
Neural Network Compression with Low Rank

Structured Layers

Dimitris Papadimitriou

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-214

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-214.html

August 15, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Neural Network Compression with Low Rank Structured Layers

by Dimitris Papadimitriou

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Somayeh Sojoudi
Research Advisor

(Date)

* * * * * * *

Professor Gerald Friedland
Second Reader

(Date)

Neural Network Compression with Low Rank Structured Layers

by

Dimitris Papadimitriou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Somayeh Sojoudi, Chair
Professor Gerald Friedland

Summer 2022

1

Abstract

Neural Network Compression with Low Rank Structured Layers

by

Dimitris Papadimitriou

Master of Science in Computer Science

University of California, Berkeley

Professor Somayeh Sojoudi, Chair

Despite many modern applications of Deep Neural Networks (DNNs), the large number of
parameters in the hidden layers makes them unattractive for deployment on devices with
storage capacity constraints. In this project we first review a number of approaches de-
veloped to compress neural networks. We then propose a Data-Driven Low-rank (DDLR)
method to reduce the number of parameters in pretrained DNNs and expedite inference by
imposing low-rank structure on the fully connected layers, while controlling for the overall
accuracy and without requiring any retraining. We pose the problem as finding the lowest
rank approximation of each fully connected layer with given performance guarantees. We
show that it is possible to significantly reduce the number of parameters in common DNN
architectures with only a small reduction in classification accuracy. We compare DDLR
with Net-Trim, which is another data-driven DNN compression technique based on sparsity
and show that DDLR consistently produces neural networks with fewer parameters while
maintaining higher accuracy.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Background on Neural Network Compression Techniques 3
2.1 Introduction . 3
2.2 Network pruning . 3
2.3 Knowledge distillation . 4
2.4 Quantization . 5
2.5 Structured layers . 5

3 Imposing Low Rank Layers 12
3.1 Introduction . 12
3.2 Related work . 13
3.3 Method . 13
3.4 Experiments . 15
3.5 Conclusion and future work . 19

Bibliography 20

ii

List of Figures

2.1 Size of popular neural network architectures. Size of the circles is proportional
to the top-1 accuracy of the network. 4

2.2 Sparsity patters of first (2.2a), second (2.2b) and third (2.2c) dense layers of
LeNet-5 network trained on MNIST dataset and compressed using Algorithm 1. 8

2.3 Distribution of unpruned entries in the weight matrix of the second layer of LeNet-
5. Results obtained by solving problem (3.2) for 10 different subsets of the training
data of size 200 each. 9

2.4 Spiral data set with two classes. 11
2.5 Magnitude of the entries of weight matrices for the two square layers of the neural

network. 11

3.1 Spiral dataset and decision boundary. 16
3.2 Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on

the Spiral dataset. 17
3.3 Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on

the MNIST dataset. 18
3.4 Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on

the CIFAR-10 dataset. 18

iii

List of Tables

2.1 Structured matrices, their operators and their displacement rank. 9

iv

Acknowledgments

I would like to thank my research advisor Professor Somayeh Sojoudi for her guidance and
mentorship during the projects we collaborated. Without her support this Masters degree
would not have been possible. I would also like to thank Professors Gerald Friedland, Kyri-
akos Komvopoulos and Francesco Borrelli, as well as Swayambhoo Jain, for the advice and
assistance they provided. The work on this project concerning imposing low displacement
rank and low rank structures on the dense layers of neural networks was done in collaboration
with Swayambhoo Jain from InterDigital AI Lab in Los Gatos. The main contributions were
published as Data-Driven Low-Rank Neural Network Compression at the IEEE International
Conference on Image Processing (IEEE ICIP 2021).

1

Chapter 1

Introduction

Running Deep Neural Network (DNN) based methods locally on mobile devices is becoming
a necessity for many modern applications. The importance of deploying AI on the edge, in
devices such as smartphones, drones and autonomous vehicles, can be mainly attributed to
three factors. Using cloud resources to run AI algorithms can lead to delays in inference
due to communication latency. Furthermore, such communication with the cloud is energy
inefficient as it requires additional power and is prone to privacy breaches, which could have
dire consequences.

On the other hand, the number of parameters in neural networks, and more specifically
the number of layers and their corresponding sizes, has been continuously increasing since the
first widespread architectures from the early 2000s. Larger numbers of parameters inherently
require more storage allocation and frequently lead to computationally intensive calculations.
These two restrictions can be prohibitive for the current hardware available on edge devices.
Hence, deep learning applications on the edge require some kind of model compression and
possibly specialized hardware for efficient deployment.

In this project we focus on neural network compression techniques and we propose a
method that can compress the fully connected layers of a pre-trained neural network by
imposing a low rank structure on them while maintaining certain accuracy levels. Imposing
a structure allows us to significantly reduce the number of parameters. Furthermore, layers
with specific structure can allow for faster inference by taking advantage of efficient matrix-
vector multiplication algorithms.

The rest of the project is organized as follows. In Chapter 2 we summarize already estab-
lished methods devoted to neutral network compression. Such methods can be implemented
during training, post-training and in an alternating “train-compress-re-train" scheme. More
emphasis is put on methods developed for already trained neural networks as this is the
case for our method as well. In Chapter 3 we introduce our method, called Data-Driven
Neural Network (DDLR) compression. DDLR is a post-training method that imposes a low
rank structure on the fully connected layers of pre-trained neural networks. We compare its
compression performance with another state of the art compression method on a number of
datasets.

CHAPTER 1. INTRODUCTION 2

Notation: We denote matrices and vectors with bold upper and lower case letters, re-
spectively. For scalars, we use nonbold lower case letters. The identity matrix of size n
is denoted with In and a n-dimensional vector of ones with 1n. With || · ||1, || · ||2, || · ||F
and || · ||∗ we denote the ℓ1, ℓ2, Frobenius and nuclear norms, respectively. When referring
to matrix norms, the ℓ1 norm is not the ℓ1 matrix induced norm. Instead, it is defined as
∥X∥1 =

∑
i,j |Xi,j|. ReLU is the activation function defined as ReLU(x) = max(x, 0). The

Hadamard product, or element-wise product, is denoted with ◦.

3

Chapter 2

Background on Neural Network
Compression Techniques

2.1 Introduction
Applications of neural networks, being the flagship of machine learning tools, on the edge
have received a lot of attention lately. As small devices are becoming increasingly popular in
everyday life, being able to deploy deep learning applications on them is crucial. Such devices
can have limited memory, in the order of KBs or MBs, and weak processors. On the other
hand, Figure 2.1 shows the size of some popular neural network architectures proposed in the
literature [8, 42, 19, 20, 46, 45, 56, 48, 49]. The architectures that achieve high top-1 accuracy
also contain millions of parameters to be stored which can be prohibitive for a large number of
edge devices. Additionally, inference can be very slow in such cases. Naturally, compression
techniques of such neural networks is an active research area. Compression techniques can be
roughly categorized as Network pruning, Knowledge distillation, Quantization and imposing
Structured layers such as Sparse, Low Displacement Rank and Low Rank Layers [7, 37].
The majority of the compression techniques developed are targeted at removing redundant
parameters and hence lead to better generalization of the models. Lately, techniques that aim
at compressing neural networks for edge computing applications have been proposed. In the
following sections we briefly summarize some well established techniques for neural network
compression. We go into detail on some methods that impose sparse and low displacement
rank structures as these are related to our work. Compression by imposing low rank structure
on the layers is mainly discussed in Chapter 3.

2.2 Network pruning
One of the first approaches in network pruning was Biased Weight Decay [17] in which the
authors propose a weighting method that drives small in magnitude parameters to zero,
allowing for larger parameters to survive. The optimal brain damage proposed in [29] com-

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 4

2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0

20

40

60

80

100

120

140

Nu
m

be
r o

f p
ar

am
et

er
s (

M
illi

on
s)

Xception

VGG16

ResNet50

ResNet101 ResNet101V2

ResNet152 ResNet152V2

InceptionV3

InceptionResNetV2

NASNetMobile

NASNetLarge

EfficientNetB2

EfficientNetB7

EfficientNetV2B3

EfficientNetV2M

EfficientNetV2L

Figure 2.1: Size of popular neural network architectures. Size of the circles is proportional
to the top-1 accuracy of the network.

putes the saliency of the network parameters using the second derivative of the objective
function, removing the ones with the lowest score. Similarly, [18] relax the previously made
assumption on the Hessian of the objective managing to remove more parameters for similar
levels of accuracy. Regarding convolutional neural networks, [27] propose a brain damage
approach for convolutional layers which are pruned in a group-wise fashion leading to faster
inference.

2.3 Knowledge distillation
The concept of knowledge distillation revolves around training smaller (“student") neural
networks to mimic the outputs of a larger (“teacher") neural network. Introduced by [6]
and further popularized by [21] the goal of knowledge distillation is for the student network
to achieve similar class probability outputs with the teacher network. In [3] the authors
propose a reinforcement leaning approach to create a student network by selecting layers from
the teacher and adjusting their sizes. A progressive blockwise learning scheme is proposed
in [52] in which knowledge distillation is implemented as a progressive blockwise function
approximation problem. In [9] the authors propose using the correlations between filter

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 5

responses within the layers of the teacher network to recommend a compressed network
that maintains most of the original models accuracy. Quantized distillation is developed
in [39] in which a distillation loss with respect to the teacher network is incorporated in the
training process of the student network. Furthermore, the weights of the student network
are quantized.

2.4 Quantization
The process of quantization refers to representing parameters, layer outputs and gradients
in a reduced number of bits. Most frequently calculations in CPUs and GPUs, unless spec-
ified otherwise, use a 32 bit precision in a float32 format. A typical quantization scheme
changes the format to a lower precision, like for instance the int8 format. Such a representa-
tion reduces storage requirements for the model while potentially leading to faster inference.
In [15] the authors compress the dense layers of CNNs using k-means clustering to “assign"
the weights to quantized values. Inner product quantization can also be leveraged to ac-
celerate inference in the convolutional and dense layers of CNNs [53]. In [55] the authors
propose an improved quantization method that utilizes outlier channel splitting in order to
quantize CNNs without the need for re-training. Using an adaptive bit-width scheme has
been proposed in the literature [24] to enable deployment of models on devices with different
resource budgets. Low rank structures on the layers and quantization are combined in [23]
in an end-to-end neural network compression framework.

2.5 Structured layers
This section concerns compression of neural networks by imposing a structure on the con-
volutional and dense layers. Such structure typically involves sparse, low displacement rank
and low rank matrices. In the following subsections we will detail methods that impose such
structure on the dense layers of networks as well as some of the benefits and disadvantages
of them.

Sparse layers

The majority of neural network pruning techniques, implemented during or after training,
lead to sparse layers. The authors in [44], [36], [34] encourage sparse layers while training
neural networks by using appropriate regularization. The authors in [1] propose an opti-
mization based approach to impose a sparse structure on an already trained neural network.
Furthermore, in [13] the authors suggest that each trained neural network model has a
sparsity structure that when it gets re-trained with only those parameters, under the same
initialization as the original network, then it can achieve almost as high test accuracy as the
original network. Before delving into the details we will first introduce some notation that
will be used in subsequent formulations.

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 6

Consider a pre-trained CNN or DNN with L dense layers. Let the ℓth layer of this network
be a fully connected dense layer with weight matrix Wℓ ∈ Rnℓ−1×nℓ with nℓ−1 denoting the
dimension of its input and nℓ being the dimension of its output. The corresponding bias
of that layer is denoted with bℓ ∈ Rnℓ . Let also Yℓ−1 ∈ RN×nℓ−1 and Yℓ ∈ RN×nℓ denote
the input and output data matrices of the ℓth layer respectively, with the number of rows N
corresponding to the number of training data points in the network input matrix X ∈ RN×n0 .
We focus on networks that utilize the ReLU(x) = max(x, 0) activation function as they form
the backbone of network architectures. Given the input Yℓ−1 the output of layer ℓ is obtained
as follows

Yℓ = ReLU(Yℓ−1Wℓ + 1NbT
ℓ), (2.1)

where 1N is a N -dimensional vector of ones. In order to impose a sparse structure on the
weight matrix Wℓ the authors in [1] minimize the ℓ1 norm of that matrix as seen in the
following optimization problem

minimize
U∈Rnℓ−1×nℓ

||U||1

subject to ||ReLU(Yℓ−1U+ 1NbT
ℓ)−Yℓ||F ≤ ϵℓ.

(2.2)

This formulation allows for imposing structure on the layers while explicitly controlling
for the error of the compressed layer output. It should be noted that the ∥·∥1 does not
designate the induced ℓ1 matrix norm but it is the sum of the absolute values of the matrix
entries. The layer output error due to compression is controlled by a user specified threshold
ϵℓ. Intuitively, we expect as ϵℓ increases the sparsity of the layer to increase more since the
constraint is becoming more relaxed. However, the constraint in (2.2) is non-convex due to
the composition of the ReLU activation function and the norm function. To alleviate this
issue the authors relax the constraint, to obtain the following convex constraint{

||(Yℓ−1U+ 1NbT
ℓ −Yℓ) ◦Mℓ||2F ≤ ϵ2ℓ

(Yℓ−1U+ 1NbT
ℓ) ◦M′

ℓ ≤ 0
, (2.3)

where Mℓ is a mask matrix of the same dimension as Yℓ selecting the positive entries of Yℓ

elementwise, i.e. the (i, j)th entry Mij
ℓ = 1 if Yij

ℓ > 0 and Mij
ℓ = 0 otherwise. Similarly,

M′
ℓ is a mask matrix selecting the non-positive entries of Yℓ. Intuitively, this constraint

penalizes the deviation of the entries of the compressed layer that correspond to the positive
entries of the original layer as the latter are the only ones that are not affected by the ReLU
activation function. Furthermore, the entries that correspond to the non-positive entries of
the original layer are allowed to take any non-positive value. Using the constraint relaxation
in (2.3) we obtain the following convex optimization problem

minimize
U∈Rnℓ−1×nℓ

||U||1

subject to ||(Yℓ−1U+ 1NbT
ℓ −Yℓ) ◦Mℓ||2F ≤ ϵ2ℓ

(Yℓ−1U+ 1NbT
ℓ) ◦M′

ℓ ≤ 0.

(2.4)

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 7

The optimization problem (2.4) imposes a sparse structure on a single layer of a network.
To compress networks with multiple layers each layer can be compressed individually and
independently from each other. This process is outlined in Algorithm 2, where compression
of each layer is an independent from the rest of the layers optimization problem. Given that
each layer is compressed independently, the algorithm allows for parallel implementation.
The algorithm requires the initial data matrix as input XN×n0 , the original trained weight
matrices and biases of the layers and the user specified tolerances ϵℓ. The output is a sequence
of sparse matrices for each dense layer. Different values of ϵℓ for each layer ℓ = 1, . . . , L lead to
different compression ratios. The higher the value the more freedom there is in compressing
the layer and hence the more sparse the solutions will be.

Algorithm 1: Parallel Net-trim Algorithm [1]
Input : X,Wℓ,bℓ, ϵℓ, ℓ = 1, . . . , L

1 Y0 = X
2 for ℓ= 1,. . . ,L do
3 Yℓ = ReLU(Yℓ−1Wℓ + 1NbT

ℓ)
4 end
5 for ℓ= 1,. . . , L do
6 Mi,j

ℓ = 1 if Yi,j
ℓ > 0, otherwise 0

7 M′i,j
ℓ = 1 if Yi,j

ℓ ≤ 0, otherwise 0
8 Solve (2.4)
9 end

Output : Ûℓ, ℓ = 1, . . . , L

Although sparse structures have the immediate effect of reducing the number of param-
eters needed to be stored, the benefits regarding the speed in inference are not certain. For
instance in the sparse matrix-vector (SpMV) multiplication a typical approach is to perform
the product in a row-wise fashion. In this case, if the number of nonzeros are unevenly
distributed in the rows of the matrix then the benefit in inference speed is diminished. To
showcase this we train a LeNet-5 CNN network [30] on the MNIST [28] dataset and we
compress it using Algorithm 1 with ϵ = 0.1 · ∥Yℓ−1∥F for each dense layer with N = 200
training data points. In Figure 2.2 we plot the sparsity patters acquired on the three dense
layers of the network where the values below 0.01 were thresholded. Clearly, the sparsity
patterns are such that inference speedup gains are not immediate.

Given that for the compression we randomly selected N = 200 data points from the
dataset, in Figure 2.3 we repeat the process 10 times, each with different sample of N data
points, and we plot the cumulative nonzero occurrence on the second dense layer of the
LeNet-5 network. These results also show the nonuniform sparsity pattern of the layer. It
should be noted that N is a lot smaller than the total number of training data points. The
reason for this is that the optimization problem (2.2) does not scale well with N .

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 8

0 100

0

50

100

150

200

250

300

350

0

1

(a)

0 20 40 60 80

0

20

40

60

80

100

0

1

(b)

0 5

0

10

20

30

40

50

60

70

80
0

1

(c)

Figure 2.2: Sparsity patters of first (2.2a), second (2.2b) and third (2.2c) dense layers of
LeNet-5 network trained on MNIST dataset and compressed using Algorithm 1.

In conclusion, although sparsifying neural networks can reduce the number of parameters
significantly with limited loss in accuracy, the gains in inference acceleration might not be as
impressive. To achieve a speedup in inference an approach that imposes structured sparsity,
for instance by fixing the number of nonzeros per row, must be implemented.

Low displacement rank layers

Low Displacement Rank (LDR) approximations of fully connected hidden layers in neural
networks have not received as much attention as the sparse counterparts. The authors in [54]
provide theoretical results on the performance of neural networks that utilize hidden layers
with LDR structure. In [43] the authors impose LDR structure on the hidden layers in the
training process and show a significant speedup on training and inference compared to other
already established methods.

Low displacement rank matrices need O(n) independent parameters and allow for fast
matrix operations. More specifically, a matrix is LDR if either the Stein operator (L =
∆A,B : Rn×n 7→ Rn×n) defined by

∆A,B[M] = M−AMB, (2.5)

or the Sylvester operator (L = ∇A,B : Rn×n 7→ Rn×n) defined by

∇A,B[M] = AM−MB, (2.6)

have low rank. The fixed matrices A ∈ Rn×n and B ∈ Rn×n are called operator matrices
and we denote the displacement rank of a matrix M with LA,B(M). When both operator

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 9

Figure 2.3: Distribution of unpruned entries in the weight matrix of the second layer of
LeNet-5. Results obtained by solving problem (3.2) for 10 different subsets of the training
data of size 200 each.

M A,B LA,B(M)
Toeplitz Z1,Z−1 ≤ 2
Hankel Z0,Z1 ≤ 2
Cauchy diag(c1, . . . , cn), diag(d1, . . . , dn) ≤ 1

Vandermonde diag(1/x1, . . . , 1/xn),Z1 ≤ 1

Table 2.1: Structured matrices, their operators and their displacement rank.

matrices are invertible the two operators are equivalent [11]. Table 2.1 shows the structure
of a matrix and its displacement ranks for appropriate choice of operator matrices. In the
table, diag(c1, . . . , cn) denotes a diagonal matrix with ci being its diagonal elements and the
matrix Zf is defined as

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 10

Zf =

0 0 0 . . . 0 f
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
0 0 0 . . . 1 0

 . (2.7)

Matrices with low LZ1,Z−1 are called close-to-Toeplitz or Toeplitz-like matrices. Hankel-like,
Cauchy-like and Vandermonde-like matrices are defined analogously.

Obtaining a LDR approximation for the fully connected layers of a neural network has
a number of benefits both for storage and inference. In the latter case, faster matrix-vector
multiplication may allow inference to take place on mobile devices efficiently. A number of
results regarding matrix-vector multiplication when the matrix has low displacement rank
are provided in [14]. Regarding storage, such matrices would require storing the operator
matrices and 2(α×n) elements instead of n2, where α denotes the low displacement rank [50].
When displacement rank is low such a decrease in space complexity can be very significant.

The compression algorithm developed in [1] can be modified to impose LDR structures
on the dense layers of networks. For instance the ℓth layer of a pre-trained neural network
can be compressed by solving the following optimization problem.

minimize
U∈Rnℓ−1×nℓ

||U−AUB||∗

subject to ||(Yℓ−1U+ 1NbT
ℓ −Yℓ) ◦Mℓ||2F ≤ ϵ2ℓ

(Yℓ−1U+ 1NbT
ℓ) ◦M′

ℓ ≤ 0.

(2.8)

Problem (2.8) is a convex optimization problem as the objective (composition of linear
and convex function) and the constraints are both convex. The nuclear norm is used as
a relaxation of the non-convex rank function [40]. The specific structure of the resulting
matrix U is controlled by appropriate choice of operator matrices A and B. For non-
square matrices, one can utilize the approach proposed for square matrices by appropriately
padding the layer matrix Wℓ with zero rows or columns. Combining the square and non-
square approach we can now approximate a neural network from input to output. For each
hidden layer, problem (2.8) can be solved in parallel and produce the corresponding low
displacement rank weight matrix.

To showcase the structure of the compressed matrices we use an artificial spiral dataset
(Figure 2.4), presented in detail in the next chapter, to perform binary classification with
a DNN. We use a DNN with three hidden layers. The weight matrices have dimensions
W2×80

1 , W80×80
2 , W80×80

3 , W80×2
4 . We run algorithm 1, by solving problem (2.8) in line 8, to

impose a Toeplitz-like structure on the two square layers of the networks. In Figure 2.5 we
plot the magnitude of the entries of the original weight matrices along with the structured
compressed ones for comparison. The Toeplitz-like pattern is clear in the compressed layers.

CHAPTER 2. BACKGROUND ON NEURAL NETWORK COMPRESSION
TECHNIQUES 11

Figure 2.4: Spiral data set with two classes.

(a) Original layers. (b) LDR layers.

Figure 2.5: Magnitude of the entries of weight matrices for the two square layers of the
neural network.

Low rank layers

Using a similar formulation to the ones presented in the sparse and LDR layer sections we
can also impose a low rank structure on the dense layers of neural networks. In comparison
to LDR we found that low rank structures are simpler to implement and lead to similar
compression accuracy and efficiency. As low rank structures form the backbone of this
project, the method is presented in the next chapter in its entirety.

12

Chapter 3

Imposing Low Rank Layers

3.1 Introduction
Recent work suggests that compressing overparametrized DNNs after training leads to a
reduction in the overall time and cost of development of DNN based applications [32]. In the
context of the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [10] it took
multiple years of extensive research and development to reduce the size of initial networks
like VGG16 [42] and find computationally efficient alternatives such as MobileNets [22].
In comparison, the DNN compression approach can provide an equivalent reduction in a
cost-effective way by automating the research for smaller and efficient DNNs.

In this project, we propose the DDLR approach to compress a given CNN or DNN by
imposing a low rank structure on its fully connected layers. While there exist approaches to
reduce the number of parameters in a given DNN by imposing structures such as sparsity
and low displacement rank, these approaches are not data-driven and as a consequence they
require computationally expensive retraining after parameter reduction [7].

Recently, the data-driven sparsity based approach Net-Trim showed that leveraging data
during parameter reduction leads to better compression ratios without retraining [1]. While
sparsification gives good compression performance for storage and transmission, it is very
challenging to get equivalent gains in inference unless special hardware is designed to explic-
itly exploit the sparsity and custom software implementation is utilized. In contrast, the low
rank based structural approximation that factorizes each parameter matrix as the product
of two low dimensional matrices has no such requirements [51].

Our results show that our method manages to reduce the number of parameters signif-
icantly more than Net-Trim while maintaining accuracy levels comparable to the original
uncompressed network. The main advantages of this method can be outlined as follows:
(1) the imposed low rank structure allows for large parameter reduction and fast inference
via efficient matrix-vector multiplications, (2) each layer can be compressed independently
allowing for parallel processing, (3) the error due to compression in each layer is controlled
explicitly and (4) the method does not require retraining to achieve high accuracy.

CHAPTER 3. IMPOSING LOW RANK LAYERS 13

3.2 Related work
Given the large size of modern DNN architectures many methods for storage and compu-
tational complexity reduction have been proposed in the literature. One commonly used
technique for parameter reduction is that of network pruning [35, 4]. Network pruning as-
signs scores to the parameters of a pre-trained neural network and removes parameters based
on these scores [16]. A key component of pruning is the need to retrain the model in order
to increase accuracy to levels close to the original network. Pruning can be performed on a
single parameter basis [1, 26] or by taking into account groups of parameters that ultimately
lead to structured layers amenable for efficient computations [31, 33]. Another branch of
parameter reduction techniques is that of low rank representation of DNN layers. In [47] the
authors present a method to impose a low rank representation on the convolutional layers
of CNNs. Closer to our framework, [41] proposes an approach to impose low rank structure
on the last dense layer of a DNN while training.

Most of the compression techniques above require further retraining which can be com-
putationally expensive for very large models. DNN compression without retraining is an
important practical problem and recently [1] proposed Net-Trim which leverages data to
perform sparsity based parameter reduction and achieve better DNN compression without
retraining. However, it is very challenging to extend the compression gains to faster inference
speeds as sparsity structure requires custom hardware and software support for that pur-
pose. The off-the-shelf graphical processors (GPUs) use single instruction, multiple threads
execution models, i.e. the same sequence of operations is computed in parallel on different
data to accelerate matrix-vector multiplication. The speed of matrix-vector product is then
directly linked to the slowest thread, which might be affected by the number of non-zeros
in the computation allocation to each thread and the overhead associated with reading the
non-zero entries from the chosen compressed sparse storage format. Consequently, it is quite
challenging via sparsity structures, since the non-zero entries could be arbitrarily distributed,
to get faster matrix-vector products. The low rank structure on the other hand does not
suffer from such issues and provides faster inference using off-the-shelf hardware. Therefore,
in this project we extend Net-Trim [1] to compress DNNs by imposing low rank structures
on the layers.

3.3 Method
In this section we outline our DDLR method that imposes low rank representations on the
weight matrices of the fully connected layers in a pre-trained DNN.

DDLR layers

In order to impose a low rank structure on the weight matrix Wℓ we need to minimize the
rank(·) function of that matrix. Given the non-convexity of the rank(·) function we propose

CHAPTER 3. IMPOSING LOW RANK LAYERS 14

solving the following optimization problem

minimize
U∈Rnℓ−1×nℓ

||U||∗

subject to ||ReLU(Yℓ−1U+ 1NbT
ℓ)−Yℓ||F ≤ ϵℓ.

(3.1)

The objective function uses the well known nuclear norm relaxation of the rank(·) function
in order to obtain a convex objective [12] while the constraint requires the output of the
compressed layer to be close to the output of the original layer. This allows us to decrease
the rank of the weight matrix by controlling the output error of the layer. So problem (3.1)
relaxed using (2.3) can now be written as

minimize
U∈Rnℓ−1×nℓ

||U||∗

subject to ||(Yℓ−1U+ 1NbT
ℓ −Yℓ) ◦Mℓ||2F ≤ ϵ2ℓ

(Yℓ−1U+ 1NbT
ℓ) ◦M′

ℓ ≤ 0,

(3.2)

from which we obtain the solution Ûℓ. This formulation allows for imposing structure on the
layers while explicitly controlling for the error of the compressed layer output. This problem
is a SDP with quadratic constraints and can be solved with most off-the-shelf solvers like
SCS [38] and CVXOPT [2].

Parallel implementation

The optimization problem (3.2) imposes a low rank structure on a single layer of a network.
To compress networks with multiple layers we can compress each layer individually and
independently from each other. This process is outlined in Algorithm 2, where compression
of each layer is an independent of the rest of the layers optimization problem. Given that
each layer is compressed independently, the algorithm allows for parallel implementation.
The algorithm requires the initial data matrix as input XN×n0 , the original trained weight
matrices and biases of the layers and the user specified tolerances ϵℓ. The output is a sequence
of low rank matrices for each dense layer.

It should be noted that Algorithm 2 requires the solution of a SDP (line 8) for each layer.
The solution of SDPs can present a computational bottleneck when weight matrices have
large dimensions (e.g. the first dense layer of VGG-16) or the number of data samples N
used to solve (3.2) is large. In such cases, to alleviate these issues one can 1) solve (3.2) to
suboptimality using fewer iterations and 2) use only a subset of the whole training set to
solve (3.2). Given the size of the layers in the networks studied in the experiments section
we will be solving the SDPs to optimality by using only a sample from the original dataset
used for training the network.

CHAPTER 3. IMPOSING LOW RANK LAYERS 15

Algorithm 2: DDLR Algorithm
Input : X,Wℓ,bℓ, ϵℓ, ℓ = 1, . . . , L

1 Y0 = X
2 for ℓ= 1,. . . ,L do
3 Yℓ = ReLU(Yℓ−1Wℓ + 1NbT

ℓ)
4 end
5 for ℓ= 1,. . . , L do
6 Mi,j

ℓ = 1 if Yi,j
ℓ > 0, otherwise 0

7 M′i,j
ℓ = 1 if Yi,j

ℓ ≤ 0, otherwise 0
8 Solve (3.2)
9 end

Output : Ûℓ, ℓ = 1, . . . , L

3.4 Experiments
We demonstrate the effectiveness of our method on three different datasets. An artificial
nested spiral, the MNIST and the CIFAR-10 [25] datasets. Through experimentation we
concluded that compression works well when the number of data samples used to solve (3.2)
is no less than 5% of the data used to train the network. For this reason, and to deal with
the scaling issues of solving SDPs multiple times, we will be training the networks with a
subsample of the available data and we will be solving (3.2) using a subset of size N of
that sample as presented in the following subsections. For each experiment carried out we
use two different values of N in order to study the performance of DDLR with respect to
that sample complexity. The main method we will be comparing DDLR with is Net-Trim.
Net-Trim on which our method is partially based, imposes a sparse structure on the layers
post-training by minimizing the induced ℓ1 matrix norm [1]. Both DDLR and Net-Trim can
be used to compress DNNs, removing redundancies from the networks and leading to faster
inference. We will be comparing the compression level and the resulting accuracies obtained
from these two methods. The benefits of DDLR regarding the possible inference speedup
was discussed in the related work section.

For each of the following datasets we utilize Algorithm 2 for different values of ϵℓ to
compress a number of the hidden layers. For each experiment we report the relative accuracy
on the test set of the compressed network with respect to the original accuracy of the
uncompressed network. We measure the compression by reporting the fraction of parameters
needed to be stored for the compressed network with respect to the original. For the sparse
matrix experiments we assume that the parameters are stored in COO format. The COO
format storage requirement is three times the number of positive entries of a matrix. It
should be noted that it is possible to get the same value for the rank for more than one
values of ϵℓ. In such cases, we choose the solution that leads to higher accuracy on the test
data.

CHAPTER 3. IMPOSING LOW RANK LAYERS 16

Spiral dataset

The first dataset is a spiral of two-dimensional points representing two classes. The data
points were generated by sampling points on the spiral and adding i.i.d. noise uniformly
distributed in the interval [0, 3.5] for each dimension. In this experiment, we consider a DNN

−10 −5 0 5 10

−5

0

5

10

Spiral Data and Decision Boundaries

Figure 3.1: Spiral dataset and decision boundary.

classifier with two hidden layers to label the points lying on the spiral. The dataset consists
of a total of 1024 points out of which 80% points were used for training the DNN and the
remaining 20% were used for testing. The DNN classifier uses the ReLU activation function
except for the last layer where the standard softmax function is used. The dimensions of
the network layers are W1 ∈ R2×80,W2 ∈ R80×80 and W3 ∈ R80×2. The DNN was trained
by minimizing the cross entropy loss using the stochastic batch gradient descent algorithm
with a batch size of 32 for 1000 epochs with learning rate 0.001. The data points along with
the decision boundary obtained from the trained DNN are shown in Figure 3.1.

We compress only the second layer W2, as the first and last ones are already low rank
given their dimensions, by utilizing Algorithm 2. We implemented the DDLR algorithm
under two different scenaria, one using N = 256 and another using N = 512 data points
for the compression, chosen randomly from the original training dataset. In order to obtain
various rank approximations we use the following values for the compression error, ϵℓ ∈
[0.02, 0.05, 0.08, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 0.5, 0.6]·C, where C = ∥Yℓ−1∥F is used for scaling
purposes. We use the elbow rule to threshold the singular values of the solution of (3.2)
to obtain the final low rank weight matrix. As expected, larger values of ϵℓ yield layers
with lower rank. For both choices of N DDLR seems to outperform Net-Trim achieving test
accuracy close to the original using only 60% of the initial parameters. The original accuracy
is recovered with about 80% of the original parameters.

MNIST dataset

For the second set of experiments we use the LeNet-5 CNN architecture to classify the
handwritten digits of the MNIST dataset. LeNet-5 has three dense layers of dimensions

CHAPTER 3. IMPOSING LOW RANK LAYERS 17

0.2 0.4 0.6 0.8

Size Ratio

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
C

om
p

re
ss

ed
A

cc
u

ra
cy

O
ri

gi
n

al

N = 256

DDLR

Net-Trim

0.2 0.4 0.6 0.8

Size Ratio

0.6

0.7

0.8

0.9

1.0

N = 512

DDLR

Net-Trim

Figure 3.2: Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on
the Spiral dataset.

W1 ∈ R256×120,W2 ∈ R120×84 and W3 ∈ R84×10 that follow the convolutional layers. We
train LeNet-5 using 1024 data samples from the original dataset, a 80%-20% train-test split,
a batch size of 64, 30 epochs and a learning rate of 0.001. Using Algorithm 2 we impose a
low rank structure on the first two dense layers of LeNet-5 W1 and W2 using the following
values of ϵℓ = [0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.2, 0.3] · C for each layer, with
C = ∥Yℓ−1∥F being a scaling constant. We use N = 128 and N = 256 number of samples out
of the 1024 data points to compress the network. Figure 3.3 presents the relative accuracy for
different size ratios. DDLR achieves high compression while maintaining sufficient accuracy.
With a 70% reduction in the number of parameters DDLR can achieve a test accuracy less
than 4% lower than that of the original network for both values of N while for N = 256 with
a 40% reduction in parameters the accuracy is almost identical to the original. Interestingly,
we observe that even for N = 128 samples, which corresponds to slightly more than 10% of
the original data, we are able to obtain high compression associated with high accuracy.

CIFAR-10 dataset

For the final set of experiments we classify the CIFAR-10 image dataset using again the
LeNet-5 network. For CIFAR-10 the dense layers of Lenet-5 have dimensions W1 ∈ R400×120,
W2 ∈ R120×84 and W3 ∈ R84×10. We use 2048 data points from CIFAR-10 to train our
network and N = 128 and N = 256 subsamples for compression. For this experiment
we compress the first two dense layers W1 and W2 using the following values for ϵℓ =
[0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.2, 0.3] ·C, where C = ∥Yℓ−1∥F . As expected,
for larger N both methods perform better with DDLR still outperforming Net-Trim. Quite

CHAPTER 3. IMPOSING LOW RANK LAYERS 18

0.2 0.4 0.6 0.8

Size Ratio

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
C

om
p

re
ss

ed
A

cc
u

ra
cy

O
ri

gi
n

al

N = 128

DDLR

Net-Trim

0.2 0.4 0.6 0.8

Size Ratio

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N = 256

DDLR

Net-Trim

Figure 3.3: Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on
the MNIST dataset.

astonishingly, we observe that with only 50% of the original parameters DDLR achieves
an accuracy less than 2% worse in comparison to the accuracy of the original network for
N = 256. For the same relative accuracy on the other hand Net-Trim reduces only by 20%
the total number of parameters needed to be stored. Figure 3.4 contains the curves of the
relative accuracies with respect to the parameter ratio.

0.3 0.4 0.5 0.6 0.7

Size Ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
C

om
p

re
ss

ed
A

cc
u

ra
cy

O
ri

gi
n

al

N = 128

DDLR

Net-Trim

0.4 0.6 0.8

Size Ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N = 256

DDLR

Net-Trim

Figure 3.4: Relative test accuracy for DDLR and Net-Trim with varying DNN size ratios on
the CIFAR-10 dataset.

CHAPTER 3. IMPOSING LOW RANK LAYERS 19

3.5 Conclusion and future work
The DDLR Algorithm is an end-to-end approach that compresses a pre-trained DNN by
imposing low rank structures on the fully connected layers while controlling for the overall
accuracy decrease in the compressed DNN. We demonstrate in a number of datasets and DNN
architectures that high parameter reduction can be achieved at a small loss in accuracy while
requiring no retraining. Such reduction can be very significant for storing already trained
models on edge devices. Furthermore, low rank structured layers allow for fast matrix-
vector multiplications without the need for specialized hardware which reduce inference
time, something that is of vital importance for AI applications, especially on the edge.

The results of the experiments presented in this project are rather encouraging but also
limited due to a number of reasons. First, solving large scale SDPs poses a computational
bottleneck. This drawback is an interesting problem that requires theoretical and algorithmic
development in future research. An interesting approach in that direction is a reformulation
of the optimization problem (3.2) in order to be solved using the Alternating Direction
Method of Multipliers (ADMM) [5]. Such an approach can provide better scalability that
will allow for compression of networks with larger hidden layers that have been trained on
large datasets.

A second potential drawback lies in the parallel implementation of the DDLR Algorithm.
Although this allows for a reduction in training time, this layer-wise independence can lead
to lower inference accuracy as each layer is “unaware" of the previous layer’s compression.
A sequential approach, as in [1], could potentially lead to better performance. Furthermore,
given that modern datasets are fairly large and that our method requires sampling form the
training dataset in order to compress the layers, it would be interesting to study whether
a more informative sampling method, than randomly sampling, can be devised to increase
performance. Finally, an interesting direction is to understand the impact of quantization
on DNNs already compressed using DDLR, as such quantization can lead to significant
additional reduction in the size of the networks.

20

Bibliography

[1] Alireza Aghasi et al. “Net-Trim: Convex Pruning of Deep Neural Networks with Per-
formance Guarantee”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3180–3189.

[2] Martin S Andersen, Joachim Dahl, and Lieven Vandenberghe. “CVXOPT: A Python
package for convex optimization”. In: abel. ee. ucla. edu/cvxopt 88 (2013).

[3] Anubhav Ashok et al. “N2n learning: Network to network compression via policy gra-
dient reinforcement learning”. In: arXiv preprint arXiv:1709.06030 (2017).

[4] Davis Blalock et al. “What is the state of neural network pruning?” In: arXiv preprint
arXiv:2003.03033 (2020).

[5] Stephen Boyd et al. “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers”. In: Foundations and Trends® in Machine
learning 3.1 (2011), pp. 1–122.

[6] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model compression”.
In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2006, pp. 535–541.

[7] Yu Cheng et al. “A survey of model compression and acceleration for deep neural
networks”. In: arXiv preprint arXiv:1710.09282 (2017).

[8] François Chollet. “Xception: Deep learning with depthwise separable convolutions”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1251–1258.

[9] Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. “Filter distillation for
network compression”. In: Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision. 2020, pp. 3140–3149.

[10] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[11] Paulo SR Diniz, Wallace A Martins, and Markus VS Lima. “Block Transceivers: OFDM
and Beyond”. In: Synthesis Lectures on Communications 5.1 (2012), pp. 1–206.

BIBLIOGRAPHY 21

[12] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. “A rank minimization heuristic
with application to minimum order system approximation”. In: Proceedings of the 2001
American Control Conference.(Cat. No. 01CH37148). Vol. 6. IEEE. 2001, pp. 4734–
4739.

[13] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse,
trainable neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).

[14] I Gohberg and V Olshevsky. “Complexity of multiplication with vectors for structured
matrices”. In: Linear Algebra and Its Applications 202 (1994), pp. 163–192.

[15] Yunchao Gong et al. “Compressing deep convolutional networks using vector quanti-
zation”. In: arXiv preprint arXiv:1412.6115 (2014).

[16] Song Han et al. “Learning both weights and connections for efficient neural network”.
In: Advances in neural information processing systems 28 (2015), pp. 1135–1143.

[17] Stephen Hanson and Lorien Pratt. “Comparing biases for minimal network construc-
tion with back-propagation”. In: Advances in neural information processing systems 1
(1988).

[18] Babak Hassibi, David G Stork, and Gregory J Wolff. “Optimal brain surgeon and
general network pruning”. In: IEEE international conference on neural networks. IEEE.
1993, pp. 293–299.

[19] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[20] Kaiming He et al. “Identity mappings in deep residual networks”. In: European confer-
ence on computer vision. Springer. 2016, pp. 630–645.

[21] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 2.7 (2015).

[22] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile
vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[23] Swayambhoo Jain, Shahab Hamidi-Rad, and Fabien Racapé. “Low rank based end-to-
end deep neural network compression”. In: 2021 Data Compression Conference (DCC).
IEEE. 2021, pp. 233–242.

[24] Qing Jin, Linjie Yang, and Zhenyu Liao. “Adabits: Neural network quantization with
adaptive bit-widths”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2020, pp. 2146–2156.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images”. In: (2009).

[26] César Laurent et al. “Revisiting Loss Modelling for Unstructured Pruning”. In: arXiv
preprint arXiv:2006.12279 (2020).

BIBLIOGRAPHY 22

[27] Vadim Lebedev and Victor Lempitsky. “Fast convnets using group-wise brain damage”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 2554–2564.

[28] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.
In: (2010).

[29] Yann LeCun, John Denker, and Sara Solla. “Optimal brain damage”. In: Advances in
neural information processing systems 2 (1989).

[30] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[31] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint arXiv:1608.08710
(2016).

[32] Zhuohan Li et al. “Train Big, Then Compress: Rethinking Model Size for Efficient
Training and Inference of Transformers”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 5958–5968.

[33] Shaohui Lin et al. “Towards optimal structured cnn pruning via generative adversarial
learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 2790–2799.

[34] Baoyuan Liu et al. “Sparse convolutional neural networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015, pp. 806–814.

[35] Zhuang Liu et al. “Rethinking the value of network pruning”. In: arXiv preprint arXiv:1810.05270
(2018).

[36] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural Net-
works through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

[37] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. “A survey on deep neural net-
work compression: Challenges, overview, and solutions”. In: arXiv preprint arXiv:2010.03954
(2020).

[38] B. O’Donoghue et al. “Conic Optimization via Operator Splitting and Homogeneous
Self-Dual Embedding”. In: Journal of Optimization Theory and Applications 169.3
(June 2016), pp. 1042–1068. url: http://stanford.edu/~boyd/papers/scs.html.

[39] Antonio Polino, Razvan Pascanu, and Dan Alistarh. “Model compression via distilla-
tion and quantization”. In: arXiv preprint arXiv:1802.05668 (2018).

[40] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization”. In: SIAM review
52.3 (2010), pp. 471–501.

[41] Tara N Sainath et al. “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets”. In: Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE. 2013, pp. 6655–6659.

BIBLIOGRAPHY 23

[42] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[43] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. “Structured transforms for small-
footprint deep learning”. In: Advances in Neural Information Processing Systems. 2015,
pp. 3088–3096.

[44] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. “Training sparse
neural networks”. In: arXiv preprint arXiv:1611.06694 (2016).

[45] Christian Szegedy et al. “Inception-v4, inception-resnet and the impact of residual
connections on learning”. In: Thirty-first AAAI conference on artificial intelligence.
2017.

[46] Christian Szegedy et al. “Rethinking the inception architecture for computer vision”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 2818–2826.

[47] Cheng Tai et al. “Convolutional neural networks with low-rank regularization”. In:
arXiv preprint arXiv:1511.06067 (2015).

[48] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional
neural networks”. In: International conference on machine learning. PMLR. 2019,
pp. 6105–6114.

[49] Mingxing Tan and Quoc Le. “Efficientnetv2: Smaller models and faster training”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 10096–10106.

[50] Anna Thomas et al. “Learning compressed transforms with low displacement rank”.
In: Advances in neural information processing systems 31 (2018).

[51] Erwei Wang et al. “Deep neural network approximation for custom hardware: where
we’ve been, where we’re going”. In: ACM Computing Surveys (CSUR) 52.2 (2019),
pp. 1–39.

[52] Hui Wang et al. “Progressive Blockwise Knowledge Distillation for Neural Network
Acceleration.” In: IJCAI. 2018, pp. 2769–2775.

[53] Jiaxiang Wu et al. “Quantized convolutional neural networks for mobile devices”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 4820–4828.

[54] Liang Zhao et al. “Theoretical properties for neural networks with weight matrices of
low displacement rank”. In: arXiv preprint arXiv:1703.00144 (2017).

[55] Ritchie Zhao et al. “Improving neural network quantization without retraining using
outlier channel splitting”. In: International conference on machine learning. PMLR.
2019, pp. 7543–7552.

[56] Barret Zoph et al. “Learning transferable architectures for scalable image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 8697–8710.

