
larger datasets and b) more representative data reflective of social progress. For example, in
response to research revealing the stark accuracy disparities of commercial facial recognition
algorithms, particularly for dark-skinned females [35], IBM collected a more diverse training
set of images, retrained its facial recognition model, and reported a 10-fold decrease in error
for this subgroup [178]. However, on our tabular datasets, larger datasets collected in more
socially progressive times do not automatically mitigate disparities. Table 5.3 shows that
unconstrained gradient boosted decision tree trained on a newer, larger dataset (ACSIncome
vs. IPUMS Adult), does not improve disparities such as in true positive rate (TPR). A
fundamental reason for this is the persistent social inequality that is reflected in the data. It



CHAPTER 5. RETIRING ADULT: NEW DATASETS FOR FAIR MACHINE
LEARNING 149

Table 5.2: Comparison of two different strategies for applying an intervention to achieve de-
mographic parity (DP) on the US-wide ACSIncome task. US-level corresponds to training
one classifier and applying the intervention on the entire US population. State-level corre-
sponds to training a classifier and applying the intervention separately for each state and
then aggregating the results over all states. Here, DP refers to P (Ŷ = 1 |White)− P (Ŷ =
1 | Black). Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95%
Newcombe intervals for DP.

US-level acc
US-level

DP violation
State-level

Acc
State-level

DP violation

Unconstrained GBM 81.7± 0.1 % 17.7± 0.2% 82.8± 0.1 % 16.9± 0.2%
GBM+LFR 78.7± 0.1 % 16.6± 0.2% 79.4± 0.1% 14.0± 0.2%
GBM+post-processing (DP) 79.2± 0.1 % 0.3± 0.3 % 80.2± 0.1% −0.6± 0.3%

Table 5.3: Disparities persist despite increasing dataset size and social progress.

Dataset Year Datapoints GBM Acc TPR White TPR Black
TPR

Disparity

IPUMS Adult 1994 49,531 86.4% 58.0% 46.5 % 11.5%
ACSIncome 2018 1,664,500 80.8% 66.5% 51.7% 14.8%

is well known that given a disparity in base rates between groups, a predictive model cannot
be both calibrated and equal in error rates across groups [49], except if the model has 100%
accuracy. This observation highlights a key difference between cognitive machine learning
and tabular data prediction – the Bayes error rate is zero for cognitive machine learning.
Thus larger and more representative datasets eventually address disparities by pushing error
rates to zero for all subgroups. In the tabular datasets we collect, the Bayes error rate of
an optimal classifier is almost certainly far from zero, so some individuals will inevitably be
incorrectly classified. Rather than hope for future datasets to implicitly address disparities,
we must directly contend with how dataset and model design choices distribute the burden
of these errors.

5.5 Discussion and future directions

Rather than settled conclusions, our empirical observations are intended to spark additional
work on our new datasets. Of particular interest is a broad and comprehensive evaluation of
existing methods on all datasets. We only evaluated some methods so far. One interesting
question is if there is a method for achieving either demographic parity or error rate parity
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that outperforms threshold adjustment (based on the best known unconstrained classifier) on
any of our datasets? We conjecture that the answer is no. The reason is that we believe on
our datasets a well-tuned tree-ensemble achieves classification error close to the Bayes error
bound. Existing theory (Theorem 5.3 in [90]) would then show that threshold adjustment
based on this model is, in fact, optimal. Our conjecture motivates drawing a distinction
between classification scenarios where a nearly Bayes optimal classifier is known and those
where there isn’t. How close we are to Bayes optimal on any of our new prediction tasks is a
good question. The role of distribution shift also deserves more attention. Are there methods
that achieve consistent performance across geographic contexts? Why does there appear to
be more temporal than geographic stability? What does the sensitivity to distribution shift
say about algorithmic tools developed in one context and deployed in another? Answers to
these questions seem highly relevant to policy-making around the deployment of algorithmic
risk assessment tools. Finally, our datasets are also interesting test cases for causal inference
methods, which we haven’t yet explored. How would, for example, methods like invariant
risk minimization [4] perform on different geographic contexts?

5.6 Appendix: Additional details about adult

reconstruction

We only included a candidate variable if the nearest neighbor match was exact, i.e., we could
find an exact match in the IPUMS CPS data for each row in UCI Adult that matched both
the candidate variable and all earlier variables also identified via exact matches. There were
only two exceptions to this rule:

• The UCI Adult feature “native-country”. Here we could match the vast majority
of rows in UCI Adult to the IPUMS CPS variable “UH NATVTY A1”. To get an
exact match for all rows, we had to map the country codes for Russia and Guyana in
“UH NATVTY A1” to the value for “unknown”. The documentation for UCI Adult
also mentions neither Russia nor Guyana as possible values for “native-country”. We
do not know the reason for this discrepancy.

• The UCI Adult feature “fnlwgt”. This column is actually not a demographic feature of
an individual but a weight value computed by the Census Bureau to make the sample
representative for the US population. We compared the “fnlwgt” data to all weight
variables available in IPUMS CPS but did not find an exact match. The closest match
is the variable “UH WGTS A1”, which has a similar distribution. Since we did not
identify an exact match for “fnlwgt” and the variable is not a property of an individual,
we do not utilize it further in our experiments.
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Varying the income threshold experiments

In our experiments, we randomly split the 49,531 examples in the IPUMS Adult reconstruc-
tion into a training set of size 32,094 and a test-set of size 13,755. We vary the threshold
from 6,000 to 72,000. Concretely, for a given threshold, e.g. 25,000, the task is to predict
whether the individual’s income is greater than 25,000. We use a one-hot encoding for the
categorical features, and we use the same clustering preprocessing for the Education-Num

and Age features as Bellamy et al. [15]. All features are further scaled to be zero-mean and
have unit variance.

In our experiments, as the “unconstrained” base classifier, we use the gradient boosted de-
cision tree classifier provided by Pedregosa et al. [173] with exponential loss, num estimators

5, max depth 5, and all other hyperparameters set to the default. We found this to slightly
outperform the default gradient boosting machine at threshold 50,000. For the three fairness
interventions, we used the implementation of LFR [257] provided by Bellamy et al. [15] with
hyperparameters Ax 1e-4, Ay 1.0, Az 1000, maxiter 20000, and maxfun 20000, which were
chosen by a grid search at threshold 50,000 to maximize the difference between accuracy and
the demographic parity disparity. We used the implementation of the reductions approach
of Agarwal et al. [2] provided by Bird et al. [22] with the default hyperparameters, and we
used implementation of post-processing [90] provided by Bellamy et al. [15].

In Figure 5.1 in the main text, we compare the performance of these three fairness
interventions when enforcing demographic parity as the threshold varies. In Figure 5.5, we
additionally compare the performance of in-processing method (ExpGrad) and the post-
processing method when enforcing equality of opportunity (EO). We exclude LFR from the
comparison because this method does not enforce equality of opportunity without additional
modification. The results from this experiment are very similar to the experiment enforcing
demographic parity. As the threshold varies, the accuracy drop needed to enforce EO varies
substantially, as does the trade-off between criteria when enforcing EO. Moreover, for high
values of the threshold, the small number of positive instances substantially increases the
confidence intervals around the report EO values and makes it difficult to compare the
different interventions.

Table 5.1 additional details

For each of the tasks listed in Table 5.1 (ACSIncome, ACSPublicCoverage, ACSMobility,
ACSEmployment, ACSTravelTime), we use the 1-year 2018 US-Wide ACS PUMS data. We
use a maximum of 100,000 examples from each state, and randomly subsample states that
have more than 100,000 examples. We randomly split 80% of the dataset into a training split
and the remaining 20% into a test split. All features are standardized to be zero-mean and
unit-variance. Constant Predictor refers to the majority class baseline, LogReg refers to a
logistic regression baseline, and GBM refers to a gradient boosted decision tree classifier. For
each models, we use the implementation provided by Pedregosa et al. [173] with the default
hyperparameters.
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Figure 5.5: Fairness interventions with varying income threshold on IPUMS Adult. Com-
parison of in-processing and post-processing methods for achieving equality of opportunity
(EO). LFR does not target EO, so we exclude it from the comparison. Confidence intervals
are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe intervals for equality of
opportunity.

5.7 Appendix: Omitted experimental details

Models and hyperparameters. All of the experiments in this section use the same un-
constrained base model: a gradient boosted decision tree (GBM). We chose this model be-
cause it trains quickly and consistently achieved higher accuracy than other baseline models
we considered (logistic regression and random forests) in the unconstrained setting; exper-
iments using other base models also produced qualitatively similar results, so we focus on
GBM in this chapter. We use the implementation provided by Pedregosa et al. [173] and use
exponential loss, num estimators 5, max depth 5, and all other hyperparameters set to the
default. These hyperparameters were chosen via a small grid search to maximize accuracy on
the ACSIncome task. We use the implementation of LFR [257] from Bellamy et al. [15] with
hyperparameters k=10, Ax=0.1, Ay=1.0, Az = 2.0, maxiter=5000, and maxfun=5000. The
hyperparameters are the same as those used in the UCI Adult tutorial provided by Bellamy
et al. [15]. For the in-processing method (ExpGrad) from Agarwal et al. [2], we use the
implementation from Bird et al. [22] with the default hyperparameters, and for the post-
processing method, we use the threshold adjustment method of Hardt, Price, and Srebro
[90], which is also implemented in Bellamy et al. [15]. In Section 5.4, we use all of the
methods to enforce demographic parity. We detail additional experiments enforcing equality
of opportunity in Appendix 5.8.

Datasets. Throughout this section, we use the ACSIncome task described in Section 5.3.
With the exception of the distribution shift across time experiments, we use the 2018 1-Year
ACS PUMS data. For each state, we randomly split 80% of the dataset into a training split
and use the remaining 20% as a test split. The US-Wide dataset is constructed by combining
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these training and testing sets over all 50 states and Puerto Rico. For the distribution shift
across time experiments, we use the same procedure for the 2014-2017 1-Year ACS PUMS
data.

Confidence intervals. To account for random variation in estimating model accuracies
and violations of demographic parity and equality of opportunity, we report each of these
metrics with appropriate confidence intervals. We report and plot accuracy numbers with
95% Clopper-Pearson intervals. We report and plot violations of demographic parity and
equality of opportunity with 95% Newcombe intervals for the difference between two binomial
proportions.

Compute environment. All of our experiments are run on CPUs on a cluster computer
with 24 Intel Xeon E7 CPUs and 300 GB of RAM.

5.8 Appendix: Additional experiments using

folktables

In this section, we conduct the same set of experiments conducted in Section 5.4 on the 5
other prediction tasks we introduced in Section 5.3. Throughout we keep the experimental
details (models, hyperparameters, etc) identical to those detailed in Appendix 5.7.

Intervention effect sizes across states

As in Section 5.4, we train an unconstrained gradient boosted decision tree (GBM) on each
state, and we compare the accuracy and fairness criterion violation of this unconstrained
model with the same model after applying one of three common fairness intervention: pre-
processing (LFR), the in-processing fair reductions methods from Agarwal et al. [2] (Exp-
Grad), and the simple post-processing method that adjusts group-based acceptance thresh-
olds to satisfy a constraint [90]. Figure 5.6 shows the result of this experiment for the
ACSIncome prediction task for interventions to achieve equality of opportunity.

In Figure 5.7, we conduct the same experiment for demographic parity on four other
ACS data tasks: ACSPublicCoverage, ACSEmployment, ACSMobility, and ACSTravelTime,
respectively.

Geographic distribution shift

In Figure 5.8, we plot accuracy and equality of opportunity violation with respect to race for
both an unconstrained GBM and the same model after applying a post-processing adjustment
to achieve equality of opportunity on a natural suite of test sets: the in-distribution (same
state test set) and the out-of-distribution test sets for the 49 other states. This is the same
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Figure 5.6: The effect size of fairness interventions varies by state. Each panel shows the
change in accuracy and equality of opportunity violation (EO) on the ACSIncome task after
applying a fairness intervention to an unconstrained gradient boosted decision tree (GBM).
Each arrow corresponds to a different state distribution. The arrow base represents the
(accuracy, EO) point corresponding to the unconstrained GBM, and the head represents the
(accuracy, EO) point obtained after applying the intervention. The arrow for HI in the LFR
plot and ME in all three plots is entirely covered by the start and end points.

experiment as in Section 5.4, but with equality of opportunity rather than demographic
parity as the metric of interest. In Figures 5.9, 5.10 5.11, and 5.12 we conduct the same
experiment for demographic parity on four other ACS data tasks: ACSPublicCoverage,
ACSEmployment, ACSMobility, and ACSTravelTime, respectively.

Temporal distribution shift

In Figure 5.13, we plot model accuracy and equality of opportunity violation for a GBM
trained on the ACSIncome task using US-wide data from 2014 and evaluated on the test sets
for the same task drawn from years 2014-2018. This is the same experiment as conducted in
Section 5.4; however, here we consider interventions to satisfy equality of opportunity rather
than demographic parity. In Figure 5.14, we conduct repeat this experiment for interventions
to satisfy demographic parity on 4 other ACS PUMS predictions tasks: ACSPublicCoverage,
ACSMobility, ACSEmployment, and ACSTravelTime.



CHAPTER 5. RETIRING ADULT: NEW DATASETS FOR FAIR MACHINE
LEARNING 155

0.65 0.70 0.75 0.80 0.85
State accuracy

0.3

0.2

0.1

0.0

0.1

P(
Y

=
1

W
hi

te
)

P(
Y

=
1

Bl
ac

k) GBM w/ LFR

0.70 0.75 0.80 0.85
State accuracy

0.3

0.2

0.1

0.0

0.1

GBM w/ ExpGrad (DP)

0.70 0.75 0.80 0.85
State accuracy

0.3
0.2
0.1
0.0
0.1

GBM w/ Post-processing (DP)
ACSPublicCoverage

AL CA HI IN ME MI NM NY WA

0.74 0.76 0.78 0.80
State accuracy

0.10

0.05

0.00

0.05

0.10

P(
Y

=
1

W
hi

te
)

P(
Y

=
1

Bl
ac

k) GBM w/ LFR

0.77 0.78 0.79 0.80
State accuracy

0.10

0.05

0.00

0.05

0.10
GBM w/ ExpGrad (DP)

0.76 0.77 0.78 0.79 0.80
State accuracy

0.10

0.05

0.00

0.05

0.10
GBM w/ Post-processing (DP)

ACSEmployment

AL CA HI IN ME MI NM NY WA

0.700 0.725 0.750 0.775 0.800 0.825
State accuracy

0.0

0.1

0.2

0.3

P(
Y

=
1

W
hi

te
)

P(
Y

=
1

Bl
ac

k) GBM w/ LFR

0.74 0.76 0.78 0.80 0.82
State accuracy

0.0

0.1

0.2

0.3
GBM w/ ExpGrad (DP)

0.72 0.74 0.76 0.78 0.80 0.82
State accuracy

0.0

0.1

0.2

0.3
GBM w/ Post-processing (DP)

ACSMobility

AL CA HI IN ME MI NM NY WA

0.60 0.65 0.70 0.75
State accuracy

0.4

0.3

0.2

0.1

0.0

P(
Y

=
1

W
hi

te
)

P(
Y

=
1

Bl
ac

k) GBM w/ LFR

0.66 0.68 0.70 0.72 0.74
State accuracy

0.4

0.3

0.2

0.1

0.0

GBM w/ ExpGrad (DP)

0.66 0.68 0.70 0.72 0.74
State accuracy

0.4

0.3

0.2

0.1

0.0

GBM w/ Post-processing (DP)
ACSTravelTime

AL CA HI IN ME MI NM NY WA

Figure 5.7: The effect size of fairness interventions varies by state. Each panel shows the
change in accuracy and demographic parity violation (DP) on the ACSIncome task after
applying a fairness intervention to an unconstrained gradient boosted decision tree (GBM).
Each arrow corresponds to a different state distribution. The arrow base represents the
(accuracy, DP) point corresponding to the unconstrained GBM, and the head represents the
(accuracy, DP) point obtained after applying the intervention. When only a single point
is visible, the entire arrow is covered by the point, representing an intervention that has
essentially no effect.
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Figure 5.8: Transfer from one state to another gives unpredictable results in terms of predic-
tive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained
on a particular state on the ACSIncome task and evaluated both in-distribution (ID) on the
same state and out-of-distribution (OOD) on the 49 other states in terms of accuracy and
equality of opportunity violation. Bottom: Each panel shows an GBM with post-processing
to enforce equality of opportunity on the state on which it was trained and evaluated both
ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson intervals for
accuracy and 95% Newcombe intervals for equality of opportunity violation.
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Figure 5.9: Transfer from one state to another gives unpredictable results in terms of predic-
tive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained
on a particular state on the ACSPublicCoverage task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 5.10: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSEmployment task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 5.11: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSMobility task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 5.12: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSTravelTime task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.



CHAPTER 5. RETIRING ADULT: NEW DATASETS FOR FAIR MACHINE
LEARNING 161

2014 2015 2016 2017 2018
Evaluation year

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

2014 2015 2016 2017 2018
Evaluation year

0.00

0.05

0.10

0.15

0.20
P(

Y
=

1
W

hi
te

,Y
=

1)
P(

Y
=

1
Bl

ac
k,

Y
=

1)

ACSIncome US-Wide (Trained on 2014 data)

GBM GBM w/ ExpGrad (EO) GBM w/ Postprocessing (EO)

Figure 5.13: Fairness criteria are more stable over time than accuracy. Left: Models trained
in 2014 on US-wide ACSIncome with and without fairness interventions to achieve equality
of opportunity and evaluated on data in subsequent years. Right: Violations of equality
of opportunity for the same collection of models. Although accuracy drops over time for
most problems, violations of equality of opportunity remain essentially constant. Confidence
intervals are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe intervals for
equality of opportunity violations.
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Figure 5.14: Fairness criteria are more stable over time than accuracy. Left: Models trained
in 2014 on US-wide ACS data with and without fairness interventions to achieve demographic
parity and evaluated on data in subsequent years. Right: Violations of demographic parity
for the same collection of models. Although accuracy drops over time for most problems,
violations of demographic parity remain essentially constant.
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Chapter 6

WhyNot: Simulation Benchmarks for
Causal Inference

6.1 Introduction

Does additional low income housing cause an increase in urban crime? Causal questions such
as these have long been a subject of active research. Today, researchers increasingly tackle
such questions with the growing technical repertoire of statistical causal inference from ob-
servational and experimental data. High stakes interventions in domains including climate,
development, education, health and finance often start with causal reasoning. Consequen-
tial policy-making on the basis of formal causal analysis puts pressure on the validity and
the robustness of the analysis. The previous chapters have highlighted validity challenges
associated with machine learning benchmarks for predictive tasks. The validity of causal
inference is even more difficult question because it is a matter of formal assumptions that
are often subtle and generally untestable [170, 101].

Causal inference has not been the only route by which scientists have attempted to
anticipate the effect of interventions. Nearly as old as the digital computer is the idea
of computer simulation of mathematical models designed to capture aspects of the real
world. Dating back more than half a century, a field known as system dynamics sought to
derive policy recommendations from computer simulation of dynamical systems in a range
of domains including industrial management, urban planning, and climate forecasting [80,
160]. Similarly, agent-based modeling, an active research area with applications ranging
from economics to epidemiology, rests on the idea of simulating the collective interactions of
many agents [28, 82]. Robotics, control theory, and reinforcement learning all actively deploy
simulated environments in order to improve systems and anticipate their failure points [231,
151]. As compute resources continue to grow, simulation is an increasingly powerful tool.

In this chapter, we connect computer simulation and causal inference by using the former
as a testbed for the latter. Simulation inevitably shows discrepancies with the real world.
But even when a simulator fails to faithfully represent the real world, it can nonetheless
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provide a valuable environment in which causal questions have non-trivial answers. Ground
truth is available through simulation where formal analysis is impenetrable. Each simulator
we consider naturally leads to a range of causal questions by varying which variables to
include, what time horizons to consider, and how to generate data from the simulator. With
this powerful tool at hand, we begin to investigate how today’s practice of causal inference
fares in challenging simulated environments. Or, to speak by analogy, we ask: Would causal
inference understand Sim City?

Our contributions. We designed and implemented an extensible, easy-to-use system,
called WhyNot , that provides several complex simulators, numerous experimental designs,
and a representative suite of state-of-the-art causal inference methods.

Underlying our framework is a novel methodology of how complex dynamical systems can
elucidate questions of robustness and validity in causal inference. We start from dynamical
systems that have been proposed over the years independently of statistical causal inference.
Therefore, these simulated environments do not encode predetermined causal questions or
answers. Practitioners and researchers may instead use their subject matter knowledge in
combination with our framework to design tasks that probe what they believe is relevant to
the success of their method in practice.

To showcase our system, we design several experiments aimed at key issues in causal
inference. Specifically, we focus on analyzing the impact of observed and unobserved con-
founding, mediation analysis, and interference between experimental units on the validity
of inference procedures. In each case, we let a key assumption fail in a controlled manner
to see how a set of methods responds to the failure of the assumption. Our experiments
surface a new empirical understanding of how today’s causal inference methods perform in
such cases. Although we can necessarily only highlight a few representative experiments,
our framework is by no means limited to these. Additional simulators, experiments, and
methods are straightforward to add as our framework is agnostic to any particular modeling
language. At the outset, WhyNot is an experimental platform for creating challenging test
cases, rather than a set of fixed benchmarks.

Related work. The current practice of simulation captures only a small fraction of real
world phenomena. Though there have been many efforts to use synthetic and simulated
data sets to test statistical methods, these often study idealized conditions where all of the
assumptions for inference are satisfied, and deviations from these settings, if they are studied
at all, rely on simple parametric models [23, 69, 112, 110, 118]. WhyNot expands the kinds
of environments in which we can robustly evaluate causal inference.

Most closely related to our work is the simcausal R package [217], which provides a
tool for generating synthetic data based on structural equation models, requiring the user to
provide functional relationships governing the data-generating process. Our framework takes
a different philosophical and technical approach. We employ existing dynamical systems as
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the simulated environments, and the functional relationships are not explicitly user specified
but rather determined by the dynamics.

Recently, there have also been efforts to rigorously compare causal inference methods via
data analysis competitions and simulation benchmarks on quasi-synthetic datasets, notably
those by the Atlantic Causal Inference Conference (ACIC) [69, 118]. Hernán [102] criticizes
competitions such as these for lacking settings that “violate the key assumptions of ignor-
ability and overlap” as well as cases “that include failure time outcomes and time-varying
treatments and covariates.” We see our framework as a way of addressing many of the
concerns that Hernán raises.

6.2 Causal inference through the lens of dynamical

systems

Dynamical systems naturally create interesting causal inference problems involving con-
founding and mediation. The connection between dynamical systems and causal inference
is central to our work and rests on a methodological and philosophical perspective that we
now develop.

Models and bounding boxes

Any causal analysis implicitly draws a “bounding box” around a set of variables included in
the study. The bounding box separates the variables from their possibly chaotic surroundings
in the universe. Pearl summarizes this philosophical point crisply [170, p. 420]:

If you wish to include the entire universe in the model, causality disappears
because interventions disappear—the manipulator and the manipulated lose their
distinction. However, scientists rarely consider the entirety of the universe as an
object of investigation. In most cases the scientist carves out a piece from the
universe and proclaims that piece in—namely, the focus of investigation. The rest
of the universe is then considered out or background and is summarized by what
we call boundary conditions. This choice of ins and outs creates asymmetry in
the way we look at things, and it is this asymmetry that permits us to talk about
“outside intervention” and hence about causality and cause-effect directionality.

What we learn from causal inference therefore depends on what bounding box we choose.
Too broad a bounding box can lead to a Byzantine model. Too narrow a bounding box can fail
to capture salient aspects of the object of our study, leading to problems such as unobserved
confounding. The bounding box must also resolve the implicit temporal aspects in a causal
analysis, such as the delay between the time of measurement of different variables.

From a methodological perspective, the simulators in our work provide the surrounding
system in which causal analysis takes place. Put in control of the surrounding system, we
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Figure 6.1: In WhyNot , scenarios for confounding and mediation naturally arise due to
the temporal dynamics of the simulators. Abstractly, a simulation from WhyNot can be
described by a state vector st and a dynamics model D that transitions the state vector
from one time step to the next: st+1 = D(st). If treatment at time t∗ is based on only
part of the system’s current state, then the variables in the past (t < t∗) are confounders.
Similarly, any variable that occurs in between the time t∗ of the treatment and the time t′

of the outcome is a mediator.

can investigate how the analysis responds to changes in the surrounding system, such as
choice of bounding box, which variables are in, which are out, and what temporal effects are
at play.

Dynamics as background models

We adopt dynamical systems as background models, that is, models of the outside of the
bounding box in which causal analysis takes place. Broadly speaking, a dynamical system
is described by an initial state s0 and a state-transition map D. Focusing on discrete time
dynamics, the state of the system evolves according to the equation D(st) = st+1. In a
dynamical system, an intervention corresponds to changing the state-transition rule from D
to D′ at an intervention time t∗, and then evolving the system according to D′ after time t∗.
The outcome variable is a measurement of the state st′ at some time t′ in the future. For
example, in the context of a city simulation, the intervention could correspond to raising the
minimum wage at time t∗, and the outcome variable could be the level of unemployment at
time t′.

Dynamical systems are a compelling choice as the background model for causal inference
not least because the temporal structure of the dynamics naturally gives rise to confounding
and mediation. A confounder has a causal effect on both the treatment and the outcome. In
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a dynamical system, even if each component of the initial state is independent, the dynamics
generally couple the past and render all of the state variables dependent. Thus, the entire
collection of state variables from time t = 0 to t = t∗ − 1 are confounders. Similarly, a
mediator is causally affected by the treatment assignment and affects the outcome variable,
and so all of the state variables from time t = t∗ + 1 to t = t′ − 1 are mediating variables.
This mechanism of confounding and mediation is illustrate in Figure 6.1.

This connection between dynamics and questions of confounding and mediation provides
the conceptual link between causal inference and dynamical systems. By simulating and
intervening on a wide array of dynamics, we can generate a wide array of non-trivial causal
inference problems.

Purpose of background models

The simulators in our work are not intended to be realistic models of the world, but rather
realistic models of the technical difficulties that the real world poses for causal inference.

Put simply, the physical universe is a dynamical system. Causal inference in the real
world therefore inevitably has to grapple with data that were generated by some dynamical
process. The way confounding and mediation arise from dynamical systems, as we illustrated
in Figure 6.1, is in a sense universal: We may postulate that all confounding and mediation
in the real world would have to arise from the mechanism described in Figure 6.1 applied
to some dynamical system. In other words, by varying the dynamical system used as the
background model, we can in principle tease out all the challenges that the real world might
pose.

Even if a simulator does not precisely capture the real world, it can entail confounding,
mediation, and other issues in ways that resemble how the same phenomena would arise
in reality. WhyNot invites the researcher to think about background models as a fruitful
component of causal reasoning.

6.3 Background on causal inference

In this chapter, we consider estimating the causal effect of a binary treatment variable A on
an outcome variable Y . Specifically, we are interested in the average treatment effect, [see
e.g. 101],

ATE := E[Y | do(A = 1)]− E[Y | do(A = 0)],

where expectation is taken with respect to the population. We use the mathematical operator
do(a) introduced by Pearl [170] to denote an intervention that holds the value of a variable
constant at level A = a. The average treatment effect can also be defined using the Neyman-
Rubin potential outcomes framework [198, 218].1 Our work is agnostic to which formalism
the practitioner applies.

1In the potential outcomes framework, the ATE is commonly denoted using E[Y (1)−Y (0)], where Y (a)
is the potential outcome under treatment level A = a.
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Due to the possibility of confounding, [170, 101, ch. 3, ch. 7 resp.] we cannot in general
estimate the average treatment effect, and other quantities involving do-operations, using
only observational data, i.e., samples (Ai, Yi)

n
i=1 drawn i.i.d. from the joint distribution. In

other words, the ATE is not always equal to the expected difference in outcome conditional
on treatment, E[Y | A = 1]− E[Y | A = 0].

Accurately estimating the effect of an intervention requires adjusting for confounders,
that is variables that causally influence both the treatment and the outcome. In general,
determining an admissible set of variables to properly adjust for confounding is a subtle
question. Given a structural equation model of the causal problem, ideas like Pearl’s backdoor
criterion can solve this task. In the potential outcomes framework, a set of covariates X is
admissible if the potential outcomes Y (0), Y (1) are conditionally independent of treatment
conditional on X, that is Y (0), Y (1) ⊥⊥ A | X. If X is a measured set of admissible covariates
we say that ignorability or unconfoundedness hold.

In cases where ignorability is satisfied, all units have positive probability of treatment
(positivity), and there is no interference across units (SUTVA), then causal inference is in
principle possible and several algorithms (see Appendix 6.8) are able to consistently estimate
causal effects. Unfortunately, these assumptions cannot be verified with observational data
alone.

If there are confounders that are not adjusted for by the experimenter, then we say that
there is unobserved confounding in the causal study. However, failing to include confounders
is not the only way analysis can be biased. Mistakenly adjusting for mediators, that is
variables that lie on a causal path from treatment to outcome can also introduce bias. For
further discussion on these ideas, we refer the reader to the extensive literature on the subject
[171, 169, 170, 212, 149, 101].

6.4 The WhyNot simulation framework

WhyNot is a software package designed to empirically evaluate causal inference methods with
data from sophisticated computer simulations. The simulators incorporated within WhyNot
provide a broad set of background models that allow the user to probe the causal inference
toolkit in a variety of different contexts. A key facet of our framework is that ground truth
causal effects are always available. We simply run the simulator both with and without
treatment for a given unit. In this section, we give an overview of WhyNot and describe the
simulators and inference algorithms included.

Overview of simulators. WhyNot provides a simple Python interface to several dynam-
ical system simulators and a framework for constructing causal inference experiments on
top of these simulators. The simulators in WhyNot can be split into two main categories:
system dynamics models which use differential equations to model interactions between dif-
ferent components of a system over time and agent-based models which represent a system
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as a collection of interacting, heterogeneous agents. We briefly describe the simulators used
in our experiments and detail the remaining simulators in Appendix 6.7.

• World3 is a system dynamics model that attempts to capture how quantities like
population, industrial output, and pollution evolve in a hypothetical model of the
entire world [160].

• JAMA Opioid is a system dynamics model of the US Opioid epidemic [44]. The
model aims to describe how the populations of opioid users fluctuate over time and
simulates the effect of policy interventions on opioid use and opioid-related deaths.

• Civil Violence is an agent-based model which attempts to capture the dynamics of
civil uprisings amongst a heterogeneous group of protestors [73].

At the outset, these simulators are at best simplifications of the world they purport to
describe. For instance, the validity and fidelity of the World3 has been widely challenged [56,
214]. Rather than using these simulators as proxies for real world phenomena we wish to
understand, we instead view them as testbeds to examine causal inference in a multitude
of experimental settings. The temporal nature of the system dynamics models naturally
generate a host of non-trivial problems with mediation and confounding. The agent-based
models allow for rich experiments in which there is interaction and interference between
units. In each case, WhyNot broadens the scope of dynamics and experimental conditions
that are amenable to study via simulation.

Algorithms. WhyNot makes a wide variety of causal inference methods readily accessible
for evaluation. The set of methods available extends from classical workhorses like linear
regression, IP weighting [238], and matching methods [207] to sophisticated modern methods
like causal forests [237], causal BART [103], and TMLE [88]. The suite of methods we
evaluate is described in Appendix 6.8.

6.5 Experiments

Our experiments focus on four fundamental issues in causal inference: (i) the statistical
efficiency and estimation error of causal inference algorithms under observed confounding,
(ii) the robustness and validity of causal procedures under unobserved confounding, (iii) the
sensitivity of causal methods to mediation, and (iv) the impact of interference between units
on causal estimates.

Our experiments are illustrative, intended to highlight the perspective and flexibility that
WhyNot can contribute to evaluating the robustness inference procedures. The goal of the
experiments is not to provide an exhaustive overview of all the questions that one can answer
using our framework. We hope to inspire other researchers to use it as a creative tool to
study settings of their own choosing.
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Observed confounding—understanding sample efficiency and
model misspecification

As a sanity check, we first examine causal inference methods under the conditions in which
they are supposed to work, all standard causal inference assumptions—positivity, ignora-
bility, and no interference—are satisfied and all confounders are known and observed. (See
Appendix 6.3)

In this idealized setting, causal inference algorithms can in principle correct for the bias
arising from confounders and consistently identify causal effects. Hence, our main targets
for study are model misspecification and sample efficiency. Are the estimation methods
expressive enough to accurately recover the causal effect? If so, how many samples do they
need to return a precise answer?

Experimental setup. As described in Section 6.2, WhyNot allows us to easily create nat-
ural instances of confounding. To illustrate, we use the World3 and JAMA Opioid simulators
as background models. Within these models, we consider the following causal questions:

• What is the effect of reducing the rate of pollution generation by 50% in 1970 on the
world population in 2050?

• What is the effect of lowering non-medical prescription opioid use in 2015 on the num-
ber of opioid overdose deaths in the United States in 2025?

The worse the crisis, the more likely policy-makers are to intervene. For example, we
imagine governments are more likely to intervene to reduce opioid abuse if the number of
opioid overdose deaths is high. Concretely, we use the number of illicit opioid overdose deaths
in 2015 to bias treatment assignment. Similarly, the worse pollution levels are in 1970, the
more likely it is that an intervention occurs to reduce the rate of pollution generation.

Confounding now naturally arises from the temporal dynamics. In particular, as ex-
plained in Section 6.2, variables prior in time to the intervention are confounders. For
example, the number of opioid overdose deaths in 2014 is a confounder because not only
does it clearly influence the number of opioid overdose deaths in 2015, through its inter-
action with other variables via the system dynamics, it also influences the outcome, opioid
overdose deaths in 2025.

To generate an observational dataset, we run multiple rollouts of the simulators under
different initial conditions. Rollouts with higher levels of pollution in 1970 or opioid use in
2015 are more likely to receive treatment. To adjust for confounding, we control for the
entire state vector at the time of treatment. Full details of the experimental procedure for
all experiments are contained in Appendix 6.9.

Results: trading off bias and sample efficiency. In Figure 6.2, we plot the estima-
tion error for the collection of estimators listed in Section 6.4 as a function of the sample
size. On World3, the tree-based estimators (causal forest and causal BART) perform very
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Figure 6.2: The performance of different causal methods as a function of sample-size. The
more complex estimators are less biased than linear regression, but are also less sample
efficient.

well, and the bias of the linear model is clearly visible. Although the tree-based estimators
achieve roughly 10−2 relative error in estimating the ATE, linear regression flattens at 10−1.
Conversely, in the Opioid simulator, the misspecification of the linear model is mild, hence
the improved statistical efficiency. The tree-based methods need 10000 samples to achieve
the same error as linear regression with 100 samples.

These experiments are in the same vein as causal inference “data-science” competitions
and previous simulation studies [118, 69]. Our findings corroborate the findings from the
competitions: tree-based methods like causal forest and causal BART perform very well, and
simple linear methods can provide a competitive baseline, but suffer from bias issues.

Unobserved confounding—do causal methods degrade gracefully?

We now illustrate how our framework can be used to better understand the validity of causal
inference in settings where the causal assumptions are violated. In particular, in this section,
we study unobserved confounding. It is well-known that whenever there is unobserved con-
founding, we cannot in general precisely estimate the true causal effect. However, practically
speaking, how sensitive are inference methods to modest amount of unobserved confounding?

Experimental setup. We repurpose the experiments from the previous section to study
plausible forms of unobserved confounding. Failing to control for all confounders often occurs
when the analyst adjusts for variables used to determine treatment, e.g. 1970 pollution in
World3, but not background variables that are superficially unrelated to the assignment rule,
e.g. land fertility in 1969. Using dynamical systems as background models, we can natu-
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Figure 6.3: The performance of all the causal methods smoothly degrades as the strength of
unobserved confounding increases.

rally generate unobserved confounding by excluding variables that do not directly determine
treatment assignment from the analysis (see Section 6.2).

We probe the impact of varying amounts of unobserved confounding on the bias of causal
procedures in two ways. First, for the World3 simulator, we analyze the effects of omitting
the worst-case subset of at most k confounders as we increase k. Clearly, increasing k
can only increase the amount of bias. Next, in the JAMA Opioid simulator, we smoothly
vary a scalar sensitivity parameter Γ introduced by Rosenbaum [197]. In settings with no
unobserved confounding, Γ equals 1, while domains with arbitrary amounts of confounding
have Γ tending to ∞. In Appendix 6.9, we formally define this parameter Γ and provide
describe how it can be manipulated in simulation.

Results: varying confounding strength. In Figure 6.3, we plot the performance of the
estimators on (i) World3 when excluding the worst-case subsets of varying size and (ii) the
JAMA Opioid simulator when varying Γ from Γ = 1 to Γ = 50. In the World3 experiment,
the performance of estimators severely degrades after excluding as few as five confounding
state variables. Moreover, TMLE, though very accurate when all confounders are observed,
performs poorly with large numbers of omitted variables and eventually approaches the
error of the linear regression baseline. In the JAMA Opioid experiment, the performance
of all estimators degrades by a factor of 10 for Γ as small as 5. Moreover, for large Γ,
the performance difference between estimators largely vanishes— the estimators all perform
equally poorly when Γ is large.
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Figure 6.4: The performance of the causal methods as a function of the proximity in time
between the mediator and the outcome variable (left) and as a function of the number of
mediators (right). Once mediation becomes strong, all methods perform equally poorly.

Mediation—impact of adjusting for the wrong variables

In the same way that failing to adjust for confounders can bias inference results, mistakenly
adjusting for mediators can also bias causal methods. However, mild mediation should only
mildly impact estimator performance. In the same spirit as the previous section, we ask:
how sensitive are causal inference methods to mistakenly adjusting for mediators?

Experimental setup. As discussed in Section 6.2, mediation arises naturally in the con-
text of dynamical systems by adjusting for state variables in time steps after the interven-
tion. Consequently, we repurpose the World3 and Opioid experiments to study mediation
by adding state variables to the causal analysis after treatment assignment. To isolate the
effect of mediation, all the confounders are always fully observed.

We explore two ways of generating causal problems with varying mediation strength.
First, we vary the time index of the variables we choose to include in the analysis. State
variables in the time steps immediately after intervention are only weakly related to the
final outcome, while state variables immediately before the outcome time step have a strong
mediating influence. Second, for a fixed time step, we include different subsets of the state
variables. In general, the worst-case set of mediators of size at most k−1 has a weaker effect
on estimation that the worst-case set of mediators of size at most k. The procedure to select
the worst-case subset of mediators is detailed in Appendix 6.9.

Results: varying mediation strength. In Figure 6.4, we apply both strategies to gen-
erate instances with varying levels of mediation on World3 and plot the estimation error
for each of the inference methods. First, we vary the distance in time between the medi-
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ating variables and the outcome variable from 70 years (weak mediation) to 1 year (strong
mediation). In the weak mediation regime, all the methods perform comparably to the no
mediation regime, and there is a clear separation between tree-based methods and simpler
models. However, with strong mediation, these performance differences disappear, and the
models all have a constant error factor. A similar observation holds as we vary the size of the
worst-case mediation set for a fixed time delay of 20 years. Including the single worst-case
mediator only slightly increases estimation error for most methods. However, after adding
the worst-case subset of 3 variables, the performance of all the methods rapidly deterio-
rates to little better than chance. In both cases, mediation experiments on JAMA Opioid
simulator show similar phenomena. These plots are included in Appendix 6.9.

SUTVA—evaluating causal inference under interference

The starting point for many causal analyses is the assumption that the causal effect for one
unit does not depend on the treatment received by any other unit. This non-interference
assumption forms the core of the stable unit treatment value assumption (SUTVA) [57, 199].
However, in practice, treatment often does have spill-over effects and can cause interaction
between units [216]. And notably, while randomized controlled trials (RCTs), the gold
standard of causal inference, can guard against the confounding and mediation problems we
have previously examined, they may still be biased due to interactions between units.

The agent-based models (ABMs) implemented in WhyNot provide controlled, yet non-
trivial environments to test effect of SUTVA violations on causal methods. Since we can
vary the amount of agent interaction within an ABM, we can use the these models to test
whether the methods degrade gracefully or not by assessing their performance as a function
of the level of agent interaction.

Experimental setup. We make use of Epstein’s Civil Violence model, an agent-based
simulator meant to capture the dynamics of urban uprising. In the model, agents have
diverse features like individual hardship, belief in regime legitimacy, and risk aversion. If the
individual’s grievance (a function of hardship and legitimacy) exceeds the perceived risks of
arrest, the agent chooses to rebel. In this simulator, we ask: What is the effect of increasing
risk aversion on an individual’s frequency of rebellion?

The treatment in this question (increasing risk aversion) naturally results in spill-over
effects. Essentially, an agent is more likely to rebel if nearby agents are also rebelling. In
particular, an agent’s perceived arrest risk is inversely proportional to the number of other
agents who are also rebelling in the same neighborhood.

We run an RCT in which 50% of agents randomly receive elevated levels of risk aversion.
We evaluate the extent to which causal methods estimate the treatment effect for a single
agent using this observational dataset. As a proxy for interaction strength, we vary the den-
sity of agents in the simulator. If the density is low, few agents appear in the neighborhood
of a single agent, and thus interactions are weak, and vice-versa.
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Figure 6.5: The estimation error of the causal methods as a function of the strength of
interaction between agents. Surprisingly, none of the methods are particularly more robust
than the others. As the agent density varies, the true causal effect always lies between 10
and 100 days active.

Results. In Figure 6.5, we plot the estimation error as a function of agent density. As
the density of agents increases and interactions become stronger, all the causal inference
procedures rapidly degrade. We expected some methods to do significantly better than
others, particularly since in the experiments with unobserved confounding and mediation,
we found a large gap in how robust different methods were. But surprisingly, there is little
difference in performance between inference procedures when SUTVA is violated.

6.6 Conclusion and future work

At a conceptual level, our work introduces the idea of a background model as an important
component of causal analysis. We argue that dynamical systems are natural background
models in how they lead to interesting and general test cases for causal inference. Building on
this perspective, we developed a powerful software package to advance the state of empirical
robustness and validity analysis of causal inference. The package already includes numerous
simulators and experimental designs.

Our work suggests many interesting future directions. Time-varying treatments and
causal effects are a natural domain of investigation. Testing sequential decision-making
and reinforcement learning is another task that our system in principle supports, but we
haven’t yet pursued. Expanding the set of simulators and inference methods is a useful task.
Finally, establishing a set of interesting benchmarks for the causal inference community is
now a realistic goal.
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Table 6.1: Simulators currently implemented within WhyNot

Model Domain Model Class

World2 Conservation - Public Policy System Dynamics
World3 Conservation - Public Policy System Dynamics
JAMA Opioid Epidemiology - Public Health System Dynamics
Lotka-Volterra Ecology System Dynamics
SimpactCyan Epidemiology - Public Health Agent-Based Model
Civil Violence Computational Social Science Agent-Based Model
Schelling Computational Social Science Agent-Based Model
Graph Epidemic Epidemiology - Public Health Graph-Based Simulation
LaLonde Economics Response Model

6.7 Appendix: Additional WhyNot simulation

environments

WhyNot currently includes nine different simulators which encompass a diverse set of dy-
namics of varying complexity. In Table 6.1, we provide a full list of all the different simulators
currently implemented within the package and describe the domains for which the models
were initially designed. We also include more detailed descriptions of the models below.

World2. This simulator is a system dynamics model developed by Jay Forrester to
demonstrate the tension between industrial growth and natural resource limitations. The
model was used to study how natural resource constraints can lead to slowdowns in industrial
growth and eventual population collapse. The model is a system of differential equations in 5
variables corresponding to quantities like ”population”, ”natural resources”, and ”pollution”,
and 43 algebraic equations governing their evolution over time [81].

World3. Designed as a successor to World2, World3 was introduced by the Club of Rome
in the early 1970s to more accurately capture long term changes in dominant components
of the ”world system” [160, 159]. The model was revamped to have 41 state variables corre-
sponding to quantities like ”population between ages 15-44”, ”arable land”, and ”pollution”
and 245 algebraic equations governing their evolution over time.

SimpactCyan. This is an agent-based simulator used within HIV epidemiology. The
model was designed to simulate and study the transmission, treatment and prevention of
HIV infections across a network of diverse individuals who interact over a long time window
[140]. For instance, in the paper originally introducing the software, the authors estimate the
impact of progressive changes to the eligibility criteria for HIV treatment on HIV incidence.

JAMA Opioid. Proposed by Chen et al. [44], the JAMA Opioid epidemic simulator is
a system dynamics model of the US opioid epidemic. The model is calibrated based on past
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opioid use data from the Center for Disease Control and was originally used to simulate the
effect of various public health interventions at the national level, e.g. reducing the number
of new non-medical users of opioids, on future opioid overdose deaths in the United States
until the year 2030.

Civil Violence. This simulator is an agent-based model of civil violence introduced by
Joshua Epstein in 2002 [73]. The model was originally used to study the complex dynamics
of urban revolt by a set of agents who oppose the existing state. The model consists of two
types of actors: agents and cops. Agents are heterogeneous, and their varied features make
them more or less likely to actively rebel against the state. The complex dynamics of the
model emerge from the interactions across different agents and police: agents are more likely
to begin rebel if other agents start to rebel, and the cops attempt to arrest rebelling agents.

Lotka-Volterra. This is a classical differential equation model of the interactions be-
tween predator and prey in a single ecosystem. The model was originally developed to
understand and explain perplexing fishery statistics during World War I— namely why the
hiatus of fishing during the war led to an observed increase in the number of predators. The
model itself consists of a coupled system of ordinary differential equations in two variables.

Schelling. This is one of the oldest agent-based models, originally used to illustrate
how weak individual preferences regarding one’s neighbors can lead to strong segregation
of an entire population. Each individual prefers to live where at least some fraction of his
neighbors are the same race as he is and will move if this constraint is not met. As this
process is iterated, an originally well-mixed city rapidly becomes segregated by group [204].

Graph Epidemic This simulator describes the spread on a disease on a graph according
to the SIS model. At each step, nodes in the graph can either be susceptible (S) or infected (I).
If a susceptible node shares an edge with an infected node, then it can also become infected
with a certain probability. Furthermore, infected nodes also have a constant probability of
recovering and becoming susceptible again. For a given graph, SIR models allow for the
evaluation of causal inference methods in contexts where the effects of interventions can
rapidly spread through a network due to agent interactions [136].

LaLonde. The LaLande simulator is based off data from Robert LaLonde’s 1986 study
evaluating the impact of the National Supported Work Demonstration, a labor training
program, on post-intervention income levels [128]. Since the actual function mapping the
measured covariates to the observed outcomes is unknown, we instead simulate random
functions of varying complexity on the data to generate synthetic outputs. This procedure
allows us to generate causal inference problems with response surfaces of varying, but known
complexity.

6.8 Appendix: Additional algorithms in WhyNot

As discussed previously, we complement our testbed of simulation environments with a com-
prehensive set of causal inference methods, all easily accessible through a simple Python
interface. In particular, we integrate popular open source implementations of widely used
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causal inference algorithms in order to ensure that the tools in WhyNot are closely repre-
sentative of the kinds of approaches employed by practitioners.

To introduce these methods, we assume that all algorithms take in a dataset of covariates
X, treatment assignments A, and outcomes Y , and return an estimate of the ATE, along
with the relevant confidence intervals. If the dataset contains n observations, then X is an
(n× d) matrix where each row contains the values of d adjustment variables. A is a binary
vector with entry i equal to 1 if the ith unit received treatment. Lastly, Y is a real-valued
vector of outcomes for each observed unit.

Linear Regression. One of the most common methods amongst causal inference prac-
titioners, linear regression estimates the average treatment effect by using ordinary least
squares to find the parameters of the following model:

Y = τ · A+Xβ

In this setup, the parameter τ denotes the ATE. We make use of standard implementations of
OLS included within the Python https://github.com/statsmodels/statsmodels library
to calculate model parameters and confidence intervals.

Matching. Another popular estimator, matching calculates the average treatment ef-
fects by pairing observations across treatment and control groups whose covariates are similar
in some metric. Causal effects are then estimated by looking at the average difference in
outcomes across the different pairs. We implement matching estimators by leveraging the
R https://cran.r-project.org/web/packages/Matching/index.html library. For our
experiments, we match covariates according to the inverse variance metric. We point the
reader to the package documentation for specific implementation details.

IP Weighting. Inverse propensity score weighting estimates causal effects by creating a
”pseudo-population” in which conditional ignorability holds and hence causal effects can be
estimated via a difference of means (See [101, 111] for a full treatment of IP Weighting). We
implement this approach within WhyNot by interfacing with the https://cran.r-project.
org/web/packages/WeightIt/index.htmlWeighIt and https://cran.r-project.org/web/

packages/survey/index.html packages in R. We fit propensity scores using generalized lin-
ear models.

Causal Forest. In addition to traditional causal inference procedures, we include more
recent algorithms such as Causal Forest, introduced by Wager and Athey [237]. This method
adapts Breiman’s Random Forest algorithm [31] to causal inference settings. For our experi-
ments, we make use of the https://cran.r-project.org/web/packages/grf/index.html
R implementation, which was developed by the authors of the algorithm.

Causal BART Similarly to Causal Forest, Bayesian Additive Regression Trees algorithm
(BART) is a tree-based method for estimating causal effects. Introduced by Hill [103], BART
has consistently been one of the best performing algorithms in the ACIC Causal Inference
Competitions [69]. We use Causal BART within the WhyNot framework by calling out to
the https://github.com/vdorie/bartCause/tree/master/R package.

TMLE. Targeted Maximum Likelihood Learning (TMLE), introduced by Gruber, Laan,
et al. [88] is another sophisticated causal inference estimator. We use the default implemen-
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Table 6.2: Initial state distribution used in World3 experiments

Variable Sampling Distribution

Population 0 to 14 Uniform[3.1e8, 1.4e9]
Population 15 to 44 Uniform[3.3e8, 1.5e9]
Population 45 to 64 Uniform[9.0e7, 4.0e8]
Population 65 and over Uniform[2.8e7, 1.3e8]
Industrial Capital Uniform[9.9e10, 4.4e11]
Service Capital Uniform[6.8e10, 3.1e11]
Arable Land Uniform[4.3e10, 1.9e9]
Potentially Arable Land Uniform[1.1e9, 4.9e9]
Urban Industrial Land Uniform[3.9e6, 1.7e7]
Land Fertility Uniform[284, 1270]
Nonrenewable Resources Uniform[4.7e11, 2.1e12]
Persistent Pollution Uniform[1.2e7, 5.3e7]

Table 6.3: Initial state distribution used in JAMA Opioid experiments.

Variable Sampling Distribution

Non-medical Opioid Users N (1.0e7, 3.3e7)
Non-medical Opioid Users with Prescription Use Disorder N (1.4e6, 1.2e6)
Illicit Opioid Users N (3.3e5, 6.05e5)

tation provided by the authors within the https://cran.r-project.org/web/packages/

tmle/index.htmltmle R package. We refer the reader to the original paper for a full de-
scription of the underlying algorithm.

6.9 Appendix: Additional experimental details

In this section, we provide complete details for our experimental protocol. We first precisely
describe how we generate causal inference datasets for both the World3 and JAMA Opioid
simulators since they appear repeatedly in our experiments. All of our experiments are run
on a cluster computer with 72 Intel Xeon E7 CPUs and 1 TB of RAM.
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World3. Each unit of analysis in World3 is a single run of the simulator. The original
implementation of World3 is deterministic and studies a single “standard run” of the dy-
namics from fixed initial conditions, s∗0 ∈ R13. To generate stochasticity for the units, we
start the simulator at a random initial state s0 sampled from a simple distribution centered
on s∗0. Concretely, we sample each component independently as s0i = Uis

∗
0i, where the Ui are

independent and Ui ∼ Uniform[0.5, 2.5]. The precise distribution for each variable is given
in Table 6.2. A run of World3 then evolves the dynamics from the initial state in the year
1900 until 2010.

One of the parameters governing the evolution of World3 is the pollution generation rate.
By default, this unit-less quantity is set to 1. Within the context of World3, we ask

What is the effect of reducing the rate of pollution generation by 50% in 1970 on the world
population in 2050?

In the language of Appendix 6.3, the outcome variable Y is the total population in 2050.
Regardless of treatment status, all rollouts evolve from 1900 to 1970 with pollution generation
equal to 1. If a rollout is assigned to treatment A = 1, then the dynamics switch and evolve
with pollution generation equal to 0.5 from 1970 to 2050. Otherwise, if the rollout is not
treated, A = 0, the pollution generation parameter is unchanged, and the state evolves
according to the standard dynamics from 1970 to 2050. Treatment assignment is based on
the state of system in 1970. Specifically, the rollouts with the highest 10% of persistent
pollution in 1970 are treated with 90% probability, while the remaining rollouts are treated
with 10% probability. As discussed in Section 6.2, treatment assignment on the basis of the
state in 1970 generates non-trivial confounding.

Generating the ground truth treatment effect for each individual rollout is trivial in
simulation. We run the simulator forward under both sets of dynamics, under intervention
and without intervention. For a collection of n rollouts, we take as ground truth the sample
average treatment effect :

SATE := Ê[Yi | do(Ai = 1)]− Ê[Yi | do(Ai = 0)] ,

where Ê denotes the sample average.

JAMA Opioid A unit in the JAMA Opioid experiments is a single run of the simulator.
The model is originally calibrated using data from the Center for Disease control, and,
reflecting measurement uncertainty, Chen et al. [44] provide a distribution over the initial
state. Each variable is sampled independently from this distribution, which is specified in
Table 6.3. A run of the simulator then evolves the dynamics forward from this initial state
in 2002 until 2015.

In JAMA Opioid, the causal question of interest is

What is the effect of lowering non-medical prescription opioid use in 2015 on the number of
opioid overdose deaths in the United States in 2025?
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The outcome variable Y is the total number of opioid overdose deaths in 2025. Regardless
of treatment, all units evolve from 2002 to 2015 under the same base dynamics. If a rollout
is treated, the incidence of non-medical opioid use is decreased by 11.3%, and the rollout is
evolved forward under this new set of dynamics from 2015 to 2025. Otherwise, run is evolved
under the base dynamics from 2015 to 2025. Treatment is assigned on the basis of the state
in 2015— if the number of overdoses among illicit opioid users is in the top 10%, the run
is treated with probability 90%. Otherwise, the run is treated with probability 10%. As
in World3, we evaluate all rollouts under both treatment and control, and take the sample
average treatment effect as ground truth.

Observed confounding

For all experiments, we plot the estimation error of each of the methods described in Ap-
pendix 6.8. Each trial is repeated 20 times, and we display 95% bootstrap confidence inter-
vals.

Unobserved confounding

Defining the sensitivity parameter Γ. Rosenbaum [197] introduced Γ as a quantitative
measure of the strength of unobserved confounding. Concretely, for a given unit i, let xi the
observed covariates, ui denote the unobserved covariates, and πi = Pr(A = 1 | xi, ui) denote
the probability of treatment. Then, we say a causal inference problem has sensitivity Γ if,
for any two units with the same observed covariates xi = xj, the log-odds π/(1 − π) differ
by a factor of at most Γ. Formally,

1

Γ
≤ πi/(1− πi)
πj/(1− πj)

≤ Γ whenever xi = xj.. (6.1)

Notice Γ interpolates between fully observed confounding, Γ = 1, and unobserved confound-
ing that makes inference arbitrarily bad, Γ =∞.

Figure 6.3—varying Γ on JAMA Opioid. We generate problem instances with varying
Γ as follows. In the JAMA Opioid experiment, rollouts are treated with probability p if they
have a high levels of illicit opioid overdoses in 2015 and probability 1 − p otherwise. By

default, p = 0.9. Thus, in equation (6.1), we trivially have Γ ≤ max

{(
1−p
p

)2
,
(

p
1−p

)2}
.

Therefore, we can construct a sequence of problems with varying (upper bounds on) Γ by
varying the treatment probability p from p = 1/2 with Γ = 1 to p→ 1 which gives Γ→∞.
In Figure 6.3, for each value of Γ, we generate 20 problem instances with a fixed sample size
of 2000 units and report 95% bootstrap confidence intervals.
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Figure 6.3—worst-case subsets of unobserved confounders. We use the following
heuristic to identify the worst-case subset of unobserved confounders for a fixed size k.
First, we sample a dataset of n = 2000 examples and compute the ground truth SATE. For
each possible set of k state variables to exclude, we evaluate the estimation error of linear
regression on the resulting inference problem. The subset of omitted variables which causes
linear regression to have the highest error is declared the approximate worst-case subset of
size k.

To generate Figure 6.3 for World3, we resample the data to avoid statistical dependencies
between our evaluation and the procedure in which we choose the worst-case subset. For
each subset of fixed size, we run 20 trials with n = 2000 points and report 95% bootstrap
confidence intervals.

Mediation

In Figure 6.4, each experiment is run for 20 trials with n = 2000 samples, and we report
95% bootstrap confidence intervals. For the worst-case mediating variables experiment, we
fix the mediation year to be 2020. For completeness, we include an identical time-varying
experiment on the Opioid simulator in Figure 6.6.

Constructing the worst-case mediation set. Similar to Section 6.9, we employ the
error of linear regression as a heuristic to identify worst-case mediating subsets. Concretely,
we first sample a dataset of n = 2000 points. For a fixed choice of time index (2020 in
the World3 experiment), we iterate over all possible subsets of mediating variables of size
k, compute the estimation error of linear regression with this choice of mediating set, and
declare the worst-case set of mediating variables to be the subset of size k that causes linear
regression to have the highest error. To avoid statistical dependencies between the dataset
in which we compute the worst-case mediator and the reported results, after fixing the
worst-case subsets, we resample the data for each experiment.

SUTVA

As discussed previously, simulations within Epstein’s model of Civil Violence contain two
types of agents, citizens and cops, that randomly move on a grid. Each citizen is described
via a set of five features: vision, hardship, regime legitimacy, risk aversion, and
active threshold. vision is an integer valued parameter that determines the size of the
neighborhood of agents that are visible to a citizen, while the rest are all scalar values in the
range [0, 1]

A citizen decides to go active, if the difference between grievances and perceived risk

are greater than the active threshold. These quantities are defined as follows:

grievances := hardship× (1− regime legitimacy) ,

perceived risk := arrest probability× risk aversion .
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Figure 6.6: JAMA Opioid simulator as the time index of the mediating state variables,
a proxy for mediation strength, varies from 1 year (strong mediation) to 10 years (weak
mediation) before the outcome is measured.

The arrest probability is inversely proportional to the ratio between the number of
citizens that are active and the number of cops in vision. At every time step, cops choose a
random active agent within their neighborhood to arrest. If arrested, an agent is in “prison”
and cannot move for a fixed number of steps (an agent is not considered active if in prison).
To further explore the effects of interactions across agents, we modify the original Epstein
model to include a prison interaction parameter. Defined as a constant within [0, 1],
this parameter varies the degree to which prison encourages groupthink across agents. In
particular, during the start of a new prison sentence, we compute the maximum value of risk
aversion across all citizens who are also in the prison state and happen to be in an agent’s
neighborhood (max aversion). We then update the citizen’s risk aversion according to:

new risk aversion += prison interaction× (max aversion− old risk aversion) .

The agent density parameter is defined as ratio of the number of agents (citizens and
cops) over the number of cells in the simulation grid. For very low density values, agents
observe relatively few other citizens and cops in their neighborhood and hence there are few
interactions across units. This dynamic changes once we increase the agent density. For our
experiment on the Civil Violence simulator, we consider the following causal question:

What is the effect of increasing risk aversion on an individual’s frequency of rebellion?

Running the RCT. The outcome variable Y in this experiment is the number of days
(time steps) that an agent spends in rebellion over the course of the simulation. Contrary
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to the previous two simulators, since we consider citizens to be the individual units of treat-
ment, the outcomes for all units are determined simultaneously from a single rollout of the
simulator. We run the simulator with 100 citizens and 5 cops for 1000 time steps and on pro-
gressively smaller grid sizes to vary agent density. For each agent, we sample hardship and
regime legitimacy parameters uniformly from the range [0, 1]. We set the active threshold
and risk aversion to 0.1. Furthermore, we set agent vision to 5 for both cops and citizens.
Treatment is perfectly randomized in our experiment, with probability .5, each agent sees
their risk aversion increased from 0.1 to 0.9.

Quality of recovering unit-level effect. The RCT allows us to estimate a population-
level treatment effect:

1

k

k∑
i=1

Yi, do(A1,...,k)=1 −
1

n− k
n∑

i=k+1

Yi, do(A1,...,k)=1 ,

where n is the number of units, units 1, . . . , k are the treated units, and units k+1, . . . , n are
the untreated units. However, due to the agent interactions, the estimate of the population-
level treatment effect may be a biased estimate of the unit level effect, which is the marginal
effect for a single unit i when no other agents are treated : Yi, do(Ai=1) − Yi, do(Ai=0).

We measure the ground-truth unit level causal effect by running a simulation in which
only one agent receives treatment, and then measuring the number of days this agent spends
active. Then, we compare the discrepancy between the effect that the causal methods recover
using the RCT data and the ground-truth unit level effect.
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