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Abstract

Machine Learning Prediction of TCR-Epitope Binding

by

Julian Faust

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Prediction of T-cell receptor (TCR) binding with peptide-MHC complexes remains a difficult
problem due to data accuracy, data scarceness, and problem complexity. Here, we compare
predictions of TCR-pMHC binding across several approaches of featurizing the TCR, and
several different machine learning methods. First, we analyze the available data and discuss
the formulation of binder/non-binder designations for our binary classification framework.
Next, we compare several featurizations of the TCR across different machine learning meth-
ods of varying complexity. We provide an ablation study across different region combinations
common in cases with limited data. We show that simpler machine learning methods trained
on binders and non-binders of a single epitope can be used to better understand binding fac-
tors. Our attention-based neural network directly incorporates peptide and MHC sequence
information, and performs similarly on the harder problem of training with binders and non-
binders of many epitopes at once. Lastly, we incorporate gene usage data into our prediction
framework.
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Chapter 1

Introduction

1.1 Background

T lymphocytes, also known as T cells, are crucial in the cellular immune response [1]. T
cell receptors (TCRs) are two-chained (α and β) protein complexes on the surface of T
cells. They are responsible for recognizing peptide antigens (epitopes) presented on a Major
Histocompatibility Complex (MHC). Although the likelihood that a random TCR will bind
a random epitope is very low, many different TCRs can recognize the same antigen peptide
and many antigen peptides can be recognized by the same TCR. The complementarity-
determining region 1 (CDR1) and CDR2 loops of the TCR α and β chains contact specific
regions of the MHC while the hypervariable complementary determining regions (CDR3)
interact mainly with the peptide [1]. CDR3α and CDR3β loops have the highest sequence
diversity and are the principal determinants of binding. Accurate prediction of TCR-epitope
binding would accelerate the development of numerous therapeutics. and potentially have
major implications in cancer and immune research [1]. Many new TCR-based diagnostic
and rational immunotherapy design methods would become viable, improving our ability to
treat many diseases.

1.2 Problem Description

The TCR-pMHC binary classification problem is presented as follows: given the amino acid
sequences of a peptide, MHC, and TCR, classify instances as either binders or non-binders.
The data was published by 10x Genomics, and is generated from a highly multiplexed ex-
periment with many different pMHC multimers [2]. For each TCR and for each of the 50
pMHC’s (6 of which are negative controls), there is an associated integer UMI count value
that can be used to distinguish binders from non-binders. UMI is an acronym for Unique
Molecular Identifier. These UMI values correspond to some unknown degree with binding
affinity. 10x Genomics suggests a threefold decision rule, labeling a binder if a UMI value
meets the following criteria: “a UMI count greater than 10 that was also greater than five
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times the highest negative control UMI count for that cell. In cases where a cell was assigned
more than one specificity, we considered it to be specific only for the pMHC with the highest
UMI count.” As there are clones in the data, we have n TCRs with the same given sequence
and let U1, . . . , Un denote their UMI values. Due to variation in U1, . . . , Un, there could
be ambiguous binder/non-binder labeling depending on which copy of the TCR sequence is
chosen. In order to resolve this ambiguity, we propose a new labeling system based on the
following rule: Binders are TCRs with min(U1, . . . , Un) greater than some pMHC-specific
cutoff value and greater than the maximum of all negative control values across the 6 neg-
ative controls and n TCRs. Non-binders are those with max(U1, . . . , Un) = 0. For binary
classification, we ensure that there are no duplicate sequences in the combined training and
test sets.

1.3 Related Work

There have been many attempts to apply machine learning to predict TCR-pMHC binding,
using a variety of approaches. Many papers in this domain have focused on predicting
epitope specificity, which is an easier prediction problem since TCRs are filtered so that only
TCRs binding to a single epitope across the set (epitope-specific TCRs) are included [3].
There have also been attempts at building a single model which generalizes TCR-epitope
predictions across a set of different epitopes. In 2020, Springer at al. [4] attempted this task
with autoencoder and LSTM-based approaches to achieve a 0.81 AUROC on a test set of
unseen TCRs for a dataset of multiple epitopes presented on the same MHC complex. It is
key to note that their network was trained on over 200,000 TCRs, using only CDR3 chains as
input. This is because most available TCR data (from McPAS or VDJdb databases) provide
only the CDR3 sequences, despite good evidence that using CDR1 and CDR2 sequence
information improves the predictive accuracy of various models [5]. Several papers have
attempted this task using AUROC as their performance metric despite an uneven positive
to negative class ratio (such as 1:5), a choice that compromises the validity of the results
since the model could predict predominantly negatives to achieve a high AUROC [4][5][6].

Many papers have used the same 10x Genomics TCR-pMHC single-cell dataset with
UMI count values characterizing the binding of TCRs to 44 specific pMHC multimers and
6 negative controls. Fischer et al. [7] opted to use the binder designations provided by
10x Genomics. Sidhom et al. [8] proposed to use their DeepTCR network to regress UMI
counts, which they considered a proxy for binding affinity. Zhang et al. [9] proposed to
handle multiple UMI count values associated with a single unique TCR sequence by using
the median UMI value.
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1.4 Contributions

In this work, we compare various approaches for TCR-pMHC binding prediction. We struc-
ture this thesis as follows:

• In Section 2.1, we provide a detailed analysis of the data and the potential challenges
in designating accurate binary labels.

• In Section 2.2, we present an overview of the different featurization schemes and ma-
chine learning methods used.

• In Section 2.3, we demonstrate the performance of our models, comparing results across
various methods.
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Chapter 2

TCR-Epitope Prediction

2.1 Data

UMI Values

The degree to which a TCR-pMHC pair’s UMI value is correlated with the binding affinity
is unknown. In order to better understand the TCR-pMHC UMI data, we proceed with a
brief description of the multiplexed binding and sequencing experiment used to generate our
data.

First, a pool of dCODE Dextramer reagents is created. Each reagent, as depicted in
Figure 2.1 (created by Immudex), is composed of a flexible dextran backbone with coupled
fluorophores and pMHC complexes [10]. The number of pMHC complexes loaded onto the
dextran backbone was optimized by Immudex to increase the avidity of the interaction
between the reagent and interacting TCRs while minimizing the effect of other dCODE
Dextramer reagents. There are multiple fluorophores that boost the brightness of the reagent
and improve the signal-to-noise ratio. There is also a barcode for use in bulk or single-cell
sequencing. Each reagent has a unique pMHC complex and a unique barcode. Equal amounts
of each reagent (160 nM) are combined in the pool so they are equally represented in the
solution according to the Immudex cell staining profile. T cells are then stained with this pool
of reagents. Fluorescence-activated cell sorting (FACS) antibodies and sequencing antibodies
are added at this phase. FACS antibodies apply a gating strategy and effectively work as cell
sorters. They are able to separate the cells specific to each dCODE Dextramer reagent with
its distinct phycoerythrin (PE) fluorophore. Since sequencing is costly and 10x sequencing
instruments can only load around 10,000 single cells at a time, this step is important to ensure
that primarily antigen-specific cells are sequenced. Then, the 10x Chromium microfluidic
system is used to load single cells into gel beads in emulsion (GEMs), each of which contains
a single barcoded 10x bead and a single cell. After the cell is lysed, the gel bead is coated
in the barcodes, which can be isolated and sequenced. On each individual barcode on each
individual reagent, there is a unique UMI. After sequencing, the number of UMIs associated
with a T cell is the number of molecules of the reagent that were bound to that T cell.
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Figure 2.1: dCODE Dextramer Reagent, figure taken from Immudex [10]

The number of dCODE Dextramer reagents that bind to a T cell is dependent on multiple
factors, including the avidity (correlated with the affinity of the interaction between the
pMHC and TCR) as well as the number of TCRs on the surface (correlated with T cell
activation status). For these reasons and any other experimental noise that may be present,
the number of UMIs is not directly correlated with the affinity of the TCR-pMHC interaction
alone.

In order to differentiate cases of non-specific binders from true binders, it is recommended
to make use of negative control dCODE Dextramer reagents. These can be MHC allele-
matched (preferably) or allele mismatched to experimental reagents, and carry irrelevant
peptides to the samples that should not result in binding. Binding to negative controls
can be used to approximate non-specific binding in a cell, so any instance of specific binding
should have a significantly higher UMI count than the maximum negative control UMI count.

We filter sequences based on “Productive” and “High Confidence” filters provided by 10x
Genomics, including only cells with exactly one TCRα sequence and one TCRβ sequence.
After filtering, there are a total of 74,320 paired TCRs with UMI values for 50 pMHCs
(including negative controls), and 28,788 unique paired TCR sequences. The UMI distribu-
tions vary by pMHC in shape and scale. In Table 2.1, we provide summary statistics for the
UMI distributions of unique TCR sequences for the 9 epitopes in the dataset with sufficient
binders to be analyzed with our methods. For each unique TCR sequence with n associ-
ated UMI values, min(U1, . . . , Un) is used as the representative value. As zero counts and
lower UMI values dominate the data, we present the same results in Table 2.2 conditioned
on min(U1, . . . , Un) being greater than 10, and greater than the maximum of all negative
control values across the 6 negative controls and n TCRs with the same sequence.

Table 2.1 and Table 2.2 illustrate the vast differences in UMI value distributions across
epitopes. In Figure 2.2 and Figure 2.3, we present histograms for the UMI distributions of
CMV epitope KLGGALQAK (bound to HLA-A*0301) and Influenza peptide GILGFVFTL
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Table 2.1: UMI Distribution Statistics

Peptide Seq. Count UMI Mean UMI Median UMI Mode UMI STD.

AVFDRKSDAK 28788 3.9 1 0 9.6
ELAGIGILTV 28788 0.2 0 0 2.2
FLYALALLL 28788 0.1 0 0 1.4
GILGFVFTL 28788 1.7 0 0 14.3
GLCTLVAML 28788 0.1 0 0 2.8
IVTDFSVIK 28788 2.9 0 0 17.5

KLGGALQAK 28788 7.1 1 0 14.3
RAKFKQLL 28788 1.1 0 0 9.7
RLRAEAQVK 28788 2.6 0 0 5.4

Table 2.2: UMI Distribution Statistics, Min(U1, . . . , Un) > 10 and Min(U1, . . . , Un) > 5 ×
Max(Negative Controls)

Peptide Seq. Count UMI Mean UMI Median UMI Mode UMI STD.

AVFDRKSDAK 3263 22.7 19 11 18.9
ELAGIGILTV 147 25.8 19 16 16.2
FLYALALLL 25 41.8 37 26 22.9
GILGFVFTL 530 86.0 71 31 62.6
GLCTLVAML 55 46.0 29 43 43.7
IVTDFSVIK 1663 29.0 16 11 67.2

KLGGALQAK 5158 31.5 26 11 19.7
RAKFKQLL 433 63.3 49 13 48.0
RLRAEAQVK 2079 18.4 16 11 7.6

(bound to HLA-A*0201). For certain epitopes like GILGFVFTL, the majority of TCRs
with a UMI greater than 10 have a UMI much greater than 10. For other epitopes like
KLGGALQAK, a large proportion of TCRs with a UMI greater than 10 have a UMI only
slightly greater than 10. Due to the shape of this distribution, this holds true not just for
the threshold value of 10 in particular, but for any reasonable threshold value.

Analysis of Clones

The majority of the unique sequences in the data have only a single copy. These cases make
up 26019 out of the 28788 unique TCR sequences in the dataset. The maximum number of
copies of a unique TCR sequence was 5669. In order to understand the degree of variance in
UMI values, we sample the distribution of the difference in UMI value between any two clones
(TCRs with identical sequences) for each epitope. We present some summary statistics for
these distributions in Table 2.3. We also present summary statistics for these distributions
in Table 2.4, this time conditioning on n TCRs having min(U1, . . . , Un) being greater than
10, and greater than the maximum of all negative control values across the 6 negative
controls. It is important to note that TCR sequences with more copies are overrepresented
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Figure 2.2: KLGGALQAK UMI Count Distribution Histogram, Min(U1, . . . , Un) > 10 and
Min(U1, . . . , Un) > 5 × Max(Negative Controls)

in the distribution of pairwise identical sequence UMI differences, as the number of pairwise
differences possible is quadratic in the number of copies of a TCR sequence. Since the degree
of TCR expansion may correlate with the UMI values of some epitopes, the UMI values from
which the differences are computed may be higher than those from Table 2.1 and Table 2.2.

Table 2.3: UMI Difference in Identical TCR Sequences Distribution Statistics

Peptide Seq. Count UMI Mean UMI Median UMI Mode UMI STD.

AVFDRKSDAK 20023912 2.8 1 0 9.0
ELAGIGILTV 20023912 0.1 0 0 0.3
FLYALALLL 20023912 0.1 0 0 0.4
GILGFVFTL 20023912 1.1 0 0 9.5
GLCTLVAML 20023912 0.1 0 0 1.1
IVTDFSVIK 20023912 14.9 1 0 65.1

KLGGALQAK 20023912 4.2 2 1 5.6
RAKFKQLL 20023912 31.7 23 0 33.0
RLRAEAQVK 20023912 2.0 1 0 2.9

There are many epitopes for which the actual UMI values and the difference in UMI
values among identical TCRs are of similar magnitude. This highlights the high variance
of UMI values and suggests that the correlation with binding affinity is quite weak in the
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Figure 2.3: GILGFVFTL UMI Count Distribution Histogram, Min(U1, . . . , Un) > 10 and
Min(U1, . . . , Un) > 5 × Max(Negative Controls)

Table 2.4: UMI Difference in Identical TCR Sequences Distribution Statistics,
Min(U1, . . . , Un) > 10 and Min(U1, . . . , Un) > 5 × Max(Negative Controls)

Peptide Seq. Count UMI Mean UMI Median UMI Mode UMI STD.

AVFDRKSDAK 3269 231.9 180 6 197.8
ELAGIGILTV 0 0 0 0 0
FLYALALLL 953 33.4 28 7 25.1
GILGFVFTL 99358 87.6 51 1 528.3
GLCTLVAML 2484 33.3 24 14 32.1
IVTDFSVIK 187 167.0 107 8 174.4

KLGGALQAK 884 28.1 18 2 31.0
RAKFKQLL 19002 53.5 41 11 45.9
RLRAEAQVK 79 10.7 7 2 11.3

case of certain epitopes. This variance is problematic when determining a binding threshold
value for epitopes with UMI distributions similar to KLGGALQAK. Due to the distribution
shape illustrated in Figure 2.2, a large proportion of UMI values greater than any reasonable
threshold value x will be very close to x. For this epitope, the median UMI value with con-
ditioning from Table 2.2 is 26, while the median UMI difference of identical TCR sequences
with conditioning from Table 2.4 is 18. From our analyses, including the suggested criteria
for negative controls does not significantly alter the UMI distributions or reduce the UMI
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variance of TCRs with the same sequence.

Varying Region Lengths and the Alignment Problem

We describe a positional alignment issue, imposed by the length variations of different regions
of the TCR. We found some degree of length variation in every CDR and Framework region.
The greatest diversity in lengths occurs in the CDR3 regions, due to non-templated insertions
and deletions during V(D)J recombination. Furthermore, the position-amino acid frequency
distributions of CDRs of different lengths are similar at or very close to the ends of the
sequence. The position-frequency maps in Figure 2.4 suggest gap character insertion(s)
somewhere in the middle of the CDR3α might better align the positions with similar amino
acid distributions. The AHo alignment scheme tends to align CDR regions in this way, with
the ends aligned and gap characters from the middle out [11]. However, many solutions
to featurizing the TCR have simply left, middle or right padded to deal with the varying
lengths, which seems to improperly align the positions [8][12]. While aligning CDRs of
different lengths seems natural, the amino acid distributions still do not align perfectly with
the insertion of a gap character in the optimal location(s). The length of the CDR sequence
is also closely related to the loop function, and certain lengths are “preferred” by positive
binders of certain epitopes. An example of this can be seen in the histogram in Figure 2.5.
Ideally, there would be enough data that a different distribution could be learned for each
different set of lengths.

Figure 2.4: GILGFVFTL Binders Position-Frequency For Different Length CDR3α

2.2 Methods

For each epitope, equal numbers of positive and negative binders are used for training and
testing. There are no duplicate sequences in the combined training and test sets. The
train/test ratio is 80/20, and 5-fold cross-validation was used to select the hyperparameters
for the Random Forest Classifier. Logistic Regression with L2 Regularization was chosen. In
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Figure 2.5: GILGFVFTL CDR3β Length Distributions

Table 2.5, we present the pMHC threshold values used to determine positive binders along
with the maximum negative control condition described earlier.

Table 2.5: UMI Threshold For Binders and Counts

Peptide Seq. UMI Threshold Positives
AVFDRKSDAK 30 139
ELAGIGILTV 10 147
FLYALALLL 10 25
GILGFVFTL 20 504
GLCTLVAML 15 47
IVTDFSVIK 30 164

KLGGALQAK 30 2123
RAKFKQLL 30 312
RLRAEAQVK 30 147

Regional Methods

With limited binders, we first turn towards two simple featurizations that aggregate infor-
mation across each of the 6 CDR and 8 framework regions. While the positional information
within a region is lost with these featurizations, they contain important regional information
and set a prediction baseline for position-based methods. With the following featurization
methods, we train a separate Random Forest and Logistic Regression classifier for the posi-
tive/negative binders of each epitope.
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Amino Acid Counts

The first featurization method we used is the amino acid counts for each of the 14 regions,
along with the region length. The final feature vector has 294 features, the counts for 20
amino acids in each of the 14 regions, plus 14 features corresponding to the lengths of those
regions. We also experimented with a closely related featurization method, which divides
these count values by the region length (each position now represents the frequency of the
amino acid within the region). An advantage of using amino acid count features is that the
feature importances are more easily interpretable than with amino acid descriptors. This
method yielded nearly identical results to the amino acid counts method.

Amino Acid Descriptors

The second featurization method used the set of 8 amino acid descriptors called VHSE [13].
We computed the average VHSE vector for each region, along with the lengths of the 14
regions as before. The final feature vector has 126 features. Amino acid descriptors require
fewer features than amino acid counts and encode similarities between amino acids. This is
helpful for generalization to unseen TCRs.

Positional Methods

In this section, we used ANARCI to align TCRs according to the AHo numbering scheme
[11][14]. The AHo numbering system is based on the spatial alignment of known three-
dimensional structures of immunoglobulin domains and places alignment gaps in a way that
minimizes the average deviation from the averaged structure of the aligned domains. AHo
numbering aligns the start positions and end positions of different length CDR3 regions,
adding gaps from the middle. Although different length CDRs can have different amino
acid distributions that may not be perfectly alignable with a properly placed gap character,
AHo numbering seems to be an appropriate way of aligning CDR3 regions based on the
visual presented in Figure 2.4. The AHo aligned sequence length (with gaps) is 150 for each
complete TCR chain, for a total of 300 positions. Of these 300 positions, 140 are in CDR
regions while 160 are in framework regions.

Amino Acid Descriptors

For each position, we represent each amino acid by a vector of its corresponding 8 VHSE
descriptors. For gap characters, we use a vector of all zeros. As there are significantly more
features without any aggregation over the region, we use only the 140 CDR positions. The
final feature vector has a total of 1120 features.
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Attention Models

In addition to applying these simpler machine learning methods with separate models for
each epitope, we wanted to train a neural network that works across all the epitopes. Our
network trains on triplets of TCR, epitope, and MHC sequences, along with a label 1 for
positive binders and a label 0 for negative binders. Attention-based architectures are chosen
based on the high-level principle of the function of attention layers. The UMI thresholds,
train/test, and positive/negative ratios remain the same from the earlier experiments.

Attention layers generate attention maps of scores between 0 and 1, representing the
interaction of positions of the first input and the second. In our case, these are maps repre-
senting the interaction between CDR sequence and epitope sequence or maps representing
the interaction between CDR sequence and MHC sequence. We use “multi-headed” attention
layers rather than simply scaled dot product attention. Consider attention in the context
where the first input of the attention layer is both the key and the value vector, and the
second input is the query vector. We have query, key, and value weight matrices WQ, WK,
WV, respectively. These are multiplied by the input key, query, and value vectors. Scaled
dot product attention is described by the equation Attention(Q,K, V ) = softmax(QKT

√
dk

)V ,

where
√
dk is the dimension of the key vector k and query vector q. Multi-head attention

modifies this in the following way: MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O,

where headi = Attention(QWQ
i , KWK

i , V W V
i ) [15]. As these operations are asymmetric, we

implement all attention layers a second time with the first and second input order reversed.
Additionally, we upsample positive examples in the training set to train on more diverse
negatives, which we found to increase performance slightly. While there is a 1:1 ratio of pos-
itive to negative labels in the training data, the ratio of unique positive samples to unique
negative samples is 1:3. There is no upsampling for the test set, where positives and nega-
tives are represented at a 1:1 ratio as before. We tested several neural network architectures
that use attention between features from the TCR and features from the epitope or MHC.
The sequences for the MHC alleles were found using the IPD-IMGT/HLA database [16]. We
present only our best-performing network.

Our network takes in the TCR as 6 separate inputs, each of which corresponds to a
CDR sequence. Each CDR is aligned with AHo numbering, and each amino acid position is
encoded by its VHSE descriptors, where gap characters are represented by all zeros. This
injects some domain knowledge into our design since CDR1 and CDR2 loops are known
to contact the MHC, while the CDR3 loops are in contact with the peptide. The output
of all 12 attention layers is flattened before being concatenated and passed through a fully
connected network. The architecture is shown in Figure 2.6. Since there are 6 CDR loops,
there are 6 attention layers for which the CDR is the first input and 6 attention layers for
which the CDR is the second input for a total of 12 attention layers (rather than the 6 shown
in the simplified Figure 2.6). The network has a total of 136,745 parameters.

The attention layers were implemented with the Keras MultiHeadAttention layers, with
3 attention heads and key dim = 3. The output of all attention layers is then flattened,
concatenated, and then fed into a fully connected network. The network is trained with the
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Figure 2.6: CDR Attention Model Architecture

Adam optimizer and standard binary cross-entropy loss for 3 epochs, with the following sizes
for fully connected layers: [100, 40, 1].

The CDR, peptide, and MHC sequences were featurized by converting each amino acid
position with a vector of its corresponding amino acid descriptors (VHSE). While the total
length of the main MHC chain is hundreds of amino acids long, we only consider a discon-
tinuous slice of 60 positions that previous studies have shown to interact with the TCR and
peptide [17]. We experimented with featurizing each amino acid in the TCR, peptide, and
MHC with one-hot encoding and ProtBERT-BFD embeddings, and found that the VHSE
descriptors performed better. Sin-cos positional encoding is added to all features before
passing into attention layers.

2.3 Results

We use accuracy and area under the precision-recall curve (AUC-PR) on the test set as
measures of the predictive ability of our models. Since there is a 1:1 ratio of binders to
non-binders in the training and test sets for every epitope, accuracy is a valid metric to
consider. We provide accuracy and AUC-PR across all epitopes for different featurizations
and methods. As we have ample negatives, we average accuracy and AUC-PR values across
results obtained with 3 different non-overlapping sets of non-binders.

Regional Methods

Amino Acid Counts

The overall Random Forests accuracy with amino acid counts was 0.761, and the overall
Logistic Regression accuracy with amino acid counts was 0.755.
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Table 2.6: Classification Results Regional Features Amino Acid Counts

Peptide Seq. RF acc. LR acc. RF AUC-PR LR AUC-PR
AVFDRKSDAK 0.526 0.561 0.621 0.533
ELAGIGILTV 0.949 0.887 0.948 0.945
FLYALALLL 0.833 0.933 0.883 0.988
GILGFVFTL 0.954 0.906 0.964 0.964
GLCTLVAML 0.929 0.895 0.942 0.961
IVTDFSVIK 0.666 0.621 0.796 0.766

KLGGALQAK 0.609 0.606 0.728 0.643
RAKFKQLL 0.853 0.829 0.893 0.921
RLRAEAQVK 0.531 0.559 0.618 0.533

Overall 0.761 0.755 0.822 0.807

Amino Acid Descriptors

The overall Random Forests accuracy with amino acid descriptors was 0.773, and the overall
Logistic Regression accuracy with amino acid descriptors was 0.761.

Table 2.7: Classification Results Regional Features VHSE Descriptors

Peptide Seq. RF acc. LR acc. RF AUC-PR LR AUC-PR
AVFDRKSDAK 0.515 0.570 0.606 0.520
ELAGIGILTV 0.949 0.881 0.948 0.939
FLYALALLL 0.900 0.900 0.928 0.973
GILGFVFTL 0.950 0.909 0.963 0.966
GLCTLVAML 0.930 0.877 0.939 0.975
IVTDFSVIK 0.657 0.687 0.785 0.777

KLGGALQAK 0.589 0.588 0.715 0.602
RAKFKQLL 0.853 0.848 0.894 0.930
RLRAEAQVK 0.616 0.576 0.686 0.521

Overall 0.773 0.761 0.829 0.800

While Random Forests and Logistic Regression generally seem to predict the same epi-
topes with similar accuracy, Random Forests has a slightly higher overall accuracy and
AUC-PR. Average region VHSE descriptors also slightly outperformed region amino acid
counts. Both Random Forests and Logistic Regression models can be interpreted to look
for significant features in the data, through features importances and coefficients respec-
tively. We provide an example of how the Random Forests importance weights of the amino
acid counts model can inform a better understanding of the significant region-amino acid
combinations differentiating the positive binders of GILGFVFTL in Figure 2.7.

The feature importance diagram suggests that many significant features for prediction
reside in the framework regions for this epitope. Interestingly, using either CDR or frame-
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Figure 2.7: GILGFVFTL Random Forests Mean Decrease in Impurity Feature Importance

work regions made predictions nearly as good as using both, a result that will be explained
further in our ablation section. CDR3β length also seems to be an important distinguishing
factor for binding this epitope based on the feature importances. Looking at the CDR3β
length distributions for GILGFVFTL binders and non-binders in Figure 2.5, we see that the
majority of binders have a CDR3β length of 13. In fact, we were able to make an 81.3 per-
cent accurate Random Forests classifier for GILGFVFTL on the test set with the 14 region
lengths as the sole features.

Ablation

We provide an ablation study in Table 2.8, using average region VHSE descriptors across the
following combinations of regions: CDR and framework, CDR only, framework only, CDR3
only, CDR3β only, α chain only, β chain only. A TCR can be divided into its CDR and
framework regions, or into its α and β chains.

We find that CDR or framework regions alone can be used to make models that predict
about as well as models with the combined CDR and framework regions. Using the frame-
work region average descriptors actually delivered a slightly higher Random Forests accuracy
on the test set than using the combined CDR and framework regions. On the other hand,
there is a larger drop associated with using either the α or β chains. This suggests that
the sequence information contained in the CDR and framework regions could be somewhat
redundant from a predictive standpoint, while α and β chain information are more com-
plementary. While the framework regions have not been characterized as important factors
for binding in a biological sense, they are differently expressed in and serve as markers for
different genes. For example, framework variants tag the V gene that determines CDR1 and
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Table 2.8: Classification Results Regional Features VHSE Descriptors Random Forests

Peptide Seq. CDR + FR acc. CDR acc. FR acc. CDR3 acc. CDR3β acc. α acc. β acc.

AVFDRKSDAK 0.515 0.474 0.513 0.482 0.487 0.537 0.516
ELAGIGILTV 0.949 0.949 0.949 0.655 0.633 0.954 0.706
FLYALALLL 0.900 0.833 0.933 0.966 0.833 0.967 0.800
GILGFVFTL 0.950 0.949 0.947 0.894 0.833 0.820 0.950
GLCTLVAML 0.930 0.930 0.912 0.737 0.754 0.842 0.842
IVTDFSVIK 0.657 0.662 0.717 0.606 0.606 0.646 0.652

KLGGALQAK 0.589 0.566 0.603 0.511 0.512 0.575 0.577
RAKFKQLL 0.853 0.861 0.853 0.821 0.749 0.840 0.824
RLRAEAQVK 0.616 0.537 0.582 0.467 0.435 0.559 0.537

Overall 0.773 0.751 0.778 0.682 0.649 0.749 0.712

CDR2 regions. As binders preferentially select for certain genes or combinations of genes,
framework regions are still useful for prediction of TCR-pMHC binding. We expand on this
idea further in our gene usage section.

Positional Methods

Amino Acid Descriptors

The overall Random Forests accuracy with amino acid descriptors was 0.766, and the overall
Logistic Regression accuracy with amino acid descriptors was 0.771.

Table 2.9: Classification Results Positional Features VHSE Descriptors

Peptide Seq. RF acc. LR acc. RF AUC-PR LR AUC-PR
AVFDRKSDAK 0.539 0.518 0.680 0.526
ELAGIGILTV 0.921 0.915 0.937 0.948
FLYALALLL 1.00 1.00 1.00 1.00
GILGFVFTL 0.926 0.881 0.947 0.960
GLCTLVAML 0.860 0.860 0.872 0.927
IVTDFSVIK 0.641 0.692 0.766 0.797

KLGGALQAK 0.575 0.579 0.696 0.628
RAKFKQLL 0.885 0.856 0.915 0.891
RLRAEAQVK 0.544 0.556 0.641 0.503

Overall 0.766 0.771 0.828 0.798

Attention Models

The overall Attention Model accuracy was 0.708.
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Table 2.10: Classification Results Attention Model

Peptide Seq. Accuracy AUC-PR
AVFDRKSDAK 0.602 0.719
ELAGIGILTV 0.846 0.881
FLYALALLL 0.777 0.856
GILGFVFTL 0.927 0.955
GLCTLVAML 0.611 0.701
IVTDFSVIK 0.671 0.755

KLGGALQAK 0.574 0.691
RAKFKQLL 0.786 0.837
RLRAEAQVK 0.574 0.707

Overall 0.708 0.789

Comparative Logo Analysis

In Figure 2.8, we provide logo plots for the amino acid distributions of the AHo numbered
CDR3 Region for binders of KLGGALQAK and GILGFVFTL, and for the general TCR
pool. In Figure 2.9, we plot the log enrichment of each amino acid at every position for the
aforementioned epitopes. Log enrichment uses the ratio of the frequency in binders to the
frequency of non-binders, with no regards for statistical significance. By plotting only amino
acids which have a Fisher’s Exact Test p-value under different thresholds in Figure 2.10 and
Figure 2.11, we see that the number of statistically significant log enriched amino acids in
different positions in KLGGALQAK binders is lower compared to in GILGFVFTL binders.
Across all 9 epitopes tested, we find that epitopes that can be predicted with high accuracy
have many statistically significant log enriched amino acids in various positions.

Gene Usage

Gene usage refers to the categorical V/D/J genes of the TCR, which are included for each
sequence in the dataset annotations. Each TCR α chain has 2 genes (V and J), while
each TCR β chain has 3 genes (V, D, and J). These genes are closely related to the TCR
sequence, although the sequences of two TCRs with identical genes could vary due to allelic
differences. The annotations also specify allele information for each gene. For the purpose
of these analyses, we strip away the allele information and use only the broader gene to
categorize each TCR. Furthermore, we use only the V and J genes for each chain, ignoring
the D gene on the β chain. There are 39 Vα, 47 Vβ, 53 Jα, and 13 Jβ genes across the
dataset.

Prediction with Gene Usage

First, we assess how well we can predict using gene information alone. We choose to one-hot
encode genes for simplicity, concatenating the one-hot vectors of each gene for a total of
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Figure 2.8: KLGGALQAK Binder, GILGFVFTL Binder, All TCR AHo Numbered CDR3B
Region Amino Acid Distributions

152 features for each TCR, exactly four of which are nonzero. We use the same train/test
data as in earlier segments, classifying with Random Forests and Logistic Regression. The
results are displayed in Table 2.11. Overall, the results are similar but slightly worse than
those achieved by sequence prediction methods. While amino acid methods effectively allow
models to capture similarities between genes, this is not possible with the one-hot featuriza-
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Figure 2.9: KLGGALQAK Binder, GILGFVFTL Binder AHo Numbered CDR3B Region
Amino Acid Log Enrichment

tion described. The gene distributions for binders and non-binders of certain epitopes that
can be predicted well with one-hot encoded gene features (ELAGIGILTV, FLYALALLL,
GILGFVFTL, GLCTLVAML, RAKFKQLL) tend to have a few predominant genes by which
binders can be distinguished with high likelihood. On the other hand, while not identical, the
gene distributions for binders and non-binders of the poorly predicted epitopes (AVFDRKS-
DAK, IVTDFSVIK, KLGGALQAK, RLRAEAQVK) have more overlap and the differences
are less statistically significant. For illustration, see the comparison of Vβ distributions be-
tween KLGGALQAK binders, GILGFVFTL binders, and the general pool of TCRs in the
data in Figure 2.12, Figure 2.13, and Figure 2.14.

Interestingly, 10x Genomics reported observing “clonotypes with apparently cross-reactive
binding” for the aforementioned set of 4 poorly predicted epitopes [2]. Makowski et al. [18]
describe strong tradeoffs between the properties of affinity and specificity in antibodies,
stating that “increases in affinity along the co-optimal Pareto frontier require progressive
reductions in specificity.” Our models are able to differentiate binders of the highly specific
epitopes, while they struggle to predict the binding of the cross-reactive epitopes. While
UMI values only correlate weakly with binding affinity, the differences in affinity between
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Figure 2.10: KLGGALQAK Binder, GILGFVFTL Binder AHo Numbered CDR3B Region
Amino Acid Log Enrichment, Fisher’s Exact Test < 0.01

specific and cross-reactive epitopes may connect to the distributional differences exempli-
fied in Figure 2.2 and Figure 2.3. More analysis is required to understand the link between
cross-reactivity and the variance in UMI count values of the apparent cross-reactive epitopes.

Another way of conceptualizing this is through the sequence diversity of the binding
TCRs. In Table 2.12, we compute the average pairwise Levenshtein edit distance between
different regions of positive binders of each epitope. Positive binders were defined by the
same UMI thresholds set in Table 2.5, as well as the negative control condition.“General”
in this context refers to the average pairwise edit distance between different regions for the
full dataset of TCRs. In general, the edit distances for each epitope correlate inversely with
the accuracy achieved by our machine learning models. The epitopes with edit distances
close to that of the general pool of TCRs in the dataset were predicted nearly at random by
our models. TCRs sharing any gene information will have a much lower edit distance in the
associated regions since allelic differences are minor. This explains why ELAGIGILTV and
GILGFVFTL binders, with a few predominant Vα and Vβ genes respectively, have lower
edit distances in the regions in their respective Vα and Vβ genes. This also matches with
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Figure 2.11: KLGGALQAK Binder, GILGFVFTL Binder AHo Numbered CDR3B Region
Amino Acid Log Enrichment, Fisher’s Exact Test < 0.0001

results from the ablation study in Table 2.8, where we see that the α chain accuracy for
ELAGIGILTV is much higher than the β chain accuracy. For GILGFVFTL, although there
was a much lower pairwise edit distance in the β chain overall, the edit distance is also quite
low in the CDR3α and framework 4 regions (J gene) of the α chain. The associated Jα gene
bias helps explain why the accuracy is high for either chain in the ablation. For the Epstein-
Barr epitope FLYALALLL (bound to HLA-A*0201) with only 25 positive binders, the edit
distances show the very high pairwise similarity in both α and β chains. Unsurprisingly,
binders have a significant gene bias in both V and J genes.

Prediction in Fixed Gene Contexts

Next, we take on the challenge of prediction in a fixed V gene context. This means that
an equal number of binders and non-binders are drawn from the exact same Vα and Vβ
genes, although no restriction is imposed on the J genes. We were only able to find one V
gene combination with at least 20 binders and 20 non-binders for any epitope in the dataset.
There are 153 GILGFVFTL binders and 47 non-binders with both TRAV27 and TRBV19
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Table 2.11: Classification Results Gene Usage Features

Peptide Seq. RF acc. LR acc. RF AUC-PR LR AUC-PR
AVFDRKSDAK 0.531 0.579 0.687 0.464
ELAGIGILTV 0.932 0.848 0.933 0.928
FLYALALLL 1.00 1.00 1.00 1.00
GILGFVFTL 0.965 0.946 0.979 0.967
GLCTLVAML 0.789 0.842 0.808 0.934
IVTDFSVIK 0.621 0.621 0.773 0.785

KLGGALQAK 0.587 0.565 0.735 0.583
RAKFKQLL 0.872 0.840 0.933 0.884
RLRAEAQVK 0.474 0.593 0.570 0.603

Overall 0.753 0.758 0.824 0.794

Figure 2.12: KLGGALQAK Binders Vβ Gene Distribution

genes. Our combined training and test sets contain only 47 binders and 47 non-binders. As
the number of samples is reduced due to conditioning on one specific gene combination, we
use our smallest regional featurization with VHSE descriptors and Random Forest. This
task is made harder due to the elimination of V gene bias and the decrease in the number
of samples. In the absence of V gene bias, the CDR1 and CDR2 regions (in the V region)
add little predictive information differentiating the binders from non-binders. The same is
true for the Framework 1, 2, and 3 regions. However, the prediction accuracy with just the
CDR3 or the Framework 4 regions is high, as shown in Table 2.13. This is attributable to
the significant differences in Jα and Jβ distributions for binders and non-binders.
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Figure 2.13: GILGFVFTL Binders Vβ Gene Distribution

Figure 2.14: General TCR Vβ Gene Distribution
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Since the context around the CDR3 is partly defined by the V genes, there are fewer
possible conformations the CDR3 can take on. Different V gene contexts also seem to
select for different lengths of CDR3. As TCRs with the same V genes have a high degree
of sequence similarity, the differences between binders and non-binders are clearer when
comparing CDR3 regions, as illustrated by Figure 2.15 and Figure 2.16. Comparing Figure
2.17 and Figure 2.18, we see that a different Vα being fixed can lead to noticeable changes
in the amino acid distributions for binders in the CDR3β. This highlights the complexity of
the problem at hand, as CDR3 distributions are affected by the context around them. Fixing
gene information to isolate a more homogeneous group of binder and non-binders may be a
useful technique in the future for TCR design.

Figure 2.15: GILGFVFTL Binders Length 14 CDR3α TRAV27 and TRBV19 Position-
Frequency
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Figure 2.16: GILGFVFTL Non-Binders Length 14 CDR3α TRAV27 and TRBV19 Position-
Frequency

Figure 2.17: GILGFVFTL Binders Length 13 CDR3β TRAV27 and TRBV19 Position-
Frequency
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Table 2.13: Classification Results Regional Features VHSE Descriptors Random Forest Ac-
curacy, TRAV27 and TRBV19 Genes Fixed

Peptide Seq. CDR + FR CDR FR CDR1 + CDR2 CDR3 FR1 + FR2 + FR3 FR4

GILGFVFTL 1.0 0.895 1.0 0.579 0.947 0.631 1.0

Figure 2.18: GILGFVFTL Binders Length 13 CDR3β TRAV25 and TRBV19 Position-
Frequency
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Chapter 3

Conclusion

3.1 Summary

Our efforts focused on improving classification accuracy for TCR-pMHC prediction, as the
best-known performing models on this problem are still inadequate. Part of the difficulty in
predicting TCR-pMHC binding with the available data comes down to the highly variable
UMI count values provided by 10x Genomics. In particular, we find significant variance in the
UMI values of identical TCR sequences. This variance increases as we condition with higher
UMI values. While TCR-pMHC binding is not usually considered a binary phenomenon
but rather one that is characterized by binding affinity, the weak correlation between UMI
count values and binding affinity rules out the possibility of training a regression model.
To determine binders, we set a pMHC-specific UMI count threshold, and compare it with
negative control UMI counts. Using regional and positional featurizations, we find that TCR-
pMHC binding can be predicted with high accuracy with separate Random Forest or Logistic
Regression models. Comparable classification accuracy is obtained using an attention-based
neural network architecture incorporating positional information while being trained across
all epitopes at once. As incomplete sequence data remains an issue in working with TCR
data, we provide an ablation study showing the relative performance of different region
subsets of the TCR. Finally, we present results for prediction with gene usage features and
prediction across TCRs with the same V genes.

3.2 Future Work

In a future with enough high-quality binding data for thousands of different epitopes, neural
networks may be able to generalize to unseen sets of epitopes, as well as unseen sets of
TCRs. Advances in multiplexed binding and sequencing technology will be required in order
to obtain TCR-pMHC binding data with stronger correlations to binding affinity. Current
UMI count values weakly correlate with both the number of TCRs on the cell surface and
the binding affinity of each TCR. In theory, the number of TCRs on the cell surface could
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be found by using an oligo-tagged antibody against the TCR itself. If collected, it may be
possible to use this number to regularize UMI values to approximate binding affinity more
closely between samples. In addition to TCR sequences, it is likely that TCR-pMHC solved
structures will become an important source of data for this problem. Current state-of-the-art
structure prediction methods like AlphaFold2 have the least accurate structure predictions
for the TCR’s flexible loop regions, which are the most relevant for binding [19].



30

Chapter 4

Declarations

4.1 Acknowledgements

I would like to thank my advisor Professor Yun S. Song for providing invaluable guidance
and support as I worked my way through this project. I also thank Alexander Whatley,
Milind Jagota, Nicholas Bhattacharya, William DeWitt, Melissa Thorne, Professor Jimmy
Ye, Professor Jennifer Listgarten, and Professor Ian Holmes for all the interesting scientific
discussion and for their support.

4.2 Author Contributions

Yun S. Song introduced and formulated the problem. Julian Faust wrote code for the
analyses, including building, testing, and evaluating the models. Julian Faust wrote the
manuscript.



31

Bibliography

[1] Krogsgaard, M., and Davis, M. ”How T-cells see antigen.” Nature immunology 6.3
(2005): 239-245.

[2] 10x Genomics. “A New Way of Exploring Immunity: Linking Highly Multi-
plexed Antigen to Recognition to Immune Repertoire and Phenotype” (2020)
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_

Way_of_Exploring_Immunity_Digital.pdf

[3] Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H. Predicting recogni-
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