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Abstract 
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Understanding the process of how the brain learns a new skill, whether a motor skill such 
as riding a bike or a cognitive skill such as playing chess, is tantamount to understanding 
dysfunction in this process during neurological disease. For instance, patients with Parkinson’s 
disease are less able to initiate and/or learn new movements, and obsessive-compulsive disorder 
(OCD) is theorized to stem from dysfunctions in circuits connecting behavior and reward. 
Elucidation of these neural circuits can inform nascent stimulation-based therapies and improve 
the next generation of pharmacological and behavioral interventions for many neurological 
diseases. Furthermore, outside of the brain, understanding the capabilities of the peripheral nervous 
system to accommodate new skills can contribute to efforts attempting to restore lost motor 
function to amputees and paralyzed patients. Throughout this thesis, we will explore the neural 
basis of skill learning across both the central and peripheral nervous systems by utilizing neural-
machine interfaces, which link neural activity to effectors such as a computer cursor or a prosthetic 
device and thus provide the experimenter a principled modality in which to study the learning of 
a new skill. 

The process of skill learning can span a wide timeframe, but this thesis focuses on the 
“early” part of learning, in which an animal initially acquires and begins to refine a skill. Here, we 
define a skill as any set of intended behaviors – whether covert or overt – that improve in 
consistency over time as a result of training and reward. Within this thesis, we’ll first explore 
which skills can be learned in the human peripheral nervous system by investigating the level of 
flexibility latent in our muscles, with an eye towards designing a high-performance, non-invasive 
neural-machine interface. In particular, classical experiments suggest motor unit activity within a 
single muscle lies along a low-dimensional manifold due to a common descending input, 
theoretically severely constraining the throughput of an assistive device utilizing motor unit 
activity. However, by utilizing a neural-machine interface paradigm across six days of training in 
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eight adults, we found that motor unit dimensionality is higher than previously theorized, showing 
promise that a motor-unit-based neural machine interface could provide clinical benefit. 

Second, we’ll ask the “how” of skill learning: how do we learn skills, whether motor or 
cognitive, in the brain? Here, we focus on studying a core mechanism of learning, known as “credit 
assignment”, which enables activity in the cortex to become more stereotyped over training. 
Utilizing a neural-machine interface paradigm in rats, we investigate the role of the striatum, an 
area well-known for housing associations between behavior and reward, in credit assignment. We 
found that activity of neurons in the striatum form an internal model of cortical activity, 
continuously estimating both the proximity of current cortical activity to reward and the change in 
this proximity, with this model of cortical activity differing in complementary yet distinct ways 
between dorsal and ventral striatum. Such a model could be critical to implementing credit 
assignment in the brain. 

Finally, we’ll conclude this thesis on a practical note by discussing the closed-loop, 
performant software built for the aforementioned studies that have largely been open-sourced to 
benefit the broader neuroscience community. Neuroscience is an increasingly complex, 
performance-sensitive discipline, with neural data volume exploding over the past few decades. 
Software developed throughout this thesis work empowers researchers to build more flexible, more 
scalable systems with relative ease. 

Therefore, by utilizing neural-machine interfaces to interrogate the functionality of the 
nervous system, the results described in this thesis contribute to our understanding of skill learning, 
demonstrating novel levels of flexibility in the peripheral nervous system with applications in 
clinical translation and suggesting a critical role of the striatum in skill learning as a part of credit 
assignment, a core neural mechanism of learning.
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Chapter 1 
 
Introduction 
 
 Watching the fingers of a virtuoso pianist fly amongst their 88 keys is, at first, almost an  
unbelievable experience. The spatial and temporal precision with which keys are played seemingly 
contrasts with the often effortless demeanor exuded by the pianist, who often does not visually 
focus on the keys. Decades of training affords the pianist this ability: to consistently and accurately 
recall intricate bimanual motor sequences. However, this pianist was once naive to their skill, 
begging the question: how did this person learn this skill? More specifically, what changes in the 
nervous system occurred as they progressed from naive to virtuoso? 
 Understanding the process of skill learning is tantamount to understanding and treating its 
dysfunction during neurological disease. For instance, patients with Parkinson’s disease are less 
capable of initiating existing movements and learning new movements (Graybiel and Grafton 
2015), and, among other psychological disorders, obsessive-compulsive disorder (OCD) is 
theorized to stem from dysfunctions in circuits connecting behavior and reward (Burguière et al. 
2015). In addition to revealing the neurophysiological basis of existing pharmacological and 
behavioral treatments of these disorders, elucidation of these neural circuits can inform nascent 
stimulation-based therapies that utilize electrical stimulation to selectively activate and deactivate 
relevant neural circuits leading to behavioral dysfunction. Such stimulation-based therapies, 
including deep brain stimulation (DBS), have been popular for treatment of Parkinson’s disease 
for decades, but have recently shown early promise for treatment of anxiety, OCD, and 
PTSD (Shanechi 2019) as our understanding of relevant neural circuits improves. In addition, 
outside of the brain, understanding the capabilities of the peripheral nervous system to 
accommodate new skills can contribute to efforts attempting to restore lost motor function to 
amputees and paralyzed patients. 

Of the many possible aspects of this learning process to interrogate, this thesis focuses on 
the “early” part of learning, in which an animal initially acquires and begins to refine a skill. Here, 
we define a skill as any set of intended behaviors – whether covert or overt – that improve in 
consistency over time as a result of training and reward (Krakauer and Shadmehr 2006). Notably, 
we focus on the phase of skill learning that is goal-directed, in which the behavior is dependent on 
perceived reward value (Graybiel and Grafton 2015). This contrasts with the later phase of 
learning, habitual learning, in which behavior becomes more automatic (and likely more so the 
type of learning that underlies the virtuoso pianist’s playing) (Graybiel and Grafton 2015). 

Within this thesis, we’ll first explore which skills can be learned in the human peripheral 
nervous system by investigating the level of flexibility latent in our muscles, with an eye towards 
designing a high-performance, non-invasive assistive device. In particular, we explored the 
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dimensionality of individual motor units within a single muscle, hypothesizing that such 
dimensionality might be higher than many classical motor experiments suggest. Second, we’ll ask 
“how”: how do we learn skills, whether motor or cognitive, in the brain? Here, we focus on 
studying a core mechanism of learning, known as “credit assignment”, which enables activity in 
the cortex to become more stereotyped over training. We investigate the role of the striatum, an 
area well-known for housing associations between behavior and reward, in representing cortical 
activity in a manner conducive to credit assignment. Finally, we’ll conclude this thesis on a 
practical note by discussing the closed-loop, performant software built for the aforementioned 
studies that have largely been open-sourced to benefit the broader neuroscience community. 
Neuroscience is an increasingly complex, performance-sensitive discipline, with neural data 
volume exploding over the past few decades, and software developed throughout this thesis work 
can empower researchers to build more flexible, scalable systems with relative ease. 

Neural-Machine Interfaces as a Clinical Tool 
All research performed in this thesis was united in methodology: through the use of neural-

machine interfaces. Neural-machine interfaces create a direct control pathway between neural 
activity and an external actuator via a decoder  (Shanechi 2019) (Figure 1.1). The external actuator 
can be physical, such as an exoskeleton or robotic arm, or virtual, such as a computer cursor. The 
subject then utilizes sensory and task feedback to adapt their neural activity to the decoder in order 
to optimize performance (Orsborn and Pesaran 2017), forming a closed-loop system. Neural-
machine interfaces that source neural activity input directly from the brain are commonly referred 
to as brain-machine interfaces (BMIs) (Shanechi 2019), and we’ll denote those that source neural 
activity from the peripheral nervous system as neuromuscular-machine interfaces (NMIs). 
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Figure 1.1. Figure adapted from (Shanechi 2019). Brain-machine interfaces record neural activity directly from the brain via 
invasive or non-invasive modalities and feed neural activity into a decoder, which is responsible for translating input neural activity 
to output commands to an actuator. Sensory feedback, e.g. visual feedback of a computer cursor on a screen, closes the learning 
loop, allowing the brain to adapt its neural activity to better control the actuator. 
 

 
Historically, BMIs utilizing invasive recordings of the brian have demonstrated great 

clinical promise for restoring lost function to patients with neurological disorders, most commonly 
targeting paralyzed patients who have lost significant motor function. These BMIs most commonly 
utilize recordings of individual or small groups of neurons at a high temporal resolution. Proof-of-
concept BMIs have restored independence in people with severe paralysis, enabling tetraplegic 
people to control robotic arms and exoskeletons  (Collinger, Wodlinger, et al. 2013; Benabid et al. 
2019), navigate computers  (Hochberg et al. 2006), and even regain control of their own paralyzed 
limbs through electrical stimulation  (Bouton et al. 2016). Representing state-of-the-art 
performance, a recent BMI study even demonstrated an impressive communication throughput of 
90 characters per minute via a handwriting decoding approach (Willett et al. 2021). BMIs utilizing 
epidural brain signals, which are more stable than subdural, single-neuron recordings, enabled a 
tetraplegic patient to control an exoskeleton (Benabid et al. 2019). Unfortunately, despite 
demonstrated clinical promise, BMIs have not yet enjoyed widespread usage. Surgical risk, 
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implant aesthetics, and usability concerns have been cited as reasons for their unpopularity, even 
for patients that are severely paralyzed (Blabe et al. 2015). 

Alternatively, BMIs can also be designed using entirely non-invasive recording modalities, 
most commonly utilizing the electroencephalogram (EEG). Non-invasive BMIs work similarly in 
principle to their invasive counterparts in which neural activity is transformed via a decoder into 
actuator commands; however, unlike invasive modalities, recorded neural activity consists of 
averages across millions of neurons due to spatiotemporal filtering by the skull and scalp (Grover 
and Venkatesh 2017). EEG BMIs have demonstrated 1 (N. A. Bhagat et al. 2016), and with ample 
training 2 (Wolpaw and McFarland 2004), controllable degrees of freedom and have enabled 
patients to communicate digitally at moderate speeds (Nakanishi et al. 2018) and steer 
robots (Tonin and Millán 2021). However, the severely compromised signal-to-noise ratio of non-
invasive modalities poses significant challenges to building a performant BMI, hindering 
throughput and ease-of-use for patients (Millán and Carmena 2010). Other non-invasive 
modalities besides EEG, such as fMRI or magnetoencephalography (MEG), similarly suffer from 
either poor temporal or spatial resolution when recording brain activity. 
 While there appears to be a tradeoff between performance and invasiveness within the BMI 
field, the brain is not the only access point for the nervous system. As we will explore in more 
detail in Chapter 2, activity in muscles can be interpreted as the direct output of the spinal cord, 
serving as an alternative access point for the nervous system (Farina et al. 2017). Muscle activity 
arises when motor neurons descending via the spinal cord receive sufficient upstream activation, 
either through direct cortical control or summed activity within the spinal cord itself (Kandel 
2013). Once sufficiently depolarized, a motor neuron fires, and its action potential propagates to 
the various muscle fibers it innervates via the neuromuscular junction. Neuromuscular junctions 
typically have large “safety factors”, in that the resulting end-plate potential (EPP; neuromuscular 
analog to an excitatory postsynaptic potential in nerves) tends to be significantly larger than the 
minimum required to depolarize a muscle fiber, and as a result, the neuromuscular junction reliably 
propagates action potentials. Combined with the fact that a given muscle fiber is only innervated 
by a single motor neuron and that the action potentials in these muscle fibers occur approximately 
at the same time, a motor neuron and its innervated muscle fibers are known as a “motor unit”, 
where a motor neuron and its innervated muscle fibers are all typically envisioned as coincidentally 
activating as one (Kandel 2013). 
 Electrodes placed on the surface of the skin can record electrical activity arising from motor 
unit activation, known as electromyography (EMG). EMG signals are relatively high signal-to-
noise ratio as compared to non-invasive recordings of the brain, as the intervening tissue between 
the muscle and recording grids does not introduce as significant of a distortion as the skull during 
EEG recordings. The coincident activation of the various innervated muscle fibers for each motor 
neuron creates a unique spatiotemporal footprint for each motor unit, enabling blind-source 
separation techniques to identify activations of individual motor units (Negro et al. 2016) in real-
time (Barsakcioglu et al. 2020). 
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 Neuromuscular-machine interfaces (NMIs) can exploit muscle activity to allow disabled 
patients to control external devices. Classic NMI design utilizes spatially-broad “global” EMG 
activity, where each channel of data originates from a large electrode and thus represents the 
average muscle activity across a swath of motor units in a single muscle. Typically feeding global 
EMG across multiple muscles into a biomimetic decoder, this paradigm enabled intuitive control 
of external effectors, such as hand prostheses for amputees (Zhuang et al. 2019). Recent 
technological advances allowed NMIs to utilize real-time activity of individual motor units rather 
than global EMG activity, providing greater spatial selectivity and consequently a finer-grained 
level of control (Farina et al. 2017; Barsakcioglu et al. 2020). A comparison of spatial and temporal 
resolutions of various neural recording modalities can be seen in Figure 1.2. 
 

 
Figure 1.2. Illustration of spatial and temporal resolutions of various neural recording modalities. Invasive, high-performance 
brain-machine interfaces utilize recording modalities with high spatial and temporal resolution, whereas traditional non-invasive 
modalities such as EEG suffer in either spatial or temporal resolution, resulting in decreased performance. EMG (bolded) is the 
modality under study in Chapter 2 of this thesis, as it theoretically retains both high spatial and temporal resolution while remaining 
non-invasive. 
 

However, even if utilizing spatially-specific individual motor unit activity, NMIs assume 
that the maximum dimensionality of control extracted from a single muscle is bounded by the 
number of mechanical degrees of freedom of the muscle, which commonly is just 1 (De Luca and 
Erim 1994). This assumption stems from prevailing theories that muscles are driven by a low-
dimensional “common drive”: descending cortical or spinal input that activates motor units of a 
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given muscle simultaneously (Fuglevand et al. 1993). If true, this would severely constrain the 
dimensionality of control, especially in cases where the overall number of muscles available for 
control is limited (i.e. tetraplegics), and consequently constrain the usefulness of an NMI to a 
clinical population. Chapter 2 of this thesis tests this prevailing theory thoroughly, concluding that 
motor unit dimensionality may in fact be higher than that predicted by the “common drive” theory, 
thus providing promising evidence towards the use of NMIs as a clinical device. 

Brain-Machine Interfaces as a Neuroscience Tool for Exploring Skill 
Learning 

While brain-machine interfaces were originally ideated for use as an assistive device for 
patients, recent approaches in the past decade have utilized BMIs as a tool to study neural circuits 
themselves. By creating a link between neural activity and an external effector, BMIs effectively 
appear to the brain as yet another tool to be learned, with neural representations of natural motor 
skills appearing remarkably similar to those of neuroprosthetic skill (Ganguly and Carmena 2009; 
Peters et al. 2014; Athalye et al. 2017). With more classical experimental paradigms, one problem 
when studying neural circuits underlying motor skills is that the experimenter does not know how 
the cortical activity under study relates to some given behavior; for example, as a rat reaches for a 
pellet of food, it is undefined how exactly some given set of neurons in motor cortex under study 
might relate to the dynamics of that reach, and how that relationship might vary trial-by-trial or 
day-to-day. Utilizing a BMI, the experimenter can instead explicitly define the relationship 
between cortical activity and the task through the decoder, establishing a causal link between the 
cortical activity under study and behavior (Athalye et al. 2020). Therefore, since it both appears 
similar to motor skill learning and affords the experimenter additional control over their study, 
BMI experiments can be utilized to more precisely interrogate the role of neural circuits during 
learning (Gulati et al. 2017; Athalye et al. 2018; Sadtler et al. 2014) and consequently make general 
conclusions about skill learning. 

Recent studies have utilized BMI experiments to study a particular mechanism underlying 
skill learning, known as “credit assignment”  (Athalye et al. 2020). Credit assignment is the 
process by which the brain biases particular sets of neurons in order to change behavior to increase 
the rate of reward, and is one key mechanism underlying reinforcement learning (Sutton and Barto 
2018). By changing either the underlying network connectivity of the neurons or by modifying the 
inputs to the neurons, the brain can theoretically enable neural activity to be more consistent from 
trial to trial, which, assuming that reinforced neural activity results in successful behavior, would 
enable increasing success rates (Athalye et al. 2020). 

However, despite it playing a fundamental role in learning, the neural basis of credit 
assignment is poorly understood. In particular, the challenge of implementing a credit assignment 
mechanism is often split into two aspects. First, there exists a temporal aspect: reward is often 
delayed relative to the behavior that led to reward, where this delay can span a wide temporal range 
– for example, reaching to grab a pellet of food separates behavior and reward by a few seconds, 
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but the moves taken in a chess game eventually leading to a win has delays spanning hours. In 
computational models of reinforcement learning, temporal credit assignment is often solved via 
“value functions”, which are continuously updateable functions that estimate the current expected 
value of the animal’s state or actions (Sutton and Barto 2018). Value functions provide continuous 
feedback to the animal as it performs actions in a task, where the animal tends towards taking 
actions that increase its expected reward according to these functions. While these value functions 
are initially noisy and inaccurate, when a (temporally delayed) reward is achieved, these value 
functions are appropriately updated to increase the value of recent actions or states, thus putatively 
increasing the accuracy of the value functions. Subsequently, via continuous improvements to 
value functions, the behavior of the animal should eventually increase in reward rate. However, 
the relationship between computational and biological implementations of temporal credit 
assignment remains unclear. The second aspect of credit assignment is the structural (i.e. spatial) 
aspect: how does the brain select the relatively few neurons to bias from its highly interconnected 
network of billions? Due to the brain’s highly interconnected nature, selective biasing of particular 
neurons would both be critical to changing the output of the network in a precise way and be more 
energetically efficient than globally increasing gains (Sutton and Barto 2018). 
 

 
Figure 1.3. Figure from (Averbeck and Murray 2020) depicting a theorized dorsal/ventral organization of various neural circuits 
involved in goal-directed learning in the primate brain. Dorsal and ventral streams stay topographically aligned within cortex, 
striatum, pallidum, thalamus, and the resulting cortico-thalamic loop, but have shared inputs and outputs in the amygdala, temporal 
lobes, and hypothalamus. dlPFC: dorsolateral prefrontal cortex; DS: dorsal striatum, GP: globus pallidus, MDl: medial-dorsal 
thalamus; vmPFC: ventro-medial prefrontal cortex; cOFC: caudal orbito-frontal cortex; VS: ventral striatum, VP: ventral pallidum; 
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MDm: medial dorsal thalamic nucleus; BLA: basolateral amygdala, EC: entorhinal cortex; BNST: bed nucleus of the stria 
terminals, PVT: paraventricular thalamus; Hypo: hypothalamus. 
 

While computational treatments may provide some clues, a holistic model of credit 
assignment to cortical neurons as implemented in the mammalian brain remains elusive. As one 
key ingredient to credit assignment (and arguably the most definitive conclusion on credit 
assignment to date), dopamine in the brain has been shown to represent the reward prediction error 
(RPE) of the animal, i.e. the difference between expected and actual reward (Schultz et al. 1997; 
Dabney et al. 2020). This RPE signal could be sufficient to drive changes to the animal’s value 
functions (Sutton and Barto 2018). However, much more surrounding credit assignment remains 
a mystery. The striatum has been a primary focus of research, as it is both anatomically well-
positioned to mediate between behavior and reward and has been theorized to house action-value 
and state-value functions in the brain along its dorsal and ventral aspects, respectively (Shin et al. 
2021; Lee et al. 2012), though the nature of this representation in the striatum has been 
questioned (Peters et al. 2021; Elber-Dorozko and Loewenstein 2018) (Figure 1.3). Indeed, the 
striatum seems to have a complicated relationship with behavior, differing across probabilistic vs 
deterministic tasks (V. D. Costa et al. 2016), learning timescales (Yin et al. 2009), and flexibility 
in the task (Nicola 2010), and results sometimes differ depending on the analysis methodology or 
spatial scale of the neural recordings (Sales-Carbonell et al. 2018; Peters et al. 2021). Furthermore, 
studies have historically compared striatal activity either to behavior or to broad swaths of cortex, 
leaving it unclear how the striatum might more specifically represent task-relevant cortical activity 
to underlie temporal credit assignment. Finally, while a mechanism that enables dopamine to 
selectively bias recently active synapses has been described (Yagishita et al. 2014), it remains 
unclear how striatal activity observed during tasks relates to selective modulation of particular 
cortical neurons as a part of structural credit assignment. 

In Chapter 3, we utilize a BMI experiment in rats to comment on the striatum’s role in 
credit assignment. As described above, a BMI experiment is well-suited to study the relationship 
between cortical and striatal activity: activity from experimenter-defined cortical neurons can drive 
the task and thus the process of credit assignment can be observed through these particular cortical 
neurons. In particular, through analyzing simultaneous recordings of the striatum during a BMI 
task, we shed light on how cortical activity relates to striatal activity through an internal, 
continuous model of proximity to reward, demonstrating differential roles across dorsal and ventral 
axes of the striatum. 

Scalable Software for Neuroscience 
Modern neuroscience experiments, especially closed-loop experiments such as those 

described here, are increasingly complex and heterogeneous. Experiments often measure behavior 
across multiple modalities simultaneously, and increasing interest in ethological behaviors make 
behaviors less defined a priori compared to rigid task structures (Markowitz et al. 2018; Miller et 
al. 2022). Concomitantly, neural data volume has exploded in volume in recent decades (Steinmetz 



9 

et al. 2021; Ota et al. 2021), enabling experiments to even combine neural recording modalities to 
maximize the number of neurons under study (Peters et al. 2021). Adding a real-time requirement 
to the above, utilizing closed-loop methodologies are necessary for implementing brain-machine 
interfaces (Shanechi 2019) and have also been suggested to increase the efficiency of neuroscience 
experiments (Z. S. Chen and Pesaran 2021). 
 An oft-neglected aspect of modern neuroscience is the role of – and time spent on – the 
software that underlies modern experiments and analytical methods. The experimental demands 
described above are challenging to implement in a robust, correct, and scalable manner, especially 
for neuroscientists who, by nature, are not often experienced software engineers. The penalty of 
mistakes is grave: often months to years in iteration. What results from these challenging 
experimental demands, then, is a slow iteration cycle for neuroscience research, in part due to 
unfamiliarity with existing software tools and a lack of knowledge of optimal software practices 
leading to implementations of limited potential for reuse. 
 Fortunately, many of these demands of modern neuroscience have been solved in the 
software industry, at least to varying degrees, and thus tools can leverage these existing software 
tools or practices to improve the development of neuroscience experiments. Such tools, if open-
sourced and properly documented, could then increase the speed and correctness at which 
neuroscience proceeds. For example, open-source tools for data acquisition (Siegle et al. 2017) 
and for performing spike sorting on state-of-the-art electrophysiological probes (Steinmetz et al. 
2021) have already enabled rapid, reproducible advances, and the neuroscience community heavily 
leverages existing open-source libraries for data analysis and machine learning. Given this, 
Chapter 4 of this thesis focuses on contributions made to the open-source neuroscience ecosystem 
aimed at two problems increasingly common in experiments. In particular, we focus first on a 
solution for utilizing and analyzing heterogeneous streams of data arising from possibly disparate 
devices, simplifying setup and powering closed-loop experiments. Secondly, we highlight a 
solution for general neuroscience experimental design, leveraging a type of process architecture 
(“microservices”) commonly used in the software industry to achieve scalability and developer 
efficiency. While much more can be done, we hope these contributions can accelerate the 
neuroscience community. 
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Chapter 2 
 
Skilled independent control of individual motor units via 
a non-invasive neuromuscular-machine interface 
 

Brain-machine interfaces (BMIs) have the potential to augment human functions and 
restore independence in people with disabilities, yet a compromise between non-invasiveness 
and performance limits their relevance. Here, we hypothesized that a non-invasive 
neuromuscular-machine interface (NMI) providing real-time neurofeedback of individual motor 
units within a muscle could enable independent motor unit control to an extent suitable for high-
performance BMI applications. Over 6 days of training, 8 participants progressively learned to 
skillfully and independently control three biceps brachii motor units to complete a two-
dimensional center-out task. We show that neurofeedback enabled motor unit activity that 
largely violated recruitment constraints observed during ramp-and-hold isometric contractions 
thought to limit individual motor unit controllability. Finally, participants demonstrated the 
suitability of individual motor units for powering general applications through a spelling task. 
These results illustrate the flexibility of the sensorimotor system and highlight individual motor 
units as a promising source of control for BMI applications. 
 

2.1 Introduction 
Brain-machine interfaces (BMIs) aim to create an artificial link between intentions and actions. 
By detecting user intent from neural activity, BMIs can enable symbiotic human-machine 
interactions that are independent of the motor system and thus have great potential to augment 
human functions. Proof-of-concept clinical studies have tapped into this potential to restore 
independence in people with severe paralysis, demonstrating systems that allowed tetraplegic 
people to control robotic arms and exoskeletons (Collinger, Wodlinger, et al. 2013; Benabid et al. 
2019), navigate computers (Hochberg et al. 2006), and even regain control of their own paralyzed 
limbs through electrical stimulation (Bouton et al. 2016). However, despite decades of advances, 
the reach of brain-machine interfaces remains relatively limited, largely caused by the current 
trade-off between BMI invasiveness and performance (Millán and Carmena 2010; Blabe et al. 
2015). Intracortical BMIs demonstrate outstanding performances but present significant associated 
risks (Hochberg et al. 2006; Collinger, Wodlinger, et al. 2013; Bouton et al. 2016; Pandarinath et 
al. 2017; Benabid et al. 2019); non-invasive BMIs, such as those based on electroencephalography 
(EEG), have a low barrier-to-entry, but their poor spatial resolution and vulnerability to noise 
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artifacts have so far limited them to specialized use-cases and to information transfer rates too slow 
to control complex devices (Millán and Carmena 2010). 
 Alternatively, user intent can be accessed at the level of the muscles via surface 
electromyography (EMG), a non-invasive technology whose high temporal resolution recordings 
of single motor units support broadly applicable yet powerful applications. Neuromuscular-
machine interfaces (NMIs) built on surface EMG seek to detect intended actions from muscle 
activity, as in the case of myoelectric-controlled prostheses where intended hand movements are 
decoded from the activity of a range of upper-limb muscles (Hahne et al. 2018; Zhuang et al. 
2019). Existing NMIs can effectively link predefined sets of muscle functions to device control 
signals, but typically require interfacing at least as many muscles as the number of actions to be 
controlled. Therefore, the bandwidth of these devices is often insufficient to enable effective 
control of assistive devices in people with paralysis, in which only a limited number of muscles 
can be used as sources of control. In addition, in decoding intended movements, these NMIs do 
not differentiate between movements aimed at device control or for interacting with the 
environment, making their utility for augmentative applications limited. To effectively enable 
these applications typically restricted to BMIs, NMIs should thus seek to increase the number of 
degrees of freedom that can be extracted per muscle. 

Henneman’s size principle theorizes that individual motor units within a muscle are 
recruited in a fixed order (Elwood Henneman 1957, 19) and thus cannot be controlled 
independently from one another. This long-standing theory of orderly recruitment has been 
primarily supported by experiments assessing motor unit recruitment properties during isometric, 
slow-ramping contractions within controlled laboratory conditions (Elwood Henneman 1957; E 
Henneman et al. 1974; Milner-Brown et al. 1973; ter Haar Romeny et al. 1982b; De Luca and 
Mambrito 1987), and is consistent with the prevailing view that motor units within a muscle are 
controlled by a common descending neural drive (De Luca and Erim 1994). According to this 
understanding, the bandwidth of existing NMIs would be neurophysiologically constrained. 
However, out-of-order motor unit recruitments have been observed during complex motor 
behaviors (Grimby and Hannerz 1970; Nardone et al. 1989; Marshall et al. 2021), and 
multidimensional descending neural drives have been shown to contribute to this 
flexibility (Marshall et al. 2021). In addition, pioneering studies in neurofeedback reported that 
people can learn to volitionally control individual motor units belonging to the same muscle when 
provided with visual and/or auditory feedback linked to the units’ activity (Virginia F. Harrison 
and Mortensen 1962; J. V. Basmajian 1963; V. F. Harrison and Koch 1972; Illyés 1977; John V. 
Basmajian and De Luca 1985). In particular, Harrison and Mortensen reported a subject that was 
able to learn, within an hour of training, to isolate and produce predetermined patterns of activity 
in 4 motor units of the tibialis anterior muscle (Virginia F. Harrison and Mortensen 1962). The 
Basmajian group expanded on these findings with a series of exploratory studies, reporting 
selective control of up to 6 motor units across a variety of participant demographics and muscles, 
including the tibialis anterior, biceps brachii, and the abductor pollicis brevis (John V. Basmajian 
and De Luca 1985). These results suggest that individual motor units within a single muscle could 
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potentially provide the per-muscle bandwidth required for powering BMI applications. However, 
because of the qualitative and observational nature of these neurofeedback studies, the extent to 
which individual motor units can be volitionally controlled remains largely unclear. Indeed, 
previous studies did not quantify control quality or independence, test whether motor units can be 
recruited both exclusively and simultaneously of one another, assess the ability to skillfully 
modulate firing rates, examine learning capabilities over time, or compare motor unit activities 
between periods of neurofeedback control with relevant isometric contractions of the same muscle. 
Answering these questions, in addition to significantly enhancing our understanding of flexibility 
in the neuromuscular system, could assess the suitability of using individual motor units as the 
source of control for a new class of NMIs for both translational and augmentative applications. 

In order to address these questions, here we utilized a neurofeedback paradigm coupled 
with an operant learning task to interrogate the emergence and execution of skilled, independent 
control of individual motor units. We devised an NMI that provides visual and auditory feedback 
of biceps brachii motor units in real-time using neuromuscular signals recorded from a high-
density grid of surface EMG electrodes and trained 8 participants over 6 consecutive days to use 
this system on a center-out task requiring skilled and independent control of three motor units. 
Participants increased in proficiency in this skilled motor unit control both within and across days 
of training, with modest control of at least 2 motor units demonstrated even on the first day. 
Through comparisons to isometric, ramp-and-hold contractions, we provide evidence that 
neurofeedback enabled participants to control individual motor units outside of recruitment 
constraints thought to limit motor unit controllability. We then demonstrated an application of such 
fluent motor unit control through a speller task, in which participants used motor unit activity to 
navigate a virtual keyboard to spell sentences. These results characterize skillful control of 
individual motor units, contributing to our understanding of sensorimotor flexibility and 
suggesting motor unit control can be a viable paradigm for both clinical translation and human 
augmentation applications. 
 

2.2 Results 
We devised an NMI capable of providing real-time visual and auditory neurofeedback of biceps 
brachii motor unit action potentials (Figure 2.1A). This NMI measured neuromuscular signals 
using a high-density grid of surface EMG (HD sEMG) electrodes and used previously validated 
blind source separation and classification techniques to decompose these signals into individual 
motor unit action potentials in real-time (Negro et al. 2016; Barsakcioglu et al. 2020). After a brief 
initialization period for the decomposition model, we first instructed participants to use the NMI’s 
neurofeedback to explore covert strategies to control individual motor units independently from 
one another. The goal of participants during this exploration procedure was to find and sort in 
order of controllability the three motor units they felt had the highest potential for independent 
control (Figure 2.1B). A motor unit selection algorithm highlighted motor units with potential for 
independent control and guided participants in this task. After this exploration period, participants’ 
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ability to control their selected motor units was tested in a center-out task (Figure 2.1C, D; 
Supplementary Video 1). A population-coding strategy was used to map motor unit activity into 
the 2D position of a computer cursor, and participants had to operate this cursor to achieve the 
displayed targets. 12 peripheral targets were used to evaluate whether participants could recruit 
the selected motor units exclusively of one another (T1, T2, and T3 targets) and simultaneously in 
combinations of two (T4 targets) and could regulate the firing rate of the recruited units (close and 
far targets, Figure 2.1C). T1, T2, and T3 targets were ordered such that T1 corresponded to 
exclusive recruitment of the subjectively easiest motor unit to activate independently and T3 the 
subjectively hardest. A center target requiring participants to coactivate all the selected units at a 
similar intensity (T5 target) was also used. These targets were grouped into 3 difficulty levels, with 
targets of increasing difficulties becoming available after reaching an average success rate greater 
than 3 targets per minute on the tested targets (Figure 2.1D). We used this paradigm to train 8 
participants over 6 consecutive days. Participants’ arms were constrained to fixed elbow and wrist 
angles via a sensorized orthosis for the entirety of each session. Additionally, while we did not 
explicitly track motor units across days, we used markings on skin to ensure consistent electrode 
positioning.  

Figure 2.1 | Experimental setup. A, Schematic of the neuromuscular-machine interface (NMI) used to enable individual motor 
unit control of the biceps brachii. Participants are seated on a chair wearing a sensorized orthosis constraining the elbow joint at 
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100 degrees and the wrist at its neutral position. Load sensors are used to measure the isometric elbow-flexion and forearm-
supination forces. IMU sensors are used to track arm movements. The NMI control loop is divided into 4 steps. First, biceps brachii 
neuromuscular signals are measured using a high-density grid of 64 surface EMG electrodes. Second, an online decomposition 
model is used to detect motor unit action potentials from the measured signals. Third, a decoder transforms the detected motor unit 
activity into task-dependent neurofeedback signals. Last, auditory and visual neurofeedback signals are delivered to the participants 
via headphones and a computer monitor. B, Schematic of the user interface and neurofeedback signals used during the exploration 
procedure. Multi-channel waveforms of the detected motor unit activity are displayed and updated at 60Hz. Neurofeedback of the 
detected motor unit activity is also provided by LED-like indicators flashing when an action potential is detected. Both waveforms 
and unit indicators are color coded. Colored signals indicate the activity of a subset of selected individual motor units. Black signals 
indicate the activity of unselected motor units. Finally, light-grey signals indicate detected events that have not been categorized as 
motor unit activity, i.e. unsorted activity. Auditory neurofeedback signals followed the same categorization between selected, 
unselected, and unsorted units and consisted of 150 ms pitch-coded stimuli. C, Center-out task neurofeedback, decoder, and targets. 
The activity of three selected motor units is transformed into cursor position using a population coding schema. The cursor position 
is indicated by a grey arrow originating at the center of the screen and represents the population vector. The same unit-specific 
visual indicators and auditory stimuli employed in the exploration period are used here. A total of 12 peripheral targets (T1, T2, 
T3, and T4), 1 center target (T5), and 1 rest target were included. D, Center-out task protocol. The task is divided into trials. To 
start a trial participants need to hold the cursor within the rest target for a minimum of 2 seconds. A target is then selected from a 
performance-dependent pool of available targets. At first, only T1, T2, and T5 targets were available. T3 and T4 targets were 
progressively added depending on participants’ performance within that day. The trial’s target is displayed and the participant has 
60 seconds to achieve it before the trial is declared unsuccessful. 
 
Skilled independent control of individual motor units on day 1 
We found that participants displayed independent control over selected motor units already at day 
one (Figure 2.2). In particular, participants successfully completed an average of 95.6% and 
79.2% of the presented T1 and T2 targets on day one, demonstrating independent control of motor 
unit #1 and #2, respectively (Figure 2.2A-C, p<0.001 when testing for % successful trials > 0). 
All but one participant surpassed the 3 targets per minute threshold in success rate required to 
enable T3 targets, and half of the participants subsequently reached sufficient proficiency to also 
enable T4 targets (Figure 2.2C). Participants encountered no difficulty in performing T5 targets, 
succeeding in all the corresponding trials. We also found no statistically significant difference in 
the percentage of correct trials between targets with different distances (p>0.05 for each target 
category, Figure 2.2D). These results demonstrate that participants, without any prior training, can 
gain skilled independent control of 2 or 3 motor units within a single session, suggesting some 
level of latent flexibility in the sensorimotor system.  
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Figure 2.2 | Independent control of individual motor units during the first day of training. A, Representative traces of center-
out task signals for one participant during the first training day. First row, smoothed, normalized firing rate of the selected motor 
units used to control the cursor position. Second row, bipolar surface EMG signals from the three channels that best discriminate 
the activity of the selected motor units and relative raster plot of the detected motor unit firings. Third row, cursor position (r and 
θ, solid black traces) and targets (colored boxes) displayed in polar coordinates; grey dotted lines indicate interpolated values when 
θ is undefined (r=0). Bottom, arm position and angular velocity about the two axes of largest variation (PC #1 and #2). Grey-
shaded areas crossing the different plots indicate ongoing trials and the relative target; empty spaces between these areas indicate 
rest targets. B, Median (lines) and 95% confidence interval (shaded areas) of the selected motor unit waveforms measured from 
the EMG channels in A. C, Summary statistics of the first training day. Left, box-plots representing the percentage of correct trials 
for each of the performed targets and participants. * indicate a significant difference from 0, p<0.0001. Middle, box-plots 
representing the number of trials performed for each of the performed targets and participants. Right, medians (black lines) and 
95% confidence intervals (shaded areas) of the number of participants that successfully performed at least one trial for each target 
category. D, Effect of target distance on percentage of correct trials. Colored point plots indicate the medians and 95% confidence 
intervals of the percentage of correct trials for close and far targets, for each color-coded target category. Light-grey scatter plot 
and box-plots report the raw data points and their distribution, respectively. No significant difference was found between targets of 
the same category but different distance (p>0.5, n for each target category is indicated in C). 
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Learning over time 
We next evaluated how participants’ performance evolved over time. For this, a trial performance 
metric was first computed, which embedded information regarding the average distance of the 
cursor from the target, trial duration, and participants’ ability to selectively recruit target-specific 
motor units (Figure 2.3A and B). A linear mixed-effect model was used to predict trial 
performance as a function of time, while controlling for possible variations between participants, 
days, and targets. Participants’ performance increased both within (p<0.001) and across days 
(p<0.006), with fixed effects equivalent to an increase in performance of 1.4 standard deviations 
over 100 trials and of 0.4 standard deviations over the 6 days, respectively (Figure 2.3C and D). 
The fixed-effect for the interaction between the within- and the across-day time variables was non-
significant (p=0.094). The model intercept corresponded to an average successful trial rate of 
roughly 95% (standardized performance of -0.44, Figure 2.3A), confirming the previous analyses 
indicating successful task performances already at day 1.  

Target-specific models were then built to better evaluate the effect of training on 
participants’ ability to control the three selected motor units exclusive of one another (T1, T2, T3 
targets). Results showed significant across-day learning for all 3 targets, but only significant 
within-day learning for the first two motor units, highlighting the importance of multi-day training 
to enable the emergence of skilled control of multiple individual motor units (Figure 2.3E). The 
interaction between learning within and across days was significant for T1 targets (p=0.028) but 
not for T2 and T3 targets (p=0.2 and p=0.67, respectively). In addition, model intercepts showed 
that participants’ performance on T1 and T3 targets were respectively higher and lower than 
average (T1 intercept > 0, T3 intercept < 0, p<0.05), indicating that participants accurately ranked 
their motor units in order of controllability following the exploration procedure. 
 We finally analyzed how participants’ performances on the simultaneous targets (T4) 
evolved over time. Since every participant did not reach these targets every day, only across-day 
learning was analyzed. Specifically, a generalized linear mixed-effect model was used to evaluate 
how the rate of successful trials evolved across days (Figure 2.3F). The fixed effect was 
significant, indicating an overall increase in the success rate across all participants (p=0.016).  

These analyses demonstrate that by the end of the 6 days of training all participants gained 
skilled independent control of the selected motor units (Figure 2.3C-E). The increase in 
performance across days also shows that learning is robust to changes in recording setups, 
suggesting strong potential for an NMI that would exploit this strategy to extract volitional control 
signals.  
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Figure 2.3 | Learning to control individual motor units independently over time. A, pair-plots showing the relationship between 
the holistic performance metric used to evaluate participants’ proficiency in the center-out task and 4 metrics measuring specific 
behavioral characteristics: trial duration, mean and sum of the normalized cursor distance from target center, and mean specificity. 
White dots indicate 5 examples further displayed in B. Grey lines show the average performance for each metric; shaded areas 
indicate the 95% confidence interval. B, Scatter plots representing the temporal distribution of cursor position during the 5 trials 
depicted in A. Color alpha and square dimensions are proportional to the time spent in a given position. Trial #1 and #2 are both 
examples of unsuccessful trials. While the trial duration is the same for both (60 seconds), the holistic metric indicate better 
performance for trial #2, properly capturing differences in cursor trajectories between these two trials. Similarly, trials #3 and #4 
are similar in duration but different in performance. Trial #5 reports an example of a high performance trial. C, Regression lines of 
the linear mixed-effect model used to evaluate overall learning within- and across-day (n samples = 5249). Thick black lines 
represent the regression lines of the within- and across-day fixed-effects, i.e., the effects that are generalized across participants, 
sessions, and targets; shaded grey areas indicate the 95% confidence intervals. Thinner, colored lines represent the fitted regression 
lines for each participant and target category. D, Fixed and random effects for key model parameters. The intercept indicates the 
performance at day #1. The interaction is between the within- and the across-day time variables. E, Fixed and random effects for 
key parameters of the models used to evaluate unit-specific learning behaviors (n samples = 1311, 1230, 1050, for the T1, T2, and 
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T3 models, respectively). F, Success rate of T4 targets across days fitted using a Poisson generalized linear mixed-effect model (n 
samples = 48, fixed effect p=0.013, left) and average success rates across all days for T1, T2, T3, and T4 targets reported for 
qualitative comparisons (right). Left, the thick line indicates the fixed-effect regression line; thinner lines indicate the regression 
lines for each participant; dots indicate the raw values. Stars indicate a statistically significant difference from 0: * indicates a 
p<0.05, ** indicates a p<0.01. Right, small grey dots indicate the averages for each participant; colored dots and bars represent the 
across-participants medians and corresponding 95% confidence intervals, respectively.  
 
Exploration and acquisition of independent motor unit control  
We then evaluated the role of the exploration period, occurring immediately before the center-out 
task, in the acquisition of independent motor unit control. Due to the unstructured nature of the 
exploration period, motor unit firing rates were first decomposed into separate components via 
non-negative matrix factorization (NMF) to identify groups of units that were often mutually 
active. The number of components was fixed to 3, aligning with the instructions given to the 
participant to ultimately select 3 representative motor units. Then, the cumulative independent 
firing time (CIFT) was computed for each component as the fraction of time a component was 
independently active relative to the overall time in which it was active (Figure 2.4A and B). The 
three components were then ordered in descending order by the CIFT value 2 minutes into the 
exploration period, and CIFTs were compared between this initial point and their final values 
(Figure 2.4B). 

The CIFT increased significantly over the course of the exploration period (Figure 2.4B 
and C). The overall mean CIFT across the three components increased from 0.40 after the second 
minute of exploration to 0.51 at the end (p<0.0001, Figure 2.4C). The first component (C1) was 
activated nearly completely independently at the beginning of the exploration period, emphasizing 
the level of ease in attaining independent control in one set of motor units. However, C1 then began 
to co-activate more throughout the exploration period as the participant explored strategies for 
activating other sets of units, as indicated by a decreasing CIFT (p<10-5; Figure 2.4C). On the 
other hand, the other two components (C2 and C3) increased in independent activation over time 
(p<0.05; Figure 2.4C), illustrating a progressive learning process.  

We next asked whether participants’ motor unit control in the exploration period improved 
across days. There was a significant increase in the mean CIFT for exploration periods across a 
participant’s 6 days of training (p=0.017; Figure 2.4D). Participants thus demonstrated across-day 
improvements in independent motor unit control in both the center-out task and the exploration 
period. Finally, the mean CIFT displayed during the exploration period was found to have a strong 
positive correlation with the center-out task performance of the same day (fixed-effect slope: 1.61; 
p<10-6; Figure 2.4E). Taken together, these results characterize the within-day and across-day 
processes by which participants acquired independent control of motor units. 
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Figure 2.4 | Exploration and acquisition of independent motor unit control. A, Representative 8-second example for the 
extraction of components via non-negative matrix factorization (NMF) and the computation of CIFT. Three components are 
extracted from firing rates (center, grayscale heatmaps; white = 0, black = max) via NMF, yielding component-wise weights for 
each motor unit (left) and their corresponding projected activities (top). Then, CIFT is computed for each of the 3 components as 
the fraction of time spent independently active versus time spent active (displayed in the 3 bottom rows). In this example, C2 (red) 
has periods where it increases in CIFT (red shaded blocks) since it was independently active and where it decreases when C1 or 
C3 are also active. B, Data from the full, 20-minute exploration period from which data from A originated. For comparison of time 
courses for CIFT, we take values at an initial point (dotted line, left; 2 minutes into period) and at the period’s final point. Black 
trace represents the mean CIFT across the three components. C, Changes in CIFT between initial and final points for the mean 
CIFT, C1, C2, and C3 (left to right). Faded black dots and lines are individual exploration periods, Stars indicate: * p<0.05, **** 
p<0.0001 from a paired t-test, n=48. D, Mean CIFT at the end of the exploration period compared across 6 days of training and 
relevant regression lines from a linear mixed model fit on this data. Thin gray lines indicate participant-specific regression lines, 
while the thick black line represents the regression line for the fixed effect (linear mixed model, p=0.017, n=48). E, Relationships 
between the mean center-out task performance and the mean CIFT at the end of the preceding exploration period. Definitions of 
dots and lines are the same as in D. Fixed-effect slope of 1.61, p<10-6, n=48.  
 
Muscle activity dimensionality 
Participants’ success in the center-out task required independent motor unit control, indicating that 
the activity of the selected motor units lay along a multi-dimensional manifold. To evaluate how 
this differed from isometric motor behaviors typically used to study motor unit recruitment 
properties, each day participants were tested in a force-control task, using the same experimental 
setup as in the rest of the session. Here, participants were instructed to match displayed force 
profiles by performing isometric, ramp-and-hold contractions in the two primary movement 
directions of the biceps, elbow flexion and forearm supination (Naito 2004) (Figure 2.5A). 
Participants accurately reproduced the target forces (mean normalized r > 0.95, Figure 2.5B).  



20 

 To analyze the dimensionality of motor unit activity between tasks, we computed the 
participation ratio of motor unit firing rates (Figure 2.5C). The participation ratio measures the 
spread of the variance captured by each of the dimensions of the eigen-spectrum (Recanatesi et al. 
2019; Gao et al. 2017a) and can be envisioned as a continuous interpolation of the number of 
principal components needed to explain 80-85% of variance (83% in our study’s data).  

We found that motor unit firing rates had a higher average participation ratio during the 
center-out task than during the force-control task (p<0.0001; Figure 2.5D-E). Participation ratio 
between tasks significantly increased whether considering solely the 3 selected motor units or the 
remaining unselected motor units, signifying an increase in dimensionality across the entire 
population of motor units (p<0.0001; Figure 2.5E). In addition, selected units’ firing rates could 
predict the concurrent firing rates of the unselected motor units fairly well (mean R2 > 0.56 for 
both tasks) through a linear transform, indicating strong correlations between activities of the two 
groups (p<10-10 different than zero; Figure 2.5F-G). However, for the same population of units, 
the R2 metric was lower in the center-out task, indicating a decoupling between selected and 
unselected units (Figure 2.5G; p<10-10). Relatedly, the participation ratio during the center-out 
task increased over the 6 days of training in the selected motor units but not in the unselected motor 
units (p < 0.01 in selected, p=0.68 in unselected; Figure 2.5H). 

Finally, we compared motor unit firing rates dimensionality with that computed on the 
integrated EMG (iEMG), a commonly used feature for measuring overall muscle activity. 
Participation ratios computed on the iEMG showed similar across-task differences, yet 
participation ratio increased more for firing rates than for iEMG (p<0.01; Figure 2.5I-J). 

Taken together, these results reveal the center-out task enabled both a significant, 
population-level increase in dimensionality relative to during stereotyped, isometric contractions 
and an increased decoupling between unselected and selected motor unit populations. Differences 
in dimensionality measured using firing rates and iEMG also suggest that individual motor unit 
resolution recordings are necessary to fully appreciate muscle activity dimensionality. 
 



21 

 
Figure 2.5 | EMG dimensionality during stereotyped isometric contractions and neurofeedback tasks. A, Overview of force-
control task. Participants matched trapezoidal force profiles shown to them on-screen in varying amplitudes and in various 
combinations of elbow flexion and wrist supination. B, Example set of 8 control task trials (gray highlights) in one representative 
session. Participants performed various trial types (top row) and matched target forces fairly accurately (second row; blue flexion 
and orange supination). Two features were extracted: iEMG (third row) and motor unit activity (fourth row; each tick is a detected 
firing of its row’s motor unit). C, Toy data illustrating 3 clusters with different distributions of variance in order to explain the 
computation of participation ratio. When variance is equally distributed across the principal components, as in the circular 
distribution (top-left, blue), participation ratio (PR) is maximized and equals the number of data dimensions. On the other hand, 
when variance is more unevenly weighted across dimensions, as in the ellipsoidal distributions (green or orange), PR decreases 
towards 1. D, PR for each session’s force-control (x axis) and center-out (y axis) tasks. Different colors represent different 
participants; faded dots represent actual sessions while highlighted dots represent medians within participants. Circles represent 
PR of firing rates; triangles for iEMG. Dotted line represents line of equal PR between the two tasks, i.e. y=x. E, PR for firing rates 
of all units (left), only selected motor units (center), and unselected motor units (right) across the force-control (FC, red) and center-
out (CO, green) tasks. Faded dots represent individual sessions. Differences across tasks for all 3 populations were significant 
(p<0.0001, paired t-test, n=48). F, Two 10-second representative examples of simultaneous firing rates for the 3 selected motor 
units (top) and 2 unselected motor units (middle and bottom rows). Dotted lines indicate the predicted firing rates of the unselected 
motor units from the selected units’ firing rates. G, Coefficients of determination (R2) between optimal linear transformation of 
selected motor units’ firing rates and unselected motor units’ firing rates. Force-control’s R2 had a mean of 0.815, while the center-
out’s mean was 0.567 (p< 10-10 different from zero for both, n=48). The center-out task had a lower mean than the force-control 
task (p<10-10, n=48). H, Change in PR in firing rates of selected motor units (top) and unselected motor units (bottom) during the 
center-out task over each participant’s 6 days of training. Dots connected by light gray lines represent a particular participant’s 
sessions, while light gray bold lines represent the subject-specific regression line. Bold black lines represent the fixed-effect 
regression line from the linear mixed model fit to this data. The fixed-effect slope was significant for selected units (p=0.01, n=48) 
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but not significant for unselected units (p=0.68, n=48). I, PR for iEMG between force-control (FC) and center-out (CO) tasks. PR 
for iEMG increased (p=0.004 different from zero, n=48). J, Changes in PR between force-control and center-out tasks for iEMG 
(left) and firing rates (right). The across-task increase in PR in iEMG was less than that of firing rates (p=0.003, paired t-test, n=48). 
 
Motor unit recruitment order 
Our results suggest that recruitment order of biceps brachii motor units might be more flexible 
than previously thought and that neurofeedback may enable motor unit recruitment that 
significantly differs from those observed during typically-studied, isometric, slow-ramping 
contractions. To evaluate this divergence in motor behaviors, we compared the stability of motor 
unit recruitment order across tasks. 

We first assessed recruitment thresholds of selected and unselected motor units during the 
force-control task. Flexion and supination recruitment thresholds for all units spanned a wide 
range, distributed in agreement with the common model of motor unit frequency distribution 
skewing towards more lower-threshold units within a muscle (Fuglevand et al. 1993) (Figure 
2.6A-B). 97% of motor units selected for the center-out task were also detectable during isometric 
muscle contractions; the remaining 3% were not recruited during flexion or supination contractions 
possibly due to small changes in postures that often occurred between tasks, and were excluded 
from the following analysis. 12% of selected motor units were recruited exclusively during either 
flexion or supination contractions, and 33% had categorically different recruitment thresholds 
between flexion and supination contractions. This varied recruitment order is in support of existing 
studies reporting biceps motor units can be recruited selectively for flexion or supination (ter Haar 
Romeny et al. 1982a; Borzelli et al. 2020; ter Haar Romeny et al. 1984) (Figure 2.6B). 

We then asked if the joint firing rates of selected motor units observed during the center-
out task overlapped with those observed during the force-control task. In order to focus on the 
same firing rate regime across the two tasks, the firing rates of each of the 3 selected motor units 
were first normalized to 1.5 times the normalization value used for that unit in the center-out task, 
discarding firing rates above these values. Then, after binning these normalized firing rates, a 
control space was defined for each session’s force-control and center-out tasks as the set of joint 
binned firing rates observed for at least 160ms during each task (Figure 2.6C). Since a particular 
point in control space could be populated with only a nominal amount of time, the control space 
served as a liberal estimate of putatively achievable joint firing rates and, consequently, described 
possible motor unit recruitment orders achievable in the two tasks. The control space of the force-
control task spanned a small fraction of the possible controllable space (8.9%, Figure 2.6D-E), 
suggesting the force-control task activity of the 3 selected motor units were largely stereotyped 
and low-dimensional, in agreement with the above dimensionality analysis. In contrast to this, the 
control space of the center-out task occupied significantly more of the possible controllable space 
(38.1%, p<10-5; Figure 2.6D-E). Furthermore, if elbow flexion and forearm supination were 
effective strategies for individual motor unit control, one might expect firing rates of high-
performing center-out sessions to overlap in control spaces between tasks. In opposition to this, 
center-out task performance increased proportionally to the relative increase in control space 
achieved during the center-out task, further emphasizing that individual motor unit control did not 
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solely rely on elbow flexion and forearm supination primitives, even for the higher-performing 
sessions (p=0.012, Figure 2.6F). This relationship holds even when only considering the easiest 
two targets (T1/T2) and the control space across the 2 respective units (p=0.014, Figure 2.6F). 

These results demonstrate that, despite known task-dependent recruitment order variation 
in the biceps brachii, motor unit recruitment during the neurofeedback task significantly differed 
from that measured during elbow flexion and wrist supination isometric contractions, suggesting 
independent motor unit control involved an expansion of activity outside of these two existing 
motor primitives. 

 
 
 

 
Figure 2.6 | Motor unit recruitment orders during neurofeedback and isometric contraction tasks. A, motor unit recruitment 
thresholds for both elbow flexion (x-axis) and forearm supination (y-axis) for all recorded motor units across all sessions and 
participants. Dots displayed in grayed areas below y=0 represent units that were only activated during flexion; dots left of x=0 
represent units only activated during supination. Blue dots represent motor units that were selected for the center-out task; gray 
dots otherwise. B, table showing the distribution of selected motor units in particular recruitment threshold categories: NR: “not 
recruited”; LO: motor units with thresholds less than 10% of the maximum force observed that day; HI: remaining motor units with 
valid thresholds. Motor units selected for the center-out task had a lower average recruitment threshold for both flexion (0.23 for 
selected units vs 0.33 for unselected units, p<10-5) and supination (0.18 for selected units vs 0.26 for unselected units, p<0.001) 
than unselected motor units. C, Representative data illustrating the computation of control spaces across selected units, in the case 
of only 2 units. Normalized firing rates for two selected motor units are shown in the top row, both during a supination trial in the 
force-control task (left) and during two center-out trials (right). The bottom row shows the force-control (left) and center-out (right) 
control spaces of these 2 units in purple shading, where the particular control space points visible in the top row’s examples are 
outlined in black. D, Visualization of the control spaces populated during the center-out (CO) task, the force-control (FC) task, and 
their difference. For visualization purposes here, non-negative matrix factorization (NMF) was first used to reduce the selected 
units’ firing rate dimensionality from 3 to 2 before computation of the center-out (top-left) and force-control (top-center) control 
spaces. Component #1 was defined as the component out of the 2 that explains more variance. For each session, points in the 
session’s center-out control space not seen in that session’s force-control control space were termed “novel”, and then the percent 
of sessions in which a particular point in control space was novel was computed (top-right). Gray squares indicate control space 
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points in which fewer than 5% of the sessions had that point populated. Bottom: variance of original firing rates explained by the 
2 NMF components during the force-control task (mean 97.5%) was significantly (paired t-test; p<10-5, n=48) higher than that 
during the center-out task (mean 77.6%). E, Proportion of populated control space by firing rates during the force-control (FC, left) 
and center-out (CO, right) tasks. FC control space was significantly lower than CO control space (8.9% FC vs 36.1% CO, paired 
t-test, p<10-5, n=48). F, Relationship between center-out performance and the relative fraction of all control space bins populated 
across both tasks that were novel during the center-out (CO) task. Regression lines had a significant positive slope  both when 
comparing all 3 selected units’ targets to a 3-D control space (blue, p=0.012 slope > 0, n=48) and when comparing only the first 2 
units’ targets to their respective 2-D control space (purple, p=0.014 slope > 0, n=48). Individual dots represent a session. Stars 
indicate statistically significant slopes different than zero (p < 0.05). 
 
Confound analyses  
While participants' elbow and wrist joints were constrained by the orthosis, gross movements at 
the level of the shoulder or the spine could have affected motor unit detection quality. To control 
for this potential confound, in addition to instructing participants to minimize movements when 
trying to control motor unit activity, we recorded arm kinematics and analyzed arm movements 
throughout the center-out task. The rotational axis of the kinematic sensors was first aligned to the 
axis of largest variation, with 87% of movement occurring around a single rotational axis (Figure 
2.7A). Data along this axis were then used to quantify movement amplitudes throughout the center-
out task. In particular, the mean absolute velocity (MAV) during trial and inter-trial periods was 
used to measure the overall movement observed across the different task conditions. For each 
target, we then computed the within-day median and used this statistic to evaluate possible 
movement strategies. Results highlight minimal movements across all conditions, with a grand 
median value of approximately 0.48 deg/s (Figure 2.7B). When comparing the statistics of active 
targets to the rest targets (i.e. the inter-trial periods), we found a statistically significant increase 
in median MAV only during T5 targets (p<0.001, Figure 2.7B), highlighting how the nonspecific 
motor unit recruitment required by these targets pushed participants to perform vigorous muscle 
contractions to obtain the target as quickly as possible. In contrast, we found a significant 
movement reduction during both trials for T1/T2 targets and the rest trials (p<0.001 and p<0.01, 
respectively) and no significant differences between trials for the T3 target and rest trials, 
confirming that participants minimized body movements throughout this task. We then evaluated 
whether participants relied on specific movements to independently control the selected units by 
trying to decode the cursor position during the center-out task from arm kinematics using a 
multilayer perceptron. Decoding performances were poor (median R2=0.165, Figure 2.7C), 
indicating weak correlations between arm kinematics and cursor position. These combined results 
provide compelling evidence that the independent control of single motor units observed 
throughout the center-out task was neither the result of movement artefacts nor relied on specific 
movements.  

Another confound that could have facilitated independent motor unit control is the presence 
of crosstalk from neighboring muscles in the recorded neuromuscular signals. Aside from the 
biceps brachii, the brachialis is the next most likely muscle to be recorded by our electrodes due 
to its proximity; however, while the biceps brachii is known to participate in both flexion and 
supination, the brachialis participates only in elbow flexion (van Zuylen et al. 1988; Staudenmann 
and Taube 2015). In order to assess recordings for brachialis contamination, we computed the 
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correlation of each channel’s iEMG to flexion and supination forces during periods in the isometric 
contraction task where these task-oriented contractions were tested separately (Figure 2.7B). 
Correlations for flexion and supination were averaged within the three groups of channels most 
vulnerable to brachialis contamination: the column located most externally (i.e. nearer to the long 
head of the biceps), the column located most internally, and the distal row of channels. Mean 
correlations for all channel groups remained relatively high (> 0.7) across both flexion and 
supination. While spatial differences in correlations are expected even within the biceps brachii, 
channels primarily recording from the brachialis should display a marked drop in supination 
correlation during supinating contractions (Staudenmann and Taube 2015). The high correlations 
for both flexion and supination suggest brachialis contamination in our recordings was minimal 
and that the recording grid was primarily placed over the biceps brachii. Taken together, these 
results suggest that movement artifacts and crosstalk contaminations are unlikely to have 
significantly affected the validity of our results. 
 

 
Figure 2.7 | Confound analyses. A, Fraction of variance explained by the first three principal components of the recorded 
kinematic data during the center-out task. B Arm movement velocities during the center-out task. Scatter-plot represents the median 
of the trials’ mean absolute value (MAV) velocity for each participant, session, and target. Box-plots represent these statistics’ 
distribution for each target. *** and ** indicate a significant difference between a given target category and the rest target (p<0.001 
and p<0.01, respectively, bootstrapping with n=10000 iterations, n samples = 48, 48, 47, 39, 48 for T1, T2, T3, T4, and T5 targets, 
respectively). Lines indicate data for a single participant in a given day. C, Decoding performances of a multilayer perceptron 
(MLP) trained to predict cursor position from arm velocity and position. Each dot represents the decoding performance (R2) on the 
testing set (30% of the data) for one day and participant (color coded). D, Representative correlations between iEMG for each of 
the 56 channels to elbow flexion (blue) or forearm supination (orange) forces during one session. Channels are arranged according 
to physical position: the cells marked with “x” represent the most external (i.e. closest to the long head of the biceps brachii) and 
proximal channels recorded on the bicep. E, The mean correlations to flexion (blue) or supination (orange) forces within 3 different 
channel groupings most vulnerable to contamination from the brachialis. Each dot is a session’s correlation. 
 
 
Speller task 
We then demonstrated a proof-of-concept of the translational potential of an NMI enabling skilled 
independent motor unit control. To demonstrate a clinically relevant application, participants were 
tested on a commonly used copy-typing speller task requiring point-and-click navigation of a 
virtual keyboard (Pandarinath et al. 2017; P. Nuyujukian et al. 2015; Jarosiewicz et al. 2015) 
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(Supplementary Video 2). This speller task utilized the same selected motor units from the center-
out task but, as opposed to the center-out’s position decoding, instead translated the normalized 
motor unit firing rates into the velocity of an on-screen cursor (Figure 2.8A). Navigating this 
cursor on a virtual OPTI-II keyboard displayed on the computer monitor, participants copied 
sentences by controlling motor units independently for both cursor movement and cursor 
clicking (Pandarinath et al. 2017; Rick 2010) (Figure 2.8A). The keyboard featured wraparound 
borders, which in combination with the cursor’s velocity control allowed for full 2D navigation 
even with a single motor unit. We reasoned this more permissive control strategy to be better suited 
for translational applications compared with the control strategy used in the center-out task. Cursor 
clicking was triggered by simultaneously recruiting all the selected motor units, similar to 
achieving the center-out T5 target. Participants performed the speller task after at least 30 minutes 
of center-out task execution on the last 3 days of training, plus on any prior days in which they felt 
confident with their performance and completed a minimum of 60 minutes of recording. 
 Information throughput was assessed with the achieved bitrate, a conservative estimate of 
the true throughput of an assistive device (P. Nuyujukian et al. 2015). Average and peak bitrates 
on the speller task were promising: the mean average bitrate on the last day was 0.43 bits/s — 
corresponding to 5.41 correct characters per minute at a 92.2% accuracy — with a mean peak 
bitrate of 0.55 bits/s (Figure 2.8C). Participants significantly increased their average speller 
bitrates over days of training, echoing similar across-day learning as seen in the center-out tasks 
and exploration periods (p=0.005; Figure 2.8D).  

Dimensionality as measured by the participation ratio significantly increased (p<0.0001) 
during the speller task relative to the isometric contraction task and was not significantly different 
than that of the center-out task (p>0.05), indicating participants used a strategy based on 
multidimensional independent motor unit control (Figure 2.8E). Participants’ strategies for 
moving the cursor leaned more towards recruiting the 3 individual motor units exclusively of one 
another than simultaneously in combinations of two (mean CIFT speller > mean CIFT center-out, 
p<0.0001), agreeing with the increased difficulty observed during T4 targets in the center-out task 
requiring simultaneous unit activation (Figure 2.8F). Taken together, these results demonstrate 
the translational potential of an NMI enabling skilled independent motor unit control. 
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Figure 2.8 | Speller task. A, Overview of the speller. Left: the user interface displayed on a computer monitor. Participants 
navigated their cursor (black dot) via the activities of the same 3 selected motor units from the center-out task. The sentence to be 
typed was displayed at the top, with untyped letters grayed out. Any mistakenly typed characters had to be deleted with the “<” 
key before participants could proceed. Right: motor unit activities were translated into changes in velocity of the cursor, allowing 
the user to smoothly move the cursor across the screen. Keys were selected by co-contracting all three motor units in the same 
manner as the “T5” target from the center-out task; instances of this key selection highlighted and labelled in gray bars at top and 
gray circles on the keyboard. B, Smoothed bitrates for one participant’s 3 days of speller task. Dotted lines indicate average bitrate 
across that day’s speller task. C, Bitrates on the last day of training for all participants (dots). D, Participants’ speller task 
performances over days of training. Each line represents a participant-specific regression line, while the bold black line indicates 
the fixed-effect slope from the linear mixed model for this data (p=0.005, n=24). Color of each dot represents the duration of the 
speller task for that day. E, The participation ratio of firing rates during the speller task significantly increased relative to that day’s 
force-control task (paired t-test; p<0.0001, n=24) but was not statistically different than that of the center-out task (paired t-test; 
p>0.05, n=24). F, Mean CIFT metric computed within the 3 selected motor units for each speller task period increased relative to 
the mean CIFT during the center-out task (paired t-test; p<0.0001, n=24). 

 
2.3 Discussion 
Leveraging a non-invasive neurofeedback paradigm, we probed volitional control of individual 
motor units within the biceps brachii. Over 6 days of training, participants steadily improved 
performance in a center-out task requiring both exclusive and simultaneous control of three motor 
units. We found that the dimensionality of motor unit activity during this task exceeded that 
measured during stereotyped, isometric muscle contractions and provided compelling evidence 
that this independent motor unit control involved changes in motor unit recruitment order relative 
to such contractions. Finally, demonstrating an application of this NMI through a speller task, we 
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showed that participants could use this acquired motor unit control in a task requiring continuous, 
multi-dimensional control. Here we discuss the significance of these results for motor control 
theories and translational applications. 
 
Skilled independent control of individual motor units 
Volitional control of individual motor units was first reported in pioneering neurofeedback studies 
in the 1960s and 1970s (Virginia F. Harrison and Mortensen 1962; J. V. Basmajian 1963; V. F. 
Harrison and Koch 1972; Illyés 1977; John V. Basmajian and De Luca 1985). In these studies, the 
raw electrical signals measured from intramuscular electrodes were used to provide participants 
with visual and/or auditory neurofeedback signals on the underlying motor unit activity. Using this 
neurofeedback system in unstructured tasks similar to our exploration procedure, authors reported 
that participants were able to selectively activate individual motor units in the abductor pollicis 
brevis (J. V. Basmajian 1963), extensor digitorum (V. F. Harrison and Koch 1972), and the tibialis 
anterior muscles (Virginia F. Harrison and Mortensen 1962) and able to vary the firing rate of 
isolated motor units on command (John V. Basmajian and De Luca 1985). Despite this initial 
interest, the extent to which individual motor units can be volitionally controlled remained largely 
unclear, as these initial studies did not report quantitative measures of control quality or 
independence, assess independence of motor units by testing both exclusive and simultaneous 
motor unit activation, quantify the ability to modulate firing rates, examine learning capabilities 
over time, or compare periods of neurofeedback motor unit control with naturalistic, isometric 
contractions of the same muscle. 

Here, we found that individual motor units can be controlled independently from one 
another and that control proficiency can be improved with training. In particular, we showed that 
over 6 days of training in a center-out task, participants progressively acquired skilled independent 
control of three motor units of the biceps brachii. This skilled control was evidenced by 
participants’ ability to control each of the selected units’ firing rate both exclusive of (T1, T2, and 
T3 targets) and in combination with other units (T4 targets) to achieve targets at different distances 
from the center of the screen. Critically, not shown in previous neurofeedback studies, participants’ 
abilities to both exclusively and simultaneously activate the 3 selected motor units demonstrate 
the existence of multiple descending neural drives simultaneously converging onto a single motor 
pool. Through simultaneous recordings of non-selected motor units, dimensionality analysis also 
revealed that selected units were not activated in complete isolation but instead activated in 
conjunction with other units. Finally, through comparisons of center-out task firing rates to those 
observed throughout the comprehensive combinations of forearm supination and elbow flexion of 
the force-control task, we demonstrated that  neurofeedback enabled  motor unit activity patterns 
expanding beyond recruitment constraints previously thought to characterize neural control of 
motor units. These results present an unprecedented level of control over individual motor units 
belonging to the same muscle, bolstering the characterization of selective motor unit activation 
documented in previous studies and expanding our understanding of the flexibility possible in 
neuromuscular control. 
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Mechanisms of independent motor unit control 
It is currently accepted that the orderly recruitment of motor units within a muscle applies, not to 
anatomically defined motoneuron pools as originally suggested by Henneman’s size 
principle (Elwood Henneman 1957), but to function-specific motoneuron populations that can 
innervate multiple muscles and/or compartments within a single muscle (Borzelli et al. 2020; ter 
Haar Romeny et al. 1984; van Zuylen et al. 1988; John E. Desmedt and Godaux 1977; Duchateau 
and Enoka 2008; Thomas et al. 1986; Manning et al. 2010; Riek and Bawa 1992; Buchanan and 
Lloyd 1995; Wakeling 2009). In particular, the biceps brachii, used in this study, is known to have 
multiple anatomical neuromuscular compartments, with separate subdivisions even within the 
gross anatomical divide of the short and long head (Segal 1992). Biceps brachii motor unit 
recruitment has been shown to vary depending on the contraction levels in the flexion and/or 
supination directions, with motor units distributed across the biceps with no clear spatial 
distribution relevant to function (ter Haar Romeny et al. 1982a; Borzelli et al. 2020; ter Haar 
Romeny et al. 1984; Herrmann and Flanders 1998). Other muscles have been shown to have 
similar task-dependent recruitment order differences, such as in the first dorsal interosseus muscle 
when performing flexion versus abduction of the index finger and in a variety of non-
multifunctional arm muscles (van Zuylen et al. 1988; J. E. Desmedt and Godaux 1981). In 
agreement with this existing body of literature, we found that biceps motor unit recruitment 
significantly differed between elbow-flexion and forearm-supination isometric contractions. 

Participants’ ability to control the selected motor units exclusive of and in combination 
with one another in the center-out task suggests that a minimum of 3 partially independent neural 
drives must converge to the biceps motoneuron pool. If the prevailing task-specific orderly 
recruitment model is correct, these neural drives should be associated with established motor 
primitives, such as elbow flexion and forearm supination for the biceps (ter Haar Romeny et al. 
1984). Therefore, learning to exclusively recruit individual motor units should be equivalent to 
finding the appropriate motor tasks to perform, and any increases in center-out task performance 
should be attributed more to learning the association between these particular tasks and the 
computer cursor than to improvements in performance of these well-established primitives. 
Radhakrishnan et al. (Radhakrishnan et al. 2008) studied this type of learning in a center-out task 
similar to that of our study, in which participants learned to control a computer cursor through 
various arbitrary, non-intuitive combinations of upper-limb motor tasks, e.g., through 
simultaneous elbow flexion and index finger abduction. These participants learned the task and 
achieved a high-level performance plateau within 30 minutes. In stark contrast to Radhakrishnan 
et al.'s study, participants' performance in this study increased throughout several days of training 
with no significant decrease in overall learning rate over time, suggesting a different mechanism 
for independent motor unit control than recalling established motor primitives. Moreover, 
dimensionality of the selected units' firing rates in the center-out task increased throughout the 6 
days of experiments, similarly signifying an activation strategy requiring refinement over time and 
thus not clearly related to executing stereotyped tasks. Observed combinations of firing rates 
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across the selected units significantly expanded during the center-out task relative to the force-
control task, suggesting that individual motor unit control did not solely rely on the execution of 
elbow flexion and forearm supination motor primitives. Aligned with this observation, participants 
sometimes reported relying on abstract biceps contraction strategies that they were not able to 
precisely describe (Supplementary Discussion 1). Taken together, these observations suggest that 
the boundaries between neuromuscular compartments may not be as strictly defined by established 
motor primitives as previously thought. 
  Our results suggest the presence of some latent flexibility in motor unit recruitment order 
that allows for the formation of novel motor patterns. In particular, recruitment analyses showed 
that neurofeedback enabled participants to expand the available control space of the selected motor 
units beyond the robust low-dimensional manifold spanned during combinations of forearm-
supination and elbow-flexion isometric contractions. Such flexibility could rely on selective 
pathways that bias motor unit recruitment in neuromuscular compartments otherwise controlled 
by a single descending neural drive. Selective recruitment mechanisms have been previously 
hypothesized to account for de-ordered motoneuron recruitment under certain conditions, as for 
example during ballistic (Grimby and Hannerz 1977) or lengthening (Nardone et al. 1989) muscle 
contractions or following cutaneous stimulation (Garnett and Stephens 1981). This selective motor 
unit activation has been hypothesized to arise from heterogeneously distributed excitatory input to 
the spinal motoneuron pool and/or through excitatory or inhibitory synaptic currents that bias pools 
of motor units (Kernell and Hultborn 1990). While there has been a lack of empirical evidence 
suggesting that these pathways are involved during established motor behavior (Bawa et al. 2014), 
we suggest that such mechanisms, enabled by neurofeedback, might underlie this study’s observed 
flexibility in motor unit recruitment order. However, the presence of selective recruitment 
mechanisms should not be interpreted as a lack of orderly recruitment. On the contrary, the 
population-level increases in firing rate dimensionality during the center-out task emphasize the 
existence of constraints between motor units that could restrict which motor units are able to be 
selectively recruited, as the ability to selectively recruit every individual motor unit in the nervous 
system would be computationally infeasible (E Henneman et al. 1974). We, therefore, propose that 
both these mechanisms can influence neurofeedback-enabled motor unit recruitment and that the 
orderly recruitment of subgroups of motor units observed during isometric contractions may not 
be an immutable constraint of unit activation but rather be an emergent property of motor control. 
These observations are particularly aligned with the parallel work of Marshall et al. on flexible 
control of individual motor units (Marshall et al. 2021), which provides compelling evidence of 
de-ordered motor unit activity during complex motor behaviors and suggests that descending 
neural drives can contribute to flexible motor unit recruitments to adapt muscle activity to task 
demands.  

While orderly recruitment of motor units maximizes the computational efficiency of the 
central nervous system during the production of a stereotyped output (E Henneman et al. 1974), 
additional flexibility in motor unit recruitment can enable the neuromuscular system to cope with 
the wide range of movement conditions needed for everyday life (Kernell and Hultborn 1990). Our 
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study sheds additional light on the ongoing debate on the generalization of orderly recruitment 
principles and the ultimate flexibility of the sensorimotor system (Bawa et al. 2014). 
 
Potential translational implications 
Our ability to skillfully control different muscles is tied to our ability to sense their state through 
proprioceptive organs (Tuthill and Azim 2018). Aligned with a motor control framework 
maximizing robustness and computational efficiency, these organs only provide information at the 
level of each muscle and not at the level of single motor units, making it impossible to naturally 
learn to skillfully control different motor units independently. By artificially augmenting the 
resolution of proprioceptive signals using neurofeedback, here we demonstrated that skilled and 
independent motor unit control is possible. In particular, the developed NMI enabled participants 
to expand the control space of individual motor units within a single muscle beyond that observed 
during isometric contractions typically studied in the biceps brachii. This increased number of 
independent degrees of freedom (DoFs) per muscle could enable some applications typically 
reserved for BMIs. In particular, in people with cervical spinal cord injury, where in the most 
severe cases only the muscles innervated by cranial nerves remain functional, existing NMIs 
provide limited utility compared to BMIs: most muscles with residual control perform critical 
motor functions and would not be useful for a traditional myoelectric application in which only 
natural motor primitives are mapped to the controlled end-effectors. However, by instead 
expanding the number of controllable DoFs within a single muscle, the proposed NMI could more 
effectively repurpose residual muscles with dispensable functions, such as the auricular 
muscles (Schmalfuß et al. 2015), or even the functionally-paralyzed muscles themselves if 
sufficient volitional motor unit control remains (Ting, Vecchio, et al. 2021).  

The proposed NMI could also be advantageous for applications in able-bodied users. 
Indeed, by increasing the number of control signals that can be extracted per muscle, fewer muscles 
are required to operate the same number of actions, thereby potentially minimizing interference 
with functions needed for daily life. However, it remains to be assessed whether independent 
control of individual motor units can be achieved while multitasking and whether the added control 
dimensionality is sufficient to compensate for the increased cognitive demand and training 
required to operate such a NMI.  

In addition to expanding the control dimensionality of individual motor units, the 
developed NMI enabled precise control of selected individual motor units both exclusive and in 
combination with other units. As illustrated in the speller task, this ability enables motor units to 
produce continuous, multi-dimensional control from a single muscle. Within the BMI domain, this 
form of control has been required to skillfully and intuitively operate complex devices and has 
enabled not only typing but also more general BMI applications, such as point-and-click 
navigation of a computer (Paul Nuyujukian et al. 2018) and control of multi-DoF robotic 
effectors (Collinger, Wodlinger, et al. 2013; Benabid et al. 2019). Since most non-invasive BMI 
implementations rely on discrete, task-specific control schemas due to the difficulty in non-
invasively decoding continuous control signals (Tonin and Millán 2021), such control paradigms 
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have historically been confined to invasive BMIs, enabling invasive BMIs to far outstrip 
performance over their non-invasive counterparts (Benabid et al. 2019; Wang et al. 2013; 
Jarosiewicz et al. 2015; Pandarinath et al. 2017; Willett et al. 2021). However, recent surveys 
indicated 40% of surveyed patients with tetraplegia or paraplegia would not undergo implantation 
even if the implant restored daily function (Blabe et al. 2015; Collinger, Boninger, et al. 2013), 
indicating the dire need for a class of generally-applicable non-invasive devices that remains 
comparable to their invasive alternatives. Furthermore, while best-in-class EEG speller 
implementations have demonstrated much higher bitrates (3+ bits/s (X. Chen et al. 2015; 
Nakanishi et al. 2018)) than the preliminary demonstration here (0.43 bits/s), their reliance on 
exogenous stimulation to detect visual attention requires sustained concentration by the user and 
makes their performance unlikely to translate in self-paced, real-world applications. Indeed, when 
similar implementations are tested in ecological settings much lower performances are 
reported (Sellers et al. 2010). In particular, the bitrate achieved in this study over a few training 
sessions is comparable to the 0.31 bits/s throughput measured over 2.5 years of at-home, all-day 
use of an EEG speller (Sellers et al. 2010). Promisingly, our learning analyses indicating that motor 
unit control improves with more training suggests that the developed NMI might not only be more 
flexible than existing non-invasive BMI implementations but also may approach the throughput of 
these best-in-class implementations over time. An NMI enabling independent motor unit control, 
as the one demonstrated in this study, thus possesses promising qualities that could lead to a new 
class of high-performance, non-invasive translational devices. 
 
Limitations and future directions 
Stable, online detection of motor unit activity using non-invasive recording technologies remains 
challenging in ecological settings. The waveform of recorded motor unit action potentials and 
consequently their detection in surface EMG recordings are known to be sensitive to movement 
artifacts and to relative positioning of skin to muscle, which can be especially deleterious in 
anisometric conditions (Farina 2006). In our study, we overcame these limitations through 
physical constraints imposed by the orthosis and by instructing participants to avoid performing 
overt movements when trying to control the selected motor units. We confirmed these relative 
static recording conditions through kinematics recordings. In more dynamic settings, improved 
algorithms for motor unit detection may be required to increase reliability. Notably, while global 
EMG features are often used as a proxy for motor unit activity in non-invasive recordings, their 
lower information content is likely to hinder performance (Kapelner et al. 2019; Farina et al. 2017), 
as also suggested by our results showing dimensionality increases that are greater in motor unit 
firing rates than in iEMG. Alternatively, minimally-invasive intramuscular electrodes could enable 
individual motor unit recordings during anisometric contractions (Harwood et al. 2012). These 
advances in motor unit detection both could afford for a more practical understanding of the 
inherent dimensionality of a given muscle and are likely necessary for real-world use of a 
translational device controlled by individual motor units. 
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 Our results suggest that neurofeedback enables an increase in the control space of 
individual motor units within the biceps brachii beyond that observed during isometric 
contractions, providing new insights on the flexibility of motor unit recruitment orders. However, 
it remains unclear whether the observed increase in control dimensionality represents an absolute 
increase in motor output dimensionality. In particular, while we were able to exclude isometric 
elbow flexion and forearm supination contractions as an explicit strategy to generate independent 
motor unit control, it is possible that participants’ strategies involved subtle co-contractions of 
synergistic muscles to modulate recruitment, and thus the observed increase in biceps motor unit 
activity dimensionality may have come at the expense of the ability to control other muscles. 
Further studies capable of testing more ecological movement scenarios while simultaneously 
recording the activity of synergistic muscles are necessary to further explore the potential of the 
proposed NMI for motor augmentation. 

The population-level dynamics across motor units observed in neurofeedback tasks suggest 
each dimension of the system can be driven by sets of motor units, as opposed to a single motor 
unit. This can increase robustness to experimental instabilities and can facilitate a finer-grained 
measurement of a dimension’s amplitude by incorporating multiple units’ firing rates. Similarly, 
the decoder can periodically be tuned to optimize for performance or for similarity to previously 
learned decoders, leveraging the fact that neural activity resides in a persistent, low-dimensional 
manifold (Sadtler et al. 2014). 

Additionally, this current study did not explicitly identify nor target selection of motor 
units that had been selected in previous days of training. The presence of within-day learning in 
our study and the intracortical BMI literature (Ganguly and Carmena 2009; Orsborn et al. 2014) 
both suggest that retaining similar sets of motor units over days may increase overall performance. 
This can be addressed by longitudinally tracking individual motor units over training and 
prioritizing selection of those units (Martinez-Valdes et al. 2017). Alternatively, chronically 
implanted intramuscular electrodes could enable recordings that stably identify motor units across 
days, though such a system has yet to be shown. 

Finally, this study solely tested participants with no history of motor impairments, and so 
future studies motivated by clinical translation should be performed to determine the efficacy of a 
motor-unit NMI in people with sensorimotor disabilities. Promisingly, however, recent studies in 
people with cervical spinal cord injury demonstrated that residual activity in functionally-
paralyzed muscles (Ting, Del Vecchio, et al. 2021) and impaired movements (Pierella et al. 2021) 
can be successfully harnessed for powering peripheral human-machine interfaces. Additionally, 
initial neurofeedback studies reported selective motor unit control in a variety of muscles, 
suggesting this study’s results can generalize outside of the biceps brachii (John V. Basmajian and 
De Luca 1985). 
 
Conclusion 
In conclusion, we have demonstrated that skilled independent control of individual motor units 
belonging to the same muscle can be enabled through an NMI. We uncovered properties of 
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individual motor unit control useful for translational and augmentative applications. Concurrently, 
we shed light on long-standing questions surrounding the applicability of recruitment order often 
measured in stereotyped movements to volitional control of individual motor units. Advances in 
both motor control theory and neurotechnologies are critical to push the field towards more widely-
applicable devices. Our study provides advances in both, potentially leading to improved 
therapeutics for people with sensorimotor disabilities and to a new class of neurotechnologies for 
human augmentation. 
 

2.4 Methods 

Experimental Procedures 
All experiments were approved by the Committee for Protection of Human Subjects (CPHS) of 
University California, Berkeley, and were performed in compliance with local COVID-19 
regulations. The recruited participants were healthy individuals — with no history of cognitive or 
sensorimotor impairments — between 22 and 30 years old, of which 3 were female and 5 male. 
Experiments were carried out on 6 consecutive days, with each session lasting a maximum of 
approximately 1 hour and 50 minutes. 
 
Setup and initial calibration | At the beginning of each session, participants were seated on a 
chair and fitted with a sensorized orthosis that constrained the elbow joint at 100 degrees and the 
wrist at its natural position (Figure 1.1A). After cleaning the skin with a mildly abrasive paste and 
isopropyl alcohol, a high-density 64-channel grid of surface EMG electrodes (GR10MM0808, OT-
Bioelettronica, Torino, Italy) was placed over the short and long heads of the biceps brachii, with 
the proximal/distal edges of the grid positioned at approximately 60%/80% of the distance between 
the acromion and the distal insertion of the biceps brachii tendon (Barbero et al. 2012). Velcro 
straps were used to ensure a tight fit of the orthosis around each participant’s arm. Markings on 
the skin were used to ensure stable grid positioning across days. 

We next calibrated the decomposition model used to extract individual motor unit activity 
from the measured neuromuscular signals. This initial calibration was performed offline on a 
recording of 60 seconds, during which the participants were instructed to perform subtle biceps 
contractions that would activate only a few motor units. To help participants in this task, we 
educated participants in recognizing individual motor unit action potentials from displayed raw 
neuromuscular signals, and encouraged them to use this simple form of neurofeedback to gauge 
their muscle activity. Participants were then introduced to the exploration procedure. 
 
Exploration procedure | A computer screen and headphones were used to provide participants 
with real-time auditory and visual neurofeedback of the detected motor unit activity (Figure 2.1B). 
Visual neurofeedback consisted of color-coded LED-like indicators that flashed when an action 
potential was detected and plots of the corresponding multi-channel waveforms. Auditory 
neurofeedback mapped detected action potentials into pitch-coded 150-ms-long stimuli. 
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Neurofeedback signals were updated at 60 Hz. Detected activity and corresponding neurofeedback 
signals were divided into three categories: selected units, unselected units, and unsorted activity. 
Selected and unselected units represented motor unit activity successfully classified by the 
decomposition model, while unsorted activity represented residual threshold-crossing events that 
were not matched with previously recognized motor units. Selected units were assigned to unit-
specific neurofeedback features (i.e., colors and pitches), while those for unselected units and 
unsorted activity had categorical features. 

Participants were instructed to use the provided neurofeedback signals to explore covert 
strategies to selectively recruit different motor units — mimicking pioneering studies on individual 
motor unit control (Virginia F. Harrison and Mortensen 1962; J. V. Basmajian 1963; V. F. 
Harrison and Koch 1972; Illyés 1977) — and had approximately 30 minutes to select and sort in 
order of controllability the 3 motor units to use in the center-out task. To guide participants in their 
motor unit selection, we designed an algorithm that monitored motor unit activity in real-time and 
suggested units showing substantial evidence of independent control. Participants could rely on 
this algorithm to automatically define which units to be included in the selected units category but 
could also include, exclude, and reorder units at will. 

Throughout the exploration period, the decomposition model was periodically updated 
until a maximum of 25 different motor units were detected. Participants could thus use the 
unsorted-activity neurofeedback to steadily recruit unsorted units of interest and assist the update 
algorithm in detecting these units. 

 
Center-out task | Participants controlled a computer cursor using the 3 motor units selected during 
the exploration procedure to achieve targets displayed on a screen. The activity of the selected 
motor units was mapped into the 2D position of a computer cursor using a population-coding 
strategy (Figure 2.1C). Each motor unit was assigned to a unique direction by dividing the 2D 
space into three equal subspaces (i.e., with a 120 degrees angle between each other) and provided 
a vectorial contribution to the cursor position along this direction and proportional to its 
normalized firing rate. To provide intuitive feedback on this control strategy, the cursor position 
was indicated by an arrow — representing the population vector — originating at the center of the 
screen. Motor unit firing rates were computed over a rolling window of 50 bins of 16 ms (800 ms 
in total) using a half-Hamming window profile that gave larger weight to the most recent bins. 
This firing rate was then normalized between 0 and the 90th percentile of the firing rate displayed 
during the exploration procedure. In some cases, this normalization value was manually adjusted 
between 10 to 20 Hz. 

A total of 13 active targets and 1 rest target were designed. Active targets included 12 
peripheral targets and 1 center target. Peripheral targets were defined by polar rectangular regions 
with a Δθ of 45° and Δr of 0.39 population-vector magnitude and were divided into exclusive 
targets (T1, T2, and T3) and simultaneous targets (T4), depending on their center angle: exclusive 
targets were centered on the assigned motor unit directions and thus required exclusive recruitment 
of an individual motor unit; simultaneous targets laid between the assigned directions and thus 
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required simultaneous recruitment of two units. Peripheral targets were also divided by distance: 
close targets were centered at 0.395, while far targets were centered at 0.785 magnitude. To 
achieve peripheral targets participants had to hold the cursor position within the target for a 
minimum of 0.5 seconds. The center target (T5) was defined by a circular region located at the 
center of the screen and had a radius of 0.2 magnitude. To achieve this target, participants were 
required to recruit all selected motor units at a minimum normalized firing rate of 0.33, while also 
keeping the cursor within the target boundaries. In contrast to active targets, the rest target required 
participants to avoid motor unit recruitment by holding the cursor within a distance of 0.1 from 
the screen center for 2 seconds. 

The task was divided into trials and inter-trial periods. At the beginning of each trial, an 
active target was randomly selected from a pool of available targets and participants had 60 
seconds to achieve it (Figure 2.1D). The rest target was then displayed and participants could 
initiate the next trial by completing it. To promote learning, active targets were grouped into 3 
difficulty levels, which were progressively made available depending on participants’ 
performance. At the beginning of each session, only the center target (T5) and the motor unit #1 
and #2 exclusive targets (T1 and T2) were available. An algorithm monitored the average trial 
success rate over a window of 5 min and if this surpassed a threshold of 3 trials per minute, targets 
belonging to the next difficulty level were made available: T3 targets were added first, T4 targets 
last. 

To promote engagement and incentivize learning, task and trial performance metrics were 
displayed on the task monitor. Finally, in addition to the arrow indicating the cursor position, 
participants received neurofeedback of the selected unit action potentials via the same LED-like 
indicators and audio stimuli utilized in the exploration procedure. Participants trained on this task 
for approximately 60 minutes per day during the first 3 days, and for a minimum of 30 minutes 
per day on the last 3 days of experiments. 

 
Force-control task | Participants were instructed to perform isometric elbow flexion and forearm 
supination contractions to match target force profiles displayed on a computer screen. The forces 
measured by the sensorized orthosis were displayed in real-time by a bar indicator (Figure 2.5A). 
Target forces followed a trapezoidal profile — with onset, hold, and offset periods each trial — 
and were displayed adjacently to the measured forces. To prepare participants for a change in force 
profile, the target force expected 1-second ahead was also displayed. 

Three isometric contraction types were tested: elbow flexion, forearm supination, and 
simultaneous elbow flexion and forearm supination. Each contraction type was tested 5 times at 3 
different loads, for a total of 45 trials. Loads of 500, 1000, and 1500 grams were default but in 
some cases decreased to avoid fatigue (lowest maximum load of 1000 g). Trials were separated by 
2 seconds of rest period. Onset and offset ramps each occurred over 1, 2, and 3 seconds for the 
three total loads, respectively. Hold duration was 1 second in all trial types. Trials of different 
types were ordered randomly. 
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Speller task | The same 3 motor units from the center-out task were used to operate a cursor to 
navigate a virtual keyboard in a copy-typing speller task. The keyboard layout (OPTI-II) and target 
sentences mimicked those of previous BMI studies (Pandarinath et al. 2017; Rick 2010). The 
keyboard divided the screen in 30 square keys (6x5) and included all the alphabet letters, 2 space 
keys, and 2 delete keys; misselection of a character required participants to select the delete key. 

To facilitate navigation, the keyboard featured wraparound borders and the cursor was 
controlled in velocity. In particular, the population vector used in the center-out task to compute 
the cursor position was here used to control the cursor velocity. These design features allowed full 
2D space navigation even with control of a single motor unit, though this would result in extremely 
low performances. Letter selection was triggered by simultaneously recruiting the 3 selected motor 
units above a threshold normalized firing rate and for a threshold amount of time — similar to how 
center-out T5 targets were achieved. Firing rate and time thresholds were default to 0.5 Hz and 0.5 
seconds, and sometimes slightly adjusted according to participants’ preference. 

Participants were tested in this task for approximately 30 minutes in the last 3 days of 
experiments, after training for a minimum of 30 minutes in the center-out task and reaching 
sufficient proficiency. 4 participants also tested this task prior to the 3rd day, but only after 
completing a minimum of 60 minutes of center-out task. 1 participant only completed 1 day of the 
speller task. 
 
Motor unit NMI  

 
EMG recordings | Biceps brachii EMG signals were acquired using a PZ5M neurodigitizer 
amplifier and an RZ2 bioamp processor from Tracker-Davis Technologies (TDT) at 12.2 kHz. The 
64-channels grid of electrodes was connected via 32-channels ZIF-clip TDT headstages and 
Omnetics connectors. Signals were band-pass filtered between 10 and 900 Hz using a 6th order 
Butterworth filter. Notch filters at 60, 120, 180, and 240 Hz were also used to remove the powerline 
noise. Filtered signals were then used to extract 56 bipolar derivations parallel to the muscle fibers. 
A multichannel threshold crossing algorithm was then used to detect time windows with potential 
motor unit activity; thresholds were set to 6 times the signal’s standard deviation and were 
calibrated at the beginning of each session using 10-second recordings during which participants 
were instructed to avoid biceps contractions and not move. A threshold crossing event at any of 
the bipolar channels triggered a shared dead-time of 20 ms that limited overall threshold crossing 
detection rate at 50Hz. Critically, since multiple motor units could be detected per threshold 
crossing, this capped detection rate only limited the maximum detectable firing rate of individual 
motor units and not that of the entire motor unit population (see Decomposition model). In 
addition, since firing rates of biceps brachii motor units during isometric contractions range 
between 5 and 30 Hz (Kukulka and Clamann 1981), this detection rate was largely sufficient to 
cover motor units' entire dynamic range. Threshold crossing events and filtered bipolar signals 
were downsampled to 2 kHz and streamed to the decomposition model. All these processing steps 
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were performed using custom software written for the RZ2 bioprocessor, which ensured a 
maximum of 0.5 ms delay between acquisition and streaming. 
 
Decomposition model | Bipolar EMG signals were decomposed into motor unit activity using a 
convolutive blind source separation model. This model included a previously validated offline 
EMG decomposition model (Negro et al. 2016) and shared similar logic to recent techniques for 
online EMG decomposition (Barsakcioglu et al. 2020). 

The offline decomposition model used convolutive blind source separation to define the 
motor units underlying the measured EMG signals (Negro et al. 2016). Briefly, the filtered bipolar 
EMG signals were extended and whitened. An extension factor of 16 was used (Negro et al. 2016). 
Next, a 2-step iterative algorithm was used to find sparse components that best reconstructed the 
whitened data. First, a fixed-point iteration algorithm was used to estimate the next component 
using the logarithm of the hyperbolic cosine as a contrast function to optimize sparseness and an 
orthogonal constraint to promote estimates of unique sources. The logarithm of the hyperbolic 
cosine was used because of its superior robustness to outliers compared with simpler contrast 
functions (Negro et al. 2016). Second, an iterative algorithm was used to minimize the variability 
of the inter-spike intervals of detected spike-trains. After projecting the data onto the candidate 
component, K-means++ (k=2) was used to estimate a threshold on the peaks in the squared 
projected data. The estimated component was then refined according to those peaks. This process 
repeated until the inter-spike interval converged. Since the coefficient of variation for spike-trains 
generated by multiple motor units are intrinsically more variable than those generated by a single 
motor unit, this second step was shown to ameliorate source estimation by exploiting the regularity 
of motor unit firings (Negro et al. 2016). The resulting component was then added to the matrix of 
estimated components if the signal to noise ratio (SNR) of the spikes detected along this 
component was greater than a fixed threshold; SNR was measured using the Silhoutte coefficient 
and a threshold of 0.85 was used (Negro et al. 2016). This iterative algorithm, which is described 
in greater detail in Negro et al., 2016 (Negro et al. 2016), was repeated until a maximum of 25 
sources were detected. A post-processing step was then introduced to further de-duplicate the 
number of components underlying the same motor units. Indeed, despite the orthogonal constraint 
used in the fixed-point algorithm to increase the number of unique estimated sources, this approach 
can lead to components capturing delayed versions of the same motor unit action potentials (Farina 
et al. 2017; Negro et al. 2016). Spike-trains were thus extracted from each estimated component 
and only components with less than 30% of coincident spikes — as measured by the rate-of-
agreement (Negro et al. 2016, 20) across spike timings — were kept. Note that while a minor 
inconvenience in offline analyses, an excessive number of duplicated components would largely 
impact computational load required by our NMI. 

The offline model was initialized on the 60-second dataset acquired at the beginning of 
each session. This calibration was used to compute the whitening matrix and to initialize the 
decomposition matrix with the first set of estimated sources. This whitening matrix was then fixed 
for the remainder of the session. A batch update algorithm was then used throughout the 
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exploration procedure to periodically update the decomposition matrix with potential new 
components. To optimize computational efficiency and allow for quick model updates (update 
time < 30s), instead of using the full EMG stream this algorithm only ran on the windows of EMG 
signals surrounding the detected threshold crossing events (10 ms before the peak multichannel 
amplitude and 20 ms after). The update algorithm was triggered every 750 threshold crossing 
events with no extracted motor units and ran until a maximum of 25 total motor units were detected 
or until the end of the exploration procedure. 

Individual motor unit activity was continuously estimated in real-time through this 
decomposition model from the streamed EMG signals using the 30ms windows surrounding 
detected threshold-crossing events. For each threshold crossing, data windows were whitened, 
extended, and projected to the source space by multiplying each extended multichannel sample 
with the most current decomposition matrix. A motor unit was then considered detected if at least 
a sample of the squared projected data exceeded the decomposition model’s threshold for a given 
source, determined with k-means during the offline decompositions. Using this algorithm, multiple 
units could be detected from one threshold crossing event. If the projected activity did not surpass 
any component’s threshold, the event was then classified as unsorted activity. Notably, windows 
alignment to a particular peak had negligible impact on the detection of concurrent motor unit 
action potentials, even when considering that the threshold crossing detection rate was capped at 
50 Hz (see EMG recordings). Indeed, motor unit classification was based on 8 ms data bins 
(extension factor = 16; sampling rate = 2000 Hz) and the overlap between windows at high 
threshold-crossing event rates (max 10 ms at 50 Hz) ensured detection of motor unit action 
potentials even when occurring between two consecutive events. 

Online and offline decomposition models were implemented through custom-written GPU-
accelerated Python programs. All data was streamed between multiple computers with minimal 
latency and high bandwidth through River (Botros 2021), an open-source C++ library based on 
Redis. Overall latency from data acquisition to motor unit activity detection was generally under 
70ms. 
 
Motor unit selection algorithm | This algorithm monitored the dimensionality of motor unit 
activity throughout the exploration procedure and suggested motor units with potential for 
independent control. A circular buffer (size of 216 samples) was used to collect sorted motor unit 
activity. The firing rate of each motor unit was then computed over overlapping windows of 1 s 
with 500 ms overlap. Non-negative Matrix Factorization (NMF) was then used to detect motor 
units explaining most firing rates variance. First, components required to explain a minimum of 
90% of the total firing rates variance were selected. Second, the motor unit with the largest weight 
for each of the selected components was chosen and used to update the subset of suggested motor 
units. Suggested motor units were updated every 20 seconds. 
 
Force and kinematic recordings | The sensorized orthosis was custom-designed and 3D printed 
using a Form 2 (Formlabs, Somerville, MA) printer with standard resin. The orthosis embedded 2 
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load cell sensors (a CB6 from DACELL, Korea and a TAL220 from HT Sensor, China) to measure 
elbow-flexion and forearm-supination forces, respectively, and inertial measurement units 
(BNO055, Bosch Sensortec, Germany) to capture movements. Load and IMU signals were 
sampled at 50 Hz using a Raspberry Pi 4. A HX711 analog-to-digital converter (Avia 
Semiconductor, China) was used to acquire the load data. Data was streamed online to other 
modules using River. 
 
Behavioral Analysis 
 
Center out task day 1 | Center out performance at day 1 was evaluated using the percentage of 
successful trials for each target category (T1, T2, T3, T4, and T5). A trial was considered failed if 
the presented target was not achieved within the 60s of trial and successful otherwise. Participants 
that did not reach the second and third difficulty levels were excluded when analysing the 
corresponding target categories (T3 and T4 respectively). Hypothesis testing was performed using 
bootstrapping (n=10000 iterations) and Bonferroni correction for multiple comparisons (Figure 
2.2C-D). 
 
Trial performance metric | While the percentage of successful trials allows to evaluate whether 
independent motor unit control is possible, this metric fails to capture the quality of this control. 
A more holistic performance metric was thus computed to assess motor unit control quality and 
evaluate learning over time. This metric combined together 3 independent metrics using Principal 
Component Analysis (PCA). The normalized distance between the cursor position with respect to 
the presented target center was calculated for every time point within each recorded trial; 
normalization was performed with respect to the maximum target distance. The average and 
integral of this distance for each trial were then linearized using a log transform. These metrics 
were used to capture the cursor error and trial duration and were the first 2 independent metrics. 
The third metric was used to reward motor unit specificity. A specificity score was first computed 
for each trial’s time point as a value between -1 and 1, where -1 corresponds to selective 
recruitment of motor units that are not required for achieving the considered target and 1 to 
selective recruitment of the target motor units. The mean specificity was then calculated for each 
trial and linearized using the logistic transform. A PCA model was then fit on all the collected 
trials to combine these 3 metrics; the single holistic metric was then the first component of this 
PCA model, standard scaled to improve interpretability of the results. Figure 2.2A and B show 
how this holistic metric relates to the 3 underlying metrics prior linearization, as well as to the trial 
duration — a feature commonly used for evaluating performances in trial-based tasks. Feature 
linearization was performed to conform with the assumptions of the statistical techniques used to 
analyze learning over time. These analyses excluded T5 targets. 
 
Learning analyses | Collected center-out data are characterized by hierarchical and crossed 
dependencies: trials (at the first hierarchical level) are grouped in days (at the second level) and in 
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participants (at the third level), while target categories are crossed at all hierarchical levels. To 
account for these dependencies, learning analyses were performed using linear mixed-effects 
models (LMMs) — an extension of linear regression models that allow to separate the overall 
effects of a model term (i.e. the fixed effects) from the variability in the data generated by different 
sources of stochastic variations (i.e., the random effects) (Lazega and Snijders, n.d.). 

When analyzing the overall within- and across-day learning (Figure 2.3C-D), trial 
performance was modeled by the following equations (2.1-2.10) representing our general LMM: 

 
where j, t, i, θ, and r refer to the participant, day, trial, target angle, and target distance indexes, 
respectively; 𝛾!refers to the fixed effect estimated for the 𝑛"ℎindependent variable; 𝜇#$%

!&  refers to 
the 𝑙"ℎ random effect for the 𝑛"ℎindependent variable caused by the random factor 𝑥𝑦𝑧; 𝛽#$%

! refers 

to the combined random and fixed effects; and 𝜀'"()*refers to the model residuals. This model 

describes trial performance 𝑦'"()*as a function of within- (𝑤𝑖𝑡ℎ𝑖𝑛'"()+,+) and between-day 
(𝑎𝑐𝑟𝑜𝑠𝑠'")-,+) time variables, an interaction term between these 2 variables (𝑤𝑖𝑡ℎ𝑖𝑛'"()+,+𝑎𝑐𝑟𝑜𝑠𝑠'")-,+), 
and two additional variables used to control for potential across-day effects caused by differences 
in number of performed trials (𝑤𝑖𝑡ℎ𝑖𝑛'")./-!and 𝑤𝑖𝑡ℎ𝑖𝑛'")./-!𝑎𝑐𝑟𝑜𝑠𝑠'")-,+). The within-day time 
variable 𝑤𝑖𝑡ℎ𝑖𝑛'"()+,+ was calculated as the centered, normalized trial index	𝑖. For each day t, subject 
j, and target direction θ, trials were centered with respect to half of the performed trials. Such 
centering within-cluster (CWC) was used to segregate within-day effects from higher order effects. 
A normalization factor of 100 trials was used. The subtracted means from 𝑤𝑖𝑡ℎ𝑖𝑛'"()+,+ were in turn 
CWC centered and included in the model through the 𝑤𝑖𝑡ℎ𝑖𝑛'")./-! term, which was used to account 
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for possible changes in performances caused by the different number of performed trials for each 
recording. The across-day variable 𝑎𝑐𝑟𝑜𝑠𝑠'")-,+ consisted of the aligned and normalized day index 
t. Alignment was performed within-cluster (AWC) with respect to the first day 𝑡 for which 
participant 𝑗 performed 𝜃 targets. While for targets belonging to the first difficulty level (i.e., T1 
and T2 targets) AWC had no effect, this alignment strategy allowed to take into account 
participants’ across-day heterogeneity in reaching T3 and T4 targets, effectively comparing across-
day performances with respect to the number of days of practice instead of those of experiment. 
This variable was normalized with respect to 6 days. Maximal random effects were used to 
minimize Type I errors during hypothesis testing (Barr et al. 2013). Random effects included: 
random intercepts for each participant (𝜇'

00), target direction (𝜇𝜃
03), combination of participant and 

target direction (𝜇')
02 ), combination of participant, target direction, and day (𝜇'")

01 ), and combination 
of target direction and distance (𝜇𝜃*

04 ); and random slopes for both the within- and across-day time 
variables (𝜇'")

10  and 𝜇')
20 , respectively). Random effects were modeled as 0-centered Normal 

distributions with estimated standard deviations σ and optional correlation parameter ⍴. The 
centering and alignment choices used for 𝑤𝑖𝑡ℎ𝑖𝑛'"()+,+ and 𝑎𝑐𝑟𝑜𝑠𝑠'")-,+ made the fixed-effect of the 
model intercept 𝛾0to capture the overall performance of a general participant on the center-out task 
at day 1. The modeled fixed effects for the within- and across-day time variables represented the 
overall improvement in performance a general participant would obtain in the center-out task by 
training over 100 trials and 6 days, respectively. 

Learning analyses performed for each of the selected motor units separately (Figure 2.3E) 
were carried out using a similar LMM, which included the same fixed-effect terms but reduced 
random-effects: 
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where terms follow the same conventions as in the previous model. In particular, since different 
models were used to evaluate learning over T1, T2, and T3 targets, random effects that were used 
to account for variations caused by different target directions were removed. Random slopes for 
the within-day term were computed for each combination of participant, day, and target distance, 
while random slopes for the across-day term were computed for each combination of participant 
and target distance. 

Analyses of participants’ performance on the T4 targets were conducted using a 
generalized linear mixed-effects model (GLMM) with a Poisson link function. Specifically, the 
rate of successful T4 trials over time was modelled as: 

 

  
 

where terms follow the same convention as above, 𝑡𝑎𝑠𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛'"indicates the duration in hour 
of the center-out task performed by participant j at day t, and 𝑑𝑎𝑦'" indicates the tth experiment day 
of participant j. 

All models above parameters were fitted using the restricted maximum likelihood (REML) 
approach. Confidence intervals used for hypothesis testing were computed using the profile 
method. Model assumptions were tested using the White’s Lagrange Multiplier test, for testing 
heteroskedasticity of the residuals, and the D’Agostino and Pearson’s test, for testing residuals 
Normality. All models (general, T1, T2, T3, and T4 models) displayed homoscedastic residuals 
(p=0.08, p=0.9, p=0.3, p=0.9, and p=0.07, respectively), but only the residuals for the GLMM 
resulted normally distributed (p=0.65 for the T4 model, p<0.001 for the others). However, LMMs 
have been shown to be highly robust to violations of distributional assumptions and the kurtosis 
([1.2, 0.77, 0.5, 2.5]) and skewness ([0.23, -0.19, 0.15, 0.7]) of our models with non-normal 
residuals’ fell largely within acceptable ranges, shown to have minimal impact on the validity of 
LMMs estimates (Schielzeth et al. 2020). 
 
Kinematic analyses | Measured IMU Euler angles were preprocessed using an artifact removal 
algorithm and a 6th order Butterworth low-pass filter at 6 Hz. Artefact removal was used to ignore 
samples with prominence superior to 10°, which accounted for less than 0.1% of all samples. 
Principal Component Analysis (PCA) was then used to align the rotational axis of the IMU sensor 
to the axis of largest variation. Kinematic analyses during the center-out task (Figure 2.7B) used 
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the 1st principal component to compute the mean absolute velocity (MAV) for trial and inter-trial 
periods. The median MAV was then computed for each day, each participant, and trial category 
and used to evaluate target-specific movement strategies. Statistics of active targets were compared 
with respect to those of rest targets; hypothesis testing was performed by bootstrapping (n = 10000 
iterations) the distribution of the paired differences for each recording and using Bonferroni 
correction of the estimated confidence intervals for multiple comparisons. Decoding analyses were 
performed using a multilayer perceptron (MLP) with 1 hidden layer of 100 artificial neurons 
having hyperbolic tangent as activation function. For each session, a MLP was trained to predict 
the cartesian coordinates (x, y) of the center-out task cursor from the measured Euler angles and 
their derivatives. Time bins during rest trials were excluded. Data were then shuffled and split in 
training (70%) and testing (30%) sets. Decoder performances were evaluated on the testing sets 
using the average R2 of the 2 output variables (Figure 2.7C).  
 
Speller | A common metric for assessing information throughput in self-paced BMIs is the 
achieved bitrate, which combines the number of possible symbols to select (i.e. the number of 
characters on a keyboard) with the net number of correct symbols selected per second (P. 
Nuyujukian et al. 2015). This metric is typically considered an underestimate of the true 
information throughput of a device, as it penalizes errors relatively harshly compared to other 
information throughput metrics (P. Nuyujukian et al. 2015). It is defined as: 

 
where Sc is the number of correct symbols transmitted, Si the number of incorrect symbols 
transmitted, and N the number of symbols. In our case, N = 27, due to the 26 letters and the “space” 
character on the keyboard (excluding the delete key). Smoothed bitrates (Figure 2.8B) were 
computed from 5-minute sliding windows taken every 30 seconds; peak bitrate was the maximum 
smoothed bitrate value during a given session. Average bitrate was the achieved bitrate B 
computed over the entire spelling session. Correct characters per minute were computed similarly 
as the net number (correct symbols minus incorrect symbols) of correct characters spelled. 
Changes in average bitrate over days of training (Figure 2.8D) were modelled with a linear mixed-
effects model where the number of days of training were centered within-subject to account for 
differences in amount of training between subjects. This model fit a fixed-effect slope and intercept 
for days of training and was fit using the restricted maximum likelihood (REML) approach. Model 
assumptions were tested as described in the above learning analyses. 
 
Motor unit activity analysis 
Pooled motor unit decomposition | A separate offline motor unit decomposition was run for the 
EMG collected during the force-control task with the same parameters as the decompositions run 
online. Then, for each day, the motor units identified across both the online and offline 
decompositions were pooled together, and all of the EMG data for that day was then re-
decomposed with these motor units, yielding a superset of motor unit action potential timings 
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relative to those detected online. Motor units exhibiting more than 30% of coincident spikes, 
according to the rate-of-agreement between action potential timings, were considered duplicates, 
and only one of the duplicate units was retained. No duplicates were found within selected motor 
units in any session. All analysis that used firing rates (Figures 4-6, 8) uses these pooled motor 
units. This methodology allowed for motor units to be identified for analysis purposes even when 
they had not been identified during the online sessions. 
 
Integrated EMG and motor unit firing rates | The integrated EMG (iEMG, Figure 2.5) for 
channel i at time t was computed as the sliding window sum of rectified EMG: 

 
where N was fixed as the number of samples corresponding to a 200 millisecond window. The 
data was then downsampled by a factor of 25 to approximately 81 Hz. Smoothed motor unit firing 
rates were computed from the pooled motor unit firings and were computed in the same manner 
as computed online for the center-out task. 
 Firing rates for pooled motor units were computed as in the center-out task. For analysis 
based on firing rates during the center-out task (Figures 5-6), any time bins occurring during T5 
or rest trials were excluded. For analysis during the speller task (Figure 2.8), time bins used for 
letter selection were explicitly excluded as well. When necessary, both firing rate and iEMG were 
linearly interpolated in time in order to align with other streams of data (e.g. aligning with load 
sensor data). 
 
Exploration Period Analysis | In order to identify groups of units that were often mutually active 
during the exploration period, motor unit activity was decomposed into 3 separate components via 
non-negative matrix factorization (NMF). NMF aims to find two low-rank matrices, W and H, 
from a non-negative data matrix X such that 

 
is minimized and such that W, H are also nonnegative. NMF was performed via a coordinate 
descent solver with NNDSVD initialization. Since the relative scales of the projections (W) and its 
components (H) are typically arbitrary, we resolved ambiguity by scaling each component to unit 
L2-norm and scaling its corresponding transformation by the appropriate reciprocal factor. We 
then computed the CIFT for each of the 3 components relative to one another, as described in the 
following section. 
 
CIFT metric | For analysis of the speller and exploration period, a simple time-based metric, the 
cumulative independent firing time (CIFT), was devised (Figure 2.4). CIFT is defined as the 
fraction of total time a motor unit was independently active relative to the total time the motor unit 
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was active, and thus takes values between zero and one. A motor unit was considered “active” if 
its smoothed firing rate exceeded 5 Hz, and was considered “independently active” if both it was 
active and no other motor units had firing rates simultaneously exceeding 5 Hz. This 5 Hz threshold 
corresponds to the approximate physiological minimum motor unit firing rate (Duchateau and 
Enoka 2011). Throughout this analysis, we utilize the CIFT as a general measure of relative 
independence of motor units and use it across various contexts (Figures 4, 8). Note that our use of 
CIFT in the exploration period extends its use from comparing motor units to comparing NMF 
components. 
 
Dimensionality Computation | The participation ratio (PR) was computed to quantify the 
dimensionality of the iEMG and firing rate data (Recanatesi et al. 2019; Gao et al. 2017b). The PR 
is a metric computed on the covariance matrix of a feature and represents the approximate 
dimensionality of the manifold spanned by that feature; a higher participation ratio means more 
principal components are needed to explain a given proportion of the feature’s variance. 
Participation ratio is defined as: 

 
 
where C_i is the i-th eigenvalue of the covariance matrix C of the corresponding feature (iEMG or 
firing rates). Participation ratio was computed across the periods spanning the force-control tasks, 
center-out tasks, and speller tasks (Figures 5, 8). In our data, the participation ratio corresponded 
to the number of principal components needed to explain approximately 83% of the total feature 
variance. 
 The relationship between selected and unselected motor units during the force-control and 
center-out tasks was characterized using linear regression (Figure 2.5F-G). Linear regression was 
used to predict the unselected motor units’ activity from the activity of the selected ones. The 
quality of this prediction was characterized by the coefficient of determination (R2). 
 
Recruitment Thresholds | Recruitment thresholds for each motor unit were computed for both 
elbow flexion and wrist supination from force-control task data (Figure 2.6). First, force data from 
load sensors was smoothed with a median filter and normalized within each session to values 
between zero and one. Then, for force-control task trials in which elbow flexion (forearm 
supination) was the sole movement indicated, the recruitment threshold for a particular motor unit 
for elbow flexion (forearm supination) was identified as the average across trials of the measured 
load at the beginning of the first occurrence of 3 consecutive firings with inter-spike interval (ISI) 
less than 200ms. 
 
Control Spaces | To compare possible joint firing rates observed across the 3 motor units selected 
for the center-out, a control space was computed for firing rates spanning the center-out and force-
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control tasks. First, each unit’s firing rate was normalized to 1.5 times the normalization value 
used for that particular unit in the center-out task, in order to focus analysis on the same, task-
relevant firing rates between tasks, firing rates above this normalization value were discarded. 
Normalized firing rates were then binned into 1 of 10 equally-spaced bins between 0 and 1, with 
any time points exceeding a normalized value of 1 ignored. Each time point was thus converted 
into a 3-dimensional point representing the firing rate bins of each of the 3 selected motor units. 
From this, control spaces for the center-out and force-control tasks were then computed as the set 
of joint firing rate bins that occurred for at least 160ms (i.e., 10 bins) in a given task. The maximum 
number of populated bins, i.e. the largest possible control space, was thus 103. 
 To facilitate 2-D visualization of the 3-D control space in Figure 2.6D, non-negative 
matrix factorization, as used in the exploration period analysis, was performed for each session on 
the force-control’s firing rates to compute 2 non-negative components that best factorized the data. 
Components were ordered such that component #1 captured more variance in the data than 
component #2. These components were then normalized for the day such that the maximum 
projected value across either component was 1. Finally, firing rates for the force-control and 
center-out tasks were then projected onto these 2 components. After this normalization, the control 
space was then computed as above, i.e. component projections were binned between 0 and 1 and 
counted. 

Ordinary least-squares was used to determine the best-fit line between mean center-out task 
performance and the relative fraction of control space bins that were novel in the center-out 
(Figure 2.6F). For performance analysis focusing only on T1 and T2 targets, the above control 
space computation was repeated with only the first 2 selected motor units as opposed to all 3. 
 
Statistics 
Statistical tests, their significance values, and the relevant number of samples are reported in the 
appropriate figure legends and/or relevant method section. Error bars used in point-plots represent 
95% confidence intervals. No data were excluded from the analyses, unless specifically reported. 

2.5 Supplementary Material 
Supplementary Discussion 1 | Subjective strategies reported by participants 
Strategies used to activate motor units independently widely varied between participants. To 
qualitatively record their experience and strategies, a free-form text form was filled out by each 
participant at the conclusion of each of their training days. The majority of subjects incorporated 
forearm supination and elbow flexion into their strategies, though not often did these movements 
in isolation correspond to isolated activation of a particular selected motor unit. Instead, 
participants reported performing subtle combinations of flexion, extension, supination, and/or 
pronation to achieve independent motor unit control across the 3 motor units, often combined with 
some level of generating “tension” in their biceps. Imagining naturalistic movements also seemed 
to prove a useful strategy; some participants reported imagining “bringing [their] hand towards 
[their] chest”, “reaching for a cup”, or “raising [their] arm while contracting the biceps” to activate 
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particular motor units in isolation. One participant reported their strategy as “abstract contractions” 
of their biceps, reporting that they “didn’t know what [they] were doing” but “would try to just 
keep doing the same thing”. Participants reported that thorough exploration and careful selection 
of motor units during the exploration procedure was critical for center-out and speller task 
performance, though time spent in the exploration procedure should be balanced against limits on 
attention and muscle fatigue. 
 Strategies within a day remained mostly stable for participants; however, on some 
occasions, participants reported the amount of force required to activate a unit increased over time 
or that the motor units activated by particular strategies would switch or no longer activate. The 
subjective difficulty of activating a motor unit also occasionally modulated throughout a session, 
with some reports of “momentum” where activating a motor unit in subsequent trials was easier if 
it was just activated in the previous trial. Across days, consistency in strategies was variable: 
participants reported qualitatively different strategies across most days. Interestingly, the two 
participants with the highest center-out task performance had high consistency in their strategies 
across their last 3 days of training. 
 
 
Supplementary Video 1 | Center-out task demonstration. Available at 
https://iopscience.iop.org/article/10.1088/1741-2552/ac35ac/data. Video demonstrating one 
participant performing 7 trials of the center-out task that spanned all possible target categories (T1-
5, close/far, and rest targets). All videos and data seen within this video are synced in time. Left: 
top-down video of the participant performing the task; the sensorized orthosis on her right arm is 
visible, as well as the EMG grid on her biceps underneath it. Right: the user interface that the 
participant saw when performing the center-out task. Motor unit action potential indicators (blue, 
red, yellow) are visible at the top of the interface, in addition to the indicators for unselected units 
(“∞”) and unidentified threshold crossings (“-1”). Each of the three selected units have a 
corresponding auditory pitch that is audible when an action potential is detected. The middle 
displays the center-out task, where the tip of the black arrow corresponds to the cursor’s position 
according to a population-coding scheme and where trial targets are highlighted in blue. Bottom: 
real-time EMG and motor unit data, not visible to the participant. A representation of the 56-
channel bipolar derivations of the surface EMG is presented in the bottom left, where hues 
represent the smoothed, total energy in a particular channel in recently detected action potentials. 
The top row of the 2D grid represents the row of channels most proximal on the biceps, while the 
left column represents the most lateral, most external (i.e. towards the biceps long head) column 
of channels. Three bipolar EMG channels are selected for representation in the middle (faded gray, 
with rows highlighted with the appropriate motor unit colors). Overlaid on the raw EMG voltages 
in this middle plot are the timings of detected motor unit action potentials for the three selected 
units for the center-out task, with these units’ normalized firing rates displayed in the bottom right. 
These normalized firing rates are summed up along their three vectorial axes to yield the black 
arrow’s position in the center-out task. 
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Supplementary Video 2 | Speller task demonstration. Available at 
https://iopscience.iop.org/article/10.1088/1741-2552/ac35ac/data. Video demonstrating one 
participant performing the speller task, correctly typing 9 characters in 1 minute. All videos and 
data seen within this video are synced in time. Left: same as in Supplementary Video 1. Right: 
the user interface that the participant saw when performing the speller task. Motor unit indicators 
are the same as in the center-out task, described in Supplementary Video 1. The OPTI-II keyboard 
is visible in the middle of the interface, with the target sentence and pending letters (gray or 
blinking letters) visible above the keyboard. The black dot is the cursor whose velocity is 
controlled by the normalized firing rates of the 3 selected motor units. Cursor clicks are performed 
similar to the center-out’s T5 target, through simultaneous co-activation of all three motor units. 
Bottom: same as the bottom pane of Supplementary Video 1. 
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Chapter 3 
 
A neural model of proximity to reward 
 

Throughout learning, refinement of neural activity in cortex, a process termed “credit 
assignment”, is thought to underlie the refinement of behavioral actions leading to reward. While 
the striatum relates behavior to reward, it remains unclear how the striatum might relate cortical 
activity to reward to facilitate credit assignment. By rewarding specific motor cortical patterns 
while recording from cortex and striatum, we demonstrate that neural activity in the striatum 
forms an internal, continuous model of the proximity of behaviorally-relevant cortical activity to 
reward. Dorsomedial and ventral striatum played complementary yet distinct roles in this model, 
emerging as cortical activity consolidated over learning. Striatal activity thus constitutes a neural 
model of cortical progress towards reward, suggesting one mechanism by which the brain 
implements credit assignment to refine behavior. 
 

3.1 Main 
When we first begin learning a new skill, initial behavior is highly variable as we explore 

which actions lead to reward (R. M. Costa 2011). As behavioral variability decreases over training, 
neural activity patterns in cortex that relate to those behaviors simultaneously reduce in their 
variability (Ganguly and Carmena 2009; Lemke et al. 2019). The computational theory underlying 
this process of neural consolidation during skill learning is frequently termed the “credit 
assignment problem”: to learn, the brain must discover and subsequently bias task-relevant cortical 
neurons to execute intended behavior more consistently (Richards et al. 2019), despite 
reinforcement signals being both spatially non-specific (Hamid et al. 2021) and temporally 
delayed (Schultz et al., n.d.; Sutton and Barto 2018). While particular subcortical areas have been 
identified as necessary or sufficient for credit assignment (Koralek et al. 2012; Neely et al. 2018; 
Athalye et al. 2018), a full elucidation of the neural basis of skill learning remains elusive. 

As animals attempt to maximize reward over time throughout learning, a solution to the 
credit assignment problem inevitably involves the relationship between ongoing behavior, relevant 
cortical activity, and proximity to reward. To this end, myriad studies suggest the striatum as a 
strong candidate for a home for this relationship: the striatum is necessary for skill learning (Neely 
et al. 2018; Atallah et al. 2007; Yin et al. 2009), encodes reward-related quantities (Shin et al. 
2021), and is anatomically well-suited to bridge cortex and reward-relevant subcortical 
areas (Dudman and Krakauer 2016). Existing studies suggest different roles during learning across 
the dorsal/ventral axis of the striatum (Atallah et al. 2007; O’Doherty 2004) and across cell 
types (Atallah et al. 2014), predicting heterogeneity in striatal encoding. However, it remains 
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unclear how striatum might facilitate credit assignment to task-relevant cortical neurons and how 
such a role might differ between striatal regions. 

 
 

 
Figure 3.1. Rats learn a neuroprosthetic task driven by motor cortex units via an increasingly consistent neural strategy. 
(A) Targeted chronic implant trajectory, Neuropixels 1.0 probes in rats (n=7). Bottom: probe tracks via histological imaging 
confirming desired positioning. (B) Phases of daily training. (C) Example mean waveforms (shading ± 1 SD) of direct units and 
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decoder calculation. (D) Decoder targets and its mapping to auditory tone according to calibration period. (E) Task structure. (F) 
Example task data, displaying E1 (middle, blue) and E2 firing rates (bottom, orange) and trial initiation (yellow triangle), hit (green 
circle), and failure (red X). Top: each dot represents a spike. (G) Percentage of correct trials increased (p=0.003). Black line & 
shading is mean ± 1 SEM; dotted line regression line. (H) Mean successful trial length decreased (p=0.0003). (I) Hits per minute 
(max-normalized per-session) decreased after unlinking of reward from the task (left; p=0.02, n=5 sessions), whereas performance-
matched sessions increased (right; p=0.04, n=48 sessions). (J) Pairwise correlations of trial direct unit activity, averaged across all 
sessions in the days #1-4 (n=7 rats) and days #9-12 (n=6 rats). (K) Rank-1 variance-accounted-for (VAF) computation. (L) 
Regressions from linear mixed model (fixed effects: colored lines; per-day regressions incorporating random effects: gray lines) 
displaying changes in Rank-1 VAF both within-day (early vs late trial windows, indicated by endpoints of each line) and across-
day (x-axis). (M) Fixed effects (slopes) from linear mixed model. Across-day slope (Rank-1 VAF per day) 0.008, p=0.006; within-
day slope 0.042, p<0.0001; interaction term -0.0038, p=0.0004. For all, bars indicate 95% confidence interval. 
 

Taking advantage of a neuroprosthetic task paradigm (Koralek et al. 2012; Neely et al. 
2018; Athalye et al. 2018) in which observed neural activity causally determines behavior, we 
studied how the striatum models the relationship between task-relevant cortical activity and reward 
and how this encoding emerges over learning. We simultaneously recorded tens to hundreds of 
single units from the motor cortex, dorsomedial striatum (DS), and ventral striatum (VS) of 7 rats 
over 8-15 days of training (n=80 days total, Figure 3.1A-B, Supplementary Figure 3.1) using 
chronically implanted Neuropixels 1.0 electrodes (Jun et al. 2017). Each day, we divided four well-
isolated units located in the motor cortex, henceforth designated as “direct units”, into two 
ensembles, E1 and E2, and defined a simple decoder that computed the difference between the 
summed firing rates within each ensemble (“E1 - E2”, Figure 3.1C). The rat’s goal was to modulate 
cortical activity such that the decoder output exceeded either a positive (T1) or negative (T2) target 
(Figure 3.1D-F). This “hit” yielded either smaller or larger amounts of sucrose water reward, 
depending on target (Figure 3.1D-F). All cortical units other than direct units were designated as 
“indirect units”. During trials, an auditory tone with its frequency derived from the decoder 
provided external feedback to rats of task progress.  

Over learning, rats improved in both the proportion of successful trials (p=0.003; Figure 
3.1G) and the average length for successful trials (p=0.0003; Figure 3.1H). Unlinking reward from 
the task in a subset of high-performing, late-learning sessions significantly decreased performance, 
whereas normal sessions with matched initial performance increased in a similar time frame, 
confirming goal-directed behavior. (Figure 3.1I). Additionally, while differing reward amounts 
were provided at the two decoder targets, rats did not prefer targets based on reward amount, 
direction, or calibration bias, but instead preferred whichever target they initially achieved, a 
strategy correlated with higher performance and with learning (Supplementary Figure 3.2). To this 
end, further analysis in this study considers only the successful trials for the rat’s preferred target 
on that day (average of 86.8% successful trials per session achieved the same target), unless 
otherwise noted. 

We then investigated rats’ neural strategies by analyzing activity of the direct units 
surrounding target achievement. Strong trial-to-trial correlations in direct unit activity emerged 
bylate training (Figure 3.1J), suggesting rats converged to a single consistent strategy each day. 
Quantifying consistency via principal component analysis (Figure 3.1K), direct units’ activity 
increased in consistency both across- and within-day, plateauing in late training (Figure 3.1K-M). 
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Thus, rats progressively refined rewarded cortical activity patterns, likening such cortical activity 
to that of skilled movements (Lemke et al. 2019; Peters et al. 2014), and echoing findings from 
previous neuroprosthetic studies (Athalye et al. 2018; 2017; Ganguly and Carmena 2009). Hence, 
this neuroprosthetic task established a suitable framework to study credit assignment to cortical 
units. 
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Figure 3.2. Striatal units develop varied and stereotyped behavior surrounding task hit. (A) Mean firing rates (z-scored) of 
reward-responsive striatal units during the 2 seconds preceding and following a task hit (white dotted line). Top block: up-
modulating units; bottom block: down-modulating units. (B)-(G) Example reward-responsive striatal units with narrow (B-C-E) or 
broad (D-F-G) modulations. Top: raster spike plot, time-locked to hit (gray dotted line in center). Bottom: mean firing rates of the 
same unit (blue; shading 1 SEM) overlaid on mean decoder value (gray dotted line). (H) Distribution of peaks (left) and widths 
(right) of the mean firing rates for all significantly modulating dorsal (red) and ventral (blue) striatal units. Peaks (p<0.0001) and 
widths (p<0.0001) differ significantly. (I) Change in relative proportion of significantly modulating units across days (increase, 
p=0.004). 
 

We then asked how individual units in striatum responded throughout this task. Striatal 
units (n=4633) exhibited widely varied, yet stereotyped, response profiles according to task events. 
Many striatal units were “reward-responsive” (n=1193/3943 in dorsal striatum, n=361/690 in 
ventral striatum), characterized by a significant positive or negative modulation in the unit’s mean 
firing rates in the seconds before and after hit (Figure 3.2A-G). These units’ firing rates modulated 
across a wide temporal range. Such modulation was not visible in the same units during simulated 
hits within the preceding calibration period (Supplementary Figure 3.4). DS reward-responsive 
units, on average, modulated both earlier and quicker than those in VS (Figure 3.2H). Additionally, 
the relative proportion of reward-responsive units increased over days, with roughly twice the 
proportion in ventral versus dorsal striatum (Figure 3.2I). These results indicate a broad 
heterogeneity among striatal units suggesting different, emergent encodings during the task.  
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Figure 3.3. Striatal task-locked activity is independent of external feedback and sensitive to reward availability. (A) Normal 
task structure illustration. (B) Trial-wise template correlation (“Δr”) illustration. (C) In particular sessions, audio was unlinked 
from cortical activity. Right: Δr in the 5 (top) and 20 (bottom) trials after unlinking audio. (D) Catch trials unlinked both audio and 
task output. Right, top: Δr for ends of catch trials. Right, bottom: Δr for cortical hits performed during catch trials, despite no reward 
given. (E) Δr for instances at >95% target but no hit. (F) Δr for hits outside of a trial, despite no reward. (G) In particular sessions, 
reward was unlinked. Right: Δr in the 5 (top) and 20 (bottom) trials after unlinking reward. For all, n.s. p > 0.05; * p < 0.05, ** p 
< 0.01, *** p < 0.001, **** p < 0.0001. 
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In order to ascertain what this stereotyped activity within striatum might encode, we probed 
the relationship of these reward-responsive striatal units to the task’s two primary means of 
external feedback: the auditory tone mapped to the decoder output and reward. To quantify 
changes in striatal representation during particular scenarios deviating from normal task structure 
(Figure 3.3A), we compared each unit’s firing rates to the scenario’s preceding trials’ mean firing 
rates via correlation and subsequent normalization (“Δr”, Figure 3.3B; Methods). 

In a subset of late, high-performing days (n=7 days), we unlinked the auditory tone from 
the decoder output in all remaining trials; instead, auditory tone frequencies repeatedly swept a 
frequency range (Figure 3.3C). However, reward remained dependent on the decoder output 
reaching either target. Strikingly, after unlinking the audio, we observed no significant changes in 
performance (Supplementary Figure 3.5). Concomitantly, we observed no changes in striatal 
activity nor in direct units’ activity, with representation even growing more consistent in dorsal 
striatum after 20 trials (Figure 3.3C). In addition, we analyzed striatal activity during catch trials, 
in which the rat’s behavior was entirely decoupled from the task: the auditory tone linearly ramped 
across the full frequency spectrum over 10 seconds, always ending in a reward regardless of the 
rat’s neural activity (Figure 3.3D). At the end of these catch trials when reward was given, striatal 
activity significantly differed relative to the prior successful trials (subplot “end” in Figure 3.3D), 
even for catch trials occurring during earlier or more poorly-performing periods (Supplementary 
Figure 3.6). Additionally, despite not resulting in a reward, rats still occasionally performed a 
cortical hit (i.e., when the decoder output reached a target) during catch trials; striatal activity 
during these catch-trial hits did not significantly differ (Figure 3.3D). Taken together, these results 
demonstrate that striatal activity is not dependent on any external measure of task progress within 
a trial and does not encode reward anticipation or reward retrieval. 

To assess striatal activity’s relationship to reward, we then probed two additional scenarios 
in which cortical pattern execution did not lead to reward achievement. “Near-miss” cortical 
activity, i.e. activity that led to decoder output close to, but not sufficient for, achieving a reward, 
led to no significant changes in striatal representation (Figure 3.3E). Conversely, when a cortical 
hit that would typically grant reward was executed outside of a trial, we observed significant 
differences in striatal representation relative to preceding successful trials (Figure 3.3F), even for 
those hits where the activity of direct units was more similar to preceding trials (Supplementary 
Figure 3.7). Finally, to probe the sensitivity of this striatal representation to devaluation, in a subset 
of late, high-performing days (n=5 days), we stopped delivering the water reward as a result of 
cortical hits (Figure 3.3G). As mentioned above, task performance significantly decreased in the 
minutes following this unlinking (Figure 3.1I). Within twenty trials following the unlinking of 
reward, both dorsal and ventral striatal representations significantly changed. These results show 
that this striatal representation is dependent on the link between cortical activity and reward.  
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Figure 3.4. Striatum heterogeneously models both the proximity of cortical activity to reward and the changes of that 
proximity. (A) Top: Cross-area activity between striatum and motor cortex for unshuffled data (light gray) or shuffled data (dark 
gray). Bottom: coefficient of determination for cross-area activity for each session (light thin lines) or in average (black) when 
cross-decomposing unshuffled and shuffled motor cortical data (left, p=1e-32 different) with striatal data and when cross-
decomposing striatal data with direct units’ data vs indirect units’ data (right; p=2e-11 different). (B) Example of the “neural cursor” 
and its time derivative, “neural velocity” within the 2 seconds preceding cortical hit. (C) Tuning to neural cursor (left) or neural 
velocity (right). Only units deemed significantly modulating are shown. Units are ordered by max bin. (D) Population model 
utilized to analyze encoding strength of the neural cursor. Actual (blue) and predicted (green) cursor values (shading SEM). (E-G) 
For each section: left: regressions from linear mixed model of cross-validated, unit-normalized R2 for various subgroups of units 
on day #1 and day #12. Right: fixed effect slopes (in log-transformed R2, see Methods) for neural cursor encoding; positive slopes 
indicate increases in encoding strength. Faded gray dots indicate random effects, when applicable. Third section: difference 
between DS vs VS encoding strength per unit recorded. Values farther right indicate a stronger relative encoding for VS than DS; 
dotted line indicates no difference. Putative cell types for each row are: medium spiny neurons (MSN), fast-spiking interneuron 
(FSI), and tonically active neurons (TAN). (H-K) Same as (D-G) except with neural velocity, instead of neural cursor. For all, * p 
< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, otherwise not indicated p > 0.05; bars represent 95% confidence intervals. 
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After interpreting these findings concerning reward and independence from external 
feedback in the context of a cortically-driven task, we then focused on the reward-related 
relationship between cortical activity and the striatum. Suggesting a specific focus on the cortical 
activity driving behavior, we found statistically significant correlations on the shared latent 
variable between motor cortex and striatum, with direct units’ activity correlated more strongly to 
striatum than indirect units’ activity at both single-unit (Supplementary Figure 3.8) and population 
(Figure 3.4A) levels. 

We then considered two particular reward-related quantities derived from direct units’ 
activity as candidates for striatal encoding. First, by utilizing a neuroprosthetic task, we a priori 
define the true relationship between cortical activity and reward via the decoder. Thus, the 
projection of firing rates of direct units onto this decoder subspace, termed the "neural cursor" 
here, directly represents the proximity of cortical activity to reward (Figure 3.4B). Secondly, 
seeking a continuous analog of action-related measures from more typical motor tasks (Jin et al. 
2014; Klaus et al. 2017; Sales-Carbonell et al. 2018), we computed the time derivative of the neural 
cursor, termed “neural velocity” here, to assess encoding of the change in proximity to reward of 
task-relevant cortical activity (Figure 3.4B). Many individual striatal units displayed consistent, 
significant tuning to the neural cursor and neural velocity spectrum (Figure 3.4C). Seeking to 
interrogate population-level effects, we then analyzed encoding of neural cursor and velocity 
within populations of striatal units, taking the cross-validated coefficient of determination (R2) 
from a ridge regression model as a measure of encoding strength (Figure 3.4D). 

Considering all striatal units, we found a strong encoding of the neural cursor within the 
striatum across all days of training, with a significant increase in encoding strength within each 
day of training (p=0.0006; Supplementary Figure 3.9). To investigate specific effects of striatal 
regions and putative cell-types (Supplementary Figure 3.10) on the encoding of the neural cursor 
we repeated population decoding analysis across different subsets of striatal units. We observed 
heterogeneous trends dependent on both cell-type and region (Figure 3.4E-G). In particular, both 
putative medium spiny neurons (MSNs, Figure 3.4E) and putative fast-spiking interneurons (FSIs, 
Figure 3.4F) in the VS exhibited significant within-day increases in encoding strength (p<1e-10) 
and significantly stronger encoding than their DS counterparts (p<0.002). Regarding neural 
velocity, we observed moderate encoding strengths (Figure 3.4H; Supplementary Figure 3.9). 
However, in contrast, we observed strong across-day increases in encoding strength (p<1e-4), with 
no significant changes within-day (p=0.38; Supplementary Figure 3.9). Repeating analysis across 
cell-types and regions (Figure 3.4I-K), DS MSNs exhibited across-day increases in neural velocity 
encoding (p=0.025) and significantly stronger encoding than that of their VS counterparts 
(p=0.0002; Figure 3.4I). Finally, neural cursor and velocity encodings were independent of 
auditory feedback but dependent on reward (Supplementary Figure 3.11) and were stronger than 
time-related alternative hypotheses (Supplementary Figure 3.12). All taken together, these data 
provide evidence that the striatum heterogeneously and simultaneously encodes both the proximity 
of task-relevant cortical activity to reward and its change over time. 
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 Ventral striatum plays an essential role in enabling stimuli to tune associations between 
behavior and reward, as VS lesions impair particular forms of learning in instrumental 
conditioning tasks (Atallah et al. 2007; Nicola 2010; Rothenhoefer et al. 2017; V. D. Costa et al. 
2016). However, while prior studies (van der Meer et al. 2010; McGinty et al. 2013; Atallah et al. 
2014) congruently show VS firing rates can modulate as animals approach reward, they do not 
differentiate whether such VS encoding represents stimuli or the rewarded behavior that stimuli 
might predict. By conditioning a neural pattern, rather than behavior, and subsequently unlinking 
external stimuli, we provide strong evidence that VS forms an internal representation of the 
proximity of task-relevant cortical activity to reward, not of stimuli. These results thus shed light 
on the precise role of VS during learning. Such an internal model may arise from integration across 
VS’s highly-convergent inputs (Yoshida et al. 2020) from hippocampus (Aronov et al. 2017), 
amygdala (V. D. Costa et al. 2016), and prefrontal cortex (Aoki et al. 2019), each likely containing 
distinct, and perhaps even competing, information (Floresco 2015). 

Accurate internal encoding of proximity to reward engenders accurate reward-prediction 
errors critical to learning (Schultz 2019). We observe remarkably strong neural cursor encoding in 
VS, a rapid change in VS representation immediately following task devaluation, and significant 
within-day increases in neural cursor encoding strength. An accurate, updateable encoding of 
reward proximity underlies temporal credit assignment in computational models of reinforcement 
learning (Sutton and Barto 2018), and thus VS may manage temporally delayed reinforcement in 
the brain. In particular, via strong bidirectional connections with the ventral tegmental area 
(VTA) (Athalye et al. 2018), this encoding may facilitate appropriate dopamine release at the time 
of reward across both striatum and cortex, known to be critical for skill learning (Athalye et al. 
2018; Hamid et al. 2021). 

Shifting focus to dorsal striatum, our stereotyped patterns of dorsomedial striatal units in 
response to target achievement echo task-locked firing rate modulations observed in prior 
neuroprosthetic (Neely et al. 2018), navigation (Thorn et al. 2010), and motor (Kupferschmidt et 
al. 2017) tasks. In conjunction with dorsolateral striatum and dopamine, task-locked dorsomedial 
activity is hypothesized to guide selection and shaping of actions by coincident activation with 
cortical activity that leads to the desired action (Kupferschmidt et al. 2017; Klaus et al. 2019). The 
assembly of shorter, behavioral “syllables” into coarser behavioral actions is mediated by the 
striatum (Markowitz et al. 2018), implying this striatal influence in goal-directed action selection 
may be continuous as an action unfolds (Jin and Costa 2010; Sales-Carbonell et al. 2018). 

Our results show DS forms an internal model of the cortical activity responsible for 
changing the animal’s proximity to reward. In congruence with this theorized role in action 
selection and shaping, DS may leverage such a model to continuously provide immediate feedback 
to the motor cortex via downstream thalamic circuits (Aoki et al. 2019) to quickly positively or 
negatively bias unfolding cortical activity. Critically, a mapping of the neural velocity would 
provide more immediate feedback relative to that of the neural cursor, reminiscent of the 
responsiveness benefits of derivative-based controllers widely utilized in control theory (Nise 
2015). Such a mechanism can then underlie structural credit assignment: by dynamically filtering 
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cortical activity into desired and undesired activity – i.e. activity bringing the animal closer and 
farther from reward, respectively – dorsomedial striatum can participate in a positive-feedback 
recurrent loop biasing those cortical neurons leading towards reward (Hunnicutt et al. 2016). These 
findings of context and reward sensitivity within dorsal striatum seemingly contrast with those of 
a recent study, which showed invariance to task context in the dorsal-striatum-cortex 
relationship (Peters et al. 2021). However, these studies’ neural recordings vastly differ in spatial 
scales, suggesting task context selectively affects the transfer function between particular cortical 
and dorsal striatal neurons without affecting broader functional connectivity. 

Our results elucidate the neural circuits underlying goal-directed learning by 
demonstrating an internal, continuous model of the proximity of cortical activity to reward 
within the striatum, with differential representation across dorsal/ventral region and cell types. 
Thus, we provide evidence of a dynamic and heterogeneous coupling between motor cortex and 
striatum that may participate in the brain’s solution to the credit assignment problem. 

3.2 Materials and Methods 
Animals 
All rat experiments were performed in compliance with the regulations of the Animal Care and 
Use Committee at the University of California, Berkeley. Singly housed, male Long-Evans rats on 
a 12h light/dark cycle weighing 200-300 g were used for the experiments. All rats that had at least 
4 well-isolated units in the motor cortex performed the neuroprosthetic task for as many days as 
possible, until no more motor cortex units remained or until sufficient days of training elapsed. 
Only rats (n=7) that performed at least 8 days of the task were included in analysis. In 1 rat, 2 days 
in late training (days #14 and #17) were omitted from analysis due to a different neuroprosthetic 
task structure attempted. Otherwise, no rats, trials, or sessions were excluded from analysis. 
 
Implant Construction 
All rats were chronically implanted with Neuropixels 1.0 probes, mounted within a custom-
designed, lightweight 3D-printed enclosure containing both the probe and the Neuropixels 
headstage PCB. This enclosure added onto a prior study’s design (Luo et al. 2020, 202) and 
enabled quick and stress-free probe connections by chronically mounting the headstage and 
utilizing snap-fit joints to connect the headstage PCB. A transport-friendly container utilized for 
safekeeping and for sterilization was designed to secure the probe mounted within its enclosure. 
Explantation of probes was possible with this implant. Construction was largely similar to that of 
Luo et. al (Luo et al. 2020); detailed construction steps can be found alongside the 3D models of 
this study’s head-mounted connector. 
 
Rat Surgery 

Targeted stereotactic coordinates were 1.4mm anterior to bregma and 2mm lateral from 
midline, though exact implant coordinates varied based on cortical vasculature and removal of 
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dura mater. Probes were lowered as deep as possible, up until approximately 8.5mm deep from the 
cortical surface. 

Fully assembled probes within their enclosures were sterilized with ethylene oxide gas 
sterilization. Immediately before surgery, probes were maximally lowered into an excess quantity 
of lipophilic dye for histological probe tracking (Vybrant DiI Cell-Labeling Solution, 
ThermoFisher Scientific, Waltham, MA) repeatedly for several seconds. 
 After approximately 1 week of manual handling, rats of age 8-9 weeks old, 200-300g were 
anesthetized with isoflurane (0.5-3%), set in a stereotactic frame (Kopf, Tujunga, CA, USA). 
Artificial tears were applied, and a closed-loop heating pad utilized to maintain 35°C (RightTemp, 
Kent Scientific Corporation, Torrington, CT). Dexamethasone (0.75 mg/kg) and buprenorphine 
(0.05 mg/kg) were administered subcutaneously for anti-inflammation and analgesic properties. 
Saline (10 ml/kg) was administered subcutaneously for hydration. Bupivacaine (1.5 mg/kg, diluted 
further by 50% with saline) was administered locally to the surgical site to provide secondary local 
anesthesia. Hair was cleared with an electric shaver and fully removed with brief application of 
hair-removal product. After verifying surgical levels of anesthesia, rats were secured in blunted 
ear bars, and the surgical site was sterilized with isopropyl alcohol and chlorhexidine. A midline 
incision was then made with a scalpel, and skin retracted with Alm retractors (Fine Scientific 
Tools, Foster City, CA). A spatula and forceps were used to clean the skull of all overlying tissue 
while keeping the skull moist with sterile saline kept on ice. Additionally, hydrogen peroxide was 
used to aid removal of remaining tissue and to aid in drying the skull. A #15 blade was used to 
gently yet firmly scrape the surface of the skull in a cross-hatch pattern to increase roughness of 
the skull for improved eventual adhesion of dental cement. The skull was fully dried and all 
bleeding contained. 
 6-8 1mm diameter holes were drilled around the perimeter of the skull utilizing a custom-
made impedance-sensing automated drill system which stopped precisely at the detection of dura 
mater and/or CSF, based loosely on the system of another study (Pak et al. 2015). M1x2mm screws 
(McMaster Carr, Robbinsville, NJ) were then firmly screwed into each hole until dura was just 
touched. A rectangular craniotomy of 2mm x 2.5mm centered around the target implant site was 
then drilled using the same automated drill system, which enabled manual specifications of 
craniotomy depths and shapes. The perimeter of the craniotomy was repeatedly drilled until the 
piece of skull could be excised gently with minimal pressure. During excision of skull, constant 
irrigation with cold saline minimized sticking of dura to excised skull pieces. Once the dura mater 
was exposed, a 30G needle with its tip bent at 45 degrees was utilized in conjunction with angled 
forceps (Dumont #5/45 forceps, Fine Scientific Tools) to very gently cut and remove patches of 
dura mater in areas clear of large vasculature. Bleeding frequently occurred despite utmost caution; 
in these cases, gelfoam soaked with cold saline was gently moved over bleeding sites until bleeding 
stopped. Only the minimal dura was removed to enable implantation of the probe clear of surface 
vasculature. A piece of saline-soaked gelfoam was then placed in the craniotomy space, and saline 
periodically applied as necessary to ensure the exposed cortex was hydrated. 
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 The skull was then redried completely. The probe enclosure was then mounted 
stereotactically (Model 1766-AP Cannula Holder, Kopf) and straightened appropriately. The 
enclosure was moved near to its desired implant site, and the ground wire was connected by 
repeated wrapping around 2-3 skull screws. Ground wire/screw connectivity was confirmed with 
impedance tests between the screw and the rat’s paw. After re-ensuring the skull was completely 
dry, C&B Metabond (Parkell, Edgewood, NY) was used to completely cover the exposed skull, 
including all skull screws and the ground wire. After the cement dried, gelfoam within the 
craniotomy was removed, and the probe tip was lowered to the cortical surface using a 25x zoom 
surgical microscope. Utilizing custom-built software controlling a vertically-mounted linear 
translation stage (ThorLabs NRT100/M, Newton, NJ) mounted on top of passive vibration 
isolation legs to minimize vibration (ThorLabs PWA075), the probe was then carefully and slowly 
lowered to minimize damage to brain tissue and minimize eventual glial encapsulation of the 
probe. The first 1mm of insertion was lowered at 1-2 microns per second, the next 5mm of insertion 
was lowered at 4 microns per second, and the remaining insertion was performed at 1-2 microns 
per second; saline was periodically applied to keep cortex hydrated, and the surgical table was 
minimally touched to reduce induced vibrations. When the probe was within 1mm of its final 
depth, a small quantity (~1-2 microliters) of soft silicone elastomer (DOWSIL 3-4680, Dow) was 
carefully injected with a micropipette to seal the craniotomy while minimizing vibrations to the 
surgical table; too much elastomer could lead to overflow onto the skull and prevent proper sealing 
with cement in subsequent steps. The probe was then lowered to its final, maximal depth (<= 
8.5mm or just before the implant touched the skull). We then applied a viscous dental composite 
(Absolute Dentin, Parkell) to seal the craniotomy and fix the implant in place to the skull. Once 
the viscous cement completely dried (~4 minutes), less viscous dental cement (Ortho-Jet, Lang 
Dental, Wheeling, IL) was applied liberally around the implant and skull; the loose skin 
surrounding the implant was used to gently mold dental cement in order to ensure smoothness and 
improve surgical time. Rats were given meloxicam (2 mg/kg), another supplement of 
dexamethasone (0.2 mg/kg), and saline (10 mL/kg) subcutaneously, and antibiotics were liberally 
applied. Rats received a taper schedule of dexamethasone (1.0 mg/kg 2 days, 0.5 mg/kg 1 day post-
surgery), and were allowed five days post-surgery to recover before experiments began. 
Antibiotics were applied daily; rats that did not recover weight by five days post-surgery were 
allowed extra time to recover as needed. 
 
Electrophysiology 

Unit activity from Neuropixels 1.0 probes (Jun et al. 2017) was recorded and visualized 
via OpenEphys GUI (Siegle et al. 2017) (Open Ephys), and all neural data was streamed to disk. 
Custom software written in Python and C++, spanning both standalone services and OpenEphys 
plugins, enabled real-time readout of spikes of selected units. Services were networked with a 
high-throughput, low-latency streaming framework with C++ and Python bindings, River (Botros 
2021). 
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 Each day, 2 2-minute baseline sessions were first recorded in order to determine the 
enabled channels for the Neuropixels 1.0 probe; one session captured the deepest 384 channels, 
and another session captured the next-dorsal block of 384 channels. We then utilized Kilosort2 
(www.github.com/MouseLand/Kilosort2) to sort each session individually, from which the 384 
channels capturing the most units across the probe length were selected via an optimization 
algorithm (Choi et al. 2020). A third 2-minute baseline session was then performed with this final 
channel configuration and was sorted via Kilosort2. 

Utilizing a custom-built GUI, 4 well-isolated units within the motor cortex were selected 
from these Kilosort2 results as “direct units”, with preference given to selecting units with similar 
waveforms, depths, and/or firing properties as previously-selected direct units for that rat. In cases 
where similar units were not obviously available, direct units were chosen from similar depths 
within the motor cortex as preceding days. All rats exhibited a gap in well-isolated units beginning 
between 2.0mm and 2.5mm from the cortical surface, putatively corresponding to the dorsal edge 
of white matter tracts of the corpus callosum; direct units were chosen strictly dorsal to the start of 
this gap. Post-mortem histology (described below) confirmed the location of direct units within 
the motor cortex. 

We then desired to adopt Kilosort2-identified spikes for our 4 selected direct units into a 
methodology commonly used for online spike sorting: classification via ellipsoids within a PCA-
determined space of waveforms of threshold crossings. To do this, for each selected direct unit, 
we identified an appropriate threshold for each relevant channel based on that channel’s RMS 
noise in order to perform threshold-crossing extraction. From these threshold crossings, we then 
identified and subsequently projected these voltage waveforms into a 3-dimensional space via 
PCA. Particular threshold crossings corresponding to Kilosort2-identified spikes then formed the 
putative “ground truth” for online sorting, and a best-estimate ellipsoid in PC-space was 
constructed via stochastic gradient descent to maximize accuracy (Rossant et al. 2016). The 
parameters for the PCA projection and subsequent ellipsoid classification were then transferred to 
OpenEphys for online spike identification. For subsequent sessions that required real-time online 
sorting, an OpenEphys program was used that processed data online in similar fashion to Kilosort2: 
common median referencing across all channels, followed by a 150 Hz, 3rd order highpass filter. 
Online-identified spikes for each of the 4 direct units were then streamed out from OpenEphys in 
real-time via River. Firing rates were then continuously computed via these streamed spikes in 
100ms bins and smoothed using a running average of 10 bins (1 second). Frequencies for the 
auditory tone were simultaneously computed as well, according to the thresholds set during the 
calibration period, described below. 

In a subset of rats (n=4), improvements were enacted to increase the agreement between 
online-identified spikes and Kilosort2-identified spikes for the (putatively) same unit within a 
session, in cases where neural recordings were not fully stationary within a day. Though not 
common, some direct units tended to appear to slowly drift along the dorsal/ventral axis, i.e. along 
the length of the probe. To combat this, instead of a single-channel’s 3 dimensions in PC space, 
each unit was identified using up to a 15-dimension ellipsoid, with 3 PC dimensions originating 
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from each of 5 channels stacked along the dorsal/ventral axis. Then, every 6 minutes with a 3-
minute overlapping window, PC scores of all threshold crossings on a unit’s channels were fit with 
a Gaussian mixture model (sklearn.mixture.GaussianMixture) with a number of components 
chosen to minimize the Akaike Information Criterion (AIC). The cluster containing the highest 
proportion of online-identified spikes became the new “ground truth” for that unit’s online sorting, 
and a new best-estimate ellipsoid was fit to this cluster and formed the new basis for identifying 
spikes for that given unit online. This updated clustering was only accepted if it had at least 70% 
agreement with the prior sorting. This methodology thus enabled tracking of slow changes in 
neural recordings across channels. 
 
Behavioral Task 
Upon recovery from surgery, rats were deprived of water for 24 hours before initiation of 
experiments. During training, rats only received access to water during the behavioral task, unless 
supplemental water was needed to maintain 90% body weight. After initial sorting and selection 
of direct units were performed as described above, rats had a 15-minute calibration period, in 
which they freely moved around the cage and were passively given water rewards paired with a 
reward tone every 45-105 seconds (uniformly random). After 15 minutes, the calibration period 
data was used to determine assignments of the 4 direct units into ensemble #1 (E1) and #2 (E2), 
the positive (T1) and negative (T2) neuroprosthetic targets, a baseline value, and the mapping of 
decoder output to the frequency of the auditory tone. The goal of calibration was to find the set of 
parameters leading to a success rate during calibration of 35-40% of trials. 

In order to set these parameters, we simulated the task performance of the rat during this 
15-minute calibration period for all 6 combinations of E1 and E2 and across a sweep of thresholds 
for T1 and T2. In particular, T1 and T2 values were selected based on exhaustive search that 
minimized the difference between simulated and goal rates of success (35-40%). E1 and E2 
assignments were then selected as the assignments that yielded a success rate close to the goal, had 
subjectively fair thresholds, and were balanced between T1 and T2 rewards. The baseline was set 
as the mean E1 - E2 value during calibration. The auditory tone’s frequency was set according to 
a 2nd-order polynomial fit interpolating decoder values of T2, 0, and T1 to frequencies 1, 8, and 
15 kHz, respectively. These frequencies fall within the auditory spectrum of the rat. The task 
structure used during simulations was identical to the true task structure, and was as follows (and 
as illustrated at a high-level in Figure 3.1). 

First, firing rates were first computed using spike counts in 100ms bins and smoothed with 
a 1s rolling average filter. Then, for each time bin, decoder output was computed as 

 
decoder = (E1 #1 firing rate) + (E1 #2 firing rate) 
- (E2 #1 firing rate) - (E2 #2 firing rate) - baseline 

 
Note that, elsewhere in this study, we might refer to the decoder as E1 - E2 as shorthand for the 
above full formula for the decoder. Trials were initiated once the decoder output crossed zero at 
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least once between trials and once at least 1 nose-poke was detected between trials. During a trial, 
if the decoder output exceeded either T1 or T2 for 1 bin, the trial was declared successful; an 
extended tone with frequency matching that target’s frequency was played, and reward was 
delivered simultaneously. Reward was 30% sucrose water. Each rat was randomly assigned a 
target to be more highly rewarded, where rewards for this target yielded three times as much water 
as the other target; this assignment was held constant for the duration of experiments for that rat. 
If 30 seconds elapsed after trial initiation without decoder output exceeding either T1 or T2, the 
trial was declared failed, and a white noise sound played. After either reward delivery after a 
success or a white noise tone after a failure, an inter-trial period of at least 3 seconds was enforced, 
after which the animal was free to initiate another trial. The auditory tone played continuously 
during a trial and was muted when no trial was ongoing. Every 20 trials (regardless of success or 
failure in those 20 trials), catch trials were performed, in which the auditory tone’s frequency either 
ramped from 1 to 15 kHz or 15 to 1 kHz over 10 seconds regardless of the rat’s direct unit activity, 
after which the animal would hear a reward tone and receive a reward (Figure 3.3D). Each day’s 
session would end after approximately 55 minutes of task time or if the animal reached satiety and 
stopped initiating trials. 
 Additionally, in a subset of high-performing (>= 75% trial success rate in a trailing 10 
minute window and <= 6 mL water consumed), late-learning (day >= 8) sessions, we unlinked 
either the auditory tone (Figure 3.3C) or the reward (Figure 3.3G) from cortical activity for the 
remainder of that day’s trials. In the case of the former, linear sweeps of frequencies from the 
lowest (1 kHz) to the highest (15 kHz) ends of the spectrum were performed over a period of 10 
seconds and repeated; otherwise, the task structure remained identical. In the case of unlinking 
reward, we instead delivered a reward every 45-105 seconds, approximately matching the rat’s 
calibration success rate (~35-40%); otherwise, the task structure remained identical. 
 
Explanation & Histology 
After the completion of experiments, rats were first anesthetized with isoflurane in preparation for 
explantation. After surgical anesthetic levels were confirmed, rats were fixed in a stereotactic 
frame. Screws securing pieces of the 3D-printed implant were loosened, and the headstage PCB 
was removed and disconnected. After ensuring vertical alignment to minimize damage to the 
probe, the same motorized system used to implant the probe was used to gently remove the probe 
from the implant and brain. Upon successful explantation, the probe was immediately soaked in 
10% Tergazyme solution for 24 hours. After this, the probe was soaked in deionized water for 5 
minutes, and then soaked in isopropyl alcohol for 1 minute. In cases where residual tissue or 
elastomer remained on the probe, the probe was cleaned via an ultrasonic cleaner (CREWORKS) 
filled with isopropyl alcohol, as residual matter would interfere with subsequent recordings. For 
stuck-on elastomer, the probes were soaked in elastomer solvent (DS-2025, Dow) for 18-24 hours, 
followed by a 10-minute soak in DI water and then another minute in an ultrasonic cleaner with 
isopropyl alcohol. 
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Immediately after explantation of the probe, rats were injected with sodium pentobarbital 
and transcardially perfused with PBS followed by 4% paraformaldehyde. Brains were removed 
and post-fixed in 4% paraformaldehyde overnight at 4°C, after which they were stored in PBS at 
4°C. When ready, brains were then transferred to 15% sucrose/PBS solution until they sunk, and 
then a 30% sucrose/PBS solution until they sunk. Brains were then mounted and sliced via a 
cryostat into coronal slices. Brain slices were then serially imaged with DAPI and DsRed. Images 
were preprocessed to adjust for orientation and contrast via manual scripts. Images were then 
aligned in three dimensions to the Waxholm Space Rat Atlas (Papp et al. 2014) via the QuickNII 
tool (Puchades et al. 2019). Probe tracks within each slice were programmatically segmented via 
ILastik (Berg et al. 2019), 3D coordinates of probe tracks spanning each brain’s slices were 
extracted via Nutil (Groeneboom et al. 2020), and linear probe tracks were finally reconstructed 
from these 3D point clouds via custom software. 1 rat’s brain was unable to be imaged successfully 
due to technical issues during the slicing process. 
 
Analysis & Statistics 
Analyses were performed in Python 3.8 (https://www.python.org/) with custom-written scripts 
utilizing publicly available software packages, including numpy (Harris et al. 2020), 
scipy (Virtanen et al. 2020), pandas (Reback et al. 2021), and scikit-learn (Pedregosa et al. 2018). 
Data pipelines were constructed utilizing Apache Airflow (https://airflow.apache.org/), and the 
majority of data files were stored in the Parquet file format (https://parquet.apache.org/), a cross-
platform, high-performance columnar data format. 
 Unless explicitly noted otherwise, in all figures, n.s. p > 0.05; * p < 0.05, ** p < 0.01, *** 
p < 0.001, **** p < 0.0001. 
 Additionally, where indicated for use below, linear mixed models (LMMs) were 
implemented via the pymer4 package (Jolly 2018, 4). Each model was inspected for 
homoscedasticity in residuals via the Het-White test or visually. Normality of residuals was not 
strictly enforced, as LMMs are relatively robust to non-normality in residuals (Schielzeth et al. 
2020); instead, kurtosis and skew of residuals of all models were both confined to be less than 3.0 
and are stated as needed per model below. Confidence intervals were computed via Wald 
estimates. 
 
Behavioral Analysis 
Behavioral analysis across sessions focused on percent of successfully completed trials (“% 
correct”, Figure 3.1) and the average length of successful trials (“Mean hit time”, Figure 3.1), 
considering trials of all targets. Analysis was done with linear regression (Figure 3.1). To study 
within-session behavioral changes after the unlinking of reward (Figure 3.1I) and unlinking of 
audio (Supplementary Figure 3.7), we utilized the number of hits per minute, a measure that 
incorporated both the length of trials and the time the rat took to initiate trials. We took the mean 
hits/min in the 10 minutes preceding and the 10 minutes following the start of the first unlinked 
trial; statistical significance was tested via a paired t-test. 
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 Within each day, the rat preferred one target more than the other (Supplementary Figure 
3.2). The preferred target for that day was considered to be the target that had more successful 
trials for that day. Unless explicitly noted otherwise, all analysis described below utilizes 
successful trials to the rat’s preferred target for that day. 
 
Data Analysis: Preprocessing into Firing Rates 

Each day’s session was first sorted via Kilosort2. All unit waveforms were manually 
curated via Phy; units subjectively determined to be noise were excluded. Of these non-noise units, 
only high-quality units were then utilized for the remainder of this study’s analysis, as defined by: 
having a mean firing rate of greater than 0.2 Hz both globally and within the 4 seconds centered 
on the end of each successful trial, having less than 50% ISI violations, less than 50% missing 
spikes due to low SNR, and a trough in the unit’s mean waveform occurring temporally before its 
peak to exclude axonal spikes (Deligkaris et al. 2016). Additionally, in 1 rat, during surgery it was 
noted the probe was angled relative to the brain during insertion, and histological analysis 
confirmed the ventral portion of the probe did not intersect with the ventral striatum; all units in 
this ventral portion of this particular probe were excluded from analysis. Finally, the units and 
spikes identified online as direct unit activity were merged with these Kilosort2-determined units 
and spikes. For the remainder of the analysis, all “direct unit activity” corresponds to the 
units/spikes determined online. 

Spike counts for each unit were binned at 20ms resolution and divided by bin size to yield 
(unsmoothed) firing rates. These firing rates were then extracted time-locked to the end of each 
trial. Owing to the broader binning/smoothing used online (100ms bins with 1s rolling average) 
compared to that of the offline analysis done here – as well as to non-zero jitter in the experimental 
setup itself – neural data varied in its degree of alignment with the online-determined “trial end” 
across trials. In order to correct for this, time shifting on each trial was performed to optimize the 
trial-to-trial correlations of direct unit activity with the successful trials of each target (Williams et 
al. 2020) (Supplementary Figure 3.3). The computed optimal shift for the direct units was then 
applied to the firing rates of all units to globally align all units to the time of cortical hit. Notably, 
we only shifted units in time but did not warp time, and the same shift was applied to all units for 
each trial. Additionally, the shifts per session were adjusted such that the correlations of the 
unaligned and aligned decoder outputs were maximal, thereby minimizing deviations between the 
two while increasing overall trial-to-trial alignment. Finally, these aligned firing rates were 
smoothed with a centered Gaussian kernel with standard deviation 60ms to yield firing rates for 
each unit. For all subsequent neural data analysis, unless otherwise noted, we utilized these 
aligned, Gaussian-smoothed firing rates. 

Units were then segmented into approximate brain regions according to probe insertion 
depth. As stated above, all rats exhibited a gap in units beginning between 2.0mm and 2.5mm 
relative to the cortical surface. Thus, a given unit was considered to be in the dorsal striatum if the 
channel containing the largest amplitude in the unit’s mean waveform was between 2.5mm and 
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5.5mm below the approximated cortical surface; all units more ventral than 5.5mm were 
considered ventral striatal units, and those dorsal to the gap were considered motor cortex units. 

Furthermore, the direct units and spikes identified online were duplicated in the motor 
cortex units and spikes identified by offline Kilosort2 sorting. To identify these offline-sorted units 
corresponding to the online-sorted direct units, we computed the fraction of spikes between each 
offline and each online-sorted direct unit that occurred within 1ms of one another. Those offline 
units that had at least 50% agreement with a direct unit and were less than 120µm away from that 
direct unit were identified as a duplicated direct unit; these relatively relaxed criteria aimed to 
establish an upper bound on duplicated direct units. These offline-identified, duplicated direct units 
were then excluded from Granger causality and cross-correlation analysis of “indirect” motor 
cortical units in Supplementary Figure 3.8 and Figure 3.4, respectively, described below. 
 
Data Analysis: Direct units 

To analyze direct unit activity (Figure 3.1J-M), firing rates of each direct unit were first z-
scored, based on the mean and standard deviations computed from all successful trials towards the 
preferred target between 1.2 seconds before the hit and 0.3 seconds after (i.e. 75 time bins each 
trial). Z-scored direct unit activity was then concatenated within-trial across the four units, yielding 
300 time bins per trial. Then, we constructed overlapping, sliding windows of 10 trials each, and 
used 1-component PCA across trials to yield a 300-element projection representing the normalized 
“average” of the direct unit activity within that window. In Figure 3.1J, the projections between 
sliding windows were compared pairwise with Pearson correlation. In Figures 1K-M, we took the 
variance-accounted-for by this 1-component PCA (Rank-1 VAF) as a measure of consistency of 
direct unit activity within each window. Note that for this measure and window size of 10 trials, a 
standard normal Gaussian noise process would expect a Rank-1 VAF of 0.133 (simulations not 
shown). Sessions with fewer than 10 successful trials were ignored. Additionally, since across-day 
changes were a focus, only sessions within the first 12 days were considered to ensure at least 3 
rats’ sessions were included for each day. 

We then utilized a linear mixed model to analyze the changes in Rank-1 VAF over within- 
and across-day timescales. First, we designated “early trials” as the first 15 windows of 10 trials 
(i.e. spanning the first 25 trials), and “late trials” as all other windows of trials. Then, we 
constructed a model with: fixed effects of number of days, indicator of early or late trials (-1 or 1), 
and an interaction term, a random intercept per session, and a random across-day slope per rat. The 
model converged and met appropriate statistical assumptions (heteroscedasticity test p=0.28, 
kurtosis/skew of residuals 0.74/0.40). 
 
Data Analysis: Reward-responsive modulation 
 To analyze striatal unit activity, each unit in the striatum was first z-scored, based on the 
mean and standard deviations of the time periods between 3 and 6 seconds both before the hit and 
after the hit. Note these windows were intentionally selected outside of the rewarded period to be 
analyzed in order to capture each unit’s relative baseline. Mean z-scored firing rates were then 
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computed for the period between 2 seconds before and 2 seconds after the hit (i.e. 200 time bins 
total), and modulation depth for each unit was computed as the difference between maximum and 
minimum z-scores. 
 Reward-responsive striatal units (Figure 3.2) were then determined using a sliding z-score 
threshold on modulation depth in order to account for varying numbers of successful trials each 
day. In particular, we computed the z-score threshold corresponding to a 95% confidence that the 
modulation depth in the unit’s mean firing rates was not generated by a stationary, independent 
Gaussian noise process with 200 samples per trial. This threshold was the minimum z-score 
threshold T such that, for a given number of trials N, the following probability was below 5%: 

 
We then ensured all z-score thresholds on modulation depth were non-trivial by setting a minimum 
threshold of 0.75. This process yielded z-score thresholds such as 1.5 for sessions with 20 trials or 
0.75 for sessions with 79 trials or more. 

After filtering units according to this z-score threshold, we then identified units as 
positively modulating or negatively modulating depending on whether the magnitude of the max 
z-score or min z-score were greater. The time at which this peak occurred was denoted as the peak 
time (Figure 3.2H). Then, to further reduce the effects of noise or trial size on determination of 
reward responsiveness, only those units also exhibiting a mean firing rate at the peak time 
significantly different than zero were finally deemed reward-responsive (Wilcoxon signed-rank 
test, p-value < 0.05). The width of the modulation (Figure 3.2I) was determined according to 50% 
of the peak’s prominence in the mean firing rate (scipy.signal.find_peaks with rel_height=0.5). 
Statistical tests on the distributions of peak time and modulation width used medians (testing 
different than zero) or the nonparametric Mann–Whitney U test (comparing distributions). 
Changes in relative proportions of DS and VS reward-responsive units were modeled with a linear 
regression simultaneously including both DS-specific and VS-specific slopes and intercepts. 
 
Data Analysis: Manipulations 
We then sought to analyze changes in activity in reward-responsive striatal units during particular 
deviations from the normal task structure (Figure 3.3). In particular, we examined: the ends of each 
trial within 5 or 20 successful trials after unlinking the auditory tone (Figure 3.3C) and reward 
(Figure 3.3G) from cortical activity; the first cortical hit occurring during each catch trial (if any), 
as well as the ends of all catch trials (Figure 3.3D); instances where the local maximum of the 
decoder output reached 95% of either target T1 or T2 (Figure 3.3E); and instances where a cortical 
hit occurred at least 10 seconds outside of any trial (Figure 3.3F). 

For each of these scenarios, we extracted the 2 seconds leading up to a particular scenario 
(e.g. the 2 seconds preceding a cortical hit). For near misses, outside-trial cortical hits, and catch 
trial cortical hits, firing rates were first re-aligned according to direct unit activity to include these 
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new instances of cortical hits, in addition to including all successful trials to the preferred target as 
done initially (Supplementary Figure 3.3). Then, for each scenario, the mean firing rate for each 
unit for all preceding successful trials was computed and labeled the “template” for that particular 
scenario and unit. The firing rate for that scenario was then compared to the template via Pearson 
correlation. This process was then repeated for the 10 successful trials preceding this scenario, 
effectively computing a “baseline” correlation of successful trials to their templates relative to this 
unit and scenario. Δr was then computed for each unit and scenario as the difference between the 
scenario’s Pearson correlation coefficient and the mean of these 10 “baseline” correlation 
coefficients. Comparing Δr values across units, instead of raw Pearson correlation coefficients, 
thus accounted for local differences in stability of the running mean firing rate for each unit. 
Finally, to analyze these trial-to-trial template correlations, the median Δr value for each unit was 
taken across scenarios, and then BCa-corrected confidence intervals and p-values were computed 
using bootstrapping to test if median Δr values significantly differed from zero. 

Using this methodology, significant positive values in Δr indicated scenario firing rates 
closer to the template than preceding trials, i.e. indicating a strengthening representation; Δr values 
not significantly different from zero indicated a representation not significantly different from 
preceding trials; Δr values significantly negative indicate scenario firing rates that are farther from 
the template than preceding trials, indicating a changing representation (Figure 3.3B). 

Trial-to-trial template correlations were computed similarly for cortical activity as for 
striatal activity, except: the time period extracted was between 1.2 seconds before the scenario and 
0.3 seconds after the scenario, firing rates for each direct unit were first z-scored and then 
concatenated within-trial across the direct units before the computation of correlation coefficients, 
and statistical tests were computed directly on the Δr values without taking the median across 
scenarios. 
 
Data Analysis: CCA 

To assess the relationship between cortical and striatal populations, we utilized canonical 
correlation analysis (CCA, sklearn.cross_decomposition.CCA) to compute the projections that 
were maximally correlated between the two populations. Similar to principal component analysis 
(PCA), CCA also aims to reduce the dimensionality of data by finding projections that explain the 
originating dataset well; however, unlike PCA, CCA finds two components that simultaneously 
reduce dimensionality across two populations and is thus well-suited to describe cross-area 
dynamics in neural data (Veuthey et al. 2020).  
 To this end, CCA was performed on the firing rates within the trailing 2 seconds of all 
successful, preferred-target trials, concatenated together. For all below analysis, 10-fold, shuffled 
cross-validation (sklearn.model_selection.KFold) was used to compute the cross-validated 
squared correlation coefficient (R2) as the mean test R2 over the 10 folds. 

First, to determine whether there was significant motor cortex / striatum cross-area activity, 
for each session, we shuffled cortical data in time 100 times, and took the mean cross-validated R2 
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as a baseline. Comparisons were made between this and the unshuffled data via a paired t-test 
(Figure 3.4A, left). 

Secondly, we sought to compare the specificity of striatal encoding by comparing the 
population components of striatum and direct units versus the population components of striatum 
and indirect units (Clancy et al. 2014; Ganguly et al. 2011). CCA was performed in two ways: 
first, cross-decomposing the activity of all striatal units and the 4 direct units for each session, and 
then cross-decomposing the activity of all striatal units and indirect cortical units. To correct for 
cortical neuron sample size in the latter, 4 random indirect units were chosen for analysis and the 
cross-decomposition performed, and this process was repeated 100 times and results averaged. 
Again, comparisons between striatum/direct and striatum/indirect cross-area correlations were 
performed via a paired t-test (Figure 3.4A, right). 
 
Data Analysis: Granger 
Similar to the CCA analysis, we desired to investigate the level of functional connectivity between 
motor cortex and striatum, but now at the level of individual units.To this end, we computed the 
directed functional connectivity between all pairs of motor cortex and striatal units via Granger 
causality analysis (up to 100ms lags allowed, i.e. 5 bins). To establish whether a given value was 
significant, each unit’s data was shuffled in time 100 times, and a given unit-pair was considered 
connected if its (unshuffled) F-test value exceeded the 95th percentile of the shuffled F-test values. 
Un-smoothed neuronal activity was used for this analysis. The same window of firing rate data 
was used as in the above CCA analysis (i.e. trailing 2 seconds of all successful, preferred-target 
trials). 

 
Data Analysis: Neural cursor and velocity computation 
Seeking concrete, task-relevant, cortically-derived quantities that could be encoded in the striatal 
population, we next defined the neural cursor and neural velocity. The neural cursor was defined 
in the same manner as the decoder utilized for the task: the sum of the firing rates of E1 minus the 
sum of the firing rates of E2 minus the baseline value computed during calibration. Notably, this 
differed from the decoder output only in the smoothing parameters: while the decoder was 
computed with 100ms bins and smoothed causally over 1 second, the neural cursor was computed 
using the binning (20ms bins) and smoothing (centered Gaussian filter with 60ms standard 
deviation) used for all analysis. Additionally, since it was computed offline, the neural cursor 
exactly aligned with binning utilized for all striatal activity. This neural cursor value was finally 
normalized to values between -1 and 1, where 1 represented the neural cursor value sufficient to 
hit the preferred target and -1 the other target. The neural velocity was then computed as the time 
derivative of the (unsmoothed) neural cursor followed by a more broad smoothing (centered 
Gaussian with 120ms standard deviation) than the cursor, since time differentiation significantly 
amplifies noise. 
 
Data Analysis: Single-unit tuning curves 
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To construct mean firing rates of individual units at particular points in the neural cursor and 
velocity spectrum (Figure 3.4C), we considered all task trial data, across the full length of all trials 
(though excluding any catch trials and those where reward or audio was unlinked). We first divided 
the neural cursor spectrum into 40 bins between -1 and 1, and the neural velocity spectrum into 40 
bins between -3 and 3. Then, each unit’s firing rates were z-scored and the mean z-scored firing 
rate for each bin was computed. For determination of significantly-modulated units (Figure 3.4C), 
similar to the minimum threshold utilized in Figure 3.3, we utilized a threshold of 0.75 for the 
difference between the maximum and minimum mean z-scored firing rates across bins. 
 
Data Analysis: Cell type determination 
For use in the population decoding analysis described below, putative cell types were determined 
via similar means as previously published studies (Peters et al. 2021; Schmitzer-Torbert and 
Redish 2008) (Supplementary Figure 3.10). First, the template utilized by Kilosort2 to identify 
each particular unit was extracted and was classified as “narrow” if the width of the template was 
less than or equal to 400µs. Post-spike suppression indirectly measures the refractory period of a 
unit and was computed as the time needed for the firing rate to exceed the average firing rate in 
the 100-400ms period following a spike; this was computed via the auto-correlogram smoothed 
with a 25ms centered Hamming window. Finally, the phasic ratio was computed as the relative 
fraction of time a given unit spent in an interspike interval longer than 2 seconds. For units that 
were not considered narrow, units were deemed medium spiny neurons (MSNs) if their post-spike 
suppression was greater than 40ms and tonically active neurons (TANs) otherwise. For narrow 
units, units were deemed fast-spiking interneurons (FSIs) if their post-spike suppression was less 
than 40ms and their phasic ratio less than 10%. All other units were classified as unidentified 
interneurons and excluded from cell-type-specific analysis in Figure 3.4. 
 
Data Analysis: Population Decoding 
We then utilized a population decoding model to analyze the encoding within striatal units of two 
particular quantities, the neural cursor and the neural velocity (Figure 3.4). Similar to analysis seen 
in Figure 3.1J-M, sliding windows of 10 successful trials were first computed across all sessions. 
Again, sessions with fewer than 10 successful trials were ignored, and only sessions within the 
first 12 days were considered. Firing rates spanning the 2 seconds preceding the cortical hit of each 
trial were extracted, and lags of -100ms and +100ms were added for each unit. Then, within each 
sliding window, encoding strength was assessed via cross-validated ridge regression 
(sklearn.linear_model.RidgeCV) fit to the trial-concatenated firing rates. In particular, 5-fold 
shuffled cross-validation was utilized to determine the optimal regularization constant, and all 
coefficients of determinations (R2) used in figures and models were the average test R2 across the 
5 folds within that window. For both the neural cursor and neural velocity, a separate ridge 
regression model was computed within each sliding window for all striatal units and for the 6 
combinations of region (dorsal and ventral striatum) and putative cell type (MSN, FSI, and TAN). 
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 To analyze changes in encoding strength across timescales, we utilized a linear mixed 
model. First, as encoding strengths were highly skewed towards 1, we transformed the cross-
validated R2 values using a log-transform to make it more amenable for linear modeling: 

 
This transformation thus resulted in values between 0 and positive infinity, where more positive 
values represented encoding strengths closer to 1. This became our dependent variable for all 
population decoding models. This transformation significantly improved homoscedasticity and 
normality of residuals, as described below. 

As done above, we first designated “early trials” as the first 15 windows of trials (i.e. 
spanning the first 25 trials), and “late trials” as all other windows of trials. Then, we constructed a 
model with fixed effects of number of days, indicator of early or late trials (-1 or 1), an interaction 
term between number of days and early/late indicator, and the number of units recorded that day; 
a random intercept per session, and a random across-day slope per rat. Critically, the inclusion of 
the number of units in the model accounted for inevitable increases in encoding strengths by 
including more predictors, and this slope was always highly significant. The models converged; 
while heteroscedasticity tests had p-values less than 0.05, homoscedasticity of residuals was 
confirmed visually for each model, and kurtosis/skew of residuals were within reasonable values 
(<1 for both). In some cases, the variance explained by the per-rat across-day slope was near zero, 
resulting in a singular random effects matrix; since this indicates there exists near-zero variation 
in this parameter across rats, in these cases, the per-rat across-day random slope was removed and 
the model re-fit. 

To directly compare encoding strengths between dorsal and ventral striatum within a given 
cell type, we took advantage of simultaneous dorsal and ventral striatal recordings by comparing 
encoding strengths across all sliding windows. In particular, to account for differences in number 
of units across regions, we first computed the 𝑅2& per unit recorded for each region and sliding 
window, and computed difference in this relative encoding strength between dorsal and ventral 
striatum across all sliding windows. A linear mixed model was then used to test whether this 
difference was significantly different than zero through a fixed effect intercept and a random 
intercept per session, yielding a p-value for the fixed effect intercept shown in Figure 3.4 (right 
columns for each cell type). A simpler model testing the mean difference across sliding windows 
per session for significant differences from zero via a 1-sample t-test yielded the same trends (data 
not shown). 

Additionally, to analyze changes in encoding strength after the unlinking of audio and 
reward, we compared the encoding strengths of the five sliding windows occurring entirely and 
immediately before the unlinking to the five sliding windows occurring entirely and immediately 
after (Supplementary Figure 3.11). A linear mixed model with fixed effect slope and intercept and 
a random intercept per session was used to analyze differences in encoding strength before and 
after these two manipulations. All linear mixed models converged, had homoscedastic residuals, 
and had kurtosis/skew within reasonable bounds (< 2). Relatedly, to assess striatal encoding of the 
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neural cursor and auditory tone frequency during catch trials, we utilized a population decoding 
model across the full length (~10 seconds) of all catch trials within a given session, and compared 
encoding strengths with a paired t-test. 

To analyze alternative hypotheses of striatal encodings, we compared the encoding strength 
of the neural cursor with that of a linear representation of time, as striatum has been reported to be 
correlated with measures of time (Mello et al. 2015) (Supplementary Figure 3.12). We considered 
the same time periods as previous population decoding analyses (2 seconds before hit), except 
models were fit to an entire session’s trials, instead of windows of trials, to simplify analysis. As 
a measure of time, a line was constructed that ramped from 0 to the max value of the mean neural 
cursor, starting at an onset swept across a range of values (-2s, -1.5s, -1.4s, -1.0s, -0.6s, -0.5s, -
0.4s, -0.3s, and -0.2s relative to hit). Then, in order to enable a fair comparison of encodings 
strengths with the neural cursor, each representation of time was variance-matched to the neural 
cursor: per-time-bin variance was computed for the neural cursor across all successful trials, and 
Gaussian noise with equal variance was injected into the line. A population decoding model was 
then fit using units within the respective subgroups of striatal region and cell types. We then only 
retained the onset for the time representation that had the highest encoding strength. Lastly, similar 
to Supplementary Figure 3.11, a linear mixed model with fixed effect slope and intercept and a 
random intercept per session was used to assess differences in encoding strengths. 

Similarly, as an alternative hypothesis to neural velocity encodings, striatum could have 
encoded a discrete “go” signal beginning at some point before hit, corresponding to a step function 
(Supplementary Figure 3.12). We performed a similar analysis as investigating time, except a step 
function was used, instead of a line, and amplitudes/variances were matched to the neural velocity 
signal instead of neural cursor.  
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3.3 Supplementary Figures and Data 
 
Supplementary Figure 3.1 

 
Supplementary Figure 3.1. Custom-made implant yields tens to hundreds of units each day, and histology confirms placement of 
probe within targeted areas of striatum. A: 3D CAD model of assembled custom-made 3D-printed implant, heavily based on a 
prior validated design (Luo et al. 2020) (40). View is from the end of the implant that will be facing dorsally. The Neuropixels 1.0 
headstage PCB is secured via M1 screws in the bottom half of the implant (as viewed from this angle); the cylinder visible in the 
top half is used to attach the implant to the stereotactic frame via a cannula holder. B: entire implanted probe assembly on a ~250g 
rat after a few days of recovery post-surgery. Black and transparent white material is the 3D-printed implant; orange wrapping is 
copper foil used for shielding. C: number of well-isolated units recorded per day, divided into regions as defined in Methods; bars 
represent SEM. D: example stained and imaged histological brain slice. Slice was stained with DAPI (blue); probe track (orange) 
fluoresces from Vybrant DiI dye applied to the probe shank before implantation. E, F: reconstructed probe tracks (n=6) overlaid 
on coronal (E) and sagittal (F) planes of the Waxholm Space Atlas. In 1 rat VS units were excluded due to posterior location of 
probe (see methods). Different colors represent the default colors used to differentiate atlas-defined brain regions. 
 
Supplementary Figure 3.2 
. 
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Supplementary Figure 3.2. Rats preferred the target they initially achieved. A: display of all included sessions (n=80) and which 
target (T1 or T2) was more highly preferred that day, i.e. the target that had more successful trials. Each row represents a single 
rat, and each box a day. In total, 86.8% of trials went to the preferred target for that day. B: measures of possible factors contributing 
to a rat choosing a particular target on a particular day. Rats did not prefer the target leading to more reward (binomial test for 
37/80, p=0.58), did not consistently prefer a particular target overall (T1 chosen arbitrarily; binomial test for 35/80, p=0.31), and 
did not prefer the target that might have been biased due to calibration (bias determined as the target with more rewards in simulated 
calibration; each (neuroprosthetic) session was then determined as not biased or biased according to a binomial test p-value of less 
than 0.05; final predictor significance determined via binomial test for 34/80 with 3 choices, p=0.10). However, rats did 
significantly prefer whichever target they achieved more frequently within the first 5 trials (binomial test for 63/80, p<1e-6). C: 
The proportion of trials per session going to a preferred target correlates significantly with the proportion of correct trials (left, 
p=1.9e-5) and with time (right, days #1-12 only, p=0.003). Individual dots represent 1 session; black line and gray shading indicate 
regression line and lowess, respectively. 
 
Supplementary Figure 3.3 

 
Supplementary Figure 3.3. Demonstration of time-shifting utilized to align trials, correcting for trial-by-trial variations in precise 
timing. Optimal time shifts were computed via previously demonstrated algorithms (Williams et al. 2020) that optimized the inter-
trial correlations of direct unit activity for successful trials of each target. Left: unaligned, simultaneous firing rates for a unit in 
ensemble 1 (top) and a unit in ensemble 2 (bottom). White ticks indicate the model’s prediction of the alignment point and will be 
the points that become “time = zero” after alignment. Right: aligned, simultaneous firing rates for the same units and trials. All 
other units’ activities (not shown) were then shifted by the same amount as the direct units to maintain alignment. 
 
 
Supplementary Figure 3.4 
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Supplementary Figure 3.4. Mean firing rates for reward-responsive units time-locked to target hit during the task (A) and to 
simulated target hit during each task’s preceding calibration (B). Units are the same across rows. Firing rates were z-scored 
independently between task and calibration. 
 
Supplementary Figure 3.5 
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Supplementary Figure 3.5. Performance does not change when the auditory tone is unlinked from cortical activity. In a subset of 
high-performing, late-learning sessions, the frequency of the auditory tone was unlinked from cortical activity and instead linearly 
ramped across the frequency spectrum, while the link between cortical activity and reward remained intact. There was no significant 
change in the hits per minute between the 10 minutes preceding and the 10 minutes following unlinking of audio (n=7 sessions, 
p=0.66). In performance-matched, normal sessions, there was a slight but significant increase in performance in a similar time 
period (n=48, p=0.04; same as pictured in Figure 3.1I). 
 
Supplementary Figure 3.6 

 
Supplementary Figure 3.6. Further analysis of striatal representations at the end of catch trials. Display and analysis is the same 
as that of Figure 3.3, with analysis performed on different subsets of catch trials. A: trial-to-trial template correlations computed at 
the end of all catch trials only on the first 2 days. B: correlations analysis performed on catch trials following a period of 20 trials 
that were in the lowest 25th percentile of mean hit times, representing catch trials following poor performance. C: correlations 
analysis for the first catch trials of each day. For all, n.s. p > 0.05; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
 
Supplementary Figure 3.7 
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Supplementary Figure 3.7. Further analysis of striatal representations during outside-trial hits. For each outside-trial hit analyzed, 
the median Δr value for all dorsal (left) / ventral (right) striatal units (x-axis) was plotted against the Δr value for the direct units 
(y-axis), and a linear regression model was fit (black line: regression line, shading lowess). The intercepts for both dorsal and 
ventral striatum were significantly negative (DS -0.09, p<0.0001; VS -0.07, p<0.001), indicating that even when cortical activity 
in extra-trial hits is similar to preceding successful trials, striatal activity still significantly deviates from its current representation. 
 
Supplementary Figure 3.8 

 
Supplementary Figure 3.8. Granger causality analysis between striatal and motor cortical units shows functional connectivity is 
higher between striatum and direct units than striatum and indirect units. (A) Percent of unit-pairs connected with direct (left) or 
indirect (right) cortical units as the source, and striatal units as the targets (p=0.002, paired t-test). (B) Same as A but with source 
and target reversed (p = 0.0003, paired t-test). For all, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, otherwise not 
indicated p > 0.05; bars represent 95% confidence intervals. 
 
Supplementary Figure 3.9 
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Supplementary Figure 3.9. Results of population decoding model when all striatal units are included for neural cursor encoding 
(left) and neural velocity encoding (right). (A) Regressions from linear mixed model (fixed effects: colored lines; per-day 
regressions incorporating random effects: gray lines) displaying changes in neural cursor encoding strength both within-day (early 
vs late trial windows, indicated by endpoints of each line) and across-day changes (x-axis). Encoding strengths shown are scaled 
to 20 units (“unit-scaled”, Methods). Model intercept for unit-scaled R2 0.37 (p<1e-4). (B) Fixed effect slopes for neural cursor 
encoding; positive slopes indicate increases in encoding strength. Faded gray dots indicate random effects, when applicable. Y-
axis for fixed/random effects is log-transformed R2 (Methods). (C-D) Same as (A) and (B), except with neural velocity encoding. 
Model intercept for unit-scaled R2 0.21 (p<1e-6). For all, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, otherwise not 
indicated p > 0.05; bars represent 95% confidence intervals. 
 
Supplementary Figure 3.10 

 
Supplementary Figure 3.10. Classification of units into putative cell types via electrophysiological characteristics. A: left: mean 
template extracted by Kilosort2 for all units classified as a particular cell type (MSN: medium spiny neuron, FSI: fast-spiking 
interneuron, TAN: tonically active neuron). Shading is 1 standard deviation. Right: mean auto-correlograms for each cell type, 
displayed from -150ms to 150ms (x-axis). Shading is 1 standard deviation. B: distribution of firing rate properties for all well-
isolated units within the dorsal striatum identified as particular cell types. Colors are the same as in (A); ISI interspike interval. C: 
same as (B) but for units in ventral striatum (VS). D: relative proportion of each cell type within the population of well-isolated 
dorsal and ventral striatal units. 3943 dorsal striatal units were identified as 3174 MSNs, 228 FSIs, 411 TANs, and 130 unidentified 
interneurons; 690 ventral striatal units were identified as 387 MSNs, 231 FSIs, 35 TANs, and 37 unidentified interneurons. 
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Supplementary Figure 3.11 

 
Supplementary Figure 3.11: Population decoding model applied to instances where audio and reward were unlinked and during 
catch trials, as also depicted at the single-unit level in Figure 3.3.. A: when the auditory tone was unlinked from cortical activity in 
a subset of sessions, there were no significant changes in the encoding strength within dorsal or ventral striatum for the neural 
cursor or velocity (p=0.67, p=0.20, p=0.55, p=0.39 for dorsal-cursor (B, left), ventral-cursor (B, right), dorsal-velocity (C, left), 
ventral-velocity (C, right) encodings, respectively). D: when reward was unlinked from cortical activity, encoding strength for both 
neural cursor and velocity significantly decreased in both dorsal and ventral striatum (p=0.03, p=0.0003, p=0.02, p=0.0001 for 
dorsal-cursor (E, left), ventral-cursor (E, right), dorsal-velocity (F, left), ventral-velocity encodings (F, right), respectively). G: 
during catch trials, the auditory tone and the neural cursor were decoupled.Both dorsal (H, left) and ventral striatum (H, right) 
encoded the neural cursor more strongly than the auditory tone’s frequency (DS p=0.03, n=80 sessions, VS=0.0005, n=67 sessions; 
paired t-test). In all, thin gray lines represent individual session’s data; thick black lines indicate regressions. Bars indicate 95% 
confidence interval. 
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Supplementary Figure 3.12 

 
Supplementary Figure 3.12: Population decoding model applied to alternative encoding hypotheses, where striatal activity may 
encode a linear representation of time (Mello et al. 2015) instead of the neural cursor (left column), or may encode the time 
derivative of this representation of time, a step function, instead of the neural velocity (right column). (A) Example neural cursor 
and time data. Time (purple) functions were constructed based on a linear ramp from 0 to the max value of the mean neural cursor, 
where the onset time (gray dotted line) was swept across a range of times. Additionally, Gaussian noise was injected into the time 
function to match the variance of the neural cursor to enable a fair comparison for encoding. Shading SEM. (B-D) Comparison of 
encoding strengths (R2, not unit-scaled) across an entire session for the encoding of the neural cursor (left datapoint of each column) 
and time (right datapoint of each column) for all 6 combinations of regions & putative cell types. For each session, the best onset 
for the time function was taken. Significance of the slope (i.e. the difference between cursor and time encoding strengths) was 
computed via a linear mixed model. Bold line indicates fixed effect; black bold line means slope is not significant, otherwise the 
color represents which quantity is more strongly encoded. Gray lines represent each session. As in other figures: n.s. p > 0.05; * p 
< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (E) Similar to (A), a step function was constructed, with scale equal to the 
max mean neural velocity value and onset time swept across a range of times. Variances were matched as well. Data originates 
from the same session as (A). (F-H) Same as (B-D), but comparing neural velocity (left datapoint) and step function (right 
datapoint) encodings. 
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Chapter 4 
 
Scalable Software for Neuroscience 
Shifting gears, we now delve into two open-source software frameworks built as a part of this thesis’s work. 
We will only briefly describe each tool by providing context and an implementation overview, but 
otherwise delegate to documentation linked within each software’s repository for details on installation, 
usage, and development. 

4.1 River: a cross-platform, high-throughput, structured streaming 
framework 
Repository: https://github.com/pbotros/river 
 

Modern experiments in neuroscience demand increasingly complex and performant 
systems. Technological advances in the past decades have led to an explosion in neural data 
volume, with current technologies capable of simultaneous recordings of thousands of individual 
neurons (Steinmetz et al. 2021; Ota et al. 2021). Concomitantly, to improve scientific 
efficiency (Z. S. Chen and Pesaran 2021) or modulate neural or physical systems (Shanechi 2019), 
closed-loop experimental paradigms that multiplex neural and non-neural (e.g. kinematic) data 
have come to the forefront of research, where real-time computations on various data streams 
directly influence the experiment. Considering these ever-increasing demands on both latency and 
throughput of data, there is a dire need in the field to stream high-throughput data between devices, 
balancing requirements for performance with simplicity for non-software experts. 

To tackle these problems, we developed River, a structured streaming solution to 
streamline data management for modern neuroscience experiments. Producers of data – “writers” 
– first define a structure for each data sample for a particular stream. Then, utilizing function calls 
similar to those of file I/O, writers can then write data to that stream, while an unlimited number 
of “readers” can consume this data in real-time by specifying the appropriate stream name. Each 
reader can read at its own pace, with support for blocking for a given period of time or number of 
samples. Readers and writers only require network connectivity to a centralized server, enabling a 
horizontal scaling paradigm useful for computationally-intensive or cloud-reliant experiments. 
Finally, leveraging the structured nature of each stream, a separate “ingester” process consumes 
each stream’s data and writes data to disk in a cross-platform tabular format, Parquet 
(https://github.com/apache/parquet-format), for post-hoc analysis. Once persisted by the ingester, 
sufficiently stale data is then deleted from the River stream, enabling streams to be indefinitely 
long. River is written in C++ with Python and MATLAB bindings and works under Linux, Mac 
OSX, and Windows. An example deployment, highlighting River architecture, can be found in the 
below figure. 
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Figure 4.1. Example deployment of 1 writer and 2 readers utilizing River, where the writer reads data from a probe, one reader 
visualizes the data, and another reader utilizes the data to actuate an external device. Readers and writers may exist on different 
devices, with network connectivity to the in-memory database, Redis, the only requirement. Dotted line demarcates the boundary 
of River APIs, with monospaced-font commands referring to River APIs invoked to write, read, and ingest data. Note all 
interactions with the underlying database, Redis, and nuances of ingestion are abstracted behind River APIs, enabling users to both 
stream online and analyze offline data with simpler commands. 
 

Eschewing a bespoke, research-specific solution to reduce maintenance burden, we utilized 
an industry-standard database, Redis (https://redis.io), to underlie River, enabling sub-millisecond 
latencies, low jitter, and 20+ MB/s throughput. Critical to researchers, River guarantees that no 
written data can be dropped by any readers, even in the case of long pauses in reading, and that all 
persisted data exactly mirrors the data streamed online. These guarantees come in contrast to the 
best-effort paradigm of another popular research-oriented streaming framework 
(https://github.com/sccn/labstreaminglayer). Additionally, timestamp management is centralized 
and thus stream synchronization is simplified. Other streaming solutions widely used in the 
software industry, such as Kafka (https://kafka.apache.org/) and RabbitMQ 
(https://www.rabbitmq.com/), have more strict guarantees on data availability and delivery but 
subsequently suffer in raw streaming performance and can be difficult to set up robustly. 

Finally, River has been successfully used in two closed-loop neuroscience studies by the 
author (Formento et al. 2021) (Botros et. al in preparation). While River was designed with 
neuroscience in mind, we believe it can have applications in other fields that might have similar 
data management needs. 
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4.2 DuraPy: a service container for service-oriented neuroscience 
experiments 
Repository: https://github.com/pbotros/durapy 
 

Modern experiments in neuroscience demand increasingly complex and performant 
systems, with exploding neural data volumes (Steinmetz et al. 2021) and rising interest in closed-
loop systems from both scientific (Z. S. Chen and Pesaran 2021) and neuromodulation (Shanechi 
2019) perspectives. Current approaches to neuroscience software adopt a monolithic architecture, 
where a single parent process running on a single computer manages the entirety of the experiment 
(e.g., OpenEphys (Siegle et al. 2017), RigBox  (J. Bhagat et al. 2020), and OpenBCI 
(https://github.com/OpenBCI/OpenBCI_GUI)) (Figure 4.1). A monolithic architecture enables 
simple deployment, as it is simply a single process to run, and can be performance-optimal since 
all data and code resides in the same computer. However, especially in neuroscience, a monolithic 
architecture hinders scalability: multiple devices (e.g. neural probes, cameras, and position 
trackers) are likely queried simultaneously at high sampling rates, and computationally-intensive 
computations may need to be performed in real-time (Barsakcioglu et al. 2020; Hu et al. 2018). 
These functions compete for a limited set of hardware resources – in the form of PCI slots, USB 
slots, and network bandwidth – and computer resources such as CPU and memory, as monolithic 
scaling is entirely vertical. Additionally, a monolithic architecture does not encourage functional 
separation of components via data-based application programming interfaces (APIs), which could 
increase the complexity and thus hinder the maintainability of the software. Finally, a monolithic 
application constrains functionality to a single operating system, which may not be ideal if 
desirable tools only support different operating systems. 
 

 
Figure 4.1. An example configuration of a monolithic application running a neuroscience experiment. A single computer runs a 
single process encapsulating all experimental data and logic. Within this process, many threads and subprocesses run, 
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communicating with one another via file, shared-memory, or across-memory mechanisms. All hardware (e.g. a probe, camera, and 
sensors) connects to this single computer. 
 
 The pitfalls of monolithic architecture have long been noted in the software engineering 
industry. The dominant solution in industry is to adopt a service-oriented architecture, which 
extends well-known software practices of abstraction and compartmentalization of code to the 
level of networks and processes. In a microservice-oriented architecture, a functional unit that 
performs some subset of functionality is run in its own process, termed a “microservice”. When 
microservices need to consume or produce data to other microservices, they communicate with 
one another over a network. This distributed architecture enables microservices to reside on 
different devices and different operating systems, powering horizontal scaling in addition to 
vertical scaling. In addition, the constraint that service-to-service communication occurs over a 
network forces the format of that data to be defined explicitly in code, which, if properly designed, 
abstracts away implementation-specific details of each functional unit and can thus increase the 
maintainability of the overall system. However, these design decisions of a service-oriented 
architecture create a more complex deployment, requiring additional tooling to utilize its benefits 
over a monolithic architecture. 

 
Figure 4.2. An example configuration of a service-oriented architecture running a neuroscience experiment, similar to the example 
functionality depicted in the monolithic architecture of Figure 4.1. Individual services, encapsulated in orange boxes, represent 
compartmentalized functional units, running within the DuraPy framework. Communication between microservices occurs over 
the network, via commands implemented through the DuraPy framework. Hardware connects to whichever computers require it, 
and DuraPy services can run on heterogeneous computers (as depicted by differing amounts of RAM and CPU) and operating 
systems (e.g. Raspberry Pi, Ubuntu, and Windows). Finally, a web graphical user interface (GUI) connects to the DuraPy 
framework, enabling experimenters to build monitoring tools or experiment GUIs within a web browser. 
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 DuraPy is an open-source Python service container for neuroscience experiments utilizing 
a service-oriented architecture, aiming to provide the communication and process backends for 
each microservice (Figure 4.2). DuraPy, at its core, utilizes an event-driven paradigm: 
“commands” can be sent from any service and are broadcast to all services. Each command can 
have its own structure, and per-command handlers can be installed in each service that calls a 
specified function when receiving a command, enabling each service to perform custom 
functionality per command. As part of its service architecture, each DuraPy service runs in its own 
long-running process, with commands likely sent by the experimenter to initiate and terminate 
experiments. Logging, Git-based deployment, and POSIX-compatible run scripts are provided as 
well. 

In addition, a web-based graphical user interface (GUI), running itself as a DuraPy 
microservice, is provided to enable experimenter control of the experiment (Figure 4.2). In 
addition to supporting the sending and displaying of commands, managing service deployment, 
and viewing logging, the web GUI implementation, built on an open-source web framework 
Tornado (https://github.com/tornadoweb/tornado), is explicitly designed to enable extensions, 
where experimenters can more easily build custom web pages for experiment monitoring or 
review. Extensions of this web GUI can additionally play a role itself in the experiment, such as 
displaying an interface to subjects (Formento et al. 2021). Finally, DuraPy is intentionally light on 
any imposed structure of each service, as more rigid models, such as those that utilize a domain-
specific language (DSL) or finite-state-machine (FSM) to specify functionality (e.g., LiCoRICE 
(https://github.com/bil/licorice), RigBox (J. Bhagat et al. 2020)), can hinder flexibility. The default 
command database requires a running instance of Redis, an open-source in-memory database, but 
future changes could enable DuraPy to utilize other existing networked communication 
frameworks, such as Robot Operating System 2 (ROS2; https://github.com/ros2). 
 As currently designed, DuraPy’s communication backend is not explicitly designed for 
high-throughput, low-latency data streaming, as the commands broadcast to each microservice are 
not envisioned to contain large amounts of data (e.g. neural data, camera frames, raw sensor data, 
etc.). If desired, existing data streaming solutions can be leveraged to fill this need, such as River 
(https://github.com/pbotros/river), ZeroMQ, or RabbitMQ, where stream metadata can be shared 
via DuraPy commands but raw stream data remains within the purview of these frameworks. For 
performance-intensive processes running on the same computer, shared-memory stores such as 
Apache Plasma (https://arrow.apache.org/docs/python/plasma.html) and Cthulhu 
(https://github.com/facebookresearch/labgraph) can also be utilized for optimal performance. 

DuraPy has been successfully used in two closed-loop neuroscience studies by the 
author (Formento et al. 2021) (Botros et. al in preparation) and enabled the bridging of multiple 
operating systems (Windows, Linux), multiple device types (cloud-based and local desktop 
computers, and Raspberry Pi computers), and multiple languages (C++ via a thin HTTP wrapper 
and Python). As a particular example highlighting the benefits of the microservices framework 
espoused by DuraPy, requirements changed over the course of these research studies calling for 
additional real-time machine learning functionality to be added, both of which benefited from new 
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hardware (i.e. high-powered GPUs). These new functionalities were implemented as separate 
DuraPy microservices and run on newly-introduced desktop computers (Botros et. al in 
preparation) or nodes running in Amazon’s cloud  (Formento et al. 2021) without requiring 
significant changes to other microservices. 

While DuraPy was designed with neuroscience in mind, we believe it can have applications 
in other fields that might have similar architectural needs. 
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Chapter 5 
 
Conclusion 

By utilizing neural-machine interfaces to interrogate the functionality of the nervous 
system, the results described in this thesis contribute to our understanding of skill learning, 
demonstrating novel levels of flexibility in the peripheral nervous system with applications in 
clinical translation and suggesting a critical role of the striatum in skill learning as a part of credit 
assignment, a core neural mechanism of learning. In addition, the software frameworks 
implemented and open-sourced as a result of this thesis aim to accelerate future neuroscientists’ 
endeavors. 
 

5.1 Future Work 

Motor-unit neuromuscular-machine interface in alternative muscles 
The motor-unit neuromuscular-machine interface (NMI) described in the first part of this 

thesis explored the dimensionality of the biceps brachii muscle, which is a known multifunctional 
muscle classically governing elbow flexion and forearm supination functions. While the performed 
analysis showed categorical differences between neurofeedback-enabled motor unit activity and 
these two stereotyped movements and a resulting dimensionality beyond 2, exploring the motor 
unit dimensionality in other muscles could provide useful insight into the applicability of an NMI 
as an assistive device. In particular, investigation into muscles typically retained in disabled 
patients, such as those in the neck, ears, and shoulders, could shed light into the usefulness of such 
a device to restore functionality in the population most often targeted by brain-machine interfaces, 
i.e. tetrapelagics.  

Motor-unit neuromuscular-machine interface in disabled patients 
As mentioned in Chapter 2, recent work demonstrated residual motor unit activity under 

voluntary control in the forearm muscles of a tetraplegic patient (Ting, Del Vecchio, et al. 2021). 
Stemming from this promising result, future research into a motor-unit NMI should investigate if 
this residual motor unit activity in functionally disabled limbs can be exploited for high-
performance control. Relatedly, a recent BMI study enabled near-native rates of digital 
communication by decoding thoughts of handwriting from patients (Willett et al. 2021). In this 
study, a supplementary video displays the patient miming handwriting with their hands while the 
BMI is being used. This observation begs the question if there might be sufficient residual motor 
unit activity remaining in arm or hand muscles to similarly decode handwriting in real-time, with 
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such a device possibly retaining performance while obviating the need for invasive brain implant 
surgery. 

Real-time detection of motor unit basis vectors 
The NMI paradigm utilized in Chapter 2 relied on the participant to explicitly decide on 

three motor units that they deemed most independently controllable, and thus was a subjective and 
often challenging decision. Additionally, participants were only able to select a single motor unit 
per dimension to be controlled, resulting in a fairly straightforward but crude decoder. Future 
research could address this by devising algorithms to robustly detect controllable dimensions from 
motor unit activity. Such an identification algorithm is not trivial, since the dimensionality is not 
known a priori and the “basis vectors” of motor unit activity will undoubtedly change as the 
participant trains with the NMI and putatively increases dimensionality. A two-learner system has 
been discussed in the brain-machine interface world (Orsborn and Pesaran 2017) where both the 
decoder and the participant learn to optimize control, so principles from that line of research could 
be re-used. Possible methodologies to explore are linear decomposition methods such as principal 
component analysis (PCA), linear constrained decomposition methods such as non-negative 
matrix factorization (NMF), non-linear machine learning techniques that optimize a cost function 
assessing the independence of given sets of motor units. 

Minimally-invasive, chronic motor unit recording modalities 
While surface EMG recordings are dominant in research and industry since they are non-

invasive and robust, surface EMG signals change as the skin moves relative to the muscle, a 
problem that often necessitates isometric, fixed setups in research in order to keep motor unit 
recordings stable over the length of an experiment. Furthermore, removal and replacement of the 
surface EMG grid across different days can confound the shape and identity of motor units, though 
some research studies use markers on the skin and particular algorithms to enable putative 
identification of the same motor units across days (Martinez-Valdes et al. 2017). 

In order to improve the applicability of surface EMG recordings to the clinic, stable 
recordings of individual motor units should be possible in dynamic settings. One way this can be 
enabled is via minimally-invasive, chronically-implanted recording grids, which, like chronic 
brain implants, could enable tracking of individual motor units across days and during dynamic 
movements. However, such a system has yet to be demonstrated. 

Perturbations to dorsal/ventral striatal circuitry to further interrogate learning 
Chapter 3 investigates the role of the striatum in relation to cortical credit assignment, 

based on the use of a neuroprosthetic task and the correlations stemming from simultaneous 
recordings of cortex and striatum. Future research could manipulate the neural circuits at play to 
provide causal evidence of dorsal/ventral striatum’s role in skill learning. In particular, our study 
demonstrates stereotyped responses of individual striatal neurons constituting a model of the 
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proximity of cortical activity to reward. Optogenetic manipulations could theoretically enable both 
the disruption of such a model in trained animals and the artificial creation of such a model in 
untrained animals. Of additional interest would be the effect of the amount of training on the effect 
of these manipulations, as the striatum is known to change in roles as the behavior shifts from 
goal-directed to habitual (Graybiel and Grafton 2015). Finally, if the conclusions implied in the 
second part of this thesis hold true, then precise stimulation within the striatum during stereotyped 
cortical activity, immediately followed with stimulation to dopaminergic neurons in the 
VTA (Athalye et al. 2018), could form a completely internal system that alone drives cortical credit 
assignment and thus effectively demonstrates a standalone micro-circuit of learning. That said, 
while brain manipulation via optogenetics at the cellular level is increasingly possible, robust 
manipulation in deep structures and/or with freely behaving animals remains challenging (Pégard 
et al. 2017), and so changes to the experimental structure, animal model, and neural recording 
modalities would likely be required. 
 

Investigation of specific pathways involving the striatum for skill learning 
The striatum has a multitude of cortical and subcortical inputs; in particular, the 

dorsomedial and ventral striatum receive inputs from prefrontal cortex, with both direct and re-
entrant projections into motor cortex (Aoki et al. 2019). The ventral striatum also has a multitude 
of connections with reward-relevant subcortical structures, such as the amygdala, hippocampus, 
and VTA. Future research could tease apart the differential role of these various input and output 
pathways by pathway-selective optogenetic tracing and manipulation. In particular, different 
optogenetic fluorescent markers and anterograde/retrograde tracers could be used to separate 
recordings in the striatum according to their input pathways, and optogenetic manipulations of 
these tagged pathways could provide casual evidence of their role. One theory of the ventral 
striatum is that the role of the various subcortical inputs to the ventral striatum differs depending 
on the structure of the task; for example, navigational or mapping-intensive tasks might utilize the 
hippocampus more strongly (Aronov et al. 2017). 

Open-source software dissemination 
Finally, while the open-source software discussed in Chapter 4 has been released publicly 

and documented, effective dissemination of software remains challenging. Future work could 
partner with existing open-source software companies or organizations, such as OpenEphys, the 
Chan-Zuckerberg Initiative, or Schmidt Futures’ Virtual Institute for Scientific Software, to help 
maintain and/or disseminate the software built here to accelerate the neuroscience community. 
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