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Abstract

Standard off-policy reinforcement learning (RL) methods based on temporal dif-
ference (TD) learning generally fail to learn good policies when applied to static
offline datasets. Conventionally, this is attributed to distribution shift, where the
Bellman backup queries high-value out-of-distribution (OOD) actions for the next
time step, which then leads to systematic overestimation. However, this explanation
is incomplete, as conservative offline RL methods that directly address overesti-
mation still suffer from stability problems in practice. This suggests that although
OOD actions may account for part of the challenge, the difficulties with TD learn-
ing in the offline setting are also deeply connected to other aspects such as the
quality of representations of learned function approximators. In this work, we show
that merely imposing pessimism is not sufficient for good performance in deep RL,
and demonstrate empirically that regularizing representations actually accounts for
a large part of the improvement observed in modern offline RL methods. Building
on this insight, we show how using a simple improved Bellman backup estimator
— without changing any other aspect of conservative offline RL algorithms — can
achieve more effective representations and better performance across a variety of
offline RL problems.

1 Introduction

Offline reinforcement learning (RL), combined with powerful deep neural network function ap-
proximators, has the potential for solving decision-making tasks where online interaction is either
expensive or unsafe, circumventing a major barrier to the deployment of RL in the real-world. Tem-
poral difference (TD) learning methods, such as Q-learning, provide a natural framework for building
offline RL algorithms [30], fitting a parametric value function by sequentially regressing to targets
generated from its own previous snapshot using only offline data. However, directly applying TD
to a static offline dataset often fails to learn effective policies. One common explanation is that the
maximization in the target value computation will find erroneously high-valued out-of-distribution
(OOD) actions, resulting in systematic overestimation. A variety of offline RL methods, such as those
that apply value conservatism [26, 58] or behavioral constraints [14, 24, 53, 13, 18, 23, 22], aim to
address this issue with OOD actions in TD learning by inducing some form of pessimism. While all
of these methods lead to promising improvements in performance on offline RL tasks, determining
why any particular one of those methods would be better than another has proven challenging, which
in turn makes it difficult to develop insights and guidelines for designing better offline RL algorithms.
In theory, a majority of these approaches essentially optimize the very same RL objective subject
to a divergence constraint against the behavior policy that generates the data, and would behave
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identically in a tabular problem setting. Hence, a natural question to ask is: does the improvement
observed from these methods really stem purely from their ability to induce pessimism?

In this paper, we show that a significant part of the benefit of offline RL approaches that aim to
address OOD actions actually comes from the effect they have on the learned representations, rather
than merely from their ability to avoid overestimation. We first show that even if we can prevent
the value of the learned Q-function at OOD actions from being overestimated, training Q-functions
against these pessimistic Bellman targets computed using OOD actions still induces Q-function
representations that give rise to poor policy performance, which indicates that overestimation is not
sufficient to explain poor performance in offline RL. Second, we empirically demonstrate that an
offline RL method that does not apply any pessimism, but only regularizes the representation learned
for the dataset and OOD actions to be different using adversarial training, can actually perform quite
well. This method resembles the conservative Q-learning (CQL) [26] approach, but crucially only
regularizes the representations and not the final Q-values. Our analysis shows that this approach
recovers 68% of the performance of CQL, indicating that the performance of CQL, in large part,
comes from the implicit regularization obtained by penalizing OOD actions.

Finally, to demonstrate the practical consequences of this analysis, we experiment with a simple
approach: interpolating between TD and supervised learning via an ensemble of N-step returns,
similar to TD(\). We not only find that this method attains better performance on standard offline RL
benchmarks, but, more interestingly, that this cannot be attributed to standard explanations of a better
bias-variance tradeoff.

Our main contributions are to demonstrate, via an extensive empirical study, that merely addressing
the OOD action issue in offline RL via pessimism is not sufficient for TD-based offline RL methods,
and that the quality of learned representation is crucial for good performance. Our analysis provides
guidance on how to measure representational quality, and shows how simple methods such as an
ensemble of N-step returns already attain better performance on benchmark tasks from D4RL [12] as
a result of improved representational quality. We hope that our analysis provides concrete takeaways
for researchers in offline RL and highlights a largely overlooked line of challenges beyond behavior
regularization that is crucial in devising more effective and reliable offline RL methods.

2 Related Work

Modern offline RL methods based on Q-learning typically utilize dynamic programming to train
a value function, together with a mechanism to prevent backing up out-of-distribution (OOD)
actions [30]. This can be done by applying an explicit constraint that forces the learned policy to
be “close” to the behavior policy under a variety of divergence measures [18, 54, 37, 42, 54, 24, 23,
22, 50, 13], or by directly learning a conservative value function, either via a pessimistic training
objective [26, 56, 36, 58] or by utilizing pessimistic bonuses [57, 39, 19, 54] in the backup, as well
as model-based methods that incorporate pessimism or uncertainty [20, 57, 2, 45, 38, 29, 58]. While
most of these methods differ in implementation details and empirical performance, in theory and
in tabular problem settings, most of these methods can be traced back to the same objective that
attempts to constrain the policy to not choose OOD actions. It is not entirely clear why one such
method should work better than another, or how one should go about designing better offline RL
methods. In this paper, we show that, to a large extent, the benefits of offline RL methods comes from
better representational quality, and improving representational quality alone can lead to reasonable
performance without any form of pessimism.

Prior works have sought to analyze several aspects of the representations induced by TD-based
methods with function approximation largely in the standard online RL setting [1, 5, 25, 48, 31, 32]
and in the offline RL setting [28, 27]. In the linear setting, Ghosh and Bellemare [15], Xiao et al.
[55] study which representations can induce stable convergence of TD, and Sutton et al. [44], Maei
et al. [33] sought to devise convergent TD methods for arbitrary representations, but these prior
works do not attempt to study the effect of pessimism on representations, or how OOD actions
affect representations. Recent work [27, 28] studies the learning dynamics of Q-learning in an
overparameterized setting and observes excessively low-rank and aliased feature representations
at the fixed points found by TD-learning. These prior works propose some metrics to evaluate
representational quality, and we include these in our analysis in Section A.1, but find that these
metrics generally behave well, even though performance can be improved with simple representational
regularization. The metric we consider in this work is more predictive of algorithm performance.



Moreover, these prior works do not quite study the interplay between pessimism and representations
that we do.

Finally, we note that our proposed approach of utilizing an ensemble of N-step returns is not new.
Most notably, it is related to TD(\) which has been instantiated in various forms [41, 21, 51, 9].
Prior works have also used N-step returns for a fixed value of NV in methods that perform off-policy
TD learning [49, 17, 10]. Besides the fact that most of these works address online RL, the crucial
distinction between these prior works and our paper is that our work goes beyond the standard
explanation of bias-variance tradeoffs for N-step returns [40], and analyzes N-step returns from a
different perspective: improving the quality of learned representations. We emphasize that our goal
is not to produce a novel algorithm, but rather to understand the efficacy of different components
towards the representations learned by the Q-function.

3 Preliminaries

The RL problem is formally defined by a Markov decision process (MDP) M = (S, A, T, r, 10,7),
where S, A denote the state and action spaces, and T'(s'|s, a), r(s, a) represent the dynamics and
reward function respectively. po(s) denotes the initial state distribution, and y € (0, 1) denotes the
discount factor. The objective of RL is to learn a policy that maximizes the return (discounted sum of
rewards): max, J(7) := E(s, a,)n 2 7'7(St, ;)] In offline RL, we are provided with an offline
dataset, D = {(s,a, r,s’)}, of transitions collected using a behavior policy 73, and our goal is to find
the best possible policy only using the given dataset.

Naively learning a -value function from the offline dataset (e.g., via Q-learning or FQI) suffers
from OOD actions [14, 24, 30], and therefore effective offline RL algorithms must enforce some
constraint to prevent querying the target Q-function on unseen actions. This constraint could be a
behavior constraint, where the learned policy 7 is constrained to be close to the behavior policy 7.
In this work, we build our analysis on top of conservative Q-learning (CQL) [26], which applies
a regularizer R(6) to prevent overestimation of Q-values for OOD actions. R () minimizes the
Q-values under the policy m(als), and counterbalances this term by maximizing the values of the
actions in D. Formally:
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where () denotes the target (Q-function. On the other hand, training a -value function for the
behavior policy that only relies on action samples from the offline dataset is fairly easy and does not
suffer from the problem of OOD actions. A standard approach of learning such a @-function is what
we refer to as “offline SARSA” [43], which only queries the action observed in the dataset at the
subsequent timestep to compute the Bellman target for training the Q-function. The objective for
SARSA can be written as:

mein IEs,a,s’,a’wD [(Q@(Sa a) - r—- ’YQ(S/v al))2:| . (2)

Since the next step Q-values are computed using dataset actions, this eliminates the need to query
Q-function for the values of any OOD actions. In effect, this procedure only relies on supervision
observed in the dataset (i.e., actions, the corresponding rewards and the next states) to learn repre-
sentations. Prior works [28] have argued that avoiding out-of-distribution actions altogether enables
SARSA to enjoy benefits of implicit regularization [52, 3] that otherwise may hurt TD learning.

In order to understand representational quality, we focus our analysis on the last layer feature
representation ¢(s, a) learned by the neural network, following the conventions in prior work [8, 28,
27, 31, 32]. These prior works have also attempted to show that certain characteristics of the learned
representations ¢(s, a) of a value network can explain certain pathologies with Q-learning.

4 To What Extent Do OOD Actions Explain the Instability in Offline RL?

Most prior works in offline RL focus on addressing the action distribution shift problem, proposing
a wide variety of methods for preventing policies from taking OOD actions during the training
process. However, it remains unclear why different methods for mitigating OOD actions seem to



attain significantly different performance, and whether being better at preventing OOD actions is
actually the key to better results. It therefore seems natural to ask: to what degree is good (or
bad) performance of offline RL approaches really dependent on their ability to be pessimistic? In
this section, we study this question by performing a controlled empirical study, with experiments
investigating both the sufficiency and necessity of explicitly avoiding OOD actions.

4.1 Is Pessimism Sufficient for Good Performance?

While several recent offline RL methods that correct for OOD actions by adding some form of
pessimism work well, in most of these approaches, the pessimism-inducing penalty (e.g., value
conservatism penalty like in CQL) or constraint (e.g., behavioral constraints) also affects the rep-
resentation learned by the internal layers of the Q-function (or the policy). In this section, we
argue via an empirical study on top of the CQL algorithm that, to a large extent, the benefits of this
pessimism-inducing mechanism stem from its impact on the learned representation and not so much
from its ability to combat overestimation.

Empirical results showing insufficiency of pessimism. To decouple the effects of pessimism in
handling overestimation and representational quality, we train a CQL [26] agent on the hopper-
medium-replay-v2 environment from the D4RL [11] suite, and make the following modification: we
let the last layer representation ¢(s, a) of the Q-network be updated by the TD-error (second term in
Equation 1) and the conservatism regularizer (R(#)) is not allowed to affect this representation. Thus,
the regularizer R(6) only influences the final layer weights of the Q-function. As a result, while the
CQL regularizer can still curb overestimation by manipulating the last layer Q-values, it is unable to
affect the representations, thereby inhibiting pessimism from providing any representational benefits.
For comparison, we also train a regular CQL agent on the same environments. For both runs, we
apply the same weight on the conservatism penalty.
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Figure 1: CQL w/ stop gradient vs CQL in hopper-medium-replay task. Left: CQL w/ stop gradient is able to
prevent overestimation and results in non-divergent Q-values. Middle: the performance of CQL w/ stop gradient
is significantly lower than regular CQL. Right: Values of the CQL regularizer are quite comparable between
CQL and CQL w/ stop gradient, even though the observed performance is quite different.

As shown in Figure 1, once we prevent the CQL conservatism penalty from affecting the representa-
tion, performance decreases significantly. In the left part of the figure, we see that when the CQL
regularizer is not allowed to affect the learned Q-function representations (denoted “CQL w/ stop
gradient”), we are still able to attain stable and non-divergent Q-values (but suboptimal), thereby
avoiding the issues typically observed with standard TD methods. However, CQL w/ stop gradient
performs significantly worse than base CQL (Figure 1, middle). As shown in Figure 1 (right), the
value of the CQL regularizer (i.e., the amount of pessimism) is still quite comparable in both cases,
differing only by about 0.5, which is quite small relative to the average magnitude of the learned
Q-values (~ 300). However, there is a significant performance difference. This difference indicates
that while pessimism might be beneficial in lowering the value of OOD actions, it also contributes
significantly to other factors such as representation learning, and this representation learning benefit
accounts for much of the improvement from CQL, since without it the method performs much worse.

Takeaway 4.1. Besides preventing OOD actions, pessimism-inducing mechanisms in offline
RL algorithms can also contribute to representation learning, and simply ensuring pessimism,
without affecting representations might not be sufficient for good performance.




4.2 How Much Performance Improvement Does Good Representations Account for?

While the above results suggest that pessimism alone does not account for the good performance of
modern offline RL methods, and the quality of the learned representation has a crucial role to play in
determining the performance of value-based offline RL, it remains to be determined just how much of
the good performance of current methods could be explained entirely by representational benefits,
versus explicit avoidance of OOD actions. In this section, we attempt to answer this question by
construction: we perform an empirical study that completely removes explicitly pessimism, but applies
a representational regularizer that resembles what we would expect to get from pessimistic methods.
We show that it is still possible to obtain reasonable performance if the learned representation is
regularized, even without pessimistic regularization for OOD action values or constraining the policy
to remain in-distribution.

Experiment setup. As shown in Equation 1, the
CQL regularizer (R(#) in Equation 1) pushes down
the Q-value at OOD actions and pushes up the Q-
value for in-distribution dataset actions. If this kind
of a pessimism penalty truly induces beneficial repre-
sentational regularization, a natural conjecture is that
represeptatigns that trained to minimize just the CQL Figure 2: A schematic illustration of our approach
regularizer independently of the TD error must also oy representational regularization that trains a Q-
be useful, and must contain enough information to  function with an auxiliary discriminator head for
distinguish dataset actions from OOD actions. On its distinguishing potentially out-of-distribution po]-
own, the CQL regularizer (Equation 1) resembles the icy actions from in-distribution dataset actions.
objective of the discriminator in generative adversar-

ial networks (GAN) [16] which serves a similar function of distinguishing dataset examples from
generated examples. Based on this intuition, in the next experiment, we construct an offline RL
method that utilizes a GAN objective, but only to train a separate linear output head on top of the
Q-function network, whereas the Q-values are simply trained to minimize TD error with no form of
pessimism whatsoever. A schematic illustration of this approach is shown in Figure 3. Specifically,
we adopt the least square GAN [34] objective due to its simplicity and stability. Concretely, let us
denote the linear discriminator weight as w4, then given the Q-network representation ¢4 (s, a), our
explicit regularization objective can be written as

gnvivn Eswp.ann [(¢0(Sa a)TWd + 1)2] + Esavp [(¢9(S, a)de - 1)2] . 3
YWd

We apply this regularization on top of standard off-policy SAC [47], without any form of pessimism,
and evaluate the algorithm in the same environment as Section 4.1. For comparison, we also train a
naive SAC agent with identical hyperparameters but without this second head.
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Figure 3: SAC with representation regularization vs regular SAC on hopper-medium-replay-v2 task.
Left: SAC with representation regularization learns similar (-values to regular SAC. Right: Representation
regularization significantly improves the performance even without pessimism.

As shown in Figure 3, this modified algorithm can attain reasonable performance, significantly
outperforming naive SAC, despite having no explicit mechanism to ensure pessimism, conservatism,
or policy constraints. Since the additional GAN term only influences the last layer representation,
its benefits can be attributed entirely to learning better representations. While the method is not as
effective as dedicated offline RL approaches such as CQL, this result, together with the experiment
from Section 4.1 strongly suggests that representation learning is not only important for offline RL,
but it also explains a large fraction of the performance gains for methods such as CQL. This in turn



implies that, in designing better offline RL methods, we should put particular emphasis on their effect
on representation learning, rather than simply on enforcing pessimism.

Takeaway 4.2. The ability to learn good representations can explain a large fraction of the
performance gains for practical offline RL methods. Explicit regularization techniques that
give good representations can be effective in offline RL, even in the absence of pessimism.

5 RZ-CQL: A Simple Approach for Improving Representations For CQL

How can we improve the representations learned by offline RL algorithms? One simple but effective
idea is to make the learning objective closer to supervised learning, which does not suffer from the
representation issue. A natural choice of supervised learning objective for Q functions is regressing
to the Monte Carlo returns. Therefore, we consider a modified Bellman backup operator which
interpolates between complete bootstrapping and regression onto the Monte Carlo returns given by
the dataset. We use an ensemble of n-step return estimators in conjunction with offline RL methods,
similar to TD()) [43]. Concretely, for a given choice of values of n = {ng,n1,--- ,ng}, we utilize
the following Bellman operator to generate regression targets for TD:

n;—1
gﬂ—Q(SOvaO) = % Z <Z ")/l’l"(Sl, al) + ’yan(Snjaanj)> . (4)

j=1 \ =0

We emphasize that the above approach is not necessarily meant to be the best one available, and
that our goal is primarily to demonstrate the practical importance of our takeways from Section 4 by
showing how a simple technique capable of changing the learned representations, but not the level of
conservatism, of our Q-function can lead to better overall performance.

Practical instantiation. Our practical algorithm only modifies the CQL training objective (Equa-
tion 1) to now use the Bellman backup operator shown in Equation 4, with no other changes. We
inherit the value of « directly from CQL, without tuning it, and do not modify any other hyperpa-
rameters. We utilize values of n = {1, 3,5} across all domains. Note that unlike prior methods
based on explicit regularization such as the feature rank [28] or dot products [27], our approach does
not require any specific hyperparameter to be tuned per domain, highlighting the simplicity of this
approach.

Empirical results. We empirically validate our n-step approach by evaluating its performance across
a wide range of offline RL tasks from D4RL [12]. Following the protocol in [28], we present two
sets of performance numbers in Table 1: the final performance attained by the algorithm after a fixed
number of gradient steps (denoted “Final Performance”) and the average performance attained over
the course of training (denoted “Average Performance”), which is a measure of the stability of the
offline RL algorithm over the course of training.

Observe that on all the tasks, R?2-CQL at- walker2d-medium-replay-v2
tains a better or comparable performance
both measured by the final performance of
the algorithm and the average performance
across iterations, which demonstrates the
stability of training. The gap between naive
CQL and the n-step approach is larger un- e me R e e 2o B o e e ™ e s
der the average performance metric, indi- Fpochs Fochs

cating that the latter is much more stable. hopper-medium-v2
— QL 501 — caQL

R2-CQL (Ours) W\\'\—R R2-CQL (Ours)

— CQL so{|— CQL
R-CQL (Ours) —~—— 13 R2-CQL (Ours)

s o o

g & &

Q(s0, @) — MC(s0, a0)
5

Average Normalized Return
o

°

S
|
8

°

While this simple approach does lead to
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more important question is why does it ac-
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in learning a parametric Q-function can be effectively traded against the variance of a Monte-Carlo
return estimator. However, in this case, we utilize N-step returns in an offline setting, with an
already pessimistic algorithm (CQL). Since CQL already aims to underestimate the return of the
learned policy, we would expect N-step Bellman targets to only be more conservative, since they
bias the Q-function towards the values of the behavior policy and therefore be more biased than CQL.
Typically, this bias issue is solved by utilizing importance corrections [9, 35], but we do not use any
such correction. Therefore, not only does R?-CQL use a high variance Bellman target, but also a
more biased one, and yet it outperforms CQL (Figure 4). This again indicates that the representation
learning benefits of this approach are likely much more useful towards improving performance despite
the bias.

Task Final Performance Average Performance
CQL R2-CQL CQL R2-CQL

kitchen-mixed 0.000 £ 0.000  0.362 £0.013 | 0.085 £0.114 0.330 4 0.098
kitchen-partial 0.138 £0.138  0.475£0.075 | 0.089 £0.111 0.414 +0.139
kitchen-complete 0.000 £ 0.000  0.025 £0.025 | 0.163 £0.143  0.100 £ 0.106
antmaze-medium-play 0.435£0.315 0.670 £0.090 | 0.569 £0.200 0.602 + 0.216
antmaze-medium-diverse 0.680 & 0.070  0.645 £ 0.045 | 0.511 £0.214 0.538 +0.212
antmaze-large-play 0.005 £ 0.005  0.320 £ 0.000 | 0.098 £0.105 0.265 + 0.104
antmaze-large-diverse 0.095 £ 0.035 0.420 £0.010 | 0.162 £0.083 0.303 £ 0.145
antmaze-ht-large 0.090 £ 0.090  0.380 £ 0.160 | 0.082 £ 0.057 0.283 +0.125
antmaze-ht-large-biased 0.000 £ 0.000  0.310 £0.190 | 0.067 £0.057 0.302 + 0.098
antmaze-ht-medium 0.000 £ 0.000  0.320 £ 0.140 | 0.155£0.118 0.290 &+ 0.121
antmaze-ht-medium-biased || 0.000 £ 0.000  0.220 + 0.040 | 0.126 £0.192  0.234 4+ 0.083

Table 1: Final and average performance for R>-CQL and CQL across 7 D4RL tasks and 4 heteroge-
neous antmaze tasks. All performances are evaluated with 3 random seeds for 1000 epochs. We see
that R?-CQL improves the final and average perfromance over naive CQL significantly.

6 Discussion and Conclusion

In this paper, we demonstrate that, while addressing the overestimation due to OOD actions is
important for offline RL, a crucial but largely overlooked factor in obtaining good performance
in value-based offline RL algorithms is good representation quality. We show through extensive
empirical results that, perhaps surprisingly, pessimism in practical offline RL algorithms such as CQL
contributes to the performance not only as a way to prevent overestimation, but more significantly
as a way to induce good representations. We also show that pessimism is not the only way to attain
good representations and methods that attain good representations can still work well. Based on
this experimental analysis, we show that simply utilizing a ensemble of N-step returns to compute
Bellman targets can provide a strong representational regularization and thus significantly improve
the performance of conservative offline RL algorithm. We hope that our discovery can highlight the
importance of representation learning in offline RL, and thus open up new opportunities to devise
stronger offline RL methods.

While we provide a practical method R*-CQL to regularize representations, by no means do we
claim that it is an optimal method. Therefore, a natural step for future work is to seek better ways to
understand and improve the quality of learned representations. We believe that such a search has the
potential to bring deep insights to the field of offline RL and hope that our analysis sheds light on
some of these important questions.
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A Appendix

A.1 What Constitutes a Good Representation for Offline RL?

In this section, we seek to make the notion of representation quality more concrete by motivating a
new metric designed for offline RL settings, and show how R?-CQL’s improved performance can be
identified by this metric.

Our empirical analysis from Section 4.2 suggests that pessimistic offline RL methods do affect the
representations learned by offline RL algorithms such as CQL, and utilizing only the TD error can
give rise to representations that fail to adequately distinguish the dataset action from actions from
the learned policy. This distinction is crucial: since an offline RL algorithm observes ground truth
supervision only in the form of instantaneous rewards and the subsequent environment state, for
dataset actions, the ability to successfully associate the right (long-term) reward with the right dataset
action is critical for attaining good performance. Can we formalize this intuition into a diagnostic
metric for measuring the “goodness” of the learned representation?

The most natural choice of such a metric, inspired by our experimental analysis in Section 4.2, is the
accuracy of the separate discriminator head trained to distinguish dataset actions from policy actions.
We propose to utilize a more complete metric for tracking the amount of action information in the
learned representation: we propose to train a non-linear model to reconstruct both the dataset and
policy actions from the learned representation ¢ (s, a), and suggest tracking the reconstruction error
of this model in aggregate over dataset actions. This metric can be formalized as:

T8

Metric A.1. Train a parametric model, A : S x R% — A on the dataset: Da = DR UD,,
where Dzﬂ = {(ss, (85, 1)), ai}f\il and D}, := {(s;, ¢(si, 7(s;)) , W(Si)}f\il. Then, track
the error metric:

1

Koz ((I)) = ﬁ

Z llai — A (si, ¢(si,2))|]5 - &)

(ss,a;)€D

Since the reconstruction error Lecons(P) can take on a range of values, how should we choose values
to decide whether a representation is good enough or not? Specifically, what is a baseline value of this
quantity that can be considered a “gold standard” for comparison? To identify a good value of this
good standard, we seek to intuitively understand how OOD actions would impact the representations
learned by a value-based offline RL algorithm. We can do so by utilizing the following informal model
of the behavior of neural networks that is implied by several theories of deep learning [3, 4, 46, 7]:
sufficiently expressive and overparameterized neural networks are believed to learn the “simplest”
function that can fit the training data (i.e., match the actual label on the training datapoints). That
is to say that the learned function retains only information about the training data that is absolutely
critical for making predictions, and attempts to lose any unnecessary information.

When instantiated in the context of TD-learning, this intuitive model implies that the simplicity of the
function approximator would depend on its ability to fit the Bellman constraints on the training data.
If several of the actions used to compute Bellman targets are out-of-distribution, in principle, a simpler
function approximator can be learned by assigning arbitrary values to them, as Q-values at such
actions are hallucinated by the function approximator itself. On the other hand, if all the actions used
to produce Bellman targets also appear in the dataset (i.e., these actions also appear on the left hand
side of some Bellman constraint), the resulting function approximator is the most constrained, and
likely least simple. This implies that a good baseline that can serve as a gold standard for comparing
Lecons 18 the reconstruction error attained by offline SARSA (Equation 2). This means that closer the
value of Lyecons(Pofftine RL) 10 Lrecons (Psarsa ), the more desirable the learned representation.

Empirical results. To empirically validate the efficacy of our reconstruction error metric, we compute
the values of L econs for a variety of D4RL [12] tasks and compare them to the values attained by
SARSA. Observe in Figure 5 that while in some cases (e.g. kitchen), the reconstruction error for
naive CQL is much larger than SARSA, indicating excessive loss of information about the dataset, in
other cases (antmaze and antmaze-heterogeneous), the reconstruction error for naive CQL is smaller,
indicating that CQL hallucinates information about the dataset action. As an additional point of
reference, we also plot this metric for an approach that utilizes an IN-step Bellman backup with CQL,
and observe that this approach attains a value of L;econs closer to that of SARSA. Furthermore, even
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though the policies produced by naive SARSA don’t perform well (as confirmed by prior works [6]),
the value of Lecons to that of SARSA, the better the performance of the resulting method. This
empirically corroborates our intuition about the efficacy of this metric.
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Figure 5: Performance and metrics of R*-CQL vs regular CQL, in comparison with SARSA. Observe that
measuring of closeness of the reconstruction error on the dataset actions (Metric A.1) to the corresponding value
for SARSA is able to accurately predict the performance trends, while other prior metrics may not.

Additionally, we also measure the predictive power of existing metrics from prior works, such as
feature rank penalty [27] and feature dot products [28], in predicting the performance difference
between CQL and our approach. While these prior works used extreme values of these metrics (e.g.,
extremely low rank or extremely large dot products) to diagnose pathologies in TD, our analysis
shows that representational issues can still arise when these metrics behave relatively stably (see

Figure 5).

Takeaway A.1. The closer the value of the reconstruction error metric of an offline RL method
based on TD-learning method that utilizes out-of-distribution actions, to that of SARSA, the
better we would expect the performance of the learned policy to be.
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