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Directed Shortest Walk on Temporal Graphs
Alex Khodaverdian1 and Nir Yosef1*

Abstract

Background: The use of graphs as a way of abstracting and representing biological systems has provided a
powerful analysis paradigm. Specifically, graph optimization algorithms are routinely used to address various
connectivity queries, such as finding paths between proteins in a protein-protein interaction network, while
maximizing objectives such as parsimony. While present studies in this field mostly concern static graphs, new
types of data now motivate the need to account for changes that might occur to the elements (nodes) that are
represented by the graph on the relationships (edges) between them.

Results and Discussion: We define the notion of Directed Temporal Graphs as a series of directed subgraphs
of an underlying graph, ordered by time, where only a subset of vertices and edges are present. We then build
up towards the Time Conditioned Shortest Walk problem on Directed Temporal Graphs: given a series of time
ordered directed graphs, find the shortest walk from any given source node at time point 1 to a target node at
time T ≥ 1, such that the walk is consistent (monotonically increasing) with the timing of nodes and edges.
We show, contrary to the Directed Shortest Walk problem which can be solved in polynomial time, that the
Time Conditioned Shortest Walk (TCSW) problem is NP-Hard, and is hard to approximate to factor

⌈
T
2

⌉
− ϵ

for T ≥ 3 and ϵ > 0. Lastly, we develop an integer linear program to solve a generalized version of TCSW, and
demonstrate its ability to reach optimality with instances of the human protein interaction network.

Conclusion: We demonstrate that when extending the shortest walk problem in computational biology to
account for multiple ordered conditions, the problem not only becomes hard to solve, but hard to approximate,
a limitation which we address via a new solver. From this narrow definition of TCSW, we relax the constraint
of time consistency within the shortest walk, deriving a direct relationship between hardness of approximation
and the allowable step size in our walk between time conditioned networks. Lastly we briefly explore a variety
of alternative formulations for this problem, providing insight into both tractable and intractable variants.

Availability: Our solver for the general k-Time Condition Shortest Walk problem is available at
https://github.com/YosefLab/temporal_condition_shortest_walk

Keywords: Shortest Walk; NP hard; Integer Linear Programming; Protein-protein interaction

Background
A common approach for investigating biological sys-
tems is to first abstract the system as a network. These
networks may be defined over broad and varying cat-
egories such as species or at a higher resolution over
proteins or metabolites within cells. For example, pro-
teins and their pairwise interactions can be modeled
as protein protein interaction networks, where nodes
represent proteins and edges represent phsyical bind-
ing or joint chemical reactions. Once such an abstrac-
tion has been made, an investigator can dig into more
specific questions. For example, cells express a subset
of protein receptors depending on the cell type and
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cell state. Once a receptor is stimulated via extracel-
lular ligands, a signalling cascade begins at receptor
on the cell surface and often ends by modifying sev-
eral transcription factors in the nucleus. Although a
broad range of known pairwise protein interactions
are well studied in the protein-protein interaction net-
work, the path in which the signal propagates through
this network from a receptor or protein to a terminal
protein or transcription factor is less well studied and
is a newer question of interest [1, 2, 3, 4, 5]. Under
the assumptions of a static protein-protein interaction
network, one could simply apply out of the box al-
gorithms such as Djikstra’s algorithm or Steiner Tree
to find the most likely path taken [6, 7]. In practice
however it turns out that the network is dynamic with
time, as only a subset of proteins are active signalling

https://github.com/YosefLab/temporal_condition_shortest_walk
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candidates at any given time, be it that the protein
may not be present in the cell, or may be deactivated
via post-translational modifications [8, 9, 10]. There-
fore, the question of interest becomes to not only infer
the sequence of protein protein interactions in which
receptor signaling leads to changes in transcription
factors, but how this signal propagates through a dy-
namic temporal network.

Temporal networks have been well studied, with ap-
plications to broad fields such as communication prop-
agation [11, 12, 13]. The simplest of such temporal
problems is the shortest path problem, with the follow-
ing setup - a network is provided with weighted edges,
which travel from timepoint t1 to t2, where t2 > t1.
The goal becomes to find a path which optimizes over
a constraint, and is time-monotonic (or increasing in
time). Many such possible variants of time-monotonic
shortest path exist over this network, for example the
earliest arrival time from a to b, the latest departure
time from a to b, or just simply the lowest cost path
(by edge weight), all of which can be solved in polyno-
mial time [14, 15, 16]. There also exist more difficult
problems, such as finding strongly connected compo-
nents [17], or finding time-monotonic spanning trees
[18, 19, 20], both of which are intractable, although for
the case of minimum spanning trees, there exists an ap-
proximation preserving reduction to Directed Steiner
Tree, which can be non-trivially approximated [21, 22].
While these works underscore the importance of a sin-
gular optimization problem spanning multiple time-
points, they fail to consider several key points present
in real biological applications. Firstly, in the afore-
mentioned literature, nodes are always present and
traversable. However, in practice, nodes, or proteins,
can be in active forms at certain times, and inactive
forms at other times. Secondly, a key notion in biol-
ogy comes from the idea of Occam’s Razor. That is
we wish to explain a biological process with the least
number edges or nodes traversed, accounting for the
fact that the same edge or node can be used multiple
times under different contexts (ex. time). This model
fails to allow for that possibility due to only allowing
for a path like singular edge traversal, rather than a
walk.

Another work closely related to this problem comes
from Wu et al, who explored the notion of Condition
networks [23]. In this setting, a series of directed net-
works Gc are provided, with the same set of nodes
V , but a different set of edges Ec. In addition, each
network comes with its own set of pairwise connec-
tivity demands Xc = {(a1, b1), ..., (an, bn)}. The goal
becomes to identify a subgraph H s.t. all connectiv-
ity demands in Xc are satisfied in H ∩ Gc, and H is

of minimum cost. A special version of this problem is
Condition Shortest Path (CSP), in which a singular
connectivity demand X = (a, b) is given for each con-
dition. Both of these problems turn out to be NP-hard
to approximate beyond a trivial factor |C|. Although
this problem attempts to optimize for the shortest
path between a given (a, b) pair per condition, with
information reuse, we are instead interested in a very
different scenario. In particular, the scenario we are
interested in considers one singular network demand
spanning over many graphs, motivated by dynamic bi-
ological networks in practice.

Summary of main contributions
To this end, we introduce the Time Conditioned Short-
est Walk (TCSW) problem, which takes on a similar
flavor as Condition Shortest Path (CSP) introduced
by Wu et al. In this setting we are given a series of
ordered networks Gt and ordered conditions {1, ..., T}
representing a discrete measurement of time, and as
well as a pair of nodes (a ∈ G1, b ∈ GT ). For each
time condition, our defined networks Gt have vertices
Vt which are allowed to change across networks, but
a set of global edges E which remain constant. The
goal is to find a walk from a source node a to target
node b which begins in G1, ends in GT , and satisfies
the following constraints: transitions are allowed from
v ∈ Gi to w ∈ Gi or Gi+1 if (v, w) ∈ E. In addition,
transitions are allowed from v ∈ Gi to v ∈ Gi+1. Edge
costs are only paid once globally; that is, if you reuse
an edge, you do not pay a cost.

We first prove a simple algorithm for solving the case
for T = 2 time conditions. We then move to the more
difficult case where vertices are shifting, and show that
it is NP-hard to find a solution that achieves an ap-
proximation factor better than

⌈
T
2

⌉
for T ≥ 3 via

approximation preserving reduction to CSP. We then
extend our results to the general setting, where the
time differential between two nodes in a path can be
an integer k greater than 1. We prove that this problem
is similarly hard to approximate to a factor better than⌈

T
k+1

⌉
, for an arbitrary step size k. Lastly, we provide a

integer linear program for the general TCSW problem,
and show that when provided with real-world input it
is capable of finding optimal solutions in reasonable
time.

Definitions and Preliminaries
In graph theory, the shortest path problem is well

studied in its many variants: from undirected net-
works, to weighted directed networks with nonnegative
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Figure 1 (a) Example TCSW instance, with active time points per node labeled and source a and target b highlighted in yellow. In
particular, we note that z is inactive at timepoint 3, and therefore the only possible solution is to transition from z in timepoint 2 to
a in timepoint 3, ultimately going through w y and z again to get to b at timepoint 5. (b) Solution to the example instance. (c)
Solution to the example instance based on the alternate formulation of G presented in Definition 1

edge weights, to weighted directed networks without
negative cycles. Each of these variants can be solved ef-
ficiently. For example the most common variant of the
shortest path problem over weighted directed networks
is solvable via Djikstra’s algorithm in O(E+V log(V ))
complexity, or with more advanced techniques such as
Thorup’s algorithm in time O(E + V log(log(V ))).

In this paper we extend the generalization of net-
work problems begun under Wu et al to the condition
setting. Specifically, we generalize the shortest path
problem to the time conditioned setting. Recall that
in this setting we have a series of ordered time condi-
tions [T ] = {1, ..., T}, each with a corresponding net-
work Gt.

Definition 1 (Time Condition Shortest Walk (TCSW))
Given the following inputs:
1 A series of directed networks {Gt = (Vt, E)}t∈[T ]

each corresponding to a time condition t. Edges
are positively weighted. Note that we denote V =⋃

t Vt. We denote a node v ∈ VT as vt
2 A pair of nodes (a1, bT ) s.t. a1 ∈ V1 and bT ∈

VT which we wish to connect via a walk through
G1, ..., GT

Our goal is to find an a− b walk from G1 to GT . We
denote a walk W in the form W = {. . . , (vi, wj), . . .},
where (vi, wj) is a valid edge if v ∈ Vi, w ∈ Vj and
i = j or i = j + 1, and (v, w) ∈ E or v = w. We
denote this ”jump” constraint from Gi to Gi+1 as the
temporal walk constraint. The walk begins at a1 and
ends at bT .

Equivalently, one can consider TCSW over a sin-
gular global network defined over all Gi. We define
such network G with vi ∈ G if v ∈ Vi, where v may be
present in multiple V∗. An edge e = (vi, wj) exists in G
if vi ∈ Vi, wj ∈ Vj , i = j or i = j+1, and (vi, wj) ∈ E.
In addition, we add zero weight edges for all nodes
vi, vi+1 if vi ∈ Vi and vi+1 ∈ Vi+1. The goal is to find
the minimum cost path from a1 to bT where an edge
(v, w) is only paid for once regardless of however many
(vi, wj) pairs are traversed.

We offer the most formal presentation of TCSW, its
variants, and G in the Appendix.

Definition 2 (k−Time Condition Shortest Walk
(k−TCSW)) In this variant, we relax the tempo-
ral walk constraint to allow for jumps between net-
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works that aren’t immediately subsequent in time.
More specifically: For a given walk W in the form
W = {. . . , (vi, wj), . . .}, (vi, wj) is a valid edge if
v ∈ Vi, w ∈ Vj and i ≤ j ≤ j + k. We denote this
relaxed constraint as the k-temporal walk constraint.
We note that in the definition for vanilla TCSW we
operate under the 1-temporal walk constraint.

Definition 3 (Directed Condition Shortest Path
(CSP)) We draw this definition from Wu et al.
1 A sequence of directed graphs G1 = (V1, E), G2 =

(V2, E), ..., GT = (VT , E) with positively weighted
edges and V =

⋃
t Vt.

2 A set of C connectivity demands D ⊆ V ×V × [C]
in the form (a, b, 1), ..., (a, b, C).

Let G = (V,E) be the underlying network. The goal
of this problem is to find a subgraphH ⊆ G of minimal
cost s.t. there exists a path from (a, b) in H amongst
vertices that are active in Gc for all c. We note that
CSP is hard to approximate to a factor of C − ϵ for
every C ≥ 2 and ϵ > 0, a fact that we will exploit to
prove TCSW is hard to approximate.

Problem Variants
The description given above for TCSW is just one
possible way to describe the Temporal Walk problem.
Here we describe several other variants, leaving their
analysis for later in the manuscript.

Definition 4 (Strict Step Repay − Time Condition
Shortest Walk (SSR−TCSW)) Given the same in-
puts as TCSW , a demand pair and a series of net-
works G1...GT , the goal is to find an a − b walk
W from G1 to GT , where W in the form W =
{. . . , (vi, wj), . . .}, where (vi, wj) is a valid edge if
v ∈ Vi, w ∈ Vj and i = j + 1, and (v, w) ∈ E or
v = w. That is, every step must move up in time. In
addition, edges are paid for per use, i.e. edges can be
reused but must be paid for each time.

Definition 5 (Strict Step − Time Condition Short-
est Path (SS−TCSP)) This variant is the same as
SSR − TCSW in that every edge used must move up
in time. However, the difference in this variant is that
the solution must be a path, not a walk (i.e. cannot
traverse the same vertex twice, which implies no edge
can be reused).

Definition 6 (Repay − Time Condition Short-
est Walk (R−TCSW)) Given the same inputs as
TCSW , the problem becomes to find an a − b walk
W from G1 to GT where edges are paid for per use
(rather than just once).

Definition 7 (Monotonic−Time Condition Short-
est Walk (Mon−TCSW)) This variant is similar to
vanilla TCSW , except now (vi, wj) is a valid edge if
v ∈ Vi, w ∈ Vj and i ≤ j. We note in k − TCSW ,
we allow this jump to be up to step size k, but in this
variant jumps can be arbitrarily large as long as they
are monotonic.

Definition 8 (Multi−k Time Condition Shortest
Walk (Multi−k−TCSW)) In this variant, we allow
for a set of n demands (a1, b

1
T ), ..., (a1, b

n
T ). Our goal is

to find a set of n walks starting from a singular source
a1, and ending at biT . The cost paid is the sum of the
weight of all edges used in one or more walks (each
edge is only paid for at most once). This variant is
most suitable for protein signalling cascades, whereby
often times a signal begins at a singular receptor, and
through a series of interactions, many downstream pro-
teins are affected. Naturally k−TCSW is special case
with only one demand.

Our Results
In this work, we build off the results of Wu et al. In
particular we aim to show that similar to the Condi-
tion Shortest Path problems, extending the Condition
setting to TCSW, a singular global shortest path prob-
lem with the temporal walk constraint, becomes hard
to solve and hard to approximate to any non-trivial
factor. We then relax the temporal walk constraint,
and show a neat tradeoff between the temporal walk
constraint and the hardness of approximation. Lastly,
we present an ILP formulation for these problems, and
demonstrate the ability to find optimal solutions to the
generalized k-TCSW problem in feasible time on real
world applications over the human Protein Protein In-
teraction Network (PPI).

We begin by proposing a rather simple algorithm for
solving the TCSW problem for T ≤ 2.

Theorem 1 TCSW can be solved in polynomial for
T ≤ 2.

While this result is promising, the regime of polyno-
mial time algorithms ends here.

Theorem 2 TCSW is hard to approximate to a fac-
tor of

⌈
T
2

⌉
− ϵ for every fixed T ≥ 3 and ϵ > 0.

Thus the best approximation ratio one can hope for
is

⌈
T
2

⌉
. Such ratio can easily be achieved by consid-

ering the global network G defined amongst all Gi as
follows: Create a network G with node vi ∈ G if vi ∈ Vi.
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An edge e = (vi, wj) exists in G if vi ∈ Vi, wj ∈ Vj ,
i = j or i = j+1, and (vi, wj) ∈ E. In addition, we add
zero weight edges for all nodes vi, vi+1 if vi ∈ Vi and
vi+1 ∈ Vi+1. Find the shortest path in this network
from a1 to bT (thus ignoring the benefits of re-using
an edge). An edge may be re-used once per alternate
level, thus giving us a solution as bad as

⌈
T
2

⌉
away

from OPT.

By relaxing the temporal walk constraint, we are left
with a more general result

Theorem 3 The general problem of k-TCSW is hard

to approximate to a factor of
⌈

T
k+1

⌉
− ϵ for every fixed

k ≥ 1, T ≥ k + 2, and ϵ > 0.

Similar to vanilla TCSW, we can generate a global
network G with node vi ∈ G if vi ∈ Vi. An edge
e = (vi, wj) exists in G if vi ∈ Vi, wj ∈ Vj , i ≤ j ≤ j+k,
and (vi, wj) ∈ E. In addition, we add zero weight edges
for all self nodes up to k timepoints away (rather than
1). Similarly find the shortest path in this network
from a1 to bT . In this instance, an edge may be reused
once per k + 1 level, thus giving us a solution as bad

as
⌈

T
k+1

⌉
away from OPT.

Although these results are rather pessimistic in the
theoretical abstract we provide a more consoling view
by formulating an integer linear program for the gen-
eral TCSW problem. We then show in experiments
on real-world inputs derived from the human PPI net-
work, the ILPs are capable of finding optimal solutions
in a reasonable amount of time.

Hardness of Time Condition Shortest Walk

Theorem 1 TCSW can be solved in polynomial for
T ≤ 2.

Proof Note that when T = 1 we’re simply left with
the vanilla shortest path problem, which can easily be
solved by algorithms such as Djikstra’s or Thorup’s
Algorithm.

Now let us consider the case for T = 2. We argue
that the optimal walk is in fact a path, and thus apply-
ing shortest path on the global network G will provide
the optimal solution.

Consider the global network G as defined earlier in
Definition 1. Assume for the sake of contradiction that
there exists a walk W that has a lower cost than the
shortest path P from a1 to b2 in G. Due to our as-
sumption and by definition of G, this walk cannot be

a simple path. Therefore that implies there exists at
least one vertex v ∈ V that was traversed twice in
this walk, once from (vi, wj) and once from (vi′ , xj′).
Now consider the walk W ′ formed by concatenating
this portion of the walk and simply taking the edge
(vi, xj′). As we only have two time points, this is a
still a valid traversal and satisfies the temporal walk
constraint. We can therefore apply this concatenation
process until every vertex is traversed only once, thus
forming a simple path P ′, which has less than or equal
cost to W . Therefore we arrive at a contradiction, as
the optimal walk from a to b is in fact a path.

Theorem 2 TCSW is hard to approximate to a fac-
tor of

⌈
T
2

⌉
− ϵ for every fixed T ≥ 3 and ϵ > 0.

We approach this proof via approximation preserv-
ing reduction from Condition Shortest Path to TCSW.
Recall that in the Condition Shortest Path problem,
we are given networks G1, ..., GC and a source tar-
get pair (a, b). The goal is to find a subnetwork
H ⊆ G =

⋃
c Gc of minimal cost such that there ex-

ists a path from a to b in H amongst vertices that are
active in Gc, for all c.

Therefore, given an instance of CSP (G1, ..., GC , (a, b)),
with underlying network G = (V,E) the reduction
works as follows:

• Construct an instance of TCSW with 2C+1 net-
works G′

1, ...., G
′
2C+1. Let the odd networks in our

constructed instance of TCSW G′
2c−1 = Gc for

c ∈ [C].
• For even instances G2c for c ∈ [C], let G2c be a
network with exactly one node t∗.

• In addition to the edges E from our CSP instance,
add two directed edges to our global edge set:
(b, t∗) and (t∗, a), which we call our transition
edges.

• Our singular demand is to find a walk from a1 to
b2C+1

• The network H ⊆ G that satisfies CSP is formed
by taking the union of edges traversed in the
TCSW instance solution W minus the transition
edges (b, t∗) and (t∗, a)

We first note that by construction, the only way to
go from a1 to b2C+1 is to first go from a1 to b1, then
take the transition edges from b1 to t∗2 and t∗2 to a3,
and then repeat. Therefore W contains a path from ac
to bc that only goes through edges in Gc for all c ∈ [C],
and therefore the union of edges e ∈ W = H forms a
valid solution for our CSP instance.

Now assume for the sake of contradiction that there
exists a solution H ⊆ G of lower overall cost than the
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Figure 2 Example reduction from a Condition Shortest Path instance (left) with 3 conditions to an instance of TCSW with 5 time
points (right). In the TCSW instance, red edges are traversed in timepoint 1, green edges in timepoints 3, blue edges in timepoint 5,
and purple edges are traversed from timepoint i to timepoint i+ 1.

network H returned from our TCSW reduction. For

each condition c ∈ [C], consider an a − b path go-

ing through H using only edges in Gc. Let the set of

edges used in such path be called Pc. We construct a

walk W as follows: W = [P1, (b, t
∗), (t∗, a), P2, ...., PC ].

This forms a valid walk in our TCSW instance, and

has lower cost than W , as edge weights are only paid

for once in both the CSP instance and the TCSW in-

stance. This leads to a contradiction that W was our

optimal walk.

Therefore, all CSP instances can be solved via a

reduction to TCSW. Naturally, this leads us to the

inapproximability of TCSW. Namely, CSP cannot be

approximated to a factor of C − ϵ for all fixed C ≥ 2

and ϵ > 0. Therefore, by extension TCSW cannot be

approximated to a factor T+1
2 − ϵ for all fixed odd

T ≥ 3 and ϵ > 0, as we have 2C + 1 temporal condi-

tions in our TCSW instance for a CSP instance of C

conditions.

We note one caveat, which is that we’re always reduc-

ing to an odd number of time conditions. It is straight

forward to see that we could have equivalently reduced

to an even number of time conditions by adding an ex-

tra network G2C+2 with just the node b, and instead

solving for the walk from a1 to b2C+2, thus proving

that even instances are inapproximable to a factor of
T
2 − ϵ for all fixed even T ≥ 4 and ϵ > 0. As a result,

we can make a more general statement from these two

that TCSW is inapproximable to a factor of
⌈
T
2

⌉
− ϵ

Theorem 3 The general problem of k-TCSW is hard

to approximate to a factor of
⌈

T
k+1

⌉
− ϵ for every fixed

k ≥ 1, T ≥ k + 2, and ϵ > 0.

This proof follows directly from Theorem 2. The re-
duction from CSP to k-TCSW follows the same flavor
as the one above with the following key difference:

• Rather than constructing 2C + 1 networks, we
construct (k + 1)C + 1 networks. We let every
(c− 1)(k + 1) network G′

(c−1)(k+1)+1 = GC .

• In addition, we let G′
ck+1 be a network with ex-

actly one node t∗

• All other networks G′
i are empty

• We maintain the edge set formed previously, with
the same two transition edges (b, t∗) and (t∗, a).

• Our singular demand is to find a walk from a1 to
bC(k+1)+1

• The network H ⊆ G that satisfies CSP is formed
by taking the union of edges traversed in the
TCSW instance solution W minus the transition
edges (b, t∗) and (t∗, a)

We note that the exact same arguments work for why
H is a valid and optimal solution for the CSP instance.
One caveat that the reader may notice, similar to the
odd even bifurcation in the prior section is that we
always reduce CSP to a k-TCSW instance in the form
(k + 1)(C − 1) + 1. However, with the same idea of
adding dummy networks at the end of our k-TCSW,
we encompass all other instances of k-TCSW. As CSP
is hard with C = 2, TCSW is NP-hard for all instances
(k+1)(2−1)+1 = k+2. In addition, k-TCSW is hard

to approximate to factor
⌈

T
k+1

⌉
by similar argument.



Khodaverdian and Yosef Page 7 of 10

Figure 3 Integer linear program for k-Time Conditioned Temporal Walk. δvt = 1 for v at time 1 if v is the source s, −1 if v is target
t at time T , 0 otherwise. Each variable duvtt′ denotes the flow through edge (u, v) from time t to time t′; each variable duv denotes
whether (u, v) is ultimately in the chosen walk solution;. The first constraint enforces flow conservation by demanding 0 flow through
all nodes except the source s and target t. The second constraint ensures that if an edge is used at any condition, it is chosen as part
of the solution. The third constraint ensures that a jump of no larger than k is taken by forcing 0 flow through edges of greater time
length. The fourth constraint ensures that both ends u and v exist in Vt and Vt′ respectively.

Building the protein-protein interaction network
In order to construct a human protein protein inter-
action (PPI) network network for our simulations, we
collected data to construct a weighted directed net-
work from four sources. Our largest dataset came from
InWeb [24], where protein-protein interactions were
treated as bidirectional edges from the proteins used.
Edge weights were set as the negative log confidence
score collected. Similarly, PPIs from the Human Pro-
tein Reference Data (HPRD)[25] were treated as bidi-
rectional, but assigned the minimum nonzero confi-
dence values by default. For directed edges, collected
from highly curated data-sets, we used Phosphosite[26]
and NetPath[27], and assigned edges sourced from
both our maximal confidence value

Solving k-TCSW to optimality
We can derive a natural linear program for k-TCSW
in terms of network flows, by demanding a unit of flow
from timepoint 1 for source s to arrive at timepoint T
for target t, while maintaining the temporal walk con-
straint. We present the specific formulation in Figure
3.

Performance analysis of integer linear programming
Given the protein-protein interaction network G, we
sample an instance of k-TCSW by sampling a source
node a ∈ V1 and target node b ∈ VT such that there
exists a walk from a to b which satisfies the k tempo-
ral walk constraint. All other nodes exist in Gt with
probability p.

Using a workstation running an Intel Xeon E5-2690
processor and 250GB of RAM, optimal solutions to
instances of modest size (generated using the proce-
dure just described) were within reach:

Table 1 ILP solve times for some random instances generated by
our random model using the Gurobi Python Solver package[28].

k T p Time to solve
1 1 0.25 40s ± 5s
1 1 0.75 40s ± 5s
1 3 0.25 4m 30s ± 1m
1 3 0.75 20m ± 4m
1 5 0.25 14m ± 6m
1 5 0.75 24m ± 30s
2 5 0.25 20m ± 6m 30s
2 5 0.75 25m ± 30s
1 10 0.50 31m ± 1m 30s

We note that runtime seems to largely depend on the
number of time conditions T , with some additional
dependence on p, which loosely measures the size of
our frames Gt. Through these simulations we present
a model which is applicable to real world biological
instances, and can solve for optimal solutions in a fea-
sible amount of time.

Conclusion and discussion
In this manuscript we introduced the Time Condi-
tion Shortest Walk (TCSW) problem, in which the
goal was to find an a − b path beginning in an ini-
tial time conditioned frame G1, and ending in GT ,
with jumps of length at most one. Unlike the short-
est path problem, which is tractable, we demonstrated
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via approximation preserving reduction to Condition
Shortest Path (CSP) that TCSW is hard to approxi-
mate within a factor

⌈
T
2

⌉
− ϵ for T ≥ 3 and ϵ > 0. We

then expanded this problem to a broader definition,
k-TCSW, allowing for jumps of up to size k in this
a− b path. We demonstrated a direct inverse relation
between the jump size k, and best approximation ratio
achievable, with k−TCSW being hard to approximate

to
⌈

T
k+1

⌉
− ϵ for T ≥ 3 and ϵ > 0 k ≥ 1. Lastly, we de-

veloped an integer linear program modeled on network
flows, and applied it to solve for exact solutions over
simulated instances on the human protein-protein in-
teraction network, demonstrating feasibility runtimes
for real-world instances.

In this work we also briefly explored a variety of al-
ternative formulations for this problems, some being
tractable, and others intractable. We believe a natu-
ral extension of this work would be to define the time
conditioned frames over a series of variable edges, or
both variable edges and vertices. Some modifications
would have to be made to account for the ability to
traverse self edges. Lastly, we believe given the feasi-
bility demonstrated by our simulations, the next step
would be to apply this method to cell signalling data
spanning multiple time points.

Analysis of problem variants
Proposition 1 Strict Step Repay - Time Condition
Shortest Walk (SSR-TCSW) can be solved in polyno-
mial time

Proof We provide a simple algorithm to solve the prob-
lem in O(|T ||E|+ |T ||V |log(|T ||V |))

Require: G1, ..., GT ; a, b ∈ V ;T ;
1: Let V ′ =

⋃
t∈[T ] Vt

2: We say there exists an edge e′ in E′ between vt, wt+1 ∈ V ′ if
there is an edge e between v, w ∈ E, and v ∈ Vt and w ∈ Vt+1.
Let w′(e′) = w(e).

3: Walk = Dijkstra(a, b,G′ = (V ′, E′, w′))
4: return Walk

Note that this is just a simple modification of the
shortest walk problem where we must use exactly T−1
edges. By construction each edge moves us up exactly
one time point. The only difference is that we cannot
pass through certain vertices at certain time points ,
which we account for by not including the correspond-
ing vertices in our modified network G′.

Proposition 2 Strict Step - Time Condition Short-
est Path (SS-TCSP) is NP-Hard

Proof We will show a simple reduction from Hamilto-
nian Path to SS-TCSP. Consider an instance of Hamil-
tonian Path, where given a graph G = (V,E), we are
asked to find a simple path P s.t. P visits all vertices
of G.

Let |V | = n. We now generate a new instance of SS-
TCSP. First initialize G2, ..., Gn+1 = G. Initialize G1

with a singular source node s and Gn+2 with a target
node t. Define T = n + 2. Initialize E′ = E, and add
to E′ edges (s, v) and (v, t) for v ∈ V

Now consider the instance I = {G1, ...Gn+2, (s, t), T}.
We note that during time 2,..,—V—+1 the path must
stay in the original G, and based on the definition of
Simple Path, we are not allowed to visit a node more
than once. Therefore, if a solution exists to I, it must
go through each node in G exactly once, which can
only be the case if and only if there is a Hamiltonian
Path in G. Therefore, any instance of Hamiltonian
Path can be reduced to an instance of TCP, which
implies TCP is NP-Hard.

Proposition 3 Repay-Time Condition Shortest Walk
(Mon-TCSW) can be solved in polynomial time

Proof We note that the solution to this problem is
rather trivial. Recall the network G from Definition 1.
Run Djikstra’s starting from a1 to find the shortest
path to bT . By construction of G the walk satisfies
the temporal walk constraint. In addition, as edges are
paid for per use this will find the optimal walk from a
to b spanning G1,...,GT .

Proposition 4 Monotonic-Time Condition Shortest
Walk (Mon-TCSW) can be solved in polynomial time

Lemma 1 An edge e ∈ E is traversed more than
once in W only if there is a cycle in W

Proof Let e = {v, w}. If e appears in W more than
once, this implies that v was visited more than once,
which implies there is a cycle in W .

Lemma 2 There exists an optimal walk W for Mon-
TCSW that is a Simple Path.

Proof Assume for the sake of contradiction that there
exists an walk W ′ that contains cycles that is better
than W , our best Simple Path.
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Let v be a node visited twice. This implies that
W ′ = {..., {v1, w}, ...{v2, y}, ...}, w, y ∈ V . However
as y appears temporally after v2 in the path, it ap-
pears temporally after v1, which implies we can con-
catenate the cycle and getW ∗ = {..., {v1, y}, ...} which
has equal or lower cost than W ′ as all edge weights are
positive. By applying this argument inductively, we ar-
rive at a Simple Path P with no cycles that has lower
cost than W ′. Contradiction.
This implies the optimal walk W is a Simple Path.

Lemma 3 The optimal path does not visit each edge
more than once once. Alternatively, it is enough to
consider min

∑
e∈W w(e)

Proof By Lemma 2, the optimal walk W is a simple
path. By Lemma 1, no edge is visited more than once.
Therefore, we simply suggest a modified version of

the algorithm in for SSR-TCSW. Instead of simply in-
troducing edges in SSR-TCSW from vt to wt+1, we in-
troduce edges from vt to wt′ ∀t′ ≥ t as long as (v, w) ∈
E. Therefore, this gives us a simple algorithm to solve
the problem in O(|T |2|E|+ |T ||V |log(|T ||V |)).

Formal Definition of TCSW and its
variants
Definition 9 (Time Condition Shortest Walk (TCSW))
Consider the following inputs:
1 A global weighted network G = (V,E,w)
2 A temporal activity function ρ : (V, {1 . . . T}) →

{0, 1}, indicating whether a node v ∈ V was active
during time point t ∈ {1 . . . T}

3 A pair of nodes (a, b) ∈ V

We define G∗ = (V ∗, E∗) as the ρ-unwinding of
G. In this graph, the set of nodes V ∗ includes mul-
tiple copies of every node in V , with one copy for
each time point in which it was active. Formally, de-
note the copy of u ∈ V at time t as ut and let
Vt = {ut s.t. u ∈ V ∧ ρt(u) = 1}. We then define
V ∗ =

⋃
t Vt. Similarly, we define E∗ as the set of edges

that connect node instances from the same time points
or from adjacent time points. Formally, let Et = {<
ut, vt+i > s.t. (u = v ∨ < u, v >∈ E) ∧ (ℓ ≤ i ≤ k)}

Notably, any path P ∈ E∗ would be time consistent
- namely it will only include transitions between con-
temporary nodes or between nodes at adjacent time
points, moving up in time. For a path P ∈ E∗ we de-
note by c(P ) the cost with edge repayment per use
and c∗(P ) the cost without repayment per use (edges
traversed at two different time points are considered

the same edge). In the TCSW problem, we have a ρ-
unwinding of G with ℓ = 0, k = 1 and optimize for
c∗(P ). In the SSR-TCSW problem, we use ℓ = 1, k = 1
and optimize for c∗(P ). In the Mon-TCSW we use
ℓ = 0, k = T − 1 and optimize for c(P ).

List of Abbreviations
• TCSW: Time Condition Shortest Walk

• k−TCSW: k−Time Condition Shortest Walk

• SSR−TCSW: Strict Step Repay−Time Condition Shortest Walk

• SS−TCSP: Strict Step − Time Condition Shortest Path

• R−TCSW: Repay − Time Condition Shortest Walk

• Mon−TCSW: Monotonic−Time Condition Shortest Walk

• Multi−k−TCSW: Multi−k Time Condition Shortest Walk

• PPI: protein-protein interaction
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