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Characterizations and Computation of Controlled Invariants for
Monotone Dynamical Systems

Adnane Saoud1 and Murat Arcak2

Abstract—In this paper, we consider the problem of computing
robust controlled invariants for discrete-time monotone dynam-
ical systems. We consider different classes of monotone systems
depending on whether the sets of states, control inputs and
disturbances respect a given partial order. Then, we present set-
based and trajectory-based characterizations of robust controlled
invariants for the considered class of systems. Based on these
characterizations, we propose an algorithmic approach to the
computation of controlled invariants. Finally, we illustrate the
proposed approach on an adaptive cruise control problem.

I. INTRODUCTION

The concept of controlled invariance plays an important
role in control theory [1], this concept reflects the ability to
control the system so that all trajectories initialized in a set
remain there for all future time. Formulation of the concept of
controlled invariance of a set are presented in [1] for discrete-
time systems. Different approaches have been proposed in
the literature to compute controlled invariants for different
classes of discrete-time systems. In [1] controlled invariants
are obtained as level sets of Lyapunov-like functions. Iterative
algorithms are used to compute controlled invariants in [2]
for piecewise affine systems and more recently in [3] for
linear systems systems. Controlled invariants for polynomial
systems have been explored using linear programming in [4]
and semidefinite programming in [5]. For general nonlinear
systems, interval controlled invariants have been investigated
in [6] Other approaches have been proposed recently using
symbolic control techniques [7], [8]. In this paper, we are inter-
ested in the study of robust controlled invariants for discrete-
time monotone dynamical systems. We consider different
classes of monotone systems depending on whether the sets
of states, control inputs and disturbance inputs respect a given
partial order. Moreover, we focus on lower closed constraints.
For the considered classes of systems and constraints, we
present different types characterization on the structure of the
robust controlled invariants. Then we present an algorithmic
procedure allowing to compute robust controlled invariants
using the concept of feasibility. Finally, we illustrate the
theoretical results on an adaptive cruise control problem.

Related work: The computation of controlled invariants
for monotone systems has been explored for continuous time
systems and for the particular class of sets given by intervals
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in [9]. In [10], the authors used symbolic control techniques
to compute robust controlled invariants for discrete time
monotone dynamical systems. In spirit, the closest work in
the literature is [11] where the authors introduce a notion of
s-sequence to characterize a controlled invariant of the system.
Our approach differs from the one proposed in [11] in several
directions:

• While the authors in [11] deal with the particular class of
disturbance state monotone systems, we present a general
framework for different classes of monotone systems;

• In [11], the authors focus on open loop strategies. In
our paper, we present results for both open loop and
control loop strategies. moreover, we provide conditions
under which open-loop and closed-loop strategies are
equivalent;

• We present new characterizations of the structure of
the robust controlled invariants for different classes of
monotone dynamical systems;

• Our algorithmic procedure to compute robust controlled
invariants is different from the one in [11] and relies
on tools from multidimensional binary search algorithms
used in multi-objective optimization [12].

The remainder of this paper is organized as follows. In
Section III we introduce the class of systems we consider.
Section IV introduces the concept of robust controlled invari-
ants. In Section V and VI, we present different characteriza-
tions of robust controlled invariants. Section VII presents an
algorithm to compute controlled invariants. Finally, Section V
presents numerical results validating the merits of the proposed
approach.

a) Notation: The symbols N, N>0, and R and R>0

denote the set of positive integers, non-negative integers, real
and non-negative real numbers, respectively. Given N ∈ N>0

and a set Y ⊆ Rn, Y w denotes the set of infinite sequences
of elements of Y . For a map f : Rn → Rm, domf := {x ∈
Rn : f(x) is well defined}. Given a nonempty set K, Int(K)
denotes it interior, cl(K) denotes its closure, ∂K denotes its
boundary and K its complement. For a set K, the operator
(K) randomly selects a unique element from the set K. The
Euclidean norm is denoted by ‖.‖. For x ∈ Rn and for ε > 0,
Bε(x) = {z ∈ Rn | ‖z − x‖ ≤ ε‖ and for a set K ⊆ Rn,
Bε(K) = ∪x∈KBε(x).

II. PRELIMINARIES

A. Partial orders

A partially ordered set L has an associated binary relation
≤L where for all l1, l2, l3 ∈ L, the binary relation satisfies: (i)
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Fig. 1: A lower closed set A ⊆ R2
≥0, with the standard

ordering, in blue. The set of its maximal elements max(A)
is presented in orange. The lower closure of a point a ∈ A is
presented in dashed gray.

l1 ≤L l1, (ii) if l1 ≤L l2 and l2 ≤L l1 then l1 =L l2 and, (iii)
if l1 ≤L l2 and l2 ≤L l3 then l1 ≤L l3. If neither l1 ≤L l2
nor l2 ≤L l1 holds, we say that l1 and l2 are incomparable.
The set of all incomparable couples in L is denoted by IncL.
We say that l1 <L l2 iff l1 ≤L l2 and l1 6=L l2.. Similarly, a
partial ordering m ≤Lw n between a pair of infinite sequences
m = m0m1 . . . and n = n1n2 . . . holds if and only if mk ≤L
nk for all k ∈ N≥0.

For a partially ordered set L, closed intervals are [x, y]L :=
{z | x ≤L z ≤L y}. Given a partially ordered set L, for a ∈ L
let ↓ a := {x ∈ L | x ≤L a} and ↑ a := {x ∈ L | a ≤L
x}. When A ⊆ L then its lower closure (respectively upper
closure) is ↓ A :=

⋃
a∈A ↓ a (respectively ↑ A :=

⋃
a∈A ↑ a).

A subset A ⊆ L is said to be lower-closed (respectively upper-
closed) if ↓ A = A (respectively ↑ A = A). We have the
following definitions relative to partially ordered sets.

Definition 2.1: Let L be a partially ordered set and A ⊆ L.
The set A is said to be bounded below (in L) if there exists a
compact set B ⊆ L such that A ⊆↑ B. Similarly, the set A is
said to be bounded above (in L) if there exists a compact set
B ⊆ L such that A ⊆↓ B. •

Definition 2.2: Let L be a partially ordered set and consider
a closed subset A ⊆ L. If the set A is bounded below then
the set of minimal elements of A is defined as min(A) :=
{x ∈ A | ∀x1 ∈ A, x ≤L x1 or (x, x1) ∈ IncL}. Similarly, if
the set A is bounded above then the set of maximal elements
of A is defined as max(A) := {x ∈ A | ∀x1 ∈ A, x ≥L
x1 or (x, x1) ∈ IncL}. •

An illustration of the concepts of lower-closed sets and
maximal elements is provided in Figure 1. It was shown in [13]
that lower and upper-closed sets satisfy the following property.

Proposition 2.3: Let L be a partially ordered set and
consider a collection of subsets Ai ⊆ L, i ∈ {1, 2, . . . , p}.
The following holds:

(i) If for all i ∈ {1, 2, . . . , p}, Ai is lower closed then
∪pi=1Ai and ∩pi=1Ai are lower closed;

(i) If for all i ∈ {1, 2, . . . , p}, Ai is upper closed then
∪pi=1Ai and ∩pi=1Ai are upper closed.

�

In the rest of the paper, we will focus on lower-closed sets;
analogous results can be formulated for upper-closed sets
using similar approaches.

B. Continuity of Set-Valued Maps

In this section, we recall the following continuity notions
for set-valued maps [14].

Definition 2.4: Consider a set-valued map F : X ⇒ Rn,
where X ⊂ Rm and F (x) is compact for all x ∈ X .

• The map F is said to be lower semicontinuous at x ∈ X
if for each ε > 0 and yx ∈ F (x), there exists η > 0 such
that the following property holds: for each z ∈ Bη(x)∩X ,
there exists yz ∈ F (z) such that |yz − yx| ≤ ε;.

• The map F is said to be upper semicontinuous at x ∈ X
if, for each ε > 0, there exists η > 0 such that F (Bη(x))∩
X ) ⊂ Bε(F (x));.

• The map F is said to be continuous at x ∈ X if it is both
upper and lower semicontinuous at x.

• The map F is said to be lower, upper semicontinuous, or
continuous if, respectively, it is lower, upper semicontin-
uous, or continuous for all x ∈ X .

• For L ≥ 0, the set valued map F is said to be L-Lipschitz
if for all x1, x2 ∈ X , F (x1) ⊆ BL‖x1−x2‖(F (x2)).

•

C. Discrete-time control systems

In this paper, we consider the class of discrete-time control
system Σ of the form:

x(k + 1) = f(x(k), u(k), d(k)) (1)

where x(k) ∈ X is a state, u(k) ∈ U is a control input
and d(k) ∈ D is a disturbance input. The trajectories of (1)
are denoted by Φ(., x0,u,d) where Φ(k, x0,u,d) is the state
reached at time k ∈ N≥0 from the initial state x0 under
the control input u : N≥0 → U and the disturbance input
d : N≥0 → D. For X ⊆ X , U ⊆ U and D ⊆ D, we use the
notation f(X,U,D) = {f(x, u, d) | x ∈ X, u ∈ U, d ∈ D}.

When the control inputs of system (1) are generated by a
state-feedback controller κ : X → U , the dynamics of the
closed-loop system is given by

x(k + 1) = f(x(k), κ(x(k)),d(k)) (2)

and its trajectories are denoted by Φκ(., x0,d). By abuse of
notation, in the rest of the paper we use Φκ(., x0, D) to denote
{Φκ(., x0,d) | d : R≥0 → D}.

III. MONOTONE CONTROL SYSTEMS

In this section, we introduce classes of monotone discrete-
time control systems that preserve order with respect to
states, disturbance inputs and control inputs. Then, we provide
characterizations of the considered classes of systems.

Definition 3.1: Consider the discrete-time control system Σ
in (1). The system Σ is said to be:
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• State monotone (SM) if its set of states is equipped with
a partial order ≤X , and for all x1, x2 ∈ X , for all u ∈ U
and for all d ∈ D, if x1 ≤X x2 then f(x1, u, d) ≤X
f(x2, u, d);

• Control-state monotone (CSM) if its sets of states and
control inputs are equipped with partial orders ≤X and
≤U , respectively, and for all x1, x2 ∈ X , for all u1u2 ∈ U
and for all d ∈ D, if x1 ≤X x2 and u1 ≤U u2 then
f(x1, u1, d) ≤X f(x2, u2, d);

• Disturbance-state monotone (DSM) if its sets of states
and distrubance inputs are equipped with partial orders
≤X and ≤D, respectively, and for all x1, x2 ∈ X , for all
u ∈ U and for all d1, d2 ∈ D, if x1 ≤X x2 and d1 ≤D d2
then f(x1, u, d1) ≤X f(x2, u, d2);

• Control-disturbance-state monotone (CDSM) if its sets
of states, inputs and disturbances are equipped with
partial orders, ≤X , ≤U and ≤D, respectively, and for
all x1, x2 ∈ X , u1, u2 ∈ U and for all d1, d2 ∈
D, if x1 ≤X x2, u1 ≤U u2 and d1 ≤D d2 then
f(x1, u1, d1) ≤X f(x2, u2, d2).

•
Remark 3.2: In this paper, different types of monotonic-

ity are defined with respect to the state, control input and
distrubance input. The SM, (DSM and CDSM, respectively)
properties correspond to the discrete-time versions of the
concept of monotonicity in [15] ([16] and [17], respectively).
•
From the definitions above, it can be seen that a CDSM system
is a CSM and DSM system, and that a DSM or CSM is a
SM system. The notions above can be easily verified via the
Kamke-Muller conditions [15] for continuously differentiable
vector fields as follows: The system Σ in (1) with x(k) ∈ X ⊆
Rn, u(k) ∈ U ⊆ Rm and d(k) ∈ D ⊆ Rp is

• SM if ∂fi
∂xj
≥ 0 for all i, j ∈ {1, 2, . . . , n};

• CSM if ∂fi
∂xj
≥ 0 and ∂fi

∂uh
≥ 0 for all i, j ∈ {1, 2, . . . , n}

and for all h ∈ {1, 2, . . . ,m};
• DSM if ∂fi

∂xj
≥ 0 and ∂fi

∂dh
≥ 0 for all i, j ∈ {1, 2, . . . , n}

and for all h ∈ {1, 2, . . . , p};
• CDSM if ∂fi

∂xj
≥ 0, ∂fi

∂uh
≥ 0 and ∂fi

∂dl
≥ 0 for all i, j ∈

{1, 2, . . . , n}, for all h ∈ {1, 2, . . . ,m} and for all l ∈
{1, 2, . . . , p}.

where ≥ 0 is the usual total order on R.
The following examples illustrate the difference between the

different versions of monotonicity introduced above.
Example 3.3: We present examples of the considered classes

of systems:

• The system described by

x(k + 1) = x(k) + u(k)d(k) sin(u(k)d(k))

with x(k), u(k), d(k) ∈ R, is SM without being DSM
nor CDSM for the usual total order on R.

• The system described by

x(k + 1) =

{
A1x(k) + d(k) if u = 1
A2x(k) + d(k) if u = 2

with x(k), d(k) ∈ R2 and u(k) ∈ {1, 2}, A1 =(
0.8 0.1
2 4

)
and A2 =

(
5 0.2
8 0

)
, is DSM without being

CSM nor CDSM for the usual partial order on R2;
• The system described by

x(k + 1) = x(k) + u(k) + d(k)

with x(k), u(k), d(k) ∈ R, is CDSM for the usual total
order on R.

�

We also have the following equivalent characterizations of
the proposed classes of monotone systems. Before stating the
result, we give the following auxiliary lemma.

Lemma 3.4: Let L be a partially ordered set and A,B ⊆ L.
We have A ⊆↓ B if and only if for any a ∈ A, there exists
b ∈ B such that a ≤L b. �

The proof follows immediately from the fact that ↓ B = {z ∈
L | ∃ b ∈ B satisfying z ≤L b}.

Proposition 3.5: Consider the discrete-time control system
Σ in (1), the following properties hold:

(i) The system Σ is SM if and only if for all x ∈ X , u ∈ U
and d ∈ D we have

f(↓ x, u, d) ⊆↓ f(x, u, d)

(ii) The system Σ is CSM if and only if for all x ∈ X , u ∈ U
and d ∈ D we have

f(↓ x, ↓ u, d) ⊆↓ f(x, u, d)

(iii) The system Σ is DSM if and only if for all x ∈ X , u ∈ U
and d ∈ D we have

f(↓ x, u, ↓ d) ⊆↓ f(x, u, d)

(iv) The system Σ is CDSM if and only if for all x ∈ X ,
u ∈ U and d ∈ D we have

f(↓ x, ↓ u, ↓ d) ⊆↓ f(x, u, d)

�

Proof. We only show (iv), the proofs of (i), (ii) and (iii) can
be derived similarly. Let us start with the sufficient condition.
Assume that Σ is a CDSM system and consider x′, x ∈ X ,
u′, u ∈ U and d′, d ∈ D satisfying x′ ∈ (↓ x), u′ ∈ (↓ u)
and d′ ∈ (↓ d). Using the fact that Σ is a CDSM system, we
have that f(x′, u′, d′) ≤X f(x, u, d), which in turn implies
that f(↓ x, ↓ u, ↓ d) ⊆↓ f(x, u, d). Let us now show the
necessary condition. Let x1, x2 ∈ X , u1, u2 ∈ U and d1, d2 ∈
D with x1 ≤X x2, u1 ≤U u2 and d1 ≤D d2 and let us show
that Σ is CDSM. We have that x1 ∈ (↓ x2), u1 ∈ (↓ u2)
and d1 ∈ (↓ d2). Then, from our assumption, we have that
f(x1, u1, d1) ∈ f(↓ x2, ↓ u2, ↓ d2) ⊆↓ f(x2, u2, d2), which
in turn implies that f(x1, u1, d1) ≤X f(x2, u2, d2). Hence, Σ
is a CDSM system and (iv) holds. �

The following auxiliary result characterizes the monotonic-
ity property of the closed loop controlled system.



4

Lemma 3.6: Consider the system Σ in (1). If the system Σ
is CDSM and if the controllers κ1, κ2 : X → U satisfy

κ1(x1) ≤U κ2(x2), ∀x1, x2 ∈ X , with x1 ≤X x2, (3)

then for all x01, x
0
2 ∈ X , with x01 ≤X x02, and for all

d1,d2 : N≥0 → D satisfying d1 ≤Dw d2, we have
Φκ1

(., x01,d1) ≤Xw Φκ2
(., x02,d2). �

Proof. Consider x01, x
0
2 ∈ X , with x01 ≤X x02 and d1,d2 :

N≥0 → D satisfying d1 ≤Dw d2. To show the result we
proceed by induction. First, we have that Φκ1

(0, x01,d1) =
x01 ≤X x02 = Φκ2(0, x02,d2). Now, consider k ∈ N≥0 and
assume that Φκ1

(k, x01,d1) ≤X Φκ2
(k, x02,d2). Since the

system Σ is CDSM and using (3) and the fact that d1 ≤Dw d1
we have that

Φκ1(k + 1, x01,d1) = f(Φκ1(k, x01,d1), κ1(Φκ1(k, x01,d1)),d1(k))

≤X f(Φκ2(k, x02,d2), κ2(Φκ2(k, x02,d2)),d2(k))

= Φκ2(k + 1, x02,d2)

Hence, Φκ1(., x01,d1) ≤Xw Φκ2(., x02,d2). �

IV. CONTROLLED INVARIANTS

We start by recalling the concept of controlled invariant [1].
In simple words, a controlled invariant set is a set for which
there exists a controller such that if the state of the system
is initialized in this set then its solutions remain there for all
time.

Definition 4.1: Consider the system Σ in (1) and let X ⊆ X ,
U ⊆ U and D ⊆ D be the constraints sets on the states, inputs
and disturbances, respectively. The set K ⊆ X is said to be a
robust controlled invariant for the system Σ and constraint set
(X,U,D) if K ⊆ X and there exists a controller κ : X → U ,
with dom(κ) = K and such that for all x0 ∈ K and for any
disturbance input d : N≥0 → D the solution of the closed loop
system Φκ(., x0,d) : N≥0 → X satisfies Φκ(k, x0,d) ∈ K
for all k ∈ N≥0 1. In this case, κ is said to be an invariance
controller for the system Σ and constraint set (X,U,D). •

Remark 4.2: While the characterization of controlled in-
variants in Definition 4.1 is the most commonly used in the
literature [1], [18], the equivalent characterization below has
also been used in the literature [19]. The proof of the equiv-
alence of these characterizations is provided in the Appendix.
•

Proposition 4.3: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively. The set K ⊆ X is a
robust controlled invariant for the system Σ and constraint
set (X,U,D) if and only if K ⊆ X and the following holds:

∀x ∈ K, ∃u ∈ U s.t f(x, u,D) ⊆ K. (4)

�

Proof. See Appendix. �

Since the robust controlled invariance property is closed
under union, there exists a unique robust controlled invariant

1The condition Φκ(k, x0,d) ∈ K for all k ∈ N≥0 can be equivalently
replaced by the following condition: Φκ(k, x0,d) ∈ X for all k ∈ N≥0.

that is maximal, in the sense that it contains all the robust
controlled invariants.

Definition 4.4: Consider the system Σ in (1) and let X ⊆ X ,
U ⊆ U and D ⊆ D be the constraints sets on the states, inputs
and disturbances, respectively. The set K ⊆ X is the maximal
robust controlled invariant for the system Σ and constraint set
(X,U,D) if:

• K ⊆ X is a robust controlled invariant for the system Σ
and constraint set (X,U,D);

• K contains any robust controlled invariant for the system
Σ and constraint set (X,U,D).

In this case, any invariance controller κ : X → U satisfying
dom(κ) = K is said to be a maximal invariance controller for
the system Σ and constraint set (X,U,D). •

We have the following auxiliary result characterizing the
effect of enlarging the set of control inputs and shrinking the
set of disturbance inputs on the robust controlled invariance
problem.

Lemma 4.5: Consider the system Σ in (1) and let X ⊆ X ,
U1, U2 ⊆ U and D1, D2 ⊆ D be constraints sets on the states,
inputs and disturbances, respectively, satisfying U1 ⊆ U2 and
D2 ⊆ D1. If K is a robust controlled invariant for the system
Σ and constraint set (X,U1, D1) then K is a robust controlled
invariant for the system Σ and constraint set (X,U2, D2). �

V. SET-BASED CHARACTERIZATION OF CONTROLLED
INVARIANTS

First, we have the following general characterization of
the topological structure of controlled invariants for nonlinear
systems under more regularity on the dynamics of the system.

Proposition 5.1: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be constraints sets on the states, inputs
and disturbances, respectively. Suppose the map f : X×U×D
describing the system Σ is lower semicontinuous on its first
argument and the set of control inputs U and disturbance
inputs D are compact. The following properties hold:

(i) If the set K ⊆ X is a robust controlled invariant for
the system Σ and constraint set (X,U,D), then the set
cl(K) is a robust controlled invariant for the system Σ
and constraint set (X,U,D);

(ii) If the set K ⊆ X is the maximal robust controlled
invariant for the system Σ and constraint set (X,U,D),
then the set K is closed.

�

Proof. We provide a proof for each item separately.
Proof of (i): Let K be a robust controlled invariant for the
system Σ and constraint set (X,U,D) and let us show, by
contradiction, that cl(K) is a robust controlled invariant for the
system Σ and constraint set (X,U,D). Consider x ∈ cl(K)\K
and assume that for all u ∈ U we have that f(x, u,D) ∩
cl(K) 6= ∅. Consider u ∈ U , since the set cl(K) is open, we
have the existence of εu > 0 and yx,u ∈ f(x, u,D) ∩ cl(K)
such that Bεu(yx,u) ⊆ cl(K). Since, the set D is compact and
f is lower semicontinuous on its first argument, one has that
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the set valued map F : X × U ⇒ X defined for x ∈ X and
u ∈ U by F (x, u) := f(x, u,D) is lower semicontinuous on
its first argument. Hence, for εu > 0 and yx,u ∈ F (x, u), we
have the existence of ηu > 0 such that for all z ∈ Bηu(x), there
exists yz,u ∈ F (z, u) satisfying yz,u ∈ Bεu(yx,u) ⊆ cl(K).
Now consider η = minu∈U ηu. Since the set U is compact,
we have that η > 0. Hence, it follows from above that for any
z ∈ Int(K)∩Bη(x) and for any u ∈ U , we have the existence
of yz,u ∈ F (z, u) satisfying yz,u ∈ cl(K), which contradicts
the robust controlled invariance of the set K. Hence, the set
cl(K) is a robust controlled invariant for the system Σ and
constraint set (X,U,D).

Proof of (ii): Let K be the maximal robust controlled
invariant for the system Σ and constraint set (X,U,D). From
(i) it follows that cl(K) is a robust controlled invariant for the
system Σ and constraint set (X,U,D). Hence, it follows from
maximality of the set K that cl(K) = K. �

In the following, we provide different characterizations
of robust controlled invariants when dealing with monotone
dynamical systems and lower-closed safety specifications (i.e.
lower closed set of constraints on the state-space X) .

Theorem 5.2: Consider the system Σ in (1) and let X ⊆ X ,
U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively, where the set X is lower
closed. The following properties hold:

(i) If the system Σ is SM and if a set K is a robust controlled
invariant of the system Σ and constraint set (X,U,D),
then its lower closure is also a robust controlled invariant
for the system Σ and constraint set (X,U,D);

(ii) If the system Σ is SM then the maximal robust controlled
invariant K for the system Σ and constraint set (X,U,D)
is lower closed;

(iii) If the system Σ is DSM and the set of disturbance inputs
D is closed and bounded above then the maximal robust
controlled invariant for the system Σ and constraint set
(X,U,D) is the maximal robust controlled invariant for
the system Σ and the constraint set (X,U,Dmax), where
Dmax = max(D);

(iv) If the system Σ is CSM, the set of control inputs U
is closed and bounded below then the maximal robust
controlled invariant for the system Σ and constraint set
(X,U,D) is the maximal robust controlled invariant for
the system Σ and the and constraint set (X,Umin, D),
where Umin = min(U).

(v) If the system Σ is CDSM, the set of control inputs U
is closed and bounded below and the set of disturbance
inputs D is closed and bounded above then the max-
imal robust controlled invariant for the system Σ and
constraint set (X,U,D) is the maximal robust controlled
invariant for the system Σ and the and constraint set
(X,Umin, Dmax), where Umin = min(U) and Dmax =
max(D).

�

Proof. We provide a proof for each item separately.
proof of (i): To show the result, we use the characterization

of robust controlled invariance from Proposition 4.3. Let K be
a robust controlled invariant for the system Σ and constraint
set (X,U,D). Consider the set H =↓ K and let us show that
the set H is a robust controlled invariant for the system Σ and
constraint set (X,U,D). Consider x ∈ H =↓ K, we have the
existence of x′ ∈ K such that x ≤X x′. Since x′ ∈ K, which
is a robust controlled invariant, we have from Proposition 4.3
the existence of u ∈ U such that f(x′, u, d) ∈ K for all
d ∈ D. Using the fact that Σ is a SM system we have that
f(x, u, d) ≤X f(x′, u, d) for all d ∈ D. Hence, it follows
that f(x, u, d) ∈↓ K = H , for all d ∈ D, which implies that
H =↓ K is a robust controlled invariant for the system Σ and
constraint set (X,U,D).

proof of (ii): To show the result, we use the characteri-
zation of robust controlled invariance from Proposition 4.3.
Let K be the maximal robust controlled invariant for the
system Σ and constraint set (X,U,D) and consider the set
H =↓ K. First, we have from (i) that the set H is a
robust controlled invariant for the system Σ and constraint set
(X,U,D). Moreover, since K is the maximal robust controlled
invariant for the system Σ and constraint set (X,U,D), one
has H =↓ K ⊆ K. Finally, using the fact that K ⊆↓ K = H ,
one gets K =↓ K which implies that K is a lower closed set.

proof of (iii): Let K be the maximal controlled invariant
for the system Σ and constraint set (X,U,D) and let K be
the maximal controlled invariant for the system Σ and the
and constraint set (X,U,Dmax). First, since Dmax ⊆ D, we
have from Lemma 4.5 that K ⊆ K. In order to show that
K ⊆ K, and from the maximality of the set K it is sufficient
to show that the set K is a controlled invariant of the system
Σ and constraint set (X,U,D), and which is equivalent, from
Proposition 4.3 to the following condition:

∀x ∈ K, ∃u ∈ U s.t f(x, u,D) ⊆ K. (5)

Consider x ∈ K, we have the existence of u ∈ U such that
f(x, u,Dmax) ⊆ K. Moreover, since the set of disturbance
inputs D is closed and bounded above and using the fact
that Σ is DSM, one has from (iii) in Proposition 3.5 that
f(x, u,D) = f(x, u, ↓ Dmax) ⊆↓ f(x, u,Dmax). Hence, one
gets that f(x, u,D) ⊆↓ f(x, u,Dmax) ⊆↓ K = K, where the
last equality follows from (i). Hence K ⊆ K and (iii) holds.

proof of (iv): Let K be the maximal controlled invariant
for the system Σ and constraint set (X,U,D) and let K be
the maximal controlled invariant for the system Σ and the
constraint set (X,Umin, D). First, since Umin ⊆ U , we have
from Lemma 4.5 that K ⊆ K. In order to show that K ⊆ K,
from the maximality of the set K, it is sufficient to show
that the set K is a controlled invariant of the system Σ and
constraint set (X,Umin, D), and which is equivalent, from
Proposition 4.3 to the following condition:

∀x ∈ K, ∃u ∈ Umin s.t f(x, u,D) ⊆ K. (6)

Consider x ∈ K, we have the existence of u ∈ U such that
f(x, u,D) ⊆ K. Moreover, since the set of control inputs U is
closed and bounded bellow we have the existence of u′ ∈ Umin

such that u′ ≤U u. Since the system Σ is CSM, one has from
(iii) in Proposition 3.5 that f(x, u′, D) ⊆↓ f(x, ↓ u,D) ↓
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f(x, u,D) ⊆↓ K = K, where the last equality follows from
(i). Hence K ⊆ K and (v) holds.

proof of (v): The proof is a direct conclusion from (iii),
(iv) and the fact that any CDSM system is a CSM and DSM
system.

�

The result in (ii) states that for SM systems, the max-
imal controlled invariant can be characterized using only
its maximal values (in the sense of the partial order ≤X ).
The result in (iii) states that to compute the maximal robust
controlled invariant for DSM systems, it is sufficient to use
maximal disturbance inputs. Finally, the result in (v) states
that to compute the maximal robust controlled invariant for
CDSM systems, it is sufficient to use maximal disturbance
inputs and minimal control inputs. We also have the following
characterizations of controlled invariants for the considered
classes of systems.

Proposition 5.3: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively, where the set X is lower
closed. Consider a closed and lower closed set K ⊆ X . The
following properties hold:

(i) If the system Σ is SM then the set K is a robust controlled
invariant of the system Σ and constraint set (X,U,D),
if and only if the following holds:

∀x ∈ max(K), ∃u ∈ U s.t f(x, u,D) ⊆ K, (7)

(ii) If the system Σ is DSM and the set of disturbance inputs
D is closed and bounded above then the set K is a robust
controlled invariant of the system Σ and constraint set
(X,U,D), if and only if the following holds:

∀x ∈ max(K), ∃u ∈ U s.t f(x, u,Dmax) ⊆ K, (8)

where Dmax = max(D);

(iii) If the system Σ is CSM and the set of control inputs U
is closed and bounded below then the set K is a robust
controlled invariant of the system Σ and constraint set
(X,U,D), if and only if the following holds:

∀x ∈ max(K), ∃u ∈ Umin s.t f(x, u,D) ⊆ K, (9)

where Umin = min(U)

(iv) If the system Σ is CDSM, the set of control inputs U
is closed and bounded below and the set of disturbance
inputs D is closed and bounded above then the set K is a
robust controlled invariant of the system Σ and constraint
set (X,U,D), if and only if the following holds:

∀x ∈ max(K), ∃u ∈ Umin s.t f(x, u,Dmax) ⊆ K,
(10)

where Umin = min(U) and Dmax = max(D).

�

Proof. We provide a proof for each item separately.
proof of (i): First, it can be easily seen that if the set K is a
robust controlled invariant for the system Σ and constraint set
(X,U,D) then from Proposition 4.3 and using the fact that

max(K) ⊆ K one gets (7). Now assume that (7) holds and let
us show that (4) holds. Consider x ∈ K, we have the existence
of x′ ∈ max(K) such that x ≤X x′. Then, from (7) we have
the existence of u ∈ U such that f(x′, u,D) ⊆ K. Hence, one
gets f(x, u,D) ⊆ f(↓ x′, u,D) ⊆↓ f(x′, u,D) ⊆↓ K ⊆ K,
where the second inclusion comes from (i) in Proposition 3.5
and the last inclusion comes from (ii) in Theorem 5.2. Hence,
condition (4) holds, and the set K is a robust controlled
invariant for the system Σ and the constraint set (X,U,D).

proof of (ii): From (i) and since the system Σ is DSM,
to show (ii), it is sufficient to show the equivalence between
conditions (7) and (8). Since Dmax ⊆ D, one gets directly
that (7) implies (8). Let us show the converse result, consider
x ∈ maxK, from (8) one has the existence of u ∈ U such
that f(x, u,Dmax) ⊆ K. Hence, one gets that f(x, u,D) ⊆
f(x, u, ↓ Dmax) ⊆↓ f(x, u,Dmax) ⊆↓ K ⊆ K, where
the first inclusion comes from the fact that D ⊆↓ Dmax,
the second inclusion comes from (iii) in Proposition 3.5 and
the last inclusion comes from (iii) in Theorem 5.2. Hence,
condition (7) holds.

proof of (iii): From (ii) and since the system Σ is CSM,
to show (iii), it is sufficient to show the equivalence between
conditions (7) and (9). Since Umin ⊆ U , one gets directly
that (9) implies (7). Let us show the converse result, consider
x ∈ maxK, from (7) one has the existence of u ∈ U
such that f(x, u,D) ⊆ K. Moreover, we have the existence
of u′ ∈ Umin such that u′ ≤U u. Hence, one gets that
f(x, u′, D) ⊆ f(x, ↓ u,D) ⊆↓ f(x, u,D) ⊆↓ K ⊆ K, where
the second inclusion comes from (ii) in Proposition 3.5 and
the last inclusion comes from (iv) in Theorem 5.2. Hence,
condition (7) holds.

proof of (iv): The proof is a direct conclusion from (ii),
(iii) and the fact that any CDSM system is a CSM and DSM
system. �

Proposition 5.3 is critical from a computational point of
view, when the objective is to check whether a lower-closed
set is a robust controlled invariant. Indeed, while the invariance
condition needs to be checked for all the elements x ∈ K,
u ∈ U and d ∈ D for general nonlinear systems (see equation
(4)), it has to be checked only for the elements:

• x ∈ max(K), u ∈ U and d ∈ D for SM systems;
• x ∈ max(K), u ∈ U and d ∈ Dmax for DSM systems;
• x ∈ max(K), u ∈ Umin and d ∈ D for CSM systems;
• x ∈ max(K), u ∈ Umin and d ∈ Dmax for CDSM

systems.

Moreover, one can also see that this property is very useful in
practice when max(K), Dmax and Umin are finite while K,
D and U are infinite.

VI. TRAJECTORY-BASED CHARACTERIZATIONS OF
CONTROLLED INVARIANTS

In this section we provide trajectory-based characterizations
of controlled invariants. We start by introducing the concept
of lower feasibiliy.
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x

Φκ(1, x,D)

Φκ(2, x,D)

Fig. 2: Illustration of the concept of closed-loop feasibility.
Left: the 3-step reachable set from the initial condition x
for a system Σ. Note that Φκ(3, x,D) ⊆↓ Φκ(1, x,D)

⋃
↓

Φκ(2, x,D). Right: The set ↓
⋃

0≤k≤2
Φκ(k, x0, D) is a robust

controlled invariant of the system Σ in view of Proposition 6.2.

Definition 6.1: Consider the system Σ in (1) and let X ⊆ X ,
U ⊆ U and D ⊆ D be the constraints sets on the states, inputs
and disturbances, respectively. A point x0 ∈ X is said to be
closed-loop feasible w.r.t the constraint set (X,U,D) if there
exists a controller κ : X → U and N ∈ N>0 such that

Φκ(k, x0, D) ⊆ X, ∀ k ∈ {0, 1, . . . , N − 1} (11)

and
Φκ(N, x0, D) ⊆↓

⋃
0≤k≤N−1

Φκ(k, x0, D) (12)

Similarly, a point x0 ∈ X is said to be open-loop feasible w.r.t
the constraint set (X,U,D) if there exists an input trajectory
u : N≥0 → U and N ∈ N>0 such that

Φ(k, x0,u, D) ⊆ X, ∀ k ∈ {1, 2, . . . , N − 1} (13)

and
Φ(N, x0,u, D) ⊆↓

⋃
0≤k≤N−1

Φ(k, x0,u, D) (14)

•
An illustration of the concept of closed-loop feasibility

is presented in Figure 2 (Left). The following proposition
shows the usefulness of feasible points to compute controlled
invariants for SM systems. Conclusion (i) of this proposition
is illustrated in Figure 2 (right).

Proposition 6.2: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively, where the set X is lower
closed. If the system Σ is SM, then the following holds

(i) If x0 is closed loop feasible w.r.t the constraint set
(X,U,D) then there exist a controller κ : X → U and
N ∈ N>0 such that the set

K =↓
⋃

0≤k≤N−1

Φκ(k, x0, D) (15)

is a controlled invariant for the system Σ and constraint
set (X,U,D).

(ii) If x0 ∈ X is open-loop feasible w.r.t the constraint set
(X,U,D), then there exist an input trajectory u : N≥0 →
U and N ∈ N>0 such that the set

K =↓
⋃

0≤k≤N−1

Φ(k, x0,u, D) (16)

is a controlled invariant for the system Σ and constraint
set (X,U,D).

�

Proof. We only provide a proof of (i), the proof of (ii)
can be derived similarly. Assume that x0 is closed loop
lower feasible w.r.t the constraint set (X,U,D), hence then
there exist a controller κ : X → U and N ∈ N>0 such
that conditions (11) and (12) are satisfied. To show the
result we use the characterization of controlled invariants in
Proposition 4.3. Consider x ∈ K, we have the existence of
p ∈ {0, 1, . . . , N − 1} such that x ∈↓ Φκ(p, x0, D). Hence,
there exists d : N≥0 → D such that x ≤X Φκ(p, x0,d).
Consider u = κ(Φκ(p, x0,d)) and any d = d(p) ∈ D, using
the fact that the system Σ is SM we have f(x, u, d) ∈↓
f(Φκ(p, x0,d), κ(Φκ(p, x0,d)),d(p)) =↓ Φκ(p + 1, x0,d).
Hence, we have two cases

• If p ∈ {0, 1, . . . , N − 2}, then one has f(x, u, d) ⊆↓
Φκ(p+ 1, x0,d) ⊆↓

⋃
0≤k≤N−1

Φκ(k, x0, D) = K .

• If p = N − 1, then one has from (12) that
f(x, u, d) ⊆↓ Φκ(p + 1, x0,d) ⊆↓ Φκ(N, x0, D) ⊆↓⋃
0≤k≤N−1

Φκ(k, x0, D) = K

Hence, it follows from Proposition 4.3 that the set K is
a controlled invariant for the system Σ and constraint set
(X,U,D). �

In the following, we characterize open-loop feasibility for
DSM systems. Before providing the result, we have the
following auxilliary lemma.

Lemma 6.3: Consider the system Σ in (1). If the system
Σ is DSM and the set of disturbance inputs D is closed
and bounded above then for any point x0 ∈ X and any
input trajectory u : N≥0 → U , we have Φ(k, x0,u, D) ⊆↓
Φ(k, x0,u, Dmax), for all k ∈ N≥0. �

Proof. Consider x ∈ Φ(k, x0,u, D), we have the existence
of d : N≥0 → D such that x = Φ(k, x0,u,d). Moreover,
we have the existence of dmax : N≥0 → Dmax such that
d ≤Dw dmax. Then, using the fact that the system Σ is
DSM, one has x = Φ(k, x0,u,d) ≤ Φ(k, x0,u,dmax) ∈
Φ(k, x0,u, Dmax), for all k ∈ N≥0, which implies from
Lemma 3.4 that Φ(k, x0,u, D) ⊆↓ Φ(k, x0,u, Dmax), for all
k ∈ N≥0. �

Proposition 6.4: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively. If the system Σ is DSM,
the set of states X is lower closed and the set of disturbance
inputs D is closed and bounded above, then a point x0 ∈
X is open-loop feasible w.r.t the constraint set (X,U,Dmax)
if and only if it is open-loop feasible w.r.t the constraint set
(X,U,D), where Dmax = max(D). �
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Proof. Necessary condition: From the open-loop feasibility
of x0 w.r.t the constraint set (X,U,D) we have the existence
of a control input u : N≥0 → U and N ∈ N>0 such that
(13) and (14) hold. Using (13) and the fact that Dmax ⊆ D,
we have that Φ(k, x0,u, Dmax) ⊆ Φ(k, x0,u, D) ⊆ X for all
0 ≤ k ≤ N − 1. Let us show that the second condition holds,
we have

Φ(N, x0,u, Dmax) ⊆ Φ(N, x0,u, D)

⊆↓
⋃

0≤k≤N−1

Φ(k, x0,u, D)

⊆↓
⋃

0≤k≤N−1

Φ(k, x0,u, Dmax)

where the first inclusion follows from the fact that Dmax ⊆ D,
the second inclusion comes from (14) and the last inclusion
comes from Lemma 6.3.

Sufficient condition: From the feasibility of x0 w.r.t the
constraint set (X,U,Dmax) we have the existence of a control
input u : N≥0 → U and N ∈ N>0 such that the following
conditions are satisfied

Φ(k, x0,u, Dmax) ⊆ X, ∀ k ∈ {1, 2, . . . , N − 1} (17)

and

Φ(N, x0,u, Dmax) ⊆↓
⋃

0≤k≤N−1

Φ(k, x0,u, Dmax) (18)

First, we have Φ(k, x0,u, D) ⊆ Φ(k, x0,u, ↓ Dmax) ↓
Φ(k, x0,u, Dmax) ⊆↓ X = X , for all 0 ≤ k ≤ N − 1,
where the first inequality comes from Lemma 6.3, the second
inequality follows from (17) and the last inequality comes
from the lower closedeness of the set X . To show that (14)
holds, we have the following

Φ(N, x0,u, D) ⊆↓ Φ(N, x0,u, D)

⊆↓
⋃

0≤k≤N−1

Φ(k, x0,u, D)

⊆↓
⋃

0≤k≤N−1

Φ(k, x0,u, D)

where the first inclusion comes from Lemma 6.3, the second
inclusion comes from the fact that x0 is feasible w.r.t the
constraint set (X,U,Dmax) and the last inclusion follows from
the fact that Dmax ⊆ D. �

We also have the following characterization of open-loop
feasibility for a particular class of CSM systems.

Proposition 6.5: Consider the system Σ in (1) and let X ⊆
X , U ⊆ U and D ⊆ D be the constraints sets on the states,
inputs and disturbances, respectively. If the system Σ is CSM,
the set of states X is lower closed and the set of inputs inputs
U is closed and bounded below, and for all ε >= 0, for all
x1, x2 ∈ X and for all u ∈ U , following condition is satisfied:

x1 ≥ x2 + ε =⇒ Bε(f(x2, u,D)) ⊆↓ f(x1, u,D) (19)

then a point x0 ∈ X is open-loop feasible w.r.t the
constraint set (X,U,D) if and only if it is open-loop feasible
w.r.t the constraint set (X,Umin, D), where Umin = min(U).
�

Proof. The proof is immediate and follows directly from (19),
the fact that Umin ⊆ U . �

In the following result, we provide a comparison between
the closed-loop and open-loop feasibility.

Proposition 6.6: Consider the system Σ in (1) and let
X ⊆ X , U ⊆ U and D ⊆ D be the constraints sets on the
states, inputs and disturbances, respectively. If a point x0 ∈ X
is open-loop feasible w.r.t the constraint set (X,U,D) then
it is closed-loop feasible w.r.t the constraint set (X,U,D).
Moreover, the converse holds if one of the following conditions
is satisfied:

• The system Σ is disturbance free, i.e, D = {d}.
• The system Σ is DSM and card(Dmax) = 1.

�

Proof. Assume that x0 ∈ X is open-loop feasible w.r.t the
constraint set (X,U,D). We have the existence of a control
input u : N≥0 → U and N ∈ N>0 such that (13) and (14)
are satisfied. Consider the controller κ : X → U defined as
follows: for k ∈ {1, 2, . . . , N−1}, κ(Φ(k, x0,u, D)) = u(k),
and κ(Φ(k, x0,u, D)) ∈ U for all k ≥ N . Using the controller
κ, one can easily check that (11) and (12) hold. Hence, x0 is
closed-loop feasible w.r.t the constraint set (X,U,D).

Let us now show the converse result under the assumption
that D = {d}. Assume that x0 ∈ X is closed-loop feasible
w.r.t the constraint set (X,U,D). We have the existence of a
controller κ : X → U and N ∈ N>0 such that (11) and (12).
Consider the control input trajectory u : N≥0 → U defined as
follows: for k ∈ {1, 2, . . . , N − 1}, u(k) = κ(Φ(k, x0,u, d))
and u(k) ∈ U for all k ≥ N . Using the control input trajectory
u, one can easily check that (13) and (14) hold. Hence, x0
is open-loop feasible w.r.t the constraint set (X,U,D). The
converse result can also be obtained when the system Σ is
DSM and card(Dmax) = 1, by using the equivalence between
open-loop feasibility w.r.t the constraint sets (X,U,D) and
(X,U,Dmax) for the case of DSM systems, as shown in
Proposition 6.4. �

Finally, we have the following result, characterizing a spe-
cial case of open-loop feasibility for the particular class of
monotone systems with Lipschitz dynamics.

Theorem 6.7: Consider the SM system Σ in (1) and let
X ⊆ X , U ⊆ U and D ⊆ D be the constraints sets on the
states, inputs and disturbances, respectively. Assume that the
map f : X ×U ×D → X defining the system Σ is continuous
on its first and third arguments, and the sets of control inputs
U and disturbance inputs D are compact. Consider x0 ∈ X .
If the following conditions are satisfied:

(i) x0 is open-loop feasible w.r.t the constraint set (X,U,D)
and there exists u : N≥0 → U , N ∈ N>0 and εN such
that

BεN (Φκ(N, x0,u, D)) ⊆↓
⋃

0≤k≤N−1

Φκ(k, x0,u, D).

(20)
(ii) There exists γ > 0 such that Bγ(Φ(k, x0,u, D)) ⊆

X, ∀ k ∈ {1, 2, . . . , N − 1}
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then there exists β > 0 such that for any x1 ∈ {↑ x0}∩Bβ(x0),
x1 is open-loop feasible w.r.t the constraint set (X,U,D).
Moreover, when the map f is L-Lipschitz on X on its first
argument, then one can explicitly determine the value of β as
a function of the parameters εN and γ. �

Proof. Since the set D is compact and f is upper semicontinu-
ous on its first and third arguments, one has that the set valued
map F : X × U ⇒ X defined by F (x, u) := f(x, u,D) is
upper semicontinuous on x and for any u ∈ U . Moreover,
from continuity of f and compacteness of D we have that
Φ(N−1, x0,u, D) is compact. Hence, for βN = min(N , γ) >
0, where γ > 0 is defined in (ii), we have from Lemma A.1
the existence of εN−1 > 0 such that

F (BεN−1
(Φ(N − 1, x0,u, D),u(N − 1))

⊆ BβN
(F (Φ(N − 1, x0,u, D),u(N − 1)))

⊆ BβN
(Φ(N, x0,u, D)).

Let us define the sequences εk > 0, k ∈ {1, . . . , N − 2}
and βk > 0, k ∈ {1, . . . , N − 1}, iteratively as fol-
lows: for k ∈ {N − 1, N − 2, . . . , 1}, βk = min{εk, γ},
where γ > 0 is defined in (ii), and εk−1 is such that
F (Bεk−1

(Φ(k− 1, x0,u))) ⊆ Bβk
(F ((Φ(k, x0,u)). The exis-

tence of such εk−1, k ∈ {N − 1, N − 2, . . . , 1} is guaranteed
from Lemma A.1 using the upper semicontinuity of the
map F and the fact that Φ(k, x0,u, D) is compact for all
k ∈ {1, 2, . . . , N}. Hence, one gets

Φ(N,Bβ0
(x0),u) ⊆ Φ(N,Bε0(x0),u)

⊆ Φ(N − 1,Bβ1
(Φ(1, x0,u),u)

⊆ Φ(N − 1,Bε1(Φ(1, x0,u),u)

⊆ Φ(N − 2,Bβ2
(Φ(2, x0,u),u)

⊆ Φ(N − 2,Bε2(Φ(2, x0,u),u)

⊆ . . .
⊆ Φ(1,BβN−1

(Φ(N − 1, x0,u),u)

⊆ Φ(1,BεN−1
(Φ(N − 1, x0,u),u)

⊆ BεN (Φ(N, x0,u))

⊆↓
⋃

0≤k≤N−1

Φκ(k, x0,u, D) (21)

where the last inclusion comes from (i). Now let β =
minβi, i = {1, 2, . . . , N−1} consider x1 ∈ {↑ x0}∩Bβ(x0).
We have

Φ(N, x1,u) ⊆ Φ(N,Bβ(x0),u)

⊆ Φ(N,Bβ0
(x0),u)

⊆↓
⋃

0≤k≤N−1

Φκ(k, x0,u, D)

⊆↓
⋃

0≤k≤N−1

Φκ(k, x1,u, D).

Where the second inclusion comes from (21) and the last
inclusion follows from the fact that Σ is a SM system. Hence,
condition (14) of Definition 6.1 is satisfied.

Moreover, we have from (ii) that for all k ∈ {0, 1, . . . , N −
1}

Φ(k, x1,u) ⊆ Φ(k,BβN−k
(x0),u)

⊆ BβN−k+1
(Φ(k, x0,u, D))

⊆ Bγ(Φ(k, x1,u, D)) ⊆ X.

Hence, condition (14) of Definition 6.1 is satisfied, and any
x1 ∈ {↑ x0} ∩ Bβ(x0) is feasible. Now, for the case when
the map f is L-Lipschitz on its first argument, it follows
that the set valued map F : X × U ⇒ X defined by
F (x, u) := f(x, u,D) is L-lipschitz on its first argument.
Hence, the sequences εk > 0, k ∈ {1, . . . , N−1} and βk > 0,
k ∈ {1, . . . , N}, can be constructed according to Lemma A.1
iteratively as follows: for k ∈ {N − 1, N − 2, . . . , 1}, βk =
min{εk, γ}, where γ > 0 is defined in (ii) and εk−1 = βk

L .
hence, the result holds with β = minβi, i ∈ {1, . . . , N}.

�

VII. COMPUTATION OF CONTROLLED INVARIANTS

As shown in Theorem 5.2 and Proposition 6.2, controlled
invariants for monotone system and lower closed safety spec-
ification are lower closed and can be computed used feasible
points. This property implies that the boundary of the maximal
controlled invariant set has the structure of a Pareto front and
can therefore be approximated arbitrarily close, by resorting
to multidimensional binary search algorithms used in multi-
objective optimization [12], [20]2. Based on such approaches,
in the following we present the main algorithm for the com-
putation of robust controlled invariants for the class of SM
systems. Then, we explain the parts that needs to be modified
for the case of DSM and CSM systems.

For a given x, the command ”open loop-feasible” checks
if x is open-loop feasible, i.e. it satisfies (14) for some input
trajectory u : N → U , in this case, any point in the lower
closure of the set Z defined below is feasible, and there no
need to explore it.

Z =
⋃

0≤k≤N−1

Φ(k, x0,u, D) (22)

Similarly, the command ”leads to the unsafe set F2 ∪ X”
checks if for all possible input trajectories u : N → U there
exists k ∈ {1, 2 . . . , N} such that Φ(k, x0,u, D)∩F2∪X 6= ∅.
If x leads to the unsafe set, then any state from the upper
closure of the set Y defined below will lead to the unsafe set,
and there is no need to explore it.

Y =
⋃

0≤k≤N−1

Φ(k, x0,u, D) (23)

Algorithm 1 is made of three parts. In the first part (lines
2− 11), the elements of the set max(X) are explored. In the
second part (lines 12− 18), the elements of the set min(X)3

are explored. Finally, lines 22− 29 describe the main loop of
the algorithm, we start by picking an element from the set of
non-explored points and for which we did not decided yet if

2Similar approaches, based on the approximation of the boundaries of
Pareto fronts has been explored for the computation of timing and safety
contracts in [21], [22].

3Let us mention that in general, the set X may not be bounded from below.
In this case the set min(X) can be replaced by any collection of open loop
feasible points, and which can be computed before running the algorithm.
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they are open-loop feasible, or leading to the unsafe set. The
strategy to pick a point can be found in [12]. The algorithm
stops when the Hausdorff distance between the sets F1 and
F2 smaller than a precision ε > 0. In this case, we get that
the set K = X ∩F1 is a controlled invariant for the system Σ
and the constraint set (X,U,D), and moreover, one also has
that K ⊆ K∗ ⊆ Bε(K), where K∗ is the maximal controlled
invariant for the system Σ and the constraint set (X,U,D).
This last statement follows directly from the construction of
the sets F1 and F2 since:

• any element of F1 belongs to the maximal controlled
invariant and which is due to the fact that it is constructed
based on feasible points,

• any elements of F2 leads to the unsafe set, and do not
belong to the maximal controlled invariant.

Let us now explain how other different structural properties
of the system allow to improve the proposed algorithm,
all these details were removed from the description of the
algorithm to improve its readability.

• DSM systems: For both ”open loop feasible” and ”leads
to unsafe set” commands, and in view of Proposition 6.4,
the trajectories of the system are computed only with
respect to the set of maximal disturbances Dmax =
max(D) when the system is DSM;

• CSM systems: For both ”open loop feasible” and ”leads
to unsafe set” commands, and in view of Proposition 6.5,
the trajectories of the system are computed only with
respect to the set of minimal inputs Umin = min(U)
when the system is CSM and condition (19) is satisfied;

• L-Lipschitz systems: For the ”open-loop feasible” com-
mand and if for some x0 ∈ X conditions (i) and (ii)
of Theorem 6.7 are satisfied, with some εN , γ > 0, any
point in the set {↑ x0} ∩ Bβ(x0) is feasible, and there is
no need to explore them, where β is given in the proof
of Theorem 6.7 as a function of βN , γ and the Lipschitz
constant L.

VIII. NUMERICAL EXAMPLE

We consider a vehicle model moving along a straight
road. The dynamics of the vehicle is adapted from [23] and
described as:

mv̇ = α(u, v) =

{
u− f0 − f2v2 if v > 0
max(u− f0, 0) if v = 0

(24)

where m > 0 is the mass of the vehicle, u is the net engine
torque applied to the wheels, v ≥ 0 represents the velocity
of the vehicle and the term f0 + f2v

2 include the rolling
resistance and aerodynamics. For this system, u is the control
input and satisfies u ∈ [Umin, Umax]. Moreover, we include a
lead vehicle d ∈ D, considered as a disturbance. The dynamics
of the global system is given by:{

ḣ = d− v
mv̇ = α(u, v).

(25)

From this continuous-time system, we generate a discrete-time
model using the sampling period τ = 0.5s, while conserving
the monotonicity property of the system.

Algorithm 1: Invariance
Input: A SM system Σ as in (1), a contraint set
(X,U,D), where X a lower closed set X and a
precision ε > 0
Output: A controlled invariant set K ⊆ X .
1 begin
2 | for x ∈ max(X)
3 | | if x is open-loop feasible then
4 | | | F1 = F1∪ ↓ Z, with Z from (22)
5 | | else if x leads to the unsafe set F2 ∪X
6 | | | F2 = F2∪ ↑ Y , with Y from (23
7 | | end if
8 | end for
9 | if X = F1

10 | | return K = X
11 | end if
12 | for x ∈ min(X)
13 | | if x is open-loop feasible then
14 | | | F2 = F2∪ ↑ Y , with Y from (23
15 | | else if x leads to the unsafe set F2 ∪X
16 | | | F1 = F1∪ ↓ Z, with Z from (22)
17 | | end if
18 | end for
19 | if min(X) ⊆ F2

20 | | return K = ∅
21 | end if
22 | while d(F2,F1) > ε
23 | | Pick x′ ∈ (X \ F2) ∩ (X \ F1)
24 | | if x is open-loop feasible then
25 | | | F2 = F2∪ ↑ Y , with Y from (23
26 | | else if x leads to the unsafe set F2 ∪X
27 | | | F1 = F1∪ ↓ Z, with Z from (22)
28 | | end if
29 | end while
30 return K = X ∩ F1 .

TABLE I: Vehicle and safety parameters

Parameter Value Unit
M 1370 Kg
f0 51.0709 N
f2 0.4161 Ns2/m2

Umin −4031.9 mKg/s2

Umax 2687.9 mKg/s2

dmin 10 m
d′ 70 m

vmax 15 m/s

Remark 8.1: Let us remark that the system can be easily
transformed to a CDSM system one by using the following
change of coordinates: d′ = −d and z = −h. •

The objective is to compute a controlled invariant for the
system in order to ensure that the velocity remains between
0 and vmax, and the relative distance between the leader and
the follower remains larger than 0, while assuming that the
velocity of the leader d belongs to the set D = [0, vmax].
Moreover, Since the constraint v ≥ 0 is directly satisfied from
the model description in (24), the constraint set is a lower
closed set. For the computation of the controlled invariant, we
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Fig. 3: The light blue region represents the domain of the robust controlled
invariant. The blue trajectories are initiated from two feasible points (in red)
x1 = [33.75; 13.5] and x2 = [16.25; 9.75]. The orange curve represents the
boundary of the maximal robust controlled invariant. The precision ε chosen
for Algorithm 1 is ε = 1.5.
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Fig. 4: The light blue region represents the domain of the robust controlled
invariant. The blue trajectory is initiated from the feasible point (in red) x =
[37.5; 15]. The orange curve represents the boundary of the maximal robust
controlled invariant. The precision ε chosen for Algorithm 1 is ε = 0.01.

use Algorithm 1. The parameters model are taken from [23]
and are presented in Table I. Figure 3 and 4 represent the
computed robust controlled invariant set for two different
precisions ε = 1.5 and ε = 0.01. Moreover, we also present in
orange the boundary of the maximal robust controlled invariant
set, which can be computed analytically for this problem,
following the approach presented in [24].

IX. CONCLUSION

In this paper, we have presented different characterizations
of robust controlled invariants for discrete-time monotone
dynamical system, together with an algorithmic procedure to
compute the invariants for the considered class of systems.
An illustrative example is presented showing the merits of
the proposed approach. In future work, we will develop more
general algorithms allowing to extend the approach from safety
to other types of specifications, such as stability or more
general properties described by signal temporal logic formulas.

APPENDIX

Lemma A.1: Consider an upper semicontinuous set-valued
map F : X ⇒ Rn and consider a compact set Z ⊆ X . For
all ε > 0, there exists η > 0 such that F (Bη(Z) ∩ X ) ⊆
Bε(F (Z)). Moreover, when the map F is L-Lipschitz on X ,
for L > 0, then the property holds for any η ≤ ε/L. �

Proof. Consider ε > 0 and x ∈ Z. Since F is upper
semicontinuous, we have the existence of ηx > 0 such that
F (Bηx(x))∩X ) ⊂ Bε(F (x)). Let η = minx∈Z ηx. It follows
from the compacteness of the set Z that η > 0. Hence, one
gets:

F (Bη(Z) ∩ X ) =
⋃
x∈Z

F (Bη(x) ∩ X )

⊆
⋃
x∈Z

F (Bηx(x) ∩ X )

⊆
⋃
x∈Z
Bε(F (x))

= Bε(F (Z)).

The last result follows immediately from the fact that the map
F is L-Lipschitz, since

F (B ε
L

(Z) ∩ X ) ⊆ Bε(F (Z)).

�

Proof of Proposition 4.3:
Sufficient condition: Consider a controller κ : X → U

defined as

κ(x) := ({u ∈ U | f(x, u, d) ∈ K for all d ∈ D})

Let us show that κ is a robust invariance controller for the sys-
tem Σ and constraint set (X,U,D). Consider x0 ∈ K and d :
N≥0 → D and let us show by induction that Φκ(k, x0,d) ∈ K
for all k ∈ N≥0. First, we have that Φκ(0, x0,d) = x0 ∈ K.
Now assume that Φκ(k, x0,d) ∈ K and let us show that
Φκ(k + 1, x0,d) ∈ K. Since Φκ(k, x0,d) ∈ K, we have the
existence of u = κ(Φκ(k, x0,d)) ∈ U such that for d(k) ∈ D,
Φκ(k + 1, x0,d) = f(Φκ(k, x0,d), κ(Φκ(k, x0,d)),d(k)) ∈
K. Hence, κ is a robust invariance controller for the system
Σ and constraint set (X,U,D).

Necessary condition: Assume the existence of a controller
κ : X → U , with dom(κ) = K and such that for all x0 ∈ K
and for any disturbance input d : N≥0 → D the solution
of the closed loop system Φκ(., x0,d) : N≥0 → X satisfies
Φκ(k, x0,d) ∈ K for all k ∈ N≥0. Consider x ∈ K, we have
the existence of u = κ(x) ∈ U such that f(x0, κ(x), d) =
Φκ(1, x0,d) ∈ K for all d ∈ D, where d : N≥0 → D is any
disturbance input trajectory satisfying d(0) = d ∈ D, which
ends the proof.
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