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Abstract

Efficient and Scalable Neural Architectures for Visual Recognition

by

Zhuang Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

The successful application of ConvNets and other neural architectures to computer vision is
central to the AI revolution seen in the past decade. There have been strong needs for scaling
vision architectures to be both smaller and larger. Small models represent the demand for
efficiency, as the deployment of visual recognition systems is often on edge devices; large
models highlight the pursuit for scalability - the ability to utilize increasingly abundant
compute and data to achieve ever-higher accuracy. Research in both directions are fruitful,
producing many useful design principles, and the quest for more performant models never
stops. Meanwhile, the very fast development pace in the literature can sometimes obscure
the main mechanism responsible for certain methods’ favorable results.

In this dissertation, we will present our research from two aspects in this area: (1) developing
intuitive algorithms for efficient and flexible ConvNet model inference; (2) studying baseline
approaches to reveal what is behind popular scaling methods’ success. First, we will introduce
our work on one of the first anytime algorithm for dense prediction. We will then examine
the effectiveness of model pruning algorithms by comparing them with an extremely simple
baseline, and argue their true value may lie in learning architectures. Finally, We present our
work on questioning whether self-attention is responsible for Transformer’s recent exceptional
scalability in vision, by modernizing a traditional ConvNet with design techniques adapted
from Transformers.
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Chapter 1

Introduction

The basic diagram of deep learning [103] dates back to decades ago with the proposal of
gradient-based back-propagation learning algorithms [151] in the 1980s, and ConvNets have
been applied for computer vision tasks such as hand-written digit recognition [105] since
these early years. However, the true power of deep learning has only been revealed in 2012,
with AlexNet [99] winning the ImageNet large-scale image classification challenge [34] that
year. Increased data availability [34, 110], advancement of computing technologies [124, 134],
and improved algorithms [64, 181, 95] are three pillars for deep learning’s continued success
in various application areas [93, 159]. The rapid progress in this field has yet to show signs of
slowing with the recent rise of large models [13, 144].

Deep learning has not only made a remarkable impact on our everyday lives, but also
changed the workflow of machine learning practitioners and researchers - the community
has shifted from using hand-crafted features [123, 32] with shallow models (e.g., SVM [27]),
to automatically extracting feature representations with multi-layer deep neural networks.
Hand-crafted features are often highly task-specific and not generalizable, and it is often
a dull process to design them. The transition has greatly freed the hands and minds of
researchers, allowing them to focus more on the modeling aspect.

The promise of automatic representation learning is encouraging, but the real picture is not
as bright. In practice, the network structure has a huge influence on the quality of the learned
representations. The quality of learned representation also propagates to accuracy when
the network is then fine-tuned on various downstream tasks. Therefore, designing the right
neural network architecture is now crucially important, and as a result humans are tasked
with designing architectures instead of features. In computer vision, the classical AlexNet
is an example of intricate hand-designing convolutional neural networks – layers, kernel
sizes, feature map sizes, depths, widths and other configurations are all carefully chosen and
balanced by humans. Since then, various neural network architectures have been proposed,
not only useful by themselves as feature extractors but also bringing new design principles.
VGGNet [161] populates the usage of 3× 3 kernel convolutions and serves as a pioneering
example of homogeneous network designing. ResNet [64] introduces residual connections
and made training networks with hundreds of layers possible. Transformers [181, 39] adopt
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multi-head self-attention as a new way of information exchange inside the network and has
exceptional performance in large-scale training. Neural architecture search methods [218, 9]
try to automate the design of neural architectures, and meanwhile borrow wisdom about
search space designs [141] from human-designed networks. The successive innovations in this
space, together with other training techniques, have advanced the top-1 image classification
accuracy on ImageNet from AlexNet’s 62.5% to near 90% nowadays. Among various objectives
in architecture design, efficiency and scalability are two important concepts.

Efficiency is related to scaling models down while maintaining decent recognition capability,
so that they can be deployed on edge devices and run at fast speed. A state-of-the-art model
today usually requires large-scale parallel training with high-end GPU clusters, and the
prohibiting cost measured by model size, memory consumption, and computing operations
can sometimes significantly hinder their deployment in resource-constraint computing devices,
such as mobile phones. Developing methods to boost models’ efficiency is essential for
such models’ wider adoption. Researchers have pursued this goal with multiple approaches,
including the design of new architectures specifically for mobile devices [79, 210], low-rank
approximation of weights [35, 102], network pruning [62, 107], weight quantization [60, 28],
adaptive computation [56, 43], knowledge distillation [77, 149], anytime recognition [94, 86],
etc. With the increased amount of resources required by pre-trained large models, making
them smaller and faster seems ever more in demand.

Scalability concerns how the models behave when equipped with huge model parameters
and trained on very large data, i.e., when they are scaled up. An improperly designed
network’s performance can quickly saturate when we increase the data and compute available.
Given the fast development of computing technologies, it would be outdated in a few years
as its full potential is already reached with mediocre resources. Ideally, we would like the
model accuracy to keep improving when scaled up. One classical example is the proposal
of ResNets [64] compared with previous VGG-style [161] plain networks. For the latter,
increasing the network depth causes both the training loss and test error to increase. Simple
residual connections solved this problem and enabled the network to go much deeper and
become more accurate. Recently, the community has shifted to vision Transformers, which
discard certain ConvNet inductive biases and manifest better scalability. Despite the most
prominent examples of scaling up are about designing new architectures, there are also
other related research directions including algorithms for distributed training [54, 205],
regularization [164, 84] and data augmentation [209, 29] techniques to ease large model
overfitting.

Research progress in both directions has been fruitful, with many useful architecture
design principles proposed and then adopted by later works. It has been a truly remarkable
journey and the field is still evolving at an incredible speed. Meanwhile, partly because there
are too many detailed design choices and hyperparameters in experiments, it is common to
conduct a system-wide comparison on performance benchmarks, in which the researchers can
choose favorable configurations and equip their methods with additional techniques. This
may cause a failure to identify the source of empirical gains [112]. Baseline methods are
sometimes not adequately tuned or adjusted, leading to our inability to understand the true
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effectiveness of the proposed method. In this dissertation, in addition to presenting a new
framework for efficient architectures, we take a critical perspective and conduct empirical
studies on methods or models that were considered trivial or old-fashioned baselines. We
find them to be surprisingly competitive when supplied with the right techniques. This leads
to a deeper understanding of certain new methods’ underlying mechanisms, and helps us
attribute their effectiveness more fairly and accurately.

1.1 Thesis Organization
In this thesis, we explore the design of neural network architectures for visual recognition
from both efficiency and scalability perspectives. Chapter 2 proposes a novel framework for
efficient and flexible ConvNet inference, while Chapter 3 and 4 focus on revisiting strong
baseline methods. Despite each chapter having a different emphasis, we aim to provide
guidelines or models for practical usage, and at the same time distill interesting insights.

In Chapter 2, we introduce an approach for pixel-wise dense prediction tasks in computer
vision, that not only reduces the network’s computational cost and makes them more efficient,
but also allows the inference to be more flexible. In a typical machine learning setting, a user
needs to wait until the model completes its inference process before seeing its first prediction.
In certain scenarios this can be undesirable, e.g., an excessively long waiting time on a low-end
device. We propose a framework that allows anytime prediction, i.e., the model can give
intermediate outputs at any time during the inference when the user asks so. We adopt
an early exiting framework from anytime image classification, and motivate our method by
the fact that not all pixels need the same amount of computation. Some pixels are easier,
and their predictions may be accurate enough in early exits, while others are harder and
need deeper computing. We use prediction confidence as a difficulty indicator. The resulting
anytime framework can reduce up to half of the original compute while maintaining the final
prediction. The method can be considered “adaptive” as the computation spent on each
image and each location is different, thus making the models more efficient.

In Chapter 3, we conduct an empirical study on popular neural network pruning methods.
Pruning is widely used for reducing neural networks’ sizes and compute. It differs from our
anytime method above in that they are “static”, i.e., the reduction of compute is solely on
model and input-agnostic. The typical pruning pipeline is to train a large model first, then
prune part of its weights according to a certain criterion, and finally fine-tune the remaining
structure. Inheriting the kept weights from the large model is considered a necessity as
those weight values are believed to be important. We conduct a thorough empirical study
by comparing this traditional procedure with an embarrassingly simple baseline - training
the smaller model from scratch. For structured pruning, to our surprise, this baseline can
either match or beat the fine-tuned results. This prompts us to rethink the true value of
network pruning. Our results show that pruning acts more like neural architecture search
than selections of important weights, and encourages future research to employ more rigorous
baseline comparisons.
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In Chapter 4, we turn our eyes on ConvNet scalability. Vision Transformers are increasingly
popular in computer vision since the year 2020, shadowing ConvNets. They exhibit superb
scaling behavior when trained with large models and huge data. This desirable outcome
is usually attributed to their self-attention mechanism, which is drastically different from
convolutions. We take a closer look by analyzing other confounding factors – training recipes
and detailed architecture designs. When we incorporate these strategies used by Transformers
into a baseline ConvNet step by step, we observe consistent performance improvement. Our
final models, which we name as ConvNeXts, are as scalable as vision Transformers. This
study highlights the significance of seemingly detailed design choices, and showcases that
when used collectively they can considerably change the behavior of an architecture. It also
reminds us of the importance of ConvNet inductive biases in visual recognition.
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Chapter 2

Anytime Dense Prediction by Confidence

2.1 Overview
In this chapter, we introduce a method for anytime dense visual recognition, which allows
neural networks inference to be more flexible. Anytime inference requires a model to make
a progression of predictions which might be halted at any time. Prior research on anytime
visual recognition has mostly focused on image classification. We propose the first unified
and end-to-end approach for anytime dense prediction. A cascade of “exits” is attached to
the model to make multiple predictions. We redesign the exits to account for the depth and
spatial resolution of the features for each exit. To reduce total computation, and make full
use of prior predictions, we develop a novel spatially adaptive approach to avoid further
computation on regions where early predictions are already sufficiently confident. Our full
method, named anytime dense prediction with confidence (ADP-C), achieves the same level of
final accuracy as the base model, and meanwhile significantly reduces total computation. We
evaluate our method on Cityscapes semantic segmentation and MPII human pose estimation:
ADP-C enables anytime inference without sacrificing accuracy while also reducing the total
FLOPs of its base models by 44.4% and 59.1%. We compare with anytime inference by deep
equilibrium networks and feature-based stochastic sampling, showing that ADP-C dominates
both across the accuracy-computation curve. This chapter also serves as an example for
typical efficient neural network inference methods, so that we are ready to present our work
on examining scaling methods’ mechanisms in the next chapters. Our code is available at
https://github.com/liuzhuang13/anytime.

2.2 Introduction
Deep convolutional networks [99, 64] achieve high accuracy but at significant computational
cost. Their computational burden hinders deployment, especially for time-critical or low-
resource use cases that for instance require interactivity or inference on a mobile device. This
efficiency problem is tackled by special-purpose libraries [20], compression by network pruning

https://github.com/liuzhuang13/anytime
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Figure 2.1: Anytime inference produces a progression of outputs.

[62, 107, 119], quantization [146, 90], and distillation [77, 149]. These solutions accelerate
network computation but the entire network must still be computed; however, a prediction
may be needed sooner. Time constraints vary, but the inference time of a standard deep
network does not.

Anytime inference (Figure 2.1) mitigates this issue by bringing flexibility to model
computation. An anytime algorithm [33] gradually improves its results as more computation
time is given. It can be interrupted at any point during its computation to return a result as
system or user requirements demand. In this way, the time to the first output is reduced
while the quality of the last output is preserved.

An anytime model makes a progression of predictions between the first and last. This
progression continues if time remains, or halts if it is either already satisfactory or out of time.
For example, consider a user on a mobile device: an approximate result could be returned
earlier if there is urgency, or the user could monitor the sequence of predictions as time goes
by and stop the model once it is good enough. Note that anytime inference differs from
adaptive or dynamic inference [182, 197, 187] where the model decides how much to compute
instead of an external decision.

Prior research has explored anytime inference by feature selection [94] or ensembling
models through boosting [58]. For end-to-end neural network models, research has focused
on classification for anytime inference or adaptive inference. In particular, the multi-scale
dense network [86] is an architecture for resource-efficient classification. The attraction of
anytime inference is not limited to classification however, and the additional computation
required for dense prediction tasks makes it even more desirable. For instance, an autonomous
driving system may demand swifter reaction time for safety in the presence of pedestrians,
and so an anytime semantic segmentor might sooner recognize their presence. In addition
to urgency, an anytime segmentor could help efficiency, by not further processing already
confident predictions of street pixels and therefore save power.

In this work, we develop the first single-model anytime approach for dense prediction
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tasks. We adopt an early exiting framework, where multiple predictors branch off from the
intermediate stages of the model. The exits are trained end-to-end (both the original exit and
intermediate exits), and during inference, each provides a prediction in turn. To compensate
for differences in depth and spatial dimensions across stages, we redesign the predictors for
earlier exits. For each exit, we choose an encoder-decoder architecture to enlarge receptive
fields and smooth spatial noise.

Exits might suffice for anytime image classification, but dense prediction tasks have spatial
structures. Simple regions may need less processing while complex ones need more. Standard
inference applies an equal amount of computation at every pixel without taking advantage
of spatial structure. Our spatially adaptive anytime inference scheme decides whether or
not to continue computation at each exit and position. We mask the output of each exit
by thresholding the confidence of its predictions: the remaining computation for sufficiently
confident pixels is then reduced (Figure 2.2). For each masked pixel, its prediction will be
persisted in the following exits, as it is already sufficiently confident. In the following layers,
the features for the masked pixel will be interpolated, rather than convolved, and therefore
reduce computation. The confidence measure can depend on the task, e.g., in segmentation,
it could be the entropy of class predictions. This confidence adaptivity can substantially
reduce the total computation while maintaining accuracy.

We experiment with two dense prediction tasks: Cityscapes semantic segmentation and
MPII human pose estimation. Redesigning the exits and including confidence adaptivity
significantly improves across accuracy-efficiency operating points. Our full approach, named
anytime dense prediction with confidence (ADP-C), not only makes anytime predictions, but
its final predictions achieve the same level of accuracy as the base model, with 40-60% less
total computation. For analysis, we visualize predictions and confidence adaptivity across
exits, and ablate design choices for the exits and masking.

2.3 Approach

2.3.1 Anytime Setting

In an anytime inference setting, the user can stop the inference process based on the input
or a current event. Thus the computation budget for each instance x could be time or
input-dependent. We use B(x, t) to denote the computation budget assigned for instance x
at time t, where the time variable t models events that can change the budget. B(x, t) could
be independent of x, i.e., the budget only depends on the time t, for example if a model
on a server is asked to make predictions with less budget during high-traffic hours; B(x, t)
can also be independent of t, meaning the budget is only decided by input x, regardless
of external events. The output of the anytime model depends on the budget given, and
we denote it as f(x,B(x, t)). Assuming L is the task loss and y is the ground truth, the
per-instance loss is L(f (x,B (x, t)) , y). This leads to the expected training loss to be
E(x,y)∼(X,Y ),t∼T [L(f (x,B (x, t)) , y)], where (X, Y ) is the input-output joint distribution and
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T is the distribution modeling the time or event variable.
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Figure 2.2: Proposed anytime dense prediction with confidence (ADP-C) approach. We
equip the model with intermediate exits for anytime inference. We redesign each exit with
encoder-decoder architecture to compensate for spatial resolution across model stages. At
each exit’s output, sufficiently confident predictions (green squares) are identified to skip
further computation in the following layers.

2.3.2 Early Exiting

Next, we introduce the early exiting framework which has been used in prior works [86, 173]
for anytime prediction. Standard convolutional networks only have one prediction “head” at
its final stage. The network takes the input x, forwards it through intermediate layers, and
finally outputs the prediction at its head. The concrete form of the head depends on the task.
For dense prediction, the head is usually one or multiple convolutions that output spatial
maps representing pixel-wise predictions.

To obtain an anytime model, we attach multiple heads to the network, branching from
its intermediate features (Figure 2.2). We call these additional heads early exits, since
they allow the network to give early predictions and stop the inference at the current layer.
Suppose we add k early exits at intermediate layers with layer indices l1 . . . , lk. We denote
the intermediate features at these layers Fl1(x) . . . , Flk(x), and the functions represented by
the early exits E1 . . . , Ek. Note that Eis may be of the same form but they do not share
weights. The early prediction maps can be denoted as ŷi = Ei(Fli(x)), i = 1 . . . k. Together
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with the original final prediction ŷk+1, the total loss is:

Ltotal =
k+1∑
i=1

wiL(ŷi, y) (2.1)

where wi is the weight coefficient at exit i. The original network, together with the added
exits, will be trained end-to-end to optimize this total loss function. In experiments, we set all
weights equal to 1. This corresponds to the minimization of the expected loss in Section 2.3.1
when the exiting probabilities at all exits are equal. We find this to be a simple yet effective
scheme.

For anytime inference, as the network propagates features through its layers, if the
computation budget is reached or the user asks the model to stop, it will output the latest ŷi
that is already computed. Similar early exiting strategies have been used in resource-efficient
image classification [173, 86], but dense prediction tasks require further steps detailed in the
following subsections.

2.3.3 Head Redesign

Typical convolutional networks have a hierarchical structure that begins with shallow, fine,
and more local features and ends with deep, coarse, and more global features. These deeper
features represent more image content by their larger receptive fields. For dense prediction,
upsampling is done within the network to restore lost resolution during downsampling, and
ensure precise spatial correspondence between the input and the output. This upsampling
can be accomplished in a few [120] or many [212] layers, but no matter the architecture, the
network learns its most local features in its earliest layers. This presents a challenge for the
earliest exits, since these features are limited in depth and receptive field. Making direct
predictions at these exits with the typical 1×1 convolution head produces spatially noisy and
inaccurate results.

To compensate for these lacking early features, we redesign the prediction heads for the
exits Ei. Each Ei first downsamples its input features Fli(x), through a series of pooling and
1× 1 convolution layers. Each pooling operation halves the spatial resolution, increasing its
output’s receptive fields. The following convolution provides the opportunity to learn new
coarser-level features, specifically for that exit’s prediction. After several (denoting this number
as D) “pool-conv” layers, we upsample the features back to the original output resolution,
with an equal number (D) of bilinear interpolation and 1× 1 convolution layers. The output
of this “interpolate-conv” sequence will be the prediction ŷi at this exit. This is important
for ensuring spatial accuracy for pixel-level dense prediction tasks. Our redesigned exits are
essentially small “encoder-decoder” modules (Figure 2.2), where the encoder downsamples
the features, the decoder upsamples them back.

The downsampling ratio at each exit is determined by D, the number of consecutive
“pool-conv” layers. Intuitively, features at earlier layers are more fine-level, and the exit
branching from them can potentially benefit from more downsampling. In experiments, we
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use an encoder with D = N − i downsampling operations at exit i, where N is the total
number of exits, including the original last exit. Empirically we find this strategy works well,
and alternative strategies are compared in Section 2.5.

Finally, in all early exits, the first convolution will transform the number of channels to a
fixed number for all exits. By setting the channel width relatively small, we can still save
computation while adding layers with this redesigned encoder-decoder head structure.

2.3.4 Confidence Adaptivity

For dense prediction tasks, any early prediction ŷi is a spatial map consisting of pixel-wise
predictions at each position. While most convolution networks spend an equal amount of
computation at each input position, it is likely that recognition at some regions are easier
than others, where the network can make predictions with high confidence even at earlier
exits. For instance, the inner part of a large sky segment may be easy to recognize, whereas
the boundary between the bicycle and the person riding it may need more careful delineation.

Once an early prediction is made, we can inspect the “confidence” at each position. As an
example, for semantic segmentation, the maximum probability over all classes can serve as a
confidence measure. If the confidence has passed a pre-defined threshold at certain positions
(green squares on predictions in Figure 2.2), we may decide these predictions are likely to be
correct, and not continue the computation of further layers at this position. Suppose the
pixels of the early prediction ŷi are indexed by p, we form a mask Mi:

Mi(p) =

{
0, if Confidence(ŷi(p)) ≥ Threshold
1, otherwise

(2.2)

For any convolution layer between exit i (Ei) and the next exit i + 1 (Ei+1), we could
choose whether to perform or skip computation at position p based on the mask (Figure 2.2).
Assuming C is a convolution layer with input fin, then by applying the mask, the output
fout at position p becomes:

fout(p) =

{
C(fin)(p), if Mi(p) = 1,

0, if Mi(p) = 0.
(2.3)

If C’s output and the mask Mi do not share the same spatial size, we interpolate ŷi in Eqn. 2.2
to the size of C’s output, so that the mask Mi is compatible with C in Eqn. 2.3.

The output fout could be sparse, with many positions being 0. This could potentially
harm further convolutional computation. To compensate for this, we spatially interpolate
these positions from their neighbors across all channels, using a similar approach as in [202].
Denoting the interpolation operation as I, the final output feature f ∗

out is

f ∗
out(p) =

{
fout(p), if Mi(p) = 1,

I(fout)(p), if Mi(p) = 0.
(2.4)
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Here, the value of I(fout)(p) is a weighted average of all the neighboring pixels centered at p
within a radius r:

I(fout)(p) =

∑
s∈Ω(p) W(p,s)fout(s)∑

s∈Ω(p) W(p,s)

(2.5)

where s indexes p’s neighboring pixels and Ω(p) = {s|∥s− p∥∞ ≤ r, s ̸= p}, the neighborhood
of p. We set radius r = 7 in our experiments. W(p,s) is the weight assigned to point s for
interpolating at p, for which we use the RBF kernel, a distance-based exponential decaying
weighting scheme:

W(p,s) = exp (−λ2∥p− s∥22) (2.6)

with λ being a trainable parameter. This indicates that the closer s is to p, the larger its
assigned weight will be. Note that masked-out features (Mi(p) = 0) still participate in the
interpolation process as inputs with values of 0.

Replacing filtering by interpolation at these already confident spatial locations (Mi(p) = 0)
could potentially save a substantial amount of computation. The mask Mi will be used for
all convolutions between exit i and i+ 1, including the convolutions inside exit i+ 1. Once
the forward pass arrives at the next exit, to make the prediction ŷi+1, the last prediction at
positions where Mi(p) = 0 will be carried over, having already been deemed confident enough
at the last exit and having been skipped during further computations. This means:

ŷi+1(p) =

{
Ei+1(Fli+1

(x)), if Mi(p) = 1,

ŷi(p), if Mi(p) = 0.
(2.7)

The network then calculates a new mask Mi+1 based on ŷi+1, and uses it to skip compu-
tation going forward. The process continues until we reach the final exit.

In summary, we incorporate spatial confidence adaptivity into the early exiting network, by
not filtering at spatial locations that are already sufficiently confident in the latest prediction.
At these positions interpolation is used instead, at a much reduced computational cost, to
avoid excessive sparsity. Unless otherwise specified, confidence adaptivity is used in both
training and inference. We dub our full approach as anytime dense prediction with confidence
(ADP-C).

2.4 Experiments
We evaluate ADP-C with two dense prediction tasks: semantic segmentation and human
pose estimation. Our experiments are implemented using PyTorch [136].

2.4.1 Architectures

We use the High-Resolution Network (HRNet) [185] architecture as our base model. HRNet
is a multi-stage architecture, where each stage adds lower-resolution/larger-scale features.
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Specifically, we adopt the standard HRNet-{W48,W32} models and the smaller HRNet-W18
model. HRNet-W48 is state-of-the-art for semantic segmentation and HRNet-W32 is suitable
for pose estimation. HRNet-W18 is highly efficient and has been shown to outperform other
efficient networks [211, 154] in its accuracy-efficiency tradeoff. The 48/32/18 denotes the
number of channels in the bottleneck of the first stage. The original head for HRNet before
our redesigning is two consecutive 1 × 1 convolutions. We attach three exits, one at the
end of each stage before the final prediction. We follow the training/evaluation protocol
and hyperparameters of the reference HRNet implementation at [167, 185] (except that our
models include a loss at each exit).

2.4.2 Baselines

HRNet. We compare with a standard HRNet that has only one (final) exit with the same
backbone architecture. The standard HRNet is not anytime, so we focus on comparing it
with our anytime model’s final exit.

MDEQ. MDEQ [8] is a recent deep implicit model, which achieves competitive performance
on vision tasks without stacking explicit layers, but rather solves an optimization problem
for inference. Its representation z∗ is an equilibrium point of its learned transformation
f(z;x), i.e., f(z∗;x) = z∗ where x is the input. The representation is obtained by iteratively
solving the equation f(z;x) = z, for which the quality of the solution improves with more
iterations. The converged representation is then decoded into a prediction. We examine
anytime prediction with the MDEQ by decoding intermediate iterates of the representation.
To the best of our knowledge, this is the first study of anytime implicit modeling, as [8] only
reports the predictions of implicit models at equilibrium, and does not produce or inspect
intermediate predictions. We use the “small” version of the MDEQ [8] and the 4th, 6th, 8th,
and 10th iterations of its equilibrium optimization to bound the amount of computation and
align its iterations with our architecture’s stages.

Feature-Based Stochastic Sampling. We follow [202] in using internal features to predict
masking positions, with the Gumbel-Softmax trick [91] used for sampling. We use a 3× 3
convolution upon the features for exits (Figure 2.2) for mask prediction until the next exit.
During training, an L1 sparsity regularization is applied on the stochastic continuous mask
values, and only during inference the mask values are discretized. The interpolation procedure
is the same as in our method. This baseline is evaluated on HRNet-W18.

2.4.3 Experimental Settings

For Cityscapes semantic segmentation, we follow the training settings at the official codebase
[50] of HRNet for semantic segmentation. The HRNet-W18/48 models are pre-trained on
ImageNet. During training, multi-scale and flipping data augmentation is used, and the input
cropping size is 512× 1024. The model is trained for 484 epochs, with an initial learning rate
of 0.01 and a polynomial schedule of power 0.9, a weight decay of 0.0005, a batch size of 12,
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optimized by SGD with 0.9 momentum. In evaluation, we use single-scale testing without
flipping, with input resolution 1024 × 2048. For the Feature-Based Stochastic Sampling
baseline, we modify the exit weights from (1, 1, 1, 1) to (0.5, 0.5, 0.5, 1) as we find it produces
more stable masking values during training. The L1 sparsity regularization on masks is set
to 0.1. The mask outputs at exit (1, 2, 3) have additional weight factors of (1/3, 2/3, 1) to
encourage more sparse features towards the end.

For MPII human pose estimation, we follow the training settings at the official codebase
[49] of HRNet for pose estimation. The HRNet-32 model we use is also pre-trained on
ImageNet. The image size for both training and evaluation is 256× 256. The model is trained
for 210 epochs, with an initial learning rate of 0.001, and decaying of 0.1 at epoch 170 and
200. The optimization is done by Adam with γ1 = 0.99, γ2 = 0, a weight decay of 0.0001, and
a momentum of 0.9. The batch size is 128. In evaluation, flipping test is used.

2.4.4 Semantic Segmentation

The Cityscapes dataset [26] consists of 2048×1024 images of urban street scenes with
segmentation annotations of 19 classes. We train the models with the training set and report
results on the validation set. The accuracy metric is the standard mean intersection-over-
union (mIoU %), and the computation metric is the number of floating-point operations
(FLOPs). Anytime inference improves with higher accuracy, less computation, and more
predictions. We evaluate HRNet-W48 and HRNet-W18 for this task.

Redesigned heads (RH) use our encoder-decoder structure for exits. Since we have 4
exits in total, we repeat the downsampling operation 3/2/1 times at exit 1/2/3 to generate
larger-scale features for earlier exits, as described in Section 2.3.3. We set the number of
channels at all exits to 128/64 for HRNet-W48/W18. For confidence adaptivity (CA), we use
the maximum probability among all classes as the confidence measure, and set the confidence
threshold in Eqn. 2.2 to be 99.8% based on cross-validation. For CA, the computation for
each input can differ, so we report the average FLOPs across all validation images at each
exit.

The results for HRNet-W48 are shown in Table 2.1. We observe that our early exiting model
based on HRNet-W48 outperforms the MDEQ model by a large margin, with significantly
less FLOPs at each exit. With RH, we achieve notable accuracy gain in early predictions,
especially at the first exit (more than 10%), with roughly the same computation. With CA
added, we arrive at our full ADP-C method (RH + CA), which maintains roughly the same
accuracy as the RH model but reduces the total computation at exits 3 and 4. Interestingly
ADP-C has slightly higher mIoU at the final exit (81.3 vs. 80.7) with 44.4% less total
computation (387.1 vs. 696.2 GFLOPs) compared to the base HRNet. This is possibly due
to a potential regularization effect of confidence adaptivity: computing fewer intermediate
features exactly may prevent overfitting.

The same results are plotted in Figure 2.3 (left). The plot shows accuracy (y-axis) and
computation (x-axis) tradeoffs: points to the upper left indicate better anytime performance.
The baseline HRNet is represented by a red cross, while anytime models are plotted as curves
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Accuracy (mIoU) Computation (GFLOPs)
Method / Output 1 2 3 4 Avg 1 2 3 4 Avg

One-exit HRNet-W48 [185] - - - 80.7 - - - - 696.2 -

Baselines
MDEQ-Small [8] 17.3 38.7 65.5 72.4 48.5 521.6 717.9 914.2 1110.5 816.0
EE (HRNet) 34.3 59.0 76.9 80.4 62.7 48.4 113.4 388.9 722.2 318.2

Ours
EE + RH (HRNet) 44.6 60.2 76.6 79.9 65.3 41.9 105.6 368.0 701.3 304.2
ADP-C: EE + RH + CA (HRNet) 44.3 60.1 76.8 81.3 65.7 41.9 93.9 259.3 387.1 195.6

Table 2.1: Accuracy and inference computation for Cityscapes semantic segmentation with
four exits. Our approach achieves higher accuracy in less computation than the HRNet and
MDEQ baselines across exits. Early exiting (EE) makes progressive predictions. Redesigned
heads (RH) improve early predictions (exits 1 and 2). Confidence Adaptivity (CA) reduces
computation.

with a point for each prediction. We plot the results for the smaller HRNet-W18 model in
Figure 2.3 (middle). RH improves early prediction accuracy from the basic early exiting
model, and CA substantially reduces computation at later exits. The full model reaches the
same-level of accuracy as the baseline HRNet with much less total computation. We note
that our model with confidence values as mask indicators also outperforms the feature-based
mask sampling method in the accuracy-computation tradeoff, demonstrating that confidence
is effective at filtering out redundant computation despite its simplicity.
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Figure 2.3: Accuracy and computation at four exits across architectures and tasks. Redesigned
heads (RH) boost the accuracy at early exits, while confidence adaptivity (CA) reduces
computation by up to more than half. ADP-C outperforms baseline methods across the
accuracy-computation tradeoff curve.

Our experiments measure computation by FLOPs rather than time. Reporting FLOPs is
common [43, 202, 86, 187, 119] and meaningful because it is hardware independent. However,
similarly to spatially adaptive computation methods [43, 202], our model does not achieve
wall clock speedup at this time due to the lack of software/hardware support for sparse
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convolution with current frameworks and GPU devices. To approximate CPU speedup,
we conduct a profiling experiment on a multi-threading processor (specifically we measure
computation time on a Linux machine with Intel Xeon Gold 5220R CPUs using 16 threads).
We replace all convolutions with our implementations following [202]. ADP-C on HRNet-W48
achieves 1.48× speedup compared to the non-anytime baseline, measured in end-to-end
latency (wall-clock time). There is a gap between this measured time and the theoretical
1.80× speedup measured by FLOPs. ADP-C and others can benefit from ongoing and future
work on efficient sparse convolutions [55, 23, 183, 40]. We also refer readers to the Hardware
Lottery [78] for a discussion on how hardware compatibility affects progress in AI research.
Please see the supplement for an anytime inference video where each exit is timed to the
computation it requires.

2.4.5 Human Pose Estimation

For human pose estimation, we evaluate on the MPII Human Pose dataset [4] of image crops
annotated with body joints collected from everyday human activities. The positions of 16
joint types are annotated for the human-centered in each crop. We report the standard
metric [4] for MPII, the PCKh (head-normalized probability of correct keypoint) score, on its
validation set. We use HRNet-W32 for this task and follow the reference settings from [167].
The standard head for this task is 1 × 1 convolution. As in segmentation, our redesigned
heads are encoder-decoder structures. The number of channels for all exits is 64.

Pose estimation task is formulated as regression. The HRNet model outputs 16 spatial
feature maps, each one regressing the corresponding body joint. The only positive target for
each type is coded as 1; all other points are negatives coded as 0. Unlike in segmentation, the
output at each pixel is not a probability distribution, so we use the maximum value across
channels as the confidence measure. A pixel is masked out if the maximum value at that
position is smaller than the threshold, marking it unlikely to be a joint prediction. We choose
0.002 as the threshold by cross-validation, as a larger value makes the mask too sparse and
hurts learning. The RH + CA model adopts adaptivity after 10 epochs of normal training,
because nearly all outputs are too close to zero in the beginning.

Figure 2.3 (right) and Table 2.2 show the results. We observe a similar trend to seg-
mentation: RH improves accuracy and CA reduces FLOPs. In this case, ADP-C reduces
computation by 59.1% (9.49 to 3.88 GFLOPs) while accuracy only drops by 0.13% relative
to the baseline HRNet.

2.5 Analysis

2.5.1 Visualizations

To inspect our anytime predictions and masking on Cityscapes, we visualize ADP-C exit
results on a validation image with HRNet-W48. Figure 2.4 shows the predictions, confidence
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PCKh@0.5 GFLOPs
Method / Output Last Avg Last Avg
HRNet-W32 [185] 90.33 - 9.49 -
EE (HRNet) 90.31 74.60 9.51 4.73
EE + RH (HRNet) 90.26 79.16 9.55 4.76
ADP-C: EE + RH + CA (HRNet) 90.20 79.04 3.88 2.44

Table 2.2: Accuracy and computation on MPII pose estimation at the last exit and averaged
for all exits. Early exits (EE) make progress predictions, redesigned heads (RH) improve
accuracy, and confidence adaptivity (CA) reduces computation.

Figure 2.4: Visualizations of ADP-C results. Top: prediction results at all exits. Middle:
confidence maps, lighter color indicates higher confidence. Bottom: correct/wrong predictions
at the exit drawn as white/black. The confident points selected for masking are in green.
Confidence adaptivity excludes calculation on already confident pixels (green) in early exits,
mostly located at inner parts of large segments.

maps, and computation masks across exits. With each exit, the prediction accuracy improves,
especially in more detailed areas with more segments. The confidence maps are shown
with high lighter/yellow and low darker/green. Most unconfident points lie around segment
boundaries, and the interior of large stuff segments (road, vegetation) are already confident
at early exits. This motivates the use of confidence adaptivity to avoid unnecessary further
computations on these areas. For computation masks, the correct/incorrect predictions at
each exit are marked white/black. Pixels surpassing the confidence threshold (99.8%) are
masked and marked green. Many pixels can be masked out in this way, and each exit masks
more. Most of the masked pixels are found in the inner parts of large segments or already
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correct areas. In fact, the masked pixels are 100% correct at all exits for this instance, which
partly justifies their exclusion from later computation. The predictions at these positions
are already confident and correct at early exits, and so the only potential harm of skipping
their computation later is their possible effect at less confident positions. On average, 19.3%,
38.4%, 63.0% pixels are masked out at exit 1, 2, 3, respectively.

2.5.2 Downsampling at Early Exits.

In Section 2.3.3, we described how many consecutive downsampling operations we use at
each exit, by D = N − i, which means we use D = 3/2/1 consecutive “pool-conv” layers for
downsampling at exit 1/2/3. Here we compare this strategy with D = 1/1/1 and 3/3/3,
where the same level of downsampling and hence the same head structure is used at all exits,
on HRNet-W18. Figure 2.5 (left) shows that our adopted D = 3/2/1 strategy obtains the
highest accuracy at all exits among these choices.
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Figure 2.5: Analysis of ADP-C. Left: comparing downsampling strategies. D = 3/2/1 means
downsampling the features 3/2/1 times at exit 1/2/3. Right: comparison between different
masking criteria.

2.5.3 Masking Criterion

We used the max probability as the confidence measure and a fixed threshold for masking.
Here we consider a few alternatives. One is to mask out the top k% (by max prob.) of the
pixels at each exit, regardless of their values. We also consider thresholding on the entropy of
the probability distribution. In addition, we compare them with random masking. We use
HRNet-W18, change the ratio or threshold for a wide range, and present the average mIoU
vs. GFLOPs on all exits at Figure 2.5 (right). For this ablation, adaptivity is only applied
during inference.

First, we notice all three confidence criteria largely outperform random masking. For max
probability, using a threshold performs slightly better than a fixed ratio, possibly because
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this gives the flexibility for different exits to mask out different amounts of points. Finally, we
observe using entropy as the confidence measure performs similarly to using max probability,
but we stick to max probability in ADP-C because it is trivial to compute.

2.6 Related Work

2.6.1 Anytime Inference

Anytime algorithms [217, 33] can be interrupted at any point during computation to return a
result, whose quality improves gradually with more computation time. In machine learning,
anytime inference has been achieved by boosting [58], reinforcement learning [94], and random
forests [45]. Anytime deep networks have been brought to bear on image classification, but
not dense prediction. Branching architectures have been a common strategy [3, 173] along
with other techniques such as adaptive loss balancing [80]. While there is work on the tasks of
person re-identification [188] and stereo depth [189], these techniques are task-specific, while
our method applies to multiple dense prediction tasks, as we show with semantic segmentation
and pose estimation. Liu et al. [113] learn a hierarchy of models for anytime segmentation,
but its multiple models complicate training and testing, and require more memory. Our work
instead augments the base model architecture for simplicity and efficiency. The PointRend
method [96] outputs an initial dense prediction first and then refine it adaptively, but the
predictions are all made at full depth. Its majority of the computation is spent before the
first output and thus cannot be practically “anytime”. Our method is the first to selectively
update anytime predictions across space and layers.

2.6.2 Adaptive Computation

An adaptive model adjusts its computation to each specific instance during inference. For
deep networks, this is often done by adjusting which layers to execute, that is, choosing which
layers to run or skip. This can be done by a supervised controller [182, 116], a routing policy
optimized by reinforcement learning [187, 197, 109], or other training strategies [127]. Rather
than choosing layers, spatial adaptivity chooses where to adjust the amount of computation
across different spatial positions in the input. For example, the model could infer spatial
masks for feature maps and skip computation on masked areas [158, 38, 111, 147, 15]. [43]
maintains a halting score at each pixel and once it reaches a threshold the model will stop
inference at those positions for spatially coarse tasks like classification or bounding box
detection. [202] stochastically sample positions for computation from an end-to-end learned
sampling distribution. [108] convert a deep network into a difficulty-aware cascade, where
earlier steps handle easier regions and later steps tackle harder regions. These spatially
adaptive models reduce computation, but are not anytime: they do not make a series of
predictions and cannot be interrupted.
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2.7 Additional Studies

2.7.1 Ablation on Interpolation Radius

We use a default radius of r = 7 when interpolating masked-out features (Eqn. 2.6 and
following text). Here we demonstrate that the radius of 7 is reasonable through an ablation
experiment, whose results are listed in Table 2.3. The experiment is conducted with HRNet-
W18 on Cityscapes semantic segmentation, with both redesigned head (RH) and confidence
adaptivity (CA). We observe that a radius of 7 outperforms lower ones (3 and 5) in the average
mIoU slightly, with minimal FLOPs addition, because interpolation is done channel-wise. A
further increase of radius to 9 does not bring significant gain in final or average mIoU.

Accuracy (mIoU) Computation (GFLOPs)
Radius 1 2 3 4 Avg 1 2 3 4 Avg

3 41.06 48.25 67.56 75.82 58.17 23.7 33.0 44.4 57.0 39.5
5 40.86 48.01 67.64 76.21 58.18 23.7 33.1 44.6 57.4 39.7

7 (default) 41.05 48.35 67.73 76.10 58.31 23.7 33.1 44.9 58.1 40.0
9 41.01 48.41 67.88 76.08 58.35 23.7 33.2 45.4 59.1 40.4

Table 2.3: Accuracy and inference computation for Cityscapes semantic segmentation with
four exits under different settings of interpolation radius. A minor increase in mIoU and
GFLOPs is observed with a larger radius.

2.7.2 Inference-Only Confidence Adaptivity

Accuracy (mIoU) Computation (GFLOPs)
Adaptivity 1 2 3 4 Avg 1 2 3 4 Avg

No Adaptivity 44.61 60.19 76.64 79.89 65.33 41.9 105.6 368.0 701.4 304.2
Training and Inference 44.34 60.13 76.82 81.31 65.65 41.9 93.9 259.4 387.1 195.6

Inference-only 44.61 59.97 76.37 79.69 65.16 41.9 94.1 291.8 484.8 228.1

Table 2.4: Accuracy and inference computation for Cityscapes semantic segmentation with
four exits under different adaptivity settings.

By default, confidence adaptivity is used in both training and inference. Here we compare
this with the setting where adaptivity is only used for inference in Table 2.4. We use
HRNet-W48 with redesigned heads (RH) on Cityscapes for this experiment. “No Adaptivity”
corresponds to the “EE + RH” row in Table 2.1. We observe that using adaptivity only at
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inference hurts the accuracy, compared with using it at both training and inference. It also
increases the average FLOPs at exit 3 and 4.

2.7.3 PASCAL-Context Results

We present results with the PASCAL-Context semantic segmentation dataset [132] in Table 2.5.
It consists of 59 segmentation classes. For the Early Exiting baseline, we use weights of (0.33,
0.33, 0.33, 1) for 4 exits, respectively, as we found increasing it to all 1 would hurt the final
performance too much. The confidence threshold is set to 99.5%. We observe RH improve
the accuracy in most exits. ADP-C outperforms the Early Exiting baseline in average mIoU,
despite its final mIoU is worse. It also saves more than 20% FLOPs compared with the
vanilla Early Exiting baseline.

Accuracy (mIoU) Computation (GFLOPs)
Method / Output 1 2 3 4 Avg 1 2 3 4 Avg

One-exit HRNet-W48 [185] - - - 51.35 - - - - 76.5 -
Baseline Early Exiting (HRNet) 8.78 18.74 39.82 50.10 29.36 5.4 12.6 43.1 80.1 35.3

Ours
EE + RH (HRNet) 14.55 19.42 39.30 50.32 30.90 4.5 11.4 40.2 77.2 33.3
ADP-C: EE + RH + CA (HRNet) 14.51 19.18 39.00 49.27 30.49 4.5 11.1 38.1 62.7 29.1

Table 2.5: Accuracy and inference computation for PASCAL-Context semantic segmentation.
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2.7.4 More Visualizations

Figure 2.6: Input and ground truth of the example validation images visualized in Figure 2.7
and Figure 2.8

We present more visualizations of the same type as Figure 2.4, in Figure 2.7 and 2.8.
Their input and ground truth are shown in Figure 2.6 in the same order. We can see the
same trend as discussed previously still holds: the model will mask out confident points that
are inside large segments (e.g., road, vegetable), which are mostly already predicted correctly
in early exits.

2.8 Conclusion
We propose ADP-C, the first single-model anytime approach for dense visual prediction.
Based on an early-exiting framework, our redesigned exiting heads and confidence adaptivity
both improve the accuracy-computation tradeoff. On Cityscapes semantic segmentation and
MPII pose estimation, ADP-C achieves 40%-60% FLOPs reduction with the same-level final
accuracy, compared to the baseline HRNet. We further analyze confidence adaptivity with
visualizations and ablate key design choices to justify our approach to anytime inference with
confidence.
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Figure 2.7: Additional visualizations of ADP-C results, part 1.
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Figure 2.8: Additional visualizations of ADP-C results, part 2.
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Chapter 3

Rethinking the Value of Network Pruning

3.1 Overview
Compared with the adaptive computation anytime inference method in the last chapter,
static neural network pruning methods try to reduce the computation of a neural network in
an input-agnostic manner. They are generally popular for scaling down models in practice
due to their simplicity, effectiveness and sometimes better hardware compatibility. In this
chapter, we try to understand what the true underlying mechanism is behind their success.

A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning
and fine-tuning. During pruning, according to a certain criterion, redundant weights are
pruned and important weights are kept to best preserve the accuracy. In this work, we make
several surprising observations which contradict common beliefs. For all state-of-the-art
structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable
or worse performance than training that model with randomly initialized weights. For pruning
algorithms which assume a predefined target network architecture, one can get rid of the full
pipeline and directly train the target network from scratch. Our observations are consistent
for multiple network architectures, datasets, and tasks, which imply that: 1) training a large,
over-parameterized model is often not necessary to obtain an efficient final model, 2) learned
“important” weights of the large model are typically not useful for the small pruned model,
3) the pruned architecture itself, rather than a set of inherited “important” weights, is more
crucial to the efficiency in the final model, which suggests that in some cases pruning can
be useful as an architecture search paradigm. Our results suggest the need for more careful
baseline evaluations in future research on structured pruning methods. We also compare with
the “Lottery Ticket Hypothesis” [44], and find that with optimal learning rate, the “winning
ticket” initialization as used in [44] does not bring improvement over random initialization. Our
code is available at https://github.com/Eric-mingjie/rethinking-network-pruning.

https://github.com/Eric-mingjie/rethinking-network-pruning
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3.2 Introduction
Over-parameterization is a widely-recognized property of deep neural networks [35, 6], which
leads to high computational cost and high memory footprint for inference. As a remedy,
network pruning [104, 63, 62, 131, 107] has been identified as an effective technique to
improve the efficiency of deep networks for applications with a limited computational budget.
A typical procedure of network pruning consists of three stages: 1) train a large, over-
parameterized model (sometimes there are pre-trained models available), 2) prune the trained
large model according to a certain criterion, and 3) fine-tune the pruned model to regain the
lost performance.

Training Pruning Fine-tuning

Figure 3.1: A typical three-stage network pruning pipeline.

Generally, there are two common beliefs behind this pruning procedure. First, it is
believed that starting with training a large, over-parameterized network is important [125,
17], as it provides a high-performance model (due to stronger representation & optimization
power) from which one can safely remove a set of redundant parameters without significantly
hurting the accuracy. Therefore, this is usually believed, and reported to be superior to
directly training a smaller network from scratch [107, 125, 71, 206] – a commonly used baseline
approach. Second, both the pruned architecture and its associated weights are believed to be
essential for obtaining the final efficient model [62]. Thus most existing pruning techniques
choose to fine-tune a pruned model instead of training it from scratch. The preserved weights
after pruning are usually considered to be critical, as how to accurately select the set of
important weights is a very active research topic in the literature [131, 107, 125, 71, 118, 166].

In this work, we show that both of the beliefs mentioned above are not necessarily true
for structured pruning methods, which prune at the levels of convolution channels or larger.
Based on an extensive empirical evaluation of state-of-the-art pruning algorithms on multiple
datasets with multiple network architectures, we make two surprising observations. First,
for structured pruning methods with predefined target network architectures (Figure 3.2),
directly training the small target model from random initialization can achieve the same,
if not better, performance, as the model obtained from the three-stage pipeline. In this
case, starting with a large model is not necessary and one could instead directly train the
target model from scratch. Second, for structured pruning methods with auto-discovered
target networks, training the pruned model from scratch can also achieve comparable or even
better performance than fine-tuning. This observation shows that for these pruning methods,
what matters more may be the obtained architecture, instead of the preserved weights,
despite training the large model is needed to find that target architecture. Interestingly,
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Predefined: prune 
x% channels in 
each layer 

Automatic: prune a%, 
 b%, c%, d% channels 
  in each layer

A 4-layer model

Figure 3.2: Difference between predefined and automatically discovered target architectures,
in channel pruning as an example. The pruning ratio x is user-specified, while a, b, c, d are
determined by the pruning algorithm. Unstructured sparse pruning can also be viewed as
automatic.

for a unstructured pruning method [62] that prunes individual parameters, we found that
training from scratch can mostly achieve comparable accuracy with pruning and fine-tuning
on smaller-scale datasets, but fails to do so on the large-scale ImageNet benchmark. Note
that in some cases, if a pre-trained large model is already available, pruning and fine-tuning
from it can save the training time required to obtain the efficient model. The contradiction
between some of our results and those reported in the literature might be explained by
less carefully chosen hyper-parameters, data augmentation schemes and unfair computation
budget for evaluating baseline approaches.

Our results advocate a rethinking of existing structured network pruning algorithms. It
seems that the over-parameterization during the first-stage training is not as beneficial as
previously thought. Also, inheriting weights from a large model is not necessarily optimal,
and might trap the pruned model into a bad local minimum, even if the weights are considered
“important” by the pruning criterion. Instead, our results suggest that the value of automatic
structured pruning algorithms sometimes lie in identifying efficient structures and performing
implicit architecture search, rather than selecting “important” weights. For most structured
pruning methods which prune channels/filters, this corresponds to searching the number of
channels in each layer. In Section 3.6, we discuss this viewpoint through carefully designed
experiments, and show the patterns in the pruned model could provide design guidelines for



CHAPTER 3. RETHINKING THE VALUE OF NETWORK PRUNING 27

efficient architectures.

3.3 Background
The recent success of deep convolutional networks [106, 34, 47, 120, 64, 67] has been coupled
with increased requirement of computation resources. In particular, the model size, memory
footprint, the number of computation operations (FLOPs) and power usage are major aspects
inhibiting the use of deep neural networks in some resource-constrained settings. Those large
models can be infeasible to store, and run in real time on embedded systems. To address
this issue, many methods have been proposed such as low-rank approximation of weights [35,
102], weight quantization [28, 146], knowledge distillation [77, 149] and network pruning [62,
107], among which network pruning has gained notable attention due to their competitive
performance and compatibility.

One major branch of network pruning methods is individual weight pruning, and it dates
back to Optimal Brain Damage [104] and Optimal Brain Surgeon [63], which prune weights
based on Hessian of the loss function. More recently, [62] proposes to prune network weights
with small magnitude, and this technique is further incorporated into the “Deep Compression”
pipeline [60] to obtain highly compressed models. [163] proposes a data-free algorithm to
remove redundant neurons iteratively. Network-Trim [1] prune a trained model layer-wisely,
by solving a convex optimization problem. [130] uses Variatonal Dropout [135] to prune
redundant weights. [122] learns sparse networks through L0-norm regularization based on
stochastic gating. However, one drawback of these unstructured pruning methods is that the
resulting weight matrices are sparse, which cannot lead to compression and speedup without
dedicated hardware/libraries [61].

In contrast, structured pruning methods prune at the level of channels or even layers.
Since the original convolution structure is still preserved, no dedicated hardware/libraries are
required to realize the benefits. Among structured pruning methods, channel pruning is the
most popular, since it operates at the most fine-grained level while still fitting in conventional
deep learning frameworks. Some heuristic methods include pruning channels based on their
corresponding filter weight norm [107] and the average percentage of zeros in the output [81].
Group sparsity is also widely used to smooth the pruning process after training [190, 2,
101, 215]. [118] and [204] impose sparsity constraints on channel-wise scaling factors during
training, whose magnitudes are then used for channel pruning. [87] uses a similar technique
to prune coarser structures such as residual blocks. [71] and [125] minimizes the next layer’s
feature reconstruction error to determine which channels to keep. Similarly, [206] optimizes
the reconstruction error of the final response layer and propagates a “importance score” for
each channel. [131] uses Taylor expansion to approximate each channel’s influence over the
final loss and prune accordingly. [166] analyzes the intrinsic correlation within each layer and
prunes redundant channels. [21] proposes a layer-wise compensate filter pruning algorithm
to improve commonly-adopted heuristic pruning metrics. [70] proposes to allow pruned filters
to recover during the training process. [109, 187] prune certain structures in the network
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based on the current input.
Our work is also related to some recent studies on the characteristics of pruning algo-

rithms. [129] shows that random channel pruning [5] can perform on par with a variety
of more sophisticated pruning criteria, demonstrating the plasticity of network models. In
the context of unstructured pruning, The Lottery Ticket Hypothesis [44] conjectures that
certain connections together with their randomly initialized weights, can enable a comparable
accuracy with the original network when trained in isolation. We provide comparisons
between [44] and this work in Section 3.7. [216] shows that training a small-dense model
cannot achieve the same accuracy as a pruned large-sparse model with an identical memory
footprint. In this work, we reveal a different and rather surprising characteristic of structured
network pruning methods: fine-tuning the pruned model with inherited weights is not better
than training it from scratch; the resulting pruned architectures are more likely to be what
brings the benefit.

3.4 Methodology
In this section, we describe in detail our methodology for training a small target model from
scratch.

3.4.1 Target Pruned Architectures

We first divide network pruning methods into two categories. In a pruning pipeline, the
target pruned model’s architecture can be determined by either a human (i.e., predefined) or
the pruning algorithm (i.e., automatic) (see Figure 3.2).

When a human predefines the target architecture, a common criterion is the ratio of
channels to prune in each layer. For example, we may want to prune 50% channels in
each layer of VGG. In this case, no matter which specific channels are pruned, the pruned
target architecture remains the same, because the pruning algorithm only locally prunes the
least important 50% channels in each layer. In practice, the ratio in each layer is usually
selected through empirical studies or heuristics. Examples of predefined structured pruning
include [107], [125], [71] and [70]

When the target architecture is automatically determined by a pruning algorithm, it is
usually based on a pruning criterion that globally compares the importance of structures (e.g.,
channels) across layers. Examples of automatic structured pruning include [118], [87], [131]
and [166].

Unstructured pruning [62, 130, 122] also falls in the category of automatic methods, where
the positions of pruned weights are determined by the training process and the pruning
algorithm, and it is usually not possible to predefine the positions of zeros before training
starts.
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3.4.2 Datasets, Network Architectures and Pruning Methods

In the network pruning literature, CIFAR-10, CIFAR-100 [98], and ImageNet [34] datasets are
the de-facto benchmarks, while VGG [161], ResNet [64] and DenseNet [85] are the common
network architectures. We evaluate four predefined pruning methods, [107], [125], [71], [70], two
automatic structured pruning methods, [118], [87], and one unstructured pruning method [62].
For the first six methods, we evaluate using the same (target model, dataset) pairs as
presented in the original paper to keep our results comparable. For the last one [62], we use
the aforementioned architectures instead, since the ones in the original paper are no longer
state-of-the-art. On CIFAR datasets, we run each experiment with 5 random seeds, and
report the mean and standard deviation of the accuracy.

3.4.3 Training Budget

One crucial question is how long we should train the small pruned model from scratch. Naively
training for the same number of epochs as we train the large model might be unfair, since the
small pruned model requires significantly less computation for one epoch. Alternatively, we
could compute the floating point operations (FLOPs) for both the pruned and large models,
and choose the number of training epochs for the pruned model that would lead to the same
amount of computation as training the large model. Note that it is not clear how to train the
models to “full convergence” given the stepwise decaying learning rate schedule commonly
used in the CIFAR/ImageNet classification tasks.

In our experiments, we use Scratch-E to denote training the small pruned models for
the same epochs, and Scratch-B to denote training for the same amount of computation
budget (on ImageNet, if the pruned model saves more than 2× FLOPs, we just double the
number of epochs for training Scratch-B, which amounts to less computation budget than
large model training). When extending the number of epochs in Scratch-B, we also extend
the learning rate decay schedules proportionally. One may argue that we should instead train
the small target model for fewer epochs since it may converge faster. However, in practice we
found that increasing the training epochs within a reasonable range is rarely harmful. In our
experiments we found in most times Scratch-E is enough while in other cases Scratch-B is
needed for a comparable accuracy as fine-tuning. Note that our evaluations use the same
computation as large model training without considering the computation in fine-tuning,
since in our evaluated methods fine-tuning does not take too long; if anything this still favors
the pruning and fine-tuning pipeline.

3.4.4 Implementation

In order to keep our setup as close to the original papers as possible, we use the following
protocols: 1) ff a previous pruning method’s training setup is publicly available, e.g. [118], [87]
and [70], we adopt the original implementation; 2) otherwise, for simpler pruning methods,
e.g., [107] and [62], we re-implement the three-stage pruning procedure and generally achieve
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similar results as in the original papers; 3) for the remaining two methods [125, 71], the
pruned models are publicly available but without the training setup, thus we choose to re-train
both large and small target models from scratch. Interestingly, the accuracy of our re-trained
large model is higher than what is reported in the original papers. This could be due to the
difference in the deep learning frameworks: we used Pytorch [136] while the original papers
used Caffe [92]. In this case, to accommodate the effects of different frameworks and training
setups, we report the relative accuracy drop from the unpruned large model.

We use standard training hyper-parameters and data-augmentation schemes, which are
used both in standard image classification models [64, 85] and network pruning methods [107,
118, 87, 70]. The optimization method is SGD with Nesterov momentum, using a stepwise
decay learning rate schedule.

For random weight initialization, we adopt the scheme proposed in [65]. For results of
models fine-tuned from inherited weights, we either use the released models from original
papers (case 3 above) or follow the common practice of fine-tuning the model using the
lowest learning rate when training the large model [107, 71]. For CIFAR, training/fine-
tuning takes 160/40 epochs. For ImageNet, training/fine-tuning takes 90/20 epochs. For
reproducing the results and more detailed knowledge about the settings, see our code at
https://github.com/Eric-mingjie/rethinking-network-pruning.

3.5 Experiments
In this section we present our experimental results comparing training pruned models from
scratch and fine-tuning from inherited weights, for both predefined and automatic (Figure 3.2)
structured pruning, as well as a magnitude-based unstructured pruning method [62]. We put
the results and discussions on a pruning method (Soft Filter pruning [70]) in Section 3.8.1,
and include an experiment on transfer learning from image classification to object detection
in Section 3.8.2.

3.5.1 Predefined Structured Pruning

L1-norm based Filter Pruning [107] is one of the earliest works on filter/channel pruning
for convolutional networks. In each layer, a certain percentage of filters with smaller L1-norm
will be pruned. Table 3.1 shows our results. The Pruned Model column shows the list of
predefined target models (see [107] for configuration details on each model). We observe that
in each row, scratch-trained models achieve at least the same level of accuracy as fine-tuned
models, with Scratch-B slightly higher than Scratch-E in most cases. On ImageNet, both
Scratch-B models are better than the fine-tuned ones by a noticeable margin.

ThiNet [125] greedily prunes the channel that has the smallest effect on the next layer’s
activation values. As shown in Table 3.2, for VGG-16 and ResNet-50, both Scratch-E and
Scratch-B can almost always achieve better performance than the fine-tuned model, often
by a significant margin. The only exception is Scratch-E for VGG-Tiny, where the model is

https://github.com/Eric-mingjie/rethinking-network-pruning
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Dataset Model Unpruned Pruned Model Fine-tuned Scratch-E Scratch-B

CIFAR-10

VGG-16 93.63 (±0.16) VGG-16-A 93.41 (±0.12) 93.62 (±0.11) 93.78 (±0.15)

ResNet-56 93.14 (±0.12)
ResNet-56-A 92.97 (±0.17) 92.96 (±0.26) 93.09 (±0.14)
ResNet-56-B 92.67 (±0.14) 92.54 (±0.19) 93.05 (±0.18)

ResNet-110 93.14 (±0.24)
ResNet-110-A 93.14 (±0.16) 93.25 (±0.29) 93.22 (±0.22)
ResNet-110-B 92.69 (±0.09) 92.89 (±0.43) 93.60 (±0.25)

ImageNet ResNet-34 73.31
ResNet-34-A 72.56 72.77 73.03
ResNet-34-B 72.29 72.55 72.91

Table 3.1: Results (accuracy % by default) for L1-norm based filter pruning [107]. “Pruned
Model” is the model pruned from the large model. Configurations of Model and Pruned
Model are both from the original paper.

Dataset Unpruned Strategy Pruned Model

ImageNet

VGG-16 VGG-Conv VGG-GAP VGG-Tiny
71.03 Fine-tuned −1.23 −3.67 −11.61

71.51
Scratch-E −2.75 −4.66 −14.36
Scratch-B +0.21 −2.85 −11.58

ResNet-50 ResNet50-30% ResNet50-50% ResNet50-70%
75.15 Fine-tuned −6.72 −4.13 −3.10

76.13
Scratch-E −5.21 −2.82 −1.71
Scratch-B −4.56 −2.23 −1.01

Table 3.2: Results for ThiNet [125]. Names such as “VGG-GAP” and “ResNet50-30%” are
pruned models whose configurations are defined in [125]. To accommodate the effects of
different frameworks between our implementation and the original paper’s, we compare the
relative accuracy drop from the unpruned large model. For example, for the pruned model
VGG-Conv, −1.23 is relative to 71.03 on the left, which is the reported accuracy of the
unpruned large model VGG-16 in the original paper; −2.75 is relative to 71.51 on the left,
which is VGG-16’s accuracy in our implementation.
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pruned very aggressively from VGG-16 (FLOPs reduced by 15×), and as a result, drastically
reducing the training budget for Scratch-E. The training budget of Scratch-B for this model
is also 7 times smaller than the original large model, yet it can achieve the same level of
accuracy as the fine-tuned model.

Regression based Feature Reconstruction [71] prunes channels by minimizing
the feature map reconstruction error of the next layer. In contrast to ThiNet [125], this
optimization problem is solved by LASSO regression. Results are shown in Table 3.3. Again,
in terms of relative accuracy drop from the large models, scratch-trained models are better
than the fine-tuned models.

Dataset Unpruned Strategy Pruned Model

ImageNet

VGG-16 VGG-16-5×
71.03 Fine-tuned −2.67

71.51
Scratch-E −3.46
Scratch-B −0.51

ResNet-50 ResNet-50-2×
75.51 Fine-tuned −3.25

76.13
Scratch-E −1.55
Scratch-B −1.07

Table 3.3: Results for Regression based Feature Reconstruction [71]. Pruned models such as
“VGG-16-5×” are defined in [71]. Similar to Table 3.2, we compare relative accuracy drop
from unpruned large models.

3.5.2 Automatic Structured Pruning

Network Slimming [118] imposes L1-sparsity on channel-wise scaling factors from Batch
Normalization layers [89] during training, and prunes channels with lower scaling factors
afterwards. Since the channel scaling factors are compared across layers, this method produces
automatically discovered target architectures. As shown in Table 3.4, for all networks, the
small models trained from scratch can reach the same accuracy as the fine-tuned models.
More specifically, we found that Scratch-B consistently outperforms (8 out of 10 experiments)
the fine-tuned models, while Scratch-E is slightly worse but still mostly within the standard
deviation.

Sparse Structure Selection [87] also uses sparsified scaling factors to prune structures,
and can be seen as a generalization of Network Slimming. Other than channels, pruning can
be on residual blocks in ResNet or groups in ResNeXt [201]. We examine residual blocks
pruning, where ResNet-50 are pruned to be ResNet-41, ResNet-32 and ResNet-26. Table 3.5
shows our results. On average Scratch-E outperforms pruned models, and for all models
Scratch-B is better than both.
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Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B

CIFAR-10

VGG-19 93.53 (±0.16) 70% 93.60 (±0.16) 93.30 (±0.11) 93.81 (±0.14)

PreResNet-164 95.04 (±0.16)
40% 94.77 (±0.12) 94.70 (±0.11) 94.90 (±0.04)
60% 94.23 (±0.21) 94.58 (±0.18) 94.71 (±0.21)

DenseNet-40 94.10 (±0.12)
40% 94.00 (±0.20) 93.68 (±0.18) 94.06 (±0.12)
60% 93.87 (±0.13) 93.58 (±0.21) 93.85 (±0.25)

CIFAR-100

VGG-19 72.63 (±0.21) 50% 72.32 (±0.28) 71.94 (±0.17) 73.08 (±0.22)

PreResNet-164 76.80 (±0.19)
40% 76.22 (±0.20) 76.36 (±0.32) 76.68 (±0.35)
60% 74.17 (±0.33) 75.05 (± 0.08) 75.73 (±0.29)

DenseNet-40 73.82 (±0.34)
40% 73.35 (±0.17) 73.24 (±0.29) 73.19 (±0.26)
60% 72.46 (±0.22) 72.62 (±0.36) 72.91 (±0.34)

ImageNet VGG-11 70.84 50% 68.62 70.00 71.18

Table 3.4: Results for Network Slimming [118]. “Prune ratio” stands for total percentage of
channels that are pruned in the whole network. The same ratios for each model are used as
the original paper.

Dataset Model Unpruned Pruned Model Pruned Scratch-E Scratch-B

ImageNet ResNet-50 76.12
ResNet-41 75.44 75.61 76.17
ResNet-32 74.18 73.77 74.67
ResNet-26 71.82 72.55 73.41

Table 3.5: Results for residual block pruning using Sparse Structure Selection [87]. In the
original paper no fine-tuning is required so there is a “Pruned” column instead of “Fine-tuned”
as before.

3.5.3 Unstructured Magnitude-based Pruning

Unstructured magnitude-based weight pruning [62] can also be treated as automatically
discovering architectures, since the positions of exact zeros cannot be determined before
training, but we highlight its differences with structured pruning using another subsection.
Because all the network architectures we evaluated are fully-convolutional (except for the
last fully-connected layer), for simplicity, we only prune weights in convolution layers here.
Before training the pruned sparse model from scratch, we re-scale the standard deviation
of the Gaussian distribution for weight initialization, based on how many non-zero weights
remain in this layer. This is to keep a constant scale of backward gradient signal as in [65],
which however in our observations does not bring gains compared with unscaled counterparts.

As shown in Table 3.6, on the smaller-scale CIFAR datasets, when the pruned ratio is
small (≤ 80%), Scratch-E sometimes falls short of the fine-tuned results, but Scratch-B is
able to perform at least on par with the latter. However, we observe that in some cases, when
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Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B

CIFAR-10

VGG-19 93.50 (±0.11)
30% 93.51 (±0.05) 93.71 (±0.09) 93.31 (±0.26)
80% 93.52 (±0.10) 93.71 (±0.08) 93.64 (±0.09)
95% 93.34 (±0.13) 93.21 (±0.17) 93.63 (±0.18)

PreResNet-110 95.04 (±0.15)
30% 95.06 (±0.05) 94.84 (±0.07) 95.11 (±0.09)
80% 94.55 (±0.11) 93.76 (±0.10) 94.52 (±0.13)
95% 92.35 (±0.20) 91.23 (±0.11) 91.55 (±0.34)

DenseNet-BC-100 95.24 (±0.17)
30% 95.21 (±0.17) 95.22 (±0.18) 95.23 (±0.14)
80% 95.04 (±0.15) 94.42 (±0.12) 95.12 (±0.04)
95% 94.19 (±0.15) 92.91 (±0.22) 93.44 (±0.19)

CIFAR-100

VGG-19 71.70 (±0.31)
30% 71.96 (±0.36) 72.81 (±0.31) 73.30 (±0.25)
50% 71.85 (±0.30) 73.12 (±0.36) 73.77 (±0.23)
95% 70.22 (±0.38) 70.88 (±0.35) 72.08 (±0.15)

PreResNet-110 76.96 (±0.34)
30% 76.88 (±0.31) 76.36 (±0.26) 76.96 (±0.31)
50% 76.60 (±0.36) 75.45 (±0.23) 76.42 (±0.39)
95% 68.55 (±0.51) 68.13 (±0.64) 68.99 (±0.32)

DenseNet-BC-100 77.59 (±0.19)
30% 77.23 (±0.05) 77.58 (±0.25) 77.97 (±0.31)
50% 77.41 (±0.14) 77.65 (±0.09) 77.80 (±0.23)
95% 73.67 (±0.03) 71.47 (±0.46) 72.57 (±0.37)

ImageNet
VGG-16 73.37

30% 73.68 72.75 74.02
60% 73.63 71.50 73.42

ResNet-50 76.15
30% 76.06 74.77 75.70
60% 76.09 73.69 74.91

Table 3.6: Results for unstructured pruning [62]. “Prune Ratio” denotes the percentage of
parameters pruned in the set of all convolutional weights.

the prune ratio is large (95%), fine-tuning can outperform training from scratch. On the
large-scale ImageNet dataset, we note that Scratch-B results are mostly worse than fine-tuned
results by a noticeable margin, despite at a decent accuracy level. This could be due to
the increased difficulty of directly training on the highly sparse networks (CIFAR), or the
scale/complexity of the dataset itself (ImageNet). Another possible reason is that compared
with structured pruning, unstructured pruning significantly changes the weight distribution
(more details in Section 3.8.6). The difference in scratch-training behaviors also suggests an
important difference between structured and unstructured pruning.

3.6 Network Pruning as Architecture search
While we have shown that, for structured pruning, the inherited weights in the pruned
architecture are not better than random, the pruned architecture itself turns out to be
what brings the efficiency benefits. In this section, we assess the value of architecture
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search for automatic network pruning algorithms (Figure 3.2) by comparing pruning-obtained
models and uniformly pruned models. Note that the connection between network pruning
and architecture learning has also been made in prior works [62, 118, 53, 83], but to our
knowledge, we are the first to isolate the effect of inheriting weights and solely compare
pruning-obtained architectures with uniformly pruned ones, by training both of them from
scratch.

3.6.1 Parameter Efficiency of Pruned Architectures

In Figure 3.3(left), we compare the parameter efficiency of architectures obtained by an
automatic channel pruning method (Network Slimming [118]), with a naive predefined
pruning strategy that uniformly prunes the same percentage of channels in each layer. All
architectures are trained from random initialization for the same number of epochs. We
see that the architectures obtained by Network Slimming are more parameter efficient, as
they could achieve the same level of accuracy using 5× fewer parameters than uniformly
pruning architectures. For unstructured magnitude-based pruning [62], we conducted a
similar experiment shown in Figure 3.3 (right). Here we uniformly sparsify all individual
weights at a fixed probability, and the architectures obtained this way are much less efficient
than the pruned architectures.
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Figure 3.3: Pruned architectures obtained by different approaches, all trained from scratch,
averaged over 5 runs. Architectures obtained by automatic pruning methods have better
parameter efficiency than uniformly pruning channels or sparsifying weights in the whole
network.

We also found the channel/weight pruned architectures exhibit very consistent patterns
(see Table 3.7 and Figure 3.4). This suggests the original large models may be redundantly
designed for the task and the pruning algorithm can help us improve the efficiency. This
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Layer Width Width* Layer Width Width*
1 64 39.0±3.7 8 512 217.3±6.6
2 64 64.0±0.0 9 512 120.0±4.4
3 128 127.8±0.4 10 512 63.0±1.9
4 128 128.0±0.0 11 512 47.8±2.9
5 256 255.0±1.0 12 512 62.0±3.4
6 256 250.5±0.5 13 512 88.8±3.1
7 256 226.0±2.5 Total 4224 1689.2

Table 3.7: Network architectures obtained by pruning
60% channels on VGG-16 (in total 13 conv-layers)
using Network Slimming. Width and Width* are
number of channels in the original and pruned archi-
tectures, averaged over 5 runs.

Stage 3 Stage 4 Stage 5

Figure 3.4: The average sparsity pat-
tern of all 3×3 convolutional kernels
in certain layer stages in a unstruc-
tured pruned VGG-16. Darker color
means higher probability of weight
being kept.

also confirms the value of automatic pruning methods for searching efficient models on the
architectures evaluated.
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Figure 3.5: Pruned architectures obtained by different approaches, all trained from scratch,
averaged over 5 runs. Left: Results for PreResNet-164 pruned on CIFAR-10 by Network
Slimming [118]. Middle and Right : Results for PreResNet-110 and DenseNet-40 pruned on
CIFAR-100 by unstructured pruning [62].

3.6.2 More Analysis

However, there also exist cases where the architectures obtained by pruning are not better than
uniformly pruned ones. We present such results in Figure 3.5, where the architectures obtained
by pruning (blue) are not significantly more efficient than uniform pruned architectures
(red). This phenomenon happens more likely on modern architectures like ResNets and
DenseNets. When we investigate the sparsity patterns of those pruned architectures (shown
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in Table 3.18, 3.19 and 3.20 in Section 3.8.7), we find that they exhibit near-uniform sparsity
patterns across stages, which might be the reason why it can only perform on par with
uniform pruning. In contrast, for VGG, the pruned sparsity patterns can always beat the
uniform ones as shown in Figure 3.3 and 3.6. We also show the sparsity patterns of VGG
pruned by Network Slimming [118] in Table 3.21 of Section 3.8.7, and they are rather far from
uniform. Compared to ResNet and DenseNet, we can see that VGG’s redundancy is rather
imbalanced across layer stages. Network pruning techniques may help us identify redundancy
better in such cases.

3.6.3 Generalizable Design Principles from Pruned Architectures

Given that the automatically discovered architectures tend to be parameter efficient on the
VGG networks, one may wonder: can we derive generalizable principles from them on how to
design a better architecture? We conduct several experiments to answer this question.
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Figure 3.6: Pruned architectures obtained by different approaches, all trained from scratch,
averaged over 5 runs. “Guided Pruning/Sparsification” means using the average sparsity
patterns in each layer stage to design the network; “Transferred Guided Pruning/Sparsification”
means using the sparsity patterns obtained by a pruned VGG-16 on CIFAR-10, to design
the network for VGG-19 on CIFAR-100. Following the design guidelines provided by the
pruned architectures, we achieve better parameter efficiency, even when the guidelines are
transferred from another dataset and model.

For Network Slimming, we use the average number of channels in each layer stage
(layers with the same feature map size) from pruned architectures to construct a new set of
architectures, and we call this approach “Guided Pruning”; for magnitude-based pruning, we
analyze the sparsity patterns (Figure 3.4) in the pruned architectures, and apply them to
construct a new set of sparse models, which we call “Guided Sparsification”. The results are
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shown in Figure 3.6. It can be seen that for both Network Slimming (Figure 3.6 left) and
unstructured pruning (Figure 3.6 right), guided design of architectures (green) can perform
on par with pruned architectures (blue).

Interestingly, these guided design patterns can sometimes be transferred to a different
VGG-variant and/or dataset. In Figure 3.6, we distill the patterns of pruned architectures
from VGG-16 on CIFAR-10 and apply them to design efficient VGG-19 on CIFAR-100. These
sets of architectures are denoted as “Transferred Guided Pruning/Sparsification”. We can
observe that they (brown) may sometimes be slightly worse than architectures directly pruned
(blue), but are significantly better than uniform pruning/sparsification (red). In these cases,
one does not need to train a large model to obtain an efficient model as well, as transferred
design patterns can help us achieve efficiency directly.

3.6.4 Discussions with Conventional Architecture Search Methods

Popular techniques for network architecture search include reinforcement learning [218, 9]
and evolutionary algorithms [200, 115]. In each iteration, a randomly initialized network is
trained and evaluated to guide the search, and the search process usually requires thousands
of iterations to find the goal architecture. In contrast, using network pruning as architecture
search only requires a one-pass training, however, the search space is restricted to the set of
all “sub-networks” inside a large network, whereas traditional methods can search for more
variations, e.g., activation functions or different layer orders.

Recently, [53] uses a similar pruning technique to Network Slimming [118] to automate
the design of network architectures; [72] prune channels using reinforcement learning and
automatically compresses the architecture. On the other hand, in the network architecture
search literature, sharing/inheriting trained parameters [137, 114] during searching has become
a popular approach for reducing the training budgets, but once the target architecture is
found, it is still trained from scratch to maximize the accuracy.

3.7 Experimenting with the Lottery Ticket Hypothesis
The Lottery Ticket Hypothesis [44] conjectures that inside the large network, a sub-network
together with their initialization makes the training particularly effective, and together they
are termed the “winning ticket”. In this hypothesis, the original initialization of the sub-
network (before large model training) is needed for it to achieve competitive performance when
trained in isolation. Their experiments show that training the sub-network with randomly
re-initialized weights performs worse than training it with the original initialization inside the
large network. In contrast, our work does not require the reuse of the original initialization
of the pruned model, and shows that random initialization is enough for the pruned model to
achieve competitive performance.

The conclusions seem to be contradictory, but there are several important differences in
the evaluation settings: a) Our main conclusion is drawn on structured pruning methods,
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despite for small-scale problems (CIFAR) it also holds on unstructured pruning; [44] only
evaluates on unstructured pruning. b) Our evaluated network architectures are all relatively
large modern models used in the original pruning methods, while most of the experiments
in [44] use small shallow networks (< 6 layers). c) We use momentum SGD with a large
initial learning rate (0.1), which is widely used in prior image classification [64, 85] and
pruning works [107, 118, 71, 125, 70, 87] to achieve high accuracy, and is the de facto default
optimization setting on CIFAR and ImageNet; while [44] mostly uses Adam with much lower
learning rates. d) Our experiments include the large-scale ImageNet dataset, while [44] only
considers MNIST and CIFAR.
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Figure 3.7: Comparisons with the Lottery Ticket Hypothesis for iterative/one-shot unstruc-
tured pruning [62] with two initial learning rates 0.1 and 0.01, on CIFAR-10 dataset. Each
point is averaged over 5 runs. Using the winning ticket as initialization only brings improve-
ment when the learning rate is small (0.01), however such small learning rate leads to lower
accuracy than the widely used large learning rate (0.1).
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In this section, we show that the difference in learning rate is what causes the seemingly
contradicting behaviors between our work and [44], in the case of unstructured pruning on
CIFAR. For structured pruning, when using both large and small learning rates, the winning
ticket does not outperform random initialization.

Dataset Model Unpruned Pruned Model Winning Ticket Random Init

CIFAR-10

VGG-16 93.63 (±0.16) VGG-16-A 93.62 (±0.09) 93.60 (±0.15)

ResNet-56 93.14 (±0.12)
ResNet-56-A 92.72 (±0.10) 92.75 (±0.26)
ResNet-56-B 92.78 (±0.23) 92.90 (±0.27)

ResNet-110 93.14 (±0.24)
ResNet-110-A 93.21 (±0.09) 93.21 (±0.21)
ResNet-110-B 93.15 (±0.12) 93.37 (±0.29)

(a) Initial learning rate 0.1

Dataset Model Unpruned Pruned Model Winning Ticket Random Init

CIFAR-10

VGG-16 92.64 (±0.05) VGG-16-A 92.65 (±0.18) 92.67 (±0.22)

ResNet-56 89.81 (±0.27)
ResNet-56-A 90.00 (±0.15) 89.87 (±0.25)
ResNet-56-B 89.75 (±0.35) 89.81 (±0.24)

ResNet-110 89.43 (±0.39)
ResNet-110-A 89.48 (±0.35) 89.49 (±0.10)
ResNet-110-B 89.36 (±0.30) 89.35 (±0.16)

(b) Initial learning rate 0.01

Table 3.8: Comparisons with the Lottery Ticket Hypothesis on a structured pruning method
(L1-norm based filter pruning [107]) with two initial learning rates: 0.1 and 0.01. In both
cases, using winning tickets does not bring improvement on accuracy.

We test the Lottery Ticket Hypothesis by comparing the models trained with original
initialization (“winning ticket”) and that trained from randomly re-initialized weights. We
experiment with two choices of initial learning rate (0.1 and 0.01) with a stepwise decay
schedule, using momentum SGD. 0.1 is used in our previous experiments and most prior works
on CIFAR and ImageNet. Following [44], we investigate both iterative pruning (prune 20%
in each iteration) and one-shot pruning for unstructured pruning. We show our results for
unstructured pruning [62] in Figure 3.7 and Table 3.9, and L1-norm based filter pruning [107]
in Table 3.8.

From Figure 3.7 and Table 3.9, we see that for unstructured pruning, using the original
initialization as in [44] only provides an advantage over random initialization with a small
initial learning rate of 0.01. For structured pruning as [107], it can be seen from Table 3.8 that
using the original initialization is only on par with random initialization for both large and
small initial learning rates. In both cases, we can see that the small learning rate gives lower
accuracy than the widely-used large learning rate. To summarize, in our evaluated settings,
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Dataset Model Unpruned Prune Ratio Winning Ticket Random Init

CIFAR-10

VGG-16 93.76 (±0.20)

20% 93.66 (±0.20) 93.79 (±0.11)
40% 93.79 (±0.12) 93.77 (±0.10)
60% 93.60 (±0.13) 93.72 (±0.11)
80% 93.74 (±0.15) 93.72 (±0.16)
95% 93.18 (±0.12) 93.05 (±0.21)

ResNet-50 93.48 (±0.20)

20% 93.38 (±0.18) 93.31 (±0.24)
40% 92.94 (±0.12) 93.06 (±0.22)
60% 92.56 (±0.20) 92.69 (±0.11)
80% 91.83 (±0.20) 91.69 (±0.21)
95% 88.75 (±0.18) 88.59 (±0.09)

(a) One-shot pruning with initial learning rate 0.1

Dataset Model Unpruned Prune Ratio Winning Ticket Random Init

CIFAR-10

VGG-16 92.69 (±0.12)

20% 92.78 (±0.11) 92.52 (±0.15)
40% 92.80 (±0.18) 92.52 (±0.15)
60% 92.72 (±0.16) 92.44 (±0.19)
80% 92.75 (±0.07) 92.07 (±0.25)
95% 92.58 (±0.25) 91.83 (±0.11)

ResNet-50 91.06 (±0.28)

20% 91.28 (±0.15) 90.93 (±0.34)
40% 91.16 (±0.07) 90.92 (±0.10)
60% 91.00 (±0.15) 90.43 (±0.16)
80% 90.92 (±0.08) 89.71 (±0.18)
95% 87.76 (±0.19) 87.20 (±0.17)

(b) One-shot pruning with initial learning rate 0.01

Table 3.9: Comparisons with the Lottery Ticket Hypothesis for one-shot unstructured
pruning [62] with two initial learning rates: 0.1 and 0.01. The same results are visualized in
Figure 3.7b. Using the winning ticket as initialization only brings improvement when the
learning rate is small (0.01), however such small learning rate leads to lower accuracy than
the widely used large learning rate (0.1).
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the winning ticket only brings improvement in the case of unstructured pruning, with a small
initial learning rate, but this small learning rate yields inferior accuracy compared with the
widely-used large learning rate. Note that [44] also report in their Section 5, that the winning
ticket cannot be found on ResNet-18/VGG using the large learning rate. The reason why the
original initialization is helpful when the learning rate is small, might be the weights of the
final trained model are not too far from the original initialization due to the small parameter
updating stepsize.

3.8 Additional Studies

3.8.1 Results on Soft Filter Pruning

Soft Filter Pruning (SFP) [70] prunes filters every epoch during training but also keeps
updating the pruned filters, i.e., the pruned weights have the chance to be recovered. In the
original paper, SFP can either run upon a randomly initialized model or a pre-trained model.
It falls into the category of predefined methods (Figure 3.2). Table 3.10 shows our results
without using pre-trained models and Table 3.11 shows the results with a pre-trained model.
We use authors’ official code [70] for obtaining the results. It can be seen that Scratch-E
outperforms pruned models most of the time and Scratch-B outperforms pruned models in
nearly all cases. Therefore, our observation also holds on this method.

Dataset Model Unpruned Prune Ratio Pruned Scratch-E Scratch-B

CIFAR-10

ResNet-20 92.41 (±0.12)
10% 92.00 (±0.32) 92.22 (±0.15) 92.13 (±0.10)
20% 91.50 (±0.30) 91.62 (±0.12) 91.67 (±0.15)
30% 90.78 (±0.15) 90.93 (±0.10) 91.07 (±0.23)

ResNet-32 93.22 (±0.16)
10% 93.28 (±0.05) 93.42 (±0.40) 93.08 (±0.13)
20% 92.50 (±0.17) 92.68 (±0.20) 92.96 (±0.11)
30% 92.02 (±0.11) 92.37 (±0.12) 92.56 (±0.06)

ResNet-56 93.80 (±0.12)

10% 93.77 (±0.07) 93.42 (±0.40) 93.98 (±0.21)
20% 93.14 (±0.42) 93.44 (±0.05) 93.71 (±0.14)
30% 93.01 (±0.09) 93.19 (±0.20) 93.57 (±0.12)
40% 92.59 (±0.14) 92.80 (±0.25) 93.07 (±0.25)

ResNet-110 93.77 (±0.23)
10% 93.60 (±0.50) 94.21 (±0.39) 94.13 (±0.37)
20% 93.63 (±0.44) 93.52 (±0.18) 94.29 (±0.18)
30% 93.26 (±0.37) 93.70 (±0.16) 93.92 (±0.13)

ImageNet
ResNet-34 73.92 30% 71.83 71.67 72.97
ResNet-50 76.15 30% 74.61 74.98 75.56

Table 3.10: Results for Soft Filter Pruning [70] without pretrained models.
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Dataset Model Unpruned Prune Ratio Pruned Scratch-E Scratch-B

CIFAR-10
ResNet-56 93.80 (±0.12)

30% 93.51 (±0.26) 94.45 (±0.30) 93.77 (±0.25)
40% 93.10 (±0.34) 93.84 (±0.16) 93.41 (±0.08)

ResNet-110 93.77 (±0.23) 30% 93.46 (±0.19) 93.89 (±0.17) 94.37 (±0.24)

Table 3.11: Results for Soft Filter Pruning [70] using pre-trained models.

3.8.2 Transfer Learning to Object Detection

We have shown that for structured pruning the small pruned model can be trained from
scratch to match the accuracy of the fine-tuned model in classification tasks. To see whether
this phenomenon would also hold for transfer learning to other vision tasks, we evaluate the
L1-norm based filter pruning method [107] on the PASCAL VOC object detection task, using
Faster-RCNN [148].

Object detection frameworks usually require transferring model weights pre-trained on
ImageNet classification, and one can perform pruning either before or after the weight
transfer. More specifically, the former could be described as “train on classification, prune on
classification, fine-tune on classification, transfer to detection”, while the latter is “train on
classification, transfer to detection, prune on detection, fine-tune on detection”. We call these
two approaches Prune-C (classification) and Prune-D (detection) respectively, and report
the results in Table 3.12. With a slight abuse of notation, here Scratch-E/B denotes "train
the small model on classification, transfer to detection", and is different from the setup of
detection without ImageNet pre-training as in [157].

Dataset Model Unpruned Pruned Model Prune-C Prune-D Scratch-E Scratch-B

PASCAL VOC 07 ResNet-34 71.69
ResNet34-A 71.47 70.99 71.64 71.90
ResNet34-B 70.84 69.62 71.68 71.26

Table 3.12: Results (mAP) for pruning on detection task. The pruned models are chosen
from [107]. Prune-C refers to pruning on classifcation pre-trained weights, Prune-D refers to
pruning after the weights are transferred to detection task. Scratch-E/B means pre-training
the pruned model from scratch on classification and transfer to detection.

For this experiment, we adopt the code and default hyper-parameters from [48], and
use PASCAL VOC 07 trainval/test set as our training/test set. For backbone networks, we
evaluate ResNet-34-A and ResNet-34-B from the L1-norm based filter pruning [107], which
are pruned from ResNet-34. Table 3.12 shows our result, and we can see that the model
trained from scratch can surpass the performance of fine-tuned models under the transfer
setting.
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Another interesting observation from Table 3.12 is that Prune-C is able to outperform
Prune-D, which is surprising since if our goal task is detection, directly pruning away weights
that are considered unimportant for detection should presumably be better than pruning on
the pre-trained classification models. We hypothesize that this might be because pruning
early in the classification stage makes the final model less prone to being trapped in a bad
local minimum caused by inheriting weights from the large model. This is in line with our
observation that Scratch-E/B, which trains the small models from scratch starting even
earlier at the classification stage, can achieve further performance improvement.

3.8.3 Aggressively Pruned Models

It would be interesting to see whether our observation still holds if the model is very
aggressively pruned, since they might not have enough capacity to be trained from scratch
and achieve decent accuracy. Here we provide results using Network Slimming [118] and
L1-norm based filter pruning [107]. From Table 3.13, Table 3.14 and Table 3.15, it can be
seen that when the prune ratio is large, training from scratch is better than fine-tuned models
by an even larger margin, and in this case fine-tuned models are significantly worse than the
unpruned models. Note that in Table 3.2, the VGG-Tiny model we evaluated for ThiNet [125]
is also a very aggressively pruned model (FLOPs reduced by 15× and parameters reduced by
100×).

Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B

CIFAR-10

PreResNet-56 93.69 (±0.07) 80% 74.66 (±0.96) 88.25 (±0.38) 88.65 (±0.32)

PreResNet-164 95.04 (±0.16)
80% 91.76 (±0.38) 93.21 (±0.17) 93.49 (±0.20)
90% 82.06 (±0.92) 87.55 (±0.68) 88.44 (±0.19)

DenseNet-40 94.10 (±0.12) 80% 92.64 (±0.12) 93.07 (±0.08) 93.61 (±0.12)
CIFAR-100 DenseNet-40 73.82 (±0.34) 80% 69.60 (±0.22) 71.04 (±0.36) 71.45 (±0.30)

Table 3.13: Results for Network Slimming [118] when the models are aggressively pruned.
“Prune ratio” stands for the total percentage of channels that are pruned in the whole network.
Larger ratios are used than in the original paper of [118].

Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B
CIFAR-10 ResNet-56 93.14 (±0.12) 90% 89.17 (±0.08) 91.02 (±0.12) 91.93 (±0.26)

Table 3.14: Results for L1-norm based filter pruning [107] when the models are aggressively
pruned.
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Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B
CIFAR-10 VGG-19 93.50 (±0.11) 95% 93.34 (±0.13) 93.21 (±0.17) 93.63 (±0.18)
CIFAR-100 VGG-19 71.70 (±0.31) 95% 70.22 (±0.38) 70.88 (±0.35) 72.08 (±0.15)

Table 3.15: Results for unstructured pruning [62] when the models are aggressively pruned.

3.8.4 Extending Fine-tuning Epochs

Generally, pruning algorithms use fewer epochs for fine-tuning than training the large
model [107, 71, 125]. For example, L1-norm based filter pruning [107] uses 164 epochs for
training on CIFAR-10 datasets, and only fine-tunes the pruned networks for 40 epochs. This
is due to that mostly small learning rates are used for fine-tuning to better preserve the
weights from the large model. Here we experiment with fine-tuning for more epochs (e.g., for
the same number of epochs as Scratch-E) and show it does not bring noticeable performance
improvement.

Dataset Model Pruned Model Fine-tune-40 Fine-tune-80 Fine-tune-160 Scratch-E

CIFAR-10

VGG-16 VGG-16-A 93.40 (±0.12) 93.45 (±0.06) 93.45 (±0.08) 93.62 (±0.11)

ResNet-56
ResNet-56-A 92.97 (±0.17) 92.92 (±0.15) 92.94 (±0.16) 92.96 (±0.26)
ResNet-56-B 92.68 (±0.19) 92.67 (±0.14) 92.76 (±0.16) 92.54 (±0.19)

ResNet-110
ResNet-110-A 93.14 (±0.16) 93.12 (±0.19) 93.04 (±0.22) 93.25 (±0.29)
ResNet-110-B 92.69 (±0.09) 92.75 (±0.15) 92.76 (±0.16) 92.89 (±0.43)

Table 3.16: Results for extending fine-tuning. “Fine-tune-40” stands for fine-tuning 40 epochs
and so on. Scratch-E models are trained for 160 epochs. We observe that fine-tuning for
more epochs does not help improve the accuracy much, and models trained from scratch can
still perform on par with fine-tuned models.

We use L1-norm filter pruning [107] for this experiment. Table 3.16 shows our results with
different numbers of epochs for fine-tuning. It can be seen that fine-tuning for more epochs
gives negligible accuracy increase and sometimes small decrease, and Scratch-E models are
still on par with models fine-tuned for enough epochs.

3.8.5 Extending the Standard Training Schedule

In our experiments, we use the standard training schedule for both CIFAR (160 epochs) and
ImageNet (90 epochs). Here we show that our observation still holds after we extend the
standard training schedule. We use L1-norm based filter pruning [107] for this experiment.
Table 3.17 shows our results when we extend the standard training schedule of CIFAR from
160 to 300 epochs. We observe that scratch-trained models still perform at least on par with
fine-tuned models.



CHAPTER 3. RETHINKING THE VALUE OF NETWORK PRUNING 46

Dataset Model Unpruned Pruned Model Fine-tuned Scratch-E Scratch-B

CIFAR-10

VGG-16 93.79 (±0.05) VGG-16-A 93.67 (±0.11) 93.74 (±0.14) 93.80 (±0.09)

ResNet-56 93.52 (±0.05)
ResNet-56-A 93.44 (±0.15) 93.34 (±0.17) 93.56 (±0.09)
ResNet-56-B 93.12 (±0.20) 93.14 (±0.21) 93.30 (±0.17)

ResNet-110 93.82 (±0.32)
ResNet-110-A 93.75 (±0.24) 93.80 (±0.15) 94.10 (±0.12)
ResNet-110-B 93.36 (±0.28) 93.75 (±0.16) 93.90 (±0.17)

Table 3.17: Results for L1-norm filter pruning [107] when the training schedule of the large
model is extended from 160 to 300 epochs.

3.8.6 Weight Distributions
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Figure 3.8: Weight distribution of convolutional layers for different pruning methods. We
use VGG-16 and CIFAR-10 for this visualization. We compare the weight distribution of
unpruned models, fine-tuned models and scratch-trained models. Top: Results for Network
Slimming. Bottom: Results for unstructured pruning.

Accompanying the discussion in Section 3.5.3, we show the weight distribution of unpruned
large models, fine-tuned pruned models and scratch-trained pruned models, for two pruning
methods: (structured) Network Slimming [118] and unstructured pruning [62]. We choose
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VGG-16 and CIFAR-10 for visualization and compare the weight distribution of unpruned
models, fine-tuned models and scratch-trained models. For Network Slimming, the prune
ratio is 50%. For unstructured pruning, the prune ratio is 80%. Figure 3.8 shows our result.
We can see that the weight distribution of fine-tuned models and scratch-trained pruned
models are different from the unpruned large models – the weights that are close to zero are
much fewer. This seems to imply that there are fewer redundant structures in the found
pruned architecture, and support the view of architecture learning for automatic pruning
methods.

For unstructured pruning, the fine-tuned model also has a significantly different weight
distribution from the scratch-trained model – it has nearly no close-to-zero values. This
might be a potential reason why sometimes models trained from scratch cannot achieve the
accuracy of the fine-tuned models, as shown in Table 3.6.

3.8.7 More Sparsity Patterns for Pruned Architectures

In this section we provide the additional results on sparsity patterns for the pruned models,
accompanying the discussions of “More Analysis” in Section 3.6.

10% 20% 30% 40% 50% 60% 70%
Stage 1 0.879 0.729 0.557 0.484 0.421 0.349 0.271
Stage 2 0.959 0.863 0.754 0.651 0.537 0.428 0.320
Stage 3 0.889 0.798 0.716 0.610 0.507 0.403 0.301

Table 3.18: Sparsity patterns of PreResNet-164 pruned on CIFAR-10 by Network Slimming
shown in Figure 3.5 (left) under different prune ratio. The top row denotes the total prune
ratio. The values denote the ratio of channels to be kept. We can observe that for a certain
prune ratio, the sparsity patterns are close to uniform across stages.
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10% 50% 90%

Stage 1
0.905 0.905 0.909 0.530 0.561 0.538 0.129 0.171 0.133
0.900 0.912 0.899 0.559 0.588 0.551 0.166 0.217 0.176
0.903 0.913 0.902 0.532 0.563 0.547 0.142 0.172 0.163

Stage 2
0.906 0.911 0.906 0.485 0.523 0.503 0.073 0.102 0.085
0.912 0.911 0.915 0.508 0.529 0.525 0.099 0.114 0.111
0.911 0.916 0.912 0.502 0.529 0.519 0.080 0.113 0.096

Stage 3
0.901 0.904 0.900 0.454 0.475 0.454 0.043 0.059 0.048
0.885 0.891 0.889 0.409 0.420 0.415 0.032 0.033 0.035
0.898 0.903 0.902 0.450 0.468 0.458 0.042 0.055 0.046

Table 3.19: Average sparsity patterns of 3×3 kernels of PreResNet-110 pruned on CIFAR-100
by unstructured pruning shown in Figure 3.5 (middle) under different prune ratio. The top
row denotes the total prune ratio. The values denote the ratio of weights to be kept. We can
observe that for a certain prune ratio, the sparsity patterns are close to uniform across stages.

10% 50% 90%

Stage 1
0.861 0.856 0.858 0.507 0.495 0.510 0.145 0.129 0.142
0.843 0.844 0.851 0.484 0.486 0.479 0.123 0.115 0.126
0.850 0.854 0.857 0.509 0.490 0.511 0.136 0.131 0.147

Stage 2
0.907 0.905 0.906 0.498 0.487 0.499 0.099 0.088 0.100
0.892 0.888 0.892 0.442 0.427 0.444 0.064 0.043 0.065
0.907 0.906 0.905 0.497 0.485 0.493 0.095 0.082 0.098

Stage 3
0.897 0.901 0.899 0.470 0.475 0.472 0.060 0.060 0.064
0.888 0.890 0.889 0.433 0.437 0.435 0.040 0.040 0.042
0.898 0.900 0.899 0.473 0.477 0.473 0.060 0.061 0.063

Table 3.20: Average sparsity patterns of 3×3 kernels of DenseNet-40 pruned on CIFAR-100 by
unstructured pruning in Figure 3.5 (right) under different prune ratios. The top row denotes
the total prune ratio. The values denote the ratio of weights to be kept. We can observe that
for a certain prune ratio, the sparsity patterns are close to uniform across stages.
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10% 20% 30% 40% 50% 60%
Stage 1 0.969 0.914 0.883 0.875 0.844 0.836
Stage 2 1.000 1.000 1.000 1.000 1.000 1.000
Stage 3 0.991 0.975 0.966 0.957 0.947 0.947
Stage 4 0.861 0.718 0.575 0.446 0.312 0.258
Stage 5 0.871 0.751 0.626 0.486 0.352 0.132

Table 3.21: Sparsity patterns of VGG-16 pruned on CIFAR-10 by Network Slimming in
Figure 3.3 (left) under different prune ratios. The top row denotes the total prune ratio. The
values denote the ratio of channels to be kept. For each prune ratio, the latter stages tend to
have more redundancy than the earlier stages.

3.9 Conclusions
Our results encourage more careful and fair baseline evaluations of structured pruning methods.
In addition to high accuracy, training predefined target models from scratch has the following
benefits over conventional network pruning procedures: a) since the model is smaller, we
can train the model using less GPU memory and possibly faster than training the original
large model; b) there is no need to implement the pruning criterion and procedure, which
sometimes requires fine-tuning layer by layer [125] and/or needs to be customized for different
network architectures [107, 118]; c) we avoid tuning additional hyper-parameters involved in
the pruning procedure.

Our results do support the viewpoint that automatic structured pruning finds efficient
architectures in some cases. However, if the accuracy of pruning and fine-tuning is achievable
by training the pruned model from scratch, it is also important to evaluate the pruned
architectures against uniformly pruned baselines (both training from scratch), to demonstrate
the method’s value in identifying efficient architectures. If the uniformly pruned models are
not worse, one could also skip the pipeline and train them from scratch.

Even if pruning and fine-tuning fail to outperform the mentioned baselines in terms of
accuracy, there are still some cases where using this conventional wisdom can be much faster
than training from scratch: a) when a pre-trained large model is already given and little or
no training budget is available; we also note that pre-trained models can only be used when
the method does not require modifications to the large model training process; b) there is a
need to obtain multiple models of different sizes, or one does not know what the desired size
is, in which situations one can train a large model and then prune it by different ratios.
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Chapter 4

A ConvNet for the 2020s

4.1 Overview
Pruning is a popular type of methods for scaling models down. In the last chapter, through
empirical study, we demonstrated the true value of structured pruning is not to obtain a
specific set of weight values, but to identify a useful sub-architecture. Now we turn our focus
on scaling up computer vision neural architectures.

A classical example is the invention of ResNets [64] with its proposal of skip connections.
Scaling a “plain” network without skip connections to tens of layers will cause the training
loss to increase, not to mention the worse test accuracy. However, a ResNet be scaled up to
more than 100 layers with both improved training loss and test accuracy. In the 2020s, Vision
Transformers [39] start to show even greater scalability than convolution-based ResNets,
with extremely large data and models. In this study, we try to understand what is behind
Transformers’ scaling success by comparing them with modernized ConvNets.

As mentioned above, the “Roaring 20s” of visual recognition began with the introduction
of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art
image classification model. A vanilla ViT, on the other hand, faces difficulties when applied
to general computer vision tasks such as object detection and semantic segmentation. It is the
hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors,
making Transformers practically viable as a generic vision backbone and demonstrating
remarkable performance on a wide variety of vision tasks. However, the effectiveness of such
hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather
than the inherent inductive biases of convolutions. In this work, we reexamine the design
spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize”
a standard ResNet toward the design of a vision Transformer, and discover several key
components that contribute to the performance difference along the way. The outcome of
this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely
from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms
of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming
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Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the
simplicity and efficiency of standard ConvNets. Our code is available at https://github.
com/facebookresearch/ConvNeXt.

4.2 Introduction
Looking back at the 2010s, the decade was marked by the monumental progress and impact
of deep learning. The primary driver was the renaissance of neural networks, particularly
convolutional neural networks (ConvNets). Through the decade, the field of visual recognition
successfully shifted from engineering features to designing (ConvNet) architectures. Although
the invention of back-propagation-trained ConvNets dates all the way back to the 1980s [105],
it was not until late 2012 that we saw its true potential for visual feature learning. The
introduction of AlexNet [99] precipitated the “ImageNet moment” [152], ushering in a new era
of computer vision. The field has since evolved at a rapid speed. Representative ConvNets
like VGGNet [160], Inceptions [168], ResNe(X)t [64, 201], DenseNet [85], MobileNet [79],
EfficientNet [170] and RegNet [141] focused on different aspects of accuracy, efficiency and
scalability, and popularized many useful design principles.

The full dominance of ConvNets in computer vision was not a coincidence: in many
application scenarios, a “sliding window” strategy is intrinsic to visual processing, particularly
when working with high-resolution images. ConvNets have several built-in inductive biases
that make them well-suited to a wide variety of computer vision applications. The most
important one is translation equivariance, which is a desirable property for tasks like objection
detection. ConvNets are also inherently efficient due to the fact that when used in a sliding-
window manner, the computations are shared [155]. For many decades, this has been the
default use of ConvNets, generally on limited object categories such as digits [106], faces [180,
150] and pedestrians [156, 37]. Entering the 2010s, the region-based detectors [47, 46, 148,
67] further elevated ConvNets to the position of being the fundamental building block in a
visual recognition system.

Around the same time, the odyssey of neural network design for natural language processing
(NLP) took a very different path, as the Transformers replaced recurrent neural networks to
become the dominant backbone architecture. Despite the disparity in the task of interest
between language and vision domains, the two streams surprisingly converged in the year
2020, as the introduction of Vision Transformers (ViT) completely altered the landscape of
network architecture design. Except for the initial “patchify” layer, which splits an image into
a sequence of patches, ViT introduces no image-specific inductive bias and makes minimal
changes to the original NLP Transformers. One primary focus of ViT is on the scaling
behavior: with the help of larger model and dataset sizes, Transformers can outperform
standard ResNets by a significant margin. Those results on image classification tasks are
inspiring, but computer vision is not limited to image classification. As discussed previously,
solutions to numerous computer vision tasks in the past decade depended significantly on
a sliding-window, fully-convolutional paradigm. Without the ConvNet inductive biases, a

https://github.com/facebookresearch/ConvNeXt
https://github.com/facebookresearch/ConvNeXt
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Figure 4.1: ImageNet-1K classification results for •ConvNets and ◦ vision Transformers. Each
bubble’s area is proportional to FLOPs of a variant in a model family. ImageNet-1K/22K
models here take 2242/3842 images respectively. ResNet and ViT results were obtained with
improved training procedures over the original papers. We demonstrate that a standard
ConvNet model can achieve the same level of scalability as hierarchical vision Transformers
while being much simpler in design.

vanilla ViT model faces many challenges in being adopted as a generic vision backbone. The
biggest challenge is ViT’s global attention design, which has a quadratic complexity with
respect to the input size. This might be acceptable for ImageNet classification, but quickly
becomes intractable with higher-resolution inputs.

Hierarchical Transformers employ a hybrid approach to bridge this gap. For example,
the “sliding window” strategy (e.g . attention within local windows) was reintroduced to
Transformers, allowing them to behave more similarly to ConvNets. Swin Transformer [117]
is a milestone work in this direction, demonstrating for the first time that Transformers can
be adopted as a generic vision backbone and achieve state-of-the-art performance across a
range of computer vision tasks beyond image classification. Swin Transformer’s success and
rapid adoption also revealed one thing: the essence of convolution is not becoming irrelevant;
rather, it remains much desired and has never faded.

Under this perspective, many of the advancements of Transformers for computer vision
have been aimed at bringing back convolutions. These attempts, however, come at a cost: a
naive implementation of sliding window self-attention can be expensive [143]; with advanced
approaches such as cyclic shifting [117], the speed can be optimized but the system becomes
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more sophisticated in design. On the other hand, it is almost ironic that a ConvNet already
satisfies many of those desired properties, albeit in a straightforward, no-frills way. The only
reason ConvNets appear to be losing steam is that (hierarchical) Transformers surpass them
in many vision tasks, and the performance difference is usually attributed to the superior
scaling behavior of Transformers, with multi-head self-attention being the key component.

Unlike ConvNets, which have progressively improved over the last decade, the adoption
of Vision Transformers was a step change. In recent literature, system-level comparisons (e.g .
a Swin Transformer vs . a ResNet) are usually adopted when comparing the two. ConvNets
and hierarchical vision Transformers become different and similar at the same time: they are
both equipped with similar inductive biases, but differ significantly in the training procedure
and macro/micro-level architecture design. In this work, we investigate the architectural
distinctions between ConvNets and Transformers and try to identify the confounding variables
when comparing the network performance. Our research is intended to bridge the gap between
the pre-ViT and post-ViT eras for ConvNets, as well as to test the limits of what a pure
ConvNet can achieve.

To do this, we start with a standard ResNet (e.g . ResNet-50) trained with an improved
procedure. We gradually “modernize” the architecture to the construction of a hierarchical
vision Transformer (e.g . Swin-T). Our exploration is directed by a key question: How do
design decisions in Transformers impact ConvNets’ performance? We discover several key
components that contribute to the performance difference along the way. As a result, we
propose a family of pure ConvNets dubbed ConvNeXt. We evaluate ConvNeXts on a
variety of vision tasks such as ImageNet classification [34], object detection/segmentation
on COCO[110], and semantic segmentation on ADE20K [214]. Surprisingly, ConvNeXts,
constructed entirely from standard ConvNet modules, compete favorably with Transformers
in terms of accuracy, scalability and robustness across all major benchmarks. ConvNeXt
maintains the efficiency of standard ConvNets, and the fully-convolutional nature for both
training and testing makes it extremely simple to implement.

We hope the new observations and discussions can challenge some common beliefs and
encourage people to rethink the importance of convolutions in computer vision.

4.3 Modernizing a ConvNet: a Roadmap
In this section, we provide a trajectory going from a ResNet to a ConvNet that bears a
resemblance to Transformers. We consider two model sizes in terms of FLOPs, one is the
ResNet-50 / Swin-T regime with FLOPs around 4.5× 109 and the other being ResNet-200
/ Swin-B regime which has FLOPs around 15.0 × 109. For simplicity, we will present the
results with the ResNet-50 / Swin-T complexity models. The conclusions for higher capacity
models are consistent and results can be found in Section 4.8.2.

At a high level, our explorations are directed to investigate and follow different levels of
designs from a Swin Transformer while maintaining the network’s simplicity as a standard
ConvNet. The roadmap of our exploration is as follows. Our starting point is a ResNet-50
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Figure 4.2: We modernize a standard ConvNet (ResNet) towards the design of a hierarchical
vision Transformer (Swin), without introducing any attention-based modules. The foreground
bars are model accuracies in the ResNet-50/Swin-T FLOP regime; results for the ResNet-
200/Swin-B regime are shown with the gray bars. A hatched bar means the modification
is not adopted. Detailed results for both regimes are in Section 4.3. Many Transformer
architectural choices can be incorporated in a ConvNet, and they lead to increasingly better
performance. In the end, our pure ConvNet model, named ConvNeXt, can outperform the
Swin Transformer.
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model. We first train it with similar training techniques used to train vision Transformers
and obtain much improved results compared to the original ResNet-50. This will be our
baseline. We then study a series of design decisions which we summarized as 1) macro design,
2) ResNeXt, 3) inverted bottleneck, 4) large kernel size, and 5) various layer-wise micro
designs. In Figure 4.2, we show the procedure and the results we are able to achieve with
each step of the “network modernization”. Since network complexity is closely correlated with
the final performance, the FLOPs are roughly controlled over the course of the exploration,
though at intermediate steps the FLOPs might be higher or lower than the reference models.
All models are trained and evaluated on ImageNet-1K.

4.3.1 Training Techniques

Apart from the design of the network architecture, the training procedure also affects
the ultimate performance. Not only did vision Transformers bring a new set of modules
and architectural design decisions, but they also introduced different training techniques
(e.g . AdamW optimizer) to vision. This pertains mostly to the optimization strategy and
associated hyper-parameter settings. Thus, the first step of our exploration is to train
a baseline model with the vision Transformer training procedure, in this case, ResNet-
50/200. Recent studies [12, 192] demonstrate that a set of modern training techniques
can significantly enhance the performance of a simple ResNet-50 model. In our study,
we use a training recipe that is close to DeiT’s [177] and Swin Transformer’s [117]. The
training is extended to 300 epochs from the original 90 epochs for ResNets. We use the
AdamW optimizer [121], data augmentation techniques such as Mixup [209], Cutmix [208],
RandAugment [29], Random Erasing [213], and regularization schemes including Stochastic
Depth [84] and Label Smoothing [169]. The complete set of hyper-parameters we use can be
found in Section 4.7.1. By itself, this enhanced training recipe increased the performance
of the ResNet-50 model from 76.1% [139] to 78.8% (+2.7%), implying that a significant
portion of the performance difference between traditional ConvNets and vision Transformers
may be due to the training techniques. We will use this fixed training recipe with the same
hyperparameters throughout the “modernization” process. Each reported accuracy on the
ResNet-50 regime is an average obtained from training with three different random seeds.

4.3.2 Macro Design

We now analyze Swin Transformers’ macro network design. Swin Transformers follow
ConvNets [161, 64] to use a multi-stage design, where each stage has a different feature map
resolution. There are two interesting design considerations: the stage compute ratio, and the
“stem cell” structure.

Changing stage compute ratio. The original design of the computation distribution
across stages in ResNet was largely empirical. The heavy “res4” stage was meant to be
compatible with downstream tasks like object detection, where a detector head operates on
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the 14×14 feature plane. Swin-T, on the other hand, followed the same principle but with a
slightly different stage compute ratio of 1:1:3:1. For larger Swin Transformers, the ratio is
1:1:9:1. Following the design, we adjust the number of blocks in each stage from (3, 4, 6, 3)
in ResNet-50 to (3, 3, 9, 3), which also aligns the FLOPs with Swin-T. This improves the
model accuracy from 78.8% to 79.4%. Notably, researchers have thoroughly investigated the
distribution of computation [142, 141], and a more optimal design is likely to exist.

From now on, we will use this stage compute ratio.

Changing stem to “Patchify”. Typically, the stem cell design is concerned with how the
input images will be processed at the network’s beginning. Due to the redundancy inherent
in natural images, a common stem cell will aggressively downsample the input images to an
appropriate feature map size in both standard ConvNets and vision Transformers. The stem
cell in standard ResNet contains a 7×7 convolution layer with stride 2, followed by a max
pool, which results in a 4× downsampling of the input images. In vision Transformers, a more
aggressive “patchify” strategy is used as the stem cell, which corresponds to a large kernel
size (e.g. kernel size = 14 or 16) and non-overlapping convolution. Swin Transformer uses a
similar “patchify” layer, but with a smaller patch size of 4 to accommodate the architecture’s
multi-stage design. We replace the ResNet-style stem cell with a patchify layer implemented
using a 4×4, stride 4 convolutional layer. The accuracy has changed from 79.4% to 79.5%.
This suggests that the stem cell in a ResNet may be substituted with a simpler “patchify”
layer à la ViT which will result in similar performance.

We will use the “patchify stem” (4×4 non-overlapping convolution) in the network.

4.3.3 ResNeXt-ify

In this part, we attempt to adopt the idea of ResNeXt [201], which has a better FLOPs/accuracy
trade-off than a vanilla ResNet. The core component is grouped convolution, where the
convolutional filters are separated into different groups. At a high level, ResNeXt’s guiding
principle is to “use more groups, expand width”. More precisely, ResNeXt employs grouped
convolution for the 3×3 conv layer in a bottleneck block. As this significantly reduces the
FLOPs, the network width is expanded to compensate for the capacity loss.

In our case we use depthwise convolution, a special case of grouped convolution where
the number of groups equals the number of channels. Depthwise conv has been popularized
by MobileNet [79] and Xception [22]. We note that depthwise convolution is similar to
the weighted sum operation in self-attention, which operates on a per-channel basis, i.e.,
only mixing information in the spatial dimension. The combination of depthwise conv
and 1× 1 convs leads to a separation of spatial and channel mixing, a property shared by
vision Transformers, where each operation either mixes information across spatial or channel
dimension, but not both. The use of depthwise convolution effectively reduces the network
FLOPs and, as expected, the accuracy. Following the strategy proposed in ResNeXt, we
increase the network width to the same number of channels as Swin-T’s (from 64 to 96). This
brings the network performance to 80.5% with increased FLOPs (5.3G).
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We will now employ the ResNeXt design.

4.3.4 Inverted Bottleneck

One important design in every Transformer block is that it creates an inverted bottleneck,
i.e., the hidden dimension of the MLP block is four times wider than the input dimension
(see Figure 4.4). Interestingly, this Transformer design is connected to the inverted bottleneck
design with an expansion ratio of 4 used in ConvNets. The idea was popularized by
MobileNetV2 [154], and has subsequently gained traction in several advanced ConvNet
architectures [170, 172].

Here we explore the inverted bottleneck design. Figure 4.3 (a) to (b) illustrate the
configurations. Despite the increased FLOPs for the depthwise convolution layer, this change
reduces the whole network FLOPs to 4.6G, due to the significant FLOPs reduction in the
downsampling residual blocks’ shortcut 1×1 conv layer. Interestingly, this results in slightly
improved performance (80.5% to 80.6%). In the ResNet-200 / Swin-B regime, this step brings
even more gain (81.9% to 82.6%) also with reduced FLOPs.

We will now use inverted bottlenecks.

4.3.5 Large Kernel Sizes

In this part of the exploration, we focus on the behavior of large convolutional kernels. One of
the most distinguishing aspects of vision Transformers is their non-local self-attention, which
enables each layer to have a global receptive field. While large kernel sizes have been used in
the past with ConvNets [99, 168], the gold standard (popularized by VGGNet [161]) is to
stack small kernel-sized (3×3) conv layers, which have efficient hardware implementations
on modern GPUs [100]. Although Swin Transformers reintroduced the local window to the
self-attention block, the window size is at least 7×7, significantly larger than the ResNe(X)t
kernel size of 3×3. Here we revisit the use of large kernel-sized convolutions for ConvNets.

Moving up depthwise conv layer. To explore large kernels, one prerequisite is to move
up the position of the depthwise conv layer (Figure 4.3 (b) to (c)). That is a design decision
also evident in Transformers: the MSA block is placed prior to the MLP layers. As we
have an inverted bottleneck block, this is a natural design choice — the complex/inefficient
modules (MSA, large-kernel conv) will have fewer channels, while the efficient, dense 1×1
layers will do the heavy lifting. This intermediate step reduces the FLOPs to 4.1G, resulting
in a temporary performance degradation to 79.9%.

Increasing the kernel size. With all of these preparations, the benefit of adopting larger
kernel-sized convolutions is significant. We experimented with several kernel sizes, including
3, 5, 7, 9, and 11. The network’s performance increases from 79.9% (3×3) to 80.6% (7×7),
while the network’s FLOPs stay roughly the same. Additionally, we observe that the benefit
of larger kernel sizes reaches a saturation point at 7×7. We verified this behavior in the
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Figure 4.3: Block modifications and resulted specifications. (a) is a ResNeXt block; in (b)
we create an inverted bottleneck block and in (c) the position of the spatial depthwise conv
layer is moved up.

large capacity model too: a ResNet-200 regime model does not exhibit further gain when we
increase the kernel size beyond 7×7.

We will use 7×7 depthwise conv in each block.
At this point, we have concluded our examination of network architectures on a macro

scale. Intriguingly, a significant portion of the design choices taken in a vision Transformer
may be mapped to ConvNet instantiations.

4.3.6 Micro Design

In this section, we investigate several other architectural differences at a micro scale — most
of the explorations here are done at the layer level, focusing on specific choices of activation
functions and normalization layers.

Replacing ReLU with GELU. One discrepancy between NLP and vision architectures is
the specifics of which activation functions to use. Numerous activation functions have been
developed over time, but the Rectified Linear Unit (ReLU) [133] is still extensively used in
ConvNets due to its simplicity and efficiency. ReLU is also used as an activation function
in the original Transformer paper [181]. The Gaussian Error Linear Unit, or GELU [74],
which can be thought of as a smoother variant of ReLU, is utilized in the most advanced
Transformers, including Google’s BERT [36] and OpenAI’s GPT-2 [140], and, most recently,
ViTs. We find that ReLU can be substituted with GELU in our ConvNet too, although the
accuracy stays unchanged (80.6%).

Fewer activation functions. One minor distinction between a Transformer and a ResNet
block is that Transformers have fewer activation functions. Consider a Transformer block
with key/query/value linear embedding layers, the projection layer, and two linear layers
in an MLP block. There is only one activation function present in the MLP block. In
comparison, it is common practice to append an activation function to each convolutional
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Figure 4.4: Block designs for a ResNet, a Swin Transformer, and a ConvNeXt. Swin
Transformer’s block is more sophisticated due to the presence of multiple specialized modules
and two residual connections. For simplicity, we note the linear layers in Transformer MLP
blocks also as “1×1 convs” since they are equivalent.

layer, including the 1× 1 convs. Here we examine how performance changes when we stick to
the same strategy. As depicted in Figure 4.4, we eliminate all GELU layers from the residual
block except for one between two 1× 1 layers, replicating the style of a Transformer block.
This process improves the result by 0.7% to 81.3%, practically matching the performance of
Swin-T.

We will now use a single GELU activation in each block.

Fewer normalization layers. Transformer blocks usually have fewer normalization layers
as well. Here we remove two BatchNorm (BN) layers, leaving only one BN layer before the
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conv 1× 1 layers. This further boosts the performance to 81.4%, already surpassing Swin-T’s
result. Note that we have even fewer normalization layers per block than Transformers, as
empirically we find that adding one additional BN layer at the beginning of the block does
not improve the performance.

Substituting BN with LN. BatchNorm [88] is an essential component in ConvNets as it
improves the convergence and reduces overfitting. However, BN also has many intricacies that
can have a detrimental effect on the model’s performance [195]. There have been numerous
attempts at developing alternative normalization [153, 179, 194] techniques, but BN has
remained the preferred option in most vision tasks. On the other hand, the simpler Layer
Normalization [7] (LN) has been used in Transformers, resulting in good performance across
different application scenarios.

Directly substituting LN for BN in the original ResNet will result in suboptimal perfor-
mance [194]. With all the modifications in network architecture and training techniques,
here we revisit the impact of using LN in place of BN. We observe that our ConvNet model
does not have any difficulties training with LN; in fact, the performance is slightly better,
obtaining an accuracy of 81.5%.

From now on, we will use one LayerNorm as our choice of normalization in each residual
block.

Separate downsampling layers. In ResNet, the spatial downsampling is achieved by the
residual block at the start of each stage, using 3×3 conv with stride 2 (and 1×1 conv with
stride 2 at the shortcut connection). In Swin Transformers, a separate downsampling layer is
added between stages. We explore a similar strategy in which we use 2×2 conv layers with
stride 2 for spatial downsampling. This modification surprisingly leads to diverged training.
Further investigation shows that, adding normalization layers wherever spatial resolution
is changed can help stablize training. These include several LN layers also used in Swin
Transformers: one before each downsampling layer, one after the stem, and one after the
final global average pooling. We can improve the accuracy to 82.0%, significantly exceeding
Swin-T’s 81.3%.

We will use separate downsampling layers. This brings us to our final model, which we
have dubbed ConvNeXt.

A comparison of ResNet, Swin, and ConvNeXt block structures can be found in Figure 4.4.
A comparison of ResNet-50, Swin-T and ConvNeXt-T’s detailed architecture specifications
can be found in Table 4.8.

Closing remarks. We have finished our first “playthrough” and discovered ConvNeXt, a
pure ConvNet, that can outperform the Swin Transformer for ImageNet-1K classification in
this compute regime. It is worth noting that all design choices discussed so far are adapted
from vision Transformers. In addition, these designs are not novel even in the ConvNet
literature — they have all been researched separately, but not collectively, over the last decade.
Our ConvNeXt model has approximately the same FLOPs, #params., throughput, and
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memory use as the Swin Transformer, but does not require specialized modules such as shifted
window attention or relative position biases.

These findings are encouraging but not yet completely convincing — our exploration thus
far has been limited to a small scale, but vision Transformers’ scaling behavior is what truly
distinguishes them. Additionally, the question of whether a ConvNet can compete with Swin
Transformers on downstream tasks such as object detection and semantic segmentation is a
central concern for computer vision practitioners. In the next section, we will scale up our
ConvNeXt models both in terms of data and model size, and evaluate them on a diverse set
of visual recognition tasks.

4.4 Experiments on ImageNet
We construct different ConvNeXt variants, ConvNeXt-T/S/B/L, to be of similar complexities
to Swin-T/S/B/L [117]. ConvNeXt-T/B is the end product of the “modernizing” procedure
on ResNet-50/200 regime, respectively. In addition, we build a larger ConvNeXt-XL to
further test the scalability of ConvNeXt. The variants only differ in the number of channels
C, and the number of blocks B in each stage. Following both ResNets and Swin Transformers,
the number of channels doubles at each new stage. We summarize the configurations below:

•ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)

•ConvNeXt-S: C = (96, 192, 384, 768), B = (3, 3, 27, 3)

•ConvNeXt-B: C = (128, 256, 512, 1024), B = (3, 3, 27, 3)

•ConvNeXt-L: C = (192, 384, 768, 1536), B = (3, 3, 27, 3)

•ConvNeXt-XL: C = (256, 512, 1024, 2048), B = (3, 3, 27, 3)

4.4.1 Settings

The ImageNet-1K dataset consists of 1000 object classes with 1.2M training images. We
report ImageNet-1K top-1 accuracy on the validation set. We also conduct pre-training
on ImageNet-22K, a larger dataset of 21841 classes (a superset of the 1000 ImageNet-1K
classes) with ∼14M images for pre-training, and then fine-tune the pre-trained model on
ImageNet-1K for evaluation. We summarize our training setups below. More details can be
found in Section 4.7.

Training on ImageNet-1K. We train ConvNeXts for 300 epochs using AdamW [121] with
a learning rate of 4e-3. There is a 20-epoch linear warmup and a cosine decaying schedule
afterward. We use a batch size of 4096 and a weight decay of 0.05. For data augmentations,
we adopt common schemes including Mixup [209], Cutmix [208], RandAugment [29], and
Random Erasing [213]. We regularize the networks with Stochastic Depth [84] and Label
Smoothing [169]. Layer Scale [175] of initial value 1e-6 is applied. We use Exponential Moving
Average (EMA) [138] as we find it alleviates larger models’ overfitting.
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Pre-training on ImageNet-22K. We pre-train ConvNeXts on ImageNet-22K for 90 epochs
with a warmup of 5 epochs. We do not use EMA. Other settings follow ImageNet-1K.

Fine-tuning on ImageNet-1K. We fine-tune ImageNet-22K pre-trained models on ImageNet-
1K for 30 epochs. We use AdamW, a learning rate of 5e-5, cosine learning rate schedule,
layer-wise learning rate decay [24, 10], no warmup, a batch size of 512, and weight decay of
1e-8. The default pre-training, fine-tuning, and testing resolution is 2242. Additionally, we
fine-tune at a larger resolution of 3842, for both ImageNet-22K and ImageNet-1K pre-trained
models.

Compared with ViTs/Swin Transformers, ConvNeXts are simpler to fine-tune at different
resolutions, as the network is fully-convolutional and there is no need to adjust the input
patch size or interpolate absolute/relative position biases.

4.4.2 Results

ImageNet-1K. Table 4.1 (upper) shows the result comparison with two recent Transformer
variants, DeiT [177] and Swin Transformers [117], as well as two ConvNets from architecture
search - RegNets [141], EfficientNets [170] and EfficientNetsV2 [171]. ConvNeXt competes
favorably with two strong ConvNet baselines (RegNet [141] and EfficientNet [170]) in terms
of the accuracy-computation trade-off, as well as the inference throughputs. ConvNeXt also
outperforms Swin Transformer of similar complexities across the board, sometimes with a
substantial margin (e.g . 0.8% for ConvNeXt-T). Without specialized modules such as shifted
windows or relative position bias, ConvNeXts also enjoy improved throughput compared to
Swin Transformers.

A highlight from the results is ConvNeXt-B at 3842: it outperforms Swin-B by 0.6%
(85.1% vs. 84.5%), but with 12.5% higher inference throughput (95.7 vs. 85.1 image/s). We
note that the FLOPs/throughput advantage of ConvNeXt-B over Swin-B becomes larger
when the resolution increases from 2242 to 3842. Additionally, we observe an improved result
of 85.5% when further scaling to ConvNeXt-L.

ImageNet-22K. We present results with models fine-tuned from ImageNet-22K pre-training
at Table 4.1 (lower). These experiments are important since a widely held view is that
vision Transformers have fewer inductive biases thus can perform better than ConvNets when
pre-trained on a larger scale. Our results demonstrate that properly designed ConvNets
are not inferior to vision Transformers when pre-trained with large dataset — ConvNeXts
still perform on par or better than similarly-sized Swin Transformers, with slightly higher
throughput. Additionally, our ConvNeXt-XL model achieves an accuracy of 87.8% — a
decent improvement over ConvNeXt-L at 3842, demonstrating that ConvNeXts are scalable
architectures.

On ImageNet-1K, EfficientNetV2-L, a searched architecture equipped with advanced
modules (such as Squeeze-and-Excitation [82]) and progressive training procedure achieves
top performance. However, with ImageNet-22K pre-training, ConvNeXt is able to outperform
EfficientNetV2, further demonstrating the importance of large-scale training.
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model
image
size

#param. FLOPs
throughput
(image / s)

IN-1K
top-1 acc.

ImageNet-1K trained models
•RegNetY-16G [141] 2242 84M 16.0G 334.7 82.9
•EffNet-B7 [170] 6002 66M 37.0G 55.1 84.3
•EffNetV2-L [171] 4802 120M 53.0G 83.7 85.7
◦DeiT-S [177] 2242 22M 4.6G 978.5 79.8
◦DeiT-B [177] 2242 87M 17.6G 302.1 81.8
◦ Swin-T 2242 28M 4.5G 757.9 81.3
•ConvNeXt-T 2242 29M 4.5G 774.7 82.1
◦ Swin-S 2242 50M 8.7G 436.7 83.0
•ConvNeXt-S 2242 50M 8.7G 447.1 83.1
◦ Swin-B 2242 88M 15.4G 286.6 83.5
•ConvNeXt-B 2242 89M 15.4G 292.1 83.8
◦ Swin-B 3842 88M 47.1G 85.1 84.5
•ConvNeXt-B 3842 89M 45.0G 95.7 85.1
•ConvNeXt-L 2242 198M 34.4G 146.8 84.3
•ConvNeXt-L 3842 198M 101.0G 50.4 85.5

ImageNet-22K pre-trained models
•R-101x3 [97] 3842 388M 204.6G - 84.4
•R-152x4 [97] 4802 937M 840.5G - 85.4
•EffNetV2-L [171] 4802 120M 53.0G 83.7 86.8
•EffNetV2-XL [171] 4802 208M 94.0G 56.5 87.3
◦ViT-B/16 (T) [165] 3842 87M 55.5G 93.1 85.4
◦ViT-L/16 (T) [165] 3842 305M 191.1G 28.5 86.8
•ConvNeXt-T 2242 29M 4.5G 774.7 82.9
•ConvNeXt-T 3842 29M 13.1G 282.8 84.1
•ConvNeXt-S 2242 50M 8.7G 447.1 84.6
•ConvNeXt-S 3842 50M 25.5G 163.5 85.8
◦ Swin-B 2242 88M 15.4G 286.6 85.2
•ConvNeXt-B 2242 89M 15.4G 292.1 85.8
◦ Swin-B 3842 88M 47.0G 85.1 86.4
•ConvNeXt-B 3842 89M 45.1G 95.7 86.8
◦ Swin-L 2242 197M 34.5G 145.0 86.3
•ConvNeXt-L 2242 198M 34.4G 146.8 86.6
◦ Swin-L 3842 197M 103.9G 46.0 87.3
•ConvNeXt-L 3842 198M 101.0G 50.4 87.5
•ConvNeXt-XL 2242 350M 60.9G 89.3 87.0
•ConvNeXt-XL 3842 350M 179.0G 30.2 87.8

Table 4.1: Classification accuracy on ImageNet-1K. Similar to Transformers, ConvNeXt also
shows promising scaling behavior with higher-capacity models and a larger (pre-training)
dataset. Inference throughput is measured on a V100 GPU, following [117]. On an A100 GPU,
ConvNeXt can have a much higher throughput than Swin Transformer. See Section 4.8.3. (T)
ViT results with 90-epoch AugReg [165] training, provided through personal communication
with the authors.
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In Section 4.8.1, we discuss robustness and out-of-domain generalization results for
ConvNeXt.

4.4.3 Isotropic ConvNeXt vs. ViT

In this ablation, we examine if our ConvNeXt block design is generalizable to ViT-style [39]
isotropic architectures which have no downsampling layers and keep the same feature resolu-
tions (e.g . 14×14) at all depths. We construct isotropic ConvNeXt-S/B/L using the same
feature dimensions as ViT-S/B/L (384/768/1024). Depths are set at 18/18/36 to match the
number of parameters and FLOPs. The block structure remains the same (Figure 4.4). We
use the supervised training results from DeiT [177] for ViT-S/B and MAE [68] for ViT-L, as
they employ improved training procedures over the original ViTs [39]. ConvNeXt models
are trained with the same settings as before, but with longer warmup epochs. Results for
ImageNet-1K at 2242 resolution are in Table 4.2. We observe ConvNeXt can perform generally
on par with ViT, showing that our ConvNeXt block design is competitive when used in
non-hierarchical models.

model #param. FLOPs throughput
(image / s)

training
mem. (GB)

IN-1K
acc.

◦ViT-S 22M 4.6G 978.5 4.9 79.8
•ConvNeXt-S (iso.) 22M 4.3G 1038.7 4.2 79.7
◦ViT-B 87M 17.6G 302.1 9.1 81.8
•ConvNeXt-B (iso.) 87M 16.9G 320.1 7.7 82.0
◦ViT-L 304M 61.6G 93.1 22.5 82.6
•ConvNeXt-L (iso.) 306M 59.7G 94.4 20.4 82.6

Table 4.2: Comparing isotropic ConvNeXt and ViT. Training memory is measured on V100
GPUs with 32 per-GPU batch size.

4.5 Experiments on Downstream Tasks

4.5.1 Object detection and segmentation on COCO.

We fine-tune Mask R-CNN [67] and Cascade Mask R-CNN [14] on the COCO dataset with
ConvNeXt backbones. Following Swin Transformer [117], we use multi-scale training, AdamW
optimizer, and a 3× schedule. Further details and hyper-parameter settings can be found in
Section 4.7.3.

Table 4.3 shows object detection and instance segmentation results comparing Swin
Transformer, ConvNeXt, and traditional ConvNet such as ResNeXt. Across different model
complexities, ConvNeXt achieves on-par or better performance than Swin Transformer. When
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scaled up to bigger models (ConvNeXt-B/L/XL) pre-trained on ImageNet-22K, in many
cases ConvNeXt is significantly better (e.g . +1.0 AP) than Swin Transformers in terms of
box and mask AP.

backbone FLOPs FPS APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask-RCNN 3× schedule
◦ Swin-T 267G 23.1 46.0 68.1 50.3 41.6 65.1 44.9
•ConvNeXt-T 262G 25.6 46.2 67.9 50.8 41.7 65.0 44.9

Cascade Mask-RCNN 3× schedule
•ResNet-50 739G 16.2 46.3 64.3 50.5 40.1 61.7 43.4
•X101-32 819G 13.8 48.1 66.5 52.4 41.6 63.9 45.2
•X101-64 972G 12.6 48.3 66.4 52.3 41.7 64.0 45.1
◦ Swin-T 745G 12.2 50.4 69.2 54.7 43.7 66.6 47.3
•ConvNeXt-T 741G 13.5 50.4 69.1 54.8 43.7 66.5 47.3
◦ Swin-S 838G 11.4 51.9 70.7 56.3 45.0 68.2 48.8
•ConvNeXt-S 827G 12.0 51.9 70.8 56.5 45.0 68.4 49.1
◦ Swin-B 982G 10.7 51.9 70.5 56.4 45.0 68.1 48.9
•ConvNeXt-B 964G 11.4 52.7 71.3 57.2 45.6 68.9 49.5
◦ Swin-B‡ 982G 10.7 53.0 71.8 57.5 45.8 69.4 49.7
•ConvNeXt-B‡ 964G 11.5 54.0 73.1 58.8 46.9 70.6 51.3
◦ Swin-L‡ 1382G 9.2 53.9 72.4 58.8 46.7 70.1 50.8
•ConvNeXt-L‡ 1354G 10.0 54.8 73.8 59.8 47.6 71.3 51.7
•ConvNeXt-XL‡ 1898G 8.6 55.2 74.2 59.9 47.7 71.6 52.2

Table 4.3: COCO object detection and segmentation results using Mask-RCNN and Cascade
Mask-RCNN. ‡ indicates that the model is pre-trained on ImageNet-22K. ImageNet-1K
pre-trained Swin results are from their Github repository [52]. AP numbers of the ResNet-50
and X101 models are from [117]. We measure FPS on an A100 GPU. FLOPs are calculated
with image size (1280, 800).

4.5.2 Semantic segmentation on ADE20K.

We also evaluate ConvNeXt backbones on the ADE20K semantic segmentation task with
UperNet [199]. All model variants are trained for 160K iterations with a batch size of 16.
Other experimental settings follow [10] (see Section 4.7.3 for more details). In Table 4.4, we
report validation mIoU with multi-scale testing. ConvNeXt models can achieve competitive
performance across different model capacities, further validating the effectiveness of our
architecture design.
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backbone input crop. mIoU #param. FLOPs
ImageNet-1K pre-trained

◦ Swin-T 5122 45.8 60M 945G
•ConvNeXt-T 5122 46.7 60M 939G
◦ Swin-S 5122 49.5 81M 1038G
•ConvNeXt-S 5122 49.6 82M 1027G
◦ Swin-B 5122 49.7 121M 1188G
•ConvNeXt-B 5122 49.9 122M 1170G

ImageNet-22K pre-trained

◦ Swin-B‡ 6402 51.7 121M 1841G
•ConvNeXt-B‡ 6402 53.1 122M 1828G
◦ Swin-L‡ 6402 53.5 234M 2468G
•ConvNeXt-L‡ 6402 53.7 235M 2458G
•ConvNeXt-XL‡ 6402 54.0 391M 3335G

Table 4.4: ADE20K validation results using UperNet [199]. ‡ indicates IN-22K pre-training.
Swins’ results are from its GitHub repository [51]. Following Swin, we report mIoU results
with multi-scale testing. FLOPs are based on input sizes of (2048, 512) and (2560, 640) for
IN-1K and IN-22K pre-trained models, respectively.

4.5.3 Remarks on model efficiency.

Under similar FLOPs, models with depthwise convolutions are known to be slower and
consume more memory than ConvNets with only dense convolutions. It is natural to ask
whether the design of ConvNeXt will render it practically inefficient. As demonstrated
before, the inference throughputs of ConvNeXts are comparable to or exceed that of Swin
Transformers. This is true for both classification and other tasks requiring higher-resolution
inputs (see Table 4.1 and 4.3 for comparisons of throughput/FPS). Furthermore, we notice
that training ConvNeXts requires less memory than training Swin Transformers. For example,
training Cascade Mask-RCNN using ConvNeXt-B backbone consumes 17.4GB of peak
memory with a per-GPU batch size of 2, while the reference number for Swin-B is 18.5GB. In
comparison to vanilla ViT, both ConvNeXt and Swin Transformer exhibit a more favorable
accuracy-FLOPs trade-off due to the local computations. It is worth noting that this
improved efficiency is a result of the ConvNet inductive bias, and is not directly related to
the self-attention mechanism in vision Transformers.
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4.6 Related Work

4.6.1 Hybrid Models

In both the pre- and post-ViT eras, the hybrid model combining convolutions and self-
attentions has been actively studied. Prior to ViT, the focus was on augmenting a ConvNet
with self-attention/non-local modules [186, 11, 162, 143] to capture long-range dependencies.
The original ViT [39] first studied a hybrid configuration, and a large body of follow-up works
focused on reintroducing convolutional priors to ViT, either in an explicit [193, 203, 30, 31,
198, 41] or implicit [117] fashion.

4.6.2 Recent Convolution-based Approaches

Han et al. [59] show that local Transformer attention is equivalent to inhomogeneous dynamic
depthwise conv. The MSA block in Swin is then replaced with a dynamic or regular depthwise
convolution, achieving comparable performance to Swin. A concurrent work ConvMixer [178]
demonstrates that, in small-scale settings, depthwise convolution can be used as a promising
mixing strategy. ConvMixer uses a smaller patch size to achieve the best results, making the
throughput much lower than other baselines. GFNet [145] adopts Fast Fourier Transform
(FFT) for token mixing. FFT is also a form of convolution, but with a global kernel size and
circular padding. Unlike many recent Transformer or ConvNet designs, one primary goal of
our study is to provide an in-depth look at the process of modernizing a standard ResNet
and achieving state-of-the-art performance.

4.7 Full Experimental Settings

4.7.1 ImageNet (Pre-)training

We provide ConvNeXts’ ImageNet-1K training and ImageNet-22K pre-training settings in
Table 4.5. The settings are used for our main results in Table 4.1 (Section 4.4.2). All
ConvNeXt variants use the same setting, except the stochastic depth rate is customized for
model variants.

For experiments in “modernizing a ConvNet” (Section 4.3), we also use Table 4.5’s setting
for ImageNet-1K, except EMA is disabled, as we find using EMA severely hurts models with
BatchNorm layers.

For isotropic ConvNeXts (Section 4.4.3), the setting for ImageNet-1K in Table 4.7 is
also adopted, but warmup is extended to 50 epochs, and layer scale is disabled for isotropic
ConvNeXt-S/B. The stochastic depth rates are 0.1/0.2/0.5 for isotropic ConvNeXt-S/B/L.
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ConvNeXt-T/S/B/L ConvNeXt-T/S/B/L/XL

(pre-)training config
ImageNet-1K ImageNet-22K

2242 2242

weight init trunc. normal (0.2) trunc. normal (0.2)
optimizer AdamW AdamW
base learning rate 4e-3 4e-3
weight decay 0.05 0.05
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

batch size 4096 4096
training epochs 300 90
learning rate schedule cosine decay cosine decay
warmup epochs 20 5
warmup schedule linear linear
layer-wise lr decay [24, 10] None None
randaugment [29] (9, 0.5) (9, 0.5)
mixup [209] 0.8 0.8
cutmix [208] 1.0 1.0
random erasing [213] 0.25 0.25
label smoothing [169] 0.1 0.1
stochastic depth [84] 0.1/0.4/0.5/0.5 0.0/0.0/0.1/0.1/0.2
layer scale [175] 1e-6 1e-6
head init scale [175] None None
gradient clip None None
exp. mov. avg. (EMA) [138] 0.9999 None

Table 4.5: ImageNet-1K/22K (pre-)training settings. Multiple stochastic depth rates (e.g.,
0.1/0.4/0.5/0.5) are for each model (e.g., ConvNeXt-T/S/B/L) respectively.
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ConvNeXt-B/L ConvNeXt-T/S/B/L/XL

pre-training config
ImageNet-1K ImageNet-22K

2242 2242

fine-tuning config
ImageNet-1K ImageNet-1K

3842 2242 and 3842

optimizer AdamW AdamW
base learning rate 5e-5 5e-5
weight decay 1e-8 1e-8
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

batch size 512 512
training epochs 30 30
learning rate schedule cosine decay cosine decay
layer-wise lr decay 0.7 0.8
warmup epochs None None
warmup schedule N/A N/A
randaugment (9, 0.5) (9, 0.5)
mixup None None
cutmix None None
random erasing 0.25 0.25
label smoothing 0.1 0.1
stochastic depth 0.8/0.95 0.0/0.1/0.2/0.3/0.4
layer scale pre-trained pre-trained
head init scale 0.001 0.001
gradient clip None None
exp. mov. avg. (EMA) None None(T-L)/0.9999(XL)

Table 4.6: ImageNet-1K fine-tuning settings. Multiple values (e.g., 0.8/0.95) are for each
model (e.g., ConvNeXt-B/L) respectively.
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4.7.2 ImageNet Fine-tuning

We list the settings for fine-tuning on ImageNet-1K in Table 4.6. The fine-tuning starts from
the final model weights obtained in pre-training, without using the EMA weights, even if in
pre-training EMA is used and EMA accuracy is reported. This is because we do not observe
improvement if we fine-tune with the EMA weights (consistent with observations in [177]).
The only exception is ConvNeXt-L pre-trained on ImageNet-1K, where the model accuracy
is significantly lower than the EMA accuracy due to overfitting, and we select its best EMA
model during pre-training as the starting point for fine-tuning.

In fine-tuning, we use layer-wise learning rate decay [24, 10] with every 3 consecutive
blocks forming a group. When the model is fine-tuned at 3842 resolution, we use a crop ratio
of 1.0 (i.e., no cropping) during testing following [191, 175, 51], instead of 0.875 at 2242.

4.7.3 Downstream Tasks

For ADE20K and COCO experiments, we follow the training settings used in BEiT [10] and
Swin [117]. We also use MMDetection [18] and MMSegmentation [25] toolboxes. We use
the final model weights (instead of EMA weights) from ImageNet pre-training as network
initializations.

We conduct a lightweight sweep for COCO experiments including learning rate {1e-4,
2e-4}, layer-wise learning rate decay [10] {0.7, 0.8, 0.9, 0.95}, and stochastic depth rate {0.3,
0.4, 0.5, 0.6, 0.7, 0.8}. We fine-tune the ImageNet-22K pre-trained Swin-B/L on COCO using
the same sweep. We use the official code and pre-trained model weights [52].

The hyperparameters we sweep for ADE20K experiments include learning rate {8e-5,
1e-4}, layer-wise learning rate decay {0.8, 0.9}, and stochastic depth rate {0.3, 0.4, 0.5}.
We report validation mIoU results using multi-scale testing. Additional single-scale testing
results are in Table 4.7.

backbone input crop. mIoU
ImageNet-1K pre-trained

•ConvNeXt-T 5122 46.0
•ConvNeXt-S 5122 48.7
•ConvNeXt-B 5122 49.1

ImageNet-22K pre-trained

•ConvNeXt-B‡ 6402 52.6
•ConvNeXt-L‡ 6402 53.2
•ConvNeXt-XL‡ 6402 53.6

Table 4.7: ADE20K validation results with single-scale testing.
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4.7.4 Detailed Architectures

We present a detailed architecture comparison between ResNet-50, ConvNeXt-T and Swin-T
in Table 4.8. For differently sized ConvNeXts, only the number of blocks and the number
of channels at each stage differ from ConvNeXt-T (see Section 4.4 for details). ConvNeXts
enjoy the simplicity of standard ConvNets, but compete favorably with Swin Transformers in
visual recognition.

output size •ResNet-50 •ConvNeXt-T ◦ Swin-T

stem 56×56
7×7, 64, stride 2

4×4, 96, stride 4 4×4, 96, stride 4
3×3 max pool, stride 2

res2 56×56

 1×1, 64
3×3, 64
1×1, 256

 × 3

d7×7, 96
1×1, 384
1×1, 96

 × 3

 1×1, 96×3
MSA, w7×7, H=3, rel. pos.

1×1, 96


[

1×1, 384
1×1, 96

] × 2

res3 28×28

1×1, 128
3×3, 128
1×1, 512

 × 4

d7×7, 192
1×1, 768
1×1, 192

 × 3

 1×1, 192×3
MSA, w7×7, H=6, rel. pos.

1×1, 192


[

1×1, 768
1×1, 192

] × 2

res4 14×14

 1×1, 256
3×3, 256
1×1, 1024

 × 6

d7×7, 384
1×1, 1536
1×1, 384

 × 9

 1×1, 384×3
MSA, w7×7, H=12, rel. pos.

1×1, 384


[

1×1, 1536
1×1, 384

] × 6

res5 7×7

 1×1, 512
3×3, 512
1×1, 2048

 × 3

d7×7, 768
1×1, 3072
1×1, 768

 × 3

 1×1, 768×3
MSA, w7×7, H=24, rel. pos.

1×1, 768


[

1×1, 3072
1×1, 768

] × 2

FLOPs 4.1× 109 4.5× 109 4.5× 109

# params. 25.6× 106 28.6× 106 28.3× 106

Table 4.8: Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.
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Model Data/Size FLOPs / Params Clean C (↓) C̄ (↓) A R SK

ResNet-50 1K/2242 4.1 / 25.6 76.1 76.7 57.7 0.0 36.1 24.1

Swin-T [117] 1K/2242 4.5 / 28.3 81.2 62.0 - 21.6 41.3 29.1
RVT-S* [126] 1K/2242 4.7 / 23.3 81.9 49.4 37.5 25.7 47.7 34.7
ConvNeXt-T 1K/2242 4.5 / 28.6 82.1 53.2 40.0 24.2 47.2 33.8
Swin-B [117] 1K/2242 15.4 / 87.8 83.4 54.4 - 35.8 46.6 32.4
RVT-B* [126] 1K/2242 17.7 / 91.8 82.6 46.8 30.8 28.5 48.7 36.0
ConvNeXt-B 1K/2242 15.4 / 88.6 83.8 46.8 34.4 36.7 51.3 38.2

ConvNeXt-B 22K/3842 45.1 / 88.6 86.8 43.1 30.7 62.3 64.9 51.6
ConvNeXt-L 22K/3842 101.0 / 197.8 87.5 40.2 29.9 65.5 66.7 52.8
ConvNeXt-XL 22K/3842 179.0 / 350.2 87.8 38.8 27.1 69.3 68.2 55.0

Table 4.9: Robustness evaluation of ConvNeXt. We do not make use of any specialized
modules or additional fine-tuning procedures.

4.8 Additional Studies

4.8.1 Robustness Evaluation

Additional robustness evaluation results for ConvNeXt models are presented in Table 4.9. We
directly test our ImageNet-1K trained/fine-tuned classification models on several robustness
benchmark datasets such as ImageNet-A [75], ImageNet-R [76], ImageNet-Sketch [184] and
ImageNet-C/C̄ [73, 128] datasets. We report mean corruption error (mCE) for ImageNet-C,
corruption error for ImageNet-C̄, and top-1 Accuracy for all other datasets.

ConvNeXt (in particular the large-scale model variants) exhibits promising robustness be-
haviors, outperforming state-of-the-art robust transformer models [126] on several benchmarks.
With extra ImageNet-22K data, ConvNeXt-XL demonstrates strong domain generalization
capabilities (e.g . achieving 69.3%/68.2%/55.0% accuracy on ImageNet-A/R/Sketch bench-
marks, respectively). We note that these robustness evaluation results were acquired without
using any specialized modules or additional fine-tuning procedures.

4.8.2 Modernizing ResNets: Detailed Results

Here we provide detailed tabulated results for the modernization experiments, at both ResNet-
50 / Swin-T and ResNet-200 / Swin-B regimes. The ImageNet-1K top-1 accuracies and
FLOPs for each step are shown in Table 4.10 and 4.11. ResNet-50 regime experiments are
run with 3 random seeds.

For ResNet-200, the initial number of blocks at each stage is (3, 24, 36, 3). We change
it to Swin-B’s (3, 3, 27, 3) at the step of changing stage ratio. This drastically reduces the
FLOPs, so at the same time, we also increase the width from 64 to 84 to keep the FLOPs at
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a similar level. After the step of adopting depthwise convolutions, we further increase the
width to 128 (same as Swin-B’s) as a separate step.

The observations on the ResNet-200 regime are mostly consistent with those on ResNet-50
as described before. One interesting difference is that inverting dimensions brings a larger
improvement at ResNet-200 regime than at ResNet-50 regime (+0.79% vs. +0.14%). The
performance gained by increasing kernel size also seems to saturate at kernel size 5 instead
of 7. Using fewer normalization layers also has a bigger gain compared with the ResNet-50
regime (+0.46% vs . +0.14%).

model IN-1K acc. GFLOPs

ResNet-50 (PyTorch[139]) 76.13 4.09
ResNet-50 (enhanced recipe) 78.82 ± 0.07 4.09
stage ratio 79.36 ± 0.07 4.53
“patchify” stem 79.51 ± 0.18 4.42
depthwise conv 78.28 ± 0.08 2.35
increase width 80.50 ± 0.02 5.27
inverting dimensions 80.64 ± 0.03 4.64
move up depthwise conv 79.92 ± 0.08 4.07
kernel size → 5 80.35 ± 0.08 4.10
kernel size → 7 80.57 ± 0.14 4.15
kernel size → 9 80.57 ± 0.06 4.21
kernel size → 11 80.47 ± 0.11 4.29
ReLU → GELU 80.62 ± 0.14 4.15
fewer activations 81.27 ± 0.06 4.15
fewer norms 81.41 ± 0.09 4.15
BN → LN 81.47 ± 0.09 4.46
separate d.s. conv (ConvNeXt-T) 81.97 ± 0.06 4.49
Swin-T [117] 81.30 4.50

Table 4.10: Detailed results for modernizing a ResNet-50. Mean and standard deviation are
obtained by training the network with three different random seeds.
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model IN-1K acc. GFLOPs

ResNet-200 [66] 78.20 15.01
ResNet-200 (enhanced recipe) 81.14 15.01
stage ratio and increase width 81.33 14.52
“patchify” stem 81.59 14.38
depthwise conv 80.54 7.23
increase width 81.85 16.76
inverting dimensions 82.64 15.68
move up depthwise conv 82.04 14.63
kernel size → 5 82.32 14.70
kernel size → 7 82.30 14.81
kernel size → 9 82.27 14.95
kernel size → 11 82.18 15.13
ReLU → GELU 82.19 14.81
fewer activations 82.71 14.81
fewer norms 83.17 14.81
BN → LN 83.35 14.81
separate d.s. conv (ConvNeXt-B) 83.60 15.35
Swin-B[117] 83.50 15.43

Table 4.11: Detailed results for modernizing a ResNet-200.
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4.8.3 Benchmarking on A100 GPUs

Following Swin Transformer [117], the ImageNet models’ inference throughputs in Table 4.1
are benchmarked using a V100 GPU, where ConvNeXt is slightly faster in inference than
Swin Transformer with a similar number of parameters. We now benchmark them on the
more advanced A100 GPUs, which support the TensorFloat32 (TF32) tensor cores. We
employ PyTorch [136] version 1.10 to use the latest “Channel Last” memory layout [42] for
further speedup.

We present the results in Table 4.12. Swin Transformers and ConvNeXts both achieve
faster inference throughput than V100 GPUs, but ConvNeXts’ advantage is now significantly
greater, sometimes up to 49% faster. This preliminary study shows promising signals
that ConvNeXt, employed with standard ConvNet modules and simple in design, could be
practically more efficient models on modern hardwares.

model
image
size

FLOPs
throughput
(image / s)

IN-1K / 22K
trained, 1K acc.

◦ Swin-T 2242 4.5G 1325.6 81.3 / –
•ConvNeXt-T 2242 4.5G 1943.5 (+47%) 82.1 / –
◦ Swin-S 2242 8.7G 857.3 83.0 / –
•ConvNeXt-S 2242 8.7G 1275.3 (+49%) 83.1 / –
◦ Swin-B 2242 15.4G 662.8 83.5 / 85.2
•ConvNeXt-B 2242 15.4G 969.0 (+46%) 83.8 / 85.8
◦ Swin-B 3842 47.1G 242.5 84.5 / 86.4
•ConvNeXt-B 3842 45.0G 336.6 (+39%) 85.1 / 86.8
◦ Swin-L 2242 34.5G 435.9 – / 86.3
•ConvNeXt-L 2242 34.4G 611.5 (+40%) 84.3 / 86.6
◦ Swin-L 3842 103.9G 157.9 – / 87.3
•ConvNeXt-L 3842 101.0G 211.4 (+34%) 85.5 / 87.5
•ConvNeXt-XL 2242 60.9G 424.4 – / 87.0
•ConvNeXt-XL 3842 179.0G 147.4 – / 87.8

Table 4.12: Inference throughput comparisons on an A100 GPU. Using TF32 data format and
“channel last” memory layout, ConvNeXt enjoys up to ∼49% higher throughput compared
with a Swin Transformer with similar FLOPs.
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4.9 Discussions

4.9.1 Limitations

We demonstrate ConvNeXt, a pure ConvNet model, can perform as good as a hierarchical
vision Transformer on image classification, object detection, instance and semantic segmenta-
tion tasks. While our goal is to offer a broad range of evaluation tasks, we recognize computer
vision applications are even more diverse. ConvNeXt may be more suited for certain tasks,
while Transformers may be more flexible for others. A case in point is multi-modal learning,
in which a cross-attention module may be preferable for modeling feature interactions across
many modalities. Additionally, Transformers may be more flexible when used for tasks
requiring discretized, sparse, or structured outputs. We believe the architecture choice should
meet the needs of the task at hand while striving for simplicity.

4.9.2 Societal Impact

In the 2020s, research on visual representation learning began to place enormous demands
on computing resources. While larger models and datasets improve performance across the
board, they also introduce a slew of challenges. ViT, Swin, and ConvNeXt all perform best
with their huge model variants. Investigating those model designs inevitably results in an
increase in carbon emissions. One important direction, and a motivation for our work, is to
strive for simplicity — with more sophisticated modules, the network’s design space expands
enormously, obscuring critical components that contribute to the performance difference.
Additionally, large models and datasets present issues in terms of model robustness and
fairness. Further investigation on the robustness behavior of ConvNeXt vs. Transformer will
be an interesting research direction. In terms of data, our findings indicate that ConvNeXt
models benefit from pre-training on large-scale datasets. While our method makes use of the
publicly available ImageNet-22K dataset, individuals may wish to acquire their own data for
pre-training. A more circumspect and responsible approach to data selection is required to
avoid potential concerns with data biases.

4.10 Conclusions
In the 2020s, vision Transformers, particularly hierarchical ones such as Swin Transformers,
began to overtake ConvNets as the favored choice for generic vision backbones. The widely
held belief is that vision Transformers are more accurate, efficient, and scalable than ConvNets.
We propose ConvNeXts, a pure ConvNet model that can compete favorably with state-of-
the-art hierarchical vision Transformers across multiple computer vision benchmarks, while
retaining the simplicity and efficiency of standard ConvNets. In some ways, our observations
are surprising while our ConvNeXt model itself is not completely new — many design choices
have all been examined separately over the last decade, but not collectively. We hope that
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the new results reported in this study will challenge several widely held views and prompt
people to rethink the importance of convolution in computer vision.
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Chapter 5

Conclusions

This thesis presents three contributions that propose new network architectures or study
existing architectures, for visual recognition applications. The two goals we strive for are
efficiency, which stands for the pursuit of small, fast, flexible yet accurate models; and
scalability, which aims for superb model accuracy when we have large compute and data. In
Chapter 2, we described a method that enables both anytime and more efficient inference for
pixel-wise visual recognition tasks. The framework was built on early exiting from neural
networks. We further equipped it with confidence adaptivity, motivated by the observation
that certain regions tend to be recognized accurately enough even at early exits. In Chapter 3,
we studied a more popular family of solutions for scaling models down - pruning. The central
empirical finding was that training the same pruned model from scratch is at least on par with
fine-tuning it, for structured pruning methods. Our results suggests pruning’s value does not
lie in identifying important weights, but instead they act as a form of network architecture
search. This encourages a more thorough comparison with baseline methods for future
research on this topic. In Chapter 4, we looked at vision Transformers, which seem much
more scalable than ConvNets, from a similar challenging angle. Our “modernizing” process
gradually incorporated various training techniques and detailed architecture designs borrowed
from vision Transformers into vanilla ResNets, and the eventual models, ConvNeXts, were able
to surpass the performance of vision Transformers in several visual recognition benchmarks.
Our findings prompt the community to reevaluate the importance of convolutional inductive
biases in computer vision.

Our studies on both scaling down (pruning) and scaling up (vision Transformers) em-
phasizes the need for comparing with more carefully designed baselines, and attributing the
reasons for performance improvement accurately. In addition to helping us gain a deeper
understanding of neural network properties, it could lead to much simpler algorithms that
are easier to work with in practice.
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5.1 Future Directions
Inductive Biases for Vision. As Chapter 4 demonstrated, the comparison between Con-
vNets and Transformers is often conflated with detailed architecture design choices, leading
to an underestimation of ConvNets’ potential. If we also look at other recent works in the
architecture world, e.g., ConvMixer [178], GFNet [145], MLP-Mixer [174], ResMLP [176],
PoolFormer [207] and others, we found there are three major choices on inductive biases
in designing networks: 1. hierarchical or plain features. If it uses hierarchical features, the
representation resolution gradually goes down with downsampling, and typically the number
of features gradually increases. If it is plain, the same feature resolutions and dimensions are
used across the network; 2. Local or global computation. This has to do with each layer’s
operation: whether the representation in the new layer takes inputs from all spatial locations
in the previous layer, or only a local neighborhood; 3. Spatial mixing, i.e., using self-attention,
convolution, MLP, pooling or other alternative operations. Each network is an instantiation
of various choices on these three, among other more detailed designs including activations,
normalizations, etc. For example, ConvNeXt differs from ViTs in all three aspects. Which
ones of these three play the most important role in affecting a network’s performance in small
and large model/data regimes? The understanding in the community about this question is
still very much qualitative. An empirical study on different model and data scales may help
us learn about the effects of these common inductive biases used in computer vision.

Self-Supervised Learning. We have evaluated our proposed models and algorithms on a
variety of visual recognition tasks, including image classification, object detection, semantic
segmentation and human pose estimation. Despite that, all models presented in this dis-
sertation are trained in a supervised manner, using human annotations as learning targets.
This can be undesirable for multiple reasons: 1. the heavy human effort involved in labeling
prevents the scaling of data. 2. Human annotations can be inaccurate. 3. The discrete
one-hot classification of images, objects or pixels is not fully representative of their true
semantic meaning. Recent efforts in visual self-supervised learning have shown potential in
dethroning supervised learning. Promising directions include contrastive learning [196, 69, 19],
prediction-based learning [57, 16], and masked image modeling [10, 68]. In particular, masked
image modeling methods showcased they could surpass supervised learning in representation
power, using ViTs as backbones. However, in our preliminary studies on ConvNeXts, we
encountered some difficulties trying to achieve the results obtained by ViTs with the masked
image modeling paradigm, perhaps partly because ConvNets tend to average the features
thus blurring the masked patches’ representations. In future explorations, we would like to
investigate ways to circumvent this issue and develop competitive self-supervised methods for
ConvNeXts.
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