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Abstract

Cognitive analyses of machine learning systems

by

Erin Marie Grant

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Machine learning systems are increasingly a part of human lives, and so it is increas-
ingly important to understand the similarities and differences between human intelli-
gence and machine intelligence. However, as machine learning systems are applied to
more complex problem settings, understanding them becomes more challenging, and
their performance, correctness, and reliability become increasingly difficult to guarantee.
Moreover, "human-level performance" in such settings is often itself not well-defined,
as many of the cognitive mechanisms underlying human behavior remain opaque. This
dissertation bridges gaps in our understanding of human and machine intelligence using
cross-disciplinary insights from cognitive science and machine learning.

First, I develop two frameworks that borrow methodologically from cognitive science
to identify deviations in the expected behavior of machine learning systems. Second,
I forge a connection between a classical approach to building computational models
of human cognition, hierarchical modeling, and a recent technique for small-sample
learning in machine learning, meta-learning. I use this connection to develop algorithmic
improvements to machine learning systems on established benchmarks and in new settings
that highlight their inability to come close to human standards. Finally, I argue that
machine learning should borrow methodologically from cognitive science, as both are
now tasked with studying opaque learning and decision-making systems. I use this
perspective to construct a computational model of machine learning systems that allows
us to formalize and test hypotheses about how these systems operate.
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Machine learning has the potential to revolutionize scientific and application do-
mains alike. However, current machine learning systems—primarily built of deep neural
networks (LeCun, Bengio, et al. 2015)—are unpredictable and uninterpretable, posing
challenges for designing reliable systems and deriving robust scientific insights (D’Amour
et al. 2020; Kapoor and Narayanan 2022). The cause for this dilemma is that we lack design
principles to provide guarantees on the relevant behavior of machine learning systems.
Though progress has been made in theory and practice to identify and ameliorate cases
of unexpected behaviors, this progress in many cases relies on simplifying assumptions—
such as narrowing the model class, or assuming a particular structure of data—and as
such cannot provide prescriptions in naturalistic settings. Indeed, the downstream con-
sequences of a change in design—for example, tweaking an architecture or changing the
value of a hyperparameter—are often not known prior to the deployment of the system
itself.

Where do we go from here? We must first contend with the fact that a single set of
principles governing machine learning systems is unlikely to exist—indeed, the result of a
data-dependent, iterative optimization procedure like those used to train neural networks
is unlikely to be describable in a simple mathematical form, and explanatory gaps have
already been identified for promising frameworks (Arora et al. 2019; Razin and Cohen
2020; Nagarajan and Kolter 2019; Dziugaite et al. 2020). However, this does not leave us
at a loss—instead of despairing of the lack of a single unified theory, we can find hope in
the multiplicity of ways in which we could study machine learning systems in order to
make these systems more reliable wherever they are used.

In this dissertation, I take that opportunity and revisit a discipline classically connected
to artificial intelligence and machine learning—the study of human cognition. The earliest
visions of artificial intelligence were motivated as a way to recreate human capacities for
thinking and reasoning (Turing 1950), and the precursors of modern deep neural networks,
connectionist models, were motivated as explicit models of cognitive processes (Hinton
and Anderson 1981; Rumelhart and McClelland 1986; Rumelhart, McClelland, Group,
et al. 1986). Even the image classification benchmark that can be seen as the catalyst to this
era of explosive interest in deep learning, the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC, Deng et al. 2009), is underlain by a conceptual organization of the
human lexicon (Miller 1995; Fellbaum 1998), and so is fundamentally tied to human
cognition. Within the disciplinary connections between cognitive science and machine
learning, I focus on two aspects that are particularly relevant in understanding the present
era of large-scale machine learning systems: the question of what should be studied of
these systems and the question of how to go about doing so. Before doing so, in the next
section, I introduce the notion of inductive bias, which allows us to make reference to
mechanisms governing the behavior of machine learning systems even if we may not be
able to exactly and precisely describe how they operate. In addition, in a later section, I
introduce hierarchical models, which allow us to formalize the acquisition or automatic
discovery of inductive bias.
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Inductive bias

As machine learning systems are applied beyond idealized research environments and
benchmarks, where ground-truth datasets are easy to gather and the correctness of a
behavior is easy to evaluate, to high-stakes decision-making in medicine, finance, and
policing, failure cases become more evident. The fundamental link between many of these
failure cases is the problem of underdetermination—that is, the insufficiency of data alone to
provide evidence for any particular solution. In the simplest terms, there are, in almost all
problems of interest in machine learning, a multitude of mechanisms or decision rules
that a learner could posit that are consistent with observed data, but nonetheless produce
different behaviors on unseen data.

The underdetermination problem has been fundamental to the understanding of in-
telligence as long as intelligence has been studied: Plato (editor, 1976) wondered how an
uneducated boy could be taught geometric principles. Russell (1948) wondered: “How
comes it that human beings, whose contacts with the world are brief and personal and
limited, are nevertheless able to know as much as they do know?” Chomsky (1980) consid-
ers the “poverty of the stimulus” in the acquisition of grammatical structure and lexical
items by an abstract learner. Mitchell (1980) was the first to call out underdetermination
in the context of machine learning by highlighting the inability of a statistical learner to
generalize without additional information—termed inductive bias—that guides decisions
on unseen data. Inductive bias also includes design choices that implicitly affect extrapola-
tion behavior without the explicit intent of the system designer. This setting more closely
characterizes the situation of modern machine learning systems, for which any and all
components could give rise to implicit effects on extrapolation behavior. Indeed, many
components have been shown to produce systematic effects on generalization, including
model architecture (Golubeva et al. 2020), parameter initialization procedures (Mehta
et al. 2020), gradient-based optimization (Smith, Dherin, et al. 2021), and overparametriza-
tion (Neyshabur, Li, et al. 2019).

Inductive bias is thus a catch-all term for everything that is consequential for a learner’s
extrapolation behavior—behavior on unseen data—including explicit constraints, regu-
larizers, or prior distributions in the case of Bayesian models, and this notion allows us
to speak concretely about what it is that makes learning systems behave differently in
extrapolation regimes, even though they may make the same decisions on observed data.
This notion will be foundational for the cognitive analyses developed in this dissertation.

Phenomena in machine learning systems: What should we analyze?

Until now, this description has assumed that the relevant extrapolation behavior is clear.
While in some settings, it is obvious what notions of extrapolation to guarantee—for exam-
ple, studies of robustness often make specific distributional assumptions to test (Hendrycks,
Basart, et al. 2021)—in general, there is no way to determine a priori what extrapolation
behavior is relevant for a scientific or applied machine learning use case. Indeed, though
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there has been no end of interest in out-of-distribution generalization, there can be no
notion of what it means to be out-of-distribution or extrapolation without assumptions (Le
Lan and Dinh 2021; Ye et al. 2021; Adebayo et al. 2022).

How do we identify salient extrapolation behaviors of a given system? Many tasks to
which we apply machine learning systems are tasks that humans solve or that involve
interaction with humans. Consequently, in many cases, we would like to understand
deviations of these systems from human-like behavior. The first part of this dissertation,
Part I, contributes behavioral evaluation protocols that investigate such deviations. The
key contribution in these sections is to identify a hallmark of how a system solves a given
problem that is more nuanced than a summary statistic such as accuracy by appealing to a
human standard in which particular modes of behavior have already been characterized. In
both case studies, comparing the behavior of machine learning systems to these standards
requires work on the side of evaluation—that is, conceptualizing a phenomenon of interest,
and defining a protocol to measure it.

Chapter 2 studies theory of mind in a language model termed a “memory network” that
can solve reasoning tasks. We propose a new set of tasks to demonstrate that question-
answering models fail in social reasoning scenarios. Humans find these tasks easy, and
cognitive scientists have attested that this is because humans possess an inductive bias
known as “theory of mind,” the propensity to model the latent mental states of other
agents—for example, their desires, beliefs, or intentions. In this chapter, we introduce a
model design that explicitly simulates the mental representations of different participants
in a narrative reasoning task, demonstrating that this simulated component is sufficient
for good performance.

Chapter 3 relates the memorization-systematicity trade-off in neural networks to a
classical perspective on category learning models, the trade-off between rule- and exemplar-
based generalization. A characteristic of neural networks that reliably deviates from human
learning is their tendency to memorize datapoints instead of learning systematic predic-
tors (Lake and Baroni 2018a). This chapter demonstrates such failures of systematicity
in a study of combinatorial generalization using formulations of rule- and exemplar-
based generalization appropriate for general category learning models, including neural
networks. This formulation reveals that, contrary to the simple maxim of “more data
is better,” exposure to new feature values can worsen systematic generalization to new
combinations involving these features. This finding contradicts the common intuition that
more coverage in training data necessarily leads to better generalization performance, and
has implications for the incautious use of neural networks in data settings that have this
partial exposure structure.

Hierarchical models

As described above, Part I of this dissertation introduces behavioral protocols to examine
specific extrapolation behaviors in machine learning systems. In Part II, I introduce the
framework of hierarchical models in order to be able to reason about inductive bias by
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making reference to explicit inductive bias in the form of a parameterized prior distribu-
tion. We will see in Part III of this dissertation that this allows us to respond to a problem
left open in the previous section—rather than investigating specific inductive biases in
machine learning models by constructing independent behavioral protocols, is there a way
to more systematically investigate them, and perhaps even discover them from data?

The acquisition of abstract knowledge can be formalized via a hierarchical or multilevel
model. Hierarchical models exist in a variety of frameworks, but hierarchical Bayesian
models bring the benefits of working within the framework of probabilistic models, in-
cluding an explicit declaration of the assumed prior knowledge in the form of the prior
distribution and the distributional parameterizations. To formalize how people acquire
domain-general, abstract knowledge, hierarchical Bayesian models can describe how indi-
vidual learning experiences can be consolidated into domain-general knowledge in the
process of learning to solve a variety of individual problems. Machine learning systems
enact an analogous capability—meta-learning—as the solution to a two-stage learning
problem in which a system learns to solve a set of independent tasks from the limited
experience available for each task, then consolidates this experience in the form of general
principles for learning to solve any new task (Thrun and Pratt 1998). Meta-learning can be
implemented in a framework compatible with modern pattern recognition systems as the
estimation of a common parameter initialization of a set of models that are independently
adapted to different tasks (Vinyals et al. 2016; Ravi and Larochelle 2017; Finn, Abbeel,
et al. 2017). The key idea is that the initialization shared among task-specific models
serves as a useful domain-general bias for solving the kinds of tasks that each learner may
be faced with, thereby increasing learning efficiency to be closer to the level of a human
learner rather than a learner with no prior knowledge.

Despite the algorithmic similarities between these concepts—hierarchical Bayesian
modeling in cognitive science and meta-learning in machine learning–it was not known
how to relate two methodologies at a level that would be prescriptively useful to either
machine learning or cognitive science. Chapter 4 provides this connection by showing
how a formalism for expressing the solution to inference problems about domain-general
knowledge—posed in the language of hierarchical Bayesian models—as a multi-level
optimization problem—which can be solved with the tools from meta-learning in machine
learning. A key feature of the meta-learning approach is that it provides a framework
to investigate constraints on learning simply on the basis of the observable outcomes of
learning; these constraints can be interpreted via tailored analysis datasets.

Chapter 5 solidifies the connection between meta-learning and hierarchical Bayes
by revisiting a classical study in computational models of cognition—how taxonomic
structure influences concept generalization. Human concept learning is surprisingly
robust, allowing for precise generalizations given only a few positive examples. Bayesian
formulations that account for this behavior require elaborate, pre-specified priors, leaving
much of the learning process unexplained. More recent models of concept learning
bootstrap from deep representations, but the deep neural networks are themselves trained
using millions of positive and negative examples. In machine learning, recent progress in
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meta-learning has provided large-scale learning algorithms that can learn new concepts
from a few examples, but these approaches still assume access to implicit negative evidence.
In this chapter, we formulate a training paradigm that allows a meta-learning algorithm to
solve a problem of concept learning from few positive examples. The algorithm discovers
a taxonomic prior useful for learning novel concepts even from held-out supercategories
and mimics human generalization behavior–the first to do so without hand-specified
domain knowledge or negative examples of a novel concept.

Chapter 6 uses the connection between meta-learning and hierarchical Bayes to imple-
ment the latent cause inference model of Gershman, Blei, and Niv (2010). This probabilistic
meta-learner explicitly modulates the amount of transfer between tasks, as well as to
adapt its parameter dimensionality when the underlying task distribution evolves. We
formulate this as probabilistic inference in a mixture model that defines a clustering of
task-specific parameters. and the connection between gradient-based meta-learning and
hierarchical Bayes from Part II allows scalable approximate maximum a posteriori (MAP)
inference in both a finite and an infinite mixture model. This chapter is a first step towards
more realistic settings of diverse task distributions, and crucially, task-agnostic continual
learning, and is also an example of a model that leverages insights from cognitive science
in order to propose improvements in the learning efficiency of machine learning systems.

Explanations of machine learning systems: How should we analyze them?

Prior work on implicit inductive biases in modern machine learning systems focuses on
the effect of well-understood constraints, such as the use of architectures that impose
invariances to particular properties of data or on regularizers that confer a simplicity
bias (e.g., Golubeva et al. 2020; Mehta et al. 2020; Smith, Dherin, et al. 2021; Neyshabur,
Li, et al. 2019). However, it is difficult to analyze the interaction of all the design decisions
that make up a machine learning system, some of which may or may not contribute to
inductive bias specification. Moreover, the behavioral approach I advocated for in Part I
allows us to probe the existence or degree of specific inductive biases, but does not allow
us to investigate inductive biases in all generality.

In the last part of this dissertation, I make use of the connection between hierarchical
models and meta-learning to argue for a computational modeling approach to the study of
machine learning systems. Computational models of cognition are tools of analysis that
allow cognitive scientists to formalize and test hypotheses about how the human mind
represents and processes information. Here, I argue analogous computational models can
also be used to investigate the internal mechanisms of machine learning systems and, by
doing so, allow us to investigate implicit inductive biases.

Using this framing, Part III approaches the problem of characterizing inductive biases
as a hierarchical modeling problem in which the extrapolation behavior of a population of
machine learning systems—rather than details of their internal workings—is viewed as
evidence of a systematic inductive bias. The hierarchical modeling framing allows us to
learn a representation of the inductive bias implicit in a design specification of machine



CHAPTER 1. INTRODUCTION 7

learning systems that can be analyzed in order to probe the content of this inductive bias.
Chapter 7 implements this computational modeling framing by learning a representation
of the inductive biases consistent with the observed behavior of a particular family of
neural network models. The neural networks in this family share in design choices (for
example, the architecture, training procedure, and random initialization scheme) but
differ in quantities that are randomized prior to or during training. The machine learning
methodology we employed to represent inductive biases, Gaussian processes, allows
us to reveal systematic structure—including a preference for low-frequency signal and
pathological behavior with depth—in the inductive bias underlying this particular family
of neural networks. In two further practical case studies, we use the computational model
to predict the generalization properties of neural networks.
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Part I

Behavioral studies of neural networks
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Chapter 2

Theory of mind and the false belief task

The work described in this chapter is published as Erin Grant, Aida Nematzadeh, and Thomas L. Griffiths
(2017). “How can memory-augmented neural networks pass a false-belief task?” In: Proceedings of the
Annual Meeting of the Cognitive Science Society, pp. 427–432.
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2.1 Introduction

Question answering poses difficulties to artificial intelligence systems because correctly
answering a query often requires sophisticated reasoning and language understanding
capacities, and so simply memorizing the answer or searching in a knowledge base is not
enough. Despite this challenge, recent neural network models that make use of attention
mechanisms in combination with an explicit external memory can successfully answer
questions that require more complex forms of reasoning than before (e.g., Sukhbaatar
et al. 2015; Henaff et al. 2017). The benchmark dataset for such tasks has become the
Facebook bAbi dataset (henceforth, bAbi) (Weston et al. 2016), which is a collection of
question-answering tasks in the form of simple narrative episodes—termed stories—that
are accompanied by questions about the state of the world described in the stories. (See
Fig. 2.1 for an example story from this dataset.)

Although bAbi is a start towards enumerating the requirements for human-like reason-
ing capabilities, it lacks tasks for testing the ability to reason about mental states, which
is also necessary for correctly answering questions of the sort that humans encounter
regularly. Consider the following:

Sally and Ann are in the kitchen.
Sally placed the milk in the pantry.
Sally exited the kitchen.
Ann moved the milk to the fridge.

For a model to correctly answer questions such as Where would Sally/Ann search for the
milk? it need not only recognize that Sally and Ann have mental representations of the
state of the world but also that these representations are inconsistent: Sally believes that
the milk is in the pantry while Ann thinks it is in the fridge.

Psychologists have used a task similar to this scenario—termed the false-belief task—to
examine children’s development of theory of mind: the capacity to reason about the mental
states of oneself and others (Premack and Woodruff 1978). Most 3-year-old children,
after observing such a scenario, answer that Sally would search for the milk in the fridge
because they cannot infer Sally’s belief about the location of the milk, which is inconsistent
with their own knowledge (e.g., Baron-Cohen 1989; Baron-Cohen et al. 1985). However,
most older children are able to identify, correctly, that Sally’s belief is different from theirs
in that she thinks that the milk is the pantry.

To answer questions about situations like those that occur in a false-belief task, a model
needs to use the observed actions in the scenario to infer the mental states of Sally and
Ann. In this work, we investigate whether the End-to-End Memory Network (henceforth
MemN2N), a recent neural question-answering model (Sukhbaatar et al. 2015) that solves
most of the bAbi tasks, is able to answer questions of the same structure as a false-belief task.
We formulate scenarios to capture different possible causal relations among actions and
beliefs, and examine the performance of the model therein. We find that the MemN2N
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model performs well only in the presence of strong supervision—when the training and
test data share the same casual structure. This result suggests that the model is able to
memorize the training data but is unable to learn to reason about mental states and how
they cause and are caused by actions.

Furthermore, to simulate the (perhaps inconsistent) beliefs of the participants in a
story, we extend the MemN2N model to include a separate memory representation for
each participant. We show that this extension improves model performance, suggesting
that explicitly modeling agents’ knowledge in a disentangled manner is in part sufficient
for more human-like reasoning on a false-belief task.

2.2 Theory of mind and the false-belief task

A theory of mind is integral for an agent to predict and explain the behavior that is caused
by the mental representations of other agents, and therefore succeed on tasks such as
the false-belief task. For children, this capacity is acquired gradually over the course of
development. In particular, children undergo several milestones before they develop an
adult-like theory of mind: By age two, they can distinguish between external states of the
world and internal mental states possessed by cognitive agents (e.g., Meltzoff et al. 1999).
By age four, they can distinguish between consistent and inconsistent mental states (e.g.,
Perner et al. 1987), which allows them to identify a false belief.

Previous computational works havemodeled human performance on the false-belief task.
Some focus on modeling the development of theory of mind by instantiating a model that
initially fails but eventually passes the false-belief test (Van Overwalle 2010), while others
study the settings in which a model can succeed on the task by varying the input data or
the model architecture (O’Laughlin and Thagard 2000; Triona et al. 2002; Goodman et al.
2006). However, none of these models use natural language sentences, despite the fact
that the psychological false-belief task is usually administered verbally in the form of a
natural language reasoning problem.

Furthermore, natural language is known to interact with the development of theory
of mind. For example, use of mental state terms in child-directed speech (e.g., Slaughter
and Gopnik 1996), engagement in pretend play (Youngblade and Dunn 1995), storybook
reading (Rosnay and Hughes 2006), and reflection on events in the child’s past (Nelson
2007) serve to accelerate its developments, while, in turn, a greater grasp of theory of
mind leads to increased linguistic ability (Milligan et al. 2007). In this work, we examine
whether a model can learn from natural language about the causal relationship between
actions and beliefs, in order to be able to answer questions that require reasoning about
mental states.
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Mary got the milk there.

John moved to the bedroom.

Sandra went back to the kitchen.

Mary traveled to the hallway.

Q: Where is the milk? A: hallway

Figure 2.1: An example task from the bAbi dataset.

2.3 Memory networks

The MemN2N model of Sukhbaatar et al. (2015) comprises an external memory cache and
mechanisms to read and write to this memory. The model is trained to write a sequence of
stories into its external memory and to answer questions about the stories by reading its
memory and emitting the correct vocabulary item. At test time, the model is evaluated by
the extent to which it can correctly answer questions about a held-out set of test stories.

Formally, the model ingests a sequence of input sentences (x1, . . . ,xn) and produces,
for each input item xi , both a memory representation mi and a context representation ci ,
which are stored in memory. The model is then presented with a question qk about the
story, for which it produces an internal representation uk. To answer the question, the
model computes a normalized association score pik between the question representation
and each of its stored memory representations:

pik =
exp

{

uT
kmi

}

∑

j exp
{

uT
kmj

} . (2.1)

This weight can be interpreted as an attention mechanism that defines where in memory
the model will look for information relevant to the given question.

The model then produces an output representation by way of a linear combination of
its context representations, weighted by the attention computed in Eq. (2.1):

ok =
∑

i

pikci . (2.2)

The output representation is combined with the query representation and decoded by
some function f to produce the predicted answer â:

â = f (ok +uk). (2.3)

Learning model parameters at training time is done by way of stochastic gradient
descent in cross entropy error.
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BA AB A(B)A

TB

Anne moved the milk to the fridge. Sally placed the milk in the pantry. Sally placed the milk in the pantry.

Sally believes the milk is in the fridge. Anne moved the milk to the fridge. Anne moved the milk to the fridge.

Q: Where did Sally search for the milk? Q: Where does Sally believe the milk is? Q: Where did Sally search for the milk?

A: fridge A: fridge A: fridge

FB

Sally believes the milk is in the pantry. Sally placed the milk in the pantry. Sally placed the milk in the pantry.

Sally exited the kitchen. Sally exited the kitchen. Sally exited the kitchen.

Anne moved the milk to the fridge. Anne moved the milk to the fridge. Anne moved the milk to the fridge.

Sally entered the kitchen. Sally entered the kitchen. Sally entered the kitchen.

Q: Where did Sally search for the milk? Q: Where does Sally believe the milk is? Q: Where did Sally search for the milk?

A: pantry A: pantry A: pantry

Figure 2.2: Examples of the training data, with the predicates of interest underlined. Note that
the true-belief (TB) and false-belief (FB) test tasks are of the same form as the top and bottom items,
respectively, in the last column.

2.4 Simulation 1: MemN2Nmodel

We evaluate themodel introduced in the previous section on a set of novel textual reasoning
tasks inspired by the false-belief task. Our tasks take the form of a sequence of natural
language sentences—termed a story—and an associated question about the story.

Since we aim to create tasks that, for humans to solve, involve reasoning about other
agents’ beliefs, we design various story templates that simulate how different actions give
rise to different beliefs, and conversely how different beliefs result in different actions.
These stories differ in whether or not the agent who is the subject of the question has
observed a change in the state of the world (i.e., the agent has a true belief), or has not (i.e.,
has a false belief). The stories further differ in whether the belief is observable (i.e., the
story explicitly contains sentences such as Sally believes the milk is in the pantry) or whether
only actions are observable. When the agent harbors a false belief, and the model is asked
to predict the action of the agent without explicit reference to the beliefs of the agent in
the story, we recover a simulation of the classic false-belief task.

With this experimental design, we aim to determine whether the MemN2N model can
reason about how actions cause beliefs and vice versa, and how much information needs
to be revealed to enable the model to succeed.

Data generation

To generate stories and corresponding questions, we emulate the bAbi (Weston et al. 2016)
dataset generation procedure. We define a world of entities, which are the people and
objects described in the stories, and possible predicates that take entities as subject and,
optionally, object. Each entity has properties that define the predicates of which it can be
subject or object. For example, a world may contain Sally with the property is agent and
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apple with the property is object. Our rules permit Sally to perform the action displace on
the apple.

In this work, we consider a restricted set of action and belief predicates. Our actions
define simple interactions of an agent with the world (e.g., place, move, enter, exit) and our
beliefs correspond to mental state terms (e.g., believe, think), inspired by the terms that
children gradually learn to understand and use correctly over the course of development
(e.g., Bretherton and Beeghly 1982; Johnson and Wellman 1980). Our templates manip-
ulate the order of action and belief predicates to test how the model reasons about the
causal relations between them.

Experimental conditions

Story template. We define a set of templates that correspond to the type of story that
we wish to generate. Each template fixes a sequence of predicates and therefore puts
constraints on the entities that may fill the template. For example, a template could be the
sequence (drop, pick up, exit). Completion of the template entails sampling valid entities
from the world to fill the subject and object positions of the predicates, producing, for
example, the story (Sally dropped the ball, Sally picked up the ball, Sally exited the room).

We consider three different template types:

• BA: observable beliefs (e.g., Sally believes the milk is in the pantry) give rise to observ-
able actions (e.g., Sally searches the pantry);

• AB: observable actions (e.g., Sally places the milk in the pantry) give rise to observable
beliefs (e.g., Sally believes milk is in the pantry); and

• A(B)A: observable actions (e.g., Sally places the milk in the pantry) give rise to observ-
able actions (e.g., Sally searches the pantry) by way of unobserved beliefs (e.g., Sally
believes the milk is in the pantry).

Note that the AB and A(B)A conditions are different in that in AB, the question explicitly
asks about Sally’s belief; in A(B)A, on the other hand, the question is about Sally’s action,
which has been brought about by Sally’s unobserved belief.

True vs. false belief. In addition to the type of template, for each story we manipulate
whether the agent about whom the question is asked (i.e., Sally) has a true belief or a false
belief about the state of the world. In the case that the agent has a true belief, the agent
observes all changes in the state of the world and thus their beliefs are consistent with the
world. On the other hand, in the case that the agent has a false belief, the agent does not
observe one or more changes in the state of the world (because, for instance, Sally may exit
the room), and thus has a belief that is inconsistent with the world.
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Training conditions. We have six possible story types as a results of crossing the template
types with the true and false belief story types; examples of each of the story types are
given in Fig. 2.2. We sample from these story types to produce our training conditions, in
the following manner:

• When the training condition is such that p(false belief) = 0 or 1, we sample only
stories with true beliefs or false beliefs, respectively, and when p(false belief) = 0.5,
we sample half of our stories with true beliefs and half with false beliefs.

• We sample stories from five different possible groups of templates: BA, AB, AB+BA,
A(B)Aand AB+BA+A(B)A.

The AB+BA and AB+BA+A(B)A conditions provide the model with training data that
better approximates the variety of possible scenarios in the world. In these cases, the
model observes more ways in which actions and beliefs interact, and thus we would expect
it to be able to better generalize to new scenarios. Moreover, AB+BA provides the model
with the opportunity to learn transitive inference—given that an action (e.g., placing milk
in the pantry) results in a belief (e.g., the milk is in the pantry), and a belief (e.g., the milk
is in the pantry) can cause an action (e.g., searching for milk in the pantry), a model that
reasons about actions and beliefs could learn that an action (e.g., searching for milk in the
pantry) is a consequence of an unobservable belief brought about by a preceding action
(e.g., placing milk in the pantry).

Crossing template typesBA,AB,A(B)A,AB+BA,AB+BA+A(B)Awith p(false belief) =
{0.0, 0.5, 1.0} produces our 15 training conditions. We run 10 simulations for each training
condition and for each configuration of parameter settings of the MemN2N model.*

Test conditions. We aim to evaluate the model on tasks that require reasoning about
latent mental states, in analogy to the classic false-belief task; however, such a capacity
should apply not only in cases when an agent has a belief that is inconsistent with the
state of the world (i.e., a false belief) but also when they have a true belief about the
world. We therefore consider two test conditions: a true-belief (TB) and a false-belief (FB)
task. All examples in both of these test conditions share the A(B)A template type, but the

*We vary the dimensionality of the memory and word embedding, the number of computational hops (accesses
to the memory cache to answer a single question), the number of training and testing examples (1000 vs.
10000), and the size of the world from which the dataset of stories is generated (5 vs. 10 vs. 30 entities per
entity type, which correspond to the objects, container, etc. in the story). Furthermore, we use the adjacent
weight tying scheme as described in Sukhbaatar et al. (2015), an initial learning rate of 0.01, and initialize
all weight matrices by sampling from a zero-centered normal distribution with a standard deviation of 0.1.
As we found no effect of the number of training and testing examples nor of the world size, we collapse
all results across these variables. Increasing the embedding size and the number of computational hops
increases test accuracy in all conditions (likely due to increased model capacity), and increasing the memory
size decreases performance in all conditions (likely because the model must search over more memories to
retrieve an answer). However, the qualitative effects we report in this chapter are preserved, so we also
collapse results across these variables as well.
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Figure 2.3: Accuracy in Simulation 1. Test accuracies for the true-belief (TB) and false-belief (FB)
tests across training conditions in Simulation 1. We report results for p(false belief) = 0.5, since
varying this parameter did not affect results except in the few cases discussed in the text.
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Figure 2.4: Accuracy in Simulation 2. Test accuracies for the true-belief (TB) and false-belief (FB)
tests across training conditions in Simulation 2. As in Fig. 2.3, we report results only for p(false
belief) = 0.5.

conditions differ in that the true-belief task contains only examples with true beliefs (i.e.,
p(false belief) = 0), and the false-belief task contains only false belief examples (i.e., p(false
belief) = 1).

Results

As noted by Sukhbaatar et al. (2015), the MemN2N model exhibits large variance in
performance across simulations, and so we show performance by plotting the distribution
of test accuracies in boxplot format. In Fig. 2.3, we report accuracy on both test conditions
(the true-belief (TB) and false-belief (FB) tasks) across the training conditions, for p(false
belief) = 0.5. The results for p(false belief) ∈ {0,1} were similar except in the case of the AB
story template; we compare this case with the BA condition in Fig. 2.5 and discuss in the
following. Note that success at test time corresponds to achieving 1.0 accuracy in both the
TB and FB test conditions.

Training condition BA: Beliefs to actions. The model fails on the TB task in the BA
training condition, while succeeding on the FB task. This is true no matter the value
of p(false belief) (as depicted in Fig. 2.5). To understand why this occurs, consider the
following example of a BA training story when the false belief occurs:

Sally believes the milk is in the pantry. Sally exited the kitchen. Anne moved the milk to the
fridge. Sally entered the kitchen.
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Additionally, consider the BA training story when the false belief does not occur:

Anne moved the milk to the fridge. Sally believes the milk is in the fridge.

To answer the training question Where did Sally search for the milk? the model seems to
learn that it should look for the sentence containing Sally and a container entity (i.e., Sally
believes the milk is in the fridge).

This strategy works for the false-belief test (see Fig. 2.2, last column, bottom row),
because Sally believes that the milk is in the pantry—the location in which she originally
placed it—and thus the sentence containing Sally and the identity of a container always
proviedes the correct answer. However, this strategy fails on the true-belief test (again, see
Fig. 2.2, last column, top row), because Sally observes that the milk has been moved, and
so no longer believes that the milk is in fridge. This suggests that the model is unable to
infer that an observable action changes the mental state of Sally.

Training condition AB: Actions to beliefs. The model is unable to achieve good perfor-
mance on both the TB and FB tests in the AB condition. When the model performs better,
it is in cases where the test is very similar to the training condition, i.e., the false-belief test
with p(false belief) = 1 in training and true-belief test with p(false belief) = 0 in training.

Training condition AB+BA: Transitive inference. The model fails on both test tasks in
the AB+BA training condition. This is evidence that the model cannot reason about the
causal relationships between actions and beliefs to perform transitive inference.

Training condition A(B)A: Equivalent to TB/FB test. The model achieves best perfor-
mance on A(B)A in the p(false belief) = 0.5 condition. This again happens because the
test and training conditions are similar: the model observes examples of both the FB and
TB test tasks in training, and thus receives supervision to give the correct answer at test.
However, the model performs well only on the TB task in the p(false belief) = 0, and on
the FB task in the p(false belief) = 1 condition. This is because the model does not observe
examples like one or the other test condition at training time.

Notably, the performance is not high even in the p(false belief) = 0.5 condition (the
median is approximately 55% on both test tasks), despite the fact that the model is given
test-like examples at training time. It is therefore not clear that the model is robustly able
to solve a conditional reasoning task in which the correct answer is dependent on whether
or not the observer sees the movement of the object and thus has a false or true belief.
This, along with the model’s failure in the other training scenarios, motivates an extension
to the model, which we consider in the next section.
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(c) p(false belief) = 1 in training.

Figure 2.5: From Simulation 1. The test accuracy in the AB condition is dependent on the value
of p(false belief), but not in the BA condition.

2.5 Simulation 2: Multiple-observer model

We now propose a model that is given information about whether each agent in the story
observes each sentence in the story. In general, this must also be inferred from context,
but here we assume such annotations are available to the model as we simply attempt to
investigate the effect of this information on the model’s predictions.

Formally, for a story of N input items that describes a situation with M agents, we
provide the model with an N -by-(M +1) observer annotation matrix S such that Sij = 1 if
input item xi is observable to agent j and 0 otherwise, where we assign the oracle observer
(who observes all input items) to the first index. These annotations are used to mask the
input such that M +1 (possibly different) stories are produced, each of which corresponds
to the story that a particular agent observes. Memory representations, attention over each
memory cache, and output representations are computed separately for each observer,
and so M +1 output representations are computed, each corresponding to the output of a
distinct observer’s memory.

The model then computes an attention weighting over each of the observer memory
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Figure 2.6: Attention in Simuation 2. Visualisation of the attention weighting over memory
caches for the true-belief (TB) and false-belief (FB) tests. We omit the visualization for the BA+AB
and BA+AB+A(B)A training conditions because the test accuracy distribution in Simulation 2 for
these conditions is very similar to the A(B)A training condition (see Fig. 2.4).

caches (c.f., Eq. (2.1)):
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} . (2.4)

This attention over memory caches is used to compute a weighted combination of the
output representations that correspond to the memory cache for each agent (c.f., Eq. (2.3)):

â = f (uk +
∑

ℓ

rkℓokℓ). (2.5)

Note that the model considered in Simulation 1 is exactly this model extension with rk0 = 1
and rkm = 0,∀m , 0 (i.e., attention is given only to the oracle memory cache).

In this extension, the model is given explicit information about which observations in
a story are available to each agent, by way of the annotation matrix S. However, it must
learn to reason about this information in order to arrive at the correct answer, as before
with how to write to memory and read from memory, and now with how to select over
which observer’s knowledge of the story is relevant to answer the question.

Results

We report results of the model extension on the TB and FB tests in Fig. 2.4, as well as
a visualization of the attention weights in Fig. 2.6. Our simulated data is composed of
scenarios with only two agents, and therefore the extended model attends over three
memory caches (one for the oracle that observes everything, one for Anne, and one for
Sally, about whom the question is asked).

The extended model achieves higher accuracy across all training conditions. No-
tably, the model performs near perfectly (i.e., both TB and FB are close to 1) in the
AB+BA+A(B)A case, meaning that the model can learn to ignore irrelevant training stim-
uli. This suggests that awareness of agent’s knowledge about the state of the world helps
in a task of reasoning about latent mental states.
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Furthermore, the attention plots show that the model learns to attend to the memory
representation of Sally in the FB test, which contains the information about how to answer
questions about Sally’s actions and beliefs. On the other hand, in the TB test, the model
does not attend differently to the different memory caches, because the observations stored
in all caches are the same.

2.6 Conclusions

We investigated whether a recent language learning model that succeeds on a suite of
textual reasoning tasks is able to succeed in a task that requires reasoning about latent
mental states. We found that the model is unable to succeed in a set of simulated true-
belief and false-belief tasks unless it has observed at training time situations that have the
same structure as the test tasks, even if the diversity of the data is increased. This strongly
suggests that the model is not reasoning about the state of the world, nor about mental
representations thereof, but is simply memorizing its input. As a consequence, the model
will not be able to succeed in a task of reasoning that differs greatly from the situations that
it has observed at training time. This is in contrast to the novelty of situations that people
encounter regularly, in which they must reason about the causal relationship between
events in the world and latent mental states.

However, incorporating a simple mechanism that informs the model that there may
be multiple observers with differing representations of the story allows the model to
achieve higher performance on the simulated false-belief and true-belief tasks. Under this
modification, the model does not simply memorize the training data but also learns to use
knowledge that agents have (perhaps conflicting) observations about the story in order to
answer the question. We could interpret this as analogous to the development of theory
of mind in that, when a child is able to reason about others’ knowledge of and beliefs
about the world, the child succeeds on tests of theory of mind such as the false-belief task.
A further direction of research could investigate whether manipulating variables in the
training data (e.g., frequency of mental state terms) affects the model’s performance in a
manner similar to how a child’s developmental trajectory would be affected.
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Chapter 3

Rule- and exemplar-based generalization

The work described in this chapter is published as Ishita Dasgupta*, Erin Grant*, and Thomas L Griffiths
(2022). “Distinguishing rule-and exemplar-based generalization in learning systems”. In: Proceedings of the
International Conference on Machine Learning.
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3.1 Introduction

Extrapolation or generalization—decisions on unseen datapoints—is always underde-
termined by data; which particular extrapolation behavior a machine learning system
exhibits is determined by its inductive biases (Mitchell 1980). When those inductive biases
are opaque—as is often the case with many modern machine learning systems (Geirhos,
Jacobsen, et al. 2020; D’Amour et al. 2020)—we can instead turn to empirical investigation
of the behavior of a system to reveal the system’s implicit inductive biases. Cognitive psy-
chology provides a rich basis for experimental designs to study the often-opaque human
cognitive system via its external behavior; these designs can be leveraged to distinguish
between competing hypotheses about a machine learning system’s inductive biases as
well (e.g., Ritter, Barrett, et al. 2017; Lake, Ullman, et al. 2018; Dasgupta et al. 2020).

We draw on cognitive psychology to construct a protocol that isolates the inductive
biases determining how a machine learning system generalizes feature-based categories
such as those in Fig. 3.1. A key property of such categorization problems is the presence
of a distractor dimension that does not play a causal role in the underlying category
boundary; the ground truth categorization is determined by a discriminant dimension.
Such problems are ubiquitous in machine learning applications (e.g., Beery et al. 2018),
where learned associations between the distractor and the categorization label are termed
“spurious” (Arjovsky et al. 2019). The tendency to acquire (potentially harmful) spurious
associations is an example of a downstream consequence of implicit inductive bias, and so
characterizing such implicit inductive biases is of both theoretical and practical interest.

We use abstract problem settings such as that in Fig. 3.1 to identify and isolate two
distinct inductive biases underlying feature-based category learning. The first, feature-level
bias, expresses a preference for some features over others to support a decision boundary
(e.g., preferring shape over color). The second, exemplar bias—vs. rule bias—expresses a
preference for feature-dense (vs. feature-sparse) decision boundaries (e.g., a boundary
informed by both shape and color, vs. only one of the two features). Our protocol presents
data conditions that manipulate feature co-occurrences observed during training such that
the resulting extrapolation behavior is diagnostic of these inductive biases in the learner.

The experimental setup underlying our training and testing conditions is similar to
existing works in “combinatorial generalization” (Andreas et al. 2016; Johnson, Hariharan,
et al. 2017) and “subgroup fairness” (Sagawa, Koh, et al. 2020; Sagawa, Raghunathan,

training examples extrapolation

“dax” “fep” ?

Figure 3.1: Example of a data condition: Data often underdetermines a decision boundary; here,
it is unclear whether shape or color determines object label (“dax” vs “fep”). How a learner
extrapolates to new stimuli reveals inductive bias.
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et al. 2020). Our work also makes several independent contributions: We identify and
isolate two distinct inductive biases that affect extrapolation of feature-based categories,
and we examine these across models in an expository points-in-a-plane setting, as well
as in more naturalistic text and image domains. We demonstrate that existing measures
of feature co-occurrence and extrapolation behavior (“spurious correlation” and “worst-
group accuracy,” Sagawa, Raghunathan, et al. 2020) are insufficient to characterize these
inductive biases. Finally, we consider the normative question: What extrapolation behavior
is desirable for a given application? We provide a preliminary answer by discussing the
relevance of the inductive biases we identify to related work in systematic generalization,
fairness, and data augmentation.

3.2 Inductive biases in category learning

We start by introducing the two inductive biases of interest. Feature-level bias character-
izes which feature a system finds easier or harder to learn and thus which feature a system
will utilize when both are associated with the category label. This kind of feature-level bias
has been studied extensively in human cognition (Landau et al. 1988; Hudson Kam and
Newport 2005), and specific feature-level biases—mostly notably the “shape-bias,” the
tendency to generalize image category labels according to shape rather than according to
color or texture—have been revisited in the context of recent neural network models (Rit-
ter, Barrett, et al. 2017; Hermann et al. 2020; Geirhos, Rubisch, et al. 2019). We examine
feature-level bias for arbitrary features, as well as demonstrate how this bias interacts
with—but is distinct from—another kind of inductive bias, to be discussed next.

Exemplar (or rule) bias characterizes how a system uses features to inform decisions
by trading off exemplar- and rule-based generalization. A rule-based decision is made on the
basis of minimal features that support the category boundary (e.g., Ashby and Townsend
1986), while an exemplar-based decision-maker generalizes on the basis of similarity to
category exemplars (e.g., Shepard and Chang 1963), invoking many or all features that
underlie a category. Extensive empirical work in cognitive psychology has found evidence
of both kinds of generalization in humans (Nosofsky et al. 1989; Rips 1989; Allen and
Brooks 1991; Smith and Sloman 1994). This trade-off can be understood as a continuum
that varies the number of features employed to discriminate between categories (Pothos
2005).

Feature-level bias and exemplar bias are practically relevant because they describe
how a learning system uses features to extrapolate, and different problem settings call for
different ways of doing so. An exemplar-based system that depends on all features, and is
not invariant to any of them, suffers when not all feature combinations are observed and
systematic generalization to unobserved combinations is expected (Lake, Ullman, et al.
2018; Marcus 2018; Arjovsky et al. 2019). On the other hand, a rule-based system that
applies the same category decision rules across all data regions might over-generalize,
which is undesirable in naturally occurring long-tailed distributions (Feldman and Zhang



CHAPTER 3. RULE- AND EXEMPLAR-BASED GENERALIZATION 24

observations ratio of predictions

condition training examples extrapolation humans rule-based exemplar-based
(shape-biased) (no feature bias) (no feature bias)

cue
conflict

“dax” “fep” ?

“dax”“fep” “dax”“fep” “dax”“fep”

zero
shot

“dax” “fep” ?

“dax”“fep” “dax”“fep” “dax”“fep”

partial
exposure

“dax” “fep” “fep” ?

“dax”“fep” “dax”“fep” “dax”“fep”

Figure 3.2: Illustrative category learning experiment: Training examples from the 3 indepen-
dent training conditions, the extrapolation test, and characteristic behavior for learners with dif-
ferent inductive biases. We formalize the training conditions in Fig. 3.3.

2020; Feldman 2020; Brown et al. 2021). Diagnosing exemplar vs. rule bias is therefore
of both theoretical and practical interest. In Section 3.6, we give a concrete example in
a fairness setting—where certain regions of the data support is underrepresented but
we want comparable accuracy on these regions nonetheless—in which understanding
the inductive biases of the learning system allows for a data intervention that improves
performance.

We now build intuitions for how the category learning paradigm in Fig. 3.2 isolates
feature-level bias and exemplar bias. The stimuli Fig. 3.2 vary along two feature dimen-
sions, shape and color. Color determines the label of an object (i.e., green objects are
“dax”; purple are “fep”, using arbitrary names to emphasize that the category is novel to
humans as well as to machine learning systems). Shape is unrelated to the underlying
category structure and acts as a distractor. Participants (either humans or artificial learn-
ing systems) are independently placed in three different conditions—cue conflict, zero
shot, or partial exposure—that vary in coverage of the feature space. After observing the
training examples, the participant is presented with an extrapolation test consisting of an
example outside the support of feature combinations observed during training (i.e., they
must classify the green circle as a “dax” or a “fep”). We explain below how differences
in classification behavior on this extrapolation test isolate feature-level bias as well as
exemplar-vs-rule bias, but first: We encourage the reader to try the experiment themselves
to examine their intuitions.

Cue conflict (CC, top row, Fig. 3.2). The data presented in this condition confound
color and shape (i.e., color and shape are equally predictive of the category boundary).
How a system generalizes here directly measures its feature-level bias towards color or
shape.
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Characteristic behavior (right half of Fig. 3.2). Since humans have an established shape
bias (Landau et al. 1988), we expect that humans will classify the test item according to the
object that shares its shape, not its color; in this case, as a “fep.” However, this inductive
bias is independent of whether a reasoner is rule- or exemplar-based; neither has an a
priori propensity for features, both are equally likely to classify the test item as a “dax” or
a “fep.”

Zero shot (ZS, middle row, Fig. 3.2). This condition requires extrapolation to a new fea-
ture value “zero-shot” (i.e., without prior exposure). This setting is often used to examine
out-of-domain (OOD) and compositional generalization in machine learning (Xian et al.
2018). Behavior in this condition reveals whether the model has learned the discriminating
features and whether it can extrapolate to new feature values, and thus acts as a baseline.

Characteristic behavior (right half, Fig. 3.2). Rule- and exemplar-based behavior in
this condition is confounded. A rule-based learner infers the minimal rule that color
determines label, does not assign any predictive value to shape, and therefore classifies the
extrapolation stimulus based on color as a “dax.” An exemplar-based learner categorizes
based on the similarity along all feature dimensions of the extrapolation stimulus to
category exemplars. Neither training exemplars have any overlap with the test stimulus
along the shape dimension, but the “dax” overlaps along the color dimension, and the
learner categorizes it as a “dax.”

Partial exposure (PE, bottom row, Fig. 3.2). Compared to zero shot, participants in this
condition also receive “partial exposure” to a new feature value (i.e., circle) along the shape
dimension. The extrapolation test in this condition is most similar to combinatorial zero-shot
generalization (e.g., Lake and Baroni 2018a), where the learner is exposed independently
to all feature values but has to generalize to a new combination.

Characteristic behavior (right half of Fig. 3.2). This setting meaningfully distinguishes
rule- and exemplar-based generalization. To understand this distinction, we contrast
this condition to the cue-conflict condition. The addition of the purple diamond-shaped
“fep” means the learner has seen both a diamond and a circle labeled “fep”. A rule-based
system takes this as direct evidence that shape is not predictive of category label and
classifies the extrapolation stimulus on the basis of color as a “dax.” This is typically also
how humans extrapolate. This additional training example, however, does not impact
an exemplar-based system, since it does not share any features with the extrapolation
stimulus. The exemplar-based reasoner classifies on the basis of feature-overlap with
training exemplars and is therefore indifferent, exactly as in the cue-conflict condition.

3.3 A protocol for measuring inductive bias

We embed the structure of the category learning problem discussed in Section 3.2 into a
statistical learning problem that can be applied across domains to test black-box learners.

Problem setting. We consider the oracle compositional setting of Andreas (2019) in
which inputs are a composition of categorical attributes with two latent binary features,
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Figure 3.3: Formalizing the illustrative experiment: The experiment from Fig. 3.2 expressed in
terms of the formalism in Section 3.3 with color as zdist and shape as zdisc. Background colors
indicate the true category.

zdisc,zdist,∈ {0,1} that jointly determine the observation x ∈ X ⊂ R
d via some mapping

g : {0,1}2→X ; see Fig. 3.3. We consider the binary classification task of fitting a model
ˆf : X → {0,1} from a given model family F to predict a class for each observation. One of
the underlying features, the discriminant, zdisc, defines the decision boundary; the other
one, the distractor, zdist, is not independently predictive of the label.

This specifies a generative process x,zdisc,zdist ∼ p(x | zdisc,zdist) p(zdisc,zdist). p(x |
zdisc,zdist) is either generated (e.g., in Section 3.4), or the empirical distribution of the
subset of datapoints x with the corresponding underlying feature values (assuming access
to these annotations, e.g., in Sections 3.5 and 3.6). p(zdisc,zdist) is varied across training
conditions, as outlined below.

Training conditions. The upper-right quadrant in all subfigures of Fig. 3.3, for which
p(zdisc = 1,zdist = 1) = 1, acts as a hold-out set on which we can evaluate generalization
to an unseen combination of attribute values. We produce multiple training conditions
with the remaining three quadrants of data by manipulating p(zdisc,zdist). All the analyses
in this work compare model extrapolation to the held-out test quadrant across various
training conditions.

To equalize the class base rates we balance all training conditions across the discrimi-
nant; i.e., we enforce p(zdisc = 0) = p(zdisc = 1) = 0.5. We also fix the number of datapoints
across all conditions at N ; With these constraints, we can control p(zdisc,zdist) via two
degrees of freedom: π0 = p(zdist = 1 | zdisc = 0) (this implicitly fixes p(zdist = 0 | zdisc =
0) = 1−π0 to balance the dataset); and π1 = p(zdist = 1 | zdisc = 1).The three conditions in
Section 3.2, as well as the held-out test set, correspond to particular settings of π0 and π1
(shown in Fig. 3.3, more in Appendix B.2).

Measuring inductive bias. We measure feature-level bias as deviation from chance
performance in the CC condition. Exemplar bias is measured as the difference between
performance in the partial-exposure condition and zero-shot condition—-no difference
indicates rule-based generalization, the magnitude of the difference measures exemplar



CHAPTER 3. RULE- AND EXEMPLAR-BASED GENERALIZATION 27

0 0.5 1

0

1

π1

π0

Figure 3.4: Spurious correlation (Eq. (3.3)).

bias. Formally, for a given model family F , let gZS denote the result of selecting a model
from F by training in the zero-shot condition, and similarly gPE and gCC. We define FLB
and EvR as:

FLB(F ) = E[(A(y,gCC(x))]− 0.5 , (3.1)

EvR(F ) = E[A(y,gZS(x))]−E[A(y,gPE(x))] (3.2)

where the expectation is taken with respect to the data distribution under the extrapolation
region (p(x, y | π0 = 1,π1 = 1)), and A is the 0-1 accuracy. FLB takes values between -0.5
and 0.5 (indicating bias toward zdist or zdisc, respectively); 0 represents no feature bias.
EvR takes values between 0 and 1 (indicating rule bias and exemplar bias, respectively).

Related formalisms and spurious correlation. This binary formulation of discrim-
inant and distractor features has previously been studied in the context of spurious
correlation (Sagawa, Raghunathan, et al. 2020). Rather than independently varying occu-
pancy in the four quadrants, Sagawa, Raghunathan, et al. (2020) directly manipulate the
(spurious) linear correlation between the distractor and the discriminant features (pmaj ).
In combinatorial feature spaces, a scalar spurious correlation insufficiently specifies the
data distribution. The linear correlation coefficient ρ between zdisc and zdist—henceforth
spurious correlation—can be written in terms of π0 and π1 via α =

π0−π1
2 and β =

π0+π1
2 as

ρ(π0,π1) =
α

√

β(1− β)
. (3.3)

Different combinations of π0 and π1 give equal ρ (see the contours in Fig. 3.4, with mark-
ings for points along the equi-correlation contour from partial exposure (π0 = 0.5,π1 = 0.0,
ρ = 0.58)); while nonetheless producing qualitatively different extrapolation behavior, as
we demonstrate in later sections. This indicates that sensitivity to spurious correlation
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insufficiently specifies extrapolation behavior. We argue for a formulation like ours—based
on manipulating feature combinations—that can tease apart distinct inductive biases at
the level of what features a system finds easier to learn (FLB) as well as how to use these
features to inform a decision boundary (EvR).

3.4 2-D classification example

To illustrate our framework in a simple statistical learning problem and quantitatively
confirm the intuitions outlined in Section 3.2, we consider a two-dimensional classification
problem. The feature dimensions are orthogonal bases in 2D space, and we define the data
generating procedure as

p(x | zdisc,zdist) =N (µ,1.0) ; (3.4)

µ = α × [2zdisc − 1,2zdist − 1] ,

where, as specified in Section 3.3, zdisc,zdist,∈ {0,1}, p(zdisc,zdist) is determined by the
training condition. zdisc determines class labels, zdist is a distractor, α is fixed at 3, and
N = 300 datapoints are in each class. The group with zdist = zdisc = 1 is assigned the test
set.

Model families and nomenclature.

NN: We train feedforward ReLU classifiers with varying numbers of hidden layers and
hidden units. We use the scikit-learn implementation with default parameters, run 20
times for confidence intervals.

Generalized linearmodel (GLM): Parametric models allow us to formalize the feature-
sparsity that characterizes rule-based learners. Linear logistic regression is sparse by
definition (it has access to only linear features). We generalize this model by expanding the
feature space to include a nonlinear interaction Φ and examine L1 and L2 regularization
in a GLM over this altered feature space.

GP: Nonparametric kernel methods allow us to formalize exemplar-based generaliza-
tion, where generalizations are made on the basis of feature-dense similarity to training
data. We examine the performance of GPs with radial basis function (RBF) kernels. We
fit the kernel lengthscale using gradient descent on the log marginal likelihood of the
data (Rasmussen 2003) (giving 5.2) as well as vary it (adjusting “locality” in decision
boundaries); GP:8.0 denotes a GP with lengthscale value of 8.0.

We can implement explicit rule- and exemplar-based models in the synthetic setting
since we know the features over which to build parametric or similarity-based models
respectively, so we use it to validate our measures. In most application domains (including
those in Sections 3.5 and 3.6) feature learning is automated (Hinton and Salakhutdinov
2006), making it difficult to specify the corresponding GLM or GP.
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(a) Decision boundaries averaged across 20
runs. Training datapoints are green or
purple by label; test are white.
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(b) EvR reflects exemplar-vs-rule propensity both
within and across model families. The EvR across
model families, computed across 20 runs, error bars
represent 95% CIs. The GLMs are largely rule-based
and show low EvR. Even within GLMs, sparsity
regularization gives lower EvR. GPs are largely
exemplar-based and show high EvR. Even within
GPs, lower lengthscales give higher EvR. NNs lie
in-between, with larger NNs giving higher EvR.

Figure 3.5: Simple 2-D classification (Section 3.4) The specific model used in (a) are bolded in
(b).

Comparing cue conflict, zero shot, and partial exposure

We consider one model from each class: NN with 1 hidden layer of 2 units (NN:2h1d);
linear GLM (GLM:lin); RBF GP with fitted lengthscale (GP:fit). The decision boundaries
learned by these models are shown in Fig. 3.5a. zdist,zdisc are equivalent by design, and
permit no feature-level bias, so cue conflict is exactly at chance. This lets us focus on
validating our novel protocol for measuring EvR without confounds. We generalize to
cases with feature-level bias in later sections. The GLM, sparse and therefore rule-based
by definition, can only learn a linear boundary. It is therefore unaffected by the distractor
dimension, showing no difference in extrapolation behavior between zero shot and partial
exposure (zero EvR). On the other hand, the GP is exemplar-based by definition and
displays a high EvR. The NN shows an intermediate EvR, more rule-based than the
purely-exemplar-based GP but not entirely rule-based like the GLM.

The influence of model properties on EvR

We first examine EvR in our control model classes (GLMs and GPs) to validate that it
tracks rule- vs exemplar-based extrapolation, followed by analyses of various NNs.

RegularizedGLMs: EvR reduceswith rule propensity. A key property of rule propen-
sity is sparsity in feature space. A linear GLM (GLM:lin) is sparse by definition, we examine
a GLM on an expanded feature set so we can manipulate this sparsity. The additional
feature Φ ∝ zdist ∗ zdisc is the product of the observed features and normalizing by α. We



CHAPTER 3. RULE- AND EXEMPLAR-BASED GENERALIZATION 30

compute EvR for this GLM with different regularizers (regularization weight 1.0), shown
in Fig. 3.5b.

GLM with no regularization (GLM:Φ) displays a significant EvR. L2 regularization
reduces it but L1 (which directly induces feature sparsity*) brings it to zero (or perfectly
rule-based). This demonstrates that a low EvR tracks rule propensity via feature-level
sparsity.

Lengthscales inGPs: EvR increaseswith exemplar propensity. A sufficient condition
for exemplar propensity is the locality of decision boundaries. We can directly manipulate
this in a GPs with its lengthscale. We evaluate EvR in GPs with RBF kernels of different
lengthscales in Fig. 3.5b. We find that the EvR is lowest with high lengthscales and grows
as the lengthscale reduces, demonstrating that a high EvR tracks exemplar propensity via
locality of decision boundaries.

NNs: The necessary but insufficient role of expressivity. The results from GLMs and
GPs indicate that some ways to reduce expressivity (L1 regularization in GLMs and high
lengthscale in RBF GPs) encourage rule propensity over exemplar propensity (thereby a
lower EvR). We manipulate the most common variable in NN expressivity—its size.

We increase the width of an NN with fixed depth of 1 (Fig. 3.5b) and find that the EvR
increases. A deep NN with the same number of units, however, exhibits comparable EvR
to a wide network. Deeper networks with the same number of units are more expressive
than wide ones (Raghu et al. 2017), indicating that excess expressivity, while necessary, is
not the sole driver of EvR.

EvR is distinct from sensitivity to spurious correlation

A crucial difference between the zero shot and the partial exposure conditions is that
the partial exposure condition creates a (spurious) correlation ρ = 0.58 between zdist and
zdisc. Is sensitivity to this spurious correlation (ρ) the sole the driver of the difference
in performances between the partial exposure and zero shot conditions, i.e., of the EvR?
We show that this is not the case; the EvR is measuring something distinct. As described
in Section 3.3, there are multiple data-settings with the same ρ. We consider training
conditions specified by other π0,π1 that have the same ρ as the partial exposure condition
(dots along the solid contour in Fig. 3.4). We find that performance on the extrapolation
quadrant after training on these new data distributions is much higher (and closer to zero
shot performance) than when trained on the partial exposure condition—even though ρ
is exactly the same. This indicates that performance on the partial exposure condition
(normalized by zero shot performance to give the EvR) is uniquely indicative of something
different from sensitivity to spurious correlations—it measures the inductive bias toward
exemplar-vs-rule based extrapolation.

We can reduce ρ in different ways by increasing π1 or by reducing π0. We find that
these are not equivalent and result in different extrapolation behaviors (e.g., increasing π1

*Weight sparsity from L1-regularizer is equivalent to feature-sparsity only in special cases, including GLM.
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Figure 3.6: Example stimuli from the IMDb dataset.

gives more rule-based generalization than reducing π0; see results for the 2-D classification
setting in Appendix B.2 and for the vision domain in Fig. 3.7c). This has implications
for data manipulation methods (e.g., subsampling or augmentation) that manipulate this
ρ to control extrapolation. This further supports that spurious correlation alone cannot
explain extrapolation behavior, highlighting the importance of FLB and EvR that measure
behavior under different feature combinations in training.

Conclusions. EvR tracks exemplar- and rule-based extrapolation, as validated on
interpretable models such as GLMs and GPs. In particular, EvR decreases with reductions
in expressivity mediated by regularization and lengthscale, and, in NNs, also decreases
with (some kinds of) expressivity. Finally, sensitivity to spurious correlation cannot explain
the EvR.

3.5 IMDb text classification

In this section, we demonstrate our protocol on a standard text classification task: senti-
ment analysis on the Internet Movie Database Movie Reviews (IMDb) dataset (Maas et al.
2011).

Selecting features. The sentiment label (“positive” or “negative”) is the discriminant
zdisc. We manufacture an orthogonal distractor zdist as the presence or absence of a word
that occurs in roughly 50% of the sentences in the dataset and does not occur more
frequently for either positive or negative reviews. Some examples are “film” and “you”:
we use the word “film” (see Fig. 3.6).

Models. We train a single-layer long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) model of 20 hidden units on each condition and test on the held-out
quadrant. We exclude models that do not reach 80% validation accuracy.
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(a) Example CelebA
stimuli; we test
six discriminant-
distractor pairs of
six features.
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(b) Main effect, logit scale: Exemplar-vs-
rule propensity (EvR) trends linear
with non-zero intercept (fit in red) in
feature-level bias (FLB).
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(c) Control, logit scale: Performance devi-
ation from ZS under equi-correlation
interpolation is close to zero; linear fit
(red) has intercept at zero.

Figure 3.7: CelebA results. Stimuli and results on various feature pairings from the CelebA
domain (Section 3.6). Error bars represent 95% confidence intervals across ResNets of various
sizes. See figure sub-captions and main text for details.

Feature-level bias. The distractor zdist is easier to learn than the discriminant zdisc, as
reflected in the cue conflict condition (19.7%, FLB = −0.3).

Exemplar bias. We see good performance in zero shot (84%): Despite never having
seen the word “film,” the system can generalize to reviews containing it. The performance
in partial exposure drops significantly (30.1%) giving a large EvR (EvR = 0.54), indicating
exemplar-based reasoning. As such, the exemplar-based tendency to utilize an additional
unnecessary feature (e.g., the presence of the word “film”) hurts performance on the
extrapolation quadrant. Performance in PE is higher than in CC, indicating that the system
can learn to use the discriminant (i.e., it is not purely relying on FLB).

3.6 CelebA image classification

We now test our protocol on a standard classification task on a large-scale image dataset,
CelebFaces Attributes (CelebA) (Liu, Luo, et al. 2015). Each image in this dataset is labeled
with 40 binary attributes, each of which can be assigned discriminant or distractor. We
examine FLB and EvR for standard models across different feature pairs, and discuss the
practical implications of our findings.

Selecting features. We select feature pairs that split the data roughly evenly and thus
maximizing the number of training datapoints in each quadrant. We carry out our analyses
across a range of feature pairs; an example is depicted in Fig. 3.7a, and further details are
in the Appendix.

Models. We train residual neural network (ResNet) (He et al. 2016) models of various
depths ({10,18,34}) and widths ({2,4,8,16,32,64}) on 6 different choices for feature pairs,
with standard hyperparameters (see Appendix B.2 for the complete feature set). We
limit our analyses to networks that achieve at least 75% validation accuracy (on held-out
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samples from its own training distribution) to ensure that, despite differences in data
variability across training conditions, all models learn a meaningful decision boundary.

Feature-level bias. There is a wide range of FLB across feature pairs; e.g., “male” is
easier to learn than “high cheekbones” giving high FLB, and “mouth open” and “wearing
lipstick” are equally difficult and give FLB of close to 0. FLB values for each feature pair
were consistent across ResNet widths and depths.

Exemplar-rule bias. We observe good ZS performance: the models can generalize to
new feature values outside the training support. We see a wide range of EvR across feature
pairs, Fig. 3.7b. Across all feature pairs, the EvR is non-negative: generalization in the PE
condition is always worse (or not significantly better) than in the ZS condition. Further,
we see a linear correlation between EvR and FLB in logit space across feature pairs. EvR
therefore depends on how easy or hard the features are to learn. The key, however, is that
this regression of the EvR onto FLB has a positive intercept: there is a positive EvR even
for feature pairs with no FLB. That is, we see lower performance in PE compared to ZS (a
nonzero EvR, exemplar propensity) even when FLB is controlled for.

We find no differences in EvR across ResNet widths and depths: Fig. 3.7b plots EvR
and FLB averaged over ResNet sizes.† One explanation is that the features in CelebA
are complex; to learn these, we need reasonably high model expressivity, and differences
in parameter count do not further modulate EvR. This is consistent with findings in
Section 3.4 where expressivity is necessary but not sufficient for increases in EvR: we see a
jump in EvR going from NN:2h1d to NN:16h1d, but no further change going to the even
more expressive NN:4h4d.

Controlling spurious correlation. We replicate the findings in Section 3.4: the EvR
cannot be explained by sensitivity to spurious correlation ρ. This is demonstrated in
Fig. 3.7c, where we substitute performance in the PE condition with performance in
a different data condition (π0 = 0.825,π0 = 0.25) with the same ρ = 0.58 as in the PE
condition. We find none of the effects discussed above, indicating that the PE condition
is measuring something unique—exemplar-vs-rule propensity—which is not accounted
for by sensitivity to spurious correlation. Further, EvR does not increase with model
expressivity, unlike sensitivity to spurious correlation (Sagawa, Raghunathan, et al. 2020).

Practical implications of the EvR. The nonzero EvR (i.e., exemplar bias) reveals that
models are better at extrapolating zero-shot to a new feature value than when they have
partial exposure to that feature value even though the additional data need not change the
learned decision boundary. In particular, the training examples added in PE can be classified
with the decision function from ZS without incurring additional training loss. A rule-
based system recognizes this and bases its generalization on the minimal features that
support the category boundary. However, an exemplar-based model changes its decision
boundary in response to this additional data.

PE-approximating data distributions (π0 ≈ 0.5,π1 ≈ 0.0) occur naturally. For example,
as Sagawa, Raghunathan, et al. (2020) observe, “blond” “male”s are under-represented

†We report width-and-depth-specific results in Appendix B.2.
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in CelebA. Consistent with the rest of our results, we find better classification for the
extrapolation quadrant (blond males) if we discard data from an adjacent quadrant (blond
non-males, or non-blond males) simulating the zero-shot condition, as opposed to the
PE condition if such data is included: ResNet10, width 2, gives ZS = 75.12± 3.09%; PE =
60.22±7.27% for zdisc =“male” (discard blond non-males to get ZS) and ZS = 68.16±3.34%;
PE = 49.78± 3.76% for zdisc =“blond” (discard non-blond males to get ZS).

These results demonstrate the practical impact of understanding the exemplar-vs-rule
bias in a model: an exemplar biased model (like the ResNet here) generalizes poorly
in combinatorial settings, and can be made to generalize better by discarding an entire
quadrant of data. Previous sub-sampling approaches (Sagawa, Raghunathan, et al. 2020;
Haixiang et al. 2017) do not manipulate feature combinations and only manipulate spuri-
ous correlations. The aforementioned analyses (Fig. 3.4) and results (Fig. 3.7c) demonstrate
that this underspecifies extrapolation behavior.

3.7 Related work and future directions

Model design for systematic generalization. Rule-based generalization permits system-
atic extrapolation in combinatorial domains. This systematicity has been found lacking in
neural networks (Lake and Baroni 2018b; Barrett et al. 2018), leading to renewed interest
in hybrid symbolic–connectionist methods (e.g., Garnelo and Shanahan 2019). However,
works proposing new methods usually do not examine how feature co-occurrences mod-
ulate the systematicity of extrapolation. Using our protocol to examine exemplar- vs.
rule-based generalization in these models is a promising future direction.

Learning causal features. Rule-based generalization, is equivalent to learning causal
features under the assumption that the causal model is the simplest model that explains the
data. Recent work has investigated data settings that separate causal features from spurious
ones (e.g., Arjovsky et al. 2019).We showed that a model with exemplar propensity makes
more rule-based extrapolations for certain training feature combinations (i.e., zero shot vs.
partial exposure). Investigating how feature coverage impacts causal generalization is a
fruitful future direction.

Similarity-based generalization and kernels. We use similarity-based kernels (e.g.,
radial basis function (RBF)) to exemplify exemplar-based extrapolation. Recent work has
interpreted neural networks as kernel regression (Jacot et al. 2018). Using a kernel framing
to formalize the causes of exemplar bias is an exciting future direction.

Data augmentation. The EvR measure allows us to demonstrate that increased data
variation in the form of feature coverage worsens systematic generalization. The negative
effect of data variation on generalization has been documented for adversarial augmenta-
tions (Raghunathan et al. 2020). We show that this can persist even when augmentation is
not adversarial, rendering it generally relevant for the design of data augmentations.
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3.8 Conclusions

Taking inspiration from—and going beyond—psychological studies, we design a behav-
ioral protocol to distinguish the effects of two inductive biases (feature-level bias and
exemplar bias) that is easily applicable to any classification domain. This follows in a
promising line of recent work that analyses and interprets deep learning systems based on
their external behavior (Ritter, Barrett, et al. 2017; Dasgupta et al. 2020). It complements
other approaches that follow in the neuroscience tradition of analyzing internal represen-
tations (Zeiler and Fergus 2014; Karpathy et al. 2015) or make approximations of these
internal workings to support theoretical results (Jacot et al. 2018; Allen-Zhu et al. 2019).
The behavioral approach has the advantage that it makes no assumptions about the model,
allowing comparisons across systems that differ in design.

Both rule- and exemplar-based extrapolation are valuable depending on domain, un-
derscoring the importance of diagnosing feature-level bias and exemplar bias. Moreover,
studying this trade-off allows us to demonstrate an important phenomenon: We find that
more feature coverage (as in partial exposure compared to zero shot) hurts generalization
for exemplar-based models. This has implications for methods that manipulate data
distributions to improve performance (e.g., data subsampling (Haixiang et al. 2017), data
augmentation (Perez and Wang 2017), and contrastive learning (Chen et al. 2020)). Since
an exemplar-based model tends to acquire spurious associations, our measures have the
potential to be useful as diagnostics in application settings where the goal is to control
model behavior on non-representative factors (e.g., Mitchell et al. 2019).

A limitation of the present work is that we do not provide a conclusive answer as to
what properties of a model family influence both feature-level bias and exemplar bias. A
broader study of these factors and theoretical work formalizing this effect are exciting
avenues for future work.
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Part II

Hierarchical modeling
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Chapter 4

Recasting meta-learning as hierarchical
Bayes

The work described in this chapter is published as Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell,
and Thomas Griffiths (2018). “Recasting gradient-based meta-learning as hierarchical Bayes”. In: Proceedings
of the International Conference on Learning Representations.
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4.1 Introduction

A remarkable aspect of human intelligence is the ability to quickly solve a novel problem
and to be able to do so even in the face of limited experience in a novel domain. Such fast
adaptation is made possible by leveraging prior learning experience in order to improve
the efficiency of later learning. This capacity for meta-learning also has the potential to
enable an artificially intelligent agent to learn more efficiently in situations with little
available data or limited computational resources (Schmidhuber 1987; Bengio, Bengio,
and Cloutier 1991; Naik and Mammone 1992).

In machine learning, meta-learning is formulated as the extraction of domain-general
information that can act as an inductive bias to improve learning efficiency in novel
tasks (Caruana 1998; Thrun and Pratt 1998). This inductive bias has been implemented in
various ways: as learned hyperparameters in a hierarchical Bayesian model that regularize
task-specific parameters (Heskes 1998), as a learned metric space in which to group
neighbors (Bottou and Vapnik 1992), as a trained recurrent neural network that allows
encoding and retrieval of episodic information (Santoro et al. 2016), or as an optimization
algorithm with learned parameters (Schmidhuber 1987; Bengio, Bengio, Cloutier, and
Gecsei 1992).

Themodel-agnostic meta-learning (MAML) algorithm of Finn, Abbeel, et al. (2017) is an
instance of a learned optimization procedure that directly optimizes the standard gradient
descent rule. The algorithm estimates an initial parameter set to be shared among the
task-specific models; the intuition is that gradient descent from the learned initialization
provides a favorable inductive bias for fast adaptation. However, this inductive bias has
been evaluated only empirically in prior work (Finn, Abbeel, et al. 2017).

In this work, we present a novel derivation of and a novel extension to MAML, il-
lustrating that this algorithm can be understood as inference for the parameters of a
prior distribution in a hierarchical Bayesian model. The learned prior allows for quick
adaptation to unseen tasks on the basis of an implicit predictive density over task-specific
parameters. The reinterpretation as hierarchical Bayes gives a principled statistical mo-
tivation for MAML as a meta-learning algorithm, and sheds light on the reasons for its
favorable performance even among methods with significantly more parameters. More
importantly, by casting gradient-based meta-learning within a Bayesian framework, we
are able to improve MAML by taking insights from Bayesian posterior estimation as
novel augmentations to the gradient-based meta-learning procedure. We experimentally
demonstrate that this enables better performance on a few-shot learning benchmark.

4.2 Meta-learning formulation

The goal of a meta-learner is to extract task-general knowledge through the experience of
solving a number of related tasks. By using this learned prior knowledge, the learner has
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the potential to quickly adapt to novel tasks even in the face of limited data or limited
computation time.

Formally, we consider a dataset D that defines a distribution over a family of tasks
T . These tasks share some common structure such that learning to solve a single task
has the potential to aid in solving another. Each task T defines a distribution over data
points x, which we assume in this work to consist of inputs and either regression targets
or classification labels y in a supervised learning problem (although this assumption can
be relaxed to include reinforcement learning problems; e.g., see Finn, Abbeel, et al. 2017).
The objective of the meta-learner is to be able to minimize a task-specific performance
metric associated with any given unseen task from the dataset given even only a small
amount of data from the task; i.e., to be capable of fast adaptation to a novel task.

In the following subsections, we discuss two ways of formulating a solution to the
meta-learning problem: gradient-based hyperparameter optimization and probabilistic
inference in a hierarchical Bayesian model. These approaches were developed orthogonally,
but, in Section 4.3, we draw a novel connection between the two.

Meta-learning as gradient-based hyperparameter optimization

A parametric meta-learner aims to find some shared parameters θ that make it easier
to find the right task-specific parameters φ when faced with a novel task. A variety
of meta-learners that employ gradient methods for task-specific fast adaptation have
been proposed (Andrychowicz et al. 2016; Li and Malik 2017a; Li and Malik 2017b;
Wichrowska et al. 2017). MAML (Finn, Abbeel, et al. 2017) is distinct in that it provides a
gradient-based meta-learning procedure that employs a single additional parameter (the
meta-learning rate) and operates on the same parameter space for both meta-learning and
fast adaptation. These are necessary features for the equivalence we show in Section 4.3.

To address the meta-learning problem, MAML estimates the parameters θ of a set
of models so that when one or a few batch gradient descent steps are taken from the
initialization at θ given a small sample of task data xj1 , . . . ,xjN ∼ pTj (x) each model has
good generalization performance on another sample xjN+1

, . . . ,xjN+M
∼ pTj (x) from the same

task. The MAML objective in a maximum likelihood setting is

L(θ) = 1

J

∑

j









1

M

∑

m

− logp
(

xjN+m
| θ −α∇θ

1

N

∑

n

− logp
(

xjn | θ
)

︸                                 ︷︷                                 ︸

φj

)









(4.1)

where we use φj to denote the updated parameters after taking a single batch gradient
descent step from the initialization at θ with step size α on the negative log-likelihood
associated with the task Tj . Note that since φj is an iterate of a gradient descent procedure
that starts from θ, each φj is of the same dimensionality as θ. We refer to the inner
gradient descent procedure that computes φj as fast adaptation. The computational graph
of MAML is given in Fig. 4.1 (left).
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θ − logp(xjn | θ )

pTj (x)

pD(T )

φj

− logp(xjN+m
| φj ) − logp(X | θ )

∇θ

J

N M θ

xjnφj

N

J

Figure 4.1: (Left) The computational graph of the MAML algorithm covered in Section 4.2.
Straight arrows denote deterministic computations and crooked arrows denote sampling oper-
ations. (Right) The probabilistic graphical model for which MAML provides a parameter estima-
tion procedure as described in Section 4.3. In each figure, plates denote repeated computations
(left) or factorization (right) across independent and identically distributed samples.

Meta-learning as hierarchical Bayesian inference

An alternative way to formulate meta-learning is as a problem of probabilistic infer-
ence in the hierarchical model depicted in Fig. 4.1 (right). In particular, in the case of
meta-learning, each task-specific parameter φj is distinct from but should influence the
estimation of the parameters {φj ′ | j ′ , j } from other tasks. We can capture this intuition by
introducing a meta-level parameter θ on which each task-specific parameter is statistically
dependent. With this formulation, the mutual dependence of the task-specific parameters
φj is realized only through their individual dependence on the meta-level parameters θ.
As such, estimating θ provides a way to constrain the estimation of each of the φj .

Given some data in a multi-task setting, we may estimate θ by integrating out the
task-specific parameters to form the marginal likelihood of the data. Formally, grouping
all of the data from each of the tasks as X and again denoting by xj1 , . . . ,xjN a sample from
task Tj , the marginal likelihood of the observed data is given by

p (X | θ ) =
∏

j

(∫

p
(

xj1 , . . . ,xjN | φj

)

p
(

φj | θ
)

dφj

)

. (4.2)

Maximizing (4.2) as a function of θ gives a point estimate for θ, an instance of a method
known as empirical Bayes (Bernardo and Smith 2006; Gelman et al. 2014) due to its use of
the data to estimate the parameters of the prior distribution.

Hierarchical Bayesian models have a long history of use in both transfer learning and
domain adaptation (e.g., Lawrence and Platt 2004; Yu et al. 2005; Gao et al. 2008; Daumé
III 2009; Wan et al. 2012). However, the formulation of meta-learning as hierarchical
Bayes does not automatically provide an inference procedure, and furthermore, there is
no guarantee that inference is tractable for expressive models with many parameters such
as deep neural networks.
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Algorithm MAML-HB(D)
Initialize θ randomly
while not converged do

Draw J samples T1, . . . ,TJ ∼ pD(T )
Estimate Ex∼pT1 (x)

[− logp(x | θ )], . . . ,Ex∼pTJ (x)
[− logp(x | θ )] using ML-· · ·

Update θ← θ − β ∇θ
∑

j Ex∼pTj (x)
[− logp(x | θ )]

end

Algorithm 4.2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of
the subroutine ML-· · · that we consider are defined in Subroutine 4.3 and Subroutine 4.4.

4.3 Linking gradient-based meta-learning & hierarchical Bayes

In this section, we connect the two independent approaches of Section 4.2 and Section 4.2
by showing that MAML can be understood as empirical Bayes in a hierarchical probabilistic
model. Furthermore, we build on this understanding by showing that a choice of update
rule for the task-specific parameters φj (i.e., a choice of inner-loop optimizer) corresponds
to a choice of prior over task-specific parameters, p(φj | θ ).

Model-agnostic meta-learning as empirical Bayes

In general, when performing empirical Bayes, the marginalization over task-specific
parameters φj in (4.2) is not tractable to compute exactly. To avoid this issue, we can
consider an approximation that makes use of a point estimate φ̂j instead of performing
the integration over φ in (4.2). Using φ̂j as an estimator for each φj , we may write the
negative logarithm of the marginal likelihood as

− logp (X | θ ) ≈
∑

j

[

− logp
(

xjN+1
, . . .xjN+M

| φ̂j

)]

. (4.3)

Setting φ̂j = θ +α∇θ logp(xj1 , . . . ,xjN | θ ) for each j in (4.3) recovers the unscaled form of
the one-step MAML objective in (4.1). This tells us that the MAML objective is equivalent
to a maximization with respect to the meta-level parameters θ of the marginal likelihood
p(X | θ ), where a point estimate for each task-specific parameter φj is computed via one or
a few steps of gradient descent. By taking only a few steps from the initialization at θ, the
point estimate φ̂j trades off minimizing the fast adaptation objective − logp(xj1 , . . . ,xjN | θ )
with staying close in value to the parameter initialization θ.

We can formalize this trade-off by considering the linear regression case. Recall
that the maximum a posteriori (MAP) estimate of φj corresponds to the global mode
of the posterior p(φj | xj1 , . . .xjN ,θ ) ∝ p(xj1 , . . .xjN | φj )p(φj | θ ). In the case of a linear
model, early stopping of an iterative gradient descent procedure to estimate φj is exactly
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Subroutine ML-POINT(θ,T )
Draw N samples x1, . . . ,xN ∼ pT (x)
Initialize φ← θ
for k in 1, . . . ,K do

Update φ← φ +α∇φ logp(x1, . . . ,xN | φ )

end
Draw M samples xN+1, . . . ,xN+M ∼ pT (x)
return − logp(xN+1, . . . ,xN+M | φ )

Subroutine 4.3: Subroutine for computing a point estimate φ̂ using truncated gradient descent
to approximate the marginal negative log likelihood (NLL).

equivalent to MAP estimation of φj under the assumption of a prior that depends on the
number of descent steps as well as the direction in which each step is taken. In particular,
write the input examples as X and the vector of regression targets as y, omit the task index
from φ, and consider the gradient descent update

φ(k) = φ(k−1) −α∇φ
[

‖y−Xφ‖22
]

φ=φ(k−1)

= φ(k−1) −αXT
(

Xφ(k−1) − y
)

(4.4)

for iteration index k and learning rate α ∈ R+. Santos (1996) shows that, starting from
φ(0) = θ, φ(k) in (4.4) solves the regularized linear least squares problem

min
(

‖y−Xφ‖22 + ‖θ −φ‖2Q
)

(4.5)

with Q-norm defined by ‖z‖Q = zTQ−1z for a symmetric positive definite matrix Q that
depends on the step size α and iteration index k as well as on the covariance structure
of X. We describe the exact form of the dependence in Section 4.3. The minimization in
(4.5) can be expressed as a posterior maximization problem given a conditional Gaussian
likelihood over y and a Gaussian prior over φ. The posterior takes the form

p (φ | X,y,θ ) ∝N (y ; Xφ,I)N (φ ; θ,Q) . (4.6)

Since φ(k) in (Eq. (4.4)) maximizes (4.6), we may conclude that k iterations of gradient
descent in a linear regression model with squared error exactly computes the MAP esti-
mate of φ, given a Gaussian-noised observation model and a Gaussian prior over φ with
parameters µ0 = θ and Σ0 =Q. Therefore, in the case of linear regression with squared
error, MAML is exactly empirical Bayes using the MAP estimate as the point estimate of φ.

In the nonlinear case, MAML is again equivalent to an empirical Bayes procedure to
maximize the marginal likelihood that uses a point estimate for φ computed by one or a
few steps of gradient descent. However, this point estimate is not necessarily the global
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mode of a posterior. We can instead understand the point estimate given by truncated
gradient descent as the value of the mode of an implicit posterior over φ resulting from
an empirical loss interpreted as a negative log-likelihood, and regularization penalties
and the early stopping procedure jointly acting as priors Sjöberg and Ljung (for similar
interpretations, see 1995), Bishop (1995), and Duvenaud, Maclaurin, et al. (2016).

The exact equivalence between early stopping and a Gaussian prior on the weights
in the linear case, as well as the implicit regularization to the parameter initialization
the nonlinear case, tells us that every iterate of truncated gradient descent is a mode
of an implicit posterior. In particular, we are not required to take the gradient descent
procedure of fast adaptation that computes φ̂ to convergence in order to establish a
connection between MAML and hierarchical Bayes. MAML can therefore be understood
to approximate an expectation of the marginal negative log likelihood (NLL) for each task
Tj as

Ex∼pTj (x)
[− logp (x | θ )] ≈ 1

M

∑

m

− logp
(

xjN+m
| φ̂j

)

using the point estimate φ̂j = θ +α∇θ logp(xjn | θ ) for single-step fast adaptation.
The algorithm for MAML as probabilistic inference is given in Algorithm 4.2; Sub-

routine 4.3 computes each marginal NLL using the point estimate of φ̂ as just described.
Formulating MAML in this way, as probabilistic inference in a hierarchical Bayesian
model, motivates the interpretation in the next section of using various meta-optimization
algorithms to induce a prior over task-specific parameters.

The prior over task-specific parameters

From the previous section, we may conclude that early stopping during fast adaptation is
equivalent to a specific choice of a prior over task-specific parameters, p(φj | θ ). We can
better understand the role of early stopping in defining the task-specific parameter prior
in the case of a quadratic objective. Omit the task index from φ and x, and consider a
second-order approximation of the fast adaptation objective ℓ(φ) = − logp(x1 . . . ,xN | φ )
about a minimum φ∗:

ℓ(φ) ≈ ℓ̃(φ) := 1
2‖φ −φ

∗‖2
H−1

+ ℓ(φ∗) (4.7)

where the Hessian H = ∇2φ ℓ(φ∗) is assumed to be positive definite so that ℓ̃ is bounded
below. Furthermore, consider using a curvature matrix B to precondition the gradient in
gradient descent, giving the update

φ(k) = φ(k−1) −B∇φ ℓ̃(φ(k−1)) . (4.8)
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If B is diagonal, we can identify (4.8) as a Newton method with a diagonal approx-
imation to the inverse Hessian; using the inverse Hessian evaluated at the point φ(k−1)
recovers Newton’s method itself. On the other hand, meta-learning the matrix B matrix
via gradient descent provides a method to incorporate task-general information into the
covariance of the fast adaptation prior, p(φ | θ ). For instance, the meta-learned matrix
B may encode correlations between parameters that dictates how such parameters are
updated relative to each other.

Formally, taking k steps of gradient descent from φ(0) = θ using the update rule in (4.8)
gives a φ(k) that solves

min
(

‖φ −φ∗‖2
H−1

+ ‖φ(0) −φ‖2Q
)

. (4.9)

The minimization in (4.9) corresponds to taking a Gaussian prior p(φ | θ ) with mean θ and
covariance Q for Q =OΛ

−1((I−BΛ)−k − I)OT (Santos 1996) where B is a diagonal matrix
that results from a simultaneous diagonalization ofH andB asOTHO = diag(λ1, . . . ,λn) =Λ

and OTB−1O = diag(b1, . . . , bn) = B with bi ,λi ≥ 0 for i = 1, . . . ,n Golub and Van Loan (The-
orem 8.7.1 in 1983). If the true objective is indeed quadratic, then, assuming the data is
centered, H is the unscaled covariance matrix of features, XTX.

4.4 Improving model-agnostic meta-learning

Identifying MAML as a method for probabilistic inference in a hierarchical model allows
us to develop novel improvements to the algorithm. In the next section, we consider an
approach from Bayesian parameter estimation to improve the MAML algorithm, and in
the subsequent section, we discuss how to make this procedure computationally tractable
for high-dimensional models.

Laplace’s method of integration

We have shown that the MAML algorithm is an empirical Bayes procedure that employs
a point estimate for the mid-level, task-specific parameters in a hierarchical Bayesian
model. However, the use of this point estimate may lead to an inaccurate point ap-
proximation of the integral in (4.2) if the posterior over the task-specific parameters,
p(φj | xjN+1

, . . . ,xjN+M
,θ ), is not sharply peaked at the value of the point estimate. The

Laplace approximation (Laplace 1986; MacKay 1992b; MacKay 1992a) is applicable in this
case as it replaces a point estimate of an integral with the volume of a Gaussian centered
at a mode of the integrand, thereby forming a local quadratic approximation.

We can make use of this approximation to incorporate uncertainty about the task-
specific parameters into the MAML algorithm at fast adaptation time. In particular,
suppose that each integrand in (4.2) has a mode φ∗j at which it is locally well-approximated
by a quadratic function. The Laplace approximation uses a second-order Taylor expansion
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Subroutine ML-LAPLACE(θ,T )
Draw N samples x1, . . . ,xN ∼ pT (x)
Initialize φ← θ
for k in 1, . . . ,K do

Update φ← φ +α∇φ logp(x1, . . . ,xN | φ )

end
Draw M samples xN+1, . . . ,xN+M ∼ pT (x)
Estimate quadratic curvature Ĥ
return − logp(xN+1, . . . ,xN+M | φ ) + η logdet(Ĥ)

Subroutine 4.4: Subroutine for computing a Laplace approximation of the marginal likelihood.

of the negative log posterior in order to approximate each integral in the product in (4.2)
as

∫

p
(

Xj | φj

)

p
(

φj | θ
)

dφj ≈ p
(

Xj | φ∗j
)

p
(

φ∗j | θ
)

det(Hj /2π)
− 1
2 (4.10)

where Hj is the Hessian matrix of second derivatives of the negative log posterior.
Classically, the Laplace approximation uses the MAP estimate for φ∗j , although any

mode can be used as an expansion site provided the integrand is well enough approximated
there by a quadratic. We use the point estimate φ̂j uncovered by fast adaptation, in
which case the MAML objective in (4.1) becomes an appropriately scaled version of the
approximate marginal likelihood

− logp (X | θ ) ≈
∑

j

[

− logp
(

Xj | φ̂j

)

− logp
(

φ̂j | θ
)

+ 1
2 logdet(Hj )

]

. (4.11)

The term logp( φ̂j | θ ) results from the implicit regularization imposed by early stop-
ping during fast adaptation, as discussed in Section 4.3. The term 1/2 logdet(Hj ), on the
other hand, results from the Laplace approximation and can be interpreted as a form of
regularization that penalizes model complexity.

Using curvature information

Using (4.11) as a training criterion for a neural network model is difficult due to the
required computation of the determinant of the Hessian of the log posterior Hj , which
itself decomposes into a sum of the Hessian of the log likelihood and the Hessian of the
log prior as

Hj = ∇2φj

[

− logp
(

Xj | φj

)]

+∇2φj

[

− logp
(

φj | θ
)]

.
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In our case of early stopping as regularization, the prior over task-specific parameters
p(φj | θ ) is implicit and thus no closed form is available for a general model. Although
we may use the quadratic approximation derived in Section 4.3 to obtain an approximate
Gaussian prior, this prior is not diagonal and does not, to our knowledge, have a convenient
factorization. Therefore, in our experiments, we instead use a simple approximation in
which the prior is approximated as a diagonal Gaussian with precision τ. We keep τ fixed,
although this parameter may be cross-validated for improved performance.

Similarly, the Hessian of the log likelihood is intractable to form exactly for all but
the smallest models, and furthermore, is not guaranteed to be positive definite at all
points, possibly rendering the Laplace approximation undefined. To combat this, we
instead seek a curvature matrix Ĥ that approximates the quadratic curvature of a neural
network objective function. Since it is well-known that the curvature associated with
neural network objective functions is highly non-diagonal (e.g., Martens 2016), a further
requirement is that the matrix have off-diagonal terms.

Due to the difficulties listed above, we turn to second order gradient descent meth-
ods, which precondition the gradient with an inverse curvature matrix at each iteration
of descent. The Fisher information matrix (Fisher 1925) has been extensively used as
an approximation of curvature, giving rise to a method known as natural gradient de-
scent (Amari 1998). A neural network with an appropriate choice of loss function is a
probabilistic model and therefore defines a Fisher information matrix. Furthermore, the
Fisher information matrix can be seen to define a convex quadratic approximation to the
objective function of a probabilistic neural model (Pascanu and Bengio 2014; Martens
2020). Importantly for our use case, the Fisher information matrix is positive definite by
definition as well as non-diagonal.

However, the Fisher information matrix is still expensive to work with. Martens and
Grosse (2015) developed Kronecker-factored approximate curvature (K-FAC), a scheme
for approximating the curvature of the objective function of a neural network with a
block-diagonal approximation to the Fisher information matrix. Each block corresponds
to a unique layer in the network, and each block is further approximated as a Kronecker
product (see Van Loan 2000) of two much smaller matrices by assuming that the second-
order statistics of the input activation and the back-propagated derivatives within a
layer are independent. These two approximations ensure that the inverse of the Fisher
information matrix can be computed efficiently for the natural gradient.

For the Laplace approximation, we are interested in the determinant of a curvature
matrix instead of its inverse. However, we may also make use of the approximations to the
Fisher information matrix from K-FAC as well as properties of the Kronecker product. In
particular, we use the fact that the determinant of a Kronecker product is the product of
the exponentiated determinants of each of the factors, and that the determinant of a block
diagonal matrix is the product of the determinants of the blocks (Van Loan 2000). The
determinants for each factor can be computed as efficiently as the inverses required by
K-FAC, in O(d3) time for a d-dimensional Kronecker factor.

We make use of the Laplace approximation and K-FAC to replace Subroutine 4.3,
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Figure 4.5: Our method is able to meta-learn a model that can quickly adapt to sinusoids with
varying phases and amplitudes, and the interpretation of the method as hierarchical Bayes makes
it practical to directly sample models from the posterior. In this figure, we illustrate various
samples from the posterior of a model that is meta-trained on different sinusoids, when presented
with a few datapoints (in red) from a new, previously unseen sinusoid. Note that the random
samples from the posterior predictive describe a distribution of functions that are all sinusoidal
and that there is increased uncertainty when the datapoints are less informative (i.e., when the
datapoints are sampled only from the lower part of the range input, shown in the bottom-right
example).

which computes the task-specific marginal NLLs using a point estimate for φ̂. We call this
method the Lightweight Laplace Approximation for Meta-Adaptation (LLAMA), and give
a replacement subroutine in Subroutine 4.4.

4.5 Experimental evaluation

The goal of our experiments is to evaluate if we can use our probabilistic interpreta-
tion of MAML to generate samples from the distribution over adapted parameters, and
futhermore, if our method can be applied to large-scale meta-learning problems such as
miniImageNet.

Warmup: Toy nonlinear model

The connection between MAML and hierarchical Bayes suggests that we should expect
MAML to behave like an algorithm that learns the mean of a Gaussian prior on model
parameters, and uses the mean of this prior as an initialization during fast adaptation.
Using the Laplace approximation to the integration over task-specific parameters as in
(4.10) assumes a task-specific parameter posterior with mean at the adapted parameters φ̂
and covariance equal to the inverse Hessian of the log posterior evaluated at the adapted
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5-way acc. (%)
Model 1-shot

Fine-tuning∗ 28.86 ± 0.54
Nearest Neighbor∗ 41.08 ± 0.70
Matching Networks FCE (Vinyals et al. 2016)∗ 43.56 ± 0.84
Meta-Learner LSTM (Ravi and Larochelle 2017)∗ 43.44 ± 0.77
SNAIL (Mishra et al. 2018)∗∗ 45.1 ± ——
Prototypical Networks (Snell et al. 2017)∗∗∗ 46.61 ± 0.78
mAP-DLM (Triantafillou et al. 2017) 49.82 ± 0.78

MAML (Finn, Abbeel, et al. 2017) 48.70 ± 1.84
LLAMA (Ours) 49.40 ± 1.83

Table 4.1: One-shot classification performance on the miniImageNet test set, with comparison
methods ordered by one-shot performance. All results are averaged over 600 test episodes, and
we report 95% confidence intervals.

parameter value. Instead of simply using this density in the Laplace approximation as
an additional regularization term as in (4.11), we may sample parameters φj from this
density and use each set of sampled parameters to form a set of predictions for a given
task.

To illustrate this relationship between MAML and hierarchical Bayes, we present a
meta-dataset of sinusoid tasks in which each task involves regressing to the output of a
sinusoid wave in Fig. 4.5. Variation between tasks is obtained by sampling the amplitude
uniformly from [0.1,5.0] and the phase from [0,π]. During training and for each task,
10 input datapoints are sampled uniformly from [−10.0,10.0] and the loss is the mean
squared error between the prediction and the true value.

We observe in Fig. 4.5 that our method allows us to directly sample models from
the task-specific parameter distribution after being presented with 10 datapoints from a
new, previously unseen sinusoid curve. In particular, the column on the right of Fig. 4.5
demonstrates that the sampled models display an appropriate level of uncertainty when
the datapoints are ambiguous (as in the bottom right).

Large-scale experiment: miniImageNet

We evaluate LLAMA on the miniImageNet Ravi and Larochelle (2017) 1-shot, 5-way
classification task, a standard benchmark in few-shot classification. miniImageNet com-
prises 64 training classes, 12 validation classes, and 24 test classes. Following the setup
of Vinyals et al. (2016), we structure the N -shot, J-way classification task as follows: The
model observes N instances of J unseen classes, and is evaluated on its ability to classify
M new instances within the J classes.

∗Results reported by Ravi and Larochelle (2017). ∗∗We report test accuracy for a comparable architecture.
∗∗∗We report test accuracy for models matching train and test “shot” and “way”.
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We use a neural network architecture standard to few-shot classification Vinyals et al.
(e.g., 2016) and Ravi and Larochelle (2017), consisting of 4 layers with 3× 3 convolutions
and 64 filters, followed by batch normalization (BN) (Ioffe and Szegedy 2015), a ReLU
nonlinearity, and 2 × 2 max-pooling. For the scaling variable β and centering variable
γ of BN (see Ioffe and Szegedy 2015), we ignore the fast adaptation update as well as
the Fisher factors for K-FAC. We use Adam (Kingma and Ba 2015) as the meta-optimizer,
and standard batch gradient descent with a fixed learning rate to update the model
during fast adaptation. LLAMA requires the prior precision term τ as well as an additional
parameter η ∈ R+ that weights the regularization term logdetĤ contributed by the Laplace
approximation. We fix τ = 0.001 and selected η = 10−6 via cross-validation; all other
parameters are set to the values reported in Finn, Abbeel, et al. (2017).

We find that LLAMA is practical enough to be applied to this larger-scale problem.
In particular, our TensorFlow implementation of LLAMA trains for 60,000 iterations
on one TITAN Xp GPU in 9 hours, compared to 5 hours to train MAML. As shown
in Table 4.1, LLAMA achieves comparable performance to the state-of-the-art meta-
learning method by Triantafillou et al. (2017). While the gap between MAML and LLAMA
is small, the improvement from the Laplace approximation suggests that a more accurate
approximation to the marginalization over task-specific parameters will lead to further
improvements.

4.6 Related work

Marginal likelihood (ML) and few-shot learning have a long history in hierarchical
Bayesian modeling (e.g., Tenenbaum 1999; Fei-Fei et al. 2003; Lawrence and Platt 2004;
Yu et al. 2005; Gao et al. 2008; Daumé III 2009; Wan et al. 2012). A related subfield is
that of transfer learning, which has used hierarchical Bayes extensively (e.g., Raina et al.
2006). A variety of inference methods have been used in Bayesian models, including exact
inference (Lake, Salakhutdinov, Gross, et al. 2011), sampling methods (Salakhutdinov
et al. 2012), and variational methods (Edwards and Storkey 2017). While some prior
works on hierarchical Bayesian models have proposed to handle basic image recognition
tasks, the complexity of these tasks does not yet approach the kinds of complex image
recognition problems that can be solved by discriminatively trained deep networks, such
as the miniImageNet experiment in our evaluation (Mansinghka et al. 2013).

Recently, the Omniglot benchmark Lake, Ullman, et al. (2018) has rekindled interest in
the problem of learning from few examples. Modern methods accomplish few-shot learn-
ing either through the design of network architectures that ingest the few-shot training
samples directly (e.g., Koch 2015; Vinyals et al. 2016; Snell et al. 2017; Hariharan and
Girshick 2017; Triantafillou et al. 2017), or formulating the problem as one of learning
to learn, or meta-learning (e.g., Schmidhuber 1987; Bengio, Bengio, and Cloutier 1991;
Schmidhuber 1992; Bengio, Bengio, Cloutier, and Gecsei 1992). A variety of inference
methods have been used in Bayesian models, including exact inference (Lake, Salakhutdi-
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nov, Gross, et al. 2011), sampling methods (Salakhutdinov et al. 2013), and variational
methods (Edwards and Storkey 2017).

Our work bridges the gap between gradient-based meta-learning methods and hierar-
chical Bayesian modeling. Our contribution is not to formulate the meta-learning problem
as a hierarchical Bayesian model, but instead to formulate a gradient-based meta-learner
as hierarchical Bayesian inference, thus providing a way to efficiently perform posterior
inference in a model-agnostic manner.

4.7 Conclusion

We have shown that model-agnostic meta-learning (MAML) estimates the parameters of a
prior in a hierarchical Bayesian model. By casting gradient-based meta-learning within
a Bayesian framework, our analysis opens the door to novel improvements inspired by
probabilistic machinery.

As a step in this direction, we propose an extension to MAML that employs a Laplace
approximation to the posterior distribution over task-specific parameters. This technique
provides a more accurate estimate of the integral that, in the original MAML algorithm,
is approximated via a point estimate. We show how to estimate the quantity required by
the Laplace approximation using Kronecker-factored approximate curvature (K-FAC), a
method recently proposed to approximate the quadratic curvature of a neural network
objective for the purpose of a second-order gradient descent technique.

Our contribution illuminates the road to exploring further connections between
gradient-based meta-learning methods and hierarchical Bayesian modeling. For instance,
in this work we assume that the predictive distribution over new data-points is narrow
and well-approximated by a point estimate. We may instead employ methods that make
use of the variance of the distribution over task-specific parameters in order to model the
predictive density over examples from a novel task.

Furthermore, it is known that the Laplace approximation is inaccurate in cases where
the integral is highly skewed, or is not unimodal and thus is not amenable to approximation
by a single Gaussian mode. This could be solved by using a finite mixture of Gaussians,
which can approximate many density functions arbitrarily well (Sorenson and Alspach
1971; Alspach and Sorenson 1972). The exploration of additional improvements such as
this is an exciting line of future work.
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Chapter 5

Concept learning from few positive
examples

The work described in this chapter is published as Erin Grant, Joshua C Peterson, and Thomas L Griffiths
(2019). “Learning deep taxonomic priors for concept learning from few positive examples”. In: Proceedings
of the Annual Meeting of the Cognitive Science Society.
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5.1 Introduction

One of the hallmarks of human intelligence is the ability to rapidly learn new concepts
given only limited information (Lake, Ullman, et al. 2018). This task is difficult because
we are often presented with only a handful of (positive) examples of a new concept, and
no examples outside of the concept (negative examples). Quine (1960) was the first to
recognize that this poses a seemingly crippling problem for induction: hearing only the
word “gavagai” as a rabbit passes by, we have no way of knowing with certainty whether
the new word applies to all animals, all rabbits, one pet rabbit, potential food, or any other
of a nearly infinite number of likewise compatible hypotheses.

Nevertheless, humans appear to possess prior knowledge, whether learned, innate,
or both, that makes for effective generalizations even under such conditions. In some
situations, these constraints are simple and easy to model (Tenenbaum 1999; Tenenbaum
and Griffiths 2001; Kemp et al. 2007). However, in general, modeling the rich prior
knowledge that humans bring to bear on problems in complex domains such as natural
images is difficult and reliant on explicit domain knowledge (Xu and Tenenbaum 2007;
Jia et al. 2013). A recent line of follow-up work has made strides by using deep neural
networks as a proxy for psychological representations (Campero et al. 2017; Peterson,
Soulos, et al. 2018). Although these representations are largely perceptual, they are
nevertheless an improvement over hand-specified features given that they are less prone
to experimenter bias and have been shown to explain some aspects of human visual
representations (Peterson, Abbott, et al. 2018). However, unlike most cognitive models
of concept learning and unlike humans, these networks are trained on millions of both
positive and negative examples of mutually exclusive categories. Moreover, they fail to
capture the taxonomic biases that humans bring to bear in concept learning (Peterson,
Abbott, et al. 2018).

Challenged by the cognitive science community (Lake, Salakhutdinov, and Tenenbaum
2015), machine learning researchers have developed a number of their own improvements
to deep learning algorithms to tackle the problem of learning from few examples (e.g.,
Vinyals et al. 2016; Ravi and Larochelle 2017). These approaches constitute impressive
new candidate accounts of human concept learning from naturalistic stimuli, but differ
from human learning scenarios in that they (1) rely on negative evidence to infer the extent
of a novel concept, and (2) ignore the overlapping and hierarchical structure of real-world
concepts that humans use to inform their generalization judgments (Rosch et al. 1976; Xu
and Tenenbaum 2007).

In the following chapter, we aim to address many of the shortcomings of previous
work by demonstrating how a deep meta-learning algorithm combined with a novel
stimulus sampling procedure can provide an end-to-end framework for modeling human
concept learning, for the first time with no hand-specified prior knowledge or negative
examples of a novel concept. We introduce a new, taxonomically structured dataset
of concepts compiled by sampling from both internal nodes and leaf nodes within the
ImageNet hierarchy (Deng et al. 2009). Our method learns concepts at different levels
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of this hierarchy, but the hierarchical structure itself is never provided to the model
explicitly at any point. To evaluate our model against human behavior, we present a new
human benchmark inspired by Rosch’s classic object taxonomies (Rosch et al. 1976). Our
model not only mimics human generalization behavior, reproducing classic generalization
gradients (Shepard 1987; Xu and Tenenbaum 2007), but also encompasses a general
taxonomic prior that allows for human-like generalization even when presented with
novel concepts from different image taxonomies (i.e., held-out supercategories).

5.2 Background

Computational models of concept learning in cognitive science have historically focused on
the problem of density estimation (Ashby and Alfonso-Reese 1995). Under this paradigm,
learning about a category C amounts to the estimation of the density p(x | C), where x
represents the space of stimuli. This modeling framework assumes that a density can be
learned for each of a set of mutually exclusive categories, where positive examples from
one category implicitly serve as negative examples for all other categories. However, the
conditions under which humans learn concepts are rarely this straightforward.

Learning concepts from few positive examples. More recent work has begun to exam-
ine how humans learn concepts in more natural settings where often only a few positive
examples of a single concept are provided. Despite this impoverished learning environ-
ment, even young children are able to generalize surprisingly well (Carey 1978; Markman
1989). Extending Shepard (1987), Tenenbaum (1999) and Tenenbaum and Griffiths (2001)
formalize the concept learning problem as follows: Given n positive examples x = {x1, ...,xn}
of a concept C, the learner estimates the probability p(x∗ ∈ C | x) that a new stimulus x∗

is also an example of that concept. The challenge the learner faces in making such a
generalization is that the extension of C is underspecified (i.e., it could include only the
present examples, all possible stimuli, or anything in between). To address this challenge,
the authors propose a Bayesian generalization model that averages the predictions made
by a number of hypotheses about the extent of C. By making the plausible assumption
that learners expect examples to be randomly sampled from concepts, the authors show
that smaller hypotheses will be preferred, thus deriving constraints on the expected extent
of C.

Armedwith this framework, Xu and Tenenbaum (2007) conducted an extensive analysis
of human generalization behavior through word learning experiments. Participants were
given either one or three examples of a new concept such as “dax” and asked to pick
out other instances of that concept from a set of test stimuli. The examples of each
concept were unique images that could be drawn from either a subordinate-level (e.g.,
Dalmatian), basic-level (e.g., dog), or superordinate-level (e.g., animal) category, and the
test stimuli were sampled from all three levels. An example of this task is shown in Fig. 5.1.
Replicating Shepard (1987), the authors found that generalization from a single example
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Test Phase - Pick everything that is a dax

Training Conditions - Possible examples of a dax

basicsubordinate superordinate

Figure 5.1: The word learning paradigm from Xu and Tenenbaum (2007). In each trial, partici-
pants see a few instances exemplifying a novel word such as “dax” and are asked to select other
instances that fall under the same word from a test array. The training conditions vary by the
levels of the underlying image taxonomy from which the instances are drawn, e.g., Dalmatians
(subordinate) vs. dogs (basic) vs. animals (superordinate).

of a concept to a test stimulus decreases with psychological similarity. However, their
experiments also yielded two new insights into human concept learning:

1. Given multiple examples of a concept, generalization goes only as far at the most
specific level that contains those examples. For example, shown three examples from
different dog breeds, other dog breeds are included in the concept at test time, but
not other animals.

2. There is a bias towards generalizing to test items at the basic level, in particular when
only a single subordinate example is shown. For example, given a single example of
a Dalmatian, participants predictably generalize the concept to other Dalmatians,
but also generalize to other breeds.

The only modification to the Bayesian concept learning model required to capture these
data was a structured, taxonomic prior computed from human similarity judgments over
the set of objects used in the experiments. While this work constitutes one of the first
successful attempts to explain concept learning in realistic contexts, it arguably leaves
much of the structured, taxonomic representation assumed and raises questions about
how this knowledge is acquired.

The role of prior knowledge. Given the aforementioned dependence on highly struc-
tured priors in explaining people’s robust generalization behavior, subsequent work has
focused on incorporating this information into the modeling of human concept learning.
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Jia et al. (2013) provided an automated framework for modeling human generalization
behavior by leveraging perceptual stimulus features provided by a computer vision al-
gorithm along with information contained in the WordNet taxonomy (Fellbaum 1998),
but gave no account for how this information is learned by humans. Kemp et al. (2007)
provided the first account of how such knowledge could be acquired: The authors start
with an unstructured representation and apply a structured hierarchical Bayesian model
that learns taxonomic abstractions from data. Despite its elegance, the method does not
immediately scale to high-dimensional stimuli such as the images used in Jia et al. (2013).

Deep neural networks (LeCun, Bengio, et al. 2015) have served as both candidate
models of object perception and rich image representations that can be used for cognitive
modeling. However, these model do not capture even coarse taxonomic information out-
of-the-box (Peterson, Abbott, et al. 2018). Despite this, Peterson and Griffiths (2017) found
that the sampling assumptions of Bayesian concept learning could be verified in human
generalization judgments when modeling stimuli using deep feature representations.
Campero et al. (2017) deployed a hierarchical model similar to Kemp et al. (2007) over
a deep feature space and found both good one-shot learning performance as well as the
ability to recover some stimulus clusters representative of human categorization judgments.
Noting that most deep networks are trained using subordinate-level labels, (Peterson,
Soulos, et al. 2018) trained a deep neural network with coarser, basic-level labels to more
closely mimic the supervision children receive. A relatively simple generalization model
over the resulting representation reproduced both the basic-level bias and the gradient of
generalization from Xu and Tenenbaum (2007).

Few-shot learning in machine learning. The problem facing cognitive models of con-
cept learning is closely related to one- or few-shot classification in machine learning, in
which the aim is to learn to discriminate between classes given only a few labeled examples
from each class (Fei-Fei et al. 2003; Vinyals et al. 2016). A powerful solution to few-shot
learning is meta-learning, where learning episodes—themselves consisting of training and
testing intervals—are used to train a model to adapt quickly to solve a new task given
only a small amount of labeled data for the task (Schmidhuber 1987; Bengio, Bengio,
and Cloutier 1991; Schmidhuber 1992; Bengio, Bengio, Cloutier, and Gecsei 1992). The
learning episodes are leveraged in the form of a data-driven prior that is combined with
a small amount of test-time evidence (i.e., a few “shots” of data and their corresponding
labels from a novel task) in order to make a test-time inference.

5.3 Modeling approach

We propose to bridge cognitive science and machine learning by formulating concept
learning as a few-shot learning problem. As we will see, the meta-learning problem
formulation allows a machine learning model to estimate a decision boundary from only
positive samples of a class, similarly to how people learn concepts from only a few positive
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Superordinate Basic Subordinates

Musical
Instrument

Guitar Acoustic guitar Electric guitar
Piano Grand piano Upright piano
Drum Tambourine Bass drum

Fruit
Apple Delicious apple Mackintosh apple
Currant Black currant Red currant
Grapes Concord grapes Thompson seedless grapes

Tool
Hammer Ball-peen hammer Carpenter’s hammer
Saw Hack saw Cross-cutting saw
Screwdriver Phillips screwdriver Flat tip screwdriver

Clothing
Trousers Jeans Sweat pants
Socks Athletic socks Knee-high socks
Shirt Dress shirt Polo shirt

Furniture
Table Kitchen table Dining-room table
Lamp Floor lamp Table lamp
Chair Armchair Straight chair

Vehicle
Car Sports car Sedan car
Airplane Airliner plane Fighter jet plane
Truck Pickup truck Trailer truck

Fish
Snapper Grey snapper Red snapper
Trout Rainbow trout Lake trout
Salmon Atlantic salmon Chinook salmon

Bird
Owl Barn owl Great grey owl
Eagle Bald eagle Golden eagle
Sparrow Song sparrow Field sparrow

Table 5.1: The eight taxonomies of Rosch et al. (1976) used to define ImageNet concepts that our
images are sampled from.

examples. Moreover, the use of a meta-learning algorithm provides a principled way
to present entirely novel concepts at test time as held-out test tasks. As such, we can
investigate the taxonomic priors encoded in a neural network embedding function, as
compared to prior work that examines the representations of images from categories
observed during training time (Peterson, Soulos, et al. 2018).

Concept learning as meta-learning. Meta-learning algorithms aim to learn how to learn
by extracting task-general knowledge through the experience of solving a number of
specific tasks (Thrun and Pratt 1998; Hochreiter, Younger, et al. 2001). In the case of
concept learning, the j th task corresponds to learning a decision boundary for the j th
concept using only positive examples, and meta-learning corresponds to learning how
to estimate decision boundaries for arbitrary unseen concepts. We can thus formalize
the concept learning problem as the task of predicting a target label y (which indicates
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whether or not the input belongs to a given category) from an input observation x (i.e., an
image). Note that this formulation differs from the standard discriminative classification
problem, where the task corresponds to a K-way discriminative classification task in which
each of the K class labels are mutually exclusive.

Formally, let Tj = (Xtrn
j ,Ytrn

j ,Xval
j ,Yval

j ) denote a task drawn from a given task distribu-
tion p(T ), where Xtrn

j and Ytrn
j are a small collection of training inputs and labels, disjoint

from validation samples Xval
j and Yval

j but belonging to the same task Tj . A meta-learning
algorithm (e.g., Vinyals et al. 2016; Ravi and Larochelle 2017) aims to estimate parameters
θ that can be adapted to solve an unseen task Tj ∼ p(T ), using only the training samples
(Xtrn

j ,Ytrn
j ), to ensure the updated model achieves good performance on the validation

samples (Xval
j ,Yval

j ) according to some loss function L.
In this work, we use the model-agnostic meta-learning (MAML; Finn, Abbeel, et al.

(2017)) algorithm, which formulates meta-learning as estimating the parameters θ of a
model so that when one or a few gradient descent steps are taken from the initialization at
θ on the training data (Xtrn

j ,Ytrn
j ), the updated model has good generalization performance

on that task’s validation set, (Xval
j ,Yval

j ). At test time, a new task from the test set is
presented to the model for few-shot adaptation, i.e., gradient descent with (Xtrn

j ,Ytrn
j ), and

computation of test-time performance metrics, e.g., accuracy on (Xval
j ,Yval

j ). The training
examples in the inner gradient computation are strictly positive examples (i.e., Ytrn

j = 1)
of a particular concept j , whereas validation examples in the outer gradient computation
include both positives and negatives (i.e., Yval

j ∈ {0,1}); thus, at test time, the meta-learning
algorithm is able to estimate a decision boundary for a novel concept from only positive
examples of that concept.

5.4 Behavioral experiment

In order to compare our method directly to human behavior, we conducted a large human
generalization experiment using the same naturalistic stimuli we will use to evaluate our
method. We assess generalization behavior using a concept learning experiment following
previous work on Bayesian concept and word learning (Xu and Tenenbaum 2007; Abbott
et al. 2012; Jia et al. 2013).

Stimuli. We mapped a subset of the graph structure embedded in the ImageNet dataset
used for the ImageNet Large Scale Visual Recognition Competition (ILSVRC; Russakovsky
et al. (2015)) to the classic taxonomy used by cognitive scientists and developed by Rosch
et al. (1976). ILSVRC is a commonly used object-classification dataset that contains more
than 1million images distributed across 1000 categories. Instead of using the leaf classes as
categories, we create concepts by picking a node in the ImageNet hierarchy and sampling
images from leaves dominated by the given node. Note that, in this case, concepts are
not necessarily mutually exclusive in the sense that a single image may belong to one or
more classes (e.g., a Dalmatian may be labeled as both a dog and an animal). If the exact
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subordinate node from Rosch et al. (1976) was not available in ImageNet, we found a
close semantic match via the WordNet (Fellbaum 1998) taxonomy. We provide the full
taxonomy for this dataset in Table 5.1.

Task. In each of 8 trials, participants observed 5 images of a single concept, sampled
from one of the three levels of taxonomic abstraction. For instance, in a subordinate train-
ing condition, the examples could be all Dalmatians; in a basic-level training condition, all
dogs; in a superordinate training condition, all animals. To test generalization behavior,
participants were then given a test array of 24 images and were asked to pick which images
also belonged to the learned concept. The test array comprised 2 subordinate matches
(e.g., other Dalmatians), 2 basic-level matches (e.g., other breeds of dog), 4 superordinate
matches (e.g., other animals), and 16 out-of-domain items (e.g., inanimate objects), follow-
ing Xu and Tenenbaum (2007). See Fig. 5.2 for an example set of training and test stimuli.
In total, we collected data for 180 unique trials and 1 180 unique images.

Participants. We recruited 900 unique participants from Amazon Mechanical Turk to
each complete 8 trials as described above, one randomly sampled for each of the superor-
dinate categories. The test sets were fixed within a superordinate category. Participants
were paid $0.40 each.

Results. Fig. 5.3 (a) presents the results of the behavioral experiment for each of the three
taxonomic levels. As expected on the basis of previous work, there is an exponentially
decreasing generalization gradient as the level of taxonomic abstraction of the test matches
(bar color) increases. However, this effect diminishes as the intra-class variation of the
few-shot examples (x-axis) increases: Moving from the subordinate condition to the basic-
level condition, we find an increase in the number of basic-level matches selected from the
test set. The condition in which there is greatest intra-class variation–the superordinate
condition–exhibits only a small generalization gradient.

5.5 Meta-learning simulations

Our modeling goal is to investigate whether we can use meta-learning to learn new
concepts from only few positive examples, even though these concepts are potentially
overlapping and therefore not mutually exclusive. Furthermore, we aim to investigate
whether a meta-learning algorithm is able to use information about the underlying concept
taxonomy that generates observations of the extension of a concept in order to generalize
to novel concepts in a human-like manner.

Meta-learning formalism. Our model observes K positive examples x = {x1, . . . ,xK } of
a concept C, and must learn the generalization function p(x∗ ∈ C ) to correctly identify
whether a novel example x∗ is also a member of the concept. Training proceeds as follows:
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(a)

(b)

(c)

(d)

Figure 5.2: Examples of training stimuli for the (a) subordinate, (b) basic-level, and (c) super-
ordinate level training conditions, as well as (d) a subset of the stimuli from the test array for
a specific concept learning task (here, learning the concept black currant (a), currant (b) or fruit
(c)). The test array (d) displays, from left to right, a subordinate match, a basic-level match and
a superordinate match.

A concept index j is sampled from the meta-training set. Then, for K-shot learning, 2K
positive examples of the concept and K negatives are sampled. The parameters θ are
adapted using K of the positives, and then the model is optimized with a loss computed
using the remaining positive and negative examples of the concept. At test time, the model
with trained parameters θ is presented with K positive examples from a new concept in
the test set; the model adapts θ and is evaluated on its ability to distinguish new positive
examples of that concept from negatives.

Taxonomic dataset construction. For training and validation, we created a large-scale
taxonomy of classes by using the graph structure embedded in the subset of the ImageNet
dataset used for the ImageNet Large Scale Visual Recognition Competition (ILSVRC;
Russakovsky et al. (2015)), similar to the behavioral experiment described earlier, but
using the entirety of the ImageNet hierarchy. We then created few-shot concept learning
tasks for training by sampling positive and negative examples for each concept, where
negative examples of a concept are generated by sampling from the complement set of leaf
nodes. Superordinate-level nodes are not shared between training, validation, and test to
ensure that test-time generalization is measured on novel concepts. We use 494, 193, and
223 leaf nodes in the training, validation, and test sets, respectively (c.f., 80, 20, and 20
in the few-shot classification dataset miniImageNet (Vinyals et al. 2016)). The training,
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Figure 5.3: Human behavioral data (a), flat (b), and hier (c) modeling results on the concept
generalization task. The horizontal axis identifies the training condition (i.e., the level of taxo-
nomic abstraction from which the few-shot examples are drawn). The vertical axis identifies, for
each type of match in {subordinate, basic-level, superordinate}, the proportion of selections from
the test array (a), or the average probability of generalization (b, c).

validation, and test node sets do not comprise all of the nodes in the ImageNet hierarchy,
as some nodes are redundant (i.e., have a single parent) or are too abstract to appropriately
define a visual concept (e.g., physical entity, substance, equipment). We make use of the
training and validation dataset for training and hyperparameter selection, respectively;
the test set is not used in this work but reserved for future works that may wish to perform
large-scale evaluation of concept learning. Instead, the evaluations reported in this work
are performed on the Rosch-inspired human benchmark described above. We also wish to
emphasize that while we make use of the ImageNet hierarchy, we do so only to generate a
natural distribution of concepts to learn from, and never present the explicit hierarchical
relations to the model at any time.

We consider two dataset conditions in our simulations: In the hier dataset condition,
the meta-learning algorithm observes concepts sampled from the internal and leaf nodes
of the ImageNet hierarchy, and thus can learn a taxonomic prior; in the flat dataset
condition, the algorithm observes only leaf-node concepts, and thus has no access to such
information.
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Hyperparameters. The base model that is optimized by MAML is a binary classifier
consisting of a convolutional neural network with a sigmoid output.* In our experiments,
we downsample the images to each have a width and height of 84 pixels, as is common
in the use of miniImageNet Vinyals et al. (2016) as a few-shot learning dataset. We select
hyperparameters on the same hierarchically structured validation set for both the hier
and flat dataset conditions and evaluate algorithms after a fixed number of training
iterations (40K with a batch size of 4). We take the value of the scalar output of the
network evaluated on a test example as the generalization probability and average this
quantity across all test examples from a specific level of taxonomic match to produce the
average generalization probability. When reporting the average generalization probability
metric, we standardize each set of probabilities for each training condition by treating
the distractor (out-of-domain) generalization probability as a baseline of zero and further
dividing by the largest probability in the set. In line with prior work (Peterson, Abbott,
et al. 2018), this highlights the quantity of interest: the relative differences in average
generalization probabilities across the subordinate, basic-level, and superordinate levels
of the taxonomy.

Results. The generalization gradient observed in humans is also exhibited by the hier
dataset condition in Fig. 5.3 (c): When the few-shot examples are taken from a basic-level
category (the basic condition; e.g., different breeds of dog) as opposed to a subordinate
category (the subord. condition; e.g., Dalmatians), the model generalizes to more basic-
level matches (e.g., different dog breeds) from the test array. In the plot, this can be
seen by comparing the ratio of subordinate generalization (black column) to basic-level
generalization (blue column) within each training condition (i.e., the gap between the black
and blue bars is diminished in the basic condition vs. the subord. condition). Furthermore,
when the few-shot examples are taken from a superordinate category (superord. condition),
both the model in the hier dataset condition and humans are equally likely to pick
subordinate, basic-level, or superordinate matches from the test array. In Fig. 5.3 (a, c),
this can be seen as the generalization to all levels of the taxonomy (black, blue, and yellow
bars) being close to equal.

One notable departure of Fig. 5.3 (c), from the human generalization behavior in
Fig. 5.3 (a), is overgeneralization to the superordinate category in the subordinate training
condition, and to a lesser extent, in the basic-level training condition, suggesting that
it is difficult for the algorithm to discriminate between basic-level and superordinate
matches given only subordinate examples of a concept. Nevertheless, in comparison to
the flat dataset condition in Fig. 5.3 (b), which does not change generalization behavior
on the basis of the training condition, the behavior of the algorithm exposed to the

*The architecture of the model is similar to prior work in meta-learning (e.g., Ravi and Larochelle 2017)
with 4 convolutional layers each with 32 3× 3 filters, leaky ReLU activation functions with a slope of 0.2,
and 2 × 2 max-pooling, all followed by a linear layer with sigmoid activation. We do not employ batch
normalization because of strong batch interdependence, as all of the training examples for a concept are of
the same (positive) class.
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hierarchically structured hier dataset suggests a learned sensitivity to the underlying
taxonomic organization of new concepts.

5.6 Discussion

When humans are presented with an example from a new concept, they can quickly infer
which other instances belong to that same concept even without the strong constraints
provided by negative examples. In order to achieve this feat, humans bring to bear
information about the taxonomic structure of natural categories. Targeting the robustness
of human generalization even in highly novel domains (Schmidt 2009), we investigated
the extent to which taxonomically structured biases for complex, naturalistic stimuli taken
from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) could be acquired
and leveraged to learn the extent of novel concepts from only a few positive examples. In
contrast to previous work (Peterson, Abbott, et al. 2018), we validate the generalization
behavior of our model using unseen supercategories drawn from the superordinate levels
of Rosch’s classic taxonomy (Rosch et al. 1976).

While our method is successful in both learning a general taxonomic prior and exhibit-
ing human-like generalization behavior, there is room for improvement as the quantitative
gradients are not a perfect match to humans. However, it should be noted that our model
faces the atypically challenging task of both learning a highly structured representation
for complex stimuli and making use of it to generalize to entirely novel concepts. As
such, this framework draws on many of the strengths of both cognitive models and deep
neural networks in machine learning, and constitutes the most comprehensive account of
human visual concept learning to date. Lastly, we note that we do not build in any explicit
preference for simple concepts or attention to the number of examples (Tenenbaum 1999;
Peterson, Soulos, et al. 2018), although this may be an interesting avenue for improvement
in future work.
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Chapter 6

Nonparametric priors for
non-stationarity

The work described in this chapter is published as Ghassen Jerfel*, Erin Grant*, Thomas L Griffiths, and
Katherine Heller (2019). “Reconciling meta-learning and continual learning with online mixtures of tasks”.
In: Advances in Neural Information Processing Systems.
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6.1 Introduction

ML algorithms aim to increase the efficiency of learning by treating task-specific learn-
ing episodes as examples from which to generalize (Schmidhuber 1987). The central
assumption of a meta-learning algorithm is that some tasks are inherently related and
so inductive transfer can improve sample efficiency and generalization (Caruana 1993;
Caruana 1998; Baxter 2000). In learning a single set of domain-general hyperparameters
that parameterize a metric space (Vinyals et al. 2016) or an optimizer (Ravi and Larochelle
2017; Finn, Abbeel, et al. 2017), recent meta-learning algorithms make the assumption that
tasks are equally related, and therefore non-adaptive, mutual transfer is appropriate. This
assumption has been cemented in recent few-shot learning benchmarks, which comprise a
set of tasks generated in a uniform manner (e.g., Vinyals et al. 2016; Finn, Abbeel, et al.
2017).

However, the real world often presents scenarios in which an agent must decide what
degree of transfer is appropriate. In some cases, a subset of tasks are more strongly related
to each other, and so non-uniform transfer provides a strategic advantage. On the other
hand, transfer in the presence of dissimilar or outlier tasks worsens generalization perfor-
mance (Rosenstein et al. 2005; Deleu and Bengio 2018). Moreover, when the underlying
task distribution is non-stationary, inductive transfer to previously observed tasks should
exhibit graceful degradation to address the catastrophic forgetting problem (Kirkpatrick
et al. 2017). In these settings, the consolidation of all inductive biases into a single set of
hyperparameters is not well-posed to deal with changing or diverse tasks. In contrast, in
order to account for this degree of task heterogeneity, humans detect and adapt to novel
contexts by attending to relationships between tasks (Collins and Frank 2013).

In this chapter, we learn a mixture of hierarchical models that allows a meta-learner to
adaptively select over a set of learned parameter initializations for gradient-based adapta-
tion to a new task. The method is equivalent to clustering task-specific parameters in the
hierarchical model induced by recasting gradient-based ML as hierarchical Bayes (Grant
et al. 2018) and generalizes the model-agnostic meta-learning (MAML) algorithm intro-
duced in Finn, Abbeel, et al. (2017). By treating the assignment of task-specific parameters
to clusters as latent variables, we can directly detect similarities between tasks on the basis
of the task-specific likelihood, which may be parameterized by an expressive model such
as a neural network. Our approach, therefore, alleviates the need for explicit geometric or
probabilistic modeling assumptions about the weights of a complex parametric model and
provides a scalable method to regulate information transfer between episodes.

We additionally consider the setting of a non-stationary or evolving task distribu-
tion, which necessitates a meta-learning method that possesses adaptive complexity. We
translate stochastic point estimation in an infinite mixture (Rasmussen 2000) over model
parameters into a gradient-based meta-learning algorithm that is compatible with any
differentiable likelihood model and requires no distributional assumptions. We demon-
strate the unexplored ability of nonparametric priors over neural network parameters to
automatically detect and adapt to task distribution shift in a naturalistic image dataset;
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addressing the non-trivial setting of task-agnostic continual learning in which the task
change is unobserved (c.f., task-aware settings such as Kirkpatrick et al. 2017).

6.2 Gradient-based meta-learning as hierarchical Bayes

Since our approach is grounded in the probabilistic formulation of meta-learning as
hierarchical Bayes (Baxter 1997), our approach can be applied to any probabilistic meta-
learner. In this chapter, we focus onMAML (Finn, Abbeel, et al. 2017), a gradient-basedML
approach that estimates global parameters to be shared among task-specific models as an
initialization for a few steps of gradient descent. MAML admits a natural interpretation as
parameter estimation in a hierarchical probabilistic model, where the learned initialization
acts as data-driven regularization for the estimation of task-specific parameters φ̂j .

In particular, Grant et al. (2018) cast MAML as posterior inference for task-specific
parameters φj given some samples of task-specific data xj1:N and a prior over φj that is
induced by the early stopping of an iterative optimization procedure; truncation at K
steps of gradient descent on the negative log-likelihood − logp(xj1:N | φj ) starting from
φj(0)

= θ can be then understood as mode estimation of the posterior p(φj | xj1:N ,θ ) . The

mode estimates φ̂j = φj(0)
+α

∑K
k=1∇φ logp(xj1:N | φj(k−1)

) are then combined to evaluate the

marginal likelihood for each task as

p
(

xjN+1:N+M
| θ

)

=

∫

p
(

xjN+1:N+M
| φj

)

p
(

φj | θ
)

dφj ≈ p
(

xjN+1:N+M
| φ̂j

)

, (6.1)

where xjN+1:N+M
is another set of samples from the j th task. A training dataset can then

be summarized in an empirical Bayes point estimate of θ computed by gradient-based
optimization of the joint marginal likelihood in Eq. (7.3) in across tasks, so that the
likelihood of a datapoint sampled from a new task can be computed using only θ and
without storing the task-specific parameters.

6.3 Improving meta-learning by modeling latent task structure

If the task distribution is heterogeneous, assuming a single parameter initialization θ for
gradient-based meta-learning is not suitable because it is unlikely that the point estimate
computed by a few steps of gradient descent will sufficiently adapt the task-specific
parameters φ to a diversity of tasks. Moreover, explicitly estimating relatedness between
tasks has the potential to aid the efficacy of a meta-learning algorithm by modulating
both positive and negative transfer (Thrun and O’Sullivan 1996; Zhang and Schneider
2010; Rothman et al. 2010; Zhang and Yeung 2014), and by identifying outlier tasks that
require a more significant degree of adaptation (Xue, Liao, et al. 2007; Gupta et al. 2013).
Nonetheless, defining an appropriate notion of task relatedness is a difficult problem in
the high-dimensional parameter or activation space of models such as neural networks.
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Algorithm 1 Stochastic gradient-based EM for finite and infinite

mixtures( dataset D, meta-learning rate β, adaptation rate α, temperature τ, initial
cluster count L0, meta-batch size J , training batch size N , validation batch size M ,
adaptation iteration count K , global prior G0)

Initialize cluster count L← L0 and meta-level parameters θ(1), . . . ,θ(L) ∼ G0
while not converged do

Draw tasks T1, . . . ,TJ ∼ pD(T )
for j in 1, . . . , J do

Draw task-specific datapoints, xj1 . . .xjN+M
∼ pTj (x)

Draw a cluster initialization from the global prior, θ(L+1) ∼ G0
for ℓ in {1, . . . ,L,L+1} do

Initialize φ̂
(ℓ)
j ← θ(ℓ)

Compute task-specific mode estimate, φ̂
(ℓ)
j ← φ̂

(ℓ)
j +α

∑

k∇φ logp(xj1:N | φ̂
(ℓ)
j )

end
Compute assignment of tasks to clusters, γj ← E-STEP (xj1:N , φ̂

(1:L)
j )

end
Update each component ℓ in 1, . . . ,L, θ(ℓ)← θ(ℓ)+ M-STEP ({xjN+1:N+M

, φ̂
(ℓ)
j ,γj }

J
j=1)

Summarize {θ1, . . . } to update global prior G0
end

return {θ(1), . . . }

Algorithm 6.1: Stochastic gradient-based expectation maximization (EM) for probabilistic clus-
tering of task-specific parameters in a meta-learning setting.

E-STEP( {xji }
N
i=1, {φ̂

(ℓ)
j }

L
ℓ=1)

return
τ -softmaxℓ(

∑

i logp(xji |φ̂
(ℓ)
j ))

M-STEP({xji }
M
i=1, φ̂

(ℓ)
j ,γj)

return
β∇θ[

∑

j ,i γj logp(xji | φ̂
(ℓ)
j )]

Subroutine 6.2: The E-STEP and M-STEP for a finite mixture of hierarchical Bayesian models
implemented as gradient-based meta-learners.

Using the probabilistic interpretation of Section 6.2, we deal with the variability in the
tasks by assuming that each set of task-specific parameters φj is drawn from a mixture of

base distributions, each of which is parameterized by a hyperparameter θ(ℓ). Accordingly,
we capture task relatedness by estimating the likelihood of assigning each task to a mixture
component based simply on the task-specific negative log-likelihood after a few steps
of gradient-based adaptation. The result is a scalable ML algorithm that jointly learns
task-specific cluster assignments and model parameters, and is capable of modulating the
transfer of information across tasks by clustering together related task-specific parameter
settings.
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Formally, let zj be the categorical latent variable indicating the cluster assignment of
each task-specific parameter φj . Direct maximization of the mixture model likelihood
is a combinatorial optimization problem that can grow intractable. This intractability is
equally problematic for the posterior distribution over the cluster assignment variables zj
and the task-specific parameters φj , which are both treated as latent variables in the proba-
bilistic formulation of meta-learning. A scalable approximation involves representing the
conditional distribution for each latent variable with a MAP estimate. In our meta-learning
setting of a mixture of hierarchical Bayes models, this suggests an augmented expectation
maximization (EM) procedure (Dempster et al. 1977) alternating between an E-STEP that
computes an expectation of the task-to-cluster assignments zj , which itself involves the
computation of a conditional mode estimate for the task-specific parameters φj , and an

M-STEP that updates the hyperparameters θ(1:L) (see Subroutine 6.2).
To ensure scalability, we use the minibatch variant of stochastic optimization (Robbins

andMonro 1951) in both the E-STEP and the M-STEP; such approaches to EM are motivated
by a view of the algorithm as optimizing a single free energy at both the E-STEP and the
M-STEP (Neal and Hinton 1998). In particular, for each task j and cluster ℓ, we follow
the gradients to minimize the negative log-likelihood on the training data points xj1:N ,

using the cluster parameters θ(ℓ) as initialization. This allows us to obtain a modal point

estimate of the task-specific parameters φ̂
(ℓ)
j . The E-STEP in Subroutine 6.2 leverages the

connection between gradient-based ML and hierarchical Bayes (Grant et al. 2018) and
the differentiability of our clustering procedure to employ the task-specific parameters
to compute the posterior probability of cluster assignment. Accordingly, based on the

likelihood of the same training data points under the model parameterized by φ̂
(ℓ)
j , we

compute the cluster assignment probabilities as

γ
(ℓ)
j := p

(

zj = ℓ | xj1:N ,θ
(1:L)

)

∝
∫

p(xj1:N | φj ) p(φj | θ(ℓ))dφj ≈ p(xj1:N | φ̂
(ℓ)
j ) . (6.2)

The cluster means θ(ℓ) are then updated by gradient descent on the validation loss in
the M-STEP in Subroutine 6.2; this M-STEP is analogous to the MAML algorithm in Finn,

Abbeel, et al. (2017) with the addition of mixing weights γ
(ℓ)
j .

Note that, unlike other recent approaches to probabilistic clustering (e.g., Bauer et al.
2017) we adhere to the episodic meta-learning setup for both training and testing since

only the task support set xj1:N is used to compute both the point estimate φ̂
(ℓ)
j and the

cluster responsibilities γ
(ℓ)
j . See Algorithm 6.1 for the full algorithm, whose high-level

structure is shared with the nonparametric variant of our method detailed in Section 6.5.
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Model Num.
param.

1-shot (%) 5-shot (%)

matching network (Vinyals et al. 2016) a 43.56 ± 0.84 55.31 ± 0.73
meta-learner LSTM (Ravi and Larochelle 2017) 43.44 ± 0.77 60.60 ± 0.71
prototypical networks (Snell et al. 2017) b 46.61 ± 0.78 65.77 ± 0.70
MAML (Finn, Abbeel, et al. 2017) 48.70 ± 1.84 63.11 ± 0.92
MT-net (Lee and Choi 2018) 38,907 51.70 ± 1.84
PLATIPUS (Finn, Xu, et al. 2018) 65,546 50.13 ± 1.86
VERSA (Gordon et al. 2019) c 807,938 48.53 ± 1.84

Our method: 2 components 65,546 49.60 ± 1.50 64.60 ± 0.92
3 components 98,319 51.20 ± 1.52 65.00 ± 0.96
4 components 131,092 50.49 ± 1.46 64.78 ± 1.43
5 components 163,865 51.46 ± 1.68

Table 6.1: Meta-test set accuracy on the miniImageNet 5-way, 1- and 5-shot classification bench-
marks from Vinyals et al. (2016) among methods using a comparable architecture (the 4-layer
convolutional network from Vinyals et al. (2016)). For methods on which we report results in
later experiments, we additionally report the total number of parameters optimized by the meta-
learning algorithm.

6.4 Experiment: miniImageNet few-shot classification

Clustering task-specific parameters provides a way for a meta-learner to deal with task
heterogeneity as each cluster can be associated with a subset of the tasks that would benefit
most from mutual transfer. While we do not expect existing tasks to present a significant
degree of heterogeneity given the uniform sampling assumptions behind their design, we
nevertheless conduct an experiment to validate that our method gives an improvement on
a standard benchmark for few-shot learning.

We apply Algorithm 6.1 with Subroutine 6.2 and L ∈ {2,3,4,5} components to the 1-shot
and 5-shot, 5-way, miniImageNet few-shot classification benchmarks (Vinyals et al. 2016);
Appendix B.1 contains additional experimental details. We demonstrate in Table 6.1 that
a mixture of meta-learners improves the performance of gradient-based meta-learning
on this task for any number of components. However, the performance of the parametric
mixture does not improve monotonically with the number of components L. This leads
us to the development of nonparametric clustering for continual meta-learning, where
enforcing specialization to subgroups of tasks and increasing model complexity is, in fact,
necessary to preserve performance on prior tasks due to significant heterogeneity.

a Results reported by Ravi and Larochelle (2017). b We report test accuracy for models matching train and test “shot”

and “way”. c We report test accuracy for a comparable base (task-specific network) architecture.
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E-STEP( xj1:N , φ̂
(1:L)
j , concentration ζ, threshold ǫ)

DPMM log-likelihood for all ℓ in 1, . . . ,L, ρ
(ℓ)
j ←

∑

i logp(xji | φ̂
(ℓ)
j ) + logn(ℓ)

DPMM log-likelihood for new component, ρ
(L+1)
j ←∑

i logp(xji | φ̂
(L+1)
j ) + logζ

DPMM assignments, γj ← τ -softmax(ρ
(1)
j , . . . ,ρ

(L+1)
j )

if γ
(L+1)
j > ǫ then
Expand the model by incrementing L← L+1

else

Renormalize γj ← τ -softmax(ρ
(1)
j , . . . ,ρ

(L)
j )

return γj

M-STEP( {xji }
M
i=1, φ̂

(ℓ)
j ,γj , concentration ζ)

return β ∇θ[
∑

j ,i γj logp(xji | φ̂
(ℓ)
j ) + logn(ℓ)]

Subroutine 6.3: The E-STEP and M-STEP for an infinite mixture of hierarchical Bayesian models.

6.5 Scalable online mixtures for task-agnostic continual learning

The mixture of meta-learners developed in Section 6.3 addresses a drawback of meta-
learning approaches such as MAML that consolidate task-general information into a single
set of hyperparameters. However, the method adds another dimension to model selection
in the form of identifying the correct number of mixture components. While this may be
resolved by cross-validation if the dataset is static and therefore the number of components
can remain fixed, adhering to a fixed number of components throughout training is not
appropriate in the non-stationary regime, where the underlying task distribution changes
as different types of tasks are presented sequentially in a continual learning setting. In
this regime, it is important to incrementally introduce more components that can each
specialize to the distribution of tasks observed at the time of spawning.

To address this, we derive a scalable stochastic estimation procedure to compute the
expectation of task-to-cluster assignments (E-STEP) for a growing number of task clusters
in a nonparametric mixture model (Rasmussen 2000) called the Dirichlet process mixture
model (DPMM). The formulation of the Dirichlet process mixture model (DPMM) that
is most appropriate for incremental learning is the sequential draws formulation that
corresponds to an instantiation of the Chinese restaurant process (CRP) (Rasmussen 2000).
A CRP prior over zj allows some probability to be assigned to a new mixture component
while the task identities are inferred in a sequential manner, and has therefore been key
to recent online and stochastic learning of the DPMM (Lin 2013). A draw from a CRP
proceeds as follows: For a sequence of tasks, the first task is assigned to the first cluster
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and the j th subsequent task is then assigned to the ℓth cluster with probability

p
(

zj = ℓ | z1:j−1,ζ
)

=











n(ℓ)/n+ ζ forℓ ≤ L

ζ/n+ ζ forℓ = L+1 ,
(6.3)

where L is the number of non-empty clusters, n(ℓ) is the number of tasks already occupying
a cluster ℓ, and ζ is a fixed positive concentration parameter. The prior probability
associated with a new mixture component is therefore p(zj = L+1 | z1:j−1,ζ ).

In a similar spirit to Section 6.3, we develop a stochastic EM procedure for the estima-

tion of the latent task-specific parameters φ1:J and the meta-level parameters θ(1:L) in the
DPMM, which allows the number of observed task clusters to grow in an online manner
with the diversity of the task distribution. While computation of the mode estimate of the
task-specific parameters φj is mostly unchanged from the finite variant, the estimation of
the cluster assignment variables z in the E-STEP requires revisiting the Gibbs conditional
distributions due to the potential addition of a new cluster at each step. For a DPMM, the
conditional distributions for zj are

p
(

zj = ℓ| xj1:M ,z1:j−1
)

∝













n(ℓ)
∫

p(xj1:M |φ
(ℓ)
j )p(φ

(ℓ)
j |θ)dφj dGℓ(θ) for ℓ ≤ L

ζ
∫

p(xj1:M |φ
(0)
j )p(φ

(0)
j |θ)dφj dG0(θ) for ℓ = L+1

(6.4)

with G0 as the base measure or global prior over the components of the CRP, Gℓ is the
prior over each cluster’s parameters, initialized with a draw from a Gaussian centered at
G0 with a fixed variance and updated over time using summary statistics from the set of

active components {θ(0), . . . ,θ(L)}.
Taking the logarithm of the posterior over task-to-cluster assignments zj in (6.4) and

using a mode estimate φ̂
(ℓ)
j for task-specific parameters φj as drawn from the ℓth cluster

gives the E-STEP in Subroutine 6.3. We may also omit the prior term logp( φ̂
(ℓ)
j | θ

(ℓ) ) as

it arises as an implicit prior resulting from truncated gradient descent, as explained in
Section 6.3 of Grant et al. (2018).

6.6 Experiments: Task-agnostic continual few-shot regression & clas-
sification

By treating the assignment of tasks to clusters as latent variables, the algorithm of Sec-
tion 6.5 can adapt to a changing distribution of tasks, without any external information to
signal distribution shift (i.e., in a task-agnostic manner). Here, we present our main experi-
mental results on both a novel synthetic regression benchmark as well as a novel evolving
variant of miniImageNet, and confirm the algorithm’s ability to adapt to distribution shift
by spawning a newly specialized cluster.
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(a) polyno-
mial

(b) sinu-
soid

(c) saw-
tooth

Figure 6.4: The diverse set of periodic func-
tions used for few-shot regression in Sec-
tion 6.6.

(a) plain (b) blur (c) night (d) pencil

Figure 6.5: Artistic filters (b-d) applied to
miniImageNet (a) to ensure non-homogeneity of
tasks in Section 6.6.

High-capacity baselines. As an ablation, we compare to the non-uniform parametric
mixture proposed in Section 6.3 with the number of components fixed at the total number
of task distributions in the dataset (3). We also consider a uniform parametric mixture
in which each component receives equal assignments; this can also be seen as the non-
uniform mixture in the infinite temperature (τ) limit. Note that our meta-learner has
a lower capacity than these two baselines for most of the training procedure, as it may
decide to expand its capacity past one component only when the task distribution changes.
Finally, for the large-scale experiment in Section 6.6, we compare with three recent meta-
learning algorithms that report improved performance on the standard miniImageNet
benchmark of Section 6.3, but are not explicitly posed to address the continual learning
setting of evolving tasks: MT-net (Lee and Choi 2018), PLATIPUS (Finn, Xu, et al. 2018),
and VERSA (Gordon et al. 2019).

Continual few-shot regression

We first consider an explanatory experiment in which three regression tasks are presented
sequentially with no overlap. For input x sampled uniformly from [−5,5], each regression
task is generated, in a similar spirit to the sinusoidal regression setup in Finn, Abbeel,
et al. (2017), from one of a set of simple but distinct one-dimensional functions (polyno-
mial Fig. 6.4a, sinusoid wave Fig. 6.4b, and sawtooth wave Fig. 6.4c). For the experiment
in Fig. 6.6 and Fig. 6.7, we presented the polynomial tasks for 4000 iterations, followed by
sinusoid tasks for 3000 iterations, and finally sawtooth tasks. Additional details on the
experimental setup can be found in Appendix B.1.

Results: Distribution shift detection. The cluster responsibilities in Fig. 6.7 on the
meta-test dataset of tasks, from each of the three regression types in Fig. 6.4, indicate that
the nonparametric algorithm recognizes a change in the task distribution and spawns a
new cluster at iteration 4000 and promptly after iteration 7000. Each newly created cluster
is specialized to the task distribution observed at the time of spawning and remains as
such throughout training, since the majority of assignments for each type of regression
remains under a given cluster from the time of its introduction.
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Figure 6.6: Results on the evolving dataset of few-shot regression tasks (lower is better). Each
panel (row) presents, for a specific task type (polynomial, sinusoid or sawtooth), the average meta-
test set accuracy of each method over cumulative number of few-shot episodes. We additionally
report the degree of loss in backward transfer (i.e., catastrophic forgetting) to the tasks in each
meta-test set in the legend; all methods but the nonparametric method experience a large degree
of catastrophic forgetting during an inactive phase.
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Figure 6.7: Task-specific per-cluster meta-test responsibilities γ (ℓ) for both active and unspawned
clusters. Higher responsibility implies greater specialization of a particular cluster (color) to a
particular task distribution (row).

Results: Improved generalization and slower degradation of performance. We inves-
tigate the progression of the meta-test mean-squared error (MSE) for the three regression
task distributions in Fig. 6.6. We first note the clear advantage of non-uniform assignment
both in improved generalization, when testing on the active task distribution, and in
slower degradation, when testing on previous distributions. This is due to the ability of
these methods to modulate the transfer of information in order to limit negative transfer.
In contrast, the uniform method cannot selectively adapt specific clusters to be responsible
for any given task, and thus inevitably suffers from catastrophic forgetting.
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Figure 6.8: Results on the evolving dataset of filtered miniImageNet few-shot classification tasks
(higher is better). Each panel (row) presents, for a specific task type (filter), the average meta-test
set accuracy over cumulative number of few-shot episodes. We additionally report the degree of
loss in backward transfer (catastrophic forgetting, CF) in the legend. This is calculated for each
method as the average drop in accuracy on the first two tasks at the end of training (lower is
better; U.B.: upper bound).

The adaptive capacity of our nonparametric method allows it to spawn clusters that
specialize to newly observed tasks. Accordingly, even if the overall capacity is lower than
that of the comparable non-uniform parametric method, our method achieves similar or
better generalization, at any given training iteration. More importantly, specialization
allows our method to better modulate information transfer as the clusters are better
differentiated. Consequently, each cluster does not account for many assignments from
more than a single task distribution throughout training. Therefore, we observed a
significantly slower rate of degradation of the MSE on previous task distributions as new
tasks are introduced. This is especially evident from the performance on the first task in
Fig. 6.6.

Continual few-shot classification

Next, we consider an evolving variant of the miniImageNet few-shot classification task. In
this variant, one of a set of artistic filters are applied to the images during the meta-training
procedure to simulate a changing distribution of few-shot classification tasks. For the
experiment in Figs. 6.8 and 6.9 we first train using images with a “blur” filter (Fig. 6.5b)
for 7500 iterations, then with a “night” filter (Fig. 6.5c) for another 7500 iterations, and
finally with a “pencil” filter (Fig. 6.5d). Additional details on the experimental setup can
be found in Appendix B.1.

Results: Meta-test accuracy. In Fig. 6.8, we report the evolution of the meta-test accu-
racy for two variants of our nonparametric meta-learner in comparison to the parametric
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Figure 6.9: Task-specific per-cluster meta-test responsibilities γ (ℓ) for both active and unspawned
clusters. Higher responsibility implies greater specialization of a particular cluster (color) to a
particular task distribution (row).

baselines introduced at the start of the section, high-capacity baselines. The task-agnostic
variant is the core algorithm described in previous sections, as used for the regression tasks.
The task-aware variant augments the core algorithm with a cool-down period that prevents
over-spawning for the duration of a training phase. This requires some knowledge of the
duration which is external to the meta-learner, thus the task-aware nomenclature (note
that this does not correspond to a true oracle, as we do not enforce spawning of a cluster;
see Appendix B.1 for further details).

It is clear from Fig. 6.8 that neither of our algorithms suffer from catastrophic forgetting
to the same degree as the parametric baselines. In fact, at the end of training, both of our
methods outperform all the parametric baselines on the first and second task.

Results: Specialization. Given the higher capacity of the parametric baselines and the
inherent degree of similarity between the filtered miniImageNet task distributions (unlike
the regression tasks in the previous section), the parametric baselines perform better on
each task distribution while during its active phase. However, they quickly suffer from
degradation once the task distribution shifts. Our approach does not suffer from this
phenomenon and can handle non-stationarity owing to the credit assignment of a single
task distribution to a specialized cluster. This specialization is illustrated in Fig. 6.9, where
we track the evolution of the average cluster responsibilities on the meta-test dataset from
each of the three miniImageNet few-shot classification tasks. Each cluster is specialized so
as to acquire the majority of a single task distribution’s test set assignments, despite the
degree of similarity between tasks originating from the same source (miniImageNet). We
observed this difficulty with the non-monotone improvement of parametric clustering as a
function of components in Section 4.
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6.7 Related work

Meta-learning. In this work, we show how changes to the hierarchical Bayesian model
assumed in meta-learning (Grant et al. 2018, Fig. 1(a)) can be realized as changes to a
meta-learning algorithm. In contrast, follow-up approaches to improving the performance
of meta-learning algorithms (e.g., Lee and Choi 2018; Finn, Xu, et al. 2018; Gordon et al.
2019) do not change the underlying probabilistic model; what differs is the inference
procedure to infer values of the global (shared across tasks) and local (task-specific)
parameters; for example, Gordon et al. (2019) consider feedforward conditioning while
Finn, Xu, et al. (2018) employ variational inference. Due to consolidation into one set
of global parameters shared uniformly across tasks, none of these methods inherently
accommodate heterogeneity or non-stationarity.

Continual learning. Techniques developed to address the catastrophic forgetting prob-
lem in continual learning, such as elastic weight consolidation (EWC) (Kirkpatrick et
al. 2017), synaptic intelligence (SI) (Zenke et al. 2017), variational continual learning
(VCL) (Nguyen et al. 2017), and online Laplace approximation (Ritter, Botev, et al. 2018)
require access to an explicit delineation between tasks that acts as a catalyst to grow model
size, which we refer to as task-aware. In contrast, our nonparametric algorithm tackles
the task-agnostic setting in which the meta-learner recognizes a latent shift in the task
distribution and adapts accordingly.

6.8 Conclusion

Meta-learning is a source of learned inductive bias. Occasionally, this inductive bias is
harmful because the experience gained from solving a task does not transfer. In this
chapter, we present an approach that allows a probabilistic meta-learner to explicitly
modulate the amount of transfer between tasks, as well as to adapt its parameter dimen-
sionality when the underlying task distribution evolves. We formulate this as probabilistic
inference in a mixture model that defines a clustering of task-specific parameters. To
ensure scalability, we make use of the recent connection between gradient-based meta-
learning and hierarchical Bayes (Grant et al. 2018) to perform approximate maximum a
posteriori (MAP) inference in both a finite and an infinite mixture model. This chapter is a
first step towards more realistic settings of diverse task distributions, and crucially, task-
agnostic continual learning. The approach stands to benefit from orthogonal improvements
in posterior inference beyond MAP estimation (e.g., variational inference (Jordan et al.
1999), Laplace approximation (MacKay 1992a), or stochastic gradient Markov chain Monte
Carlo (Metropolis and Ulam 1949)) as well as scaling up the neural network architecture.
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Part III

Computational modeling of neural
networks
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Chapter 7

Gaussian process surrogate models

The work described in this chapter is in preparation as Michael Y. Li, Erin Grant, and Thomas L Griffiths
(2022). “Gaussian process surrogate models for neural networks”. In: arXiv: 2208.06028. An earlier
version of this work appeared as Michael Y. Li, Erin Grant, and Thomas L Griffiths (2021). “Meta-learning
inductive biases of learning systems with Gaussian processes”. In: Proceedings of the NeurIPS Workshop on
Meta-Learning.

https://arxiv.org/abs/2208.06028
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7.1 Introduction

Deep learning systems are ubiquitous in machine learning but sometimes exhibit unpre-
dictable and often undesirable behavior when deployed in real-world applications (Geirhos,
Jacobsen, et al. 2020; D’Amour et al. 2020). This gap between idealized and real-world
performance stems from a lack of principles guiding the design of deep learning systems.
Instead, deep learning practitioners often rely upon a set of heuristic design decisions
that are inadequately tied to a system’s behavior (Dehghani et al. 2021), driving calls for
explainability, transparency, and interpretability of deep learning systems (Lipton 2016;
Doshi-Velez and Kim 2017; Samek et al. 2017) especially as these systems are more widely
applied in everyday life (Bommasani et al. 2021).

Machine learning is not unique in seeking to understand a complex system whose
inputs and outputs are observable but whose internal processes are opaque—this chal-
lenge occurs across the empirical sciences and engineering. An explanatory tool that is
foundational across these disciplines is that of modeling, that is, representing a complex
and opaque system with a simpler one that is more amenable to interpretation.* Modeling
makes precise assumptions about how a systemmay operate while abstracting away details
that are irrelevant for a given level of understanding or a given downstream use case.
These properties are valuable for a framework for understanding deep learning as they
are in other scientific and engineering disciplines.

As the popularity of deep learning has grown, a number of proposals have been made
for modeling these systems. Numerous mathematical models of deep learning have been
developed (Roberts et al. 2022), and some surprising phenomena, such as adversarial
examples (Szegedy et al. 2014), have been captured with a mathematical analysis (Ilyas,
Santurkar, et al. 2019). However, existing mathematical models, which are limited to
well-understood mathematical tools, are unable to capture the properties of machine
learning systems as applied in practice (Nakkiran 2021). Beyond mathematical models,
localized models have aimed to explain the predictions of machine learning systems on a
per-example basis (Ribeiro et al. 2016; Koh and Liang 2017; Zhou et al. 2022; Ilyas, Park,
et al. 2022), but these approaches are, by construction, only partial explanations of the
behavior of the end-to-end system.

What might an alternative modeling approach—one that captures salient aspects of
applied systems in a global fashion—look like? We appeal to two domains for inspiration.
In engineering design, surrogate models (Wang and Shan 2006) emulate the input-output
behavior of a complex physical system, allowing practitioners to simulate effects that are
consequential for design or analysis without relying on costly or otherwise prohibitive
queries from the system itself. In cognitive science, cognitive models (Sun 2008; McClelland
2009) describe how unobservable mental processes such as memory or attention produce
the range of people’s observed behaviors. Both domains abstract away internal details,

*Though some architectural components of a deep learning system are commonly referred to as a model—as
in “neural network model”—we use modeling to refer to the methodology of idealizing a complex system as
a simpler one.
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Figure 7.1: Outline of the surrogate modeling approach. We learn a Gaussian process surrogate
model for a neural network family applied to a task family by learning kernel hyperparameters
from aggregated neural network predictions across datasets. We interpret the learned kernel
to derive insights into the properties of the neural network family; for example, biases towards
particular frequencies (see Section 7.4), or expected generalization behavior on a new dataset (see
Section 7.4).

such as real-world constraints on a physical system or neural circuitry in the brain, instead
treating the target process or system as a black box. At the same time, both surrogate and
cognitive models are constructed to replicate the end-to-end behavior of the target system
and thus are complete where localized explanations are not.

We explore an analogous approach to investigate deep learning systems by construct-
ing surrogate models for neural networks. We first must choose an appropriate family of
surrogate models. GPs are a natural choice, with appealing theoretical properties specific
to the study of NNs; namely, certain limiting cases of NN architectures are realizable as
GPs (Neal 1996; Li and Liang 2018; Jacot et al. 2018; Allen-Zhu et al. 2019; Du et al. 2019).
However, in contrast to these analytic approaches, we aim to explore the scientific and
practical utility of idealizing NNs with GPs using a data-driven approach to estimating
the kernel functions. Separately, the learned kernel of a GP is often interpretable (Wilson
and Adams 2013); we use this fact to study the prior over functions represented by a
GP that accounts for observed neural network behavior in less-restricted settings. With
this approach, we capture a number of known phenomena, including a bias towards low
frequencies and pathological behavior at initialization, in a cohesive framework. Finally,
we demonstrate the practical benefits of this framework by predicting the generalization
behavior of models in an NN family.

7.2 Background

In surrogate modeling, we approximate a complex black-box function with a simpler
surrogate model that is more amenable to interpretation. Surrogate models have many
applications: In optimization, they are often used to approximate queries from expensive-
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to-evaluate functions (Snoek et al. 2012; Shahriari et al. 2016; Xue, Beatson, et al. 2020); in
other applications, surrogate models have been used to gain insight into large physical
systems, such as the global fluxes of energy and heat over the earth’s surface (Camps-Valls
et al. 2015).

Cognitive models have been used by cognitive scientists since the 1950s to gain in-
sight into another black box—the human mind (Newell et al. 1958). Bayesian models of
cognition, in particular, offer a way to describe the inductive biases of learning systems in
the form of a prior distribution (Griffiths et al. 2010). As deep NNs have become more
prevalent in machine learning, researchers have started to use methodologies from cogni-
tive science to interrogate otherwise opaque models (Ritter, Barrett, et al. 2017; Geirhos,
Rubisch, et al. 2019; Hawkins et al. 2020). The success of these efforts suggests that
other methods from cognitive science—namely, cognitive modeling—may be applicable to
machine learning systems.

Gaussian processes (GPs; Rasmussen and Williams 2006) are probabilistic models
that specify a distribution over functions. A GP models any finite set of N observations
as a multivariate Gaussian distribution on R

D, where the nth point is interpreted as the
function value, f (xn), at the input point xn. GPs are fully characterized by a mean function
m(x), usually taken to be degenerate asm(x) = 0,∀x, and a positive-definite kernel function
k(x, x′) that gives the covariance between f (x) and f (x′) as a function of x and x′.

Formally, let X be a matrix of inputs and y be a vector of output responses. Due
to the marginalization properties of the Gaussian distribution, the posterior predictive
distribution of a GP for a new input x∗, conditioned on dataset D = {X,y} and assuming
centered Gaussian observation noise with variance σ2, is Gaussian with closed-form
expressions for the mean and variance:

E[f (x∗) | D] =m(x∗) +k∗
T (K+σ2I)−1(y−m(x∗)) (7.1)

V[f (x∗) | D] = k(x∗,x∗)−k∗T (K+σ2I)−1k∗ (7.2)

whereK is theN ×N Grammatrix of pairwise covariances, k(xi ,xj ), and k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]
T .

The kernel function k specifies the prior on what kind of functions might be represented
in observed data; for example, it can express expectations about smoothness or periodicity.
Parametric kernels have hyperparameters θ that affect this prior and thus the posterior
predictive. These kernel hyperparameters can be adapted to the properties of a dataset,
thus defining a prior over functions that is appropriate for that context. GP kernel
hyperparameters are typically learned via gradient-based optimization to maximize the GP
marginal likelihood, p(y | X). Again due to properties of the GP, this marginal likelihood
has the closed-form expression:

logp(y | X) = −1
2
yT

(

Kθ +σ2
n I

)−1
y− 1

2
log |Kθ +σ2

n I | −
n

2
log2π , (7.3)

We write the Grammatrix asKθ to indicate that it depends on kernel hyperparameters via
a particular parameterization. In this work, we make use of two kernel parameterizations:
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theMatérn kernel (MK; Matérn 1960) and the spectral mixture kernel (SMK; Wilson and
Adams 2013). Specifically, following Snoek et al. (2012), we use the automatic relevance
determination (ARD) 5/2 MK, given by:

k(x,x′) = θ0

(

1+

√

5r2(x,x′) + 5
3r

2(x,x′)

)

exp

{

−5
√

5r2(x,x′)

}

r2(x,x′) =
D∑

d=1

(xd − x′d)2/θ2
d ,

(7.4)

where each θd is the lengthscale parameter for dimension d, which captures how smoothly
the function varies along that dimension. The SMK is derived by modeling the spectral
density of a kernel as a scale-location mixture of Gaussians and computing the Fourier
transform of the mixture (Wilson and Adams 2013), giving:

k(τ) =
Q
∑

q=1

wq cos
(

2π2τTµq
)

P∏

p=1

exp
{

−2π2τ2pv
(p)
q

}

. (7.5)

Here, k(τ) gives the covariance between function values f (x) and f (x′) whose correspond-
ing input values x and x′ are a distance τ apart. For a Q-component spectral mixture,

w = {wi}
Q
i=1 are scalar mixture weights, and µi ∈ RP and vi ∈ RP are component-wise Gaus-

sian means and variances, respectively. Appendix B.3 details how the hyperparameters of
the MK and the SMK control the respective priors on functions.

7.3 Learning a Gaussian process surrogatemodel from neural network
predictions

In this section, we detail the goals and approach of the surrogate modeling framework. In
brief, our approach involves collecting neural network predictions across a set of neural
network models and across a set of datasets, and estimating GP kernel hyperparameters
from these predictions by maximizing the marginal likelihood across model-and-dataset
pairs; see Fig. 7.1 for a schematic.

Formal framework

Our goal is to capture shared properties among a family of neural networks models F
as applied to a family of datasets D. Here, a model family F is a set of neural networks
{g0, . . . ,gR} that share in design choices (e.g., architecture, training procedure, random
initialization scheme) but differ in quantities that are randomized prior to or during
training (e.g., parameter initializations).† Similarly, a dataset family D is a set of datasets

†We consider both untrained and trained neural networks, where an untrained network is a special case
of a trained network with the number of training iterations at 0; we thus describe the framework only for
trained networks.
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hyperparameters : model family F,
dataset family D,
model-dataset count T ,
GP parameterization θ

// Step 1 in Fig. 7.1

for t ∈ 1 . . .T do
Sample a model, grt ∼Unif(F)
Sample a dataset, Dst

∼Unif(D)

Train the model, gfitrt ← train(grt ,D
train
st

)

Evaluate gfitrt (D
eval
st

)

end
// Step 2 in Fig. 7.1

Optimize Objective 7.6 for θ∗

// Step 3 in Fig. 7.1

Analyze θ∗ via Pθ∗

Algorithm 7.2: Training and evaluation of the GP surrogate model described in Section 7.3.

{D0, . . . ,DS} that share some underlying structure as in multi-task and meta-learning
settings (Caruana 1997; Hospedales et al. 2020). We consider supervised learning, in
which each dataset consists of inputs and targets, D = (X,y). Importantly, we fit surrogate
model parameters θ to a behavioral dataset of the model family evaluated on the dataset
family, and not the ground truth datasets themselves.

Data. We construct a component of the surrogate model training dataset as follows: We
sample a model index r and a dataset index s. The corresponding dataset is split into
a training set and an evaluation set, Ds = Dtrain

s ∪Deval
s . The corresponding model gr is

fit the training set Dtrain
s = (Xtrain

s ,ytrains ) according to the training procedure specified

by the choice of model family F, producing gfitr . We then collect the predictions of the

trained model on the evaluation set, gfitr (Xeval
s ), to produce the component (Xeval

s ,gfitr (Xeval
s ))

consisting of the ground truth inputs paired with the neural network behavioral targets
from the evaluation set. We aggregate the ground truth inputs and the neural net-
work behavioral targets across pairs to produce the surrogate model training dataset,
(

(Xeval
s1

,gfitr1 (X
eval
s1

)), . . . , (Xeval
sT

,gfitrT (X
eval
sT

))
)

.

Surrogate model. We fit the GP using type-II maximum likelihood estimation. Let

Pθ(g
fit(Xeval) | Xeval) be the GPmarginal likelihood of the dataset component

(

Xeval,gfit(Xeval)
)

under a GP with kernel hyperparameters θ, as given in Eq. (7.3). We fit the surrogate
model jointly across model-and-task pairs in the surrogate model training dataset by
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Figure 7.3: Demonstration: Comparing learned GP priors with NN priors. Samples from GP
prior (right) with kernel hyperparameters inferred from the predictions of NN families (left).
GPs are flexible enough to capture properties of each NN family; for example, the samples from
the learned GP prior reflect the quickly varying behavior of the 32-layer sinusoidal NNs and the
increasing-decreasing behavior of rectifier NNs.

maximizing the joint marginal likelihood with respect to θ:

max
θ

∏

(r,s)

Pθ(g
fit
r (Xeval

s )|Xeval
s ) . (7.6)

By optimizing Objective 7.6, we encourage the kernel hyperparameters θ to capture the
implicit prior distribution over functions induced by the models in the family F as applied
to the datasets in the family D. Algorithm 7.2 gives the complete surrogate model training
and evaluation process.

Why use (GP) surrogate models for NNs?

By estimating a prior over functions for a neural network family directly from neural
network behavior, we aim to capture shared properties that determine the model family’s
behavior on data, i.e., the model family’s inductive biases. There is strong evidence that
the inductive biases of neural networks (e.g., invariances and equivariances, Markovian
assumptions, compositionality) and not just data, play an important role in their perfor-
mance (Poggio, Mhaskar, et al. 2017; Tiňo et al. 2004; Lin and Tegmark 2017; Fukushima
2004; Werbos 1988). Moreover, deep NNs are highly overparametrized models that can
nevertheless generalize well, prompting interest in implicit regularization mechanisms
that bias NNs towards learning simpler solutions (Soudry et al. 2018; Poggio, Kawaguchi,
et al. 2018; Neyshabur, Bhojanapalli, et al. 2017). More broadly, the extrapolation behavior
of any learning machine is underdetermined by data alone and therefore depends on its
inductive biases (Mitchell 1980).

GPs, in particular, offer several advantages as surrogate models of NNs. Firstly, GPs
are flexible models that are also often interpretable in the sense that the learned hy-
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perparameters can provide insights into properties of the datasets on which they are
trained (Wilson and Adams 2013). As an example, many covariance functions have sep-
arate lengthscales for each input dimension. An inverse lengthscale captures an input
dimension’s “importance;” in Section 7.4, we demonstrate that we can use these length-
scales to predict generalization behavior, suggesting that the GP surrogate representation
is practically useful in automating model selection.

Secondly, the use of GP surrogate models is also motivated by the theoretical con-
nections between GPs and NNs. Neal (1996) showed that a prior over the parameters
of certain single-layer multi-layer perceptrons (MLPs) converges to a GP as the MLP’s
width approaches infinity, and recent works (Lee, Bahri, et al. 2017; Matthews et al. 2018;
Novak, Xiao, Bahri, et al. 2019; Garriga-Alonso et al. 2019; Yang 2019) have extended
this correspondence to deep MLPs and more modern NN architectures. Connections
between GPs and NNs can provide insight because they transform the priors implicit in
NNs designs into explicit priors expressed through a GP. However, our strategy to derive
such a connection differs from this prior theoretical work that derives analytic kernels for
limiting cases of NNs—we take an empirical approach by learning GP kernels directly
from the predictions of arbitrary classes of finite NNs.

Lastly, GPs have a tractable marginal likelihood. Probabilistic models allow us to
express inductive biases in the form of an explicit prior distribution, but the marginal
likelihood is intractable for most complicated Bayesian models. In contrast, for GPs, the
marginal likelihood has a closed form expression, which means that we can optimize it
directly instead of resorting to approximations.

Demonstration: Comparing learned GP priors with NN priors

We briefly demonstrate the surrogate modeling framework of Section 7.3. As a simple
sanity check, we verify that GP surrogates learned from varying NN families exhibit
meaningful variation in behavior. To do this, we learn GP priors from varying NN families
and compare the learned priors with the NN families.

NNhyperparameters. We consider ensembles of 50 randomly initialized NNs with ReLU
or sin activations and 16 or 32 hidden layers of 128 hidden units each. We randomly
initialize the weights about zero with weight variance σ2

w = 1.5 and bias variance σ2
b = 0.05.

GP surrogate. For each ensemble, we learn the hyperparameters of a randomly initial-
ized SMK with Q = 10 mixture components by optimizing Objective 7.6 for 350 iterations
with batch gradient descent and the adaptive momentum (Adam) optimizer (Kingma and
Ba 2015) with a learning rate η = 0.1. We choose the kernel hyperparameters with the
highest objective value across three random initializations.

Results. We plot NN predictions and samples from the learned GP priors in Fig. 7.3. The
learned GP captures the periodicity of the sinusoidal neural networks (sinusoidal NNs),
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Figure 7.4: Capturing spectral bias in neural networks. (Top) Neural network predictions as
training progresses on the sum-of-sines target function described in Section 7.4. (Bottom) Spec-
tral mixture kernel fit to neural network predictions as training progresses. The kernel reveals a
spectral bias for this neural network family, with the range of spectral frequencies expressed in
the kernel increasing with the number of iterations of training.

and partially captures the increasing-decreasing behavior of rectifier NNs about a cusp;
though, due to the SMK parameterization, it cannot capture the discontinuity at the cusp.
The GP also captures differences in depths for the sinusoidal NNs: The GP prior samples
for the 32-layer networks are quickly varying, indicating shorter lengthscales have been
learned. Taken together, the results of this demonstration show that GP surrogates can
capture certain NN behavior.

7.4 Experiments

We provide a series of demonstrations of the value of the approach of Section 7.3. Each
experiment aims to investigate the properties of one or more neural network families,
specified by neural network (NN) hyperparameters, as evaluated on one or more dataset
families, parameterized as target functions, by analyzing the corresponding Gaussian
process (GP) surrogate model. In Section 7.4, we capture previously established NN
phenomena, while in Section 7.4, we predict NN generalization behavior.

Reproduction: Capturing spectral bias in NNs

Rahaman et al. (2019) demonstrated that deep rectifier NNs exhibit spectral bias, the
preference to learn lower frequencies in the target function before higher frequencies.
To demonstrate this, the authors studied the Fourier spectrum of rectifier NNs fit to a
sum of sinusoidal functions of varying frequencies. In this section, we take an alterna-
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tive approach: We learn kernels from NN predictions at various stages of training and
demonstrate that the evolution of these learned kernels captures the spectral bias.

NN hyperparameters. As in Rahaman et al. (2019), we train an NN with 6 hidden layers
of 256 units and ReLU activations using full-batch gradient descent with Adam and a
learning rate of η = 3× 10−4.

Target function. The target functions are sums of sine functions with frequencies in
(5,10, . . . ,45,50) and phases drawn from U (0,2π), evaluated at 200 points evenly spaced
between [0,1], as in Rahaman et al. (2019).

GP surrogate. We learn the parameters of a spectral mixture kernel (SMK) with Q = 10
mixture components by optimizing Objective 7.6 with Adam for 350 iterations with a
learning rate of η = 0.1. Since the marginal likelihood of the SMK is multi-modal in its
frequency parameters, we repeat this optimization for three different random initializa-
tions of the kernel parameters and choose the hyperparameters with the largest marginal
likelihood value (the value of Objective 7.6). We randomly initialize the length-scales vi by
sampling from a truncated normal distribution whose variance depends on the maximum
distance between input points. We set the signal variances w to the variance of the target
function values divided by the number of mixture components. The frequency hyperpa-
rameters of the SMK are sometimes initialized by sampling from a uniform distribution
whose upper limit is the Nyquist frequency (Wilson and Adams 2013); since this target
function’s largest frequency is smaller than the Nyquist frequency, we instead set a smaller
frequency as the upper limit.

Results. Fig. 7.4 displays the NN predictions and the kernel of the corresponding GP
surrogate at different iterations of NN training. The kernel function, which is given in
Eq. (7.5), reflects how the similarity between function values varies with the distance
between their input points.‡ The structure of the learned kernel reflects the properties
of the NN family: Initially, the learned kernel only captures low frequencies in the NN’s
predictions—reflected in the long period of the kernel—consistent with the spectral bias
of Rahaman et al. (2019). However, as training progresses, the periodicity of the learned
kernel reflects both low and high frequencies.

Reproduction: Depth pathologies in randomly initialized NNs

Hyperparameter selection in NNs is not always theoretically grounded. Many recent
studies thus characterize how different hyperparameter choices (e.g., depth, width) affect
the properties of NNs at random initialization (Schoenholz et al. 2017; Yang 2019; Xiao

‡Since the SMK is a stationary covariance function, we graph against the distance between input points
rather than the absolute value of the input points themselves.
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Figure 7.5: Depth pathologies in randomly initialized neural networks. Predictions of neural
networks (left) from neural network families of different activations (rows) and varying depths
(columns); mean and standard error of the covariance of the corresponding surrogate model
kernels (right). The covariance is aggregated across 10 kernels learned from 10 different 50-
member neural network ensembles from a given family. Greater depth results in kernels with
shorter lengthscales, with this pathology emerging earlier in rectifier NNs; this result is consistent
with prior work on pathologies of deep neural networks.

et al. 2018). Towards that end, recent work showed that increasing depth could actually
induce pathologies in randomly initialized NNs (Labatie 2019; Duvenaud, Rippel, et al.
2014). For example, Duvenaud, Rippel, et al. (2014) proved that increasing depth in a
certain class of infinitely wide NNs produces functions with ill-behaved derivatives. As a
result, these functions are quickly varying in the input space.

We empirically study a similar pathology—quick variation in input space—that emerges
in randomly initialized, finite-width, finite-depth NNs. To do this, we fit GP surrogates
to randomly initialized NN ensembles of varying depths and activation functions and
inspect how the learned kernels change with depth. If NNs exhibit this pathology, the
learned covariance will decay sharply with distance.

NN hyperparameters. We consider families of NNs of varying activation functions (sin
(asin(bx+ c)) and ReLU (max(0,x))) and varying depths (from 16 to 512 layers). From each
family, we sample an ensemble of 50 randomly initialized NNs, each with 128 hidden
units in each layer. We randomly initialize NN weights about zero with weight variance
σ2
w = 1.5 and bias variance σ2

b = 0.05.

GP surrogate. We sample 10 ensembles of 50 randomly initialized NNs, and learn an
SMK kernel by optimizing Objective 7.6 separately for each ensemble, running Adam
(Kingma and Ba 2015) for 750 iterations with a learning rate of η = 0.1. We choose the
kernel hyperparameters with the highest mean marginal likelihood among three random
initializations. To ensure our results are robust across random ensembles, we consider
an averaged learned kernel: Suppose we have n kernels, k1(·), . . . , kn(·), learned from n
different ensembles from the same family. The average learned kernel, k̄, is defined as
k̄(τ) = 1

n

∑N
i=1 ki(τ).
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Results. Fig. 7.5 plots the average learned kernels for NN families with varying acti-
vation functions and depths, as well as the predictions of those NN families. Across
both activation functions, the learned kernels reveal a pathology: For large depths, the
covariance (Fig. 7.5, right) sharply decays towards zero with distance. The NN predictions
(Fig. 7.5, left) explain this property of the learned kernels: At large depths, the deep
NNs vary quickly in the input domain, which causes the SMK to learn short lengthscales.
Interestingly, this pathology emerges at different depths for different activation functions:
We see rectifier NNs exhibit this pathology with 256 layers while sinusoidal NNs exhibit
this pathology with 512 layers.

Ranking NN generalization with the GP marginal likelihood

In previous sections, we demonstrated that GP surrogate models could yield insight into
NN behavior. The benefits of GPs extend beyond this. Since the GPmarginal likelihood has
a closed form expression, many have advocated for using the marginal likelihood in model
selection and as an indicator of expected generalization performance (MacKay 1992a). In
this section, we leverage the learned GP surrogate to rank NNs by their generalization error
with the GP marginal likelihood. In particular, we learn GP surrogates from different NNs
at random initialization, and we then study if the marginal likelihood of the surrogates
can rank the NNs by test error after training. In the following experiments with varying
classes of NN families, we find that we can indeed predict test error using the marginal
likelihood of the training set under the learned surrogate GP.

The idealized case: Large-width NNs

Before we consider arbitrary NN families, we check that the marginal likelihood is pre-
dictive in an idealized setting. In particular, we consider large-width NNs whose infinite-
width analogs are equivalent to GPs (Lee, Bahri, et al. 2017). If the marginal likelihood is
not predictive in this case in which the kernel function can be analytically determined, it is
unlikely to be useful in a general setting where the kernel is learned and GPs approximate
NNs priors but are not equivalent.

NN hyperparameters. We consider NNs with sin or Gauss error function (erf)§ activa-
tions and 2 hidden layers of 1024 units each. We randomly initialize the weights about
zero with weight variance σ2

w = 1.5 and bias variance σ2
b = 0.05. We train an ensemble of

50 randomly initialized NNs from each family using full-batch (vanilla) gradient descent
with learning rates of η ∈ {0.01,0.1}.

Target function. The target function is sin(0.5x).

§Here, erf is defined as a erf(bx) + c, where erf(x) = 2√
π

∫ x

0
e−t

2

dt.
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Figure 7.6: Ranking generalization from MLL in large-width NNs. Mean and standard error
of the test MSE of large-width sinusoidal and erf NNs trained with learning rates η = 0.01 (left)
and η = 0.1 (right) on the target function of Section 7.4. The MLL of the target function under
the surrogate model corresponding to the limiting kernel for each model family is shown in the
legend. Consistent with expectations, the model family whose surrogate assigns higher MLL to
the target function achieves lower test error for both values of η.

GP surrogate. We do not learn a kernel from NN predictions as in previous sections.
Instead, we use the kernels corresponding to the infinite width analogs of the NNs using
the neural-tangents package (Novak, Xiao, Hron, et al. 2020).

Results. Fig. 7.6 compares the performance of these NN families along with the marginal
likelihood of the target function under the surrogate model. The performance (mean-
squared error (MSE) on the test set) is averaged across each ensemble of NNs. The marginal
log-likelihood (MLL) of the target function is higher for the better-performing NN family.

Small width neural networks and learning the kernel

In the previous experiment, we showed that the marginal likelihood could be predictive
when we consider large-width NNs and when we use a corresponding, analytically derived
kernel. Is the marginal likelihood predictive when we consider smaller-width NNs and
when we learn the kernel empirically?

NN hyperparameters. We consider ensembles of width 16, depth 4 NNs from two
families: NNs with sin activations and NNs with ReLU activations. We randomly initialize
weights about zero with weight variance σ2

w = 1.5 and bias variance σ2
b = 0.05. We train an

ensemble of 50 randomly initialized NNs from each family on the target functions using
full-batch gradient descent with a learning rate of η = 0.1.

Target function. The target function families mirror the NN model families: We collect
predictions from randomly initialized, width 16, depth 4 NNs with sin or ReLU activations.
These target functions are a useful sanity check, as the inductive biases of the model
families are perfectly suited for a target function family.
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Figure 7.7: Ranking generalization from MLL in small-width NNs. Mean and standard error
of test MSE (left) of small-width sinusoidal and rectifier NN ensembles on sin (top) and ReLU
(bottom) target function families, with the target functionMLL under the surrogate learned from
each model family in the legend. Covariance (right) of surrogate kernels alongside data kernels
learned from the sin (top) and ReLU (bottom) target function families. Even in the small-width
regime and when the kernel is learned, the model family whose surrogate assigns a higher MLL
to the target function attains lower error (left); the surrogate kernel learned from the better-
performing model family better matches the data kernel (right).

GP surrogate. For each ensemble, we learn the hyperparameters of an SMK with Q = 5
mixture components by optimizing Objective 7.6 across the ensemble. To optimize, we
randomly initialize the kernel hyperparameters and run Adam for 250 iterations with
a learning rate of η = 0.1. We initialize the frequency parameters by sampling from a
uniform distribution whose upper limit is the Nyquist frequency. We choose the kernel
hyperparameters with the highest objective value across three random initializations.

Results. In Fig. 7.7, we compare the performances of the two NN families on the two
target function families. We also display the kernels learned from NN behavior (sin
surrogate kernel or ReLU surrogate kernel) and learned from the target function family (data
kernel) directly. Across both experiments, the MLL averaged across the target function
family of the better-performing NN family is higher. In general, the structure of a learned
kernel reflects the properties of the learned GP prior, and so we can compare kernels to
assess similarity between target function and NN families. We see that the data kernel
provides a better qualitative match to the kernel of the better-performing model family.
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Figure 7.8: Ranking generalization performance from MLL across different learning algo-
rithms and architectures. Each panel displays mean and standard error of test MSE of an NN
family trained on the target function sin(0.5x) with noise; legend displays MLL of the training
data under the surrogate for one of two NN families: 1-layer (256 hidden units) sinusoidal or
rectifier NNs (top)); 3-layer (256 hidden units) sinusoidal or rectifier NNs (bottom). NNs are
trained with batch gradient descent with Adam (learning rates η = 0.0003, η = 0.0003) or vanilla
batch gradient descent (η = 0.01). Across architectures and learning algorithms, the NN family
whose surrogate assigns higher MLL to the target function achieves lower test error.

Systematic study of various learning rates and architectures

In this last experiment on ranking generalization performance, we establish that Gaussian
process surrogates reliably rank performance across a range of learning rates and gradient
descent algorithms.

NN hyperparameters. We consider ensembles of randomly initialized NNs with sin
or ReLU activations and 1 or 3 hidden layers with 256 hidden units in each layer. We
randomly initialize the weights about zero with weight variance σ2

w = 1.5 and bias variance
σ2
b = 0.05. We train 50 randomly initialized NNs from each family using either vanilla

full-batch gradient descent with a constant learning rate of η = 0.01, or Adam (Kingma
and Ba 2015) using learning rates of η ∈ {0.0003,0.003}.

Target function. We consider a target function of sin(0.5x).

GP surrogate. For each ensemble, we learn the hyperparameters of an SMK with Q = 5
mixture components by optimizing Objective 7.6 across the ensemble. To optimize, we
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Figure 7.9: Qualitative connection between lengthscale profile discrepancy and generaliza-
tion gap. Each subfigure compares normalized lengthscales learned from neural network pre-
dictions on validation set (i.e., surrogate lengthscales) after training and normalized lengthscales
learned from training data (i.e., data lengthscales). A lengthscale greater than 1 indicates an
“unimportant” feature. The title indicates the UCI dataset and generalization gap defined in
Fig. 7.10. Data and surrogate lengthscales for some features are different (e.g., features 1, 4, 6), re-
flected in a high generalization gap (left). Data and surrogate lengthscales for the same features
are generally similar, reflected in a low generalization gap (right). This suggests a connection
between the generalization gap and discrepancy between surrogate and data lengthscales.

randomly initialize the kernel hyperparameters and run Adam for 250 iterations with a
learning rate of η = 0.1. We choose the kernel hyperparameters with the highest objective
value across three random initializations. To randomly initialize the frequency parameters,
we uniformly sample from the real-valued interval (0,25].

Results. In Fig. 7.8, we find that the marginal likelihood of the better-performing NN
family is higher. The marginal likelihood depends on the diagonal noise σ2

n added to
the Gram matrix (Eq. (7.3)). We find that our result are robust across three levels of this
diagonal noise (10−3,10−4,10−5). These results suggest we can rank these NN families
when they are not in the asymptotic regime and when we learn the kernel, in contrast
to Section 7.4, as well as when a priori no model family should perform better, unlike
Section 7.4.

Predicting the NN generalization gap with the GP marginal likelihood

In the previous section, we predicted generalization using kernels learned from randomly
initialized NNs. However, some design choices do not affect NN properties at random
initialization but may still strongly influence generalization (e.g., learning algorithm).
Motivated by this, we characterize trained NN properties on the validation set and compare
these properties to the training data. We focus on the validation set because it is more
informative of extrapolation. If the NN extrapolates well, its predictions on the validation
set should be “similar” in some sense to the dataset. On the other hand, significant
discrepancies could indicate poor extrapolation. This intuition motivates our analysis.

In particular, we learn a kernel from the training data and a kernel from NN predic-
tions on a validation set. We then quantitatively compare these kernels by computing
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Figure 7.10: Inverse relationship between generalization error and lengthscale correlation on
UCI datasets. Each point represents the lengthscale correlation (between surrogate and data
lengthscales) and the generalization gap for a neural network ensemble to which the surrogate
model is fit, on a single UCI dataset. Each panel corresponds to a particular neural family; see
Section 7.4 for details about hyperparameters of these families, including architectures. Across
datasets and architectures, a larger lengthscale correlation (i.e., higher similarity between the
data and surrogate representations) corresponds to a lower generalization gap (i.e., better extrap-
olation).

a metric we describe in more detail later. We find that a lower similarity between these
kernels correlates with a larger generalization gap (i.e., poorer extrapolation), defined as
the difference between test error and training error (e.g., Jiang et al. 2020).

NN hyperparameters. We train ensembles of randomly initialized NNs with sigmoid-
weighted linear unit (SiLU) (Elfwing et al. 2018), Gaussian error linear unit (GELU) (Hendrycks
and Gimpel 2016), ReLU (Fukushima 1975; Nair and Hinton 2010), or hyperbolic tangent
(tanh) activations, and two layers of 128 hidden units. We use the LeCun normal initial-
ization with a scale of 1.5 (LeCun, Bottou, et al. 2012). We train 25 NNs with full-batch
gradient descent using Adam with a learning rate of η = 0.003. We want to assess if
our approach can distinguish between NNs with similar training behavior but varying
generalization performance. We train NNs either for a maximum number of iterations, a
hyperparameter, or until training error reaches zero.
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Target functions. We consider a set of naturalistic regression tasks from the UC Irvine
Machine Learning Repository (UCI) dataset (Dua and Graff 2017), spanning a range of
dataset sizes and input dimensions. We split each of the datasets into a 72/8/20 train/-
validation/test split. Both the data input and output are standardized by mean-centering
and dividing by the standard deviation dimension-wise so that the target values and each
dimension of the data input have near zero mean and unit variance. We subsample 2,000
datapoints for datasets with more than 2,000 datapoints, as in Simpson et al. (2021) and
Liu, Sun, et al. (2020).

GP surrogate. We learn a data kernel directly from the training dataset. We also learn
a surrogate kernel from NN predictions on the validation set. In both cases, we use the
Matérn kernel (MK) since the SMK can struggle for higher-dimensional inputs. We learn
a separate lengthscale for each input dimension (i.e., feature) of the data. We denote the
lengthscales for a kernel as its lengthscale profile. We call the data kernel’s lengthscales
the data lengthscales and the surrogate kernel’s lengthscales the surrogate lengthscales. To
quantify the mismatch between NN validation predictions and the training data, we
consider the correlation in lengthscale profiles across features. This is the correlation between
the data and surrogate lengthscales.

Results. Fig. 7.9 gives intuition for our more general result in Fig. 7.10. For two UCI
datasets, we compare the data lengthscales and the surrogate lengthscales for a two-layer
GELU NN. The vertical axis corresponds to (normalized) learned lengthscales for each

input dimension.¶ When the generalization gap is small, the data kernel and surrogate
kernel are similar; the same features have similar lengthscales (Fig. 7.9, right). When the
generalization gap is large, the data kernel and surrogate kernel have discrepancies. For
example, the surrogate lengthscales for features 1 and 6 are larger than 1, but the data
lengthscales for feature 1 and 6 are smaller than 1 (Fig. 7.9, left).

In Fig. 7.10, we summarize our results across different architectures, datasets, and
maximum training iterations. We display the generalization gap against the correlation
in lengthscale profiles across features. The similarity in lengthscale profiles negatively
correlates with generalization gap across a range of architectures and max iterations.
The Pearson correlation coefficients range from -0.856 to -0.528. In Appendix B.3, we
additionally demonstrate that these results are insensitive to outlier datasets by performing
a dataset-sensitivity analysis.

¶For this visualization, we divide the learned lengthscale for each dimension by the difference between the
maximum feature value and minimum feature value for each dimension. By doing so, we can interpret a
lengthscale that is much greater than 1 as suggesting that the NN predictions do not vary much along that
dimension.
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7.5 Discussion

In this chapter, we illustrated the potential of modeling neural networks with Gaussian
process surrogates. We empirically characterized phenomena in neural networks by
interpreting kernels learned directly from neural network predictions, capturing the
spectral bias of deep rectifier networks and pathological behavior in deep, randomly
initialized neural networks. We further demonstrated that Gaussian process surrogates
could predict neural network generalization by ranking test error performance by marginal
and by quantifying the generalization gap via a surrogate-data kernel discrepancy Taken
together, these results suggest that Gaussian process surrogates may be a valuable empirical
tool for investigating deep learning, and future work could aim to use this framework
to complement existing approaches to interpretability (e.g., Ribeiro et al. 2016) and
extrapolation (e.g., Xu, Zhang, et al. 2021).

We note a couple of limitations of our current study. First, though the framework is in
principle applicable to broader settings, we restricted this first exploration to regression
tasks and feed-forward neural network architectures. A broader study of more archi-
tectures on more types of tasks would be challenging due to the need to scale Gaussian
processes but potentially rewarding, as characterizing properties of neural networks as
used in practice is a significant open problem with far-reaching implications (Sejnowski
2020). Second, we learn point estimates of kernel hyperparameters (type II maximum
likelihood; Gelman et al. 2013). Although this is standard, we could infer the posterior
over hyperparameters using Markov chain Monte Carlo (MCMC) or variational inference
(Lalchand and Rasmussen 2020; Murray and Adams 2010; Simpson et al. 2021) to perform
a fully Bayesian analysis. We also could explore a richer set of kernels, such as composi-
tional kernels (Duvenaud, Lloyd, et al. 2013). These directions are exciting avenues for
future work.
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Modern machine learning systems, including deep-learning models, provide new flex-
ibility to build models and solve problems in applied and scientific domains. However,
this flexibility comes with its own cost, as it is now increasingly difficult to understand
the assumptions that underlie these systems. Understanding implicit inductive biases of
machine learning systems is therefore crucial for scientists interested in using machine
learning as a modeling tool in the service of scientific insights; this understanding also
benefits machine learning practitioners interested in improving interpretability and pre-
dictability in applied systems. This dissertation has advanced cognitive analyses as a means
of addressing this challenge, and has developed new connections between paradigms in
cognitive science and machine learning (Part II) that enable behavioral (Part I) and com-
putational (Part III) studies of machine learning systems. In this final section, I highlight
some ensuing directions for future work.

Collecting richer behavioral data from both humans and machines. As argued in
Part I, extrapolation behavior in carefully designed probe tasks is much more reveal-
ing of inductive biases than simple metrics like accuracy. As another example, recent
work (Langlois et al. 2021) operationalized notions of visual selectivity that are explicitly
comparable between cognitive and machine learning systems in order to understand
whether machine learning systems and humans use similar image regions to make classifi-
cation decisions. These works are a start to capturing richer notions of human behavior
than performance or accuracy. In turn, these richer notions can be used as a point of
comparison for machine learning systems—or as an explicit objective to bring machine
learning systems closer to human cognition—and as a starting point for a computational
model of a cognitive phenomenon. Future work has the opportunity to develop richer
experimental protocols that probe specific facets of inductive biases in both machine
learning and human cognitive systems.

Complementing behavioral and black-box analyses of machine learning systems. Ex-
amining inductive biases in machine learning systems on the basis of behavior alone allows
us to avoid the simplifying assumptions present in much theoretical work investigating
implicit inductive bias. However, the behavioral and black-box approaches advanced in
Part I and Part III lose the ability to make use of detailed knowledge about the design
specification of the system as well as internal representations that are available for analysis
(e.g., in the context of neural networks, intermediate-layer activations, or the effect of
targeted perturbations). Future work has the opportunity to make use of more detailed
knowledge about the machine learning system under investigation in order to analyze its
inductive biases more precisely. Understanding machine learning systems at this level of
analysis—closer to neuroscience than higher-level cognition—would allow us to render
explicit assumptions that impact the use of machine learning systems as computational
models in scientific applications, including cognitive science.
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Re-centering inductive bias as a design principle. Because of the fundamental rela-
tionship between inductive bias and extrapolation, we can often guarantee extrapolation
behavior in machine learning systems by designing or determining the inductive biases
that are at play. Much classical and recent work in machine learning has aimed to control
such inductive biases explicitly in the design process by using, for example, object-centric
models to express physical constraints (Chang et al. 2017) or graph neural networks to
express relational constraints (Van Steenkiste et al. 2018). However, current machine
learning systems are incredibly complex, and there are factors beyond targeted design
choices that control inductive biases. Future work can make progress towards a causal
understanding of how design decisions correspond to inductive bias specification—for
example, how a particular neural network architecture might increase or decrease the
propensity to memorize individual datapoints as characterized in Chapter 3. This un-
derstanding has consequences for designing robust and reliable systems in science and
engineering.
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Appendix A

Mathematical derivations

A.1 Recasting meta-learning as hierarchical Bayes
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Simulataneous Diagonalization

Lemma 1. Suppose A and B are n-by-n real symmetric matrices, and furthermore that B

is positive definite. Then there exists a nonsingular X such that both XTAX and XTBX are
diagonal.

Proof. Let QTBQ = diag(b1, . . . , bn) be the spectral decomposition of B, where bi > 0 for

all i since B is positive definite. Set P =Q · diag(1/
√

b1, . . . ,1/
√

bn), and let (PZ)TAPZ =
diag(a1, . . . , an) be the Schur decomposition of PTAP.

Set X = PZ. Then XTAX is diagonal as a rewriting of the Schur decomposition. Fur-
thermore, noting that ZTZ = I and PTBP = I, it can be easily verified that and XTBX is
diagonal:

XTBX = (PZ)TBPZ = ZTPTBPZ = ZTZ = I.

The nonsingular matrix X in Lemma 1 can be determined by computing the Cholesky
factorization B = GGT, then computing C = G−1AG−T, then computing the Schur de-
composition QTCQ = diag(a1, . . . , an), and finally setting X =G−TQ Golub and Van Loan
(Algorithm 8.7.1 in 1983). However, it should be noted that the matrix X does not uniquely
ensure that both XTAX and XTBX are diagonal. In particular, replacing B with a suitable
nonnegative definite convex combination of A and B provides another matrix X that such
that both XTAX and XTBX are diagonal Golub and Van Loan (Theorem 8.7.1 in 1983).

Early Stopping as Regularization

Given the linear system ŷ = Xφ, we may consider the regularized linear least proves
problem

min
(

‖Xφ − y‖2P + ‖φ − a‖2Q
)

(A.1)

where a is a vector in R
n, and P andQ are symmetric positive definite matrices with norms

defined by ‖z‖P = zTP−1z and similarly forQ. Note that if P andQ are variance-covariance
matrices, then Problem (A.1) is a standard statistical regularization problem. Additionally,
consider a convergent iterative method of the form

φ(k) = φ(k−1) +MXTP−1(y−Xφ(k−1)) (A.2)

where M is a nonsinglar matrix.
Santos (1996) shows that every solution to Eq. (A.1) is an iterate given by Eq. (A.2) and

vice versa. We state this equivalence result in the following two theorems and refer the
reader to Santos (1996) for the complete proof.
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Theorem 2 (3.1 in Santos (1996)). The solution to the regularized problem in Eq. (A.1) has
an equivalent truncated iterative solution of the form Eq. (A.2). In particular, for a positive
iteration index k0, there exists a matrix M such that φ(k0)

given by Eq. (A.2) solves Eq. (A.1).

Proof. Since Q and XTP−1X are symmetric and Q−1 is positive definite, we can simultane-
ously diagonalize them. Thus, there exists a nonsingular matrixA such thatATQ−1A = diag(1/q1, . . . ,1/qn)
and ATXTP−1XA = diag(p1, . . . ,pn) with qi > 0 and pi ≥ 0 for i = 1, . . . ,n. Consequently,

A−1QXTP−1XA =A−1QA−TATXTP−1XA = diag(p1q1, . . . ,pnqn) .

Given a truncation index k0, let

M =Adiag(λ1, . . . ,λn)A
T ,

where λi = (1/pi)[1− (1 + piqi)
−1/k0] if pi , 0 and 1 otherwise.

Theorem 3 (3.2 in Santos (1996)). Every truncated-iterative solution of the form Eq. (A.2),
where M is a symmetric positive definite matrix, is the solution of a regularized problem of the
form Eq. (A.1); i.e., for every k and matrices M and P, there exists a matrix Q such that φ(k) in
Eq. (A.2) solves Eq. (A.1).

By taking P = I and M = diag(η/2, . . . ,η/2) in Theorem 3, we are assured that for each
iterate k of the standard steepest descent update rule

φ(k) = φ(k−1) − ηXT(Xφ(k−1) − y)
= φ(k−1) − η∇φ

[

‖Xφ − y‖22
] (

φ(k−1)
)

and for each a that there exists a matrix Q such that φ(k) solves

min
(

(Xφ − y)T(Xφ − y) + (φ − a)TQ−1(φ − a)
)

. (A.3)

Thus, gradient descent with early stopping at iteration k0 is equivalent to regularization of
the corresponding linear least squares problem.

Regularization as MAP Estimation

We may identify Eq. (A.3) as a negative log posterior minimization problem. In particular,
assuming a conditional Gaussian likelihood over ywith identity covariance and a Gaussian
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prior over φ with mean a and covariance Q and subsequently dropping all terms that do
not depend on φ gives

argmin
φ

− logp (φ | X,y ) = argmin
φ

(− logp (y | X,φ )− logp (φ ))

= argmin
φ

(− logN (y ; Xφ,I)− logN (φ ; a,Q))

= argmin
φ

(
1
2(y−Xφ)

T
I
−1(y−Xφ) + 1

2(φ − a)
TQ−1(φ − a)

)

which admits the same minimizer as Eq. (A.3). Thus, the solution to the regularized
problem is also the maximum a posteriori estimate of the given probabilistic formulation.

The Form of the Prior in the Linear Case

It is instructive to investigate the form of the prior imposed by early stopping in the
linear case. If O is an orthogonal D ×D matrix such that OTXTXO = diag(()λ1, . . . ,λD),
then, using the proof of Theorem 3 in (Santos 1996), φ(k) in Eq. (A.2) is the solution of the
problem

argmin
φ

(

‖y−Xφ‖2 +γ‖D−1/2OTφ‖2
)

, (A.4)

where D = diag(()µi) for

µi =











1
λi
[ 1
(1−ηλi )

k − 1] if λi , 0

1 otherwise.

Rewritten as the problem

argmin
φ

− logp (φ | X,y ) ,

(A.4) corresponds to taking a Gaussian prior withmean µ = 0 and covarianceΣ = γ−1ODOT.
Since O orthogonally diagonalizes XTX, O is the matrix of eigenvectors of XTX and the

λi are the corresponding eigenvalues. Therefore, the regularization term can be understood
as a Mahalanobis distance of which eigenvalues of the covariance, XTX, are rescaled to
(γλi)

−1[(1− ηλi)
−k − 1]. In particular, if the step size and all eigenvalues are small (i.e.,

ηλi < 1), the new eigenvalues grow exponentially in the number of steps k, proportional
to the regularization coefficient γ .

Assuming the design matrix, X, is centered and full rank, we can understand the above
as defining a data-dependent prior covariance whose width in the directions of greatest
variation in the data (i.e., the eigenvectors of the unscaled sample covariance matrix XTX
with the largest eigenvalues, also known as the principal eigenvectors) grows exponentially
in the number of gradient descent steps k. Interpreted as a form of regularization, the
prior thus favors dimensions of extreme variation in the data by more lightly penalizing
the magnitude of the weights in these principal component directions.
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The Form of the Prior in the General Case

A central motivation behind MAML is that the learned weight initialization is one or a few
gradient steps away from an optimal parameter setting to solve any given task sampled
from the task distribution. Thus, for a general nonlinear model, we can understand the
behavior of fast adaptation via a quadratic approximation in the neighborhood of an
optimal parameter setting φ∗.

Consider the second-order Taylor series expansion of the objective L about a minimum
φ∗:

L̃(φ) = L(φ∗) + 1
2 (φ −φ

∗)TH(φ∗) (φ −φ∗) (A.5)

where the first order derivative vanishes, H is the Hessian of L and we omit the
dependence on the data (X,y) of L and H. * Taking the gradient of Eq. (A.5) gives the
steepest descent update

φ(k) = φ(k−1) − ηH(φ∗)(φ(k−1) −φ∗) .

By writing φ(k) = [I − ηH(φ∗)]φ(k−1) − ηH(φ∗)φ∗ we can identify this as a recursive
definition in order to solve for φ(k) in terms of φ(0) and φ∗:

φ(k) = [I− ηH(φ∗)] kφ(0) − ηH(φ∗)φ∗
k−1∑

j=0

[I− ηH(φ∗)] j

By an argument analogous to the proof of Theorem 3 in Santos (1996), φ(k) is then a
solution to

min
φ

(

L̃(φ) + ‖φ −φ(0)‖2Q
)

(A.6)

for Q =OΛ
−1((I− ηΛ)−k − I)OT, a rescaling of the eigenvalues of H(φ∗) =OΛOT. In partic-

ular, the rescaling occurs so that, for each i,

λi ←
(1− ηλi)

−k − 1
λi

.

which can be further rewritten as

φ(k) = φ(0) − ηH(φ∗)
(

φ(0) −φ∗
)

− ηOΛ
−1 [I− ηΛ]−kO

(

φ(0)

)

Therefore, early stopping after a single or a few steps of fast adaptation under a
quadratic approximation to the loss corresponds to a regularization that penalizes direc-
tions of high curvature of the loss more lightly.
*The second-order expansion is sometimes also called the Newton approximation because the assumption
that L̃(φ) is a valid local approximation of L(φ) is the central motivation behind Newton’s method.
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Alternatively, if we take a probabilistic interpretation of the regularization, so that Q−1

is the covariance of a Gaussian prior over the parameters, then we see that the eigenvalues
of the covariance are rescaled such that, for each i,

λi ←
λi

(1− ηλi)
−k − 1

.

Under this formulation, early stopping corresponds to MAP inference with a Gaussian
prior with exponentially high variance in directions of high curvature of the loss.
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Appendix B

Additional experimental results

B.1 Nonparametric priors for non-stationarity
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Extended related work

Multi-task learning. Rosenstein et al. (2005) demonstrated that negative transfer can
worsen generalization performance, and avoidance of negative transfer has motivated
much work on hierarchical Bayes in transfer learning and domain adaptation (e.g.,
Lawrence and Platt 2004; Yu et al. 2005; Gao et al. 2008; Daumé III 2009; Wan et al.
2012). Closest to our proposed approach is early work on hierarchical Bayesian multi-task
learning with neural networks that places a prior only on the output layer (Heskes 1998;
Bakker and Heskes 2003; Salakhutdinov et al. 2013; Srivastava and Salakhutdinov 2013).
In contrast, we place a nonparametric prior on the full set of neural network weights.
Furthermore, none of these approaches were applied to the episodic training setting of
meta-learning. Similar to our point estimation procedure, Heskes (1998) and Srivastava
and Salakhutdinov (2013) propose training a mixture model over the output layer weights
of a neural network using MAP inference. However, these approaches do not scale well to
all the layers in a network as performing full passes on the dataset for inference of the full
set of weights is computationally intractable in general.

Clustering. Incremental or stochastic clustering was considered in the EM setting in Neal
and Hinton (1998). and in the K-means setting in Sculley (2010). Lin (2013) conducted
online learning of a nonparametric mixture model using sequential variational inference. A
key distinction between our work and these approaches is that we leverage the connection
between empirical Bayes in a hierarchical model and gradient-based ML (Grant et al.
2018) to use a MAML-like (Finn, Abbeel, et al. 2017) objective as a log posterior surrogate.
This allows our algorithm to make use of a scalable stochastic gradient descent optimizer
instead of alternating a maximization step with an inference pass over the full dataset (c.f.,
Srivastava and Salakhutdinov 2013; Bauer et al. 2017).

Our approach is also distinct from recent work on gradient-based clustering (Greff
et al. 2017) since we employ the episodic batching of Vinyals et al. (2016). This can be a
challenging setting for a clustering algorithm, as the assignments need to be computed
using, for example, K = 1 examples per class in the 1-shot setting.

Contrasting the batch and stochastic settings. In the stochastic setting, access to past
data is unavailable, and so none of the standard algorithms and heuristics for inference in
nonparametric models are applicable Jain and Neal (e.g., 2004) and Hughes et al. (2012).
In particular, our proposed algorithm does not refine the cluster assignments of previously
observed points by way of multiple expensive passes over the whole dataset.

In contrast, we incrementally infer model parameters and add components during
episodic training based on noisy estimates of the gradients of the marginal log-likelihood.
Moreover, we avoid the need to preserve task assignments, which is potentially harmful
due to stale parameter values, since the task assignments in our framework are meant to be

easily reconstructed on-the-fly using the E-STEP with updated parameters θ(0), . . . ,θ(L),G.
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Maximum a posteriori estimation as iterated conditional modes. Due to the high-
dimensionality of the parameter set of neural networks, we consider a mode estimation
procedure based on iterated conditional modes (ICM) (Besag 1986; Zhang, Brady, et al.
2001; Welling and Kurihara 2006; Raykov et al. 2016) that can leverage gradient computa-
tion instead of the expensive process of Gibbs sampling. iterated conditional modes (ICM)
is a greedy strategy that iteratively maximizes the full conditional distribution for each
variable (i.e., computes the MAP estimate), instead of sampling from the conditional as is
done in Gibbs sampling (Welling and Kurihara 2006). This leads to a fast point-estimation
of the DPMM parameters in which we only need to track the means of the cluster priors.

Alternative inference procedures in probabilistic mixtures. A standard approach for
estimation in latent variable models, such as probabilistic mixtures, is to represent the
distribution using samples produced via some sampling algorithm. The most widely
used is the Gibbs sampler (Neal 2000; Gershman and Blei 2012), which draws from the
conditional distribution of each latent variable, given the others, until convergence to
the posterior distribution over all the latents. However, in the setting of latent variables
defined over high-dimensional parameter spaces such as those of neural network models,
using a sampling algorithm such as the Gibbs sampler is prohibitively expensive (Neal
2012; Müller and Insua 1998). Instead of sampling, one can fit factorized variational
distributions to the exact distribution p(φ,z|x) ≈ q(φ)q(z) (Ghahramani and Beal 2000;
Blei, Jordan, et al. 2006). It should be noted that we do not claim that our method of point
estimation in the DPMM is the most accurate method for posterior inference but we leave
improved approximate inference extensions to future work.

The main drawback of using point estimates for a nonparametric mixture estimation is
the inability to leverage the diffusion of the global prior G0 when computing the likelihood
of a new cluster. Highly concentrated parameter estimates for non-empty clusters should
lead to low likelihoods for outlier tasks, whereas the diffused global prior should be
better at capturing a wider variety of tasks. Nonetheless, point estimation is a necessary
trade-off between computation and accuracy. To allow for a more accurate estimate of the
likelihood, we experimented with simulating a normal centered at the global prior mean
with a variance hyperparameter that can be annealed over time to account for increased
certainty about the prior choice. We can then compare the average cluster responsibility
to the threshold. Another interesting extension we experimented with was to compute the
gradient for each of the samples and average over the number of samples as to approximate
the expectation of the gradient under the global prior. However, we found this to be less
stable than simply comparing the cluster responsibilities to the threshold.
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Maximum a posteriori estimation in the Dirichlet process mixture model

From (6.4) and using a conditional mode estimate for task-specific parameters φj ,

logp
(

zj = ℓ | xj1:M ,z1:j−1,θ
(ℓ)

)

≈

























logn(ℓ) + logp(xj1:M |φ̂
(ℓ)
j ) +

logp(φ̂
(ℓ)
j |θ

(ℓ))
for ℓ ≤ L

logζ + logp(xj1:M |φ̂
(ℓ)
j ) +

log(φ̂
(ℓ)
j |θ

(0))
for ℓ = L+1 .

(B.1)

Experimental setup

Dataset details

Few-shot regression

• Polynomial wave (Fig. 6.4a):

y =
∑

i

aix
pi

and a ∼ U (−5.0,5.0).

• Sinusoid wave (Fig. 6.4b):
y = asin(x −φ)

where φ ∼ U (0,π) and a ∼ U (0.1,5.0).

• Sawtooth wave (Fig. 6.4c):

y = −2a
π

arctan(cot(
xπ

φ
))

where φ ∼ U (0,π), a ∼ U (0.1,5.0).

Hyperparameter choices

MiniImageNet few-shot classification. We use the same data split, neural network
architecture, and hyperparameter values as in Finn, Abbeel, et al. (2017) for common
components. We use τ = 1 for the softmax temperature and the same initialization as Finn,
Abbeel, et al. (2017) for the global prior G0. We determine an iteration number for early
stopping using the validation set.
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Continual few-shot regression. Our architecture is a feedforward neural network with
2 hidden layers with ReLU nonlinearities, each of size 40. We use a meta-batch size of 10
tasks (both for the inner updates and the meta-gradient updates) for 5-shot regression.
Our nonparametric algorithm starts with a single cluster (L0 = 1 in Fig. 6.3). In these
experiments, we set the spawning threshold ǫ = 0.95T/(L + 1), with L the number of
non-empty clusters and T the size of the meta-batch. We use the mean-squared error for
each task as the inner loop and meta-level objectives.

Continual few-shot miniImageNet classification. We use the same data split, neural
network architecture, and hyperparameter values as in Finn, Abbeel, et al. (2017) for
common components. We use a meta-batch size of 4 tasks, start with a single cluster, and
set the spawning threshold to the same formula as in Appendix B.1. We use the multi-class
cross entropy error for each task as the inner loop and meta-level objectives. More details
on the practical implementation for image datasets of the nonparametric algorithm can
found in Appendix B.1.

Practical and implementational details

Task-aware vs. task-agnostic

Since a cluster is not well-tuned immediately after its creation, we consider a cool-down
period after the spawning of each new cluster where we do not consider the creation
of new clusters for a fixed number of iterations, and we freeze the updating of existing
clusters for a same number of iterations. This allows the newly created cluster to take
enough gradient updates in order to move from its global prior initialization, allowing it
to sufficiently differentiate from the global prior.

This experimental paradigm also allows us to approximate the task-aware algorithms
of prior work Kirkpatrick et al. (e.g., 2017), Zenke et al. (2017), Nguyen et al. (2017), and
Ritter, Botev, et al. (2018) which require access to an explicit delineation between tasks
that acts as a catalyst to grow model size. For the task-aware nonparametric mixture results
reported in the experiments, we set this cool-down period to be exactly the length of the
training phase for the appropriate dataset; therefore, clusters which are not meant to
be specialized for the active dataset are not updated. In contrast, the task-aware results
consider a cool-down period of 1k iterations, which is less than 15% of the active period for
each dataset. Extensions to this fixed cool-down period could consider the rate of learning
in the active cluster in order to detect when the new component has been sufficiently fit to
the new task.

Practical extensions to the nonparametric algorithm

The penalty term of logn(ℓ) or logζ is necessary to regularize the likelihood of a potential
new cluster in order to limit overspawning. However, in the setting where the likelihood
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is approximated by the loss function of a complex neural network, as in the case for most
meta-learning applications, there is a large difference in orders of magnitude between the
loss value (especially for the cross-entropy function) and the penalty term, even after a
single batch of assignments. Furthermore, the classical log observation count logn term is
misaligned with our stochastic setting for two reasons. First, since we do not re-evaluate
over the whole dataset for every meta-learning episode, we are thus more concerned with
the relative number of task assignments over recent iterations than the total number of
assignments over the duration of training. Second, the number of tasks to be assigned can
grow too large in the stochastic setting (e.g. 60k for miniImageNet) which exacerbates the
already large difference in orders of magnitudes between the loss function and the penalty
term.

Accordingly, we propose two changes; First, we compute the observation based on a
moving window of fixed size (5 in the experiments). Second, we apply a coefficient, which
can be tuned, to the log observation count in (6.4). This provides more flexibility to our
meta-learner as it allows it to apply to any black-box function approximator which might
exhibit losses of orders of magnitudes smaller than those expected of classical probabilistic
models. While the moving window size and CRP penalty coefficient terms are somewhat
interdependent, we propose them as a simple starting point to tune this nonparametric
meta-learner beyond what is empirically explored in this chapter.

Note that without such changes in the stochastic setting of meta-learning, a non-
parametric algorithm would be unable to spawn a new cluster after the first handful of
iterations. Even if we were to lower the threshold ǫ, multiple almost identical clusters
would be spawned in the first few iterations before it would be impossible to spawn
anymore. Furthermore, the clusters would be nearly identical given the small step size of
a gradient update for each meta-learning episode. Finally, this would be computationally
intensive since unlike the typical applications of nonparametric mixture learning where
one can afford to spawn hundreds of components then prune them over the training
procedure.

Thresholding

A marked difference that is not immediate from the Gibbs conditionals is the use of a
threshold on the cluster responsibilities, detailed in the E-STEP in Subroutine 4, to account
for noise from stochastic optimization when spawning a cluster on the basis of a single
batch. This threshold is necessary for the stochastic mode estimation procedure of Fig. 6.3,
as it ensures that a new cluster’s responsibility needs to exceed a certain value before being
permanently added to the set of components.

If a cluster has close to an equal share of responsibilities as compared to existing

clusters after accounting for the CRP penalty logn(ℓ) or logζ, it is spawned. Accordingly,
this approximate inference routine still preserves the preferential attachment (“rich-
get-richer”) dynamics of Bayesian nonparametrics (Raykov et al. 2016). A sequential
approximation for nonparametric mixtures with a similar threshold was proposed in
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Lin (2013) and Tank et al. (2015), in which variational Bayes was used instead of point
estimation in a DPMM.

Pruning heuristics

None of the results reported in our experiments used a pruning heuristic as we used a
rather conservative hyper parameter setting that deters overspawning. We did however
explore different heuristics which could work in more general settings, especially in
the presence of many more latent clusters of tasks than considered in the experimental
settings in this work. One such heuristic is to prune small clusters that have received
disproportionately few assignments over a certain number of past iterations. Another is to
evaluate the functional similarity of two clusters by computing an odds-ratio statistic for
the assignment probabilities to each cluster over a set of validation tasks. If the odds-ratio
statistic is below a certain threshold, the smaller cluster can be pruned.

Estimating the CRP hyperparameters

We fixed α at the size of the meta-batch. An alternative is to place a Γ(1,1) on the
concentration parameter. Based on the likelihood, the posterior is then proportional

to p(α|N,K) ∝ Γ(α)
Γ(α+N )α

Ke−α This is not a standard distribution but Rasmussen (2000)

have shown that logp(α|N,K) is log-concave and methods such as L-BFGS have been
used successfully in prior works. Alternatively, if we have some prior knowledge about
the expected number of clusters, we can compute α based on E[K] = α logN . For the
window-size, we considered an initial size of 20 iterations that can grow as more cluster
are considered.

Implementation details

We implemented both of our parametric and nonparametric meta-learners in TensorFlow
(TF) (Abadi et al. 2016). We considered 2 different settings for the M-STEP optimization:

• Train each cluster’s parameters separately based on its corresponding loss function
in an alternating manner closest to the classic EM algorithm.

• Train all cluster weights simultaneously using a surrogate loss over all validation
batches.

Since the latter better leverages the differentiability of softmax-clustering and performed
better empirically, we used it to report all experimental results.

Nonparametric Implementation

For the nonparametric algorithm, we chose the first approach to the M-STEP by constructing
separate optimizers for each cluster’s parameters. We pre-allocate a set of weights and use
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a mask during training to discard the parameters of empty clusters due to the static nature
of TF graphs. When the algorithm exhausts the set of pre-allocated weights, we simply
construct more network weight and reinitialize our optimizers.

CRP global prior

The likelihood of a new cluster is sensitive to the choice of a base measure or prior, G0
on the cluster hyperparameters. Our gradient-based point estimation does not make
any modeling assumption on the distribution of the weights, rendering the problem of
principally updating the base measure, after or during training, non-trivial. We chose
to initialize all weights with zero-mean normals in the fully connected layers. For the
convolutional layers, we leveraged Xavier initialization Glorot and Bengio (2010) similarly
to prior work Finn, Abbeel, et al. (2017) in ML.

However, such initialization is poor in the nonparametric for most non-trivial regres-
sion or classification tasks. Therefore, in the nonparametric setting, we start with a single
cluster for a fixed number of iterations. We then initialize all clusters with the weights of
the first clusters. This set of weights can be considered as the mean of the base measure or
global prior in our setting.

We periodically update the global prior using a uniform average of the parameters
of the existing clusters. This can be done by simply averaging over the parameter of
the non-empty clusters as weighted by their sizes. Note that, we found that performing
weighted KDE smoothing with a small bandwidth hyperparameter to perform slightly
better than the average which is to be expected for neural network parameters. The
number of iterations between updates of the global prior is a hyperparameter that we tune
on the validation set. It is also possible to continuously, but less frequently over time,
update this global prior as more data is encountered.
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B.2 Rule- and exemplar-based generalization
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training condition

feature space cue conflict zero shot partial exposure extrapolation
π0 = 0.5, π1 = 0.5 π0 = 1.0, π1 = 0.0 π0 = 0.0, π1 = 0.0 π0 = 0.5, π1 = 0.0 π0 = 1.0, π1 = 1.0
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Figure B.1: We expand on Fig. 3.3 from the main text by including a realization of the abstract
training conditions in the simple 2D points-in-a-plane setting. (Top) Formalizing the illustrative
experiment: The experiment from Fig. 3.2 expressed in terms of the formalism in Section 3.3
with zdist = color and zdisc = shape. Background colors indicate true category boundary. (Bottom)
The conditions realized via a binarization of continuous feature values. Here, the discriminant is
binarized as x1 > 0 and the distractor as x2 > 0; this setting is further investigated in Section 3.4.
Color here depicts the label but is not part of the input.

Generalizing the framework from two binary attributes tomany categorical attributes

In the most general terms, we consider a setting in which each observation x ∈ X is
underlied by n categorical variables z1, . . . , zn ∈ {0, . . . ,C} with C ∈ Z+, henceforth attributes
whose concatenation z = (z1, . . . , zn) determines the observable input x via some mapping
g : Zn

0+→X . We consider the binary classification task of fitting amodel ˆf : X → {0,1} from
a given model family F to predict a binary label for each input. A subset of the attributes
in z, without loss of generality (z0, . . . , zi), is taken to define the decision boundary, while
the remaining attributes, zi+1, . . . , zn, are assumed to not be independently predictive of the
true classification y ∈ {0,1}. We therefore denote the discriminant, zdisc = (z0, . . . , zi), and
the distractor zdist = (zi+1, . . . , zn). For simplicity, we assume that the attributes are binary
(i.e., C = 2 and zi ∈ {0,1},∀i), and that the discriminant attributes must be jointly active for
the classification to change from the null class y = 0 (i.e., y = 1 ⇐⇒ zdisc = 1); the latter
simplification allows us to redefine zdisc = z0 ∧ · · · ∧ zi and zdist = zi+1 ∧ · · · ∧ zn, which is
equivalent to the earlier discussion of the illustrative two-attribute case.
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Training conditions expressed in terms of the joint distribution

We express the training conditions displayed in Fig. 3.3 and realized in Fig. B.2 in terms of
the joint distribution instead of the parameters π0, π1.

1. The cue-conflict condition the upper left and lower right quadrants in Fig. B.2 and
defines the distribution of attributes as

pcc(zdisc = 0,zdist = 1) = 0.5 pcc(zdisc = 1,zdist = 1) = 0

pcc(zdisc = 0,zdist = 0) = 0 pcc(zdisc = 1,zdist = 0) = 0.5 .

2. The zero-shot condition populates the bottom left and right quadrants in Fig. B.2 and
defines the distribution of attributes as

pzs(zdisc = 0,zdist = 1) = 0 pzs(zdisc = 1,zdist = 1) = 0

pzs(zdisc = 0,zdist = 0) = 0.5 pzs(zdisc = 1,zdist = 0) = 0.5 .

3. The partial-exposure condition populates all quadrants but the upper right in Fig. B.2
and defines the distribution of attributes as

ppe(zdisc = 0,zdist = 1) = 0.25 ppe(zdisc = 1,zdist = 1) = 0

ppe(zdisc = 0,zdist = 0) = 0.25 ppe(zdisc = 1,zdist = 0) = 0.5 .

CelebA results for specific model sizes

We include model-specific results, split by ResNet depth and width, in Fig. B.2. We find
no systematic relationship between EvR and depth or width.
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Figure B.2: CelebA EvR and FLB across feature pairs, averaged across 30 runs, split by depth
and width of ResNet.
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Spurious correlation underdetermines feature distributions

The partial-exposure condition (π0 = 0.5, π1 = 0.0) in Section 3.2 results in a spurious
correlation between the discriminant zdisc and the distractor zdist (ρ = 0.58). To examine
behavior in a wider range of data settings, we vary π0 and π1 as described in Section 3.3,
thereby also changing the degree of spurious correlation.

I. Interpolation towards zero shot. We interpolate π0 from 0.5 towards 0.0, keeping
π1 = 0.0. This moves us closer to π0 = π1 = 0.0, where we have no exposure to zdisc = 1
in training. Intuitively, we are reducing the exposure to the new distractor feature value
from the partial-exposure condition.

II. Interpolation to full exposure. We interpolate π1 from 0.0 towards 0.5, keeping
π0 = 0.5. This moves us closer to π0 = π1 = 0.5, where we have equal exposure to all
quadrants in training. Here, rather than reducing the exposure to the new distractor
feature value, we are equalizing the exposure to it across the discriminant dimension.

III. Interpolation with matched correlation. We report results on this in Sections 3.4
and 3.6. As also depicted in Fig. 3.4, we generate training conditions by changing π0
and π1 such that we follow a ρ-contour away from the partial-exposure condition (π0 =
0.5,π1 = 0.0, ρ = 0.58): solid contour in Fig. 3.4. We also match the spurious correlation
across the two interpolations in Appendix B.2A and B: Fig. B.4 shows these additional
ρ-contours as dashed lines.

These different interpolations are depicted in Fig. B.4a with different shapes and colors.

Generating interpolation points

We generate points along all three interpolation lines: from partial exposure towards
zero shot (I); from partial exposure towards full exposure (II); and the equi-correlation
line originating from partial exposure (III). The interpolating points along each line are
selected to balance spurious correlation and feature exposure. In particular, we follow the
following procedure:

1. We choose a point that interpolates towards full exposure. We do this by choos-
ing a value of π1 between 0.0 and 0.5, πFE. This gives a data setting, along with a
corresponding spurious correlation, ρ, computed via Eq. (3.3):

π0 = 0.5 ; π1 = πFE ; ρ = ρ
(

0.5,πFE
)

.

2. We generate a corresponding point that interpolates towards zero shot. Given the
data setting above, we set π1 = 0.0 and compute the π0 to produce the same ρ as the
full-exposure interpolations in Step 1. This gives the data setting:

π0 = πZS
(

πFE
)

; π1 = 0.0 ; ρ = ρ
(

πZS
(

πFE
)

,0.0
)

= ρ
(

0.5,πFE
)

.

3. Finally, we also derive the equi-correlation interpolation from the full-exposure inter-
polation as follows. We retain π1 from the full-exposure condition, but recompute the
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partial exposure interpolant #1 interpolant #2

π0 = 0.5, π1 = 0.0,
ρ = 0.58
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Figure B.3: We visualize several of the interpolants used for the interpolation analyses.

π0 such that the correlation ρ matches the spurious correlation of the pure
glspec (ρ = 0.58). This gives an additional data setting:

π0 = πEQ
(

πFE
)

; π1 = πFE; ρ = ρ (0.5,0.0) = 0.58 .

Note that, despite there being three different interpolation lines, the specific inter-
polants we use are constrained along a single degree of freedom—choosing πFE (Step 1).
The data settings for zero shot (Step 2) and equi-correlation (Step 3) are derived from this
value.

Specific interpolation values used

For all data settings, we generate points along the interpolation lines using the procedure
in Appendix B.2.
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(a) A heatmap of the spurious correlation
(Eq. (3.3)), showing different interpolations.
The partial-exposure condition is identified
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Figure B.4: Interpolations away from the PE: changes in extrapolation behavior under data distri-
bution with the same spurious correlation as in PE, as well as different ways to change spurious
correlation.

For the simple 2D classification setting, we examine two interpolants. In this simple do-
main, we keep the interpolation distances small, since we expect changes in extrapolation
behavior even from small changes.

interpolant 1 interpolant 2

π0 π1 ρ π0 π1 ρ

interpolation to zero shot (I) 0.481 0.0 0.563 0.32 0.0 0.436
interpolation to full exposure (II) 0.5 0.01 0.563 0.5 0.1 0.436
equi-correlation interpolation (III) 0.519 0.01 0.58 0.661 0.1 0.58

For CelebA, we increase the interpolation distance to reflect the wider range of natural
data distributions among feature pairs. The data these interpolation values generate is
visualized as the equivalent points-in-a-plane setting in Fig. B.2.

interpolant 1 interpolant 2

π0 π1 ρ π0 π1 ρ

interpolation to zero shot (I) 0.32 0.0 0.436 0.125 0.0 0.258
interpolation to full exposure (II) 0.5 0.1 0.436 0.5 0.25 0.258
equi-correlation interpolation (III) 0.66 0.1 0.58 0.825 0.25 0.58
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Interpolation analyses

In the 2-D classification example

In the simple setting from Section 3.4, we vary π0, π1 for an NN model (NN:16h1d, the
NN with lowest EvR level overall). Results are in Fig. B.4b and discussed below.

EvR , sensitivity to spurious correlation. As also discussed in the main text, along the
equi-correlation interpolation line, the “effective EvR” drops drastically (i.e., the learner
generalizes in more rule-based manner) despite no change in spurious correlation.

Implications for controlling extrapolation. Despite both having the same ρ, interpo-
lating towards full-exposure increases the EvR more than towards zero-shot. This further
supports that spurious correlation cannot fully characterize extrapolation behavior. This
shows that different ways to reduce ρ have different effects on extrapolation, and has im-
portant implications for data manipulation methods (e.g., subsampling or augmentation)
that aim to directly control this ρ.

In CelebA

We see the same effects as in the linear setting: as also discussed in the main text, we
see a much smaller gap to the ZS condition despite no change in spurious correlation.
We don’t find clear effects distinguishing different ways to reduce spurious correlation
(interpolation to zero shot (I) and interpolation to full exposure (II)).

Additional dataset details

We provides relevant statistics of each dataset, such as number of examples.

2D IMDb CelebA
*

dataset size (train) 75 21,215 4,000 to 40,000
dataset size (valid) 75 21,027 8,000
dataset size (test) 75 13,995 20,000

input space R
2

R
400

R
178×218×3

We do not use a validation set for the simple 2D classification setting and IMDb
datasets, but hold out examples for a test set. For CelebA, we follow the authors’ division
of images in train, validation and test splits.

As described in the main text, we subsample data to balance attributes within each
training condition. For the CelebA domain, we use the following feature pairs to produce
the results in Section 3.6:

*The numbers for CelebA are approximate because there are deviations in the availability of images across
attribute combinations.
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discriminant distractor

mouth open male
wearing lipstick mouth open
male mouth open
male high cheekbones
male blond hair
male arched eyebrows

For Section 3.5 and Section 3.6, we used publicly available datasets: IMDb (Maas et al.
2011) is available at https://ai.stanford.edu/~amaas/data/sentiment/; CelebA (Liu,
Luo, et al. 2015) at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Additional experimental details

We use default hyperparameter settings whenever possible. For the points-in-a-plane and
IMDb settings, we use 20 random seeds, which randomize the model weight initialization.
For the CelebA domain, we run 30 seeds for each model configuration, and discard runs
that achieve below 75% accuracy on validation set images that belong to the data conditions
(quadrants) observed during training.

We report accuracy as a performance metric on each of the four quadrants depicted in
Fig. 3.3 as well interpolating data settings. We additionally report measures that are a the
performance difference between data settings. We include a 95% confidence interval on
all reported measures.

https://ai.stanford.edu/~amaas/data/sentiment/
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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B.3 Gaussian process surrogate models
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Figure B.5: Illustrating the effect of GP kernel hyperparameters on the GP prior. (Left) Sam-
ples from a GP prior with SMK with varying mixture weights ω, mixture scale τ, and mixture
means µ. (Right) Samples from a GP prior with Matern kernel with varying ν and ℓ (lengthscale).
GPs are flexible models whose properties can be controlled through hyperparameters.

Properties of the spectral mixture kernel and the Matérn kernel

We describe how the various hyperparameters of the SMK and MK kernel affect the GP
prior. We begin with the spectral mixture kernel. The mixture weights w are signal vari-
ances and control the scale of the function values. The mixture means (µ) encode periodic
behavior. The variances (τ) are (inverse) lengthscales, which control the smoothness. The
(ARD) MK kernel has lengthscales θ, which controls the smoothness of the function with
respect to each dimension. ν is another hyperparameter that also modulates smoothness,
and the Matern covariance function admits a simple expression when ν is a half-integer.
ν = 2.5 corresponds to twice differentiable functions and ν = 1.5 corresponds to once
differentiable functions.

In Fig. B.5, we vary the hyperparameters of the SMK (w,µ,τ)and Matern kernels (ν,θ)
and illustrate how they impact the prior over functions.
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Figure B.6: Sensitivity analysis of generalization gap and lengthscale profile relationship.
Each panel a histogram and mean (red line) of correlations obtained by recomputing the cor-
relation between lengthscale profile correlation and generalization gap after removing each UCI
dataset. Across datasets and architectures, even when a single dataset is removed, there remains
an negative correlation between generalization gap and lenthscale profile correlation. Therefore,
the inverse relationship between generalization gap and lengthscale profile correlation demon-
strated in Fig. 7.10 is robust to outlier datasets.

Correlation sensitivity

We present some additional results to supplement our analysis from Section 7.4 where we
demonstrated that discrepancy in lengthscale profiles between data and neural network
predicts the generalization gap. Correlation can be sensitive to outliers. Does any single
dataset account for the negative correlations? To answer this, we characterize how the
correlation changes as a result of dropping each dataset. Specifically, for each UCI dataset,
we remove that dataset and then compute the correlation between lengthscale profile
correlation and generalization gap for the remaining datasets. We plot the resulting distri-
bution of correlations in Fig. B.6. We find there is a tight spread around the correlation
computed from all the UCI datasets. Importantly, when we remove any UCI dataset, we
still see moderate to high negative correlations between lengthscale profile correlation and
generalization gap.
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