
Parallel Algorithms for De Novo Long Read Genome

Assembly via Sparse Linear Algebra

Giulia Guidi

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-196

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-196.html

August 11, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work is supported by the Advanced Scientific Computing Research
(ASCR) program within the Office of Science of the DOE under contract
number DE-AC02-05CH11231. We used resources of the NERSC
supported by the Office of Science of the DOE under Contract No.
DEAC02-05CH11231. This research was also supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security
Administration.
AWS Cloud Credit is provided through the AWS Cloud Credit for Research
program.



Parallel Algorithms for De Novo Long Read Genome Assembly via Sparse Linear Algebra

by

Giulia Guidi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Katherine Yelick, Co-chair
Adjunct Assistant Professor Aydın Buluç, Co-chair
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Abstract

Parallel Algorithms for De Novo Long Read Genome Assembly via Sparse Linear Algebra

by

Giulia Guidi

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Katherine Yelick, Co-chair

Adjunct Assistant Professor Aydın Buluç, Co-chair

Significant advances in genome sequencing over the past decade have produced a flood of
genomic data that pose enormous computational challenges and require new bioinformatics
approaches. As the cost of sequencing has decreased and genomics has become an increas-
ingly important tool for health and the environment, genomic data has grown exponentially,
often requiring parallel computing on high-performance computing (HPC) systems. How-
ever, genomic applications are often characterized by irregular and unstructured computation
and data layout, making them a troublesome target for distributed memory parallelism.

In this dissertation, we show that it is possible to productively write highly parallel code
for irregular genomic computation using the appropriate abstraction. Genomic algorithms
are often based on graph analysis and processing. For individual graph algorithms, it has
been previously shown that graphs can be viewed as sparse matrices and the computations
become a series of matrix operations. Here, we take this idea to a new level by demonstrating
its applicability and challenges for a data- and computationally-intensive end-to-end appli-
cation in genomics: de novo long-read genome assembly, in which an unknown genome is
reconstructed from short, redundant, and erroneous DNA sequences. Our main contribution
is the design and development of a set of scalable distributed and parallel algorithms for
de novo long-read genome assembly that can run on hundreds of nodes of an HPC system,
reducing the runtime for mammalian genomes from days on a single processor to less than 20
minutes on a supercomputer. Our algorithms are presented as the Extreme-Scale Long-Read
Berkeley Assembler (ELBA) pipeline, which encompasses the major phases of the overlap-
layout-consensus paradigm that is most popular for long-read sequencing data. In ELBA,
we view assembly through the lens of sparse linear algebra, where the core data structure
is a sparse matrix. This dissertation paves the way for a highly productive paradigm for
writing massively parallel codes for irregular and unstructured real-world computation.
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ELBA is built for HPC systems with high-speed network and batch scheduling. However,
we recognize that not every research community has access to government or institutional
supercomputing facilities that have the necessary scale (e.g., hundreds of nodes) and hard-
ware characteristics (e.g., a low-latency network) to realize the full potential of massively
parallel algorithms such as those we have developed in this work. Thus, we believe that
a long-term goal of HPC research is to democratize large-scale computing for science, not
only through highly productive programming, but also through widely accessible large-scale
resources and systems. As a first step in demonstrating the applicability of the ideas pre-
sented in this dissertation to a cloud computing environment, we perform a benchmarking
exercise to compare HPC and cloud systems. Our study shows that today’s cloud systems
can compete with traditional HPC systems, at least at moderate scales, due to significant
advances in networking technologies.
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To Sieger,

“Once you have had a wonderful dog, a life without one, is a life diminished.”
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Chapter 1

Introduction

In the last decade, we have seen significant advances in genome sequencing technologies.
These technologies enable the extraction of nucleotide (i.e., the basic structural unit of
genomes) sequences from biological samples using chemical and physical processes. As the
cost of sequencing declines and genomics permeates various scenarios of our lives, the need for
scalable computing and data systems becomes increasingly important—often fundamental—
to drive scientific discovery and bring such advances into the real world [162]. As a flood
of data is generated, applications in genomics require the full computational
resources of institutional high-performance computing (HPC) systems.

This dissertation demonstrates how it is possible to productively write parallel code for
irregular and unstructured problems using the appropriate abstraction. A major contribution
of this dissertation is the design and development of a set of scalable distributed and parallel
algorithms for genome analysis that can run on hundreds of nodes of an HPC system using the
powerful sparse matrix abstraction. GraphBLAS [98, 47] has shown that sparse matrices are
a good abstraction for irregular graph algorithms. This dissertation takes the sparse matrix
abstraction to a new level by demonstrating its applicability and challenges for a real end-to-
end application: the problem of de novo long read genome assembly. This dissertation opens
the door to high-performance genomics and addresses some of the computational challenges
that limit the far-reaching impact of genomics on daily life.

The reality, however, is that not every research community has easy access to government
or institutional supercomputing facilities. The problem is exacerbated for communication-
intensive and irregular applications—common in computational genomics—that require scal-
able hardware and a low-latency network. HPC systems are typically allocated to specific
research communities and have long user wait times, limiting access to their resources and
thus scientific discoveries. Therefore, it is not enough to provide a user with a scal-
able algorithm because they may not have access to large-scale resources. The
long-term goal is to democratize large-scale computing and make it more accessible to the
scientific community. The second key contribution of this dissertation is a performance
study of today’s cloud computing systems, showing that cloud computing can now compete
with traditional HPC systems, at least at moderate scales, and initiate a paradigm shift in
high-performance computing for scientific computing.
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1.1 Challenges of Parallelization

Genomic applications typically use shared-memory parallelism, which is the kind of paral-
lelism we can have on a single processor when the work is divided among multiple threads
or processes (e.g., one process per core on a 32-core processor) and they have access to
a common (shared) memory. They typically implement this multithreaded parallelism us-
ing the POSIX Threads [106] programming model, commonly known as pthreads, or the
OpenMP [129] programming model, and the best performing codes often also use data
parallelism through the SIMD (Single Instruction Multiple Data) [63] instruction set in
conjunction with multithreading. This programming model is suitable for irregular and un-
structured applications because they require fine-grained communication between processes.
This model provides much faster access to memory than distributed memory parallelization,
which requires communication over the network, and perhaps most importantly, it greatly
simplifies the programmer’s considerations for parallelizing the application.

Despite the productivity advantage, shared memory parallelism alone is not adequate
to handle the massive volumes of data currently being generated in genomics, as algorithm
scaling and absolute performance is limited by the number of cores on a single processor.
Distributed memory parallelism is a natural solution to scaling and performance issues, but it
comes at the price of lower productivity and a steep learning curve for a novice programmer,
since communication between processes must be handled explicitly, such as in the Message
Passing Interface (MPI) programming model [82], where if a process Pi requires a piece of
data that Pj stores in its local memory, Pj must explicitly send that information through a
message over the network to Pi, which must be ready to receive it by setting up a receive
buffer. This type of communication is called synchronous because the process receiving
the data cannot proceed with its local execution until the data transfer is complete. It is
straightforward to understand that this programming model makes writing parallel code
for irregular and unstructured problems a significant productivity burden and performance
barrier (since communication is more expensive than computation), since we have to send
many small messages (fine-grained communication) over the network and wait until the
transfer is complete before proceeding with execution.

Parallel computing research comes to the rescue with a programming model paradigm
called Partitioned Global Address Space (PGAS) [4, 72, 37], whose goal is to combine the
best of shared memory parallelism with the best of distributed memory parallelism. PGAS
defines a global memory address space abstraction that is logically partitioned, where a
portion is local to each process. Thus, PGAS is a distributed memory programming model
paradigm that gives the programmer the semblance of writing a program for shared memory
parallelism. A programming model that uses the PGAS paradigm, such as UPC++ [12],
often gives the programmer the ability to use asynchronous or one-sided communication,
such as through Remote Memory Access (RMA), where one process can directly access
memory with affinity to another (potentially remote) process without the explicit semantic
involvement of the passive target process. That is, in a PGAS model Pj would not have to
explicitly send the data to Pi in our previous example, but Pi could retrieve this information
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directly with an RMA operation. The one-sided communication aspect makes a PGAS-
based programming model a suitable choice for implementing irregular and unstructured
computations in distributed memory [70, 93, 20]. However, the performance and scaling of
algorithms implemented using the PGAS paradigm are limited by the latency of the network
offered by supercomputing facilities, since PGAS often involves many frequent single accesses
to distributed data structures.

In this dissertation, we show that there is another way to implement parallel algorithms
for irregular and unstructured computations in distributed memory. On thousands of cores,
we demonstrate high performance and near-linear scaling without sacrificing productivity
and without frequent individual remote accesses. The key idea to simultaneously achieve
high performance and productivity with an bulk synchronous approach is to map irregular
computation to computational primitives that are better suited for distributed-
memory parallelism. Here, we first consider that graph structures and graph algorithms
are widely used in genomics and more generally in biology, since it is common in this field to
search for relationships and similarities within and between organisms. Then, we consider
that a graph is nothing more than a sparse matrix. Therefore, rather than using hash
tables to represent the graph, we use sparse matrices as the core data structures. The
computation is then modeled as computation between sparse matrices, e.g., sparse matrix
multiplication and sparse matrix-vector multiplication. GraphBLAS [98, 47] has proved that
sparse matrices are a suitable abstraction for graph algorithms. In this dissertation, we show
how it is possible to exploit the duality between a graph and a sparse matrix to productively
write high-performance code for a real-world end-to-end application in genomics, namely de
novo long read assembly.

A graph can be seen as a sparse matrix, but often a genomic graph is not concerned with
purely numerical values. Consequently, matrix multiplication, where we try to sum and
multiply nucleotide sequences, for example, would not be useful for the application. A key
element to the success of this approach is the algebraic concept of semiring abstraction, which
gives us the ability to overload the addition and multiplication operator of matrix multiplica-
tion with any operator that makes sense for the application. For example, the Floyd-Warshall
shortest path algorithm can be reformulated as a computation over a (min,+) semiring.

The combination of sparse matrix abstraction and semiring abstraction provides an ex-
tremely powerful way to implement irregular and unstructured computation. On the one
hand, sparse matrix abstraction allows us to implement highly parallel codes in distributed
memory without sacrificing productivity because we in the HPC research community know
how to efficiently implement such computation and in general, once we are able to map a
computation to a primitive, we can continuously and seemingly effortlessly benefit from new
advances in that primitive. On the other hand, semiring abstraction provides us with the
flexibility and modularity that is so important in genomics (and in a scientific application
in general), as we want to be able to accurately model and process the data without being
constrained in how we process it to avoid performance degradation.

Overall, we believe that the parallelization challenges we address in this dissertation have
implications for scientific computing in general beyond de novo long read assembly and ge-
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nomics, as many irregular and unstructured algorithms currently rely on hash tables and
graph structures. The ability to productively write high-performance code is a major mile-
stone in democratizing parallel computing for science to enable faster, high-quality scientific
discovery, and it will become increasingly important as large-scale parallel resources become
more necessary.

Democratizing large-scale computing and making it more accessible to the genomics
community and the scientific community at large requires both widespread access to resources
and knowledge of how to use resources efficiently to develop scalable algorithms. The latter
without the former is only part of the solution. As the second main contribution of this
dissertation, we investigate the performance of on-premise and cloud-based HPC systems
and show that today’s cloud for scientific computing can compete with traditional HPC
systems, at least at moderate scales. Cloud computing has made significant advances in
networking technology and HPC system software that have overturned the state of the art
and opened the door for a paradigm shift in high-performance computing.

Until 2018, the cloud was not an option for much scientific software due to the lack of a
low-latency network [125]. In this dissertation, we investigate the performance gap between
traditional and cloud-based HPC systems to understand the nature of their differences and
guide the design of future high-performance systems. To this end, we analyze the cross-stack
performance, from single core compute power, to memory subsystem, inter-node communi-
cation performance, and overall application performance.

Our results show that cloud platforms with similar processors and networks can achieve
HPC-competitive performance not only for compute-intensive applications, but also for
communication-intensive applications. Today’s cloud computing has overcome one of its
main limitations—at least at small and medium scales—by providing higher-speed memory
and interconnects for HPC-oriented instances.

In addition, we highlight that cloud computing can provide a greater variety of hardware
configurations and newer technologies due to continuous procurement cycles. If a study
requires the latest technology or a specific memory size and processor type, these are more
likely to be available in the cloud, whereas a given HPC system may offer only one or a small
set of standardized resources suitable for typical scientific applications.

1.2 Overview of ELBA, a Long-Read Assembler

Despite the advances that sequencing companies have made in recent years, these technolo-
gies can only read and output nucleotide sequences in the form of a string of limited length.
This length ranges from 100 to 250 nucleotides for short-read technologies and from 5,000
to 100,000 for long-read technologies. The sequences generated by the sequencing process
are referred to as reads. In both cases, the read length is much smaller than the size of the
genome, e.g., the human genome consists of 3 billion nucleotides, while the wheat genome
has 17 billion nucleotides. In terms of cost, short-read technologies are currently cheaper per
nucleotide sequenced than long-read technologies.
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Historically, the longer read length of long-read technologies has come at the cost of higher
error rates, averaging 15-35%, as opposed to 0.1% for short-read technologies, where an error
is the insertion, deletion, or substitution of a nucleotide in the read. However, the advantages
derived from improved length have led to the increasing popularity of long-read technologies
either as a stand-alone tool or in combination with short-read technologies. To understand
one of the key advantages of long read sequencing technologies, we need to keep in mind
that the genomic sequence that makes up our DNA is not completely unique, as genomes
contain repeated sequences (also known as repeats), which are patterns of nucleotides that
occur in multiple copies throughout the genome.

These repeated sequences pose a major challenge for a critical and computationally inten-
sive application that we also focus on in this dissertation, namely de novo genome assembly.
The de novo assembly process consists of recreating an unknown genome from the redun-
dant, erroneous, and fragmentary genomic reads obtained from sequencing machines. Longer
sequences make it easier to resolve the repeat, that is, to know the region of the genome
from which a particular repeat copy originated, because the length of the read is often longer
than the repeat itself, so we can correctly reconstruct the sequence around a repeat using
the non-repeat portion of the read. Because the sequences in short-read sequencing are of-
ten shorter than the repeat region, it is much more challenging to resolve the repeat [14].
The longer the read, the better it is for resolving the repeat. In 2019, Pacific Biosciences
unveiled a new long-read technology called HiFi that generates sequences between 5,000 and
10,000 nucleotides with error rates around or below 0.5% [158], increasing the popularity and
adoption of long-read technologies. For this reason, this dissertation focuses on long-read
sequencing technologies.

De novo genome assembly is often a necessary step in bioinformatics, e.g., for comparative
genomics analyses and for conservation genetics applications [152] as well as for studies of
genomic variation in various diseases, such as Alzheimer’s disease [126]. It is both data and
computationally intensive, as the input can be as large as terabytes and the computation
involves expensive procedures. Reconstruction of an unknown mammalian genome can take
days on a 48-core processor, making extensive studies impractical or infeasible. For plant
genomes, which can be up to two orders of magnitude larger than mammalian genomes, the
memory requirement and the runtime are even higher.

Parallel implementation of the assembly process on a supercomputer can reduce runtime
and enable faster assembly of larger genomes. Yet, scalable parallel programming in
distributed-memory is difficult and not popular in genomics.

This dissertation addresses the computational challenges of assembling long-read sequenc-
ing data and proposes the Extreme-Scale Long-Read Berkeley Assembler (ELBA) [83, 85,
84]. Assembling large genomes, such as plant genomes, is currently impractical or infeasible
due to memory and computational requirements. However, even with mammalian genomes,
which are large but generally smaller than plant genomes, the lack of scalability is a limita-
tion because assembly is often performed multiple times within a given study. Researchers
may want to optimize the algorithm settings for a particular genome or input, or they may
want to assemble and compare multiple entities of the same species, as is the case in pange-
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nomics, where the genome is represented as a graph, with identical regions between entities
represented as a linear sequence, while differences take the form of a graph [149]. Consider-
ing that de novo assembly of a genome is rarely a one-time experiment, it can also become
impractical for mammalian genomes, as each assembly can take many hours or days.

ELBA is the first long-read assembler implemented for distributed-memory
parallelism, and it introduces the use of sparse matrices as main data struc-
tures. Using matrices enables the development of new algorithms based on linear algebra
that facilitate parallelization across hundreds of nodes and improve computational modu-
larity and portability. ELBA enables the runtime for mammalian genomes to be
reduced from days to less than 30 minutes on a supercomputer, opening the door
to assembling unknown large genomes that were previously impractical.

In de novo genome assembly, there are two main strategies to follow when assembling
genomes: De Bruijn graph-based paradigm and Overlap-Layout-Consensus (OLC) paradigm.
The choice of one over the other is mainly determined by the sequencing technologies targeted
by the algorithm. During assembly using a De Bruijn graph, a directed graph representing
overlapping matches between nucleotide sequences, reads are divided into smaller subse-
quences of fixed size k, called k-mers. The k-mers are then used as nodes in the graph
assembly. The nodes that overlap by a certain amount (usually k-1) are then connected by
an edge. The assembly is then done by traversing the De Bruijn graph. This strategy is not
suitable for sequences with high error rates, as is often the case with long read sequences,
since any error in a read creates a bulge in the De Bruijn graph, making assembly diffi-
cult [43]. Bulges are also the case when there are imprecise repeats in a genome (e.g., two
regions that differ by a single nucleotide or other small variation). In addition, it is common
practice to use the De Bruijn graph approach for short-read data because computing overlap
candidates using an OLC strategy for short-read sequences is extremely computationally
intensive, since short-read technologies sequence with much higher coverage than long-read
technologies and their length is on average 100× shorter than long-read sequences. That
would mean 100× more sequence comparisons for the same depth. Therefore, De Bruijn
is the usual choice for short-read technologies whose error rate is very low, while the OLC
paradigm is the most common assembly strategy for long-read sequencing data [16].

The overlap step (O) consists of identifying overlapping regions between input sequences
to create an overlap graph. In an overlap graph, the vertices are the input sequences and
the edges are the overlap regions between two connected sequences in the graph. Because of
redundant sequencing and the inherent genome repetitiveness, the layout step (L) simplifies
the overlap graph and converts it into a string graph, i.e., a graph where sequences are
vertices and edges are the suffixes of an overlap between two sequences ( i.e., if v1 = ATGCC
and v2 = GCCTT are two overlapping sequences, then TT is the suffix between v1 and v2),
and there is no redundancy with respect to vertices and edges. A redundant vertex is a
sequence that completely overlaps with another sequence (i.e., it is contained in another
sequence), while a redundant edge is a transitive edge (i.e., there is a better path in the
graph that connects the sequences under consideration). In the consensus step (C), the
string graph is processed to obtain a first draft of the unknown genome, returning a contig
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Figure 1.1: A high-level representation of the OLC assembly paradigm as implemented in
this dissertation.

set as output. A contig is a group of overlapping DNA sequences that together form a region
of a chromosome. Figure 1.1 illustrates the OLC paradigm as implemented by ELBA.

ELBA is developed for long read sequencing, so it follows the OLC paradigm and has five
main stages: (i) k-mer counting, where subsequences of fixed length k are extracted from the
input sequences and counted to produce a histogram of frequencies; (ii) overlap detection,
where the k-mer set is used in conjunction with the input sequences to find initial candidate
matches between these sequences; (iii) pairwise alignment, in which false-positive matches
are removed; (iv) transitive reduction, in which matches between sequences are considered
from a global perspective to remove redundant matches that only complicate the assembly
process; and (v) contig generation, in which subsequent linear matches between sequences
are identified to create longer contiguous regions of the genome (i.e., contigs).

In ELBA, every step in encoded as a sparse matrix (or multiple matrices). The first stage
of ELBA, i.e., k-mer counting, incorporates novel theoretical methodologies, originally pre-
sented in our work BELLA [83], to select the optimal value of k and filter out uninformative
k-mer subsequences, e.g., repetitive k-mers, to ensure accuracy of the results in addition to
efficient parallelization. These methodologies include a general Markov chain model showing
that a k-mer seed-based approach is useful to identify sequences that originate from the same
genomic region (i.e., overlap candidates) and a method to prune the k-mer set based on the
k-mer frequency in the input dataset, the value of k, and the error rate of the dataset. Our
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distributed-memory implementation of the k-mer counter is similar to that of HipMer [70]
and diBELLA 1D [57], except for the changes required to implement the theoretical method-
ologies presented in BELLA [83], and is composed of two phases. This implementation uses
the Bloom filter, a probabilistic data structure for querying the membership of an element,
which serves to avoid storing k-mers that occur only once in the input dataset, since they
would lead to no match between sequences and would only waste memory. First, the k-mers
are added to the Bloom filter and then the frequencies for the filtered k-mers are calculated.
Processes in distributed memory extract k-mers from their local sequences, hash them, and
possibly communicate them to other processes as dictated by the Bloom filter’s hash func-
tion. On the receiving process, the incoming k-mers are added to the local Bloom filter; if
they already exist, they are added to the local hash table partition. The communication
requires an all-to-all exchange and is implemented using MPI Alltoall and MPI Alltoallv.
The output of this phase is a 1D distributed hash table where k-mers instances are the key
and frequency and the origin sequences are the values. This hash table can be viewed as a

sparse matrix representation, which is a ∣k −mers∣-by-∣sequences∣ matrix that we call A
T
.

The second stage of ELBA introduces the sparse matrix abstraction for overlap detection.
This innovation was first proposed in our work BELLA [83] in shared memory and then in
our work diBELLA 2D [85] in distributed memory. In overlap detection, as well as in the
subsequent stages of transitive reduction and contig generation, we map irregular complex
algorithms to linear algebra with semiring generalization, which provides automatic scaling
and portability. The use of sparse matrices throughout the computation reduces the need for
various data structures typically used in genome assembly. Careful design of the semiring is
critical to ensure quality and correctness, while careful design of the sparse computation is
essential for high performance. Overlap detection takes as input the k-mer hash table and
each process on a 2-dimensional distributed processor grid uses the local k-mer hash table and
local sequences to create a distributed ∣sequences∣-by-∣k-mers∣ matrix A. A is multiplied by

its transpose A
T
to obtain the sparse candidate overlap matrix C of dimension ∣sequences∣-

by-∣sequences∣. In C, any nonzero Cij signifies that sequence i and sequence j have at
least one k-mer in common. For distributed sparse matrices and computation on them,
ELBA relies on the Combinatorial BLAS (CombBLAS) library [29], a parallel distributed-
memory graph library that allows working with sparse matrices using a semiring abstraction.
CombBLAS relies on the 2D Sparse SUMMA algorithm for parallel SpGEMM [24] and it uses
a hybrid hash table and heap based algorithm for local multiplication. This computation is
part of the Overlap stage of the assembly paradigm and it is summarized in Figure 1.1.

Once the candidate matrix C is formed, ELBA computes a round of pairwise alignment,
i.e., the process of aligning two sequences so that the similarity areas are maximized. From
the matrix point of view, pairwise alignment is an in-place element-wise operation on C
that decides whether the similarity between two sequences is large enough to be considered
a true overlap. ELBA then computes another in-place operation on C that removes non-
zeros whose similarity threshold is not above a predefined threshold (e.g., the blue arrow
in Figure 1.1). ELBA includes a novel method for discriminating between true and false-
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positive candidates based on a Chernoff bound, originally presented in BELLA [83], which is
used in deciding the similarity threshold based on the region of overlap between sequences.
The resulting matrix R is the input for the next stage, i.e., the transitive reduction, which
is the Layout stage in the assembly paradigm in Figure 1.1.

Our distributed memory transitive reduction algorithm takes the overlap matrix (or over-
lap graph) R as input and computes a transitive reduced version of R, which we call the
string matrix (or string graph) S. As in the previous phase, we use sparse matrices and
computation on them to perform the transitive reduction. A string graph is an overlap
graph without redundant vertices and edges. A redundant vertex is defined as a sequence
that is completely contained in another sequence and therefore can be removed. Contained
sequences are identified and removed from R before transitive reduction is performed. Due
to redundancy in the input sequences, we can have parallel edges in R. If we consider three
vertices {v1, v2, v3} (i.e., sequences) and edges between any two of these three, we can go
from v1 to v3 either via v2 or from v1 directly to v3 (e.g., the magenta arrow in Figure 1.1).
The weight of the edges gives information about the length of the overlap region between
two sequences. Thus, if we have two parallel paths from v1 to v3, they either contain the
same overlap length or, more likely because the sequences are faulty, one of them stores a
longer overlap region. That is, one path is considered more informative. Therefore, we can
mark the less informative edge(s) as transitive, i.e., redundant, and remove them from the
string graph. Our transitive reduction is an iterative procedure in which the matrix R is
repeatedly squared to obtain the n-hop neighbor matrix N, which is then compared to R
to see if a parallel n-hop path stores more information than a one-hop path in the original
matrix. If so, the original nonzero is marked as transitive and removed from R as soon as the
iterative process is complete, i.e., when the number of transitive edges is unchanged. Let us
assume that the purple two-hop path in Figure 1.1 has more information than the magenta
path, so we remove the magenta path from R. The output is a string graph S without re-
dundant edges and vertices. A string graph has the desirable property of collapsing genomic
repetitive areas into a single unit [148], which facilitates the following and final task, i.e.,
contig generation. This algorithm was originally presented in our work diBELLA 2D [85],
but was modified during the development of the contig generation step. ELBA’s transitive
reduction algorithm achieved a 13× speedup for the human genome on more than 300 nodes
compared to a distributed memory competitor [133].

As a final step, ELBA introduces a novel distributed memory algorithm that generates
the contig set starting from S and using sparse matrix abstraction for the Consensus stage
of the assembly pipeline. The algorithm first determines the contig set starting from S
by masking out the branches (i.e., it creates the unbranched string graph S in Figure 1.1)
and extracting the unbranched paths by computing connected components over the graph.
Using a greedy multiway number partitioning algorithm, ELBA then determines how to
redistribute sequences (i.e., rows and columns of the sparse matrix) between processes so
that sequences belonging to the same contig are stored on the same processor. Once the
sequences-to-processor assignment is computed, ELBA uses this information to redistribute
the sequences so that each processor has a local sparse matrix representing the unbranched
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contig(s) assigned to the processor. ELBA then computes a local assembly step on each
processor independently and in parallel, and then returns the contig set. Our contig gen-
eration algorithm is fast and efficient because it localizes the contig assembly, so that most
of the computation can be performed locally without requiring fine-grained communication.
Compared to related work [70], this approach significantly reduces the fraction of runtime
required by the entire assembly pipeline for contig generation.

ELBA is the first distributed- memory implementation of de novo long-read genome
assembly, and it demonstrates good scaling with a parallel efficiency of 80% on 128 nodes
on a representative dataset and on two different machines. ELBA achieved speedups of
up to 36× and 159× for the O. sativa dataset compared to two state-of-the-art software
packages, paving the way for high-performance genome assembly. Our approach results in
uniform coverage of the genome and shows promising results in terms of assembly quality,
which is measured as completeness (i.e., percentage of the reference genome to which at least
one contig was aligned), longest contig size, number of contigs, and misassembled contigs
(i.e., number of contigs containing incorrect assemblies, e.g., a contig consisting of sequences
derived from different regions of the reference genome).
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1.3 Contributions

The main contribution of this dissertation is to demonstrate how we can use sparse matrices
in a scientific application to productively write parallel code without sacrificing performance.
The core idea is that we can achieve high performance without sacrificing programmer pro-
ductivity if we can map irregular computations to computational primitives that are better
suited for distributed-memory parallelism. The implications of this dissertation go beyond
de novo long-read assembly and genomics to affect the way we think about irregular and
unstructured computations in general. In particular:

• In Chapter 3, we describe a new parallel algorithm for overlap detection using sparse
matrices and demonstrate its performance and productivity advantages over a dis-
tributed hash table-based implementation.

• In Chapter 4, we present a new parallel algorithm for transitive reduction using sparse
matrices and show a speedup of up to 29× over a distributed memory implementation
based on Apache Spark.

• In Chapter 5, we introduce a new parallel algorithm for contig generation that localizes
computation and minimizes communication by using sparse matrices, and demonstrate
the end-to-end performance improvement of up to 159× on the human genome over
shared-memory-based state-of-the-art software.

In addition, this dissertation introduces mathematical modeling of long-read sequencing
data to achieve not only performance objectives, but also quality objectives essential to the
application under study. The following methodologies are described in Chapter 3:

• A new Markov chain-based model that proves that a seed-based approach is suitable
for assembling long-read sequencing data and provides us with the optimal seed length
based on the error rate of the dataset and sequencing coverage.

• A new seed set pruning method that preserves almost all true overlap matches with
high probability, increasing computational efficiency without loss of accuracy.

• A Chernoff bound-based method to separate true overlap candidates from false posi-
tives using the similarity score of the alignment between any pair of sequences.

In Chapter 6, we show the potential of cloud-based HPC for data analytics as an alter-
native to on-premises HPC, because easy access to HPC resources is the other side of the
same coin when it comes to democratizing large-scale computing for science:

• A study showing that cloud machines can achieve HPC-competitive performance with
processor and network similar to institutional HPC machines, not only for compute-
intensive applications but also for communication-intensive applications, overturning
the literature and opening the door to a paradigm shift in high-performance computing.
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In summary, the remainder of this dissertation is organized as follows. Chapter 2 describes
the basic methodologies on which we rely in this dissertation. Chapter 3 describes the
foundation, parallel algorithms, and experimental results for overlap detection. Similarly,
Chapter 4 and Chapter 5 present the foundation, parallel algorithms, and experimental
results for transitive reduction and contig generation, respectively. Chapter 6 describes a
performance study on cloud-based HPC systems and illustrates the experimental results
compared to traditional HPC systems. Finally, related work is presented in Chapter 7 and
Chapter 8 concludes this dissertation.
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Chapter 2

Background

In this chapter we describe the basic methodologies on which we base this dissertation. First,
we provide an overview of genomics and the long read de novogenome assembly problem and
its associated paradigm. This paradigm forms the basis for our parallel algorithms. Then,
we give an overview of the Combinatorial BLAS library and its distributed sparse matrix
computation, which is the core of our parallelization techniques.

2.1 Genome and Genomics

Deoxyribonucleic acid (DNA) is the chemical compound that stores the information needed
to develop and control the activities of an organism. DNA molecules consist of two com-
plementary strands arranged in the form of a double helix. One strand defines the reverse
complement of the other. Each strand is made up of a combination of four molecules called
nucleotides or bases, which form the genetic alphabet. Bases are adenine (A), thymine (T),
guanine (G), and cytosine (C). Each base has a complementary base on the opposite strand:
A is the complement of T, C is the complement of G, and vice versa. A base, together with
the corresponding base on the opposite strand, is called a base pair (bp). If v = ATTCG,
its reserve complement is v

′
= CGAAT. The canonical form of a DNA sequence v is the

lexicographically smaller of v and its reverse-complement v
′
. In our example, v = ATTCG

is the canonical form. The complete DNA sequence of an organism is called its genome.
Genomes represent the fundamental unit of any living organism; nearly every cell of an

organism has a complete copy of DNA that makes up the entire organism. In genomes,
information is stored about how the entire organism came into being, e.g. how and when a
cell differentiates into a certain tissue and how and when a protein is built. The sequence of
nucleotides determines the meaning of the information encoded in a particular part of the
DNA. Changes in the nucleotide sequence, sometimes even just a single change such as an
A instead of a G, can impact the organism significantly. A change in the sequence can cause
the protein to malfunction, which in turn can lead to disease, as in the case of hemoglobin,
where a single nucleotide substitution can cause hemoglobin to misfold, thus the protein
does not function correctly, and causes sickle cell anemia [138].
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Figure 2.1: Data from the National Institute of Health (NIH) [91] show how the cost of
sequencing the human genome has declined over the past decade.

Data from the National Institute of Health (NIH) [91] shown in Figure 2.1 illustrates
how the cost of sequencing has dropped significantly over the past decade. This opened
the door to a new horizon of real-world scenarios for genomics. Genomics have a primary
impact on human health by providing faster and more personalized information about di-
agnoses and cures for a given patient. In early 2022, Gorzynski et al. [78] demonstrated a
record-breaking fast implementation of genome sequencing using optimized sequencing and
downstream analysis to diagnose children with suspected genetic disorder who were critically
ill and admitted to the intensive care unit—the fastest diagnosis was achieved in 7 hours
and 18 minutes.

The impact of genomics goes beyond human health to biofuel production and climate
change mitigation [136]. Genomics has the potential to minimize trial and error in agricul-
tural research, improving the quality and quantity of crop production. The ability to link a
trait to a gene (a portion of the genome that can store information about the structure of a
protein) or a gene signature (a single or combined group of genes in a cell that result in a
unique product, such as a protein) would help a plant breeder develop a crop with the best
combination of features. Genomics research on plant genomes could show us how to make
those genomes more resilient to climate change.
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2.2 De Novo Long Read Genome Assembly

One of the major computational challenges in high-throughput DNA sequence analysis is
de novo genome assembly [165]. As we mentioned in Chapter 1, this is the process of
aligning and merging redundant, short, and erroneous sequencing reads with the goal of
reconstructing the original genome without prior knowledge of, for example, a reference
genome for that species. Long-read sequencing technologies [56, 77] yield sequences with
an average length of more than 10,000 base pairs (bp). By using longer sequences, we
can assemble complex genomic repeats to obtain more precise assemblies that were not
possible with short-read technologies [134, 121]. Longer sequences typically come at the
price of higher error rates and sequencing cost, leading to increased algorithm complexity
and computational cost. Importantly, Pacific Biosciences’ latest HiFi technology can deliver
long sequences with significantly lower error rates [158].

The Overlap-Layout-Consensus (OLC) paradigm is the most common assembly strategy
for long-read sequencing data [16], as we mentioned in the previous chapter. In Chapter 1,
Figure 1.1 gives an overview of the OLC paradigm as implemented in this dissertation. The
overlap step (O) identifies overlapping subsequences between input sequences to create an
overlap graph (i.e., sequences are vertices and overlapping subsequences between sequences
are edges). The idea behind searching for overlapping subsequences is that two sequences
that overlap can come from adjacent regions of the genome. Typically, an indexing data
structure, such as a k-mer (i.e., a substring of fixed-length k) index table or suffix array,
is used to identify an initial set of overlap candidates [103, 100, 16]. Pairwise alignment is
sometimes performed to rule out false positives.

The sequencing process introduces redundancy in the input sequences and these also
contain inherent genomic repeats that usually make it difficult to interpret and disentangle
the overlap graph. For this reason, we perform the layout step (L), which simplifies the
overlap graph and converts it into a string graph (i.e., a graph with no redundant edges and
vertices). Importantly, in a string graph, the edges represent the overlap suffix rather than
the overlap itself, i.e., the region of the sequence that extends beyond the overlap region. The
reason is that we want to avoid traversing the overlap region twice when reconstructing the
genome sequence using overlapping sequences in the string graph. In general, a string graph
can be created from different source graphs depending on the application, not necessarily
from an overlap graph. A string graph has the desirable property of collapsing genomic
repeats into a single unit [148].

The transitive reduction in the layout step facilitates the clustering of regions of the
graph into contigs. In the consensus step (C), the string graph is processed to obtain a
first draft of the unknown genome, resulting in a set of contigs. A common approach to
contig generation uses the string graph as input. Branching nodes in this graph are masked
and the set of linear unbranched paths in the graph is extracted to form the contig set. This
step can be followed by further polishing phases to merge and correct contigs and to separate
haplotypes, i.e. physical groupings of genomic variants that tend to be inherited together.
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Overlap

Bidirected Edge

Figure 2.2: Overlap to bidirected edge type mapping.

Overlap Definition For two sequences v1 and v2 and their reverse-complements, v
′
1 and

v
′
2 we can say that v1 and v2 have an overlap of length L in base pair (bp) if and only if at
least one of these is true:

• The last L bp of v1 match the first L bp of v2;

• The last L bp of v1 match the first L bp of v
′
2;

• The last L bp of v
′
1 match the first L bp of v2;

• The last L bp of v
′
1 match the first L bp of v

′
2.

Considering erroneous sequencing, an overlap in this context indicates that the two se-
quences have mostly identical base content, such that their pairwise alignment score reaches
a quality threshold defined by the overlap detection algorithm, i.e., the similarity score be-
tween the two sequences must be above 90%.

It is necessary to define four types of overlap, since reads can overlap in a reverse–
complement manner and algorithms typically store only the canonical form of k-mers. Ad-
ditionally, we can define a contained overlap as an overlap where the overlapping region of
one read is the entire read. An overlap can be called reverse–complement if and only if one
of the sequences in the overlap is used in the original direction and the other one is used in
the reverse–complement direction. Therefore, an overlap that belongs to the last case is not
a reverse–complement overlap, since it is equivalent to the last L bp of v2 matching the first
L bp of v1. Since the two forward cases are equivalent in theory, we only have three different
cases. However, it makes sense to keep the four categories in practice. The correct use of
orientation information is crucial during the second and third stages of the OLC algorithm
and is essential for the correctness of the final assembly.

Transitivity Definition A string graph (or matrix) is a graph G = (V,E), where V is
the set of sequences and E is the set of overlap suffixes between any two vertices. There
exists an edge if and only if the respective reads overlap and the weight of this edge is the
length of the suffix. For example, for the sequences v1 = TACGA and v2 = ACGACC, their
overlap suffix or overhang is the portion of v2 that exceeds the overlap between v1 and v2,
i.e. e12 = CC. Given G = (V,E), where V = {v1, v2, v3} and E = {e12, e13, e23}, we can
walk (a) v1 → v2 → v3 using e12 and e23, (b) or v1 → v3 using only e13. If we take the
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Figure 2.3: An example of a valid and invalid walk in a bidirected string graph.

weight of the edges into account (i.e., the overhang length), we can see that one of these
two paths carries less information than the other and therefore we can mark it as transitive
and remove it from the string graph. This relation is true because contained sequences,
i.e., sequences that are fully contained in other sequences, are removed before transitive
reduction. Therefore, the two-hop path from v1 → v3 over v2 stores greater overlap coverage
than the direct path v1 → v3. The transitivity of an edge is determined by the coverage of
the overlapping region between the sequences under consideration. A larger overlap coverage
carries more information, so we want to maintain it over a less informative path.

In de novo genome assembly, we want to keep as many overlapping bases as possible for
any pair of sequences, so we mark the edges (belonging to a valid path) with longer suffixes
(higher weight) as transitive. Since the string graph maximizes the overlap length, it can
disambiguate short repeats [148]. In our example, e13 would be marked as transitive and
removed since the path e12 → e23 encloses more overlapping bases.

Given we do not know from which strand a certain sequence originates, we want to be able
to traverse our graph in both forward and reverse direction. That is, if we considerG = (V,E)
in our example above, we want to be able to walk both v1 → v2 → v3 and v

′
3 → v

′
2 → v

′
1.

Using the directed graph representation requires doubling the number of nodes, because for
each read we need one vertex representing its entrance and one representing its exit. Using
an undirected graph can avoid this bloat, but it does not guarantee that a particular read
will be used in a consistent manner at any point within a single assembly. The use of a
bidirected graph (i.e., a graph with a directional head at each end of each edge) [55] solves
both of these problems. Figure 2.2 shows the four types of bidirectional edges that result
from the four overlap types described earlier.

If G = (V,E) is a bidirected graph, then a valid path in G is a continuous sequence of
edges where each vertex is entered by a head inward and exited by a head outward (unless
it is the end of the path) or vice versa. Figure 2.3 shows two examples of a valid walk
(A → B → C → D and F → G → H) and one example of an invalid walk (E → F → G). A
walk through the bidirected string graph encodes the way the sequences can be consistently
assembled [119].

Given two paths v1 → v2 → v3 and v1 → v3 in a bidirected string graph, the edge



CHAPTER 2. BACKGROUND 18

v1 → v3 can only be considered to be transitive if the following conditions are satisfied: (a)
v1 → v2 → v3 constitutes a valid walk, (b) the two heads next to v1 have the same orientation,
and (c) the two heads next to v3 also have the same orientation.

By definition, a string graph can be constructed from various sources, such as an overlap
graph (as we present in this paper), k-mers [95] or FM index [19], and Burrows–Wheeler
transform (BWT) [148]. These approaches are not invariant to the input properties and
often only consider error-free sequences. In reality, long read data with its high error rates
and long lengths often make string graph construction impractical for approaches other than
those based on overlap graphs.

2.3 The Combinatorial BLAS Library

Developing high-performance large scale software requires a non-trivial amount of effort and
human expertise, such that the effort would be prohibitive for any application that would
benefit from a high-performance implementation on a massively parallel machine, such as
a supercomputer. A clever solution to this problem is to identify common computational
primitives that can cover and represent a wide range of applications, so that we can use a
higher level of abstraction of parallel computing [6]. A successful example of primitives that
allow the development of much high-performance numerical linear algebra software is the
Basic Linear Algebra Subroutines (BLAS) library [102].

Genomics, however, can only be sporadically abstracted using numerical linear algebra,
since the most common type of data to be processed is usually a string and its associated
metrics, such as how two strings compare. In genomics, and more generally in computational
biology, the goal is often to figure out how data relates to each other, e.g. how similar a
genome is to genomes in a database or a protein is to other protein sequences, or to find the
relationship within a given input dataset, as is the case in de novo genome assembly, where
the first part of the computation focuses on finding meaningful similarities of sequences to
each other and then using that information to reconstruct an unknown genome sequence.

One data representation that is particularly useful for finding the relationship between a
set of entities is the graph. Graph algorithms are popular and widely used in computational
genomics. However, they are often developed for a specific application, and it is not un-
common to find multiple pieces of software for the same application that implement slightly
different heuristics with significantly different codes [103, 100, 70]. This is the case because
genomics relies heavily on shared-memory parallelism, which requires less programming ef-
fort. However, this status quo is in contrast with the growing demand for scalable parallel
software in computational genomics, especially as the amount and type of data continues to
increase and performance and scalability become a necessity rather than a luxury.

A major contribution of this dissertation is to consider the de novo genome assembly
problem, which comes in many shapes in the literature, at a higher level of abstraction that
enables flexible and high-performance implementation. In this dissertation, the assembly
problem is viewed through the lens of linear algebra, starting from the fact that a graph
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can be represented as a sparse matrix. Computation between sparse matrices has long been
studied in the parallel computing literature, so we can take advantage of many years of
optimized parallel strategies.

Just as numerical linear algebra takes advantage of BLAS, this dissertation on paral-
lel computation for de novo long-read genome assembly takes advantage of Combinatorial
BLAS (CombBLAS) [29]. CombBLAS is a powerful collection of linear algebra primitives
targeted at graph and data mining applications. It enables fast implementation of graph
algorithms in distributed memory using a subset of linear algebra operations and the semir-
ing abstraction. The latter provides a way to overload standard linear algebra operators,
such as multiplication and addition when performing the dot product between two matrices,
with operators useful for the application under consideration. An example is the tropical
semiring, where the operations minimum (or maximum) and addition replace the usual oper-
ations of addition and multiplication, respectively [135]. The semiring abstraction is critical
for genomics because the information stored in a vertex or edge of the graph is usually a
complex data structure rather than an integer or floating point number, and we need to be
able to model the computation according to the end goal.

The main data structure in CombBLAS is a distributed sparse matrix, but there is also a
dense matrix, and a dense vector. Graph computation is implemented as a computation on
these data structures. In CombBLAS, the concept of sparse matrix is decoupled from their
implementation, so any improvement to the storage format in the literature can be adopted
seemingly effortlessly without requiring changes to the entire library.

In terms of computation, CombBLAS has four design principles:

1. If multiple operations can be handled by a single function prototype without affecting
the asymptotic performance of the associated algorithm, a generalized single prototype
is provided. Otherwise, CombBLAS provides multiple prototypes.

2. If an operation can be implemented efficiently by putting together some simpler oper-
ations, then CombBLAS does not provide a special function for that operation.

3. In CombBLAS, many functions also have in-place versions to avoid expensive object
creation and copying. For operations that can be implemented in-place, access to other
variants is denied only if they increase runtime.

4. In-place operations have slightly different semantics depending on whether the operands
are sparse or dense. In particular, the semantics favor preserving the sparsity pattern
of the underlying object as long as some other function (possibly not in-place) handles
the more conventional semantics that introduces or deletes nonzeros.

In CombBLAS, the implementation of the computation remains largely hidden from the
programmer. They must design only the high-level computation as a computation between
sparse matrices and use the semiring abstraction as needed. The CombBLAS implementation
is written in C++ and is based on the Message Passing Interface (MPI) programming model.
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It also takes advantage of hybrid hierarchical parallelism by exploiting flexible shared memory
parallelism via the OpenMP API.

CombBLAS assumes that the number of processes is a perfect square. The processes are
logically organized as a two-dimensional grid to limit most communication along a processor
column or row with

√
p processes, rather than potentially communicating with p processes.

Partitioning distributed matrices (sparse and dense) observes this processor grid organization
using a 2D block decomposition, also known as checkerboard partitioning [81].

In the next section, we provide an overview of the Sparse Scalable Universal Matrix Mul-
tiplication Algorithm (Sparse SUMMA), which is the algorithm implemented in CombBLAS
for Sparse Generalized Matrix Multiplication (SpGEMM) over a general semiring, i.e., the
most common and computationally intensive operation in ELBA.

Sparse Generalized Matrix Multiplication (SpGEMM)

In scientific computing and numerical analysis, a sparse matrix is defined as a matrix m×n
in which most elements are zero, although a strict ratio is not generally defined. The ratio
between the number of zero elements and the total number of elements is called the sparsity
of the matrix. Conversely, a matrix in which most elements are nonzero is called a dense
matrix. To process and store sparse matrices, it is preferable and often necessary to develop
custom algorithms and data structures, since standard approaches based on dense matrices
would result in inefficient or infeasible computation and waste memory due to the large
number of zero elements. For these reasons, computations are performed using sparsity by
avoiding loading, storing, and computing zero elements.

Compressed Sparse Column and Doubly Compressed Sparse Column Depending
on the main purpose of the algorithm, different compressed data structures can be used
to store sparse matrices: (a) structures that allow efficient creation and modification of
matrices, such as Coordinate List (COO), and (b) structures that support efficient access and
matrix computation, such as Compressed Sparse Row (CSR) or Compressed Sparse Column
(CSC) [143]. In this dissertation, we focus on CSC and on Doubly Compressed Sparse
Column (DCSC), a further compressed variant of CSC [25]. The CSC format compresses
the column indexes. It uses three 1-dimensional vectors to represent a matrix: (i) a vector
NUM that stores the nonzeros, (ii) a vector IR that stores the row indices of the nonzeros,
and (iii) a vector JC that stores the indices in NUM and IR where columns begin. The
space complexity of CSC is O(n+ nnz), where nnz is the number of nonzeros in the matrix
and n is the column dimension, since the JC array has size n + 1, while IR and NUM have
size nnz. CSC provides compression over dense matrix storage structures, but redundant
information can still be stored in JC since we can have columns that are completely zero. The
repetitiveness can be particularly wasteful for hypersparse matrices, i.e., when the number
of nonzeros is smaller than the matrix dimension. Such matrices are rare in numerical linear
algebra, but they occur frequently in graph computation, which is the focus of our work.
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A in CSC and DCSC format

1.1

0.3

5.1

0.2

0

1

2

4

0 1 2 4

0 2 2 3 3 4

1 3 0 2

0.3 0.2 1.1 5.1

JC

IR

NUM

3

3

0 1 2 3

0 2 4

0 2 3 4

1 3 0 2

0.3 0.2 1.1 5.1

AUX

JC

CP

NUM

IR

A CSC DCSC

Figure 2.4: The sparse matrix A, its representation in CSC format, and its representation
in DCSC format.

Buluç and Gilbert introduced the DCSC format to eliminate the repetitiveness in JC and
make it a more efficient alternative for hypersparse matrices [25]. The information-theoretic
solution they propose is to compress the JC array by defining nzc as the number of columns
that contain at least one nonzero element. If JC is compressed at a rate of cf = (n+1)/nzc,
it is possible to obtain a compressed array of size nzc. By removing the empty columns
in JC, we eliminate the n term in the storage complexity. However, removing the empty
columns introduces an indexing problem, since accessing the first element in a column is no
longer a constant-time operation. To address this problem, Buluç and Gilbert introduce an
additional array called AUX of size (n+1)/cf ≈ nzc, which stores a pointer to each nonzero
column (i.e., column with at least one nonzero). JC is then effectively split into multiple
chunks of size ⌈cf⌉, and AUX stores exactly one element per chunk pointing to the first
nonzero column in that chunk, plus an additional element at the end that is a null pointer.
On average there is one element per chunk, but in the case of a skewed distribution it is
possible to have up to ⌈cf⌉ nonzero columns in a single chunk. To efficiently search for a
column within a chunk, column indexes are stored in JC, while column pointers (pointing
to IR) are stored in a new array called CP as “column pointer”. Note that AUX is optional
and is not created by default. Figure 2.4 illustrates from left to right: an example matrix
A, its representation in CSC format, and its representation in DCSC format.

Classic SpGEMM Given two sparse rectangular matrices A ∈ Sm×k
and B ∈ Sk×n

from
a semiring S, the SpGEMM problem is to compute C = AB, where C ∈ Sm×n

is also a
sparse matrix. The input and output matrices are represented in a space-efficient format
like the CSC format described above. The number of nonzeros in a matrix A is written as
nnz(A); if the matrix is clear from the context we only write nnz. For the sparse matrix
indexing, we use the colon notation used in MATLAB, where A(∶, j) denotes the jth column
of A, A(i, ∶) denotes the ith row, and A(i, j) denotes the nonzero at the (i, j)th position of
A (zeros are not stored).



CHAPTER 2. BACKGROUND 22

Algorithm 1 Columnwise formulation of serial matrix multiplication [88].

1: procedure Columnwise-SpGEMM(A, B, C)
2: for j ← 1 to n do
3: for k where B(k, j) ≠ 0 do
4: C(∶, j) ← C(∶, j) +A(∶, k) ⋅B(k, j)
5: end for
6: end for
7: end procedure

The classical serial multiplication algorithm for general sparse matrices was first described
by Gustavson [88] and subsequently implemented in MATLAB [74] and CSparse [48]. CSC
was the data structure used by Gustavson to store sparse matrices and is also used in
most sparse matrix packages, including MATLAB. Algorithm 1 gives the pseudocode for the
column-wise serial algorithm described by Gustavson [88].

The number of nonzero arithmetic operations between A and B required to compute
the final matrix C is called “flops”. The computational complexity of a sparse matrix
algorithm should preferably depend on this number. The computational complexity of sparse
multiplication in Gustavson’s and MATLAB’s original design is O(flops+nnz(B)+n+m),
i.e., it is proportional to the number of nonzero elements and linearly dependent on the row
size m and column size n of the matrix. The sparse implementation of MATLAB defines
an abstract data structure, the sparse accumulator or SPA, that provides random access to
the currently “active” column or row of a matrix. Typically, sparse matrix algorithms use a
dense working vector to provide fast, random access to the currently “active” column or row
of a matrix. SPA has three components: (i) a dense vector of real values for the active column
of C, (ii) a dense Boolean vector of “occupied” flags, and (iii) an unordered list of indices
whose occupied flag is true. An index whose occupied flag is true represents the indexes
of the nonzeros of the currently active column or row. The SPA has a space complexity of
O(m) and its initialization has a time complexity of O(m), contributing to the m-term in
the complexity of the MATLAB algorithm. Moreover, the n-term in the complexity formula
is derived from the column-wise implementation. Figure 2.5 illustrates this algorithm.

Distributed SpGEMM An important aspect of implementing sparse matrix multipli-
cation in distributed memory is how to store the matrices across processes. Each process
stores only a subset of the matrices and there are two common types of matrix distribution:
1-dimensional and 2-dimensional. In 1D algorithms, each process stores a block of m/P rows
of an m-by-n sparse matrix, where P is the total number of processes. In 2D algorithms,
the processes are logically organized as a rectangular P = Pr × Pc grid, so a typical process
is called P (i, j). The submatrices are assigned to the processes according to a 2D block
decomposition: process P (i, j) stores the submatrix Aij of dimensions (m/Pr) × (n/Pc) in
its local memory. We extend the colon notation to slices of submatrices: Ai∶ denotes the
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Figure 2.5: Column-by-column SpGEMM [88, 74, 48].

(m/Pr)×n slice of A common to all processes along the ith process row, and A∶j denotes the
m× (n/Pc) slice of A common to all processes along the jth process column. The literature
has shown that 1D algorithms are not scalable for thousands of processes, mainly because of
the non-scalable communication cost [24]. Therefore, we consider only 2D algorithms here.

Previously, we introduced the CSC format and mentioned that CSC is the standard
format used in MATLAB and other libraries when performing SpGEMM. However, Buluç
and Gilbert [25] have shown that CSC is too wasteful for storing matrices over a 2D process
grid because the local submatrices are hypersparse, meaning that the number of nonzeros
is smaller than the matrix dimension. If we were to use CSC in distributed memory, the
total memory for all processes would be O(n

√
P + nnz), while for a single process it would

be O(n + nnz). Thus, a scalable parallel 2D data structure must take hyperspareness into
account, and the DCSC format presented earlier achieves this goal by having a memory
requirement of O(nnz) regardless of matrix dimension.

As for the storage format, when implementing the sparse multiplication algorithm, we
also want to consider hyperspareness and eliminate the dependence on the matrix dimension.
Gustavson’s serial SpGEMM algorithm would be too wasteful for hypersparse submatrices.
To eliminate the dependence on matrix dimension, Buluç and Gilbert introduced the Hyper-
SparseGEMM algorithm [28, 25], which uses an outer product formulation and the DCSC
format. HyperSparseGEMM has a time complexity of O(nzc(A)+ nzr(B)+ flops ⋅ lg(ni)),
where nzc(A) is the number of nonempty columns of A, nzr(B) is the number of nonempty
rows of B, flops is the number of nonzero arithmetic operations between A and B required
to compute the final matrix C, and ni is the number of indices i for which A(∶, i) = ∅ and
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Algorithm 2 Distributed SpGEMM using Sparse SUMMA [26, 24].

1: procedure SparseSUMMA(A, B, C)
2: for all processes P (i, j) in parallel do

3: Bij ← (Bij)T
4: for q = 1 to k/b do ▷ blocking parameter b evenly divides k/Pr and k/Pc

5: c = (q ⋅ b)/Pc ▷ c is the broadcasting processor column
6: c = (r ⋅ b)/Pr ▷ r is the broadcasting processor row
7: lcols = (q ⋅ b) mod Pc ∶ ((q + 1) ⋅ b) mod Pc ▷ local column range
8: lrows = (q ⋅ b) mod Pr ∶ ((q + 1) ⋅ b) mod Pr ▷ local row range
9: A

rem
← Broadcast(Aic(∶, lcols), P (i, ∶))

10: B
rem

← Broadcast(Brj(∶, lrows), P (∶, j))
11: Cij ← Cij +HyperSparseGEMM(Arem

,B
rem)

12: end for
13: Bij ← (Bij)T ▷ restore the original Bij

14: end for
15: end procedure

B(i, ∶) = ∅. The factor lg(ni) comes from the priority queue used to merge ni outer products
on the fly. The total memory requirement of this algorithm isO(nnz(A)+nnz(B)+nnz(C)),
i.e., independent of matrix dimension.

Buluç and Gilbert [26, 24] have proposed a parallel algorithm for multiplying sparse
matrices that is similar to the algorithm implemented in BLAS [102] for multiplying dense
matrices, i.e., SUMMA [155], in that it is memory efficient and can be easily generalized to
non-square matrices and processes grid. This parallel algorithm is called SparseSUMMA,
uses HyperSparseGEMM as kernel, and operates over a 2D processor grid. The pseudocode is
shown in Algorithm 2, which for simplicity illustrates the case where we have a square process
grid. For a rectangular process grid, a given processor row and column would potentially
require more than one broadcast operation during an iteration of the loop starting at line 4.
3D SpGEMM algorithms that are faster than the 2D SparseSUMMA algorithm exist both
in the literature and in CombBLAS [10], but most of the other functions in CombBLAS that
we use in this dissertation operate on a 2D grid, so it is not advantageous for us because of
the conversion cost between 3D and 2D. A 2D algorithm like SparseSUMMA is based on a
2D decomposition of the output matrix and the computation follows the “owner computes”
rule, while a 3D algorithm also parallelizes the computation of the individual entries of the
output matrix [10].

Parallel processes broadcast their local submatrix of A to their entire process row and
likewise they broadcast their local submatrix of B to their entire process column. In this
way, each process has all the entries necessary to compute its local submatrix of the final
matrix C using the HyperSparseGEMM algorithm. B is transposed before broadcasting so
that it can be indexed column-wise, since the local submatrices are stored in column-based
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Figure 2.6: The Sparse SUMMA algorithm for sparse matrix-matrix multiplication A ⋅AT
=

C [26]. The example shows the first stage of the algorithm execution (the broadcast and the
local update by processor P (i, j) of the block C(i, j) in the output matrix C).

DCSC sparse format and column-wise indexing of B is faster. The execution of the algorithm
is illustrated in Figure 2.6.
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Chapter 3

Parallel Algorithms for Overlap
Detection

In this chapter, we describe the mathematical methodologies we have developed and the
parallel algorithms we have designed for the overlap detection phase of de novo long-read
genome assembly. In particular, we first describe the Markov chain model that we developed
to prove the feasibility of a seed-based approach for de novo long-read assembly and to find
the optimal k-mer length based on the dataset. Then, we describe a method for pruning
the k-mer space to remove unwanted or uninformative information, and a method for dis-
tinguishing between true and false overlap matches based on the alignment score. Finally,
we describe our parallel algorithms for overlap detection using sparse matrices and semiring
abstraction, and report experimental results in terms of quality and runtime performance.

3.1 Overview and Foundation

Overlap detection is usually the first step in Overlap-Layout-Consensus (OLC) assembly,
the predominant method for de novo assembling long read data [16, 109]. A read-to-read
overlap is a sequence match between two sequences to determine whether local areas on each
read originate from the same location within a larger sequence. OLC uses these matches to
create an overlap graph where each node is a read and each edge is an overlap connecting
them. Overlap detection has been shown to be a major bottleneck in efficiency when using
the OLC assembly method [120] for large genomes. Overlap detection is used not only as
the first step in the OLC assembly paradigm, but also as the first step in pipelines whose
goal is to error-correct sequences before other computation [41].

In the literature, we find several software packages that perform overlap detection with
different accuracy and runtime performance. Despite using different strategies, they share
some common features, such as using short subsequences (i.e., seeds) to discover overlap
candidates. The main differences between the algorithms are not only in the way common
seeds are found, but also in the way the seeds are used to determine whether an overlap
candidate is correct or not. It is common to prune the seed space using different methodolo-
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gies [100, 107, 34]. Once a method finds the candidates, it validates them and computes the
estimated overlap areas by comparing the coordinates of each common seed. Each method
generates a list of overlap candidates and provides an overlap region between sequences. In
some pipelines, most of the computational time is spent aligning candidates at the nucleotide
level, either for error correction [150] or for weeding out spurious candidates after they have
been found. In other pipelines, nucleotide-level alignment may not be used but replaced by
an approximation method using only seed coordinates [103]. Therefore, the output of any
overlap algorithm includes at least the overlap coordinates and often some additional infor-
mation for downstream analyzes, such as alignment scores or sequence similarity estimates.

ELBA follows the literature and uses a seed-based approach for overlap detection. In
particular, ELBA uses an exact seed approach where a seed is called k-mer, i.e., a substring
of fixed length k. Using a Markov chain model, we first demonstrate the feasibility of a
k-mer seed-based approach to long read overlap detection. The descriptiveness of our model
enables us to model the probability of finding a correct shared k-mer between two sequences,
even when using different seed strategies than ours, such as minimizer [103] and syncmer [54].
This model also provides us with the optimal k-mer length, which is affected by the error
rate and sequencing coverage of the data, as well as the desired level of detection accuracy.

Then, we describe how ELBA chooses the k-mer set to identify overlap candidates using
a novel probabilistic method to filter out those that are likely to be either erroneous or
from a repetitive region. The k-mer set retained by ELBA is considered reliable, where the
reliability of a k-mer is defined as its probability of originating from a unique (non-repetitive)
region of the genome. In this context, we argue that unique k-mers are sufficient for overlap
detection because long read sequences either (a) contain long enough non-repetitive sections
to identify overlaps with unique k-mers, or (b) are entirely contained in a repeat, in which
case their overlaps are inherently ambiguous and uninformative. Our reliable k-mer detection
maximizes the retention of k-mers from unique regions of the genome using probabilistic
analysis at a given error rate and sequencing depth.

Once we have identified the overlap candidates, ELBA computes the nucleotide-level
alignment for each of them using the SeqAn seed-and-extend algorithm [53], which tries to
extend the match region between two sequences. This algorithm computes the alignment
starting from the common k-mer coordinates and by extending the match to the left and
right and not necessarily from the beginning of the sequences. During the alignment phase,
ELBA uses a new method to distinguish true overlap candidates from false positives as a
function of the alignment score. Our method proves that the probability of false-positive
candidates decreases exponentially as the length of overlap between sequences increases.

Overlap Feasibility

Chaisson and Tesler [35] proposed a theory of how long read sequences contain subsequences
that can be used to anchor alignments to the reference genome. The sequences are modeled as
random processes that generate error-free regions whose length is geometrically distributed,
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Figure 3.1: Proposed Markov Chain model demonstrating the feasibility of using k-mers for
overlap detection.

with each such region separated by an error [75]. The result of their theory is the minimum
sequence length to have an anchor within a confidence interval.

Here we present an alternative model of how these subsequences, also called k-mers, can
be used to anchor alignments between two erroneous long read sequences, allowing accurate
overlap detection between all reads in a dataset. The original assumption of our model
defines the probability of correctly sequencing a base as equal to p = (1− e), where e is the
error rate of the sequencer. Based on this notion, we model the probability of observing k
correct consecutive bases on both read1 and read2 as a Markov chain process [110].

The Markov chain process is characterized by a transition matrix P containing the prob-
abilities of transition from one state to another. Each row index start of P represents the
initial state and each column index end of P represents the final state. Each entry of P is a
non-negative number indicating a transition probability. Our transition matrix has (k + 1)
possible states, resulting in (k + 1)2 transition probabilities for the transition from start to
end. The probability of having a correct base in both reads is p

2
. For every state except the

absorbing state k, an error in at least one of the two sequences causes the model to fall back
to state 0, which happens with probability 1 − p

2
; otherwise, the transition of the Markov

chain from state i to i + 1 happens with probability p
2
. The absorbing state k cannot be

abandoned because both read1 and read2 have already seen k successive correct bases. There-
fore, its transition probability is 1. Figure 3.1 describes the process: each state contains the
number of successfully sequenced bases obtained on both reads up to that point, while the
arrows represent the transition probabilities.
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Figure 3.2: Proposed Markov Chain model using syncmer approach instead of the k-mer
one, where q = 1/c.

The probability of being in one of the states after L steps in the Markov chain can then
be determined by computing the L-th power of the matrix P, where L is the length of overlap
between the two sequences. More efficiently, this can be computed iteratively with only L
sparse matrix vector products, starting from the unit vector v ← (1, 0, . . . , 0) (Algorithm 3).
This approach is sufficient since we are only interested in the probability of being in the
absorbing final state. This operation leads to the probability of a correct k-mer being in the
same place in both reads, given a certain overlap region. This model is the driving factor
for choosing the optimal k-mer length used in overlap detection.

Our Markov chain can be modified to account for different k-mer selection strategies,
such as syncmers and minimizers. Given a compression factor c > 1, which sets a minimum
value for the k-mer code, a k-mer κ is a mincode syncmer if code(κ) ≤ H/c, where H is the
maximum possible code [54]. The probability that a given k-mer is selected as a mincode
syncmer is 1/c. In this case, we can modify our model to include the probability that a k-mer
is correct and that it is retained as a mincode syncmer. The transition from the (k − 1)-th
state to the k-th state in the Markov chain will model syncmer selection such that we have a
probability of transitioning from k − 1 to k that is equal to qp

2
, where q = 1/c, i.e., the k-th

is correctly sequenced and the k-mer is a mincode syncmer. Then we have a probability of
(1− q)p2 to stay in the (k− 1)-th state, which means that we have sequenced a correct base
for both sequences, but the k-mer is not selected as a syncmer. The probability of returning
to the initial state is unchanged. The Markov chain model modified for mincode syncmer is
shown in Figure 3.2.

In the figure, we have used the mincode syncmer as an example, but the same proba-
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Algorithm 3 Probability of observing at least one correct k-mer in an overlap region of
length L > k.

1: procedure EstimateSharedKmerProbability(k,L,p)
2: states ← (k + 1)
3: P ← 0 ▷ Entire matrix initialized to 0
4: for i ← 0 to states do
5: P[i, 0] ← (1 − p

2)
6: P[i, i + 1] ← p

2

7: end for
8: P[states, states] ← 1
9: v ← (1, 0, . . . , 0) ▷ Initialized to standard unit vector
10: for i ← 0 to L do ▷ Compute vP

L
without exponentiation

11: v ← vP
12: end for
13: return v[states]
14: end procedure

bilistic model applies to other syncmer types, including those with better spacing properties,
such as closed syncmer [54]. This is because the selection of a k-mer as a syncmer is by
definition a local decision and is not influenced by neighboring k-mers. The case of the
minimizer is slightly different. A k-mer is a minimizer if it has the smallest code among w
successive k-mers, where w is called the window length [141]. For a k-mer κ that is correctly
sequenced in both reads, we must consider the number of competing k-mers in its windows
to determine the probability that κ is selected as the minimizer from both reads. If there
are no sequencing errors, there are w competing k-mers including κ itself. Since errors can
change the competing k-mers in each read independently, the maximum number of compet-
ing k-mers including κ itself is 2w− 1. It is possible to calculate the exact expected number
of competing k-mers, but since this range is narrow within a factor of two, in practice we
can also use the upper and lower bounds when choosing the minimizer parameter (w, k).

Reliable k-mer Set

Repetitive regions of the genome cause certain k-mers to occur frequently in input sequences.
K-mers from these regions pose two problems for pairwise overlap and alignment. First, their
presence increases computational costs, both in the overlap and alignment phases, because
these k-mers generate numerous and possibly incorrect overlaps. Second, they often do not
provide valuable information.

Here we argue that k-mers originating from repetitive regions can be ignored for seed-
based overlap. This is because either (a) the read is longer than the repeat, in which
case there should be enough sequence data from the non-repetitive section to find overlap
candidates, or (b) the read is shorter than the repeat, in which case their overlap matches are
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inherently ambiguous and uninformative and not particularly useful for de novo assembly.
In the case of a nearly identical region, we would expect to find a k-mer that comes from a
unique region of that nearly identical repeat to identify that region.

Following the terminology proposed by Lin et al. [107], we refer to k-mers that are not
present in the genome as non-genomic and thus characterize k-mers that are present in the
genome as genomic. A genomic k-mer can be repeated if it occurs multiple times in the
genome, or unique if it does not. One can think of the presence of k-mers in each read as the
feature vector of that read. Therefore, the feature vector should contain all unique k-mers,
as they are often the most informative features.

Since we do not know the genome before assembly, we estimate the genomic uniqueness
of k-mers from redundant, error-prone reads. Here we present a mathematically based pro-
cedure that selects a frequency range for k-mers that we consider reliable. The fundamental
question guiding the procedure for selecting reliable k-mers is the following: “What is the
probability that a k-mer occurs at least m times in the input data if it was sequenced from
a unique (non-repeat) region of the genome?”. For a genome G sequenced at a sequencing
depth d or sequencing coverage (i.e., the number of unique sequences containing a given
nucleotide in the reconstructed genome sequence), the conditional modeled probability is:

Pr(freq(k-mer, G, d) ≥ m ∣ count(map(k-mer, G) = 1) (3.1)

where map(k-mer, G) is the set of sites in the genome G to which k-mer can be mapped,
the function count() computes the cardinality of a given input set, and freq(k-mer, G, d)
is the expected number of occurrences of k-mer within the sequenced reads, assuming that
each region of G is sequenced d times. In this sense, ELBA’s approach to selecting reliable
k-mers is very different from the way Lin et al. [107] select their solid strings. The solid
strings exclude rare k-mers, while our model excludes highly recurrent k-mers because (a)
unique k-mers are sufficient to find informative overlaps, and (b) a unique k-mer has a low
probability of occurring frequently.

The probability of correctly sequencing a k-mer is approximately (1− e)k, where e is the
error rate. The probability of correctly sequencing a k-mer once can be generalized to the
probability of seeing it multiple times in the data, provided that each correct sequencing
of that k-mer is an independent event. For example, if the sequencing depth is d, the
probability of observing a unique k-mer Ku in the input data d times is approximately
(1 − e)dk. More generally, the number of correct sequencings of a unique k-long genome
segment at a sequencing depth d follows a binomial distribution:

B(n = d, p = (1 − e)k) (3.2)

where n is the number of trials and p is the probability of success. From this, we derive
that the probability of observing a k-merKu (corresponding to a unique non-repetitive region
of the genome) m times within a sequencing input data with depth d is:
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Algorithm 4 Reliable k-mer range: Selection of the lower bound (l)

1: procedure l ← LowerBound(d, e, k) ▷ d: depth, e: error rate, k: k-mer length
2: sum ← 0 ▷ Cumulative sum
3: m ← 2 ▷ The k-mer multiplicity in the input
4: while (sum < ϵ) do
5: probability ← P (d, e, k,m)
6: sum ← sum + probability
7: m ← m + 1
8: end while
9: l ← m − 1
10: return l ▷ The lower bound
11: end procedure

Pr(m; d, (1 − e)k) = ( dm)(1 − e)km(1 − (1 − e)k)(d−m)
(3.3)

where m is the number of occurrences of a k-mer Ku in the input data, where the input is
the genome sequenced at depth d, e is the error rate, d is the sequencing depth, and k is the
k-mer length. Given the values of d, e, and k, the curve Pr(m; d, (1−e)k) can be calculated.

Equation 3.3 is used to determine the range of reliable k-mers. To choose the lower
bound l, we calculate Pr(m; d, (1− e)k) for each multiplicity m and sum these probabilities
cumulatively, starting with m = 2. The cumulative sum does not start at m = 1 because
a k-mer that occurs only once in the input data (and therefore appears on a single read)
cannot be used to identify the overlap between two reads. The lower bound l is the smallest
m value after which the cumulative sum exceeds a user-defined threshold ϵ. The choice of l
is significant when the sequencing error rate is relatively low (≈ 5%) or when the sequencing
depth or coverage d is high (≈ 50 − 60×), or both. This is because in these cases, a k-mer
with small multiplicity has a high probability of being incorrect.

The upper bound u is chosen in a similar way. Here, starting from the largest possible
value of m (i.e. d), the probabilities are added up cumulatively. In this case, u is the largest
value of m after which the cumulative sum exceeds the user-defined threshold ϵ. The k-mers
that are more frequent than u have too low a probability of belonging to a unique region of
the genome, and multiple mapped k-mers would lead to an increase in computational cost
and possibly misassembly.

K-mers with multiplicity greater than u and multiplicity less than l in the input set are
discarded and not used as read features in the downstream algorithm. Our reliable k-mers
selection discards at most 2ϵ useful information when the data fits the model, in the form of
k-mers that can be used for overlap detection.

If you use the syncmer strategy instead of the k-mer strategy, the reliable range calcu-
lations remain unchanged. This is because a given k-mer is either selected as a syncmer
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Algorithm 5 Reliable k-mer range: Selection of the upper bound (u)

1: procedure u ← UpperBound(d, e, k) ▷ d: depth, e: error rate, k: k-mer length
2: sum ← 0 ▷ Cumulative sum
3: m ← d ▷ The k-mer multiplicity in the input
4: while (sum < ϵ) do
5: probability ← P (d, e, k,m)
6: sum ← sum + probability
7: m ← m − 1
8: end while
9: u ← m + 1
10: return u ▷ The upper bound
11: end procedure

for all its occurrences in the dataset or is never selected as a syncmer. For minimizers, the
exact computation of the reliable range is non-trivial, since errors in flanking sequences affect
whether a k-mer is retained as a minimizer. Therefore, we leave this as future work.

Adaptive Alignment Threshold

In outputting overlap candidates, high precision is desirable to avoid unnecessary work at
later stages of the assembly. Therefore, ELBA prunes overlap candidates by performing
a pairwise seed-and-extend alignment on each candidate pair. Unlike approaches based
on sketches, such as minimap2 [103] and MHAP [16], seed-and-extend alignment can be
performed directly with the k-mers from the overlap phase of ELBA. The alignment module
of ELBA uses the x-drop seed-and-extend alignment of SeqAn [53].

The x-drop defines the termination condition of the alignment, i.e., for each read pair
identified as an overlap candidate, the alignment is extended from the k-mer match until
the alignment score either reaches the end of one of the two sequences or decreases by x
from the previous best score. If the final score is less than a threshold n, the sequence pair
is discarded. For this reason, this approach is also called “x-drop alignment”. To filter
out spurious candidates, we use an adaptive threshold n calculated based on the estimated
overlap between a given pair of sequences. The choice of the scoring matrix used in the
pairwise alignment step justifies that the alignment score threshold is a linear function of
the estimated overlap length.

Given an estimated overlap region of length L and probability p
2
of obtaining a correct

base in both sequences, we would expect m = p
2 ⋅ L correct matches within this overlap

region. The alignment score χ is:

χ = αm − β(L −m) = αp
2
L − β(L − p

2
L) (3.4)

where m is the number of matches, L is the overlap length, α is the value associated with
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a match in the scoring matrix, while β is the penalty for a mismatch or a gap (α, β > 0).
Under these assumptions, we define the ratio φ as χ over the estimated overlap length L as:

φ =
χ

L
= αp

2
− β(1 − p

2). (3.5)

The expected value of φ is equal to 2 ⋅ p2 − 1 when an exact alignment algorithm is
used. Thus, we want to define a threshold with respect to (1 − δ)φ such that we keep pairs
above this threshold as true alignments and discard the remaining pairs. To this end, we
use a Chernoff bound [39, 92] to define the value of δ, and prove that there is only a small
probability of missing a true overlap of length L ≥ 2000 bp (which is typically the minimum
overlap length for a sequence to be considered true positive) when we use the threshold
defined above.

Chernoff Bound Derivation Let Z be a sum of independent random variables {Zi},
with E[Z] = µz; we assume for simplicity that Zi ∈ {0, 1}, for all i ≤ L. The Chernoff
bound defines an upper bound on the probability that Z deviates from its expected value by
a certain amount δ. In particular, we use a corollary of the multiplicative Chernoff bound [5],
which is defined as follows for 0 ≤ δ ≤ 1:

Pr[Z ≤ (1 − δ)µz] ≤ e
−δ2µz

2 (3.6)

To obtain the Chernoff bound for the ratio φ, we consider a random variableXi ∈ {−β, α}
such that:

Xi = {α, with probability p
2

−β, with probability 1 − p
2 (3.7)

where α, β > 0 are still the values associated with a match and a mismatch and a gap in the
scoring matrix, respectively; its expected value E[Xi] is exactly equal to φ = αp

2−β(1−p
2).

Since the Chernoff bound is defined for a sum of independent random variables Zi ∈ {0, 1},
we need to move from Xi ∈ {−β, α} to Zi ∈ {0, 1}. Thus, we define a new random variable
Yi = Xi + β as a linear transformation of Xi that can take values {0, α+ β}. Using E[Yi] =
E[Xi] + β = (α + β)p, we can normalize Yi to obtain the desired random variable Zi:

Zi =
Xi + β

α + β
, where Zi ∈ {0, 1} (3.8)

From the linearity of expectation, we obtain:

E[Z] = E[X + β

α + β
] =

E[X] + βL

α + β
=

(2p2 − 1)L + βL

α + β
(3.9)

Finally, substituting Eq. 3.8 and Eq. 3.9 into Eq. 3.6 and simplifying with our scoring matrix
α, β = 1, we get the final expression:
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Pr[X ≤ (1 − δ)µx] ≤ e
−δ2p2L

, with E[X] = µx (3.10)

For two sequences that correctly overlap by L = 2000, the probability that their alignment
score is more than 10% (δ = 0.1) below the mean is ≤ 5.30 × 10

−7
. ELBA, with an x-drop

value of x = 50 and an adaptive threshold derived from the scoring matrix as well as a
cutoff rate of δ = 0.1, achieves high values for recall and precision compared to state-of-
the-art software. Recall is defined as the number of correct overlap candidates identified by
ELBA relative to the total number of correct overlap matches in the input dataset, while
precision is the ratio of correct overlap candidates identified by ELBA to the total number of
overlap candidates identified by ELBA. This bound can be relaxed, e.g., δ = 0.7, if the error
rate in the sequencing data decreases without compromising accuracy performance with the
state-of-the-art.

3.2 Proposed Algorithm

Having described the mathematical methodologies used in our algorithms in the previous
section, in this section we describe how ELBA actually computes overlap detection.

ELBA introduces sparse matrices to represent its data internally, where the rows are
sequences, the columns are the reliable k-mers, and a nonzero A(i, j) ≠ 0 is the position of
the j-th k-mer within the i-th read. The construction of this sparse matrix requires efficient
k-mer counting. Overlap detection is implemented in ELBA using SpGEMM (see Chapter 2),
which provides fast overlap detection without using approximate approaches. SpGEMM is an
extremely flexible and efficient paradigm that allows for better organization of computations
and greater generality because it can manipulate complex data structures, such as those used
to perform overlap detection, by using common k-mers. Our k-mer selection can be easily
replaced by other selection strategies without affecting SpGEMM-based overlap detection,
demonstrating the generality of our approach. The implementation of this method in our
pipeline enables the use of high-performance techniques not previously used in the context
of long-read alignment. It also enables continuous performance improvements in this step
through increasingly optimized implementations of SpGEMM [122, 49]. This abstraction
makes software design more flexible and modular, and enables high parallelization that can
scale in distributed memory. To implement parallel computation over sparse matrices, we use
the Combinatorial BLAS (CombBLAS) library [9], a well-known framework for implementing
graph algorithms in the language of linear algebra, and use a semiring abstraction to overload
the classical multiplication and addition operations as needed. A description of CombBLAS
can be found in Chapter 2.

ELBA’s overlap detection has been coupled with SeqAn’s seed- and-extend algorithm [53],
which computes the alignment starting from the seed coordinates to the left and right of
the seed match and tries to extend the match. The alignment extension terminates when
either the end of one of the two sequences is reached or the alignment score decreases by x
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Algorithm 6 The matrix computation in ELBA.

1: procedure ELBA
2: reads ← FastaReader()
3: k-mers ← KmerCounter()
4: A ← GenerateA(reads, k-mers) ▷ Data matrix

5: A
T
← Transpose(A)

6: C ← AA
T ▷ Candidate overlap matrix

7: C ← Apply(C,Alignment()) ▷ Run alignment
8: R ← Prune(C, AlignmentScoreLessThan(t))
9: S ← TransitiveReduction(R) ▷ Algorithm 7
10: return S
11: end procedure

compared to the best score obtained up to that point. Each alignment extension of a given
read pair can be computed independently.

Data Partitioning

The input is a set of nucleotide sequences in FASTA format [108, 61]. To ensure load
balance, each processor reads an equal, independent portion of this file via parallel MPI I/O.
Immediately thereafter, the processors begin communicating the sequences to create a 2D
grid that matches the way the matrices are partitioned. This approach is similar to the one
used by PASTIS [144].

k-mer Selection and Counting

A k-mer based approach calculates the frequency of each k-mer in the input because not all
k-mers are useful. k-mers that are usually discarded are (a) k-mers that occur only once in
the input (singletons) and (b) high frequency k-mers. For more details on k-mer selection,
see the BELLA paper [83].

ELBA eliminates singletons using a Bloom filter [114] during k-mer counting and high
frequency k-mers that occur at least d times, as in our first implementation. The threshold
d is computed using the approach presented in BELLA [83], which uses dataset-specific
features. In Section 3.3, we use d to compute the communication cost of our algorithm.

Our k-mer counter is similar to that of HipMer [70] and consists of two phases. First, we
add k-mers to the Bloom filter and then compute the frequencies for the filtered k-mers. The
processors extract k-mers from their local sequences, hash them, and possibly communicate
them with other processors as specified by the Bloom filter hash function. On the receiver,
incoming k-mers are added to the local Bloom filter; if they already exist, they are added
to the local hash table partition. Communication requires an all-to-all exchange and is
implemented using MPI Alltoall and MPI Alltoallv.
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Figure 3.3: Read distribution when we read the input (left) and read distribution we need
to perform pairwise alignment (right).

Overlap Detection and Alignment

The local k-mer hash table and the local sequences are used to create a distributed ∣sequences∣-
by-∣k-mers∣matrixA. A nonzeroAij stores the position of the jth k-mer in the ith sequence.

A is multiplied by A
T
to obtain the sparse candidate overlap matrix C = AA

T
of dimension

∣sequences∣-by-∣sequences∣. In C each nonzero Cij stores the number of common k-mers and
their positions in the sequence pair i and j. The number of stored positions is a user-defined
parameter. For this work we store two k-mer positions for each read pair.

To compute C we use the distributed SpGEMM in the CombBLAS library [29] and we
overload the addition and multiplication operators in SpGEMM with a custom semiring.
We overload the multiplication with an assignment by taking the positions of the respective

k-mer in two sequences corresponding to Ai and A
T
j . We overload the addition operator by

incrementing the counter of common k-mers between Ai and A
T
j and storing the positions of

another common k-mer in Cij (i.e., concatenate the results of the multiplication operation)
as long as it is smaller than the number of positions to be stored.

CombBLAS relies on 2D Sparse SUMMA algorithm for parallel SpGEMM [24] and it
uses a hybrid hash table and heap based algorithm for local multiplication. For matrices,
CombBLAS uses a 2D matrix decomposition, so both A and C are distributed over a process
grid of

√
P ×

√
P . Observe that in such a distribution a processor may need to align a pair

of sequences which it does not have in its partition (Figure 3.3). Such sequences need
to be communicated among respective processors. In this respect, a processor has two
possibilities: (a) wait until C is computed to find out which sequences it would need, and
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then begin communicating those sequences, or (b) request the full range of sequences it
might need once the FASTA input file is read from disk, as described in Section 3.2. We
choose the latter option because it allows for overlapping sequence exchanges with k-mer
counting and matrix multiplication. This is also the approach adopted by PASTIS [144]. As
in PASTIS [144], we implement the second option, which also allows to overlap the exchange
of sequences with k-mer counting and matrix multiplication. Figure 3.3 shows how the
sequences are distributed when we read the input (on the left) and how they are distributed
to perform alignment (on the right). P5 has local sequences S56−66 after reading the input
file, however it needs sequences but it needs to fetch sequences from other processors to
perform the alignment on sequences assigned to it in the 2D grid. For example, P5 must
get S67−77 from P6. Once the sequences are communicated, we perform pairwise alignment
for all identified pairs (i.e., the nonzeros C) using a seed-and-extend algorithm that returns
an alignment score and updated seed coordinates. If the score does not exceed the specified
threshold, the read pair is discarded and the nonzero is removed from C.

From a matrix point of view: (a) pairwise alignment is an in-place element-wise opera-
tion on C that sets the alignment flag for each nonzero Cij to true if the alignment score
exceeds the given threshold and to false otherwise, and (b) removing entries with false flags
is another in-place operation on C that prunes nonzeros whose flags are set to false. The
resulting matrix R (line 8 in Algorithm 6) is the input to the transitive reduction. Contained
sequences, as defined in Chapter 2, are discarded during transitive reduction regardless of
their alignment scores. They can be reintroduced at later stages of the de novo assembly
process.

3.3 Communication Analysis

In this section, we analyze the communication costs for ELBA’s k-mer counting, overlap
detection, and read exchange, and compare them to our 1D implementation. First, we
consider the communication cost of the k-mer counting phase (which is common to both
implementations). Then, we examine the communication costs of the overlap phase and
the read exchange, which are the main differences between the two implementations. The
communication costs are expressed in number of words W (bandwidth cost) and number
of messages Y (latency cost). The communication costs are summarized in Table 3.1 along
with the useful notations in Table 3.2.

Communication Cost of k-mer Counting

The communication cost for this step depends on the properties of the input dataset and
the settings of our algorithm, such as the depth d of the dataset, the genome size G (in
nucleotides), the k-mer length k, the number of sequences n in the input, and the sequence
length l.
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Table 3.1: Communication costs of diBELLA 1D and ELBA.

Task
Bandwidth Latency

diBELLA 1D ELBA diBELLA 1D ELBA

K-mer Counting nlk/4P nlk/4P bP bP

Overlap Detection a
2
m/P am/

√
P P

√
P

Read Exchange cnl/P 2nl/
√
P min{cnl/P, P}

√
P

Our total input size is Gd ≈ nl. Each processor has (1/P )th of the input. Each sequence
has (l−k+1) k-mers and each k-mer requires k/4 bytes at 2-bit compression per nucleotide.
Therefore, the total size on each processor before communication is n(l − k + 1)k/4P . For
long read data, l − k + 1 ≈ l, since l is usually 2-3 orders of magnitude larger than k.

The hash function distributes k-mers evenly and randomly among processors, so that
each processor keeps (1/P )th of the data for itself and communicates the rest. For large P ,
we can assume (P −1)/P ≈ 1 to avoid clutter. Thus, the bandwidth cost for k-mer counting
per process is on average:

W =
P − 1

P

n(l − k + 1)k
4P

≈
nlk

4P
(3.11)

Depending on the available memory, we may need to perform multiple k-mer exchanges.
Thus, the latency cost of k-mer counting is Y = bP , where b is the batch count.

Communication Cost of Overlap Detection

In our application, AA
T
is the output matrix n × n, A and A

T
are the input matrices of

dimension n×m and m×n, respectively. The nonzeros in A and A
T
are am, where a is the

density indicating the average number of sequences containing a given k-mer. The k-mer
selection procedure presented in [83], which we use here, chooses an interval for the k-mer
frequency, which in turn indicates the average number of sequences that may contain a given
k-mer.

Our previous work, diBELLA 1D, computes overlap detection using distributed hash
tables [57]. k-mers are distributed among processors that allow them to detect candidate
overlap pairs locally. Subsequently, a global reduction must be performed. In terms of
communication, this implementation is equivalent to a 1D sparse matrix multiplication using
the outer product algorithm [25, 13]. The 1D formulation of the outer product distributes

A in block columns, where the ith block column is denoted by A∶i, and A
T
in block rows,

where the ith block row is denoted by A
T
i∶ . C is distributed in block rows in diBELLA 1D.

The calculation can be written as C = ∑P

i=1A∶iA
T
i∶ .

Each k-mer exists on average in a sequences, so local overlap detection A∶iA
T
i∶ generates

a
2
m/P nonzeros on each processor. These nonzeros must be reduced before performing
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Table 3.2: List of symbols and annotations used in this section and in the following one.

Symbol Description

n Read set cardinality
m K-mer set cardinality
d Depth of coverage
k K-mer length
L Overlap length
l Read length
A Data matrix: reads–by–kmers
C Candidate overlap matrix: reads–by–reads
R Overlap matrix: reads–by–reads
S String matrix: reads–by–reads
a A average density: nnz(A)/m
c C average density: nnz(C)/n
r R average density: nnz(R)/n
s S average density: nnz(S)/n
P Total number of processes
W Bandwidth cost
Y Latency cost

pairwise alignment, so that no read-read pair is aligned more than a few (1-2) times, de-
pending on the parameters of the algorithm. This means that each processor exchanges
W1D = a

2
m/P words and the latency cost is Y1D = P .

In contrast, ELBA uses a 2D sparse matrix multiplication algorithm known as Sparse
SUMMA [24]. The P processors are logically organized in a

√
P ×

√
P grid with row and

column indices such that the (i, j)th processor is Pij. Each processor stores a n/
√
P ×m/

√
P

submatrix Aij and a m/
√
P × n/

√
P submatrix A

T
ij in its local memory. Each processor

computes a product of a block row of A with a block column of A
T
. Sparse SUMMA is

an owner-computes algorithm, so we only need to consider the communication of the input
matrices. If we assume a good load balance, which we achieve by randomly permuting k-
mers and reads, Aij has am/P nonzeros. Each processor Pij receives 2(

√
P −1) input blocks

because Cij = ∑
√
P

i=k AikA
T
kj.

For large P , we simplify
√
P − 1 ≈

√
P so that the number of nonzeros a processor must

collect is W2D = am/
√
P and the latency cost is Y2D =

√
P .

Communication Cost of Read Exchange

The communication cost of the read exchange follows from the analysis in the previous
section. The sequences are distributed by parallel I/O to the processors according to the
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Table 3.3: List of experimental values of sparsity for ELBA.

Dataset Depth (d) C density (c) Inefficiency (c/2d) R density (r)

E.coli (Sample) 30 145.9 2.4 6.4
C. elegans 40 1,579.7 19.7 8.1
H. sapiens 10 1,207.7 60.4 1.3

corresponding implementation decomposition, i.e., 1D for our first implementation and 2D
for the present work.

To compute the communication cost, consider the candidate overlap matrix C
n×n

=

AA
T
. C has cn non-zeros (before computing pairwise alignment), where c is the density per

row or column, which is the average number of overlapping sequences for each read. Each
exchange costs O(l). The 1D algorithm exchanges at most W1D = cnl/P words and sends
Y1D = min{cnl/P, P} messages, while the current 2D implementation exchanges at most
W2D = 2nl/

√
P words and sends Y2D =

√
P messages.

diBELLA 1D communicates at most one read per nonzero: an alignment is assigned to
a processor only if that processor has at least one of the two sequences involved. ELBA
communicates the full range of sequences that a processor might need, and starts the read
exchange after the initial data partition, so that communication overlaps with computation.

The 1D algorithm scales better with increasing parallelism, but has a large constant
c whose typical value often exceeds 1000 for large genomes, as shown in Table 3.3. To
overcome this large constant and communicate fewer words than the 2D algorithm, the 1D
algorithm would require (c2/4)-way parallelism. Ellis et al. [57] show that c ≈ 2d for a perfect
overlapper. In practice, c is much larger than d and c/2d can be considered the inefficiency
factor of an overlapper.

3.4 Experimental Setup

Our runtime evaluation was performed on two machines: the Cray XC40 supercomputer
Cori at NERSC and the IBM supercomputer Summit at Oak Ridge National Laboratory
(Table 3.5). On Cori we use the Haswell partition, while on Summit we use only IBM
POWER9 CPUs. The use of two architectures shows that our algorithm scales on different
architectures. However, this is not intended as a cross-platform comparison, as our algorithm
is not optimized specifically for either platform, but for a general HPC architecture.

Each Haswell node on the Cori system consists of two 2.3GHz 16-core Intel Xeon proces-
sors and has a total memory of 128GB. Each Summit node has two 22-core IBM POWER9
processors and 512 GB of DDR4 from RAM. Because one core per Summit half-node is
reserved for OS, each node has a maximum of 42 cores available for application codes. In
this dissertation, we do not use the GPUs available on Summit.



CHAPTER 3. PARALLEL ALGORITHMS FOR OVERLAP DETECTION 42

Table 3.4: Datasets used for accuracy assestment. Datasets above the line are real data, while
datasets below the line were generated using PBSIM [128]. Download: portal.nersc.gov/
project/m1982/bella/.

Dataset Depth (d) Species and Strain Fastq Size (MB)

E.coli (Sample) 30 Escherichia coli MG1655 266
E.coli 100 Escherichia coli MG1655 929
E. coli (CCS Sample) 29 Escherichia coli MG1655 240
E. coli (CCS) 290 Escherichia coli MG1655 2,600
C. elegans 40 Caenorhabditis elegans Bristol 8,900
P. aeruginosa 30 Pseudomonas aeruginosa PAO1 359
V. vulnificus 30 Vibrio vulnificus YJ016 288
A. baumannii 30 Acinetobacter baumannii 248
C. elegans 20 Caenorhabditis elegans 3,750

Table 3.5: Details of the machines used for evaluation: name, number of physical cores per
node, maximum processor turbo frequency, processor model, memory, network, and size of
L1, L2, and L3 caches.

Platform Cores/Node Freq (GHz) Processor Memory (GB) Network L1 L2 L3

Cori Haswell 32 3.6 Intel Xeon E5-2698V3 128 Aries Dragonfly 64KB 256KB 40MB
Summit CPU 42 4.0 IBM POWER9 512 InfiniBand Fat Tree 32KB 512KB 10MB

Table 3.6: Genomes used in the runtime performance evaluation: name, depth, number of
sequences in the input, average read length, input size, genome size, and error rate.

Dataset Depth (d) Reads (K) Length Input (GB) Size (Mb) Error Rate

C. elegans 40 420.7 11,241 4.8 100 0.13
H. sapiens 10 4,421.6 7,401 33.1 3,000 0.15

To investigate the parallel performance of our algorithm, we use two genomes sequenced
with Pacific Biosciences (CLR technology) [140] with different sizes: Caenorhabditis elegans
(C. elegans) and Homo sapiens (H. sapiens). Details of the two datasets can be found in
Table 3.6. Our algorithm is also suitable for other long-read technologies such as Pacific
Biosciences CCS [158] (or HiFi) and Oxford Nanopore [96].

The experiments are divided into two groups: (a) parallel performance and scalability of
ELBA and (b) performance comparison with related work. In the latter, we compare the
overlap detection of ELBA with diBELLA 1D [57], which is also implemented for distributed
memory parallelism, and minimap2 [104], which is written in C for shared memory. minimap2
is one of the most popular and fastest shared memory algorithms for overlap detection. For

portal.nersc.gov/project/m1982/bella/
portal.nersc.gov/project/m1982/bella/
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this reason, we decided to report its runtime compared to ELBA.
ELBA and diBELLA 1D ran with the same input and alignment setting, i.e. k = 17 and

a maximum k-mer frequency of 4, while minimap2 ran with its default setting for CLR data.
The minimap2 results were collected only from Cori, since minimap2 uses SSE intrinsics,
which are not supported on the IBM POWER9 processor. For minimap2, we report only
single node performance since it does not implement distributed memory parallelism.

On Cori, we used gcc-8.3.0 and the O3 flag to compile C/C++ codes, while on Summit
we used gcc-8.1.1. On both Cori and Summit, we used the default MPI implementation.
Here, we report the average runtime over 10 runs for each experiment, except for the H.
sapiens dataset at low concurrency, where we report the average over three runs.

Genomes used for accuracy assessment are listed in Table 3.4. The selected genomes
vary in size and complexity, as these features affect accuracy [105]. In addition, we include a
dataset based on Pacific Biosciences’ CCS technology, which has a significantly lower error
rate than Pacific Biosciences’ CLR technology sampled at different depth. The CCS data
is more accurate than the CLR data, but has a higher cost and a slightly shorter read
length (although it is still classified as a long read technology). The synthetic data were
generated using PBSIM [128] with an error rate of 15%. Recall, precision, and F1 score
are used as accuracy metrics. Recall is defined as the proportion of true positives from the
aligner/overlapper to the total ground truth. Precision is the proportion of true positives
from the aligner/overlapper to the total number of elements found by the aligner/overlapper.
The F1 score is the harmonic mean of precision and recall.

A read pair is considered true-positive if the sequences align for at least 2 kb in the
reference genome. The threshold t = 2 kb was derived from the procedure proposed by Heng
Li [103] and the ground truth was generated using minimap2.

3.5 Results

Figure 3.4 illustrates the strong scaling of our algorithm for C. elegans on the left and for
H. sapiens on the right. The two machines run on P = {32, 72, 128} nodes using 32 MPI
ranks/nodes for C. elegans and P = {128, 200, 288, 338} for H. sapiens. For C. elegans,
ELBA achieves a parallel efficiency of 83% on Summit CPU and of 68% on Cori Haswell.
For H. sapiens, the parallel efficiency of both machines is over 80% with a peak of 92% on
Summit CPU. These results demonstrate the near linear scaling behavior of our algorithm
with a large input on two different architectures.

Figures 4.1-4.2 (C. elegans) and Figures 4.3-4.4 (H. sapiens) show the runtime breakdown
of ELBA on the two machines. Plots on the left side of the figures show the total execution
time including pairwise alignment, while plots on the right side exclude pairwise alignment.
We included plots without the pairwise alignment because the alignment takes up a large
portion of the runtime and makes it difficult to see the scaling of the other stages. From
bottom to top, the layers are ordered according to the legend. The first layer is the pairwise
alignment, i.e., the time required to align all non-zero pairs in the candidate overlap matrix
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diBELLA 2D Scaling E. Coli and C. Elegans

Figure 3.4: ELBA strong scaling on Cori Haswell and Summit CPU using 32 MPI rank/node
on C. elegans (left) and on H. sapiens (right).

C. ReadFastq is the time taken to read and parse the input file in parallel. Immediately after
this step, we start exchanging sequences to overlap this communication with the subsequent
computation. CountKmer corresponds to the k-mer counting step. DetectOverlap includes
both the communication time and the computation time to create the candidate overlap

matrix C = AA
T
. ReadExchange is the time from the end of SpGEMM to the completion

of all sequence exchanges. Depending on the MPI implementation, the read exchange may
overlap with k-mer counting and overlap detection phases.

Figure ?? shows the breakdown of ELBA performance on the C. elegans dataset using
P={32, 72, 128} nodes on Summit CPU. Cori Haswell has similar scaling for each stage so we
only report the breakdown for Summit CPU. In general, ELBA runs faster overall on Cori
Haswell than on Summit CPU. The relative contribution of pairwise alignment to the overall
runtime increases on Summit CPU compared to Cori Haswell. SeqAn’s pairwise alignment
is probably not optimized for IBM processors, so we refrain from making architectural com-

parisons based solely on this data. Overlap detection (AA
T
) has the largest contribution to

runtime after pairwise alignment. Parallel read I/O shows no scaling and its performance
degrades as the number of processes is increased. For C. elegans, overlap detection has a
parallel efficiency of 63% for Summit CPU, while k-mer counting (consisting of first and
second passes) has a parallel efficiency of 80%. The read exchange parallel efficiency is 50%.
Figure 3.6 shows a similar story for H. sapiens. The size of the dataset, which is about
10 times that of C. elegans, mitigates the contribution of I/O to runtime. The parallel
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Figure 3.5: ELBA runtime breakdown on Summit CPU (C. elegans).

efficiency of AA
T
increases to 65%. The formation of A and A

T
has a negligible impact on

runtime, but scales almost linearly with a parallel efficiency above 80%.
First, we compare the overall runtime and scaling of ELBA with diBELLA 1D [57]. This

comparison was performed on Summit CPU and is shown in Figure 3.7 for C. elegans and H.
sapiens. ELBA and diBELLA 1D differ mainly in the way they perform overlap detection
and communicate sequences before pairwise alignment. They show similar near-linear scaling
behavior, but ELBA consistently outperforms diBELLA 1D by 1.5-1.9× for C. elegans and
1.2-1.3× for H. sapiens. For completeness, we evaluate ELBA against minimap2 [104], a
popular shared memory algorithm for overlap detection. Thus, we run minimap2 on a single
node with 32 OpenMP threads and compare its runtime against ELBA on a different set of
nodes with 32 MPI ranks/nodes. It is important to note that minimap2 and ELBA perform
significantly different computations. In particular, minimap2 does not perform base- level
pairwise alignment and instead estimates pairwise similarity based on the number of shared
minimizers, making it significantly faster. Nevertheless, they ultimately aim to solve the
same problem, which is why we make a comparison here. For the running times of ELBA,
we refer to Figure 3.4. For C. elegans, minimap2 is about 2× faster than ELBA at P =

8, while ELBA is 1.6×, 3.2×, and 5× faster than minimap2 at higher concurrency. The
speedup of ELBA over minimap2 is 9.5×, 13.7×, and 20.6× at P={128, 200, 338} for the H.
sapiens dataset.

ELBA is evaluated against several state-of-the-art long read overlap detection and align-
ment software packages summarized in Chapter 7, using both synthetic and real data from
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Figure 3.6: ELBA runtime breakdown on Summit CPU (H. sapiens).

Pacific Biosciences (Table 3.4). The advantage of synthetic data is that the ground truth is
known. Table 3.7 and Table 3.8 show the accuracy for synthetic and real data, respectively.
The last column of each table indicates whether the respective overlapper also computes
alignment.

Table 3.7 shows that MECAT trades recall for precision, achieving the highest precision
but overlooking a large number of the true overlaps. In contrast, ELBA, minimap2, and
BLASR were consistently strong (generally above 80%) in both precision and recall. The F1
score of ELBA is consistently higher than that of the competing software, with the exception
of minimap2, which had a slight improvement of 1.1% in three of four genomes, while ELBA
had an improvement of 1.2% over Miniamp2 in C. elegans 20X. Table 3.8 shows that while
BLASR performed reasonably well on synthetic data, it had a lower hit rate than other
software on real data. The F1 score of ELBA outperformed competing software except
minimap2 on E. coli 100X. It is worth noting that the precision and F1 score of ELBA are
significantly better than competing software for CCS data, the sequencing data with lower
error rates.

Tables 3.7 and 3.8 show the competitive accuracy of ELBA compared to the literature and
demonstrate the effectiveness of the methodologies we have introduced and implemented. For
synthetic data, ELBA achieves both high recall and precision, consistently among the best.
For real CLR data, ELBA’s recall and precision are generally lower than for synthetic data,
yet ELBA’s F1 results are among the best and show performance stability that competing
software often does not. Notably, ELBA has a 49.16% higher F1 score than minimap2 for C.
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1

SpGEMM 2× Faster than Distributed Hash Tables
diBELLA 1D vs 2D 

[1] Guidi, G., et al "Parallel String Graph Construction and Transitive Reduction for De Novo Genome 
Assembly. IPDPS, 2021.

ELBA ELBA

Figure 3.7: Comparison of ELBA and diBELLA 1D [57] on Summit CPU.

elegans 40X. The precision and F1 score of ELBA on real CCS data are significantly better
than those of the competing software. Overall, a good score on one dataset becomes one of
the worst on another, while ELBA’s F1 score is within 1.7% of the top performer.

Tables 3.7 and 3.8 show that ELBA achieves higher F1 score values on synthetic data and
real CCS data than on real CLR data. The way ground truth is generated could explain this
behavior. For synthetic data, the ground truth comes directly from the data set itself. So we
know exactly where a read in the reference genome comes from and which other sequences
overlap with it. For real data, the positions of sequences in the reference are determined by
mapping the sequences to the reference using minimap2 in “mapping mode.” Intuitively, such
a procedure is suboptimal, since there is no guarantee that minimap2 will correctly locate
each read. ELBA could potentially find a better set of true overlaps than those identified by
minimap2. Given a uniformly covered genome, we observed that minimap2 and other long-
read mappers tend to map sequences to “hotspots” within a genome rather than mapping
them uniformly across the genome. This leads to uneven coverage and overestimation of
overlaps by a factor of 1.14×. Recall beyond a certain point, for real data, would mean
that the overlapper also overestimates the overlap cardinality. It is possible that the actual
accuracy of ELBA is actually higher for real data. As future work, we plan to investigate
these issues in more detail. This bias may not be present when CCS data are mapped to the
reference, as error rates are lower and it is easier for the mapper to find the correct position
on the reference genome.
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Table 3.7: Recall, precision, and F1 score for synthetic data. The last column indicates
whether the tool computes a nucleotide-level alignment. Bold font indicates best perfor-
mance, underlined font indicates second best. DALIGNER was not run on synthetic data
due to runtime error.

Dataset Overlapper Recall Precision F1 Score Pairwise Alignment
P. aeruginosa 30X ELBA 97.66 89.68 93.50 Y

BLASR 86.86 90.54 88.66 Y
MECAT 38.40 95.20 54.72 N
Minimap2 99.10 88.83 93.69 N
MHAP 72.68 63.42 67.74 N

V. vulnificus 30X ELBA 97.27 84.05 90.18 Y
BLASR 87.31 84.74 86.01 Y
MECAT 43.53 88.89 58.44 N
Minimap2 96.71 89.33 92.87 N
MHAP 74.52 45.10 56.19 N

A. baumannii 30X ELBA 97.54 84.90 90.78 Y
BLASR 89.51 84.58 86.98 Y
MECAT 46.31 90.39 61.25 N
Minimap2 96.89 85.79 91.01 N
MHAP 76.88 28.79 41.89 N

C. elegans 20X ELBA 91.80 88.02 89.87 Y
BLASR 95.61 78.19 86.02 Y
MECAT 13.45 95.09 23.57 N
Minimap2 95.76 82.84 88.83 N
MHAP 82.57 6.41 11.90 N

3.6 Summary

Long-read sequencing technologies enable highly accurate reconstruction of complex genomes.
Read overlap is a major computational bottleneck in long-read pipelines for genome analysis,
such as genome assembly.

In this section, we introduced the overlap detection and alignment phases of ELBA.
ELBA uses a k-mer-based approach for overlap detection in long-read sequencing data.
Then we demonstrated the feasibility of the k-mer-based approach using a mathematical
model based on Markov chains and showed the generality of such a model. ELBA provides
a novel algorithm for pruning k-mers that are unlikely to be useful for overlap detection and
whose presence would only add unnecessary computational cost. Our algorithm for reliably
detecting k-mers explicitly maximizes the probability of retaining k-mers that belong to
unique regions of the genome.
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Table 3.8: Recall, precision, and F1 score for real data. BLASR result for C. elegans 40X is
not reported as BLASR v5.1 does not accept fastq larger than 4 GB.

Dataset Overlapper Recall Precision F1 Score Pairwise Alignment
E. coli (Sample) ELBA 82.66 85.69 84.15 Y

DALIGNER 89.97 62.62 73.84 Y
BLASR 77.64 79.64 78.63 Y
MECAT 78.41 78.71 78.56 N
Minimap2 91.40 76.36 83.21 N
MHAP 79.71 66.93 72.76 N

E. coli ELBA 65.08 71.22 68.01 Y
DALIGNER 82.18 54.50 65.54 Y
BLASR 35.41 72.01 47.48 Y
MECAT 54.61 72.69 62.37 N
Minimap2 80.68 62.30 70.30 N
MHAP 67.84 44.60 53.81 N

E. coli (CCS Sample) ELBA 96.32 99.84 98.05 Y
BLASR 92.38 97.30 94.77 Y
MECAT 98.21 88.39 93.04 N
Minimap2 98.90 58.34 73.39 N
MHAP 99.05 38.29 55.23 N

E. coli (CCS) ELBA 97.67 99.81 98.73 Y
BLASR 9.11 100.00 16.70 Y
MECAT 15.71 99.95 27.15 N
Minimap2 98.83 69.94 81.91 N
MHAP 98.99 38.80 55.75 N

C. elegans 40X ELBA 75.43 73.81 74.61 Y
DALIGNER 62.81 58.66 60.67 Y
MECAT 73.05 75.27 74.14 N
Minimap2 94.13 34.06 50.02 N
MHAP 86.63 5.31 10.01 N

ELBA achieves rapid overlap without sketching using sparse matrix multiplication (SpGE-
MM) implemented with high-performance software and libraries developed for this subrou-
tine. Any novel sparse matrix format and multiplication algorithm would be applicable
to overlap detection and would enable further performance improvements. Moreover, our
SpGEMM approach is general and flexible enough that it can be coupled with any k-mer
selection strategy. Our overlap detection is coupled with a seed-and-extend alignment algo-
rithm to filter out spurious overlap candidates. In this context, we developed a new method
to separate true overlap candidates from false positives as a function of alignment score. This
method shows that the probability of false positives decreases exponentially as the overlap
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length between sequences increases.
ELBA consistently achieves high overlap detection accuracy compared to state-of-the-

art software, both for synthetic and real data. Our communication analysis shows that the
new two-dimensional SpGEMM-based overlap detection algorithm reduces communication
compared to the existing 1D algorithm based on distributed hash tables for commonly used
concurrences in the range of 100-10000 processes. This translates to a speedup of 1.2-1.9×
in our experiments. Furthermore, for C. elegans, ELBA is 1.6×, 3.26×, and 56× faster than
minimap2 at high concurrences while the speedup of ELBA over minimap2 is 9.56×, 13.7×,
and 20.6×, at P = {128, 200, 338} for H. sapiens.
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Chapter 4

Parallel Algorithms for Transitive
Reduction

In this chapter we describe the foundation of transitive reduction from the point of view
of a graph, and then describe our parallel algorithms for transitive reduction using sparse
matrices and semiring abstraction.

4.1 Overview and Foundation

In Chapter 3 we gave an overview of the Overlap step of the OLC assembly paradigm and
described our approach to the computational challenge. In this chapter, we turn to the second
step of the OLC paradigm: Layout. The goal of this step is to simplify the overlap graph (or
for us, the overlap matrix) into a string graph (or string matrix) so that we remove redundant
information due to redundant sequencing and inherent genome repetitiveness. A string graph
has the desirable property of combining genomic repetitions into a single unit [148]. This
transformation facilitates the clustering of the graph and hence the generation of the contig
step, which will be the subject of the next chapter. A contig is a set of overlapping sequences
that together form a consensus region of DNA, where a consensus sequence (or canonical
sequence) is the calculated order of the most frequent nucleotides found at each position in a
sequence alignment. The formal name for this simplification process is transitive reduction.

In graph theory, a transitive reduction of a directed graph D introduced in 1972 by Aho,
Garey, and Ullman [1] is another directed graph with the same vertices and as few edges as
possible, such that for all pairs of vertices v, w there exists a (directed) path from v to w in
D if and only if such a path exists in the reduction. The transitive reduction can be defined
for an abstract binary relation on a set by interpreting the pairs of the relation as arcs in a
directed graph.

Eugene Myers [119] first presented an algorithm for transitive reduction in linear expected
time in the context of de novo genome assembly in 2005, but it is sequential in nature. Myers’
transitive reduction algorithm consists of iterating over each node v in the source graph and
examining nodes that are up to two edges away from v to identify all transitive edges that
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exit or enter v [119]. These edges are then marked for removal, and they are removed after
all nodes have been considered. Myers’ algorithm for transitive reduction is implemented in
popular state-of-the-art software for de novo genome assembly, such as miniasm [103].

ELBA proposes a new approach that relies on sparse linear algebra to transitively reduce
the overlap graph into a string graph [85]. Unlike Myers’ algorithm, our transitive reduction
algorithm is highly parallel, though not necessarily in linear time. Both the overlap graph
and the string graph are represented as sparse matrices, and the entire transitive reduction
algorithm is expressed as operations on sparse matrices. Our contributions also include the
design of custom semirings, which are essential for the correctness of the algorithm.

4.2 Proposed Algorithm

Our distributed memory transitive reduction algorithm takes the overlap matrix R as input
and computes a transitive reduced version ofR, which we denote as S (line 9 in Algorithm 6).
Recall that each Rij that is not zero stores the number of common k-mers and their positions
in the sequence pair (si, sj). The transitive reduction algorithm requires two extra pieces of
information for each such pair: the length of the overlap suffix and the overlap orientation.
Both can be derived in-place from the alignment coordinates stored in Rij.

Our transitive reduction algorithm is shown in Algorithm 7. If the overlapper returns
directed graphs in which an edge (j, i) is missing even though an edge (i, j) is present, the
input matrix R must first be symmetrized. The overlap matrix R must be structurally
symmetric, i.e., if Rij is nonzero, Rji must also be nonzero, but the nonzero values stored
in Rij and Rji may be different. The structural symmetry is required because the graph is
bidirectional and the edges have four possible orientations (since the DNA consists of two
opposite and complementary sequences). The algorithm begins by determining the two-hop
neighbors of each vertex in the overlap graph. This first step is the most computationally
intensive phase of the transitive reduction and is accomplished by multiplying the overlap
matrixR by itself in the first iteration and by its power in subsequent ones: N = P⋅R, where
N is the two-hop neighbor matrix. In de novo assembly, if there are multiple alternative
paths in the graph, we keep the one that gives us greater genomic coverage in terms of
nucleotides. Thus, if there are multiple alternatives, the path with the shorter suffix is chosen,
since a shorter suffix indicates longer overlap between two sequences. This is achieved by
using a custom MinPlus semiring during the SpGEMM N = P ⋅R. Algorithm 8 illustrates
the MinPlus semiring we use, where we overload the addition operation with a minimum
operation and the multiplication operation with a summation.

Given the bidirectionality of our graph, we ensure that the orientation of the edges in
play conforms to the transitivity rules listed in Chapter 2. This is ensured by checking if
the edges follow the transitivity rules during multiplication (line 5 in Algorithm 8). If not,
we mark the edge as not transitive. In particular, we check in MinPlus semiring whether
the two heads adjacent to the intermediate node (i.e., the middle node of a path with three
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Algorithm 7 Parallel transitive reduction on R.

1: procedure TransitiveReduction(R)

2: if R ≠ R
T
then

3: R ← R +R
T ▷ R must be a structurally symmetric matrix

4: end if
5: P ← R ▷ P is a copy of R
6: T ← Zero(R) ▷ T is a boolean matrix initialized to 0
7: F ← Apply(R, f)▷ F is a copy of R with a constant f added to each nonzero Ri,j

8: do
9: prev ← T.nnz
10: N ← P ⋅R ▷ Find edges two-hop away
11: P ← N
12: B ← F ≥ N ▷ B stores transitive edges for this iteration

13: if B ≠ B
T
then

14: B ← B +B
T ▷ B must be a structurally symmetric matrix

15: end if
16: T ← T +B ▷ T accumulates the transitive edges
17: nnz ← T.nnz
18: while nnz ≠ prev
19: S ← R ◦ ¬T ▷ Remove transitive edges
20: return S
21: end procedure

nodes) have opposite directions. For example, a forward overlap and an inner overlap are
fine, while a forward overlap and an outer overlap mark the two-hop edge as non-transitive.

Let us assume that this is our overlap matrix R, where zeros are actually zeros in the
matrix (i.e., nonexistent entries) and nonzeros represent the overlap suffix. To keep the
running example simple, we also assume that the edges exist only in the forward direction
and therefore we can consider only the lower triangular part of R:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
30 0 0 0
80 30 0 0
0 80 30 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The operation in lines 2—4 of Algorithm 7 ensures that R is structurally symmetric by

using a custom semiring that ensures that a missing zero is not only introduced, but also
has the correct value. In line 5, we create a copy of R, which we call a power matrix P,
since P is replaced at each iteration by the neighbor matrix N from SpGEMM. In line 6,
we create a Boolean copy of R, which we refer to as the transitive matrix T, since we store
in this matrix the edges that would have to be removed because they are redundant. Any
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Algorithm 8 Custom MinPlus semiring used in N ← R
2
.

1: struct MinPlusSR
2: Id( ) return ∞
3: Add(a, b) return Min(a, b) ▷ Find the shortest path
4: Multiply(a, b)
5: if IsDirOK( ) then return a + b
6: else return Id( )
7: end if
8: end struct

nonzero in T is initialized to false or 0. In line 7 of Algorithm 7, we create the fuzz matrix
F, in which the overlap length of each nonzero is increased by a constant f to account for
sequencing mistakes. In de novo assembly, the overlap candidates are approximate matches,
since sequencing mistakes can lead to a shift in endpoint positions. To make our algorithm
robust to sequencing errors, we increase the value of the longest overlap per row (i.e., per
read) by one scalar f . In this example, let us assume f = 10:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
40 0 0 0
90 40 0 0
0 90 40 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In R we can go from the first to the second read, from the second to the third, and from

the third to the fourth with overlap suffixes of length 30. But we can also go from the first
to the third with a suffix of length 80, and similarly from the second to the fourth. Our goal
is to obtain the path with the shortest edges, so we want to remove the two edges of length
80 from the original overlap matrix R (line 10, Algorithm 7).

N = P ⋅R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
60 0 0 0
30 60 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In N we determine the shortest path from a given read to its two hop neighbors. The

shortest path from the first to the third read has length 60, since it passes over two edges of
length 30. The path from the first to the third read in a single hop would cost 80, and we
want to minimize, not maximize, this distance. The first iteration corresponds to squaring
the overlap matrix, because mP = R. Then, in line 11, P takes the values of N, so in the
second iteration R is multiplied by its square N = R ⋅ R to discover three-hop neighbors,
and similarly in subsequent iterations. In lines 13–15, we ensure that structural symmetry is
maintained with a procedure similar to the one used to makeR symmetrical at the beginning.



CHAPTER 4. PARALLEL ALGORITHMS FOR TRANSITIVE REDUCTION 55

The next step is to identify the transitive edges inN (line 12, Algorithm 7). Our algorithm
performs an element-wise operation between F and N to identify such edges. If Fij is greater
than or equal to Nij, the corresponding nonzero Bij in the output matrix is set to true or 1.
In N, we store the shortest path such that all nonzeros with Fij ≥ Nij are transitive edges
because Fij is an overlap suffix longer than Nij.

In our running example the output matrix is B:

B = F ≥ N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The element-wise operation described is performed only for entries that are nonzero in

both F andN. Recall that in computing N = P⋅R we checked whether a path is a valid path
or not. In this element-wise operation, we also make sure that the orientation of the edges
at the intersection of N and F follows the last two transitivity rules. In the element-wise
operation, we check that the two heads adjacent to the departure node (i.e., the start node
of a path with three nodes) and the two heads adjacent to the destination node (i.e., the
end node of a path with three nodes) have the same orientation.

In line 16, we accumulate the edges marked as transitive in this iteration (and stored
in B) into T, which stores the entire set of transitive edges found during the computation.
If the number of nonzeros in T does not change between one iteration and the next, we
exit the loop. The final operation of our transitive reduction algorithm is to prune the
identified transitive edges from R (line 19, Algorithm 7). This is achieved by an element-
wise multiplication of R and the logical negation of B, ¬B. Any nonzero in Bij becomes a
zero in ¬Bij, so the nonzeros of R corresponding to transitive edges (i.e., zeros) in ¬B are
pruned. Again, only those entries that are nonzero in both R and ¬B are considered. This
is equivalent to a set difference operator (nonzeros(R) \ nonzeros(B)) in linear algebra.

In our example, R becomes:

S = R ◦ ¬B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
30 0 0 0
0 30 0 0
0 0 30 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this example, all transitive edges are removed after only one iteration of the algorithm,

giving us S. In practice, we need several rounds to remove all transitive edges, since we need
to consider neighbors that are three, four, etc. hops away. Thus, our algorithm iterates over
R until the number of transitive nonzeros in T remains the same (line 18, Algorithm 7).
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Table 4.1: Communication costs of the transitive reduction phase of ELBA.

Task Bandwidth Latency

Transitive Reduction rn/
√
P t

√
P

Cori Haswell Breakdown C. elegans

Figure 4.1: ELBA runtime breakdown on Cori Haswell (C. elegans).

4.3 Communication Analysis

In this section we analyze the communication cost for the transitive reduction of ELBA. The
SpGEMM dominates the runtime of the transitive reduction algorithm. The communication
cost for multiplying R by its powers follows from the previous analysis and is W2D = rn/

√
P ,

where r ≤ c is the sparsity of the overlap matrix R
n×n

after performing pairwise alignment,
which often leads to discarding nonzeros, and Y2D =

√
P . Our transitive reduction also

contains some element-wise sparse routines, but these are executed in place, so they do not
contribute to communication time. The transitive reduction loop is repeated until conver-
gence, but the number of iterations is often a small constant (denoted t in Table 4.1) and the
geometrically decreasing density after each iteration makes the total communication volume
asymptotically equal to that of the first iteration. For a summary of the variables, please
see Table 3.2.
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Summit Breakdown C. elegans

Figure 4.2: ELBA runtime breakdown on Summit CPU (C. elegans).

4.4 Experimental Setup

In terms of hardware, the experimental setup used to evaluate the performance of the tran-
sitive reduction phase is the same as that used to evaluate the overlap detection phase in
Table 3.5 in Chapter 3. Also, the genomes for this evaluation are the same as those used in
Chapter 3.

To evaluate the performance of our transitive reduction, we compare our transitive reduc-
tion algorithm with SORA. SORA computes only transitive reduction, so we first generate
the overlap graph (or matrix) R with ELBA and then use it as input to the transitive re-
duction algorithm of ELBA and SORA. This is an overlap graph consisting of 5.8 million
edges and 4.4 million vertices for the H. sapiens dataset and 4.2 million edges and 0.4 million
vertices for C. elegans. In this case, we only compare the execution time of the transitive
reduction by removing all Apache Spark startup and shutdown times and I/O time. Summit
CPU does not provide support for Apache Spark, so we only perform this comparison on
Cori Haswell.

On Cori, we used gcc-8.3.0 and the O3 flag to compile C/C++ codes, while on Summit
we used gcc-8.1.1. On both Cori and Summit, we used the default MPI implementa-
tion. SORA used jdk/1.8.0 202 and spark/2.3.0. In the next section, we report the
average runtime over 10 runs for each experiment, except for the H. sapiens dataset at low
concurrency, where we report the average over three runs.
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Cori Haswell Breakdown H. sapiens

Figure 4.3: ELBA runtime breakdown on Cori Haswell (H. sapiens).

Table 4.2: Comparison of transitive reduction (in seconds) between ELBA and SORA [133]
on Cori Haswell.

Dataset Nodes SORA ELBA Speed-Up

C. elegans
32 34.6 1.9 18.2×
72 34.3 1.3 26.4×
128 34.9 1.2 29.0×

H. sapiens
128 23.4 1.9 12.4 ×
200 24.3 2.3 10.5 ×
338 25.3 1.9 13.3 ×

4.5 Results

Figures 4.1 and 4.2 illustrate the performance and scaling of our transitive reduction algo-
rithm as the top layer in each bar for C. elegans and H. sapiens on both machines. Despite
a parallel efficiency of 38% on both machines, our transitive reduction shows a significant
speedup compared to a competing distributed memory implementation. Figures 4.3–4.4 tell
a similar story for H. sapiens.

To evaluate the competitiveness of our implementation with respect to the state of the
art in distributed memoery, we compare our transitive reduction algorithm with the tran-
sitive reduction module of SORA [133], a distributed memory implementation of transitive
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Summit Breakdown H. sapiens

Figure 4.4: ELBA runtime breakdown on Summit CPU (H. sapiens).

reduction from overlap graph to string graph based on Apache Spark. Our transitive reduc-
tion is currently integrated into our pipeline, so in fairness we do not consider the startup,
shutdown, and I/O time of SORA. The input of SORA is the overlap matrix R of ELBA,
so both work on the same input. Our transitive reduction algorithm has a speedup of up to
29× for C. elegans and up to 13.3× for H. sapiens (Table 4.2).

4.6 Summary

Once we have identified overlap candidates in the phase of the de novo pipeline for genome
assembly, our goal is to simplify the overlap graph into a string graph, removing any re-
dundancy in edges and vertices. This is achieved in ELBA by introducing a novel scalable
transitive reduction algorithm implemented using sparse linear algebra.

ELBA is based on linear algebraic operations over semirings using 2D distributed sparse
matrices. The use of sparse matrices for both overlap detection (see Chapter 3) and transitive
reduction reduces the need for various data structures normally used in genome assembly.
ELBA’s approach to transitive reduction resulted in a fast and efficient parallel algorithm
that is up to 29× faster than a competing distributed memory implementation in Apache
Spark for C. elegans and up to 13.3× faster for H. sapiens on a supercomputer.
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Chapter 5

Parallel Algorithms for Contig
Generation

In this chapter we describe the foundation of contig generation from the point of view of a
graph, and then describe our parallel algorithms for contig generation using sparse matrices
and semiring abstraction. First, we identify the branch vertices and mask them. Then, we
redistribute the sequences among the processes to perform assembly locally on each process
for each contig.

5.1 Overview and Foundation

In Chapter 3 we gave an overview of the Overlap step of the OLC assembly paradigm and
described our approach to the computational challenge, while in Chapter 4 we described the
second step of the OLC paradigm and our transitive reduction algorithm that uses sparse
matrices. In this chapter, we address the final stage of the assembly pipeline, i.e., Consensus,
and describe our sparse linear algebra-centered contig generation algorithm. The goal of this
last phase is to extract linear sequences of vertices from the string graph and connect them
to create a contig set. A contig is a continuous sequence resulting from the assembly of
small DNA sequences generated by sequencing strategies, in our case long read sequencing
technologies, forming a map representing a region of a chromosome.

A common approach to contig generation takes the string graph as input, branching nodes
in this graph are masked, and the set of linear unbranched paths in the graph is extracted
to form the contig set. Common strategies are inspired by the Bogart algorithm [100], which
produces an assembly graph using a variant of the best-overlap graph strategy of Miller et
al [115]. Here, the best overlap is the longest overlap to a given read end excluding contained
sequences (i.e., when all bases in one sequence are aligned to another sequence). The Bogart
algorithm removes overlapping sequences from the overlap graph to include only those that
are within some tolerance of the global median error rate, and recalculates the longest
overlapping sequences using only that subset (i.e., a sparse overlap graph). Bogart generates
the initial contig set from the maximum non-branching paths in this graph. Alternatively,
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Algorithm 9 Parallel matrix-based computation in ELBA.

1: struct ELBA
2: sequences ← FastaReader()
3: k-mers ← KmerCounter()
4: A ← GenerateA(sequences, k-mers)
5: A

T
← Transpose(A)

6: C ← AA
T ▷ Candidate overlap matrix

7: C ← Apply(C,Alignment()) ▷ Run alignment
8: R ← Prune(C,AlignmentScoreLessThan(t))
9: R ← Prune(R, IsContainedRead())
10: S ← TransitiveReduction(R)
11: cset ← ContigGeneration(S, sequences) ▷ Algorithm 10
12: return cset
13: end struct

Algorithm 10 Parallel contig generation on S.

1: struct ContigGeneration(S, sequences)
2: L ← BranchRemoval(S)
3: v ← ConnectedComponent(L)
4: p ← GreedyPartitioning(v, P )
5: P ← InducedSubgraph(L,p)
6: cset ← LocalAssembly(P, sequences)
7: return cset
8: end struct

some approaches generate a primary assembly based on the topological structures of the
graph and the phase relationship between the different haplotypes using a bubble popping
procedure [103] and generate a best overlap graph to handle the unresolved substructures.

ELBA introduces a novel distributed-memory algorithm that generates the contig set
starting from a string graph representation of the genome and using a sparse matrix ab-
straction. ELBA first removes the branch vertices and identifies the contig set, whose asso-
ciated sequences are then redistributed to allow local assemblies on each processor. Unlike
MetaHipMer [69, 93], which uses fine-grained communication at nearly every step of contig
construction, ELBA localizes the graph traversal problem so that the sequences that make
up a contig are stored locally on each rank, avoiding communication.

This contig generation step can be followed by further polishing phases to merge and
correct the contig set and to separate haplotypes.
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5.2 Proposed Algorithm

ELBA uses a highly parallelizable strategy to generate the contig set in a distributed mem-
ory environment. This means that each processor may not have access to the entire set
of sequences it needs for contig generation because they are distributed among processes.
Read sequences must therefore be communicated across the processor grid before contigs are
generated via depth-first search.

To efficiently communicate sequences where they are needed, ELBA uses a parallel algo-
rithm, implemented as a sparse matrix-based computation over the string matrix, to extract
information about which sequences belong to the same contig (i.e., a linear component) and
therefore need to be sent to the same processor. A linear component of a graph is the
maximal subgraph where each vertex is connected to two adjacent vertices, except for two
vertices that mark the extremities of the linear chain, which are connected to one vertex.
Once the membership of each sequence is known (i.e., to which contig it belongs), ELBA
uses this information to achieve load balancing that ensures that each processor has similar
amount of work during the local assembly process.

This is achieved by first estimating the contig sizes, i.e., the number of reads belonging to
a particular contig, in parallel and then assigning approximately equal collections of contig
sets to each process. Then, the sequences are redistributed among the processes using a
newly implemented function that is also based on sparse matrix computation. This function
generates local matrices from a distributed matrix (in our case, the string matrix) on each
process according to the load-balanced assignment. ELBA then assembles the contigs whose
sequence connectivity is stored in the local matrix in parallel on each processor without
requiring any further communication.

Algorithm 9 summarizes the entire computation, including overlap detection and transi-
tive reduction—lines 11-12 represent the main contribution of this work, better represented
in Algorithm 10: (a) how the contig set is determined (lines 2-3), (b) how the workload is
distributed among the processes (lines 4-5), and (c) how the local assembly is performed
(line 6) and the contig set is output.

Contig Set Determination

The first step in our contig generation algorithm is to determine which sequences belong to
which contig based on the connectivity of the string graph.

Let us define a linear component of the graph as the maximal subgraph L ⊆ R = (V,E)
where (a) each vertex has either degree one or two and (b) the subgraph is connected. In
a linear component there are exactly two vertices which can have degree one due to the
connectedness rule. These vertices are the endpoint vertices.

Then, we define the contig set of R as the set of all linear chains which are not themselves
subgraphs of another linear chain in R. Thus, the contig set consists of several independent
collections of nodes in the bidirected string graph, where each collection is a linear sequence
of unique overlapping sequences. The determination of the contig set is done in two stages.
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First we have to identify branching vertices that are vertices whose degree is ≥ 3. These
vertices would make it impossible to determine a unique linear chain. Therefore, our goal is
to mask out such branching vertices to obtain only linear sequences of vertices. For example,
consider a string graph consisting of (a) v1 → v2 → v3, (b) v3 → v4 → v5 → v6, and (c)
v3 → v7 → v8, the vertex v3 is a branching vertex since its degree is equal to three, and
it would not allow us to extract a linear chain, since at this point in the computation we
cannot know whether the correct linear path is (i) v1 → v2 → v3 → v4 → v5 → v6 or (ii)
v1 → v2 → v3 → v7 → v8. Thus, we mask out v3 to obtain three linear sequences of vertices:
(i) v1 → v2, (ii) v4 → v5 → v6, and (iii) v7 → v8.

To identify branching vertices, we perform a summation reduction over the row dimension
of the string matrix (i.e., an adjacency matrix) and return a distributed vector d whose values
represent the degree of the corresponding row sequence (i.e., the index of the vector). Then
we perform an element-wise selection operation on the degree vector d to extract the indices
(sequences) whose value is greater than or equal to 3. The result is a distributed vector
b whose values are the indices of the branching vertices. The branch vector b is used to
remove the corresponding rows and columns from the string matrix S and create a linear
chain version of S that we name L (line 2, Algorithm 10). From a graph-theoretic point
of view, this operation removes (i.e., sets to zero) the edges adjacent to branching vertices.
The indexing of the matrix does not change, but its nonzeros do. For example, if row 10
is a branching vertex, the entire row—and column, since S is symmetric—is cleared, but
row 10 is still a row in the matrix. This way we can avoid re-indexing sequences during the
computation. The result is an even sparser string graph with nodes of degree 0, 1 or 2. For
each contig, there are exactly two vertices of degree 1, which we call root nodes (or root
vertices) and use as starting points for depth-first search and local assembly of the contig in
the final stage of contig generation.

Once the string matrix is in its unbranched form L, we want to decompose it into its
linear components to produce manageable independent subproblems that we can work on in
parallel (i.e., local assemblies). Therefore, we use the sparse matrix based connected com-
ponents (LACC) algorithm presented by Azad et al. [8] to determine the contig set. LACC
is a distributed-memory implementation of the Awerbuch-Shiloach algorithm [7] using the
CombBLAS library. LACC takes advantage of the sparsity of the vector to avoid processing
inactive vertices. It takes as input the unbranched sparse matrix L and returns a distributed
vector v (line 3, Algorithm 10), which is a mapping from global sequence indices (i.e., rows
and columns of S) to contig indices Ci. In the previous graph example, LACC would return
v1, v2 ∈ C1, v4, v5, v6 ∈ C2, and v7, v8 ∈ C3.

Once we have determined which sequences belong to which contig, we estimate the size
of each contig by counting how many sequences belong to it. The exact size depends on the
lengths of the sequences (minus their overlapping areas ), but for simplicity we estimate it
using only the number of sequences (i.e., vertices), since virtually every read and overlap
could have a different length. However, since v is a distributed vector, a processor may
not know the full set of sequences belonging to the contig it owns. Therefore, we need to
communicate this information across the processor grid. Each processor computes a local
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size estimate based on the vertices it owns locally for each local contig. An MPI Reduce-
scatter collective operation is used to determine the global size of each contig and redistribute
the sizes across the processor grid to create a distributed mapping of contig indices to their
associated global sizes.

Contig Load Balancing and Communication

Previously, we determined which sequences belong to which contig and estimated the size of
each contig based on the number of sequences associated with it. Using the contig size as
an optimization parameter, we want to distribute the workload as evenly as possible across
the processor grid.

Load Balancing Algorithm Given a vector of contig sizes of length n and P processes,
we want to find the near-optimal contig-to-processor assignment such that the amount of
work estimated by the contig size that each processor has to do is similar. Our objective
and problem definition is similar to the multiway number partitioning optimization problem
first introduced by Ronald Graham in the context of the identical-machines scheduling prob-
lem [79]. The classical application is to schedule a set of m jobs with different runtimes on k
identical machines in such a way that the makespan, i.e., the elapsed time until the schedule
is completed, is minimized.

In the context of contig generation, this means that given a multiset of S instances (in
our case, the contig sizes), we want to partition this multiset into P subsets (the number
of processes in our processor grid and must be a positive integer) such that the sums of the
subsets (i.e., the sums of the contig sizes) are as similar as possible. The partitioning results
in a balanced distribution of the workload for the next and final phase of the computation.

The multiway number partitioning problem is NP-hard. To overcome this limitation,
in ELBA we use an approximation algorithm known in the scheduling literature as the
Longest Processing Time (LPT) algorithm, whose goal is to minimize the largest subset,
which belongs to a class of algorithms known as greedy number partitioning. The algorithm
loops over the contig sizes and inserts each number into the set whose current sum of sizes
is smallest. The result is a partitioning that minimizes the time processes spend waiting for
the most heavily loaded process to finish assembling its contig subset. If the contig sizes
were not sorted, then the runtime would be O(n) and the approximation ratio would be at
most 2 − 1/P . It is possible to improve the approximation ratio to (4P − 1)/3P by sorting
the input vector of contig sizes [80].

The improvement in the approximation using LPT is accompanied by an increase in the
runtime to O(nlogn) due to sorting. However, the number of contigs n is smaller than the
number of sequences by at least an order of magnitude, and the increase in runtime does not
create a computational bottleneck. For the same reason, we collect the global information
about contig lengths in a single processor and run the partitioning algorithm on it to avoid the
unnecessary communication of small messages. The partitioning algorithm returns the vector
p specifying the assignment of contigs to processes (line 4, Algorithm 10)—p is broadcast
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to the entire processor grid so that each local process can determine where to send its local
sequences and associated information.

As mentioned earlier, the problem size at this stage of the computation is often smaller
than the problem size at the initial stage (i.e., overlap detection), so for some species it is
possible that n < P . In this case, some of the processes are idle for the final phase of the
computation. For the two species we use in the experimental evaluation in Section 5.3, n is
equal to 6411 and 4287 and P varies from 18 to 128. In the next section, we explain how
contigs are redistributed among processes based on their size.

Induced Subgraph Algorithm Once we have determined where a contig and its se-
quences should be stored, we must perform the actual communication step to send the linear
component information and associated sequences to the owner processor.

Communicating both the linear component information and the sequences involves the
same high-level procedure of reassigning vertices representing a linear chain to their owner
processor. However, the underlying data structures are fundamentally different, namely that
the overlap graph is stored as a sparse matrix while the sequences are stored as distributed
char arrays, and therefore require a different implementation.

Let us first focus on the communication of linear component information, i.e. the graph-
like structure that stores connectivity information. We have as input the sequence-by-
sequence matrix L, the resulting matrix after the transitive reduction step and from which
we have cut out vertices of degree ≥ 3. L is distributed over P processes, which are logically
organized in a

√
P ×

√
P grid. Let n be the number of vertices in L, where L = (V,E) in

the graph interpretation. From the load balancing algorithm, we have a distributed vector
v ∶ [n] → [P ] such that v[u] = Pi means that vertex u should belong to processor Pi.

The goal is to create an induced subgraph—or submatrix—L
(Pi) locally on each processor

Pi, i.e., a graph formed by a subset of the vertices of the original graph L and the edges

connecting the vertices in this subset. Formally, we define an induced subgraph L
(Pi) such

that L
(Pi)

= (V (Pi), E
(Pi)) with V

(Pi)
= {v ∈ V ∶ Pi = v[v]} and E

(Pi)
= {(u, v) ∈ E ∶ u, v ∈

V
(Pi)}.
The vector v is also distributed across the

√
P ×

√
P processor grid and is therefore

divided into P subvectors, each of size ≈ n/P ; note that we write v(i,j) to denote the
subvector on process P (i, j). Each process is only aware of which vertices it stores to send
to other processes. Therefore, we need a communication step to make each process aware
of which vertices to receive. Given the way v is distributed, we can avoid an MPI Allgather
operation spanning the entire grid and instead use the square process grid to communicate
v in a scalable way. That is, we perform an allgather operation over the Row dimension
followed by point-to-point communication to access the information stored on the Column
dimension.

More precisely, let (u, v) ∈ Li,j be any nonzero value, where Li,j is the local submatrix
stored on processor P (i, j). The goal is to determine v[u] and v[v]. Given we know (u, v)
is stored in the submatrix Li,j, we know that v[u] is stored in the row P (i, ∶). Thus, we
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v[1]
P(i, :)

P(j, :)

i = 1

j = 3
v[12]

MPI Allgather on Row dimension MPI point-to-point communication

P(1, 3)

P(3, 1) P(3, 4)

P(1, 3)

P(3, 4)

P(1, 1)

Figure 5.1: An example of how the induced subgraph algorithm communicates vertices across
the processor grid.

can access v[u] by computing an MPI Allgather operation over the processor row P (i, ∶)
and, more generally, over the Row dimension of S. To determine v[v], we first note that
if we are a diagonal processor, i.e. i = j, we already have access to v[v] via the previous
MPI Allgather operation. If i ≠ j, then we know that v[v] is stored on the transposed
processor P (j, i) because we performed the allgather operation over the Row dimension,
i.e. P (j, ∶). Therefore, we perform a point-to-point communication between P (i, j) and
P (j, i) to exchange the subvector vi,∗ and the subvector vj,∗. This gives the processor
P (i, j) access to (u, v). It follows that each processor P (i, j) now has access to every entry
in v corresponding to a nonzero in Li,j. A similar procedure is previously implemented for
distributed-memory breadth-first search [30].

Figure 5.1 shows an example with 1-based indexing, where u = 1 (red square in the
leftmost matrix) is stored on process P (1, 1) and v = 12 (green square) is stored on process
P (3, 4). If we assume that P (1, 3) requires access to v[1] and v[12], an MPI Allgather
operation on the P (1, ∶) row provides access to v[1], while the same operation on the
P (3, ∶) row provides access to v[12] on the transposed processor P (3, 1). Point-to-point
communication between P (1, 3) and P (3, 1) then enables P (1, 3) to access v[12].

Once we have access to the processor assignment stored in v, we communicate edges to
their target processor and build the local induced subgraph. To do this, we loop through
each nonzero (u, v) ∈ Li,j stored on processor P (i, j), and for each (u, v) where v[u] and
v[v] are destined for the same destination processor, we construct a triple (u, v,S(u, v)) and
place it on an outgoing buffer to the destination processor. A custom all-to-all ensures the

required re-distribution of non-zeros. Once each processor has access to its edge set E
(Pi),
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the local adjacency matrix of the induced subgraph is constructed; while we re-index the
local matrix to fit its new, smaller size, we also keep a map of the original global vertex
indices, since it is needed in the final phase.

Read Sequence Communication The communication of read sequences is implemented
separately, since the read sequences are not stored as nonzeros in the sparse matrix L, but
in a distributed auxiliary data structure. Furthermore, a sequence is represented and stored
as a char array. A large dataset could exceed the MPI count index limit of 2

31 − 1 because
the implementation is a 4-byte integer. Therefore, we need to treat sequence communication
separately and consider this potential limitation.

Read sequences that need to be sent to a processor other than the one they are currently
on are packed into a char buffer and communicated as a sequence of non-blocking point-to-
point messages in an all-to-all fashion. To deal with the MPI 2

31 − 1 count limit, we check
the length of each message to be communicated and its receive buffer. If it goes beyond the
limit, we communicate the sequences using a user-defined contiguous MPI data type whose
size is equal to the buffer length. This way we can send and receive each character buffer in
a single call.

Local Contig Assembly

Let Li,j be the local graph (or matrix), composed of one or more linear components, stored
on the processor Pi,j obtained via the induced subgraph algorithm. There are P such graphs,
one for each processor, but we can assume without loss of generality that we are dealing only
with L(Pi,j) or L for short.

Suppose L has n vertices and m edges. Each vertex of L is a read sequence l assigned
by the partitioning algorithm to Pi,j. Then, we define Σ = {A,C, T,G} as the alphabet of
DNA nucleotides. Consequently, we represent the n sequences of L by l0, l1, . . . , ln−1 ∈ Σ

∗
,

which means that each sequence is a combination of {A,C, T,G}. Given any read sequence
l, we express the nucleotides of that sequence by (l[0], l[1], . . . , l[∣l∣−1]), where ∣l∣ denotes
the length of the sequence. If l[i] is a base or nucleotide in Σ, we denote the Watson-Crick
complement base of l[i] by l[i]c. This allows us to generalize the notion of sequence to
include its reverse complement, as defined in Chapter ??: if i < j, then we write l[i ∶ j]
for the substring (l[i], l[i + 1], . . . l[j]) and l[j ∶ i] for its reverse complement substring
(l[j]c, [j − 1]c, . . . , l[i]c).

L can also be viewed from the point of view of its matrix representation, such that
L is a sparse (n × n) matrix with m nonzeros. In the earlier stages of the pipeline, we
use the doubly compressed sparse column (DCSC) format [25] to store our matrices for
scalability. However, for the local traversal algorithm described in this section, we converted
these matrices to compressed sparse column (CSC) format for simplicity and faster vertex
(column) indexing. The storage space required to store the local matrices is an order of
magnitude smaller than before and hence CSC does not introduce memory scalability issues
despite hypersparsity. This conversion takes linear time in the number of local vertices, as
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Figure 5.2: An example of how the local assembly algorithm concatenates sequences.

only column pointers needs to be uncompressed and row indices array stays intact, and has
negligible effect on overall runtime.

As a sparse matrix, L(u, v) = e is a nonzero provided that the source sequence lu and
the destination sequence lv overlap. In this nonzero e we store two values computed from
the original string graph S, which is all we need for assembly: preu(e) and postv(e). To
define preu(e) and postv(e), we use inclusive indexing, resulting in the following asymmetric
definition. The first value preu(e) stores the index i of lu, which is the last nucleotide in lu
that does not overlap with lv, i.e., the nucleotide on lu that precedes the overlap with lv. The
second value postv(e) stores the index j of lv, which is the first nucleotide in lv that overlaps
with lu, i.e., the index of the beginning of the overlap between lu and lv. The definition is
asymmetric because lu[i] and lv[j] do not store the same nucleotide. This asymmetry is
necessary to compute the non-overlapping prefixes of each read in a contig, which, when
joined together, produce a contig sequence.

For example, if lu = l0 = AGAACT and lv = l1 = AACTGAAG as shown in Figure 5.2
and we consider 0-based indexing, then pre(e) = 1 and post(e) = 0 because lu[2 ∶ 5] and
lv[0 ∶ 3] overlap. If instead we consider lu = l1 = AACTGAAG and lv = l2 = TGAAGAA,
then pre(e) = 4 and post(e) = 2 because lu[5 ∶ 7] and lv[2 ∶ 4] overlap. It is also possible
that lu = l0 would overlap with l

c
v = l

c
1 = CTTCAGTT (the reverse complement of l1). In

this case, the same procedure would apply to compute pre(e) = 1 and post(e) = 4, where
the overlapping subsequences would be lu[2 ∶ 5] and l

c
v[7 ∶ 4], since the lu subsequence

AACT would overlap with the l
c
v reserve complement subsequence AGTT .

Theoretically, the beginning of the overlapping substring of lv should always be 0 or
∣lv∣ − 1, depending on the orientation. Yet, we still store post(e) because the diBELLA
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2D [85] pipeline, which we extend in this work, uses an x-drop seed-and-extend approach
to align overlapping sequences. With x-drop, the alignment between two sequences can
potentially end early (i.e., before extending to the end of a read), leaving a short overhang
in the alignment coordinates at the end of the sequence. If lu = l1 = AACTGAAG and
lv = l2 = TGAAGAA are defined as in Figure 5.2, and the alignment told us that lu[5 ∶ 7]
and lv[2 ∶ 4] were the overlapping region, it would be incorrect to match pre(e) = 4 with
post(e) = 0, since we need post(e) = 2 to correctly concatenate the subsequences that form
a contig. If we join the three partial sequences marked in red on l0, l1, l2 in Figure 5.2, as
explained below, we get a contig.

Because the local assembly operates directly on the CSC format, we describe it briefly.
L.JC is the column pointer array of length n + 1, L.IR is the row index array of length m,
and L.VAL is the array of tuples (pre(e),post(e)), also of length m.

The local assembly algorithm is a variant of depth-first search, simplified by the fact that
the maximum vertex degree of L is 2 by construction. For this reason, there is always only one
vertex in the frontier, and the search is thus a linear walk. Each local matrix Li,j is assigned a
contig set by multiway number partitioning, which is the set of connected components of Li,j.
Each vertex of L has degree 1 or 2. Moreover, we define contigs as linear chains of at least
two sequences, where q is the number of vertices in a given connected component. It follows
that any connected component consisting of q ≥ 2 vertices must have exactly 2 vertices of
degree 1 (i.e., root vertices) and q − 2 vertices of degree 2 (i.e., intermediate vertices). In
short, the idea is to scan for root vertices in L and, if we find them, to take a walk from
that root vertex (via as many intermediate vertices as necessary) until another root vertex is
found. As we proceed, we perform the concatenation of subsequences described below. This
search for the root vertex is performed over all n vertices. Therefore, we must mark each
final root vertex (found by the linear traversal) as visited to avoid accidentally composing
the same contig twice.

More precisely, we loop over the n sequence vertices in each subgraph Li,j and compute
Li,j.JC[i+1]−Li,j.JC[i] from the column pointer array representing the degree of vertex i.
Each time we find a vertex of degree 1, i.e., a root vertex, that has not been visited before,
we perform a traversal starting from this that root vertex r. Given a generic vertex in the
chain c (which can be either a root vertex or an intermediate vertex), we find the successor
vertex by examining the vertices in the slice Li,j.IR[Li,j.JC[c] ∶ Li,j.JC[c + 1]] of the row
index array where the edges are stored. Each vertex c has at most two successor vertices,
and we select the unvisited one. This process continues until we reach the vertex r

′
for

which Li,j.JC[r′ + 1] − Li,j.JC[r′] = 1, i.e., the second root vertex of a contig. The result

is a chain of q vertices r, c1, . . . , cq−2, r
′
for each contig stored in the submatrix Li,j. As we

proceed, we collect the edges between them e0, e1, . . . , eq−2. Because the values for pre(ei)
and post(ei) have already been computed and stored in each edge ei, we know exactly which
subsequences of which read sequence to look up and join to form the contig. Namely, lr[α ∶
pre(e0)]⊕lc1[post(e0) ∶ pre(e1)]⊕ . . .⊕lcq−2[post(eq−3) ∶ pre(eq−2)]⊕lcr′[post(eq−2) ∶ β],
where α = 0 or ∣lr∣ − 1 depending on the orientation of lr, and β is similarly defined for lr′ .
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Table 5.1: Data sets used during evaluation: name, depth, number of sequences in the input,
average read length, input size, genome size, and error rate.

Label Depth Reads (K) Length Input (GB) Size (Mb) Error Rate (%)

O. sativa 30 638.2 19,695 12.2 500 0.5
C. elegans 40 420.7 14,550 3.8 100 0.5
H. sapiens 10 4,421.6 7,401 31.1 3,200 15.0

This algorithm is performed by each process in parallel on its own induced subgraph
Li,j. For each read in the contig, we either look for the subsequence in the locally stored
char array that we started with, or in the char array obtained by communicating the read
sequence. Because we store read sequences in large packed char arrays, we do not need to
copy the entire read sequence to find the correct subsequence. Instead, we can simply use
the offsets already computed, which tell us where each read is in the buffer, and then read
the subsequence directly from the buffer. The algorithm is O(q), where q is the number of
vertices in a connected component as previously defined (i.e., the number of sequences in a
contig), since the search for the root vertex takes linear time and the traversal is linear in
the number of edges, which is 2(q − 1).

5.3 Experimental Setup

To evaluate our contig generation algorithms and the ELBA long-read assembly pipeline
we used the same two machines used previously: the Haswell partition of the Cray XC40
supercomputer Cori at NERSC and the IBM supercomputer Summit at Oak Ridge National
Laboratory, on which we used only IBM POWER9 CPUs (Table 3.5).

To evaluate our algorithm, we use three different species: Oryza sativa (O. sativa),
Caenorhabditis elegans (C. elegans), and Homo sapiens (H. sapiens) whose characteristics
are summarized in Table 5.1. The evaluation is divided into two categories: (a) runtime
and scalability of the ELBA pipeline including our novel contig generation algorithm on two
machines, and (b) runtime compared to state-of-the-art shared memory software. For low
error rate sequences (O. sativa and C. elegans), we also report assembly quality.

The state-of-the-art software we consider are Hifiasm [38] and HiCanu [127], because of
their speed and popularity, respectively, and both are written for shared-memory parallelism.
HiCanu can optionally run on grid computing, but is not implemented for distributed memory
parallelism. It is worth noting that Hifiasm and HiCanu include additional polishing stages
that make their overall assembly quality higher than ELBA’s. For the H. sapiens dataset, we
consider Miniasm [103] and Canu [100], as this dataset has a much higher error rate that is
not suitable for Hifiasm and HiCanu. Our goal is to show the competitiveness and potential
of ELBA in terms of assembly quality, demonstrating in particular clear advantages in terms
of runtime. ELBA was run with the k-mer length parameter k = 31 and the x-drop threshold
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x = 15 for the low error rate data and with k = 17 and x = 7 for H. sapiens in Table 5.1.
Hifiasm and HiCanu were run with their default setting.

To show performance, we run ELBA on both Cori Haswell and Summit (except for
H. sapiens, where we only use Summit), while for comparison with the state of the art,
we only use Cori Haswell, since Hifiasm and HiCanu use SSE and AVX2 intrinsics, which
are not supported on the IBM POWER9 processor on Summit. Hifiasm and HiCanu were
developed for shared memory, so we only give runtimes for a single Cori Haswell node using
multi-threading. The lack of support for AVX2 intrinsics is also the reason why ELBA’s
alignment is slower on Summit than on Cori. For this reason, we want to emphasize that
the goal of using two machines is to show performance and scaling on different systems, not
to directly compare the two machines, since ELBA is optimized for a general HPC system,
i.e., our code is general and no architecture-specific optimizations have been made.

To assess the contig quality of of ELBA, Hifiasm, and HiCanu, we use QUAST [87] and
report the following metrics: completeness, longest contig size, number of contigs, and misas-
sembled contigs. Completeness measures the percentage of the reference genome to which at
least one contig has been aligned. This is calculated by counting the number of nucleotides
aligned to the reference genome and dividing by the total length. The number of misassem-
bled contigs is defined as the number of contigs that contain incorrect assemblies, e.g., a
contig consisting of sequences originating from different regions of the reference genome.

5.4 Results

In this section, we evaluate the performance and quality of the overall ELBA pipeline and
our novel contig generation algorithm, both individually and compared to the literature.

Figure 5.3 illustrates the strong scaling of the entire ELBA pipeline for C. elegans on the
left and for O. sativa on the right. The C. elegans dataset was run on P = {18, 32, 50, 72,
128} nodes using 32 MPI ranks/nodes on both machines, while the O. sativa was run on
P = {18, 32, 50, 72, 128} nodes using 32 MPI ranks/nodes on Summit CPU and on P =

{50, 72, 128} nodes Cori Haswell because the algorithm for P = {18, 32} ran out of memory
since Cori Haswell has a smaller memory per node than Summit.

ELBA achieves a parallel efficiency of 75% on Cori Haswell and 69% Summit CPU for
C. elegans, while it achieves a parallel efficiency of 80% and 64% for O. sativa. The parallel
efficiency of O. sativa between 72 and 128 nodes on Summit is 83%, which is similar to the
parallel efficiency on Cori between 50 and 128 nodes. For the H. sapiens dataset, the parallel
efficiency on Summit between 200 and 392 nodes is close to 90%, as shown in Figure 5.5
on the left. These results show a good scaling behavior of the whole ELBA pipeline with a
large input on two different architectures.

Figure 5.4 shows the runtime breakdown of ELBA on the two machines for C. elegans
on the left and for O. sativa on the right, while Figure 5.5 on the right shows the runtime
breakdown of ELBA on Summit for H. sapiens. To highlight the impact of the major stages,
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Figure 5.3: ELBA strong scaling on Cori Haswell and Summit CPU using 32 MPI rank/node
on C. elegans (left) and on O. sativa (right).

Figure 5.4: ELBA runtime breakdown of the main stages of the pipeline on Cori Haswell
and Summit for C. elegans on the left and for O. sativa on the right.
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Figure 5.5: ELBA strong scaling (on the left) and runtime breakdown (on the right) of the
main stages of the pipeline on Summit for H. sapiens.

we omit I/O and other minor computation from the breakdown. The overall impact of the
omitted computation is negligible.

The legend is arranged in reverse order with respect to the layers of the bar, i.e. the
first entry of the legend at the top is associated with the first layer in the stacked bar
from the bottom. CountKmer corresponds to the k-mer counting step, then follows the step
DetectOverlap, which represents the time to create and compute the candidate overlap
matrix C. Then comes the Alignment step, i.e., the time required to perform pairwise
alignment on each nonzero in the candidate overlap matrix C, followed by TrReduction,
i.e., the transitive reduction time. Finally, ExtractContig is the time we spend extracting
the contig set from the sparse matrix S. The ExtractContig step is the core contribution
of this work, but its implementation is an essential part of making the entire ELBA pipeline
work and for this reason it is key to showing the scalability of the pipeline.

Figure 5.4 shows the breakdown of ELBA performance for the main phases of com-
putation for C. elegans and O. sativa using P={50, 72, 128} nodes on each machine while
Figure 5.5 shows the breakdown of ELBA performance breakdown for H. sapiens using
P={200, 288, 338, 392} Summit nodes. ELBA is faster overall on Cori Haswell than on Sum-
mit CPU. The CountKmer, DetectOverlap, and Alignment phases show nearly linear scaling
on both machines, with the exception of CountKmer for H. sapiens on Summit, which scales
only sublinearly. The relative contribution of pairwise alignment to the overall runtime
increases on Summit CPU compared to Cori Haswell and largely contributes to the discrep-
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ancy in runtime because the alignment library used in ELBA is not optimized for the IBM
processor. The TrReduction and ExtractContig phases are also significantly faster on Cori
Haswell than on Summit CPU. On Summit, the computation for these two phases does not
scale and consumes a higher percentage of runtime. This is because the amount of work is
smaller in these two phases and the algorithms are latency-bound. Further, Summit’s net-
work has lower performance compared to Cori Haswell’s. Summit CPU has lower network
bandwidth per core, and we also only use 32 of the 42 available cores on Summit to make
the comparison with Cori fair, which does not saturate Summit’s bandwidth. In the future,
we plan to make the pipeline modular so that a user can run different phases separately
(incurring some I/O overhead). This would allow the less compute and memory intensive
phases to be run on a smaller number of nodes without sacrificing performance.

In each dataset, 65-85% of the runtime of contig generation on both machines is taken by
the induced subgraph function described in Section 5.1, which mainly involves communica-
tion. The ExtractContig never requires more than 5% of the computation for each species
and each machine, demonstrating the efficiency of our contig generation algorithm.

ELBA’s contig generation focuses on localizing the graph traversal problem so that the
sequences that make up a contig are organized into localized matrices on each processor.
The working set at this stage is smaller than at the beginning of the computation, so the
result is a fast and efficient, but latency-bound algorithm.

To demonstrate the competitiveness and advantages of ELBA over state-of-the-art long
read assembly software, we compare the runtime and scaling of ELBA with Hifiasm [38] and
HiCanu [127] for O. sativa and C. elegans and with Mifiasm [103] and Canu [100] for H.
sapiens. The competing software are designed for shared memory parallelism. Therefore,
we ran them on a single Cori Haswell node with multithreading, while we ran ELBA on
P = {18, 50, 128} with 32 MPI ranks/nodes. Due to the hard-to-separate differences among
this software, we decided to make a comparison based on total runtime. Hifiasm, HiCanu,
Mifiasm, Canu, and ELBA perform very different computations, but they ultimately aim
to solve the same problem. For the sake of completeness, we also compare the quality of
assembly. It is worth noting that both Hifiasm and HiCanu perform a polishing phase. This
can lead to a slight disadvantage in runtime, but ensures a better assembly quality.

One could consider coupling ELBA with a state of the art polishing software. However,
this type of computation is highly dependent on the previous stages, so coupling our pipeline
with software not specifically designed for this purpose would not allow a fair comparison.
Therefore, the development of an ad-hoc polishing software for ELBA remains a future work.

Table 5.2 summarizes the runtime performance of Hifiasm and HiCanu, in the rightmost
column the speedup of ELBA over those software for P = {18, 128} and P = {50, 128} for
C. elegans and O. sativa, respectively. ELBA is up to 15× faster than Hifiasm and up to
58× faster than HiCanu for the C. elegans dataset, while the speedup for O. sativa, which is
a larger genome, reaches 36× over Hifiasm and up to 159× over HiCanu. On Cori, runtimes
for Hifiasm and HiCanu for O. sativa are 17 and 64 minutes, respectively, while ELBA takes
less than 2 minutes on 128 nodes. For C. elegans, runtimes of Hifiasm and HiCanu are
approximately 1 hour and 5 hours, while ELBA requires 1 minute on 128 nodes. For H.
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Table 5.2: ELBA’s speedup over state-of-the-art software. Hifiasm and HiCanu are designed
for shared memory parallelism and were run on a single Cori node with multithreading.

Tool Organism Runtime (s) Nodes (32 MPI Rank/Node) ELBA Speed-Up

Hifiasm C. elegans 1,015.2 18–128 3–15×
HiCanu C. elegans 3,819.0 18–128 11–58×

Hifiasm O. sativa 4,131.9 50–128 18–36×
HiCanu O. sativa 18,131.0 50–128 78–159×

Table 5.3: Comparison of assembler quality for O. sativa (top) and C. elegans (bottom).
Hifiasm and HiCanu implement additional polishing stages to improve their metrics.

Tool Completeness (%) Longest Contig (Mb) Contigs Misassembled Contigs

ELBA 37.09 0.172 6411 2
Hifiasm 26.94 7.083 1661 1
HiCanu 25.94 37.523 168 2

ELBA 98.93 0.313 4287 5
Hifiasm 99.96 6.438 133 0
HiCanu 99.90 18.332 32 2

sapiens, ELBA on 392 nodes on Summit takes 17 minutes, while Mifiasm on Cori Haswell
takes 1 hour and 30 minutes with 32 threads and Canu ran out of time after more than 64
hours of runtime with 32 threads on Cori Haswell. However, these times are from different
architectures and are not directly comparable, so we do not give a speedup for H. sapiens.
The results from O. sativa and C. elegans show that performance on Summit was worse than
on Cori Haswell due to the less powerful processor on Summit.

Finally, we compare the quality of the assemblies of ELBA with that of Hifiasm and
HiCanu. Table 5.3 summarizes metrics obtained from QUAST [87]. Specifically, we show
the completeness, i.e., the proportion of the reference genome that was covered by at least one
contig (the higher, the better), then the length of the longest contig (the higher, the better),
the size of the contig set (the lower, the better if associated with high completeness), and
the number of misassemblies (the lower, the better). In both species, ELBA has competitive
genome completeness, especially in C. elegans, where it is higher than both Hifiasm and
HiCanu, and misassemblies. In ELBA, the contigs are significantly shorter than in the
two competing software packages. This is understandable, since ELBA does not currently
perform a polishing step, which is reserved as future work.
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5.5 Summary

Recent advances in sequencing technologies have increased the need for high-performance
approaches, as we can now generate more data at lower cost, which in turn requires higher
computational resources to reconstruct high-quality assemblies in a timely manner. In this
chapter, we presented the contig generation phase of the distributed-memory long-read as-
sembler ELBA.

Contig generation is critical to assembly functionality, as it enables the construction of
longer genomic sequences that represent a physical map of a region of a chromosome. ELBA
has achieved speed increases of up to 36× and 159× compared to two state-of-the-art software
for the O. sativa dataset, opening the door for high-performance genome assembly.

ELBA and its contig generation step rely on distributed sparse matrices to first determine
the contig set starting from a string graph. Then, using a greedy multiway number parti-
tioning algorithm, it determines how the rows and columns of the sparse matrix representing
DNA sequences are redistributed between processes so that sequences belonging to the same
contig are stored locally on the same processor. ELBA then uses such partitioning and the
sparse matrix abstraction to implement the induced subgraph function and redistribute the
sequences among the processes. Finally, ELBA’s contig generation step computes a local
assembly step, i.e., the actual concatenation of sequences into a contig, on each processor
independently and in parallel.
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Chapter 6

High-Performance Computing in the
Cloud

In the previous chapters, we demonstrated high performance and near-linear scaling for an
end-to-end genomic application without sacrificing productivity using sparse matrix abstrac-
tion. The ability to productively write high-performance scientific code must be accompanied
by broad and democratic access to large-scale parallel resources. It can be difficult to gain
access to institutional HPC resources if the user is not part of a research community targeted
by the institution or government.

In this chapter, we first describe the similarities and differences between cloud computing
and traditional HPC. Then, we investigate the performance differences between cloud-based
HPC systems and traditional HPC systems, and show that the cloud is now competitive
with HPC systems primarily due to advances in networking technologies. Our work opens
the door to a paradigm shift in high performance computing for science and makes it easier
for any researcher to access large-scale parallel resources.

6.1 Overview and Foundation

The benefit of high-performance computing for scientific research has grown rapidly, beyond
traditional simulation problems to data analysis in light sources, cosmology, genomics, parti-
cle physics, and more [162, 3]. Given the vast amounts of data and/or computation involved
in such applications, they can require the full computing power and memory of high per-
formance computing (HPC) systems. Cloud computing [64, 32, 113] is gaining popularity
among scientists as an alternative to HPC for a wide range of sciences such as physics,
bioinformatics, cosmology, and climate research [60, 117]. There are many efforts in the
literature to measure the performance of scientific applications in the cloud. The lack of a
low-latency network has been consistently identified as the main bottleneck [86, 125, 161, 58,
57]. Understanding the gap between HPC and cloud systems and whether the results from
the literature are still valid today is critical for guiding future system design and running
scientific applications efficiently in the cloud. Furthermore, the number of users that super-
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computing facilities can support is limited, and the deployment of any new supercomputer
is a multi-year multi-million dollar investment. Closing the performance gap between HPC
and cloud would give many more scientists access to adequate computing resources.

Our work measures the performance of HPC-oriented codes on both cloud and HPC
platforms. Building on previous literature, we investigate whether the findings apply to
today’s cloud platforms and isolate the contribution of different variables to the HPC cloud
performance gap. Our results show that cloud platforms with similar processors and networks
can achieve HPC-competitive performance, not only for compute-intensive applications, but
also for communication-intensive applications. At moderate scales, modern cloud computing
has overcome one of its main limitations by providing higher-speed memory and interconnects
for HPC-oriented instances. Cost models, job wait times, software availability are also
relevant to evaluating HPC-cloud competitiveness, but are out of scope here.

High Performance Computing (HPC) and cloud computing differ in their original purpose
as well as their economic objectives and access policies. HPC systems were designed to deliver
high performance for dedicated scientific computing, while cloud computing made networked
hardware and software available for general use.

The differences in their economic objectives and access policies inevitably affect schedul-
ing, hardware selection, and software configuration decisions. HPC systems are typically
operated by a non-profit organization (university or national laboratory), funded by a gov-
ernment agency, and allocated to a particular research community. These systems have very
high utilization (over 90%) with non-trivial wait times for users; they support very large-
scale computations with homogeneous hardware that undergoes major upgrades every few
years. By homogeneous hardware, we mean here that an HPC system typically has the same
node for the entire machine, where that node can have both CPU and GPU devices, but the
type, such as processor model and vendor, is the same for the entire system; it is possible
to have two different partitions within the same HPC system, but usually no more than
that. In contrast, cloud systems are built for profit, configured to meet market demand,
and operated at lower utilization rates to ensure little or no wait time. Cloud resources are
upgraded continuously and incrementally, leading to rapid access to new technologies, but
also to heterogeneity within the cloud.

Researchers running scientific applications in the cloud can access instances with low-
latency networks to achieve performance competitive to HPC [90]. However, cloud hetero-
geneity can limit what is available within an HPC cloud offering, e.g., it may be more difficult
for a user to obtain a large number of high-performance instances. In the cloud, users can
easily customize their environment without administrative overhead and quickly provision
additional resources to solve large problems [161]. HPC platforms offer limited support for
on-demand self-service [161], but they do offer important features such as resource pooling
and broad network access.

The basic business model differences between cloud and HPC persist today and lead
to complex cost trade-offs that are beyond the scope of this paper. However, the growing
commercial interest in problems such as large-scale machine learning training have led to
changes in cloud configurations. This has increased the popularity of HPC-as-a-Service in
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the cloud and has in turn resurfaced questions about use of the cloud for modest scale parallel
scientific applications.

6.2 Proposed Methodology

Processor, memory, network, application and programming model, and system age are all
variables that affect performance. Here, we measure the performance gap by isolating the
contribution of the different variables by dividing our experiments into two categories: (i)
hardware and system and (ii) user application.

First, we isolate the contribution of processor and memory to identify similarities or
significant differences in in-node performance. Then, we investigate the contribution of
the inter-processor network by measuring the latency and bandwidth of communication
primitives between machines. Finally, we study performance of HPC and cloud computing
from an application perspective. Unless differently noted, the results reported in this paper
represent the average value across 10 runs.

To this end, we use two metrics to characterize our applications: hardware events and
the communication to computation ratio (Cm/Cp). The Cm/Cp ratio is defined as commu-
nication time divided by computation time for a given execution of a parallel application on
a given parallel machine with explicit communication [45]. Both metrics can help interpret
the potential performance gap between HPC and cloud systems.

A Hardware and System View

A common approach to comparing the performance of computer systems is to use low-level
benchmarks [154, 2]. Here, we focus on the investigation of processor, memory, and network
performance.

Processor. Considering a multi-core processor, we refer to it as a node, where a core is the
basic execution unit in the system. The number of nodes is later denoted P . Here we use
the shared memory version of the LINPACK benchmark [52] to compare the floating point
performance of the systems under consideration. LINPACK measures how fast a computer
solves a dense n-by-n system of linear equations Ax = b, which is a common task in engi-
neering. The latest version of the benchmark is used to create the TOP500 list, which lists
the most powerful supercomputers in the world [151]. The goal is to get an approximate idea
of how fast a computer will perform when solving real problems. It is a simplification be-
cause no single computational task can reflect the overall performance of a computer system.
Nevertheless, LINPACK benchmark performance can be a good correction to the manufac-
turer’s stated peak performance. Peak performance is the maximum theoretical performance
a computer can achieve. It is calculated by multiplying the frequency of the computer in
cycles per second times the number of operations per cycle it can perform. The actual per-
formance will always be lower than the peak performance [52]. Computer performance is a
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complex matter that depends on many interrelated variables. The performance measured by
the LINPACK benchmark consists of the number of 64-bit floating-point operations, gener-
ally additions and multiplications, that a computer can perform per second, also known as
FLOPS. However, the performance of a computer when running actual applications is likely
to fall far short of the maximum performance it achieves when running the corresponding
LINPACK benchmark.

Memory Hierarchy. CacheBench [116] measures the performance of the local memory
hierarchy. It computes a number of operations – read, write, read/modify/write, memset,
and memcpy – varying the underlying array size, thereby revealing the performance of the
cache. Operations run for 2 seconds and the average bandwidth (MB/s) is reported. Here
we focus on memcpy.

Memory Bandwidth. To measure the maximum memory bandwidth of our systems, we
use the STREAM benchmark [111], which performs four vector operations: copy, scale, sum,
and triad. STREAM requires that (a) each array is at least four times the size of the cache
memory, and (b) the size is such that the “timing calibration” output by the program is at
least 20 clock ticks. STREAM provides the best possible memory system bandwidth.

Inter-Node Communication. Following standard practice [90], we use a subset of MPI
operations to measure the inter-node communication performance of our systems. Specif-
ically, we use MPI Send- recv and MPI Alltoall to measure point-to-point and collective
latency and bandwidth using the OSU microbenchmarks [132].

A User-Application View

Besides comparing HPC and cloud systems on a subset of MPI collectives, we select two
representative user applications from scientific computing as benchmarks: an N-Body sim-
ulation written in C++ and a Fast Fourier Transform (FFT), written in C. N-Body is a
computationally intensive application, while the FFT is more communication intensive [159,
6, 42].

An N-Body simulation models a dynamic system of particles, usually under the influence
of physical forces, such as gravity [94]. It is a common computation in physics, astronomy,
and biology. The naive solution computes the forces acting on the particles by iterating
through each pair of particles, resulting in a complexity of O(n2), where n is the number of
particles. In our implementation we consider the density of the particles to be sufficiently
low so that a linear time solution can be achieved with n particles.

The FFT calculates the discrete Fourier transform (DFT) of a sequence or its inverse
(IDFT). In Fourier analysis, a signal is transformed from its original domain (often time or
space) to a frequency domain representation and vice versa. As a benchmark for the FFT,
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Table 6.1: Details of the evaluated machines: name, system age in years, number of cores
per node, processor frequency, theoretical peak performance (GFlops/s) per node, processor,

memory, advertised injection bandwidth (Gigabits/s), and caches sizes.
†
Custom model for

Amazon AWS. KNL’s L2 is shared between two cores.
∗
Advertised user-process injection

bandwidth [44].

Platform Age Core/Node Frequency (GHz) Peak (GFlops/Node) Processor Memory (GiB) Bandwidth (Gbps) L1 L2 L3

Cori Haswell 4 32 2.3 1,177 Xeon E5-2698V3 120
∗
82 64KB 256KB 40MB

Cori KNL 4 68 1.4 3,046 Xeon Phi 7250 90
∗
82 64KB 1MB -

AWS r5dn.16xlarge 1 32 2.5 2,560 Xeon Platinum 8259CL 512 75 64KB 1MB 36MB

AWS c5.18xlarge 1 36 3.0 3,456 Xeon Platinum 8124M
†

144 25 64KB 1MB 25MB

we use the implementation of Frigo and Johnson [67, 66, 65], Fast Fourier Transform in the
West (FFTW).

6.3 Experimental Setup

Our experiments are conducted on the Intel Xeon “Haswell” (Cori Haswell) and Intel Xeon
Phi “Knight’s Landing” (KNL) partitions (Cori KNL) of the Cori Cray XC40 HPC system
at NERSC, an Amazon Web Services (AWS) commodity cluster with r5dn.16xlarge (R5)
instances (optimized for memory-intensive workloads), and one with AWS c5.18xlarge (C5)
instances (optimized for compute- intensive workloads). Details for each instance are listed
in Table 6.1.

We chose these four platforms because of their easy availability and the diversity of
architectures. In particular, we selected the two AWS instances to represent two extremes
of the AWS catalog (memory-optimized versus compute-optimized) and selected these two
instances because they allowed us to allocate multiple nodes in the same placement group in
a reasonable amount of time. AWS clusters run as dedicated instances to reduce the potential
performance slowdown from sharing resources, and use Slurm as the workload manager [163].
The need for tools to simplify the use of cloud environments and better software stacks for
clouds has been noted in past literature [161]. We use AWS ParallelCluster to provision and
manage AWS clusters. It automatically sets up the required compute resources and shared
file system in about five to ten minutes in our experience. AWS also provides a collection of
Amazon Machine Images (AMIs) installed with libraries and software such as MPI, BLAS,
and TensorFlow. Notably, AWS ParallelCluster provides support for several schedulers, such
as SGE and Torque (which will both be discontinued at the end of 2021), as well as Slurm
and the in-house AWS Batch, which currently has limited support for GPU jobs. We used
Slurm for consistency across AWS and Cori systems.

Cori Haswell and KNL also use Slurm as workload manager. Cori has the Cray Aries
“Dragonfly” topology for its interconnect [124]. AWS does not disclose details about the
underlying interconnect topology, except for an expected injection bandwidth (Table 6.1).
The AWS cluster instances belong to the same placement group; the login node and the
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Figure 6.1: LINPACK peak performance compared to the theoretical peak (left) using one
node and all available cores per node (Table 6.1). CacheBench memcpy() benchmark (right)
using a single core and reporting the median of 10 runs.

compute nodes belong to two different subnets. A subnet is a logically visible subdivision
of an IP network. The subnetwork of compute nodes is private and has no access to the
Internet.

6.4 Results

A Hardware and System View

Given different in-node configurations, we first investigate performance using a microbench-
marking approach.

Processor. Figure 6.1 compares the LINPACK peak performance (left) with the theoret-
ical peak performance (right) for each platform and also allows cross-platform comparison.
Cori Haswell and AWS R5 achieve peak performance significantly closer to their theoretical
peak than the other two machines. Closing the gap between theoretical peak and LINPACK
peak on Cori KNL is notoriously difficult; achieving such progress requires a significant
optimization effort for applications in general [15, 50, 51]. Cori KNL achieves about 350
GFlops/second more in our benchmark than the number reported in the Top500 [153]. This
discrepancy could be due to different implementations of the LINPACK benchmark, since
we use the Intel Math Kernel Library benchmark package. Further profiling of AWS C5 with
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Table 6.2: STREAM benchmark: as many OpenMP threads as the number of physical cores
per node (top) and one thread (bottom), 8 bytes per array element, array size = 120000000
(elements), offset = 0 (elements), memory per array = 915.5 MiB, total memory required =
2746.6 MiB. The best time for each kernel over 10 runs (excluding the first iteration) is used
to compute the bandwidth. Results in GB/s [111].

Platform Threads Copy Scale Add Triad

Cori Haswell 32 56.6 43.6 49.4 49.7
Cori KNL 64 247.9 250.3 257.1 260.0
AWS r5dn.16xlarge 32 181.9 127.6 143.9 144.9
AWS c5.18xlarge 36 135.7 106.9 120.4 120.3

Cori Haswell 1 18.0 11.3 12.6 12.6
Cori KNL 1 12.1 6.8 8.4 7.4
AWS r5dn.16xlarge 1 11.1 12.5 13.2 13.1
AWS c5.18xlarge 1 11.0 12.6 13.5 13.6

VTune [139] revealed a relatively low core utilization for this platform, which could explain
the large gap between theoretical and achieved peak.

The cloud instances perform best in absolute terms. AWS R5 and C5 instances are
equipped with newer hardware than Cori systems; this may explain the greater processing
power. It is noteworthy that the elastic nature of cloud computing − as opposed to multi-
year projects to develop and install supercomputers − offers the potential for rapid hardware
turnaround.

Memory Hierarchy. Figure 6.1 shows the results for the Cache-Bench benchmark (on
the right) and illustrates the performance of the cache hierarchy for our four machines. For
each platform and size, we ran the benchmark 10 times and report the median; there is little
variance among different runs for a given size and platform.

Cori Haswell has the best performance for L1 (which is the same size on all machines).
The L2 performance of Cori Haswell and AWS C5 are comparable, while the performance
of Cori Haswell falls below that of the AWS C5 platform below its second cache level. AWS
C5 achieves better performance than Cori Haswell as long as the data fits into its L2 cache,
and its performance falls below Cori Haswell when it enters the third cache level as expected
because Cori Haswell has a larger L3 cache.

Considering the data in Table 6.1, one would expect a higher bandwidth for AWS R5
and Cori KNL given their larger L2. However, the way the caches are shared between the
cores and cache associativity could affect overall memory throughput. For Cori Haswell, L2
is private to each core, while for Cori KNL it is shared by two cores. Cori KNL has two cache
levels instead of three like the other machines. Cori Haswell’s cache is 8-way associative,
while Cori KNL has a direct mapped cache. This direct mapping reduces cache management



CHAPTER 6. HIGH-PERFORMANCE COMPUTING IN THE CLOUD 84

complexity, but can significantly increase cache thrashing, resulting in a high rate of cache
misses and main memory accesses [123].

Looking only at these single core results, one might suspect that the virtualization over-
head could prevent cloud instances from fully exploiting the potential of their caches. How-
ever, our results, which measure the performance of the whole memory system, discourage
this hypothesis, as shown in the next microbenchmark.

Memory Bandwidth. To measure memory bandwidth when data does not fit in the
system cache, we run the STREAM benchmark [111]. The results in Table 6.2 show that the
performance difference between Cori Haswell and AWS R5 and C5 (Figure 6.1) is reversed
in favor of the cloud clusters when all available cores are used if the data does not fit in the
platforms’ caches.

Cori KNL has the higher memory bandwidth thanks to its on-chip multi-channel DRAM
(MCDRAM) chip of 16GB. Looking at platforms without on-chip memory, cloud instances
show a significantly higher memory bandwidth than the corresponding HPC platform. Sys-
tem age and newer cloud hardware can explain this performance. These results suggest that
a faster hardware turnaround time could benefit not only computationally intensive applica-
tions, but also data-intensive applications. In addition, these results discredit the hypothesis
that virtualization overhead is a major limitation of today’s cloud computing.

Inter-Node Communication. To study network performance, we measure bandwidth
and latency in a multinode setting. In our experiments, we use openmpi-4.0.2 as the
MPI implementation. For Cori Haswell and KNL, we ran the benchmark suite with both
openmpi-4.0.2 and the default cray-mpi. They provided similar performance, and we
decided to report only the results for OpenMPI for clarity and consistency with the cloud
instances.

Figure 6.2 uses one process per node to show point-to-point bandwidth (left) and latency
(right). Our results show peak bandwidth of about 86 Gbit/s for AWS R5 and 90 Gbit/s for
AWS C5, while Cori Haswell and Cori KNL show peak bandwidths of 74 and 64 Gbit/s, re-
spectively. Considering that the two Cori systems share the same network, one would expect
the same network performance, however, their performance in Figure 6.2 are significantly
different. This difference can be attributed to the overhead of MPI function calls, which are
expensive and penalise lower frequency Cori KNL cores that cannot match the performance
of Cori Haswell nodes. Our results are consistent with those presented by GASNet [68].

Cloud instances outperform HPC systems in both bandwidth and latency. Until recently,
the lack of a low-latency network has been consistently identified as the main bottleneck of
cloud computing for scientific applications [161, 86, 125]. Our results show that modern
cloud computing has made significant advances in networking technology that provide cloud
instances with HPC-competitive network performance.

Figure 6.3 shows the MPI Alltoall latency on P=2, 8. For small message sizes, Cori
Haswell dominates the other platforms on two nodes; the gap decreases as the number of
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Figure 6.2: OSU MPI microbenchmark injection bandwidth (left) and point-to-point latency
(right) in log-log scale. Using two nodes with one process per node on Cori Haswell, Cori
KNL, AWS R5, and AWS C5.

nodes is increased. The differences between Cori Haswell and KNL are due to the cost of
MPI calls on the two different processors. Also, the different number of processes per node
in this experiment illustrates the difference between the two Cori systems. On two nodes,
the gap decreases as the message size increases, especially when comparing Cori Haswell
and AWS R5, whose performance almost overlaps at large message sizes. AWS R5 shows
similar performance to Cori Haswell on eight nodes, except for small message sizes. Looking
only at the historical results, one would expect the cloud instances to lose performance
and the gap to grow as the number of nodes increases. On the contrary, our results show
significant improvements, so one can expect better performance scaling as the number of
nodes increases. AWS R5 performs as we would expect given its performance in the previous
microbenchmark, while AWS C5 is far from Cori Haswell. Its advertised network bandwidth
is about 3× lower than Cori Haswell and since it is a compute-optimized instance, we suspect
it may suffer from network contention.

Our results suggest that the place we would expect HPC to retain an advantage is in ap-
plications with many small messages. Algorithmic techniques, however, typically try to avoid
this situation. These results have important implications for communication-intensive ap-
plications that have not historically benefited from cloud computing due to their bandwidth
requirements.
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Figure 6.3: OSU MPI microbenchmark MPI Alltoall latency on two nodes (left) and on
eight nodes (right) in log-log scale. On Cori Haswell, AWS R5 and C5 we use 32 processes
per node, while on Cori KNL we use 64 processes per node.

Table 6.3: Characterization of n-body using perf run on a single core. Page size = 4KB,
problem size: 1M.

Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)

Cori Haswell 414.7 367.2 11,347.8 461.7
Cori KNL 415.4 367.4 11,220.1 1,736.5
AWS r5dn.16xlarge - 367.2 - 486.9
AWS c5.18xlarge 427.2 367.2 21,457.4 480.6

An Application View

In this section, we first measure and compare the serial runtime of the applications and
analyze the single-core performance of the applications to better understand the runtime
differences and similarities between the machines. Then, we study the parallel performance
of the applications in a multinode environment.

Serial Performance

In Tables 6.3 and 6.4, we report the single core performance for the N-Body simulation and
the FFT, respectively. In both applications, Cori KNL has a significantly higher runtime
than the other machines. Its poor performance can be justified by the lower frequency of
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Table 6.4: Characterization of FFT using perf run on a single core. Page size = 4KB,
problem size: 50K.

Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)

Cori Haswell 782.1 9,766.8 871.5 312.4
Cori KNL 784.9 9,766.8 20,915.0 2,348.1
AWS r5dn.16xlarge - 9,767.5 - 303.3
AWS c5.18xlarge 1,097.9 9,766.6 2,953.6 335.8

its processor and the poor performance of its memory system. Cori KNL’s clock speed is
about half that of the other cores in the study, and it needs all 68 of them to compete with
the (theoretical) GFlop rate of the other 32-36 core nodes. Recall that the L2 caches on
Cori KNL are shared by two cores, while they are private on the other machines. In fact,
the performance for FFT is relatively worse since it is a more memory intensive application
than N-Body. Cori Haswell and the two cloud instances show similar runtime for both
applications. Cloud instances have lower cache performance than Cori Haswell, while they
have higher bandwidth when data can no longer fit in the cache. Since we study single-core
performance here, the lower half of Table 6.2 shows that Cori Haswell and the AWS instances
have comparable performance in the single-core STREAM benchmark.

Overall, these results are consistent with the results of our microbenchmarks and confirm
that cloud virtualization overhead has decreased to a point where application performance is
not significantly impacted. As a result, cloud instances have comparable runtime to a HPC
system for both applications.

Workload Characterization

Recall, when we measure the runtime of an application, we measure both the processor and
the memory system. Runtime alone is not enough to get a reasonable understanding of the
variables that affect application performance.

Here, we extend our analysis by measuring the number of page faults, instructions and
cache misses for each application on each platform and comparing the results. A high rate
of page swapping-in/out, cache misses, and a high number of instructions can significantly
slow down applications [146, 11, 101]. On all systems, these metrics are measured for a
process on a single node using perf [157]. Cache misses and instructions are not available
for AWS R5. In particular, it is not easy to get access to accurate hardware counters. On
HPC systems they typically require administrative privileges, while on cloud systems it can
be difficult to separate the effects of virtualization and gain access to accurate metrics.

Tables 6.3−6.4 give the number of page faults on the machines for the N-Body simulation
and the FFT. The number of page faults is mostly the same and confirms the same behavior
across the four machines. Cori Haswell and Cori KNL automatically load a software package
to increase the page size from 4K to 2M. This setting was unloaded and disabled to allow a
fair comparison between the four machines. Similarly, the page size could have been increased
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Figure 6.4: The N-Body strong scaling with 1M particles (left) and the FFT strong scaling
with 50K points (right) across the machines. The number next to the name in the legend
indicates the number of processes per node.

on the AWS instances. For simplicity, we chose to reduce the page size on Cori and do not
expect this setting to change the overall trend of our results. The only significant difference
in the number of instructions is between the Cori systems and AWS C5 for the FFT. This
difference could explain the runtime difference between Cori Haswell and AWS C5, although
it is not large.

Cache misses show a more relevant impact on performance than page faults and instruc-
tions. The Cori systems have similar cache misses for N-Body simulation, while they show
a significant gap for FFT. Cori KNL’s direct mapped cache significantly penalizes its per-
formance for a memory-intensive application such as FFT. AWS C5 has a larger number of
cache misses than Cori Haswell for both applications. This result, combined with AWS C5’s
slower L1 (Figure 6.1), suggests that cache misses are one of the variables contributing to
the runtime difference between these two machines.

Our workload characterization reveals that cache misses and memory system performance
have the largest impact on single-core performance. Nevertheless, the resulting runtime
differences are small, and our analysis shows comparable single-core performance between
Cori Haswell and the cloud instances.
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Parallel Performance

In examining parallel performance to highlight the effect of the network, we report the
median of 10 runs of the application for P=1, 2, 4, 8. Due to a limit on the number of
instances we can create simultaneously, we were unable to get more than eight instances in
the same placement group, which is critical for achieving low-latency network performance.
AWS support can increase this limit upon request. Given the varying number of cores per
node of our machines, we normalize our results and specify the configuration that provides
the best performance for each platform.

N-Body Simulation. Figure 6.4 on the left illustrates the strong scaling performance
across the machine and shows the runtime split in computation and communication. Our N-
Body implementation uses a recursive doubling algorithm for particle exchange and therefore
runs much faster with the power of two processes. As a result, all machines achieve their
best performance with either 32 or 64 processes per node.

The N-Body simulation is computationally intensive and has a low Cm/Cp ratio, sug-
gesting a modest impact of the network on overall runtime. Given the Cm/Cp ratio and the
serial performance of this application, we expect comparable runtimes between Cori Haswell
and the two cloud instances. Cori KNL also has comparable runtimes, while its P=8 scaling
is significantly worse than the other three machines. In particular, it uses twice as many
processes per node as the other machines and runs at about half the frequency, with fewer
cache levels and L2 caches shared by two cores.

The MPI Alltoall microbenchmark shows a significant difference between the two Cori
systems. Remember that the Cori systems use the same network; however, Cori KNL uses
64 processes per node instead of 32 and the MPI function calls overload the weaker KNL
cores. The gap is also significant between Cori Haswell and AWS C5 at any scale, while the
gap between Cori Haswell and AWS R5 is mostly overlapping.

The MPI Alltoall gap between the two Cori systems is reflected in their performance in
the N-Body simulation. Therefore, one would expect AWS C5 to have a larger communica-
tion time. Nonetheless, the performance of AWS C5 is consistent with the assumption that
when the Cm/Cp ratio is low, the network has a limited impact on the overall application
runtime.

Overall, AWS R5 is the fastest platform, with Cori Haswell and AWS C5 having the same
performance at P=8. The remarkable comeback of Cori Haswell might be due to fitting data
into the larger L3 cache of Cori Haswell. The N-Body simulation scales superlinearly −
on all machines except Cori KNL. We are familiar with this implementation and know its
superscaling behavior, which can be briefly explained as the “cache effect”, meaning that as
the number of nodes increases, more data fits into the cache.

Our results confirm that cloud computing can be more suitable than HPC systems for
computationally intensive applications [161] and that modern cloud computing can provide
competitive network performance to HPC.
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Fast Fourier Transform. Figure 6.4 shows the strong scaling performance of the FFT
(right) and splits the runtime into computation and communication. The library FFTW
computes multiple FFTs and measures their execution times to find the optimal plan that
achieves the best performance for each machine. We use these optimal implementations.
Since the optimal plan selected by FFTW is based on a collection of MPI Sendrecvs, the
results in Figure 6.2 are relevant to the following analysis.

FFT has a higher Cm/Cp ratio than the N-Body simulation, and as expected, Figure 6.4
shows that the communication overhead is much higher than in the previous application and
can take more than 50% of execution time. There is a consistent spike in communication
at P=4, which we suspect is due to implementation details of FFTW. On all machines, the
overall scaling of the FFT is sublinear, mainly due to communication overhead. AWS R5 is
the fastest platform, both in terms of total and communication time. It is followed by Cori
Haswell. The computation times of Cori KNL and AWS C5 are comparable, but AWS C5
has a higher communication overhead, making it the slowest platform in this benchmark.

Despite comparable performance for point-to-point communication (Figure 6.2), the
cloud instances exhibit different performance for all processes on the node involved in
the communication (Figure 6.3). AWS C5 exhibits significantly worse performance for the
MPI Alltoall benchmark, which explains the difference in communication performance be-
tween the two AWS instances for the FFT results (Figure 6.4). AWS R5 is optimized for
memory-intensive workloads, while AWS C5 is optimized for compute-intensive workloads.
Moreover, AWS C5 uses Amazon’s in-house EFA interconnect, whose advertised bandwidth
is 3× lower than R5’s. Our hypothesis is that as the number of processes increases, the C5
interconnect is more subject to contention than R5’s network.

AWS R5 is the best performing platform in this benchmark, as one would expect based on
the results of our microbenchmarks and workload characterization. The communication time
on AWS R5 is comparable to or even lower than that on HPC systems. Thus, it is not only
the newer processor that contributes to the high performance for this application, but also
the interconnect speed. Previous literature has shown that FFTs for cloud instances have
significantly lower performance than for HPC systems. The Magellan report [161] describes
the FFT as 4 to 20× slower than the HPC systems considered, running on 8 processes per
node and P=8. Our result is an important validation of the recent advances that cloud
computing has made in networking technology to close the performance gap with HPC.

6.5 Summary

Our work investigated the performance gap between current HPC and cloud computing
systems to understand the nature of their differences and guide the design of future cloud
systems. In this work, we analyzed the cross-stack performance, from single core compute
power, to memory subsystem, inter-node communication performance, and overall applica-
tion performance.
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In particular, we highlight that cloud computing can offer a greater variety of hardware
configurations and newer technology due to continuous procurement cycles. If a study re-
quires the latest technology or a particular memory size and processor type, these are more
likely to be available in the cloud, while a given HPC system may offer only one or a small
set of standardized resources suitable for typical scientific applications. Our results contra-
dict earlier findings on cloud interconnects, namely that networks for HPC instances within
the cloud have improved to the point of providing competitive performance to that of HPC
systems at modest scales.

On the other hand, cloud policies can limit what is available within an HPC cloud offer-
ing, e.g., one may need to make a request to the vendor to use more than a few instances,
and the latest node architectures may not be available with the fast network. In contrast, in
traditional HPC systems, the entire system typically has the same network, whose perfor-
mance is mostly determined by the age of the system, as the procurement cycles are typically
longer.

Our results showed that the compute and memory subsystem performance of cloud in-
stances is competitive with HPC systems. This is consistent with historical results demon-
strating cloud competitiveness for compute-dominated workloads.

Cloud systems offered higher bandwidth and lower latency than HPC systems for point-
to-point communication. In the FFT benchmark, which is bisection-bandwidth limited,
the performance of the compute-optimized cloud platform dropped, possibly due to network
contention, while the platform optimized for memory-intensive applications significantly out-
performed all other machines. This represents a significant advance in cloud computing
technology, as the performance of multinode FFT applications on HPC systems has histori-
cally been better than on cloud systems [161]. A larger scale performance study focusing on
machine balance would be an interesting future work to analyze the gap on a larger scale.

Our work shows that today’s cloud computing can provide competitive performance to
HPC, not only for compute-intensive applications, but also on memory- and communication-
intensive workloads. The recent performance improvements of cloud instances may be due to
the increasing demands of deep learning [97, 89], potentially benefiting seemingly unrelated
computational science as a byproduct. It is worth noting that our study focused on one cloud
provider and it would be important to replicate the study on other providers to draw more
generalized conclusions. Given our results, an important future work would be a comparison
focusing on elasticity and resource management, which together with our results would allow
users to make informed decisions about which system is better suited for their applications.

This work has attracted the interest of other cloud companies (Google, IBM, Microsoft,
and Amazon) who have provided financial support to extend our work. A preliminary
performance study of Google Cloud Platform (GCP) would support the statement that the
cloud as a general entity, not just Amazon Web Services, is opening the door to a paradigm
shift in high-performance computing and scientific computing.
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Chapter 7

Related Work

The paradigm for assembling long-read sequencing data is composed of three main stages:
finding overlapping sequences to create an overlap graph, removing redundant information
to simplify the graph, and creating the contig set. In this chapter, we summarize the state
of the art for these three main stages of de novo long read assembly pipelines.

7.1 Overlap Detection

Overlap detection is the first and most computationally intensive step of the assembly
paradigm, whose goal is to find overlapping areas between sequences. Overlap detection
is a common step in many pipelines, not only in genome assembly, but also in error correc-
tion, for example. Here we focus on tools performing overlap detection and mention whether
they are associated with or integrated into an assembly tool.

DALIGNER [120] uses k-mers to find overlap candidates and then perform alignment.
It parses the sequences in k-mers, sorts them, and finds overlapping sequences with a merge
operation. To filter out spurious overlap candidates, a pairwise alignment is performed using
a linear expected-time heuristic based on the difference algorithm [118]. DALIGNER is
integrated with the FALCON assembler [40] for the raw long read error correction phase.

BLASR [35], originally developed to align noisy long-read sequencing data to reference
genomes, later became popular as a read-to-read aligner. It too first uses k-mers to detect
initial overlap candidates and then filters them using alignment. In addition to the aligner
itself, Chaisson and Tesler [35] presented a mathematical model that proved the feasibility
of using a k-mer seed to find a match between a noisy long-read sequence and a correct
reference sequence. In this paper, we make a similar contribution by presenting a different
model that proves the feasibility of using a k-mer seed to find a match between two noisy
long-read sequences, and that is not restricted to regular k-mer selection strategies. BLASR
used to be integrated with FALCON-Unzip assembler [40] to align sequences to the contig
set. It was then replaced by minimap2 [104, 130], which is presented next.

Li’s minimap2 [103, 104] also uses seeds to find matches. However, it uses a different
kind of k-mer, called a minimizer, which reduces the number of seeds because it selects
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only one minimizer in a window w whose value is the minimum according to a function.
It does not perform any alignment. Instead, it computes an approximate alignment score
based on the location of the minimizers on the sequences and excludes those whose quality
is below a defined threshold. This tool is part of the hifiasm assembler [38] as well as of
FALCON-Unzip [40].

MECAT [160] identifies overlap candidates based on k-mers and introduces a pseudo-
linear alignment scoring algorithm to filter out excessive candidates by using a distance
difference factor to score k-mer matches. The score of the k-mer seed pair is supported
by all matching k-mer pairs and their interval distance, so the scores represent the global
matching information between two sequences. The score of a k-mer seed pair of a read
pair increases linearly with the length of their overlap. Therefore, the algorithm chooses
read pairs with high scores and removes non-informative candidate matches. MECAT is
associated with the homonym assembly tool.

MHAP [16] is a probabilistic algorithm for sequence overlap detection. It estimates Jac-
card similarity by compressing sequences to their representative identity using the MinHash
algorithm [23] and filtering out false candidates. Once the overlap candidates are found, the
overlap regions are calculated based on the relative median positions of the shared seeds.
These overlaps are validated using counts of a second set of common seeds, which may
be smaller within 30% of each overlap region. MHAP is associated with both Canu [100]
assembler and HiCanu assembler [127].

A modified approach based on MinHash is also used in the Shasta assembler [145] for
overlap detection while the Raven assembler [156] uses a combination of minimap [103] and
MinHash for overlap detection.

The wtdbg2 assembler [142] first parses the sequences and counts the k-mer occurrences.
Then it takes each subsequence with 256 base pairs in the reads as a unit defined as a bin,
and creates a hash table whose keys are k-mers that occur twice or more in the reads, and
whose values are the positions of the corresponding bins in the reads. From these bins, they
can determine overlapping matches between sequences.

Simpson and Durbin [148] use the Ferragina–Manzini index (FM–index) [62] derived from
the Burrows–Wheeler transform [31] for overlap detection. Bonizzoni et al. [19, 18] propose
a similar approach using only the FM–index to construct a string graph.

Our first distributed memory design for overlap detection, diBELLA 1D [57], uses a k-
mer-based approach and traverses a distributed hash table to find overlapping sequences.
The keys of this hash table are the k-mers and the values are lists of sequence identifiers in
which the k-mer occurs. This design is similar to a 1D SpGEMM that uses an outer product
algorithm without explicit construction of matrices.

7.2 Transitive Reduction

The transitive reduction step is crucial to move from an overlap graph, which contains a lot
of redudant information, to a string graph, which facilitates the extraction of linear sequences
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of vertices, i.e., contigs.
Myers’ transitive reduction algorithm consists of iterating over each node v in the source

graph and examining nodes up to two edges away from v to identify all transitive edges that
leave or enter v [119]. These edges are then marked for removal, and they are removed after
all nodes have been considered. The Myers algorithm is the common approach used by most
long read assembly softwares that follow the OLC paradigm [100, 127, 38].

Jackson and Aluru [95] present a parallel algorithm for constructing a bidirected string
graph from a de Bruijn graph [112] where vertices are k-mers and edges are single nucleotides
whose two vertices have in common. The De Bruijn graph is not suitable for long read data
due to high error rates.

SORA [133] computes transitive reduction of a string graph based on an overlap graph
in distributed memory using Apache Spark [164] and the GraphX library [76], which allows
parallel computation on distributed graphs in Spark. To the best of our knowledge, SORA is
the only other distributed algorithm that computes transitive reduction on overlap graphs,
although it was designed for cloud environments.

7.3 Contig Generation

Contig generation is an important step in any de novo genome assembly pipeline, regardless
of the type of sequencing technology (long-read or short-read). The goal is to extract linear
sequences of vertices, i.e., sequences, from a string graph.

HiCanu [127] and Falcon-Unzip [40] implement similar approaches inspired by the Bogart
algorithm presented by Canu [100] to generate the contig set in shared memory starting from
a sparse long-read overlap graph or a string graph. The Bogart module creates an assembly
graph using a variant of the best overlap graph strategy of Miller et al [115], where a best
overlap is the longest overlap to a given read end excluding contained sequences (i.e., when
all bases in one sequence are aligned to another sequence). The Bogart algorithm removes
overlapping sequences from the overlap graph to include only those that are within some
tolerance of the global median error rate, and recalculates the longest overlapping sequences
using only that subset (i.e., a sparse overlap graph). Bogart generates the initial contig set
from the maximum non-branching paths in that graph.

The Shasta assembler [145] also uses a similar procedure by creating an undirected graph
where each vertex is an oriented read (i.e., each read contributes two vertices to the read
graph, one in its original orientation and one in the reverse complement orientation) and
an undirected edge is created between two vertices when we find an alignment between the
corresponding oriented sequences. To reduce the high connectivity in the repeat regions, the
Shasta assembler preserves only the k-nearest neighbor subset of the edges. The contig set
is created from the linear structures of the graph.

In contrast, Hifiasm [38] generates a primary assembly based on the topological struc-
tures of the graph and the phasing relationship between the different haplotypes using a
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bubble-popping procedure [103]. Finally, a best overlap graph is used to deal with remain-
ing unresolved substructures in the assembly graph.

A De Bruijn graph-based approach is common [112] for genome assembly of short-read
sequencing data, but it has not been suitable for long-read data in the past because of higher
error rates.

PaKman [73] is a parallel distributed memory contig generation algorithm for short-read
sequencing technology. PaKman introduces a new compact data representation of the De
Bruijn graph, named PaK-Graph, which uses iterative compression to fit the graph into
the memory available on each node. This compression enables low-cost replication of the
graph across nodes, reducing the need for communication and creating an embarrassingly
parallel procedure. PaKman also introduces an algorithm to perform non-redundant contig
generation, i.e., to avoid two processes traversing the same path in the graph and generating
the same contig.

MetaHipMer [69, 93] and the earlier HipMer [70] are distributed-memory de novo metage-
nome and genome assembly pipelines, respectively, designed for short-read data and thus also
use the De Bruijn-based approach. Both are implemented using a partitioned global address
space model in either UPC [33] or UPC++ [12]. Contig generation is performed after the
construction of a distributed hash table of k-mers with the left and right base extension from
the input data stored with each k-mer. Each process then creates contigs by starting at a
k-mer, walking left and right, appending the extension, and looking up the resulting k-mer
in the hash table. These lookups often take place on remote nodes and are performed with
either a remote memory operation or a remote procedure call. If a previously visited k-mer
is reached during this process, the two contigs are merged. Fine-grained synchronization
prevents a data race that can occur when two processes attempt to merge at the same time.

As error rates decrease for long-read data, we find in the state of the art some attempt
to use a De Bruijn graph approach for this type of sequencing technology, such as the
shared-memory assembler Flye [99]. Instead of generating a contig set, Flye first generates
a disjointig set, i.e. concatenating multiple disjoint genomic sequences, and then concate-
nates these error-prone disjointigs into a single string (in any order), constructs an assembly
graph from the resulting concatenation, uses sequences to disentangle this graph, and re-
solves bridged repetitive areas (which are bridged by some sequences in the repeat graph).
It then uses the repeat graph to resolve unbridged repetitive areas (that are not bridged
by sequences) based on the differences between repeat copies. The output is a contig set
generated from the paths in this graph. Using a De Brujin approach in conjunction with
long read sequencing data leads to more complex algorithms than those commonly used in
an OLC-based assembler. This makes an approach such as Flye’s unsuitable for scalable
implementation on distributed memory architectures, as the access patterns are extremely
fine-grained.
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7.4 Parallel Strategies for Unstructured Computation

Unstructured and irregular computation poses non-trivial challenges to the programmer
when it comes to implementing it in parallel, especially when distributed memory parallelism
is involved. Nonetheless, this type of computation is widely used in scientific computing and
thus we find work in the literature that tries to overcome these challenges.

Partitioned Global Address Space (PGAS) [4, 72, 37] is a programming model paradigm
that defines an abstraction of global memory address space that is logically partitioned,
with a portion local to each process. PGAS is a distributed memory programming model
paradigm that gives the programmer the appearance of writing a program for shared mem-
ory parallelism. There are many programming models that use the PGAS paradigm, such
as Coarray Fortran [147], Unified Parallel C [71], Split-C [46], Chapel [131], UPC++ [12],
and SHMEM [36], which often allow the programmer to use asynchronous or one-sided com-
munication, e.g., through Remote Memory Access (RMA), making this paradigm a suitable
choice for implementing irregular and unstructured computation [70, 93, 20].

Marquita Ellis’ dissertation [59] describes how to efficiently manage irregular all-to-all
computation and compares bulk-synchronous approaches based on collective communication
(MPI-based) and asynchronous approaches based on one-sided communication (UPC++-
based). The bulk-synchronous approach makes extensive use of global communication col-
lectives that exchange data across processes in a single stage or, to save memory, in a series
of irregular stages. The asynchronous approach provides lightweight Remote Procedure Call
(RPC) techniques to transfer both data and computational work between processes. RPC
techniques give the user the ability to call a function on remote processes rather than using
low-level memory access primitives as in RMA.

Benjamin Brock’s dissertation [20] explores techniques for building high-level, cross-
platform distributed data structures for irregular computation using one-sided remote mem-
ory operations using the PGAS model paradigm. He also investigates RDMA-based (Remote
Direct Memory Access) distributed data structures, including hash tables, queues, and dense
and sparse matrices implemented in the Berkeley Container Library (BCL) [21].

GraphBLAS [98, 47] is an API specification that defines standard primitives for graph
algorithms in the linear algebra language. GraphBLAS is based on the notion that a sparse
matrix can be used to represent a graph as either an adjacency matrix or an incidence matrix.
GraphBLAS is currently available for shared memory [27] and work is underway to extend
it to distributed memory [22].

7.5 Sparse Linear Algebra in Genomics

Regarding the use of sparse matrices and matrices in general for genomic computations,
there is related work for both shared and distributed memory machines. The shared-memory
software BELLA [83] is the first work to propose the use of sparse matrices in the context of
de novo genome composition, focusing on the overlap detection phase. A sparse matrix A is
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used to indicate the presence of k-mers in sequences, and by multiplying by their transpose,

i.e. AA
T
, BELLA identifies overlapping sequences.

diBELLA 2D [85] resembles BELLA, in that it computes both overlap detection and
transitive reduction over an overlap graph as distributed SpGEMM and sparse computation.
PASTIS [144], similarly, computes protein homology search as distributed SpGEMM.

Besta et al. [17] present another approach similar to BELLA using distributed SpGEMM
to calculate the Jaccard similarity between read sets of different genomes. The main differ-
ence is that their software is optimized for the case where the output ∣genomes∣-by-∣genomes∣
matrix is dense because it stores the Jaccard similarity between any genome pairs.

7.6 High Performance Computing in the Cloud

There are many efforts in the literature to measure the performance of scientific applications
in the cloud. The lack of a low-latency network has been consistently identified as the main
bottleneck [86, 125, 161, 58, 57].

These studies have shown that the cloud delivers competitive performance for HPC appli-
cations with minimal communication and I/O, but significantly underperforms for memory-
and communication-intensive workloads. Virtualization overhead has also been identified as
a performance-limiting factor, but studies do not generally agree on its impact. He et al. [90]
(2010) concluded that virtualization technology has no significant performance overhead,
while the results in the Magellan report [161] (2011) and by Gupta et al. [86] (2014) show
that virtualization overhead along with slow network is one of the major limitations of the
cloud. Performance variability due to resource sharing and the lack of tools for using and
managing cloud environments–such as batch scheduling and base images–have also further
limited the competitiveness of the cloud for scientific computing [161, 86, 125].

It is important to note that in 2022, after the publication of our work in 2021, Reed,
Gannon, and Dongarra come to the same conclusion that the major cloud companies have
invested in massive-scale systems that dwarf today’s HPC systems [137]. Driven by the
computational demand of AI, these cloud systems are increasingly being built with custom
semiconductors, reducing the financial leverage of traditional computing companies. These
cloud systems are now changing the way we think about the nature of scientific computing.
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Chapter 8

Conclusions

In this dissertation, we presented a novel set of parallel and distributed algorithms for as-
sembling de novo long-read genomes using sparse matrix computation and semiring ab-
straction. The sparse matrix abstraction not only enabled better parallelization strate-
gies and thus better performance and higher productivity, but also improved algorithm
flexibility and modularity, which is critical for genomics software packages that need to
adapt quickly to new sequencing technologies. Our algorithms achieve high parallel effi-
ciency on thousands of cores on supercomputing machines with speedup up to 159× over
a popular competing assembler, reducing the runtime for human genome assembly from
days to minutes while showing promising assembly quality. Our algorithms for long-read
assembly are presented in a software package called ELBA (Extreme-Scale Long Read
Berkeley Assembler). The code for ELBA is open source and can be downloaded at:
https://github.com/PASSIONLab/ELBA. The input data used for evaluation by this disser-
tation is available for download at: https://portal.nersc.gov/project/m1982/ELBA.

In addition, we introduce several new mathematical and probabilistic methodologies inte-
grated into ELBA to facilitate selection in the hyperparameter space and ensure high-quality
outcomes. These methodologies prove that a seed-based approach for long-read sequencing
data is feasible and help us to choose the optimal k-mer length, the boundaries of the k-mer
set in terms of abundance, and the threshold for the pairwise alignment similarity score.
Our methodologies are general in nature and can be applied to other k-mer and pairwise
alignment strategies than the one implemented in ELBA.

This dissertation paves the way to high-performance genomics by addressing some of
the computational challenges that limit the far-reaching impact of genomics on everyday
life. However, developing highly parallel and scalable algorithms is not enough to democ-
ratize high-performance computing for genomics, as supercomputing machines are typically
allocated to specific research communities and access to them can be difficult. Therefore,
as a step toward democratic high-performance computing, we also explore alternatives to
traditional supercomputing systems in this dissertation. In particular, we performed a perfor-
mance comparison between today’s cloud computing systems and traditional HPC systems.
Our results show that cloud computing today can compete with traditional HPC systems
not only for compute-intensive applications, but also for communication-intensive applica-

https://github.com/PASSIONLab/ELBA
https://portal.nersc.gov/project/m1982/ELBA
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tions, at least at moderate scales, thanks to significant advances in networking technology.
For both compute-intensive and communication-intensive applications, cloud instances with
similar advertised network bandwidth to the supercomputer offered better communication
performance than the supercomputer. These results mark the beginning of a paradigm shift
in high-performance computing for scientific computation.

In conclusions, we believe that this dissertation will impact not only de novo long-read
genome assembly, as it will enable significantly faster assembly of large genomes, but also
the way we design, implement, and run genomics computation in general. This dissertation
demonstrates how parallel computing can be beneficial for genomics and how it is possible
to implement high-performance software while prioritizing programmer productivity and
algorithm flexibility through appropriate abstraction. It also demonstrates how computing is
moving toward massively parallel machines, where high-performance and parallel computing
competencies and techniques will become increasingly important.
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