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Abstract—An approach towards the implementation of the
Vector Potts Model using a network of coupled nonlinear
oscillators has been presented in this technical report. The
oscillator systems, under the influence of N-SHIL (Sub-
Harmonic Injection Locking), show phase dynamics that
have an underlying Lyapunov function, analogous to the
Vector Potts Hamiltonian with N states. The key concept
used here is that there are N equally spaced stable locks
under the influence of N-SHIL, which has been shown
using the Stability Theorem and linearization. The coupled
oscillator network tends to minimize the Lyapunov function
naturally over time, indicating the minimization of the
corresponding Hamiltonian. Global minimum Hamiltonians
of the Vector Potts problems can be obtained by adding
appropriate amounts of noise to this system, as well as
smoothly switching SHIL on and off multiple times. The
proposed method has been applied on several examples
of random graphs, that have been generated using the
rudy graph generator, for assessing performance and
demonstrating effectiveness.

Keywords: Vector Potts Model, Coupled oscillators,
OPM, N-SHIL, Kuramoto equation, Lyapunov function,
Stable locks.
I. Introduction

The Vector Potts Model [1] plays a significant role in
statistical mechanics and is a generalization of the Ising
Model [2, 3]. It consists of a number of discrete variables
called spins placed on a lattice, that can take one of N
possible states uniformly distributed about a circle, i.e.,
an angle of 2π . The model has an associated energy
function known as the Vector Potts Hamiltonian. The aim
of the Vector Potts problem is to assign values to the
Vector Potts spins in such a manner that the associated
Hamiltonian is minimized. This model is also known as
the clock model and is extremely interesting due to its
role in the study of phase transitions and other important
concepts in solid-state physics.
In this technical report, we present a novel approach
for implementing the Vector Potts model using coupled
nonlinear oscillator networks. At first, the theoretical
concepts that map the phase dynamics shown by an
oscillator system to the discrete Vector Potts Hamiltonian
of the corresponding coupling graph is studied. After that,
the concepts are applied to realize the Oscillator-Based

Potts Machine (OPM). The developed OPM is finally
applied on some simple as well as complex random
graphs generated using the rudy graph generator [4] to
show the efficacy of the scheme.
We first define the Vector Potts Hamiltonian and then
demonstrate the theory behind OPM. Initially, we modify
the Perturbation Projection Vector (PPV) [5, 6] equation
for oscillators and define it in terms of the phase differ-
ences of the oscillators. Then, the modified PPV equation
is used to derive the generalized Kuramoto equation for
oscillators [7–9] in the presence of a Nth harmonic SYNC
input that induces N-SHIL (Sub-Harmonic Injection
Locking) to the oscillator network. N-SHIL causes the
phase difference values of the oscillators to settle at
or near one of N distinct equispaced stable values in
the range [0,1) [10], given by k

2N (k = 1,3, · · · ,2N−1).
Moreover, the Kuramoto model, in the presence of N-
SHIL, has an underlying Lyapunov function which is
non-increasing with time [11]. This Lyapunov function
governs the oscillator network’s dynamics and is identical
to the Vector Potts Hamiltonian of the network coupling
graph at the discrete stable phase difference values of

k
2N (k = 1,3, · · · ,2N−1).
Therefore, we establish that the dynamics of the oscillator
networks, under the influence of N-SHIL, evolve naturally
to minimize the associated Lyapunov function, signifying
the minimization of the Vector Potts Hamiltonian, and find
good solutions to the Vector Potts problems. Appropriate
amounts of noise can be added to the system, along
with varying the coupling parameters with time such as
switching the Sub-Harmonic Injection Locking (SHIL)
on and off several times, so that phase dynamics converge
to the global minimum instead of a local minimum.
We demonstrate the effectiveness of our method with the
help of some random graphs, generated using the rudy
graph generator [4] and considering different values of
N. In each of these simulated cases, with the appropriate
choice of the parameters, the solution converges to the
discrete stable values, as expected, and is able to find the
global minimum solution, leading to a globally minimized
Vector Potts Hamiltonian of the corresponding network
coupling graph.
The fact that the global minimum value is actually
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obtained, has also been verified with the help of a separate
program that uses the Brute Force approach to find the
minimum Hamiltonian, by computing the Hamiltonian
for each permutation of the Potts states, and comparing
the computed values to find the minimum.
Over the years, research has been conducted on the
Vector Potts Model and its use in lattice statistics, and
the special case of N = 2 (Ising Model) has received
recognition in particular for its relatively simpler nature
and easier implementation. Numerous methods for the
physical implementation of the Ising Model have been
proposed; but limited research has been conducted on
the physical realization of the general case of the Vector
Potts Model.
The D-Wave Systems use a quantum computing approach
[12, 13] by taking superconducting loops as spins and
Josephson junction devices as connections, and can use
the concept of quantum tunneling for increasing perfor-
mance. However, the machines are unable to function at
room temperature and require costly cooling mechanisms.
There are other non-quantum implementations of the
Ising Model that can operate at room temperature. One
such method makes the use of laser pulses traveling on
long optical fibers and FPGA mechanism [14–16]. These
machines, though more compact than the quantum Ising
machines, may face integration and miniaturization issues
because of the use of long fibers.
Ising machines have also been implemented using digital
circuits such as CMOS SRAM cells as spins and digital
logic gates as means of coupling [17], as well as networks
of self-sustaining coupled oscillators [18]. The method
described in [17] does not guarantee a global optimal
energy state due to variability.
All the methods mentioned above focus only on the
realization of the N = 2 special case of the Vector Potts
Model, and not on implementing the general case. The
optical implementation of a three-state Potts model, by
using three-photon down-conversion oscillators, has been
proposed in [19]. Our scheme can be used for classically
implementing the generalized version of the Vector Potts
Model using interesting inherent physics.
In the rest of the report, we first define the Vector Potts
Model and its associated Hamiltonian in Sec. II. Then,
in Sec. III, we demonstrate the general theory behind
Oscillator-Based Potts Machine (OPM), i.e., we explain
the mapping between the Lyapunov function associated
with the phase dynamics of the coupled nonlinear oscil-
lator network and the Vector Potts Hamiltonian. Finally,
we show the efficacy and validity of the proposed scheme
with the help of randomly generated graphs of different
sizes, generated using the rudy graph generator [4] in
Sec. IV.
II. Vector Potts Model

The Vector Potts Model [1], also known as the Clock
Model and the Planar Potts Model, is used for studying

the behavior of ferromagnets and some other important
concepts in solid-state physics. It is a generalization
of the famous Ising model [2, 3] and was named after
the Australian mathematician, Renfrey Potts. The model
was explained by him in his Ph.D. thesis in 1951 and
suggested to him by his advisor, Cyril Domb. This model
consists of n discrete variables called spins {si} that are
placed on a lattice (generally a 2d Euclidean lattice), the
values of which are uniformly distributed on a circle, at
angles given by

θsi =
2πsi

N
, (1)

where si ∈ {0,1, · · · ,N−1}. The associated Vector Potts
interaction Hamiltonian is given by

H = ∑
i, j,i< j

Ji j cos(θsi−θsj), (2)

where Ji j represents the coupling between the Vector
Potts spins si and sj. The spins take up values in such a
manner that the Hamiltonian is minimized. The Vector
Potts Model is an important model in statistical mechanics
for studying phase transitions.
III. Oscillator-Based Potts Machine
In this section, we demonstrate the basic theory behind the
implementation of the Vector Potts Model using a network
of coupled nonlinear oscillators. At first, we formulate
the Perturbation Projection Vector (PPV) equation for
oscillators in terms of the phase difference in Sec. III-A.
Using this equation, the general Kuramoto equation for
oscillators, under the influence of N-SHIL (Sub-Harmonic
Injection Locking), has been derived in Sec. III-B. In
Sec. III-C, the Lyapunov function for the general Ku-
ramoto Equation (derived in Sec. III-B) has been shown.
Under the influence of N-SHIL, there are N equally
spaced stable locks ∈ [0,1) for the phase differences of
the oscillators, which have been computed in Sec. III-D.
Finally, using these stable solutions, the equivalence of the
Lyapunov function, shown in Sec. III-C, and the Vector
Potts Hamiltonian (2) has been established in Sec. III-E.

A. PPV equation for oscillators in terms of phase
difference

The Differential Algebraic Equation (DAE) for a circuit
involving oscillators [20] is given by

d
dt
~q(~x(t))+~f (~x(t))+~b(t) =~0, (3)

where ~x represents the internal state, ~f (·) and ~q(·)
represent the static and time-varying terms respectively,
and ~b(t) represents a small perturbation to the system.
If ~b(t) = 0, the self-sustaining oscillators produce a T0-
periodic natural oscillation denoted by ~xs(t) such that the
natural frequency is given by

f0 =
1
T0

. (4)

Using (4), it can be written that
~xs(t) =~x1s( f0t), (5)

where ~x1s(t) is a 1-periodic oscillation.
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The Perturbation Projection Vector (PPV) equation for
the oscillator system under the influence of ~b(t) is given
by

d
dt

α(t) = ~pT(t +α(t)) ·~b(t), (6)

where ~p(t) is known as the Perturbation Projection Vector
(PPV) [6] or the Phase Response Curve (PRC) [21],
which is a T0-periodic function of time and α(t) rep-
resents the time-shift caused by the external perturbation.
Under such conditions, the oscillator’s response, as has
been shown in [5], can be written as

~x(t) =~xs(t +α(t))+~y(t)
=~x1s( f0(t +α(t)))+~y(t),

(7)

where~y(t) (deviation from the natural oscillation) is small
if ~b(t) is small.

It is assumed that the perturbation ~b(t) is of the form
~b(t) =~b1( f ∗t +φin(t)), (8)

where ~b1(·) is a 1-periodic function, f ∗ is some nominal
input frequency1 and φin(t) is some input phase that is
suitable for 1-periodic functions.
Let the phase of the oscillator φ(t) be defined as

φ(t) = f0t + f0α(t). (9)
Using (9), the following is true

~xs(t +α(t)) =~xs(
φ(t)

f0
). (10)

Let the phase difference between the nominal input phase
and the oscillator response phase be defined as

∆φ(t) = φ(t)− f ∗t. (11)
Therefore, using (9) and (11), we get

φ(t) = f0(t +α(t)) = f ∗t +∆φ(t) (12)

⇒ (t +α(t)) =
f ∗t +∆φ(t)

f0
(13)

⇒~xs(t +α(t)) =~xs(
f ∗t +∆φ(t)

f0
)

=~x1s( f ∗t +∆φ(t)).
(14)

Rewriting (6) in terms of ∆φ(t) using (13),

α(t) =
f ∗t +∆φ(t)

f0
− t (15)

⇒ d
dt

α(t) =
f ∗− f0

f0
+

1
f0

d
dt

∆φ(t) (16)

⇒ d
dt

∆φ(t) = f0− f ∗+ f0~p(
f ∗t +∆φ(t)

f0
) ·~b1( f ∗t

+φin(t)).
(17)

Let the 1-periodic version of ~p(t) in (6), denoted by
~p1(t), be defined as

~p1(t), ~p(tT0). (18)
Using (18) in (17), we obtain the PPV equation in terms

1For FHIL, we usually assume locking to f ∗, but this is not a strict
rule. For e.g., locking can be done to f ∗

N for N-SHIL.

of ∆φ(t), given by
d
dt

∆φ(t) = f0− f ∗+ f0~p1( f ∗t +∆φ(t)) ·~b1( f ∗t

+φin(t)).
(19)

B. General Kuramoto equation for oscillators in the
presence of N-SHIL

Let there be n coupled oscillators with phases denoted
by φi(t) and averaged phases denoted by φa,i(t) such that
φa,i(t)' φi(t)(i = 1, · · · ,n). The oscillators have identical
steady-state waveforms (1-periodic forms) denoted by
~x1s(t) given by (5). However, their frequencies fi can be
different, i.e.,

~xs,i(t) =~x1s( fi t). (20)
Moreover, the same nominal input frequency f ∗ is
assumed for all the oscillators (though not a restriction
since individual oscillator features are captured in φi(t)).
From (7), the perturbed response of the ith oscillator
(ignoring the y(t) small orbital deviation) is

~xi(t) =~x1s( fi(t +αi(t)))
=~x1s( f ∗t +∆φi(t)). (using (14))

(21)

The input to the ith oscillator is a weighted sum of the
outputs of all the other oscillators, added with a Nth

harmonic SYNC input, and is given by

~bi(t) =
n

∑
j=1
j 6=i

βi j~x1s( f ∗t +∆φi(t))

+~Ks cos(2πN( f ∗t +φs(t))),

(22)

where ~Ks is the vector version of SYNC coupling and
φs(t) is the phase of SYNC input. We assume the same
1-periodic PPV for all the oscillators such that

~p1,i(t)≡ ~p1(t). (23)
From (19), the generalized Kuramoto equation [7–9] with
SYNC input ~Ks cos(2πN( f ∗t + φs(t))) can be derived,
which is given by

d
dt

∆φi(t) = fi− f ∗+ fi

n

∑
j=1
j 6=i

βi j gc(∆φi(t)−∆φ j(t))

+ fi gs(∆φi(t)−φs(t))

(24)

with gc(τ),
∫ 1

0
~p1(t + τ) ·~x1s(t)dt

=
∞

∑
l=−∞

~p1,l ·~x1s,−le j2πlτ ,
(25)

and gs(τ),
∫ 1

0
~p1(t + τ) ·~Ks cos(2πNt)dt

=
1
2
[~p1,N e j2πNτ +~p1,−N e− j2πNτ ] ·~Ks,

(26)

where ~p1,l and ~x1s,−l are the Fourier coefficients of ~p1(·)
and ~x1s(·) respectively, and gc(·) and gs(·) are general
1-periodic functions.
Let there be the following special conditions:

fi = f0∀ i, (27)
f ∗ = f0, (28)
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~x1s(t) = ~X1s cos(2πt) (where ~X1s is real), (29)
φs(t)≡ 0, and (30)
~p1(t) =~a0 +~a1 sin(2πt)+~a2 sin(2π ·2t)+ · · ·+

~aN sin(2π ·Nt)+ · · · ,
(where ~ai∀ i are real.).

(31)

Using the conditions (27)-(31) and (23), gc(τ) from (25)
becomes

gc(τ) =
~a1 ·~x1s

2
sin(2πτ). (32)

Similarly, gs(τ) from (26) becomes

gs(τ) =
1
2
~aN ·~Ks sin(2πNτ). (33)

Using (32) and (33), the Kuramoto equation (24) becomes
d
dt

∆φi(t) = f0

n

∑
j=1
j 6=i

βi j
~a1 ·~x1s

2
sin(2π(∆φi(t)−∆φ j(t)))

+ f0
~aN ·~Ks

2
sin(2πN∆φi(t))

(34)

⇒ d
dt

∆φi(t) = K
n

∑
j=1
j 6=i

βi j sin(2π(∆φi(t)−∆φ j(t)))

+Ks sin(2πN∆φi(t)),

(35)

where K , f0
~a1·~x1s

2 and Ks , f0
~aN ·~Ks

2 .

C. Lyapunov function corresponding to the Kuramoto
equation

Let
#  »

∆φ(t) be defined as
#  »

∆φ(t), [∆φ1(t), ∆φ2(t), · · · , ∆φn(t)]T. (36)
Claim: The global Lyapunov function for (35) can be
written as

E(
#  »

∆φ) =
N
2

K
n

∑
i, j
j 6=i

βi j cos(2π(∆φi−∆φ j))

+Ks

n

∑
i=1

cos(2πN∆φi),

(37)

where
#  »

∆φ is given by (36).
Proof: Being a global Lyapunov function, the coupled
oscillator system should tend to minimize (37) as it
evolves over time [11], i.e., d

dt (E(
#  »

∆φ(t))) must be less
than or equal to 0.
d
dt (E(

#  »

∆φ(t))) is given by
d
dt
(E(

#  »

∆φ(t))) =
n

∑
k=1

[
∂ (E(

#  »

∆φ))
∂ (∆φk)

∣∣∣
∆φk(t)

· d
dt
(∆φk(t))].

(38)
Therefore, in order to show that (37) is indeed a global
Lyapunov function, E needs to be differentiated first
with respect to

#  »

∆φ . It can be observed that the first
component of E in (37) consists of (n2− n) number
of cos(·) terms. For any index k, ∆φk appears (n− 1)
times as the subtrahend inside cos(·); these terms are

given by βkl cos(2π(∆φk−∆φl)) (l = 1, · · · ,n and l 6= k),
and another (n−1) times as the minuend inside cos(·);
these terms are given by βlk cos(2π(∆φl − ∆φk)) (l =
1, · · · ,n and l 6= k).

So, ∂ (E( # »∆φ))
∂ (∆φk)

can be written as

∂ (E(
#  »

∆φ))
∂ (∆φk)

=
N
2

K
n

∑
l=1
l 6=k

βkl
∂

∂ (∆φk)
[cos(2π(∆φk−∆φl))]

+
N
2

K
n

∑
l=1
l 6=k

βlk
∂

∂ (∆φk)
[cos(2π(∆φl−∆φk))]

+Ks
∂

∂ (∆φk)
(cos(2πN∆φk))

(39)

=−N
2

K
n

∑
l=1
l 6=k

βkl sin(2π(∆φk−∆φl)) ·2π

+
N
2

K
n

∑
l=1
l 6=k

βlk sin(2π(∆φl−∆φk)) ·2π

−Ks sin(2πN∆φk) ·2πN

(40)

=−2πN[
1
2

K
n

∑
l=1
l 6=k

2βkl sin(2π(∆φk−∆φl))

+Ks sin(2πN∆φk)]

(using βkl = βlk ∀k, l and sin(−x) =−sin(x))
(41)

=−2πN
d
dt

∆φk(t). (using (35)) (42)

Note that in (39), terms not involving k at all have been
dropped since ∂

∂ (∆φk)
= 0 for those terms.

Substituting (42) in (38), we get
d
dt
(E(

#  »

∆φ(t))) =
n

∑
k=1

[
∂ (E(

#  »

∆φ))
∂ (∆φk)

∣∣∣
∆φk(t)

· d
dt
(∆φk(t))]

=−2πN
n

∑
k=1

(
d
dt

∆φk(t))2 ≤ 0.

(43)
Hence, (37) is a global Lyapunov function that the
coupled oscillators minimize over time.
D. Computing stable locks
When K = 0, (35) reduces to

d
dt

∆φi(t) = f (∆φi) =Ks sin(2πN∆φi), i= 1, · · · ,n. (44)
The equilibrium solutions of (44) can be computed using
the Stability Theorem and used to accurately predict the
injection-locked states under N-SHIL. The equilibrium
equation for (44) can be written as

d
dt

∆φi(t) = 0, i = 1, · · · ,n (45)

⇒ Ks sin(2πN∆φi) = 0 (46)
⇒ 2πN∆φi = kπ, k = 0,1, · · · (47)
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⇒ ∆φi =
k

2N
. (48)

Now, there are 2N distinct solutions for (48) in the interval
∆φi ∈ [0,1), given by ∆φ ∗k = k

2N (k = 0,1, · · · ,2N−1).

Of these 2N solutions, if k = 2k
′
(k
′
= 0,1, · · · ,N −

1),∆φ ∗k = k
2N = k

′

N . Therefore, using (44),

f
′
(∆φi)

∣∣∣
∆φ∗k

= Ks ·2πN cos(2πN∆φ ∗k )

= Ks ·2πN cos(2πk
′
)

= Ks ·2πN [using cos(2πk
′
) = 1]

> 0.

(49)

Again, if k = 2k
′
+1 (k

′
= 0,1, · · · ,N−1),∆φ ∗k = k

2N =
2k
′
+1

2N . Therefore, using (44),

f
′
(∆φi)

∣∣∣
∆φ∗k

= Ks ·2πN cos(2πN∆φ ∗k )

= Ks ·2πN cos(π(2k
′
+1))

=−Ks ·2πN [using cos(π(2k
′
+1)) =−1]

< 0.
(50)

Applying Taylor series approximation in (44) about
∆φ ∗k = k

2N (k = 0,1, · · · ,2N−1) and neglecting all higher
order (higher than 1st order) terms,

d
dt

∆φi(t) = f (∆φi(t)) = f (∆φ ∗k )+ f
′
(∆φ ∗k ) ·δφi(t)

(where ∆φi(t) = ∆φ ∗k +δφi(t); i = 1, · · · ,n)
(51)

= 0+ f
′
(∆φ ∗k ) ·δφi(t)

(using (46))
(52)

= f
′
(∆φ ∗k ) ·δφi(t). (53)

Now, if ∆φ ∗k = k
2N (k = 0,2, · · · ,2N− 2), f

′
(∆φ ∗k ) > 0

(using (49)). Therefore,
δφi(t)> 0 (right neighborhood)

⇒ f
′
(∆φ ∗k ) ·δφi(t)> 0

⇒ d
dt

∆φi(t) = f (∆φi(t))> 0. (using (53))
(54)

and δφi(t)< 0 (left neighborhood)

⇒ f
′
(∆φ ∗k ) ·δφi(t)< 0

⇒ d
dt

∆φi(t) = f (∆φi(t))< 0. (using (53))
(55)

Using (54) and (55), it can be seen that at ∆φ ∗k = k
2N (k =

0,2, · · · ,2N − 2), over time, the neighboring solutions
move away from the equilibrium and hence these ∆φ ∗k
are unstable solutions to (45).
Again, if ∆φ ∗k = k

2N (k = 1,3, · · · ,2N−1), f
′
(∆φ ∗k )< 0

(using (50)). Therefore,
δφi(t)> 0 (right neighborhood)

⇒ f
′
(∆φ ∗k ) ·δφi(t)< 0

⇒ d
dt

∆φi(t) = f (∆φi(t))< 0. (using (53))
(56)

and δφi(t)< 0 (left neighborhood)

⇒ f
′
(∆φ ∗k ) ·δφi(t)> 0

⇒ d
dt

∆φi(t) = f (∆φi(t))> 0. (using (53))
(57)

Using (56) and (57), it can be seen that at ∆φ ∗k = k
2N (k =

1,3, · · · ,2N − 1), over time, the neighboring solutions
move towards the equilibrium and hence these ∆φ ∗k are
stable solutions to (45).
So, it can be seen that there are exactly N equally spaced
stable locks under the influence of N-SHIL [10] due to
the Ks (SYNC) terms in (45) such that ∆φ ∗k = k

2N (k =
1,3, · · · ,2N−1).
When Ks >> K, the coupling terms represent only small
perturbations to the locks; hence k

2N (k = 1,3, · · · ,2N−1)
remain good approximation to the stable locks.

E. Equivalence of the Lyapunov function and the
Vector Potts Hamiltonian

At the discrete points where ∆φ ∗k = k
2N (k = 1,3, · · · ,2N−

1),
cos(2πN∆φ ∗k )≡−1. (58)

Using (58), (37) reduces to

E(
#  »

∆φ) =
N
2

K
n

∑
i, j
j 6=i

βi j cos(2π(∆φi−∆φ j))−nKs

(where ∆φi = ∆φ ∗ki
=

ki

2N
and ∆φ j = ∆φ ∗k j

=
k j

2N
;

ki,k j = 1,3, · · · ,2N−1)

(59)

=
N
2

K ·2
n

∑
i, j

i< j

βi j cos(2π(∆φi−∆φ j))−nKs

(using βi j = β ji ∀ i, j)
(60)

= NK
n

∑
i, j

i< j

βi j cos(2π(∆φi−∆φ j))−nKs, (61)

where nKs is a constant.
Hence, it can be observed that (61) is a scaled version of
the discrete Vector Potts Hamiltonian (2) with a constant
offset and βi j = Ji j ∀i, j. Moreover, for (2) to be equivalent
to (61), θk defined in (1) becomes

θk =
2πk
2N

(k = 1,3, · · · ,2N−1)

=
πk
N

.

(62)
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Therefore, we have successfully established that a network
of self-sustaining, coupled oscillators, under the influence
of N-SHIL, can be used for realizing the Vector Potts
model.
It is to be noted that the Lyapunov function (37) will
have several local minima, and the solutions obtained
by OPM are not always guaranteed to settle at or near
the global minimum. But, the introduction of noise via
Kn (a noise level parameter), and smoothly varying the
parameter Ks with time can increase the chances of the
solutions to settle at or near the global minimum.
IV. Results
In this section, we apply OPM to several randomly gen-
erated graphs, generated using the rudy graph generator
[4] in order to confirm the validity of the scheme and to
assess performance. Problems using random graphs are
generally tougher to solve than practical problems, since
practical problems are subjected to physical constraints
and can be simpler. Problems with only positive weights
tend to be trivially easy, for which we have considered
graphs with ±1 edge weights. At first, we demonstrate
how OPM can solve a special case of the Vector Potts
problem with 2 states per spin, i.e., the Ising problem,
with the help of a simple example, in Sec. IV-A. In
this case, the Oscillator-Based Potts Machine serves as
the Oscillator-Based Ising Machine [18]. Next, we show
that OPM can solve a Potts problem with 3 states in
Sec. IV-B. Also, the significance of ramping SYNC up
and down is explained in this subsection. In Sec. IV-C,
we use OPM to find the global minimum Hamiltonian
of a 4-state Potts problem and observe the role of noise
as n increases. After that, we increase n further to verify
the importance of SYNC ramping and noise to reach
the global minimum Hamiltonian in Sec. IV-D. Finally,
in Sec. IV-E, we summarize the results shown in the
previous subsections.

A. Small (n = 2, N = 2) illustrative example
To explain how the method works, we first take a very
small and simple example of a random graph, with just 2
nodes and 1 edge, with the edge weight set to -1 (Figure 1)
and the value of N set to 2, i.e., the Ising problem.

1 2
-1

Fig. 1: A random graph with 2 nodes and 1 edge, with edge weight -1.

The intent of this experiment is to confirm that simulation
of the Kuramoto model, in the presence of 2-SHIL,
can successfully solve the problem (Figure 1) i.e., find
the global minimum Hamiltonian of the Potts Problem,
considering each node as a Potts spin and the coupling
between the spins as -1. Each spin can take 2 possible
states (N = 2), uniformly distributed in 2π , and given
by {π

2 ,
3π
2 }. To show that OPM can find a solution of

this problem, the Kuramoto model in the presence of N-
SHIL (35) was simulated, keeping the modulating factor
over the coupling strength of the network K = 0.5, and

the SYNC coupling Ks = 3, both constant with time.
The Forward Euler method was used to solve (35) with
simulation time step2 set to 10−5. Results from the
simulation with Kn = 0 (i.e., in the absence of noise)
are shown in Figure 2.

Fig. 2: 2-SHIL OPM simulation on the n = 2 system in the absence of noise
with random initialization.

The initial phase differences of the oscillators were
randomly initialized to values in the range [0, 1). In
Sec. III-D, it has been shown that there should be N
equally-spaced stable solutions to the Kuramoto equation
in the presence of N-SHIL, given by ∆φ ∗k = k

2N (k =
1,3, · · · ,2N − 1). Therefore, for 2-SHIL, phase differ-
ences should converge to 1

4 or 3
4 , i.e., 0.25 or 0.75. As

expected, the phase differences converge to 0.75 in this
example (Figure 2).
It is readily verified that the settled phase differences
{∆φ1 = 0.75,∆φ2 = 0.75} globally minimize the Hamil-
tonian (2):

H =−1 · (cos(2π(0.75−0.75))) =−1 · (cos(2π ·0))
=−1.

(63)
Hence, OPM can be used for solving Ising combinatorial
problems such as MAX-CUT, taking the value of N as
2.
It is to be noted that due to random initializations,
the solutions converge to different values on every run,
thereby generating different plots, and hence convergence
to the global minimum solution cannot be ensured
on every run. For e.g., in Figure 3, the initial phase
differences of the oscillators are such that the settled phase
differences {∆φ1 = 0.25,∆φ2 = 0.75} do not globally
minimize the Hamiltonian (2):

H =−1 · (cos(2π(0.25−0.75)))
=−1 · (cos(2π · (−0.5))) = (−1) · (−1) = 1.

(64)

For this n = 2,N = 2 problem, using 10 different com-
binations of K and Ks (both constant with time), with
10 random initial conditions per combination, the global
minimum Hamiltonian value was achieved on an average
of 6 out of 10 times. Hence, for this small problem,
ramping the SYNC signal up and down, as well as noise
was not necessary. The necessity arises when the size

2The Forward Euler method was also used for the other problems,
which have been explained later on in this section, keeping the
simulation time step fixed at 10−5. Accuracy of the Forward Euler
increases as step size is reduced, but the computational cost also
increases due to increase in the number of time steps. Hence an
optimum value of 10−5 was chosen.
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Fig. 3: 2-SHIL OPM simulation on the n = 2 system in the absence of noise
with random initialization such that global minimum Hamiltonian is
not obtained.

of the problem increases, as we will be seeing in the
subsequent subsections.

B. n = 4, N = 3 example

The purpose of this example is to confirm that simulation
of the Kuramoto model, under the influence of 3-SHIL,
can find the global minimum Hamiltonian of a Potts
problem, with each Potts spin taking up one out of 3
possible states (N = 3) distributed evenly in 2π , given
by {π

3 ,π,
5π
3 }. Moreover, the importance of ramping the

SYNC signal up and down will be demonstrated using
this example.
For this problem, a random graph with 4 nodes and
3 edges was generated using ./rudy -rnd graph 4 50
10001, with edge weights in {−1,+1} (Figure 4). The
fraction of edges with negative weights is 2

3 .

1 2

3 4

-1 -1 +1

Fig. 4: A random graph with 4 nodes and 3 edges, with edge weights in
{−1,+1}.

All different possible values of the Hamiltonian for this
problem are summarized in Table I.
TABLE I: Possible values of the Hamiltonian for the problem in Figure 4.

No.
Hamiltonian
Value

An example of settled
phase differences
(∆φ1,∆φ2,∆φ3,∆φ4)

1 -2.5 ( 5
6 ,

5
6 ,

5
6 ,

1
6 )

2 -1.0 ( 1
2 ,

1
6 ,

1
2 ,

5
6 )

3 0.5 ( 1
2 ,

1
2 ,

1
6 ,

5
6 )

4 2.0 ( 1
2 ,

1
6 ,

5
6 ,

1
6 )

For the simulation, the values of K and Ks were kept
fixed (with time) at 0.5 and 3 respectively. The simulation
was run in the absence of noise. The evolution of phase
differences with time are shown in Figure 5. It is seen
from Figure 5 that the phase differences converge to an
odd multiple of 1

6 . Moreover, using the settled phase
differences {∆φ1 = 1

2 ,∆φ2 = 1
2 ,∆φ3 = 1

2 ,∆φ4 = 1
6}, the

obtained value of the corresponding Hamiltonian is -2.5,
which is the global minimum, as verified from Table I.

Fig. 5: 3-SHIL OPM simulation on the n = 4 system in the absence of noise
with random initialization.

For this example, it was observed that the global minimum
Hamiltonian value was either not obtained, or obtained in
very few random trials for certain combinations of K and
Ks (constant with time), due to the local minimization of
the associated Lyapunov function. Running the simulation
keeping K and Ks fixed with time at 0.3 and 2 respectively,
Figure 6 was obtained.

Fig. 6: 3-SHIL OPM simulation on the n = 4 system with constant Ks = 2,
for which the global minimum Hamiltonian is not reached.

It is readily seen that the approximate settled phase
differences in Figure 6 are {∆φ1 = 1

2 ,∆φ2 = 1
2 ,∆φ3 =

5
6 ,∆φ4 = 1

6}, for which the Hamiltonian value is 0.5.
This is not the global minimum, as seen from Table I.
To move out of the local minimum, ramping the SYNC
signal up and down is very useful. Hence, the Ks
parameter, kept fixed at 2 for obtaining Figure 6, was
varied with time using a triangular waveform with
periodicity 1 (Figure 7), taking the peak value as 2
(previously constant with time) and the minimum value
as 0.

Fig. 7: Triangular waveform for Ks with minimum value = 0, maximum value
= 2 and period = 1.

The results from this simulation, considering the same
random initial condition used for obtaining Figure 6, is
shown in Figure 8.
The settled values in Figure 8 (in the presence of SHIL)
are {∆φ1 =

1
2 ,∆φ2 =

1
2 ,∆φ3 =

1
2 ,∆φ4 =

1
6}, for which the

Hamiltonian value is -2.5. This illustrates how ramping
SYNC up and down can drive the system to find the
global minimum In fact, for 100 random choices of
initial condition, simulation using fixed K = 0.3 and
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Fig. 8: 3-SHIL OPM simulation on the n = 4 system with time-varying Ks
(Figure 7) and the same random seed as Figure 6, for which the global
minimum Hamiltonian is reached.

Ks = 2 globally minimized the Hamiltonian only 9 times,
whereas simulation using time-varying Ks (Figure 7)
globally minimized the Hamiltonian 26 times. For this
problem, noise was not essential; but noise plays an
important role as the size of the problem increases, as
we will see in the following subsections.

C. n = 20, N = 4, Sparsity = 137
190 example

The point of this example is to show that the Hamiltonian
of a Potts problem, with 4 possible states (N = 4) per
spin, divided equally in 2π , can be globally minimized
using the simulation of OPM, in the presence of 4-SHIL.
Also, the role of noise is shown using this example.
We now consider a random graph with 20 nodes and 53
edges, generated using ./rudy -rnd graph 20 28 1000,
with edge weights in {−1,+1}. The fraction of negative
edge weights is 32

53 . As discussed in Sec. IV-B, with the
increase in the size of the problem, global minimum
Hamiltonian may not be obtained using constant Ks due
to the local minimization of the associated Lyapunov
function, and ramping SYNC up and down becomes
necessary. Hence, a triangular waveform for Ks, shown
in Figure 9, was used for the problem.

Fig. 9: Triangular waveform for Ks with minimum value = 0, maximum value
= 10 and period = 1.

The value of K was kept fixed at 2.5 during the simulation,
with Kn = 0. The evolution of phase differences and the
corresponding Hamiltonian is shown in Figures 10 and 11,
respectively. It is observed from Figure 10 that the phase
differences converge approximately to odd multiples of
1
8 , in the presence of SHIL. It is also seen that the
discretization goes away as SHIL is gradually removed
from the system. Yet another observation is that most of
the values converge approximately to some odd multiple
of 1

2N and in the range [0, 1), as expected. However, some
of the values are outside that range, but can be mapped
to some odd multiple of 1

2N and in the range [0, 1). The
Kuramoto equation (35) contains sin(2π(·)) terms which
are 1-periodic. So, if ∆φ is an odd multiple of 1

2N and
lies in the range [-1, 0), it can be mapped to (∆φ +1),

which is also an odd multiple of 1
2N and lies in the range

[0, 1). Similarly, if ∆φ lies in the range [1, 2), it can be
mapped to (∆φ −1), which lies in the range [0, 1).

Fig. 10: 4-SHIL OPM simulation on the n = 20 system in the absence of
noise with random initialization.

Fig. 11: The evolution of the corresponding Hamiltonian over time for the
n = 20 system.

Figure 11 has been generated by thresholding phase
differences at each time step to the nearest odd multiples
of 1

8 to correspond to the discretized Potts states. It is
observed that the Hamiltonian value, obtained using the
settled phase difference, is -33.
To see if this value is the global minimum, a separate
program was written that follows a brute-force approach
for generating the minimum value of the Vector Potts
Hamiltonian for a particular problem. For this program,
Backtracking3 [22] was used to generate all possible
permutations of the states of the Potts spins, thereby
computing the Hamiltonian for each permutation, and ex-
tracting the minimum value. The Python implementation
of this is given in Appendix A. Using this program, the
minimum Hamiltonian value for this problem was found
out to be -33, thereby confirming that the Hamiltonian
value obtained using OPM is indeed the global minimum.
Moreover, it was observed that the introduction of an
appropriate amount of noise improved the performance by
effectively globally minimizing the associated Lyapunov
function. Keeping K fixed at 2.5 and using the time-
varying Ks shown in Figure 9, in the absence of noise,
the number of times that the global minimum Hamiltonian
value was reached, out of 100 random choices of initial
conditions, was 36, whereas with Kn = 0.2 (constant with
time), the number of times that the global minimum
was obtained was 55. Also, in the presence of noise,
the number of times that Hamiltonian values < 90%
of the global minimum was obtained, was 94 out of
the 100 random instances. This indicates that OPM
successfully found solutions of the problem, which are

3Backtracking is a general method used to solve a computational
problem. It recursively builds the solution in an incremental manner
with time by searching the entire solution space and removing the
solutions that do not satisfy the constraints of the problem.
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close to the global minimum. Considering one such
random initialization such that the global minimum value
was obtained with noise and not in the absence of noise,
the progress of phase differences with time, in the absence
and the presence of noise, are shown in Figures 12 and 13
respectively.

Fig. 12: 4-SHIL OPM simulation on the n= 20 system with Kn = 0, for which
the global minimum Hamiltonian is not reached.

Fig. 13: 4-SHIL OPM simulation on the n = 20 system with Kn = 0.2 and
the same random seed as Figure 12, for which the global minimum
Hamiltonian is reached.

The change in the corresponding Hamiltonian values with
time, in the absence and presence of noise, are shown in
Figures 14 and 15, respectively. In the absence of noise,
the Hamiltonian value reached is -32 (Figure 14). But,
with noise, the global minimum Hamiltonian value of -33
is achieved (Figure 15). Hence, noise plays an important
role in the global minimization of the Lyapunov function,
resulting in the global minimization of the corresponding
Hamiltonian.

Fig. 14: The evolution of the Hamil-
tonian over time correspond-
ing to Figure 12, for which
the global minimum Hamil-
tonian is not reached.

Fig. 15: The evolution of the Hamil-
tonian over time correspond-
ing to Figure 13, for which
the global minimum Hamil-
tonian is reached.

Simulation was also run using 10 different combinations
of K and Ks, keeping Kn fixed at 0.2. For each combina-
tion, 10 random initializations were considered, adding to
a total of 100 random instances. The histogram obtained
from this simulation is shown in Figure 16.
The global minimum Hamiltonian was noted to be found
at least once in 7 out of the 10 combinations, and in 36
out of the 100 random instances. The mean and standard
deviation of the minimum Hamiltonian value achieved

Fig. 16: Histogram of the minimum Hamiltonian obtained using different
combinations of K and Ks, keeping Kn = 0.2, for the n = 20 system.

in each simulation were -32.1 and 1.578, respectively.

D. n = 32, N = 4, Sparsity = 109
124 example

We consider another example, with 32 nodes and 60 edges,
generated using ./rudy -rnd graph 32 12 10001, with
the edge weights in {−1,+1} and N set to 4. The fraction
of edges with negative weights is 7

15 . The aim of this
example is to confirm the usefulness of ramping SYNC
up and down for globally minimizing the Hamiltonian, as
discussed in Sec. IV-B. Also, the value of noise, already
discussed in Sec. IV-C, is verified.
K and Kn were kept constant at 5 and 0.2, respectively,
over the simulation. Ks was time-varying as in Figure 9.
Figures 17 and 18 show how phase differences and the
corresponding Hamiltonian advance with time, respec-
tively.

Fig. 17: 4-SHIL OPM simulation on the n = 32 system in the presence of
noise with random initialization.

Fig. 18: The evolution of the corresponding Hamiltonian over time for the
n = 32 system.

It is seen from Figure 17 that the phase differences
converge to odd multiples of 1

8 in the presence of SHIL,
indicating that the phase differences get discretized, which
correspond to the discretized Potts states. Also, it is
observed from Figure 18 that the value of the Hamiltonian,
computed using the settled phase differences, is -38. The
brute force program, mentioned in Sec. IV-C (Python
implementation in Appendix A), was used to verify that
the Hamiltonian value of -38 is the global minimum
value.
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Furthermore, simulation was run using 10 different
combinations of K and Ks, over 10 random initializations
per combination, i.e., a total of 100 random instances,
with Kn = 0.2. The obtained histogram is shown in
Figure 19.

Fig. 19: Histogram of the minimum Hamiltonian obtained using different
combinations of the parameters K and Ks, keeping Kn = 0.2, for the
n = 32 system.

It was observed that the global minimum Hamiltonian
was obtained at least once in 5 out of the 10 combinations.
Moreover, it can be seen from Figure 19 that the global
minimum value was reached in 24 out of the 100
random instances. The mean and standard deviation of
the minimum Hamiltonian obtained in each simulation
were -37.1 and 1.044, respectively.
It is important to note that, with the increase in the
size of the problem, the proper choice of the parameters
become crucial in achieving good results. For this
problem, the importance of the choice has been shown
using histograms (Figure 20), with the help of three
different combinations of the simulation parameters. The
combinations include constant Ks, SYNC ramping in the
absence of noise and SYNC ramping in the presence of
noise. K was kept fixed for all the three combinations
at 5. For the first combination, Ks was taken to be 10
(fixed with time). For the second and third combinations
in which SYNC ramping was performed, time-varying
Ks as in Figure 9 was considered. Kn was kept constant
with time at 0.2 for the third combination. 100 random
choices of initial conditions were considered for each of
the three combinations.

Fig. 20: Histograms of the minimum Hamiltonian achieved by different
combinations of the parameters K, Ks and Kn, for the n = 32 system.
triangle(0, 10, 1) refers to the triangular waveform in Figure 9.

The results from the histograms (Figure 20) have been
summarized in Table II.

TABLE II: Different combinations of the simulation parameters to observe
the number of times the global minimum is obtained, out of
100 random instances. triangle(0, 10, 1) refers to the triangular
waveform in Figure 9 with minimum value = 0, peak value = 10
and period = 1.

No.
Simulation
Parameters

Number of times
the global mini-
mum is obtained

1
K = 5; Ks = 10;
Kn = 0

0

2
K = 5; Ks = trian-
gle(0, 10, 1); Kn
= 0

22

3
K = 5; Ks = trian-
gle(0, 10, 1); Kn
= 0.2

31

Hence, it is readily seen that both SYNC ramping and
noise play a crucial role in the global minimization of
the Hamiltonian. Moreover, for the 3rd combination in
Table II, i.e., in the presence of time-varying Ks and
noise, Hamiltonian values < 90% of the global minimum
were obtained in 89 out of the 100 random instances, as
observed from Figure 20. This signifies that OPM was
successful in finding solutions of the problem, which are
near the global minimum.
Python code for reproducing these outcomes is given in
Appendix B. To generate the results reported here, we
used a C++ implementation which is much faster than
Python.

E. Summary of the results

The results of the already-mentioned examples, along with
the results of two other examples (i.e., n = 20, N = 3
example, for which the same graph as in Sec. IV-C was
used, and n = 32, N = 3 example, for which the graph
used in Sec. IV-D was considered), have been summarized
in Table III.
Note that, as expected, OPM is much faster than the
Brute Force approach as n increases, which is observed
from Table IV. The examples in Table IV correspond to
the ones discussed in the previous subsections. For very
small values of n, the difference in computation time
between the two approaches is not significant. However,
as n increases, due to the Nn possible permutations of
the states of the Potts spins, the Brute Force approach
can take several days to complete, whereas the OPM
approach can be completed within a very short period of
time, as seen in Table IV.
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TABLE III: Examples for validating OPM

Test
No. (n,N)

-ve
wi j

4

Brute
Force:
min
H
value5

OPM:
min
H
value6

Parameters7
OPM:
(Mean,
STD)8

1 (2, 2) 1 -1 -1

K = 0.5; Ks
= 3; Kn = 0
; Tstop = 2;
Edges = 1.

(-1, 0)

2 (4, 3)
2
3

-2.5 -2.5

K = 0.5; Ks
= 3; Kn = 0
; Tstop = 2;
Edges = 3.

(-2.5,
0)

3 (20, 3)
32
53

-27.5 -27.5

K = 1.5; Ks
= triangle(0,
10, 1)9; Kn
= 0.2 ; Tstop
= 5; Edges =
53.

(-27.2,
0.9)

4 (20, 4)
32
53

-33 -33

K = 2.5; Ks
= triangle(0,
10, 1)9; Kn
= 0.2 ; Tstop
= 5; Edges =
53.

(-32.1,
1.578)

5 (32, 3)
7

15
-33.5 -33.5

K = 5; Ks
= triangle(0,
10, 1)9; Kn
= 0.2 ; Tstop
= 5; Edges =
60.

(-32.9,
0.995)

6 (32, 4)
7

15
-38 -38

K = 5; Ks
= triangle(0,
10, 1)9; Kn
= 0.2 ; Tstop
= 5; Edges =
60.

(-37.1,
1.044)

V. Conclusion
In conclusion, we have demonstrated a method for
implementing the Vector Potts Model using a network
of coupled nonlinear oscillators in this technical report.
We have shown that the phase dynamics of the oscillator
networks, under the influence of N-SHIL, evolve naturally

4Fraction of negative edge weights.
5Minimum Hamiltonian Value found by Brute Force.
6Minimum Hamiltonian Value found by OPM (over 10 random

runs).
7Edge weights ∈ {−1,+1}, Tstep = 10−5.
8Mean and Standard Deviation of the Minimum Hamiltonian value

achieved in each simulation, obtained using 10 different combinations
of K and Ks, over 10 random initial conditions per combination.

9triangle(Ks low, Ks high, period)
10For these examples, the C++ implementation of the Brute Force

approach was run parallelly using 40 processors (2.50 GHz) to obtain
the global minimum value. For all the remaining entries in Table IV,
the C++ implementation was run on a single processor (2.30 GHz)
machine.

TABLE IV: Comparison of computation times taken by the Brute Force
approach and OPM with the increase in n.

n N
Brute Force:
Computation
Time

OPM: Compu-
tation Time

2 2 1.675 ×10−5 s 0.0507 s

4 3 3.843 ×10−5 s 0.1642 s

20 4
28 hrs (approx-
imately)10 9.214 s

32 4
96.3 hrs (ap-
proximately)10 27.074s

to minimize the associated Lyapunov function, signifying
the minimization of the Vector Potts Hamiltonian of the
corresponding network coupling graph. The effectiveness
and validity of our proposed scheme have been demon-
strated using simulation, with the help of several randomly
generated graphs of varying sizes. The proposed OPM
method can be used in the implementation of the Vector
Potts Model in a practical manner.
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Appendix A. Python Code for the Brute Force
Method for Computing the Global Minimum
Hamiltonian

Listing 1: Brute Force.py
import numpy as np
import math

# Calculate and Compare the Hamiltonian
def calc_hamil(n, N, J, min_ham, permutation):

func_val = 0;

for i in range(0, n):
for j in range(i + 1, n):

func_val += J[i][j] * math.cos((2 * \
math.pi * (permutation[i] - \
permutation[j])) / N);

if (func_val < min_ham[0]):
min_ham[0] = func_val;

# Backtracking Approach for Computing the
# Global Minimum Hamiltonian
def getMinHamil(n, N, J, min_ham, permutation, i):

if (i == n):
calc_hamil(n, N, J, min_ham, permutation);
return;

for j in range(N):
permutation[i] = j;
getMinHamil(n, N, J, min_ham, \
permutation, i + 1);

if __name__ == "__main__":
test_file = open("path_to_rudy_file", "r");
file_content = test_file.read().split();
file_content = [int(content) for content \

in file_content];

n = file_content[0];

num_edges = file_content[1];

w = np.zeros((n,n));
for i in range(2, 3 * num_edges, 3):

w[file_content[i] - 1, file_content[i \
+ 1] - 1] = file_content[i + 2];

test_file.close();

N = 4;

J = w + w.T;

permutation = np.zeros(n);

min_ham = [];
min_ham.append(float("inf"));

getMinHamil(n, N, J, min_ham, permutation, 0);

print("Minimum Hamiltonian: %.2f" % \
(min_ham[0]))

Appendix B. Python Code for OPM

Listing 2: Oscillator Potts Machine.py
import random
import matplotlib.pyplot as plt
import math
import numpy as np

# Thresholding the phase difference values
def thresholding(delphi, thresholded_delphi, \

n, N, possible_stable_sols):
for i in range(n):

delphi_val = delphi[i];
if (delphi_val >= 1):

delphi_val -= 1;
elif (delphi_val < 0):

delphi_val += 1;
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min_idx = (np.abs(possible_stable_sols \
- delphi_val)).argmin();

thresholded_delphi[i] = \
possible_stable_sols[min_idx];

# Calculate the Hamiltonian
def calc_hamil(J, delphi, n, N, \

possible_stable_sols):
thresholded_delphi = np.zeros(n);
thresholding(delphi, thresholded_delphi, \

n, N, possible_stable_sols);

func_val = 0.0;
for i in range(n):

for j in range(i + 1, n):
func_val += J[i][j] * math.cos(2 * \

math.pi * \
(thresholded_delphi[i] \
- thresholded_delphi[j]));

del thresholded_delphi;
return func_val;

# N-SHIL Kuramoto Model
def NSHIL_Kuramoto(K, Ks, J, i, n, delphi, N):

func_val = 0;
for j in range(n):

if j != i:
func_val += J[i][j] * math.sin(2 * \

math.pi * (delphi[i] - \
delphi[j]));

func_val = (K * func_val) + (Ks * \
math.sin(2 * math.pi * N * delphi[i]));

return func_val;

# Forward Euler method
def ForwardEuler(t, delphi, h, steps, n, J, K, \

Ks, Kn, N, ham, possible_stable_sols):
for step in range(1, steps):

for osc in range(n):
delphi[osc, step] = delphi[osc, \

step - 1] + ((h * \
NSHIL_Kuramoto(K, \
Ks[step - 1], J, osc, \
n, delphi[:, step - 1], \
N)) + (Kn * np.random.normal \
(loc = 0.0, scale = \
math.sqrt(h))));

ham[step - 1] = calc_hamil(J, delphi[:, \
step - 1], n, N, \
possible_stable_sols);

# Hamiltonian for the last timestep
ham[steps - 1] = calc_hamil(J, delphi[:, \

steps - 1], n, N, \
possible_stable_sols);

# Square Waveform
def square_Ks(t, Ks, steps, Ks_max):

for i in range(steps):
if (int(t[i])%2 == 0):

Ks[i] = 0;
else:

Ks[i] = Ks_max;

# Triangular Waveform
def triangle_Ks(t, Ks, steps, Ks_max):

j = 0;
for i in range (1, round(t[steps - 1]) + 1):

while ((j < steps) and (t[j] <= (0.5 * (2 \
* i - 1)))):

Ks[j] = 2 * Ks_max * t[j] - \
2 * Ks_max * (i - 1);

j += 1;
while ((j < steps) and (t[j] > \

(0.5 * (2 * i - 1))) and \
(t[j] < (0.5 * 2 * i))):

Ks[j] = - 2 * Ks_max * t[j] + \
2 * Ks_max * i;

j += 1;

if __name__ == "__main__":
test_file = open("path_to_rudy_file", "r");
file_content = test_file.read().split();
file_content = [int(content) for content \

in file_content];

n = file_content[0];
num_edges = file_content[1];

w = np.zeros((n,n));
for i in range(2, 3 * num_edges, 3):

w[file_content[i] - 1, file_content[i \
+ 1] - 1] = file_content[i + 2];

test_file.close();

N = 4;
t_start = 0;
t_stop = 5;
h = 1e-5;
steps = int((t_stop - t_start) / h) + 2;
t = np.zeros(steps);
for i in range(1, steps):

t[i] = t[i - 1] + h;

delphi = np.zeros((n, steps));
for i in range(n):

delphi[i, 0] = np.random.rand();

J = w + w.T;

K = 5;
Ks_max = 10;
Kn = 0.2;

Ks = np.zeros(steps);
triangle_Ks(t, Ks, steps, Ks_max);
#square_Ks(t, Ks, steps, Ks_max);

ham = np.zeros(steps);

possible_stable_sols = np.zeros(N);
for i in range(N):

possible_stable_sols[i] = (2 * i + \
1) / (2 * N);

ForwardEuler(t, delphi, h, steps, n, J, \
K, Ks, Kn, N, ham, \
possible_stable_sols);

del J, possible_stable_sols;

print("Minimum Hamiltonian: %.2f" % \
(np.min(ham)))

plt.figure(0);
for i in range(n):

plt.plot(t, delphi[i]);
plt.xlim(t[0], t[-1]);
plt.xlabel(’Time (cycles)’);
plt.ylabel(’Phase Differences ($\Delta\phi$)’);
plt.xticks(np.linspace(t[0], round(t[-1]), 11));
plt.title("Phase Differences ($\Delta\phi$)) \

vs Time (cycles)")
plt.grid(True);
plt.tight_layout();

plt.figure(1);
plt.plot(t, ham);
plt.xlim(t[0], t[-1]);
plt.xlabel(’Time (cycles)’);
plt.ylabel(’Hamiltonian’);
plt.xticks(np.linspace(t[0], round(t[-1]), 11));
plt.title("Hamiltonian vs Time (cycles)")
plt.tight_layout();

plt.figure(2);
plt.plot(t, Ks);
plt.xlim(t[0], t[-1]);
plt.xlabel(’Time (cycles)’);
plt.ylabel(’Ks’);
plt.xticks(np.linspace(t[0], round(t[-1]), 11));
plt.title("Ks vs Time (cycles)")
plt.grid(True);
plt.tight_layout();

plt.show()

del t, delphi, ham;


