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1 Abstract

In this report, we propose a multimodal unsupervised video learning algorithm
designed to incorporate information from any number of modalities present in
the data. We cooperatively train a network corresponding to each modality:
at each stage of training, one of these networks is selected to be trained using
the output of the other networks. To verify our algorithm, we train a model
using RGB, optical flow, and audio. We then evaluate the effectiveness of our
unsupervised learning model by performing action classification and nearest
neighbor retrieval on a supervised dataset. We compare this triple modality
model to contrastive learning models using one or two modalities, and find
using all three modalities in tandem provides a 1.5% improvement in UCF101
classification accuracy, a 1.4% improvement in R@1 retrieval recall, a 3.5%
improvement in R@5 retrieval recall, and a 2.4% improvement in R@10 retrieval
recall as compared to using only RGB and optical flow, demonstrating the merit
of utilizing as many modalities as possible in a cooperative learning model.

2 Introduction

The large amount of video data available in the modern internet has led to an
increased emphasis on fast and effective ways to classify and learn from reposi-
tories of video data. However, training traditional supervised machine learning
models on data requires the presence of labels, which are not easily available
in most cases. This leads to the task of unsupervised representation learning:
training a model that takes an unlabeled data sample as input and yields a
vector that represents a sample’s useful features as accurately and succinctly as
possible. When a supervised task is provided, this pre-trained model can be used
as the backbone to speed up training for the supervised task. The unsupervised
model can be used as weight initialization for a supervised model, improving the
accuracy of supervised learning models without the need for additional labelled
data. Alternatively, the unsupervised model can work as an encoder, extracting
the relevant features of video to train a fully connected layer on the supervised
task.

This report explores ways to leverage the different modalities available in
video data to make a more effective unsupervised pre-training method. Our
approach uses contrastive learning to create ”pseudo-labels” to train the model
with, similar to InfoNCE [1]. In contrastive learning, a model is trained on
unlabeled data to yield distinct outputs for samples, such as images or video
clips, that are found to be dissimilar by some metric, and similar outputs for
similar samples. In our case, we classify a pair of sample video clips as being
similar or dissimilar using the other modalities in the sample. In one of our
steps, we train an unsupervised model on RGB frame data by finding pairs
of video clips that are similar in optical flow or audio space. This is effective
because while two samples may differ in RGB feature space, they might prove
similar in either the flow or audio space. InfoNCE [1] uses only RGB data in a
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contrastive learning scheme and CoCLR [2] extends it to use RGB and optical
flow. In this report, we extend CoCLR [2] to incorporate audio.

Figure 1: The overall training scheme. The green blocks represent networks
that are being trained in a given stage, and the red blocks are the networks that
are acting as the ”oracle”. These networks have their weights frozen, and are
used to generate aggregated representations that can then be used to train the
green network. After each modality network is trained respective to the others,
the cycle repeats.

3 Related Work

3.1 Contrastive learning

The field of unsupervised learning is active, and the current state-of-the-art
is contrastive learning, in which models are trained by learning to similarly
represent augmentations of the same instance, or instances that are known to
be similar, and vice versa [1][2][3][4][5][6]. InfoNCE [1] follows this formula,
creating a positive pseudo-class by augmenting a sample multiple times, and a
negative pseudo-class by augmenting other samples. The model is then trained
to similarly represent pairs of samples both from the positive class and distinctly
represent all other pairs. Momentum contrast, or MoCo [3] provides a sampling
algorithm to run InfoNCE efficiently; negative examples are maintained in a
queue in order to prevent having to read them from disk and augment them on
every step. SimCLR [5] provides another possible sampling algorithm, in which
each sample in a batch is augmented to produce N positive pairs, and then each
positive pair is contrasted with the other 2(N − 1) augmented samples in the
batch. DenseCL [4] uses momentum contrast, but rather than training based on
a single global representation vector of each sample, it computes a representation
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vector of each feature of each sample, creating a dense representation to be
contrasted. All of the above papers focus on using contrastive learning for
image data. In this report, we build upon MoCo [3] for its speed and simplicity,
both crucial when dealing with much larger video data.

3.2 Contrastive Video Learning

Much research has been done on adapting contrastive learning to the specific
properties of video data [7][8][9][10][11]. CVRL [8] performs both spatial aug-
mentations, consisting of standard image augmentations, and temporal augmen-
tations, which involves selecting different timestamps of the same video. It then
trains its model using the InfoNCE [1] loss. VideoMoCo [9] extends momen-
tum contrast specifically for videos, by attenuating past samples in the queue
to prefer those more recently added.

We train our model to yield similar representations invariant to temporal
transformations; that is, we expect the same representation from two clips cut
from the same video. Recent approaches such as Jenni et al. [10], instead
train their model to specifically recognize temporal information. Behrmann
et al. [11] use InfoNCE to train a model to recognize whether one clip takes
place after another or vice versa, and use this specific temporal information
to yield a representation learner. RSPNet [7] augments samples by playing
them at different speeds, and trains a model to similarly represent samples from
different videos that play at the same speed. None of these recent papers take
into account other modalities represented in the data, and instead represent new
ways of working with only RGB frame data.

3.3 Multimodal Video Learning

There are existing approaches that work with different modalities present in
unlabeled video data [12][13][14][15][16][17]. One approach is to devise specific
cross-modality tasks that can be used to construct a loss function. Arandjelović
et al. [12] train a model to detect audio and video clips that correspond to the
same time stamp. Korbar et al. [13] use this idea to train a representation
learner to use in downstream supervised tasks. Piergiovanni et al. [14] con-
struct many such cross-modality tasks, and incorporate the modalities into the
formulation of the loss. Another approach, taken by XDC [15] and Asano et al.
[16] is to use the different modalities to construct an effective clustering model
and use the resulting clusters as pseudo-classes. GDT [17] treats the extraction
of a modality from a video as an augmentation and incorporates augmentations
into the loss function itself, thus learning to recognize samples from the same
video even if the samples are of different modalities.

Our proposed approach is similar to that of CoCLR [2], which trains a neural
network for each modality cooperatively, alternating the selected network to
train using the other networks as an oracle. CoCLR [2] extracts RGB and
dense optical flow, and uses a modified version of the InfoNCE [1] loss to train
an RGB net and a flow net against one another. To train the RGB net, positive
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pairs for some given sample are extracted by getting the top k clips with the
representation closest to that sample according to the optical flow network.
CMA, or Cross-Modal Agreement, [6] uses RGB and audio instead, and rather
than alternating one of the networks as the oracle, uses both the RGB and the
audio representations of a sample to find similar samples. In this report, we
extend the alternating-oracle pattern of CoCLR [2] to three modalities, thus
increasing the information available to the models.

4 Approach

Our approach involves two stages: pre-training and training. In the pre-training
step, we train three encoders using InfoNCE [1] with momentum contrast [3] for
each one of our three modalities: RGB, optical flow, and audio. In the train-
ing step, we use the pre-trained encoders in a cooperative contrastive learning
scheme similar to CoCLR [2].

4.1 Pre-Training

Our algorithm, as illustrated in Figure 1, involves alternating selection of one
of the modalities on which to train a encoder net, while freezing the encoders
corresponding to other modalities. This is similar to the way CoCLR [2] alter-
nates between RGB and optical flow, extended to three modalities. The frozen
encoders act as an ”oracle”, determining which other samples in the dataset are
most similar to a given sample. In order for those frozen encoders to serve as
reasonable ”oracles” to train the other encoders with, we need to first make sure
they are trained to represent their respective modalities accurately. This is done
using the InfoNCE [1] loss. For our encoder f , let x ∈ D = x1, x2, ...xS be one
modality of a video clip sampled from dataset D. For some video x, let a1 and
a2 be two random augmentations of x. These could be spatial augmentations,
such as blurs, masking, etc., or temporal augmentation, consisting of changing
the timestamp in the source video a clip is selected from. Assume a1 and a2
form a positive pair, i.e. our encoder needs to learn that these two vectors are
similar. Then, our negative set N is composed of random augmentations of
other samples from the dataset; vectors that form negative pairs with a1. The
InfoNCE [1] loss is:

LInfoNCE = −log[ exp(f(a1) · f(a2)/τ)
exp(f(a1) · f(a2)/τ) +

∑
an∈N exp(f(a1) · f(an)/τ)

] (1)

Note that this is simply a softmax cross-entropy classification loss with tem-
perature τ : the ”classes” are all the samples in the dataset, the ”logits” are
[f(a1) · f(a) for a ∈ {a2,N}], and the ”label” is the index of the logit corre-
sponding to a2. In other words, if the samples in the dataset are ”classes”, the
correct ”class” is the sample that forms a positive pair with a1. This makes the
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encoder learn to recognize different random augmentations from the same video
as being similar, leading it to encode only important features of the given clip.

In practice, fetching samples from N can be computationally inefficient,
since for every time-step, negative examples f(an) need to fetched from disk,
augmented, and run through the encoder. Since we are computing the gradient
with respect to x, we do not need to back-propagate through the computation
of f(an). Instead, a naive solution is to maintain a queue B of past encoder
outputs f(a1) in memory and use this queue as our negative set N , greatly
speeding up the training process [3]. The problem with this approach is that
as the encoder f updates with successive gradient steps, past encoder outputs
saved in the queue will no longer exactly imitate the output of the current
encoder being trained. This is problematic if the encoder makes large gradient
steps and acts differently from timestep to timestep.

This problem is mitigated by momentum contrast, or MoCo [3], whose overall
block diagram can be found in Figure 2. MoCo maintains two encoders: one
to be actively trained, fq, and the other to encode samples to be saved in the
queue, fk. The modified loss is now given as:

LInfoNCE with MoCo = −log[ exp(fq(a1) · fk(a2)/τ)
exp(f(a1) · f(a2)/τ) +

∑
b∈B exp(fq(a1) · b/τ)

] (2)

After each timestep, the following is carried out [3]:

1. fk(a2) is enqueued in the buffer B, and the least recent entry is dequeued.

2. fk is updated with a momentum update: fk ← m∗fk+(1−m)∗fq, where
m is the momentum hyperparameter

Maintaining fk this way keeps it from changing too drastically from step to
step, but also keeps it from growing stagnant as fq changes.

4.2 Training

Once the encoders corresponding to each modality are trained we begin the
cooperative training part of the algorithm, which is an extension of InfoNCE [1]
and CoCLR [2] and the main contribution of this report. Our overall training
scheme can be found in Figure 1: Given M pre-trained encoders corresponding
to M modalities we select one encoder f for each stage of training, and use the
other M−1 encoders as oracles to train f . In this report we use M = 3, with the
modalities RGB, optical flow, and audio. With M = 2, this algorithm reduces
to CoCLR [2], and with M = 1, this algorithm reduces further to InfoNCE [1].
Our proposed scheme outlined in Figure 1 has three stages corresponding to the
three modalities, and we summarize a single stage of training in Figure 2.

Similar to the InfoNCE [1] loss, our loss uses cross-entropy to train an en-
coder that encodes positive pairs similarly and encodes all other pairs differently.
The main difference between the single-modality pre-training algorithm and our
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multimodal algorithm is the way we select positive pairs. Rather than providing
only a single positive pair (a1, a2), we select k more positive matches for a1 to
form the positive set P = {a2, ap1

, ap2
, ..., apk

}, as in CoCLR [2].
In order to select these k positive samples, we use the other M −1 encoders,

which we refer to as samplers and whose outputs we concatenate to form an
oracle. We freeze the weights of these samplers; they are only there to mine
positive pairs for the encoder f being trained. When we load in x, which is a
single modality of a video clip, we also load in the other M − 1 modalities of
the same video clip: z1, z2, ..., zM−1. We extract the oracle output o from the
samplers fs1 , fs2 , ..., fsM−1

as follows:

o = concat(fs1(A(z1)), fs2(A(z2)), ..., fsM−1
(A(zM−1))) (3)

where A(zi) is a random augmentation of zi, specific to the modality of zi. This
process of deriving o is outlined in the upper right of Figure 2. We then similarly
compute the oracle output oi corresponding to every other sample xi ∈ D. Of
all the pairs (o, oi), we then find the k pairs with the highest similarity scores;
that is, we find the k clips in the dataset that the oracle encodes most similarly
to our current clip. The process of selecting positive pairs using multiple oracles
is our main contribution over CoCLR [2].

The loss for our input xi is the same as CoCLR [2]:

LCoCLR = −log[
∑

xp∈P exp(f(a1) · f(ap)/τ)∑
xp∈P exp(f(a1) · f(ap)/τ) +

∑
xn∈N exp(f(a1) · f(an)/τ)

]

(4)
This is also a softmax cross-entropy classification loss, except instead of

only one correct ”label” for the encoder to classify, there are now k + 1 correct
”labels”. The encoder trains to represent ai similarly to the way it represents
the k + 1 samples in P and differently to the way it represents the samples in
N .

We modify this loss to incorporate momentum contrast [3]. As illustrated
in Figure 2, in addition to the queue B to store past encoder outputs, we also
maintain a queue O to store past oracle outputs. To derive our positive set P,
instead of searching through the entire dataset D for the k samples with the
most similar oracle output, we can approximate the result by searching through
O. In addition to avoiding to re-compute many oracle outputs on every step,
this has the added benefit of speeding up the top-k search. The loss function
now becomes:

LCoCLR with MoCo = −log[
∑

xp∈P exp(fq(a1) · fk(ap)/τ)∑
xp∈P exp(fq(a1) · fk(ap)/τ) +

∑
b∈B exp(fq(a1) · b/τ)

]

(5)
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Figure 2: A single timestep of our entire multimodal contrastive learning algo-
rithm for a single stage. We use Momentum Contrast [3] along with the CoCLR
loss [2]. In our paper, M = 3, so there are two other modalities z1 and z2,
and two corresponding encoders fs1 and fs2. The entire algorithm described is
computed in batches in order to speed up computation.8



After the completion of one such stage, a different modality is selected and
the next stage begins. The queues are cleared, and the recently trained encoder
fq becomes one of the frozen samplers to make up the next oracle.

5 Experimental Setup

5.1 Modality Extraction

For unsupervised learning, we use the Kinetics-400 dataset [18]. Kinetics is
an action classification dataset, consisting of 400 action classes and 306,245
videos. Each sample in the dataset corresponds to a roughly 10 second YouTube
video of someone performing a labelled action. Kinetics has become a standard
benchmark for video learning tasks, and because of its immense size and variety
is commonly used by unsupervised video learning projects to pre-train their
models. Then, a different action classification dataset, UCF101 [19], is used for
the supervised evaluation of the unsupervised model.

Since we use Kinetics simply as a giant repository of unlabelled videos, we
discard the labels given in the dataset. We then clean the data by removing all
videos with silent audio, and all videos that are not exactly 300 frames long;
since the videos are recorded at 30 frames per second, this is 10 seconds of video.
This left us with 202,331 remaining video clips.

After downloading the data from YouTube, we extract the three modalities
we are using: rgb, optical flow and audio. 300 RGB frames are extracted from
each video and re-sized to 128 by 128. Optical flow is computed on these
frames using the denseflow library [20], which calls the OpenCV-CUDA GPU
implementation of Zach et al.’s TVL1 dense optical flow algorithm [21]. For
each pair of consecutive RGB frames, this algorithm yields flow in the x and
y-directions, which is placed into the first and second channels of a 3-channel
128 by 128 image. This is the same technique used by CoCLR [2]: making
the RGB and optical flow modalities share the same shape greatly simplifies
the implementation of the resulting model, since the representation learner’s
backbone architecture and augmentation pipeline can be shared between the
two modalities.

Audio is handled separately, since it contains fewer spatial dimensions than
the other two modalities we work with. We start by extracting a mel-scaled
spectrogram using librosa [22]. This is a representation of the audio in which
the vertical axis corresponds to different frequencies, with low frequencies on
the bottom to high frequencies on top, and the horizontal axis corresponds
to time. The spectrogram is computed such that the vertical axis consists
of 128 frequencies and scaled horizontally such that 128 pixels corresponds to
one second. We then amplify the raw amplitude signal provided by converting
the spectrogram’s units from power to decibels, and save the spectrograms as
greyscale images, setting all of the channels of the image to be equal. This
allows us to use an out-of-the-box image classification backbone for our audio
data.
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5.2 Data Preparation

All of the data is packed into the Lightning Memory-Mapped Database (lmdb)
format [23]: a serialized binary format designed to improve access speed for
very large datasets. Without this, we would have to read in 2 × batch size ×
frames per clip JPEG images for each each gradient step for RGB alone. This
number of disk accesses proved prohibitively slow, with each batch taking a few
minutes to get from disk. By using lmdb [23] we are able to greatly speed up the
I/O portion of computation, allowing us to train our model on the full cleaned
dataset of more than 200,000 video clips.

Figure 3: The augmentation types used on the three modalities in each sample:
RGB frames, optical flow frames, and an audio spectrogram

5.3 Data Augmentations

In contrastive unsupervised representation learning algorithms such as InfoNCE
[1] and SimCLR [5], the choice of data augmentation is crucial. Unlike in super-
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vised tasks where data augmentation is an add-on to make models more robust,
in contrastive learning, augmentations are an essential part of the learning pro-
cess. In the absence of labels, the model is trained to recognize two inputs as
different augmentations of the same clip. Without augmentations that accu-
rately simulate the transformations and noise present in real data, the model
will not be able to learn the essential features of its training data effectively.

We first perform temporal augmentation. At each iteration of the dataloader,
we load the three pre-computed modalities of a video: RGB frames, optical flow,
and audio. However, instead of simply sampling, augmenting, and returning a
one-second clip from the video, it randomly samples two one-second clips, each
from different parts of the same ten second video. The second of these clips is
effectively a temporal augmentation of the first; it is the first clip shifted in time.
Training the encoder to produce the same output invariant of this augmentation
means different parts of the same video should yield the same representation.
This temporal augmentation is performed half of the time; the other half of the
time the same clip is duplicated and returned, corresponding to no temporal
augmentation.

After selecting two clips, spatial transformations are performed as shown in
Figure 3. We use the same spatial augmentations for RGB and optical flow as
CoCLR [2]. Every clip is randomly cropped and resized back to 128× 128, and
there is a 50% chance of a horizontal flip. Then, there is a 30% chance that the
sample is subjected to additional augmentations: the sample is color-jittered,
which randomly modifies the clip in saturation, contrast, brightness, and hue,
Gaussian-blurred, and turned greyscale 20% of the time.

The audio portion of the two clips returned from temporal augmentation
is augmented using SpecAugment [24], a data augmentation system designed
specifically for audio. First, a time-warp is applied; the spectrogram is ran-
domly perturbed in the time axis using a dense image warp. Then, time and
frequency masking are applied, corresponding to a vertical and a horizontal
band of the spectrogram being randomly replaced with the mean value of the
spectrogram. Figure 4 shows some samples of the augmentations applied on the
three modalities we work with.
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Figure 4: Examples of randomly selected and augmented samples. Many of the
optical flow frames appear plain grey or very nearly grey; this corresponds to
videos with little to no movement during the sampled second.

In the end, our dataset output at each step consists of six elements: three
modalities from each of the two clips sampled from each video. The RGB
and flow each have shape (batch size, 30, 3, 128, 128), and the audio has shape
(batch size, 1, 128, 128). This scheme helps maximize the amount of information
provided to the model from each video clip.

5.4 Network Architectures

The model is set up in PyTorch, making use of the torch.distributed module to
train data across multiple GPUs. For the RGB and Flow networks, we use the
S3D network architecture [25] as the backbone. This was chosen because S3D is
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noted to be specifically well-suited to both RGB and Optical Flow inputs; likely
because of this versatility, CoCLR [2] gets their best results using S3D. For the
audio network, we use Resnet-18 [26], because it remains a simple, fast, and
effective network architecture for image-based tasks. Ultimately, the choice of
backbone is not the focus of this report, since the contrastive learning algorithm
we describe is agnostic of the backbone used. Both the 3D and 2D backbones
can be easily swapped out as more effective network architectures emerge.

5.5 Training Implementation

We first pre-train three single-modality unsupervised models using InfoNCE [1]:
one on RGB data, one on audio data, and one on optical flow data. We train
each of these encoders for 200 epochs on Kinetics-400.

In order to evaluate the effectiveness of our multimodal training scheme, we
then train a contrastive learning model using all three of these modalities. We
train this model for two cycles each of 3 stages each, with each stage being 200
epochs - every modality encoder was trained using the other encoders as the
oracle for a total of 400 epochs. We set k = 5; that is, the oracle selects the
top 5 most similar samples from its queue of past outputs. Both queues in our
algorithm are 16,384 elements long. We determine this length and all our other
hyperparameters empirically; while smaller sized queues result in faster training
time, they also result in worse models since the oracle might not be able to find
similar samples in a smaller queue.

This model was trained using an Azure compute instances, with Tesla V100
GPU, 110GB of RAM, an Intel Xeon E5-2690 CPU and a 1TB disk. The
limiting factor in this was disk usage, as the data preparation process constantly
ran into the 1TB limit. For our three-modality model, one training iteration
took roughly 3 days, each 3-iteration stage took around 9 days, and the full two
stages we ran took around 3 weeks to train.

6 Results

We evaluate our unsupervised training method by evaluating our trained model
on two supervised tasks. The first is action classification, in which our model
is further trained on the UCF101 action classification dataset [19], and then
evaluated against the UCF101 test set. The second is clip retrieval, in which the
model retrieves the top N clips with the most similar encoder output to a given
test clip, and we evaluate whether any of the retrieved clips share the same class
as the test clip. Though all three modalities are used in the training process,
the effectiveness of our approach is evaluated using only the encoder dedicated
to RGB. Through our cooperative learning method, our RGB encoder is able
to infer information about audio and optical flow despite only being supplied
RGB data during supervised evaluation.
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6.1 Evaluation on Action Classification

We evaluate our model in the same way as past work on this topic [2] [6]: we
fine-tune and evaluate our RGB encoder on the supervised action classification
task UCF101 [19]. UCF101 consists of around 13,000 clips labelled in 101 dif-
ferent action classes, and is mostly a visual-only dataset; the lack of consistent
audio present in most of its clips is the main reason we chose to perform our
unsupervised training on Kinetics.

We train our supervised classification models in two ways:

1. Full training: no weights are frozen, and our encoder is trained end-to-end.

2. Linear probe: The entire encoder’s weights are frozen except for a final
fully connected layer.

In both evaluation approaches, we compare against approaches evaluated
using K400 training for a more fair comparison with our model, since training
using larger datasets will naturally result in improved classification accuracy.
For instance, Elo [14], which is trained with YouTube8M, reaches a 93.8% ac-
curacy, outperforming our model by 4.4%.

UCF101 Classification Accuracy after Full Training
Modality

Model Date Training Dataset RGB Flow Audio Top-1 Test Acc
InfoNCE [1] 2018 K400 ✓ 79.5
CBT [27] 2019 K400 ✓ 79.5
SpeedNet [28] 2020 K400 ✓ 81.1
XDC [15] 2020 K400 ✓ ✓ 84.2
CMA [6] 2021 K400 ✓ ✓ 87.5
CoCLR [2] 2021 K400 ✓ ✓ 87.9
TCLR [29] 2022 K400 ✓ ✓ 88.2
STS [30] 2021 K400 ✓ 89.0
GDT [31] 2021 K400 ✓ ✓ 89.3
RSPNet [7] 2021 K400 ✓ 93.7
Ours 2022 K400 ✓ ✓ ✓ 89.4

Table 1: Test accuracy after full training - the unsupervised model serves as
weight initialization. State-of-the art accuracy is provided for reference.

In the first method, our unsupervised algorithm on Kinetics serves to ini-
tialize weights for our supervised training on UCF101. Since the entire model
can be trained end-to-end using the supervised data, this provides the highest
classification accuracy. Our model is compared against the state-of-the-art in
Table 1, where we see that in full training, our model outperforms InfoNCE [1],
which uses only RGB, by 9.9%, and CoCLR [2], which uses RGB and optical
flow, by 1.5%. Our model also outperforms the models using only RGB and
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audio, XDC [15] and CMA [6], by 5.2% and 1.9% respectively, although neither
of them use the alternating-oracle method used by our model and CoCLR.

RSPNet [7], which trains its model to recognize the relative speeds at which
clips are played, is able to outperform our model using only RGB data by
running its model for 1,000 epochs. Our model might be able to build on the
results of RSPNet in the future by incorporating different speeds of clips as a
temporal augmentation, and by using RSPNet instead of InfoNCE [1] as a more
effective pre-training method.

UCF101 Classification Accuracy after Linear Probe
Modality

Model Date Dataset RGB Flow Audio Top-1 Test Acc
CBT [27] 2019 K400 ✓ 54.0
MemDPC [32] 2020 K400 ✓ 54.1
CoCLR [2] 2021 K400 ✓ ✓ 74.5
Ours 2022 K400 ✓ ✓ ✓ 76.5

Table 2: Test accuracy after linear probe - the unsupervised model’s weights
are frozen, except for a single fully connected layer as the end. State-of-the-art
accuracy is provided for reference.

In Table 2, using the linear probe, our RGB encoder is truly acting as an
encoder: our frozen RGB encoder encodes UCF101 clips as feature vectors and
these feature vectors are used to train a single linear layer. This method of
evaluation is less common, but provides better insight on the state of the un-
supervised model before the introduction of labelled data. In Table 2, using
the linear probe, our model outperforms CoCLR [2] by 2%. Thus, our improve-
ment over CoCLR’s results shows that audio information can be incorporated
successfully into a contrastive learning framework.

6.2 Evaluation on Retrieval

6.2.1 Quantitative Retrieval Results

We also evaluate unsupervised representation learners on the task of video re-
trieval. In this task, no supervised fine-tuning is done; the model being tested
is trained purely using unsupervised data. Similar to classification, only the
RGB encoder is used; the other encoders only serve to train the RGB encoder.
First, for every sample in both the train and test splits of UCF101, we use the
RGB encoder being evaluating to extract a feature vector representation of that
sample. Then, for each feature vector from the test set, we look for the k vectors
from the training set with the highest cosine similarity. In effect, we ask our
model to retrieve the k most similar clips in the train set to each test clip. We
evaluate this retrieval by computing the recall R@k: the fraction of clips in the
test set for which at least one of the k clips retrieved by our model is of the
same action class as the test clip.
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UCF101 Nearest-Neighbor Retrieval Recall
Modality Retrieval Recall

Model Date Dataset RGB Flow Audio R@1 R@5 R@10 R@20
SpeedNet [28] 2020 K400 ✓ 13.0 28.1 37.5 49.5
MemDPC [32] 2020 K400 ✓ 20.2 40.4 52.4 64.7
STS [30] 2021 K400 ✓ 38.3 59.9 68.9 77.2
CoCLR [2] 2021 K400 ✓ ✓ 44.5 60.6 68.4 77.0
Ours 2022 K400 ✓ ✓ ✓ 45.9 64.1 70.8 77.0
InfoNCE [2] 2018 UCF ✓ 36.0 52.0 61.8 71.0
CoCLR [2] 2021 UCF ✓ ✓ 53.3 69.4 76.6 82.0

Table 3: Recall on the task of UCF101 nearest-neighbors retrieval. The state-
of-the-art is provided for reference.

In Table 3, we find that our model outperforms the state-of-the-art models
in UCF101 retrieval with the exception of CoCLR [2]. This is due to the fact
that CoCLR’s reported retrieval in the last row of Table 3 is evaluated on
UCF101 after pre-training with UCF101, unlike our model, which pre-trains on
Kinetics-400.

In order for an apples-to-apples comparison with CoCLR to evaluate the
contribution of audio information to our training scheme, we also ran UCF101
retrieval on CoCLR pre-trained on Kinetics-400. As expected, incorporating
audio into our contrastive learning framework shows a 1.4% improvement in
R@1 retrieval, a 3.5% improvement in R@5 retrieval, and a 2.4% improvement
in R@10 retrieval performance.

6.2.2 Qualitative Retrieval Results

In Figure 5, we show two examples of how our RGB augmentations result in
successful retrieval on UCF101 video clips. Though the clips in the both rows
are oriented differently and are different colors, the random flips and color jitter
applied as data augmentations enables the RGB encoder to recognize the videos
as the same activity. Our model and CoCLR [2] yield similar results for these
test clips, since both approaches use RGB augmentations in the same way to
train their encoders.

In Figure 6, we show two examples of how incorporating optical flow affects
retrieval results. In the top row, we can see that the model has learned to
identify biking and horse riding as similar activities due to the similar motion in
the videos, despite the differing backgrounds. Likewise, the clips in the bottom
row all share a swinging motion despite the variety of activities. Both our model
and CoCLR [2] again yield similar results, since both models use optical flow in
their approaches.

In Figure 7, we show two examples of how incorporating audio information
improves retrieval results, which is the main contribution of this report. In
the top row, videos containing music are linked with one another, even if the
scene and the motions within them are completely different. This is because
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music is easily identifiable on a spectrogram: notes and their harmonics show
up as sharp, regularly spaced horizontal lines. In the second row, clips of drums
and punches are retrieved together because of their similar percussive sounds.
Here, there is a noticeable difference between our results and that of CoCLR
[2]. Since CoCLR is never supplied audio data, it has not learned to associate
clips containing music or percussive sounds with one another, and so it returns
classes that are unrelated to the test clip.

Figure 5: Qualitative effects of incorporating RGB information on UCF101
retrieval results. Our triple modality model is compared against CoCLR [2],
both pre-trained on Kinetics-400.
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Figure 6: Qualitative effects of incorporating optical flow information on
UCF101 retrieval results. Our triple modality model is compared against Co-
CLR [2], both pre-trained on Kinetics-400.

Figure 7: Qualitative effects of incorporating audio information on UCF101
retrieval results. Our triple modality model is compared against CoCLR [2],
both pre-trained on Kinetics-400.
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7 Conclusions and Future Work

Our approach extends the existing idea of cooperative contrastive video learning
from unlabelled video data [2] to incorporate three modalities. We train a
model using RGB, optical flow, and audio, and evaluate its performance against
existing contrastive learning frameworks with fewer modalities to determine
whether incorporating additional modalities using our scheme is effective. We
train these models on Kinetics-400 and evaluate them on UCF101, using the
tasks of action classification and nearest-neighbors retrieval. We found that
in both tasks, our triple-modality model outperformed the contrastive learning
models with fewer modalities and compared favorably to the state-of-the-art.
Further improvements could be found in simply running our training scheme for
more cycles, or by trying out other recent backbone architectures like SlowFast
[33]. Our training scheme can be easily extended to other modalities such as
text: one could add a fourth encoder with an NLP backbone if subtitles or
narration were available for video clips.

19



References

[1] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding, 2018.

[2] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-supervised co-training
for video representation learning, 2021.

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Mo-
mentum contrast for unsupervised visual representation learning, 2019.

[4] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense
contrastive learning for self-supervised visual pre-training, 2021.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations, 2020.

[6] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-visual instance
discrimination with cross-modal agreement, 2021.

[7] Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei
Wen, Mingkui Tan, and Chuang Gan. Rspnet: Relative speed perception
for unsupervised video representation learning, 2021.

[8] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng
Wang, Serge Belongie, and Yin Cui. Spatiotemporal contrastive video rep-
resentation learning, 2021.

[9] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Video-
moco: Contrastive video representation learning with temporally adversar-
ial examples, 2021.

[10] Simon Jenni and Hailin Jin. Time-equivariant contrastive video represen-
tation learning, 2021.

[11] Nadine Behrmann, Juergen Gall, and Mehdi Noroozi. Unsupervised video
representation learning by bidirectional feature prediction, 2020.
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