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Abstract

Value-based deep reinforcement learning is an efficient methodology to solve
Markov Decision Process (MDP) problems, where a deep neural network work
learns a value function, which represents the estimation of future total reward after
taking a possible action. Also, it allows reinforcement learning agents to make
decisions based on a value function. Existing research has shown that the value
function in many reinforcement learning tasks has a low-rank hidden structure.

Harnessing the implicit low-rank structure of value functions, we can design
and test two different neural network regularization methods to emphasize and
train for these properties. First, value functions can be decomposed into a low rank
and a sparse component. Second, value functions should have similar outputs for
states in adjacent time steps, a property of temporal smoothness. We show that
the enforcement of temporal smoothness is implicitly low-rank regularization of
the state-action function. As well, we empirically find that models that use these
regularization methods outperformed their baseline counterparts with the best
performance occurring when both regularization methods are used.
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1 Introduction and related work

1.1 Markov decision process (MDP)

A Markov Decision Process (MDP) can be defined by a tuple (S,A, µ, P, r, h, γ) where S and A are
the sets of all possible states and actions, respectively. µ is the initial distribution of state s0. P is a
probabilistic transition function, and r is a reward function. P gives the probability of transitioning
into state s′ from taking action a at the current state s, and is often denoted P (s′|s, a). r gives a scalar
value indicating the immediate reward received for taking action a at the current state s and is denoted
r(s, a). h is the horizon, the number of state transitions that will occur for an agent. γ ∈ (0, 1) is the
discounting factor.

MDPs provide a good framework for modeling environments that have uncertainty. One example is
self-driving cars. Cars-based agents can be incentivized to reach a particular destination safely and
MDP’s probabilistic transition function can help model uncertainty states, such as other cars’ future
actions.

1.2 Value Iteration

The goal is to create the optimal policy π∗. To solve an MDP, we compute a policy π∗ that if followed,
maximizes the total rewards given (S,A, µ, P, r, h, γ) . The optimal state value function V ∗(s) is
the expected value of all future rewards starting from s given the optimal policy.

V π∗
(s) = E{si∼P (si|si−1,π∗(si−1)}i∈[1:h]

[
h∑

n=0

γnr(sn, an)

]
(1)

However, the optimal policy and state value function are unknown. This must be learned. In value
iterations, optimal policies can be trained by using expectation-maximization based algorithms [1].
The values of an approximate V are calculated by sampling P to get (si, si+1, ai). Then V π(s) can
be formulated as the following to be solved as a system of equations in the case of S being discrete
state space. Then the policy would change to maximize the right side of equation 2.

V π(si) = γ
∑
sj∈S

V π(sj) · P (sj , π(si)|si) (2)

The emphasis in this paper will be placed on the optimal state-action value function Q(s, a), which
is the expected value when starting in state s, taking action a, and following actions dictated by π∗.
Mathematically, it obeys the Bellman recursion

Q(s, a) = r(s, a) + γEs′∼P (s′|s,a)

[
max
a′∈A

Q(s′, a′)

]
(3)

1.3 Deep Q-learning (DQN) in training

Deep Q-learning (DQN) is an efficient and expressive methodology for solving MDP problems.
The goal of Q-learning is to train a deep neural network to represent Q(s, a) and obtain policy
π(s) = argmaxa∈A Q(s, a). During training, the model collects a batch of |B| samples and collects
{(s(i)t , r

(i)
t , a

(i)
t , s

(i)
t+1)}

|B|
i=1, and forms the following updating targets.

y(i) = r
(i)
t + γmax

a′∈A
Q(s

(i)
t+1, a

′; θ) (4)

Q(s
(i)
t+1, a

′; θ) is the learned neural network, called the value network, to represent the value function
Q(s, a) where θ denotes the parameters of the neural network which characterizes the network. The
value network is then updated by taking a gradient step for the loss function.
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|B|∑
i=1

(y(i) −Q(s
(i)
t , a

(i)
t ; θ))2 (5)

1.4 Low-rank property of value function

Many works in reinforcement learning or control community shows the value function Q(s, a) has
low-rank property in a variety of tasks ([2], [3], [4]). For example, [2] shows that, if we denote the
value function in a matrix form, Q ∈ R|S|×|A|, called the Q table, the matrix Q can be decomposed
as Q = L+ E, where L is a low-rank matrix and E is a sparse matrix. Intuitively, this means the Q
table is composed mainly of the low-rank component L with a sparse noise E. Similarly, [4] shows
that for most of the Atari games, the value function has a low-rank structure. Also, leveraging the
knowledge that the value function has low-rank structure, [4] design a method using low-rank matrix
reconstruction to enforce low-rank structure of the trained Q network through modifying the fitting
target of the Q network (y(i) in eq. 5), leading to better performance on more than half of the Atari
games. This can not be done with the state value function V (s).

1.5 Temporal continuity of reinforcement learning (RL) tasks

Many RL tasks satisfy temporal smoothness, indicating that good action choices are usually similar
across states of adjacent time steps. For example, [5] built a robust model-based RL algorithm by
assuming temporal continuity of RL tasks. Having this understanding of the RL task, we believe that,
during RL training, if we incentivize our RL model to have a temporal smoothness prediction, our
RL agent could potentially have better performance.

The intuition of the benefit of having temporally smooth predictions is illustrated in the following
example. In the Pong Atari game, when the ball is falling toward the baseline, typical RL agents
tend to move the paddle to catch the ball at the last moment and catch the ball "just in time." A
human player, however, tends to move the paddle earlier to the location where the ball is predicted to
land and "waits" there before the ball reaches the paddle. Human play can be considered temporally
smooth because the action to move the paddle earlier is more consistent across several time frames.

Intuitively, the behavior of the RL agent is riskier since the paddle is moved to catch the ball just in
time, so any wrong decision during the process when the paddle is moved can lead to missing the
ball. If we incentivize our RL model to have temporally smooth predictions, the agent will perform
more like humans and better training.

Fundamentally, enforcing temporal continuity of value function is similar to enforcing low-rank
structure. Low-rank property implies that the value function has a similar output for certain different
but similar states, while temporal continuity implies the value function has a similar output for states
of nearby time steps. This is expounded in section 4, where we analyze the theoretical relationship
between temporal continuity and low-rank regularization.

1.6 Related Work

Regularization terms have been widely adopted in neural network training to prevent overfitting (such
as L1 and L2 regularization terms discussed in [6]). Furthermore, when the target neural network we
aim to train is assumed to be of low rank, low-rank regularization (LRR) methods are widely used to
enforce low-rank property of the learned function, which has achieved great success in many data
analysis tasks ([7] provides a comprehensive review of the applications of LRR).

Recently, there are also some works on the regularization of value functions for RL. For example,
[8] proposed a functional regularization approach to increase training stability of value-based rein-
forcement learning so that stable training results can be generated even without a target network,
leading to improvements in sample efficiency and performance across a range of Atari and simulated
robotics environments. As well, [9] proposes a method that uses PARAFAC decomposition to create
a low-rank matrix. Also, [10] proposed a value-based RL algorithm that uses mutual-information
regularization to optimize a prior action distribution for better performance and exploration.

Several recent works focus on applying low-rank regularization by using low-rank matrix estimation
as detailed in [20, 21]. The major modification to the vanilla RL learning algorithm is that QB is
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Table 1: Common low-rank regularization terms

Type R(QB)

Nuclear norm
∑k

i=1 σi

Log nuclear norm (LNN) [11]
∑k

i=1 log(σi + 1)

Elastic-Net Regularization of Singular Values [12]
∑k

i=1(σi + γσ2
i )

Schatten-p norm [13, 14]
∑k

i=1 σ
p
i

Truncated Nuclear Norm [15]
∑k

i=r+1 σi

Partial Sum Nuclear Norm [16]
∑k

i=r+1 σi

Weighted Nuclear Norm [17, 18, 19]
∑k

i=r+1 wiσi

further processed. Values of QB are procedurally or randomly removed then a low-rank matrix
estimation algorithm to applied to reconstruct the matrix. [20] further proposes an asymptotically
sample-efficient method for learning assuming an optimal policy of rank r and that the Q function
is Lipschitz continuous over the state-action space; temporal smoothness is Lipschitz continuity
stochastically enforced during batch training. Aswell, [21] further proposes an uncertainty-aware
algorithm that selectively removes highly certain values before the low-rank matrix estimation of the
QB matrix.

Lastly, several papers use low-rank factorization for the feature selection of linearly encoded states of
MDP models such as [22] [23].

2 Methodology

2.1 Low-rank and sparse regularization (LRSR) on value function

Define QB ∈ R|B|×|A| as the output of the value network given a batch of states {(s(i)t }|B|
i=1 as input.

In other words, if we denote f : S → R|A| as the value function that inputs a state and outputs the
expected total future reward for each action in the action space in vector form, then

f(s) =
[
Q(s, a0) Q(s, a1) · · ·Q(s, a|A|)

]
(6)

QB =


f(s

(1)
t )T

f(s
(2)
t )T

...

f(s
(|B|)
t )T

 (7)

Following this definition, [2] shows that, in many RL tasks, we can decompose matrix QB into the
sum of a low-rank component and a sparse component. If we have the full matrix of Q ∈ R|S|×|A|.
We can have any row represented by a small subset of the rows of Q.

f(s) ≈
k∑

i=0

f(sai
) (8)

However, it is not computationally feasible for arbitrarily large state spaces. Instead, we can leverage
this idea by replacing the original value network, Q(s, a; θ), with the sum of two jointly trained
neural networks L(s, a; θL) and E(s, a; θE). In this case, the loss function in equation 5 becomes
the following.
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B∑
i=1

(y(i) − L(s
(i)
t , a

(i)
t ; θL)− E(s

(i)
t , a

(i)
t ; θE))

2 + λRR(LB) + λSS(EB) (9)

Here λR and λS are hyper-parameters regularizing different parts of the network, LB , EB ∈ R|B|×|A|

are the output of the L and E network respectively given {(s(i)t }|B|
i=1 as input. As well R(LB) is the

rank of LB , and S(EB) is the sparsity of EB , and θL and θE denotes the parameter of the neural
network L and E respectively.

The RL policy obtained from this setting becomes the following.

π(s) = argmaxa∈AL(s, a; θL) + E(s, a; θE) (10)

Because the rank function is not differentiable, the low-rank component LB was regularized using
nuclear norm as it is the convex envelope of the rank function. Also, the spare component was
regularized using L1 norm. The neural networks L(s, a; θL) and E(s, a; θE) shared the same
convolutional and initial fully connected layers then split for the final layers.

2.2 Temporal continuity regularization (TSR) on value function

It has been shown that many RL tasks, especially Atari games, have temporal smoothness, we can
design a neural network regularization term such that the value network has a similar output for
adjacent states. In this case, the loss function in equation 5 becomes

B∑
i=1

(y(i) −Q(s
(i)
t , a

(i)
t ; θ))2 + λ||QB −Q

′

B ||1 (11)

where λ is a hyperparameter controlling how heavy the network is regularized, QB ∈ R|B|×|A| is
the output of the value network given {(s(i)t }|B|

i=1 as input, Q
′

B ∈ R|B|×|A| is the output of the value
network given {(s(i)t+1}

|B|
i=1 as input, and ||.||1 is the L1 norm. Another regularization method we can

try is

B∑
i=1

(y(i) −Q(s
(i)
t , a

(i)
t ; θ))2 + λ ∗ ||Q̃B − Q̃

′

B ||1 (12)

where Q̃B and Q̃
′

B are QB and Q
′

B respectively with each row standardized (i.e., making the mean
zero and standard deviation one). Intuitively, the regularization term prevents the value network from
having drastically different predictions for current and the next observation, such that the RL policy
will choose similar actions for adjacent time steps.

3 Experiment results

3.1 Low-rank and Sparse Regularization (LRSR) on Value Function

The result of the experiments for LRSR are illustrated in Figure 1. The blue curve is the learning
curve for normal, single output, unregularized DQN (using equation 5 as the loss function). The
orange curve is the setting where the network has two outputs. One is regularized to have low-rank
output and the other is regularized to have sparse output. To be more specific, it uses equation. 9 as
the loss function with λR = 10−4 and λS = 10−4. We can see from the plot that decomposing the
network output into a low-rank and a sparse component does yield higher performance.

The green curve is the learning curve where the network has two outputs. One of them is unregularized
while the other is regularized to have sparse output. To be more specific, it uses equation. 9 as
the loss function with λR = 0 and λS = 10−3. Surprisingly, the model works particularly well
even without low-rank regularization. Compared with a normal, single output, unregularized DQN
in the blue curve, this setting simply added another output in addition to the unregularized output,
where the additional output is regularized to be sparse. The high performance of this setting was
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unexpected. Although, uncertain it may be the result of heavy regularization on sparsity causing the
network to revert back to a regular feed-forward neural network. However, that hypothesis is not well
substantiated because it does train better than the baseline neural network. Perhaps the additional
output is modeling the noise on the value function, or, perhaps the additional output gives the network
additional parameters to better fit the data.

To show that the regularization (i.e., λR and λS in equation 9) is really affecting the network
performance, a baseline was run with the setting there λR and λS are both zero. The learning curve
of this setting is illustrated as the red curve in Figure 1. We can see that the performance of this
setting is much worse than all others.

For each setting in Figure 1, the models were trained with at least 3 different random seeds. For each
model obtained, the model’s performance was evaluated every 1000 time steps. During the evaluation,
100 episodes are run. The average performance for all episodes across all models is then calculated to
plot Figure 1. Therefore, each data point in Figure 1 is an average score across at least 300 episodes.

Figure 1: Learning curve of DQN with different regularization methods

3.2 Temporal continuity regularization (TSR) on value function

The performance of TSR versus normal, and unregularized DQN has been tested. Using DQN with
TSR regularization term as equation 11 and modifying the hyperparameter λ, the learning curves
are illustrated in figure 2. Normal, unregularized, DQN is the comparison baseline where the λ in
equation 11 is set as zero. Lam=1e-2 and Lam=1e-3 are the learning curves where λ is set as 10−2

and 10−3 respectively.

From the experiments, we do see that adding the regularization term with λ = 10−3 leads to slightly
better performance. The intuition is that, due to the noise of the RL environment and the high variance
nature of DQN, adding a certain level of regularization according to the domain knowledge of the
environment helps learn the value function better. The case where λ = 10−2 is likely to be caused by
the regularization being too heavy.

In addition to testing the regularization method in equation 11, we also tested the standardized version
of the regularization method as equation 12. However, the performance is similar or slightly worse
than that of equation 11 so is omitted from this report.

Similar to Figure 1, each learning curve in Figure 2 are average performance across models trained
by at least 3 different random seeds where 100 episodes are evaluated for each model.

4 Discussion: Temporal continuity and nuclear norm minimization

In this section, we will derive an upper bound of the nuclear norm of the Q table and shows that, when
the temporal smoothness regularization term is minimized, the nuclear norm, which is the convex
approximation of the rank, is also minimized.
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Figure 2: Learning curve of DQN with different λ for TSR

Assumption 1: Denote f : S → R|A| as the value function which inputs a state and outputs the total
expected future reward after taking each action over the action space in a vector form. For any state
s ∈ S reachable in the RL environment where s′ ∈ S is any state reachable from s within one time
step. Our assumption is that the norm of the difference of the output vectors is at most ϵ.

||f(s)− f(s′)||2 ≤ ϵ (13)

Intuitively, the RHS of equation 13 is the difference between the output of the value function of
adjacent states, which is what TSR regularization term is trying to minimize in through equation 11.

Under Assumption 1, due to the triangular inequality, given any reachable state ŝ,

||f(s0)− f(ŝ)||2 ≤
∑
si

||f(si)− f(si+1)||2 ≤ hϵ (14)

where s0 is the initial state in the MDP and h is the maximum number of time steps before the MDP
terminates.

Moreover, by equation 15 and the triangular inequality, given any two reachable states s and s′,

||f(s)− f(s′)||2 ≤ ||f(s0)− f(s)||2 + ||f(s0)− f(s′)||2 ≤ 2hϵ (15)

Lemma 1, for any matrix M ,

||M ||2∗ = (

r∑
i=1

σi)
2 ≤ r

r∑
i=1

σ2
i = r||M ||2F (16)

where r is the rank of M , σi is the i-th singular value of M . The first equality is due to the definition
of nuclear norm. The inequality is due to Cauchy-Schwarz inequality. The second equality is due to
the property of Frobenius that

∑r
i=1 σ

2
i = ||M ||F .

If we define L ∈ R|S|×|A| as a matrix with rank 1 and

L =


f(s

(1)
t )T

f(s
(1)
t )T

...

f(s
(1)
t )T

 (17)

Under Assumption 1, we can decompose QB as
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QB = L+ S (18)

where S is the difference of QB and L. Note that QB , L, S ∈ R|S|×|A| and QB is defined in equation
7

If Assumption 1 holds, by equation 15, 16, and 18, we know that

||S||F = ||QB − L||F =

|B|∑
i=1

||f(s(i)t )− f(s
(1)
t )||2 ≤ 2|B|Tϵ (19)

Also,
||L||∗ = σ = ||L||F (20)

where σ is the only singular value of the rank 1 matrix L. The second equality holds since
∑r

i=1 σ
2
i =

||M ||F for any matrix.

Therefore,

||QB||∗ ≤ ||L||∗ + ||S||∗ = ||L||F + ||S||∗
≤ ||L||F + rank(S)0.5 · ||S||F

≤ ||L||F + |B|0.5 · ||S||F
≤ ||L||F + 2|B|1.5Tϵ

(21)

The first inequality is due to the triangular inequality. The equality is due to equation 20. The second
inequality is due to Lemma 1. The last inequality is due to equation 19.

As temporal smoothness is applied, the output difference of the value function of adjacent states are
minimized, therefore, ϵ is minimized. Equation 21 shows that when ϵ is minimized, the nuclear norm
of the Q table, ||QB||∗ is also implicitly minimized and when ϵ is zero, QB is reduced to a rank 1
matrix.

5 Conclusion and future work

In this paper, two new ideas were introduced to regularize the value function in Deep Q-learning to
have low rank and sparsity regularization and temporal smoothness regularization.

For both ideas, the experiment results showed better performance than baseline after hyper-parameter
tuning. However, high variance is observed in the result of our experiments. For example, running
the experiments several times with different random seeds has produced different results. Ideally,
to conclude the effect on Deep Q-learning, the average result of more experiment trials need to
be observed while we currently only run the training with three different random seeds for each
setting. Also, the same method should be adopted to multiple Atari games to test whether the method
generalizes. The future work of this paper would be to conduct extensive experiments to further
evaluate these regularization methods.
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