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Abstract
Learning to Generalize in Dynamic Environments
by
Dequan Wang
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Trevor Darrell, Chair

A model must be able to adapt itself to generalize to new environments. Deep networks
achieved great success in the past decade, especially when training and testing data come
from the same distribution. Unfortunately, the performance suffers when the training
(source) differs from the testing (target) data, a condition known as domain shift. Models
should update themselves to deal with these unexpected natural and adversarial perturba-
tions, such as weather change, sensor degradation, adversarial attack, and so on. If we have
some labeled target data, several transfer learning methods, such as fine-tuning and few-shot
learning, could be utilized to optimize the model in a supervised way. However, the require-
ment for target labels is not practical for most real-world scenarios. Therefore, we instead
focus on the unsupervised learning approach to generalize the model to the target domain.

In this dissertation, we study the setting of fully test-time adaptation, updating the model to
the uncontrollable target data distribution, without access to target labels and source data.
In other words, the model only has its parameters and unlabeled target data in this setting.
The core idea is to leverage the test-time optimization objective, entropy minimization, as
a feedback mechanism to the learnable model to close the loop during the test time. We
optimize the model for confidence as measured by output entropy in either an online or offline
manner. Such a simple yet effective method could reduce the generalization error for image
classification on naturally corrupted and adversarial perturbed images. Also, the adaptive
nature of the semantic segmentation model could be exploited to cope with the dynamic
scale inference for scene understanding. With the help of contrastive learning and diffusion
models, we could learn target domain features and generate source-style images to further
boost the recognition performance in dynamic environments.
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6.5 Ablation of diffusion updates justifies each step. We ablate the forward, reverse,
and refinement updates of our DDA method. We omit self-ensembling from
DDA to focus on these input updates. Forward adds noise, reverse denoises by
diffusion, and refinement guides the reverse updates. DDA is best with all steps,
but forward and reverse or reverse and refinement help on their own.
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Chapter 1

Introduction

The world is full of unexpected changes, but our model is too finite to handle. It is worth
noting that the modeling capacity is limited and pre-defined by the width and depth of
the neural network, while the variations in the dynamic environments are not. Instead of
deploying one single model for all variations, we pursue an adaptive, dynamic, learnable
approach to create a family of models during the test time. Each member in such a model
family is associated with the target input, generalizing from the same initial source model
according to the test-time optimization objective. When the static model is independent
of the given target data, our fully test-time adapted model learns to generalize to dynamic
environments.

1.1 Summary of Contributions

This thesis presents a series of works around learning to generalize during test time in dy-
namic environments. We first introduce the setting of fully test-time adaptation. Then we
propose an entropy minimization framework to update the model’s parameters given un-
labeled target data. When equipping a model with a test-time optimization objective, we
observe a significant improvement in the robustness and generalization of image classification
on both naturally corrupted and adversarially perturbed images. We also integrate the adap-
tivity into the dense prediction model to handle source-free domain adaptation and dynamic
scale inference. All of the above works could be done in an online manner so that the latency
of the overall system is not affected. If an offline optimization procedure is allowed, we could
further boost the recognition performance by leveraging contrastive learning to obtain tar-
get domain representation. Finally, we identify the weak points of model adaptation—small
batches, ordered data, and mixed domains—and introduce diffusion-based input adaptation,
generating source domain style images to reduce multi-domain shifts simultaneously. The
detailed description of the main contributions is summarized as follows:

In chapter 2, we introduce the first approach to fully test-time adaptation. The model
has only the test data and its own parameters in this setting. We propose to adapt by test
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entropy minimization: we optimize the model for confidence as measured by the entropy of
its predictions. Our method, tent, estimates normalization statistics and optimizes channel-
wise affine transformations to update online on each batch. Tent reduces generalization
error for image classification on corrupted ImageNet and CIFAR-10/100 and reaches a new
state-of-the-art error on ImageNet-C. Tent handles source-free domain adaptation on digit
recognition from SVHN to MNIST/MNIST-M/USPS, semantic segmentation from GTA to
Cityscapes, and VisDA-C benchmark. These results are achieved in one epoch of test-time
optimization without altering training.

In chapter 3, we discuss the application of fully test-time adaptation as a novel dynamic
defense approach. Adversarial attacks optimize against models to defeat defenses. Existing
defenses are static and stay the same once trained, even while attacks change. We argue
that models should fight back and optimize their defenses against attacks at test time. We
propose dynamic defenses, to adapt the model and input during testing, by defensive entropy
minimization (dent). Dent alters testing, but not training, for compatibility with existing
models and train-time defenses. Dent improves the robustness of adversarially-trained de-
fenses and nominally-trained models against white-box, black-box, and adaptive attacks on
CIFAR-10/100 and ImageNet. In particular, dent boosts state-of-the-art defenses by 20+
points absolute against AutoAttack on CIFAR-10 at €., = 8/255.

In chapter 4, we further investigate how to cope with dynamic scale variation in the
context of semantic segmentation via test-time entropy minimization. Given the variety of
the visual world, there is no one true scale for recognition: objects may appear at drasti-
cally different sizes across the visual field. Rather than enumerate variations across filter
channels or pyramid levels, dynamic models locally predict the scale and adapt receptive
fields accordingly. The degree of variation and diversity of inputs makes this a difficult task.
Existing methods either learn a feedforward predictor, which is not totally immune to the
scale variation it is meant to counter, or select scales by a fixed algorithm, which cannot
learn from the given task and data. We extend dynamic scale inference from feedforward
prediction to iterative optimization for further adaptivity. We propose a novel entropy min-
imization objective for inference, optimizing over task and structure parameters to tune the
model to each input. Optimization during the test time improves semantic segmentation
accuracy and generalizes better to extreme scale variations that cause feedforward dynamic
inference to falter.

In chapter 5, we argue that source data should not be the only source of all model
parameters. Domain adaptation seeks to mitigate the shift between training on the source
data and testing on the target data. Most adaptation methods rely on the source data
by joint optimization over source and target. Source-free methods replace the source data
with source parameters by fine-tuning the model on target. Either way, the majority of the
parameter updates for the model representation and the classifier are derived from the source
and not the target. However, target accuracy is the goal, and so we argue for optimizing as
much as possible on target. We show significant improvement by on-target adaptation, which
learns the representation purely on target data, with only source predictions for supervision
(without source data or parameter fine-tuning). In the long-tailed classification setting, we
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demonstrate on-target class distribution learning, which learns the imbalance of classes on
target data. On-target adaptation achieves state-of-the-art accuracy and computational
efficiency on VisDA-C and ImageNet-Sketch.

In chapter 6, we revisit the idea of input adaptation, reducing the domain shift in pixel
space. We leverage the latest image generation techniques, diffusion models, to generate a
source-style image from the given target domain input. Test-time adaptation harnesses test
inputs to improve the accuracy of a model trained on source data when tested on shifted tar-
get data. Existing methods update the source model by (re-)training on each target domain.
While effective, re-training is sensitive to the amount and order of the data and the hyperpa-
rameters for optimization. We instead update the target data by projecting all test inputs
toward the source domain with a generative diffusion model. Our diffusion-driven adaptation
method, DDA, shares its models for classification and generation across all domains. Both
models are trained on the source domain, then fixed during testing. We augment diffusion
with image guidance and self-ensembling to automatically decide how much to adapt. Input
adaptation by DDA is more robust than prior model adaptation approaches across a vari-
ety of corruptions, architectures, and data regimes on the ImageNet-C benchmark. With
its input-wise updates, DDA succeeds where model adaptation degrades on too little data
(small batches), dependent data (non-random order), or mixed data (multiple corruptions).

1.2 Summary of Publications

This dissertation covers the following publications:

o Material in chapter 2 is published as
Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell,
“Tent: Fully test-time adaptation by entropy minimization,” in ICLR, 2021

o Material in chapter 3 is published as
Dequan Wang, An Ju, Evan Shelhamer, David Wagner, and Trevor Darrell, “Fight-
ing gradients with gradients: Dynamic defenses against adversarial attacks,” arXiv
preprint arXiw:2105.08714, 2021

o Material in chapter 4 is published as
Dequan Wang, Evan Shelhamer, Bruno Olshausen, and Trevor Darrell, “Dynamic scale
inference by entropy minimization,” arXiv preprint arXiv:1908.03182, 2019

o Material in chapter 5 is published as
Dequan Wang, Shaoteng Liu, Sayna Ebrahimi, Evan Shelhamer, and Trevor Darrell,
“On-target adaptation,” arXiv preprint arXiv:2109.01087, 2021

o Material in chapter 6 is published as
Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan
Wang, “Back to the source: Diffusion-driven test-time adaptation,” arXiv preprint
arXiv:2207.03442, 2022



Chapter 2

Fully Test-Time Adaptation by
Entropy Minimization

2.1 Introduction

Deep networks can achieve high accuracy on training and testing data from the same distri-
bution, as evidenced by tremendous benchmark progress [6]-[8]. However, generalization to
new and different data is limited [9]-[11]. Accuracy suffers when the training (source) data
differ from the testing (target) data, a condition known as dataset shift [12]. Models can
be sensitive to shifts during testing that were not known during training, whether natural
variations or corruptions, such as unexpected weather or sensor degradation. Nevertheless, it
can be necessary to deploy a model on different data distributions, so adaptation is needed.

During testing, the model must adapt given only its parameters and the target data.
This fully test-time adaptation setting cannot rely on source data or supervision. Neither is
practical when the model first encounters new testing data, before it can be collected and
annotated, as inference must go on. Real-world usage motivates fully test-time adaptation
by data, computation, and task needs:

1. Availability. A model might be distributed without source data for bandwidth, pri-
vacy, or profit.

2. Efficiency. It might not be computationally practical to (re-)process source data
during testing.

3. Accuracy. A model might be too inaccurate without adaptation to serve its purpose.

To adapt during testing we minimize the entropy of model predictions. We call this
objective the test entropy and name our method tent after it. We choose entropy for its
connections to error and shift. Entropy is related to error, as more confident predictions
are all-in-all more correct (Figure 2.1). Entropy is related to shifts due to corruption, as
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more corruption results in more entropy, with a strong rank correlation to the loss for image
classification as the level of corruption increases (Figure 2.2).

To minimize entropy, tent normalizes and transforms inference on target data by es-
timating statistics and optimizing affine parameters batch-by-batch. This choice of low-
dimensional, channel-wise feature modulation is efficient to adapt during testing, even for
online updates. Tent does not restrict or alter model training: it is independent of the
source data given the model parameters. If the model can be run, it can be adapted. Most
importantly, tent effectively reduces not just entropy but error.

Our results evaluate generalization to corruptions for image classification, to domain
shift for digit recognition, and to simulation-to-real shift for semantic segmentation. For
context with more data and optimization, we evaluate methods for robust training, domain
adaptation, and self-supervised learning given the labeled source data. Tent can achieve less
error given only the target data, and it improves on the state-of-the-art for the ImageNet-C
benchmark. Analysis experiments support our entropy objective, check sensitivity to the
amount of data and the choice of parameters for adaptation, and back the generality of tent
across architectures.

Our contributions

o We highlight the setting of fully test-time adaptation with only target data and no
source data. To emphasize practical adaptation during inference we benchmark with
offline and online updates.

« We examine entropy as an adaptation objective and propose tent: a test-time entropy
minimization scheme to reduce generalization error by reducing the entropy of model
predictions on test data.

o For robustness to corruptions, tent reaches 44.0% error on ImageNet-C, better than
the state-of-the-art for robust training (50.2%) and the strong baseline of test-time
normalization (49.9%).

o For domain adaptation, tent is capable of online and source-free adaptation for digit
classification and semantic segmentation, and can even rival methods that use source
data and more optimization.

2.2 Setting: Fully Test-Time Adaptation

Adaptation addresses generalization from source to target. A model fy(x) with parameters
0 trained on source data and labels z*, y° may not generalize when tested on shifted target
data z!. Table 2.1 summarizes adaptation settings, their required data, and types of losses.
Our fully test-time adaptation setting uniquely requires only the model fy and unlabeled
target data ! for adaptation during inference.
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Figure 2.1: Predictions with lower entropy  Figure 2.2: More corruption causes more loss
have lower error rates on corrupted CIFAR-  and entropy on CIFAR-100-C. Entropy can
100-C. Certainty can serve as supervision  estimate the degree of shift without training

during testing. data or labels.
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(a) training (b) fully test-time adaptation

Figure 2.3: Method overview. Tent does not alter training (a), but minimizes the entropy
of predictions during testing (b) over a constrained modulation A, given the parameters 6
and target data z'.

Existing adaptation settings extend training given more data and supervision. Trans-
fer learning by fine-tuning [13], [14] needs target labels to (re-)train with a supervised loss
L(z',y"). Without target labels, our setting denies this supervised training. Domain adapta-
tion (DA) [12], [15]-[17] needs both the source and target data to train with a cross-domain
loss L(z%, z"). Test-time training (TTT) [18] adapts during testing but first alters training to
jointly optimize its supervised loss L(z®, y*) and self-supervised loss L(z*). Without source,
our setting denies joint training across domains (DA) or losses (TTT). Existing settings have
their purposes, but do not cover all practical cases when source, target, or supervision are
not simultaneously available.

Unexpected target data during testing requires test-time adaptation. TT'T and our set-
ting adapt the model by optimizing an unsupervised loss during testing L(z'). During
training, TTT jointly optimizes this same loss on source data L(z®) with a supervised loss
L(z®,y®), to ensure the parameters 0 are shared across losses for compatibility with adapta-
tion by L(z'). Fully test-time adaptation is independent of the training data and training
loss given the parameters . By not changing training, our setting has the potential to
require less data and computation for adaptation.
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Table 2.1: Adaptation settings differ by their data and therefore losses during training and
testing. Of the source ® and target ! data x and labels y, our fully test-time setting only
needs the target data x'.

setting source data target data train loss test loss
fine-tuning - bt yt Lz y") -
domain adaptation x5,y xt L(z®,y®) + L(z*,z") -
test-time training x5, y* ! L(x®,y*) + L(z*) L(x")
fully test-time adaptation - x! - L(x")

2.3 Method: Test Entropy Minimization via Feature
Modulation

We optimize the model during testing to minimize the entropy of its predictions by modulat-
ing its features. We call our method tent for test entropy. Tent requires a compatible model,
an objective to minimize, and parameters to optimize over to fully define the algorithm.
Figure 2.3 outlines our method for fully test-time adaptation.

The model to be adapted must be trained for the supervised task, probabilistic, and
differentiable. No supervision is provided during testing, so the model must already be
trained. Measuring the entropy of predictions requires a distribution over predictions, so the
model must be probabilistic. Gradients are required for fast iterative optimization, so the
model must be differentiable. Typical deep networks for supervised learning satisfy these
model requirements.

Entropy Objective

Our test-time objective L(z;) is to minimize the entropy H () of model predictions g = fp(z").
In particular, we measure the Shannon entropy [19], H(y) = —>__.p(9.)logp(y.) for the
probability 7. of class ¢. Note that optimizing a single prediction has a trivial solution:
assign all probability to the most probable class. We prevent this by jointly optimizing
batched predictions over parameters that are shared across the batch.

Entropy is an unsupervised objective because it only depends on predictions and not
annotations. However, as a measure of the predictions it is directly related to the supervised
task and model.

In contrast, proxy tasks for self-supervised learning are not directly related to the super-
vised task. Proxy tasks derive a self-supervised label ¢’ from the input z; without the task
label y. Examples of these proxies include rotation prediction [20], context prediction [21],
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Figure 2.4: Tent modulates features during testing by estimating normalization statistics u, o
and optimizing transformation parameters ~, 5. Normalization and transformation apply
channel-wise scales and shifts to the features. The statistics and parameters are updated on
target data without use of source data. In practice, adapting v, 3 is efficient because they
make up <1% of model parameters.

and cross-channel auto-encoding [22]. Too much progress on a proxy task could interfere
with performance on the supervised task, and self-supervised adaptation methods have to
limit or mix updates accordingly [18], [23]. As such, care is needed to choose a proxy com-
patible with the domain and task, to design the architecture for the proxy model, and to
balance optimization between the task and proxy objectives. Our entropy objective does not
need such efforts.

Modulation Parameters

The model parameters 6 are a natural choice for test-time optimization, and these are the
choice of prior work for train-time entropy minimization [24]-[26]. However, 6 is the only
representation of the training/source data in our setting, and altering 6 could cause the
model to diverge from its training. Furthermore, f can be nonlinear and 6 can be high
dimensional, making optimization too sensitive and inefficient for test-time usage.

For stability and efficiency, we instead only update feature modulations that are linear
(scales and shifts), and low-dimensional (channel-wise). Figure 2.4 shows the two steps of our
modulations: normalization by statistics and transformation by parameters. Normalization
centers and standardizes the input  into Z = (z—p) /o by its mean p and standard deviation
o. Transformation turns z into the output 2’ = vZ + 3 by affine parameters for scale v and
shift 5. Note that the statistics u, o are estimated from the data while the parameters v, 3
are optimized by the loss.

For implementation, we simply repurpose the normalization layers of the source model.
We update their normalization statistics and affine parameters for all layers and channels
during testing.

Algorithm

Initialization The optimizer collects the affine transformation parameters {7, s, fix} for
each normalization layer [ and channel k in the source model. The remaining parameters
O\ {Vix, B} are fixed. The normalization statistics {jux, 01} from the source data are
discarded.
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Iteration Each step updates the normalization statistics and transformation parameters
on a batch of data. The normalization statistics are estimated for each layer in turn, during
the forward pass. The transformation parameters v, 3 are updated by the gradient of the
prediction entropy VH(y), during the backward pass. Note that the transformation update
follows the prediction for the current batch, and so it only affects the next batch (unless
forward is repeated). This needs just one gradient per point of additional computation, so
we use this scheme by default for efficiency.

Termination For online adaptation, no termination is necessary, and iteration continues
as long as there is test data. For offline adaptation, the model is first updated and then
inference is repeated. Adaptation may of course continue by updating for multiple epochs.

2.4 Experiments

We evaluate tent for corruption robustness on CIFAR-10/CIFAR-100 and ImageNet, and
for domain adaptation on digit adaptation from SVHN to MNIST/MNIST-M/USPS. Our
implementation is in PyTorch [27] with pycls library [28].

Datasets We run on image classification datasets for corruption and domain adaptation
conditions. For large-scale experiments we choose ImageNet [29], with 1,000 classes, a train-
ing set of 1.2 million, and a validation set of 50,000. For experiments at an accessible scale
we choose CIFAR-10/CIFAR-100 [30], with 10/100 classes, a training set of 50,000, and
a test set of 10,000. For domain adaptation we choose SVHN [31] as source and MNIST
[32] /MNIST-M [16]/USPS [33] as targets, with ten classes for the digits 0-9. SVHN has
color images of house numbers from street views with a training set of 73,257 and test
set of 26,032. MNIST/MNIST-M/USPS have handwritten digits with a training sets of
60,000/60,000/7,291 and test sets of 10,000/10,000/2,007.

Models For corruption we use residual networks [8] with 26 layers (R-26) on CIFAR-10/100
and 50 layers (R-50) on ImageNet. For domain adaptation we use the R-26 architecture. For
fair comparison, all methods in each experimental condition share the same architecture.

Our networks are equipped with batch normalization [34]. For the source model without
adaptation, the normalization statistics are estimated during training on the source data. For
all test-time adaptation methods, we estimate these statistics during testing on the target
data, as done in concurrent work on adaptation by normalization [35], [36].

Optimization We optimize the modulation parameters v, 5 following the training hyper-
parameters for the source model with few changes. On ImageNet we optimize by SGD with
momentum; on other datasets we optimize by Adam [37]. We lower the batch size (BS) to
reduce memory usage for inference, then lower the learning rate (LR) by the same factor to
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compensate [38]. On ImageNet, we set BS = 64 and LR = 0.00025, and on other datasets
we set BS = 128 and LR = 0.001.We control for ordering by shuffling and sharing the order
across methods.

Baselines We compare to domain adaptation, self-supervision, normalization, and pseudo-
labeling:

« source applies the trained classifier to the test data without adaptation,

« adversarial domain adaptation (RG) reverses the gradients of a domain classifier on
source and target to optimize for a domain-invariant representation [16],

o self-supervised domain adaptation (UDA-SS) jointly trains self-supervised rotation and
position tasks on source and target to optimize for a shared representation [23],

o test-time training (TTT) jointly trains for supervised and self-supervised tasks on
source, then keeps training the self-supervised task on target during testing [18],

* test-time normalization (BN) updates batch normalization statistics [34] on the target
data during testing [35], [36],

 pseudo-labeling (PL) tunes a confidence threshold, assigns predictions over the thresh-
old as labels, and then optimizes the model to these pseudo-labels before testing [39].

Only test-time normalization (BN), pseudo-labeling (PL), and tent (ours) are fully test-
time adaptation methods. See Section 2.2 for an explanation and contrast with domain
adaptation and test-time training.

Robustness to Corruptions

To benchmark robustness to corruption, we make use of common image corruptions . The
CIFAR-10/100 and ImageNet datasets are turned into the CIFAR-10/100-C and ImageNet-
C corruption benchmarks by duplicating their test/validation sets and applying 15 types of
corruptions at five severity levels [9].

Tent improves more with less data and computation. Table 2.2 reports errors av-
eraged over corruption types at the severest level of corruption. On CIFAR-10/100-C we
compare all methods, including those that require joint training across domains or losses,
given the convenient sizes of these datasets. Adaptation is offline for fair comparison with
offline baselines. Tent improves on the fully test-time adaptation baselines (BN, PL) but
also the domain adaptation (RG, UDA-SS) and test-time training (TTT) methods that need
several epochs of optimization on source and target.
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Table 2.2: Corruption benchmark on CIFAR-
10-C and CIFAR-100-C for the highest sever- 75--sour(:e 59.5% Mnorm 49.9% Mtent 44.0% FANT 50.2%
ity. Tent has least error, with less optimiza-

tion than domain adaptation (RG, UDA-SS) s
and test-time training (TTT), and improves 3
on test-time norm (BN). o
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Method Source Target Error (%) © Nl &

C10-C C100-C
Source train 40.8 67.2 Figure 2.5:  Corruption benchmark on
RG train train  18.3 38.9 ImageNet-C: error for each type averaged
UDA-SS train  train  16.7 470 over severity levels. Tent improves on the
TTT train test 17.5 45.0 prior state-of-the-art, adversarial noise train-
BN test 173 426 ing [40], by fully test-time adaptation without
PL test 5.7 412 altering training.
Tent (ours) test 14.3 37.3

Tent consistently improves across corruption types. Figure 2.5 plots the error for
each corruption type averaged over corruption levels on ImageNet-C. We compare the most
efficient methods—source, normalization, and tent—given the large scale of the source data
(>1 million images) needed by other methods and the 75 target combinations of corruption
types and levels. Tent and BN adapt online to rival the efficiency of inference without
adaptation. Tent reaches the least error for most corruption types without increasing the
error on the original data.

Tent reaches a new state-of-the-art without altering training. The state-of-the-art
methods for robustness extend training with adversarial noise (ANT) [40] for 50.2% error or
mixtures of data augmentations (AugMix) [41] for 51.7% error. Combined with stylization
from external images (SIN) [42], ANT+SIN reaches 47.4%. Tent reaches a new state-of-the-
art of 44.0% by online adaptation and 42.3% by offline adaptation. It improves on ANT for all
types except noise, on which ANT is trained. This requires just one gradient per test point,
without more optimization on the training set (ANT, AugMix) or use of external images
(SIN). Among fully test-time adaptation methods, tent reduces the error beyond test-time
normalization for 18% relative improvement. In concurrent work, [35] report 49.3% error for
test-time normalization, for which tent still gives 14% relative improvement.

Source-Free Domain Adaptation

We benchmark digit adaptation [16], [17], [43], [44] for shifts from SVHN to MNIST /MNIST-
M/USPS. Recall that unsupervised domain adaptation makes use the labeled source data
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Table 2.3: Digit domain adaptation from SVHN to MNIST/MNIST-M/USPS. Source-free
adaptation is not only feasible, but more efficient. Tent always improves on normalization
(BN), and in 2/3 cases achieves less error than domain adaptation (RG, UDA-SS) without
joint training on source & target.

Method Source Target Epochs Error (%)

Source + Target MNIST MNIST-M USPS
Source train - 18.2 39.7 19.3
RG train train 10 + 10 15.0 33.4 18.9
UDA-SS train train 10 + 10 11.1 22.2 18.4
BN test 0+1 15.7 39.7 18.0
Tent (ours) test 0+1 10.0 37.0 16.3
Tent (ours) test 0+ 10 8.2 36.8 14.4

and unlabeled target data, while our fully test-time adaptation setting denies use of source
data. Adaptation is offline for fair comparison with offline baselines.

Tent adapts to target without source. Table 2.3 reports the target errors for do-
main adaptation and fully test-time adaptation methods. Test-time normalization (BN)
marginally improves, while adversarial domain adaptation (RG) and self-supervised domain
adaptation (UDA-SS) improve more by joint training on source and target. Tent always has
lower error than the source model and BN, and it achieves the lowest error in 2/3 cases, even
in just one epoch and without use of source data.

While encouraging for fully test-time adaptation, unsupervised domain adaptation re-
mains necessary for the highest accuracy and harder shifts. For SVHN-to-MNIST, DIRT-T
[44] achieves a remarkable 0.6% error *. For MNIST-to-SVHN, a difficult shift with source-
only error of 71.3%, DIRT-T reaches 45.5% and UDA-SS reaches 38.7%. Tent fails on this
shift and increases error to 79.8%. In this case success presently requires joint optimization
over source and target.

Tent needs less computation, but still improves with more. Tent adapts efficiently
on target data alone with just one gradient per point. RG & UDA-SS also use the source
data (SVHN train), which is ~7x the size of the target data (MNIST test), and optimize
for 10 epochs. Tent adapts with ~80x less computation. With more updates, tent reaches

"We exclude DIRT-T from our experiments because of incomparable differences in architecture and model
selection. DIRT-T tunes with labeled target data, but we do not. Please refer to [44] for more detail.



CHAPTER 2. FULLY TEST-TIME ADAPTATION BY ENTROPY MINIMIZATION 13

8.2% error in 10 epochs and 6.5% in 100 epochs. With online updates, tent reaches 12.5%
error in one epoch and 8.4% error in 10 epochs.

Tent scales to semantic segmentation. To show scalability to large models and in-
puts, we evaluate semantic segmentation (pixel-wise classification) on a domain shift from
a simulated source to a real target. The source is GTA [45], a video game in an urban
environment, and the target is Cityscapes [46], an urban autonomous driving dataset. The
model is HRNet-W18, a fully convolutional network [47] with high-resolution architecture
[48]. The target intersection-over-union scores (higher is better) are source 28.8%, BN 31.4%,
and tent 35.8% with offline optimization by Adam. For adaptation to a single image, tent
reaches 36.4% in 10 iterations with episodic optimization.

Tent scales to the VisDA-C challenge. To show adaptation on a more difficult bench-
mark, we evaluate on the VisDA-C challenge [49]. The task is object recognition for 12
classes where the source data is synthesized by rendering 3D models and the target data is
collected from real scenes. The validation error for our source model (ResNet-50, pretrained
on ImageNet) is 56.1%, while tent reaches 45.6%, and improves to 39.6% by updating all
layers except for the final classifier as done by [50]. Although offline source-free adaptation
by model adaptation [51] or SHOT [50] can reach lower error with more computation and
tuning, tent can adapt online during testing.

Analysis

Tent reduces entropy and error. Figure 2.6 verifies tent does indeed reduce the entropy
and the task loss (softmax cross-entropy). We plot changes in entropy and loss on CIFAR-100-
C for all 75 corruption type/level combinations. Both axes are normalized by the maximum
entropy of a prediction (log 100) and clipped to +1. Most points have lower entropy and
error after adaptation.

Tent needs feature modulation. We ablate the normalization and transformation steps
of feature modulation. Not updating normalization increases errors, and can fail to improve
over BN and PL. Not updating transformation parameters reduces the method to test-time
normalization. Updating only the last layer of the model can improve but then degrades
with further optimization. Updating the full model parameters # never improves over the
unadapted source model.

Tent generalizes across target data. Adaptation could be limited to the points used for
updates. We check that adaptation generalizes across points by adapting on target train and
not target test. Test errors drop: CIFAR-100-C error goes from 37.3% to 34.2% and SVHN-
to-MNIST error goes from 8.2% to 6.5%. (Train is larger than test; when subsampling to the
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Figure 2.6: Tent reduces the entropy and loss.
We plot changes in entropy AH and loss AL
for all of CIFAR-100-C. Change in entropy
rank-correlates with change in loss: note the
dark diagonal and the rank correlation coeffi-
cient of 0.22.

Figure 2.7: Adapted features on CIFAR-100-
C with Gaussian noise (front) and reference
features without corruption (back). Corrup-
tion shifts features away from the reference,
but BN reduces the shifts. Tent instead shifts
features more, and closer to an oracle that op-

timizes on target labels.

same size errors differ by <0.1%.) Therefore the adapted modulation is not point specific
but general.

Tent modulation differs from normalization. Modulation normalizes and transforms
features. We examine the combined effect. Figure 2.7 contrasts adapted features on cor-
rupted data against reference features on uncorrupted data. We plot features from the
source model, normalization, tent, and an oracle that optimizes on the target labels. Nor-
malization makes features more like the reference, but tent does not. Instead, tent makes
features more like the oracle. This suggests a different and task-specific effect.

Tent adapts alternative architectures. Tent is architecture agnostic in principle. To
gauge its generality in practice, we evaluate new architectures based on self-attention (SAN)
[52] and equilibrium solving (MDEQ) [53] for corruption robustness on CIFAR-100-C. Table
2.4 shows that tent reduces error with the same settings as convolutional residual networks.
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Table 2.4: Tent adapts alternative architectures on CIFAR-100-C without tuning. Results
are error (%).

SAN-10 (pair) SAN-10 (patch) MDEQ (large)
Source BN Tent Source BN Tent Source BN Tent

55.3  39.7 36.7 480 31.8 29.2 533 449 41.7

2.5 Related Work

We relate tent to existing adaptation, entropy minimization, and feature modulation meth-
ods.

Train-Time Adaptation Domain adaptation jointly optimizes on source and target by
cross-domain losses L(z%, ") to mitigate shift. These losses optimize feature alignment [54],
[55], adversarial invariance [16], [43], or shared proxy tasks [23]. Transduction [56]-[58]
jointly optimizes on train and test to better fit specific test instances. While effective in
their settings, neither applies when joint use of source/train and target/test is denied. Tent
adapts on target alone.

Recent “source-free” methods [50], [51], [59] also adapt without source data. [51], [59] rely
on generative modeling and optimize multiple models with multiple losses. [50], [59] also alter
training. Tent does not need generative modeling, nor does it alter training, and so it can
deployed more generally to adapt online with much more computational efficiency. SHOT
[50] adapts by information maximization (entropy minimization and diversity regularization),
but differs in its other losses and its parameterization. These source-free methods optimize
offline with multiple losses for multiple epochs, which requires more tuning and computation
than tent, but may achieve more accuracy with more computation. Tent optimizes online
with just one loss and an efficient parameterization of modulation to emphasize fully test-
time adaptation during inference. We encourage examination of each of these works on the
frontier of adaptation without source data.

[60] are the first to motivate adaptation without source data for legal, commercial, or
technical concerns. They adapt predictions by applying denoising auto-encoders while we
adapt models by entropy minimization. We share their motivations, but the methods and
experiments differ.

Test-Time Adaptation Tent adapts by test-time optimization and normalization to up-
date the model. Test-time adaptation of predictions, through which harder and uncertain
cases are adjusted based on easier and certain cases [61], provides inspiration for certainty-
based model adaptation schemes like our own.
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Test-time training (TTT) [18] also optimizes during testing, but differs in its loss and
must alter training. TTT relies on a proxy task, such as recognizing rotations of an image,
and so its loss depends on the choice of proxy. (Indeed, its authors caution that the proxy
must be “both well-defined and non-trivial in the new domain”). TTT alters training to
optimize this proxy loss on source before adapting to target. Tent adapts without proxy
tasks and without altering training.

Normalizing feature statistics is common for domain adaptation [54], [55]. For batch
normalization [26], [62] separate source and target statistics during training. [35], [36] es-
timate target statistics during testing to improve generalization. Tent builds on test-time
normalization to further reduce generalization error.

Entropy Minimization Entropy minimization is a key regularizer for domain adaptation
26], [44], [63], [64], semi-supervised learning [24], [39], [65], and few-shot learning [25]. Reg-
ularizing entropy penalizes decisions at high densities in the data distribution to improve
accuracy for distinct classes [24]. These methods regularize entropy during training in con-
cert with other supervised and unsupervised losses on additional data. Tent is the first to
minimize entropy during testing, for adaptation to dataset shifts, without other losses or
data. Entropic losses are common; our contribution is to exhibit entropy as the sole loss for
fully test-time adaptation.

Feature Modulation Modulation makes a model vary with its input. We optimize modu-
lations that are simpler than the full model for stable and efficient adaptation. We modulate
channel-wise affine transformations, for their effectiveness in tandem with normalization [34],
[66], and for their flexibility in conditioning for different tasks [67]. These normalization and
conditioning methods optimize the modulation during training by a supervised loss, but keep
it fixed during testing. We optimize the modulation during testing by an unsupervised loss,
so that it can adapt to different target data.

2.6 Discussion

Tent reduces generalization error on shifted data by test-time entropy minimization. In
minimizing entropy, the model adapts itself to feedback from its own predictions. This
is truly self-supervised self-improvement. Self-supervision of this sort is totally defined by
the supervised task, unlike proxy tasks designed to extract more supervision from the data,
and yet it remarkably still reduces error. Nevertheless, errors due to corruption and other
shifts remain, and therefore more adaptation is needed. Next steps should pursue test-time
adaptation on more and harder types of shift, over more general parameters, and by more
effective and efficient losses.

Shifts Tent reduces error for a variety of shifts including image corruptions, simple changes
in appearance for digits, and simulation-to-real discrepancies. These shifts are popular as
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standardized benchmarks, but other real-world shifts exist. For instance, the CIFAR 10.1
and ImageNetV2 test sets [10], [68], made by reproducing the dataset collection procedures,
entail natural but unknown shifts. Although error is higher on both sets, indicating the
presence of shift, tent does not improve generalization. Adversarial shifts [69] also threaten
real-world usage, and attackers keep adapting to defenses. While adversarial training [70]
makes a difference, test-time adaptation could help counter such test-time attacks.

Parameters Tent modulates the model by normalization and transformation, but much
of the model stays fixed. Test-time adaptation could update more of the model, but the
issue is to identify parameters that are both expressive and reliable, and this may interact
with the choice of loss. TTT adapts multiple layers of features shared by supervised and self-
supervised models and SHOT adapts all but the last layer(s) of the model. These choices
depend on the model architecture, the loss, and tuning. For tent modulation is reliable,
but the larger shift on VisDA is better addressed by the SHOT parameterization. Jointly
adapting the input could be a more general alternative. If a model can adapt itself on target,
then perhaps its input gradients might optimize spatial transformations or image translations
to reduce shift without source data.

Losses Tent minimizes entropy. For more adaptation, is there an effective loss for general
but episodic test-time optimization? Entropy is general across tasks but limited in scope. It
needs batches for optimization, and cannot update episodically on one point at a time. TTT
can do so, but only with the right proxy task. For less computation, is there an efficient loss
for more local optimization? Tent and TTT both require full (re-)computation of the model
for updates because they depend on its predictions. If the loss were instead defined on the
representation, then updates would require less forward and backward computation. Return-
ing to entropy specifically, this loss may interact with calibration [71], as better uncertainty
estimation could drive better adaptation.

We hope that the fully test-time adaptation setting can promote new methods for equip-
ping a model to adapt itself, just as tent yields a new model with every update.
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Chapter 3

Fighting Gradients with Gradients:
Dynamic Defenses against Adversarial
Attacks

3.1 Introduction: Attack, Defend, and Then?

Deep networks are vulnerable to adversarial attacks: input perturbations that alter natural
data to cause errors or exploit predictions [69]. As deep networks are deployed in real systems,
these attacks are real threats [72], and so defenses are needed. The challenge is that every
new defense is followed by a new attack, in a loop [73]. The strongest attacks, armed with
gradient optimization, update to circumvent defenses that do not. Such iterative attacks
form an even tighter loop to ensnare defenses. In a cat and mouse game, the mouse must
keep moving to survive.

Current defenses, deterministic or stochastic, stand still: once trained, they are static
and do not adapt during testing. Adversarial training [70], [74] learns from attacks during
training, but cannot learn from test data. Stochastic defenses alter the network [75] or input
[76], [77], but their randomness is independent of test data. Static defenses do not adapt,
and so they may fail as attacks update.

Our dynamic defense fights adversarial updates with defensive updates by adapting dur-
ing testing (Figure 3.1). In fact, our defense updates on every input, whether natural or
adversarial. Our defense objective is entropy minimization, to maximize model confidence,
so we call our method dent for defensive entropy. Our updates rely on gradients and batch
statistics, inspired by test-time adaptation approaches [1], [18], [35], [50]. In pivoting from
training to testing, dent is able to keep changing, so the attacker never hits the same defense
twice. Dent has the last move advantage, as its update always follows each attack.

Dent connects adversarial defense and domain adaptation, which share an interest in
the sensitivity of deep networks to input shifts. Just as models fail on adversarial attacks,
they fail on natural shifts like corruptions. Adversarial data is a particularly hard shift, as
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Figure 3.1: Attacks optimize the input x + 0 against the model . Adversarial training
optimizes 6 for defense (a), but attacks update during testing while 6 does not (b). Our
dynamic defense improves robustness by adapting # + A during testing (c), so the attack
cannot hit the same defense twice.

evidenced by the need for more parameters and optimization for adversarial training [70],
and its negative side effect of reducing accuracy on natural data [78], [79]. Faced with these

difficulties, we turn to adaptation, and change our focus to testing, rather than training more
still.

Experiments evaluate dent against white-box attacks (APGD, FAB), black-box attack
(Square), and adaptive attacks that are aware of its updates. Dent boosts state-of-the-
art adversarial training defenses on CIFAR-10 by 20+ points against AutoAttack [80] at
€0 = 8/255. Ablations inspect effects of iteration, parameterization, and batch size.

Our contributions
o We highlight an opportunity for dynamic defense: the last move advantage.

o We propose the first fully test-time dynamic defense: dent adapts both the model and
input during testing without needing to alter training.

o Dent augments state-of-the-art adversarial training methods, improving robustness by
30% relative, and tops the AutoAttack leaderboard by 15+ points.

o We devise two adaptive attacks against dent: denying updates and mixing batches.

3.2 Related Work

Adversarial Defense For adaptive adversaries, which change in response to defenses, it
is natural to consider dynamic defenses, which adapt in turn. [81] explain dynamic defenses
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are promising in principle but caution they may not be effective in practice. Their analysis
concerns randomized defenses, which do change, but their randomization does not adapt to
the input. We argue for dynamic defenses that depend on the input to keep adapting along
with the attacks. [82] supports dynamic defenses for similar reasons, but does not develop a
specific defense. We demonstrate the first defense to optimize the model and input during
testing for improved robustness.

Most defenses for deep learning focus on first-order adversaries [70], [74] that are equipped
with gradient optimization but constrained by ¢,-norm bounds. Adversarial training and
randomization are the most effective defenses against such attacks, but are nevertheless
limited, as they are fixed during testing. Adversarial training [70], [74] trains on attacks, but
a different or stronger adversary (by norm or bound) can overcome the trained defense [83],
[84]. Randomizing the input [77], [85], [86] or network [75] requires the adversary to optimize
in expectation [87], but can still fail with more iterations. Furthermore, these defenses gain
adversarial robustness by sacrificing accuracy on natural data. Dent adapts during testing
to defend against various attacks without more harm to natural accuracy.

Generative, self-supervised, and certified defenses try to align testing with training but
are still static. Generative defenses optimize the input w.r.t. autoregressive [88], GAN [89],
or energy [90] models, but the models do not adapt, and may be attacked by approximating
their gradients [87]. Self-supervised defenses optimize the input w.r.t. auxiliary tasks [91],
but again the models do not adapt. Certified defenses [77], [92] guarantee robustness within
their training scope, but are limited to small perturbations by specific types of attacker
during testing. Changing data distributions or adversaries requires re-training all of these
defenses. Dent adapts during testing, without requiring (re-)training, and is the only method
to update the model itself against attack.

Domain Adaptation Domain adaptation mitigates input shifts between the source (train)
and target (test) to maintain model accuracy [12], [15]. Adversarial attack is such a shift, and
adversarial error is related to natural generalization error [93], [94]. How then can adaptation
inform dynamic defense? Train-time adaptation is static, like adversarial training, with the
same issues of capacity, optimization, and re-computation when the data/adversary changes.
We instead turn to test-time adaptation methods.

Test-time adaptation keeps updating the model as the data changes. Model parameters
and statistics can be updated by self-supervision [18], normalization [35], and entropy mini-
mization [1]. These methods improve robustness to natural corruptions [9], but their effect
on adversarial perturbations is not known. We base our defense on entropy minimization
as it enables optimization during testing without altering model architecture or training (as
needed for self-supervision). For defense, we (1) extend the parameterization of adaptation
with model and input transformations, (2) optimize for additional iterations, and (3) investi-
gate usage on data that is adversarial, natural, or mixed. We are the first to report test-time
model adaptation improves robustness to adversarial perturbations.
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Figure 3.2: Dent adapts the model and input to minimize the entropy of the prediction
H(g). The model f is adapted by a constrained update A to the parameters 6. The input
is adapted by smoothing g with parameters . Dent updates batch-by-batch during testing.

Dynamic Inference A dynamic model conditionally changes inference for each input,
while a static model unconditionally fixes inference for all inputs. There are various dynamic
inference techniques, with equally varied goals, such as expressivity with more parameters or
efficiency with less computation. All static models are alike; each dynamic model is dynamic
in its own way.

Selection techniques learn to choose a subset of components [95], [96]. Halting techniques
learn to continue or end computation [97], [98]. Mixing techniques learn to combine parame-
ters [67], [99], [100]. Implicit techniques learn to iteratively update [101], [102]. While these
methods learn to adapt during training, our method keeps adapting by directly optimizing
during testing.

3.3 Method: Dynamic Defense by Test-Time
Adaptation

Adversarial attacks optimize against defenses at test time, so defenses should fight back, and
counter-optimize against attacks. Defensive entropy minimization (dent) does exactly this
for dynamic defense by test-time adaptation.

In contrast to many existing defenses, dent alters testing, but not training. Dent only
needs differentiable parameters for gradient optimization and probabilistic predictions for en-
tropy measurement. As such, it applies to both adversarially-trained and nominally-trained
models.

Preliminaries on Attacks and Defenses

Let z € R? and y € {1,...,C} be an input sample and its corresponding ground truth.
Given a model f(-;0): R? — R® parameterized by 6, the goal of the adversary is to craft
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a perturbation § € R? such that the perturbed input & = = + 6 causes a prediction error
f(z+6;0) #y.

A targeted attack aims for a specific prediction of ¢/, while an untargeted attack seeks any
incorrect prediction. The perturbation ¢ is constrained by a choice of ¢, norm and threshold
e {5 e R |4 , < €}. We consider the two most popular norms for adversarial attacks: (o
and 62.

Adversarial training is a standard defense, formulated by [70] as a saddle point problem,

argminE, max L(f(z+;0),y), (3.1)
o

which the model minimizes and the adversary maximizes with respect to the loss L(y,y),
such as cross-entropy for classification. The adversary iteratively optimizes § by projected
gradient descent (PGD), a standard algorithm for constrained optimization, for each step ¢
via

0" = IL,(0"" + a - sign(Vs1 L(f (x +0'7150),9))), (3-2)

for projection II,, onto the norm ball for ¢, < ¢, step size hyperparameter «, and random
initialization §°. The model optimizes # against § to minimize the loss of its predictions
on perturbed inputs. This is accomplished by augmenting the training set with adversarial
inputs from PGD attack.

Adversarial training is state-of-the-art, but static. Dynamic defenses offers to augment
its robustness.

Defensive Entropy Minimization

Defensive entropy minimization (dent) counters attack updates with defense updates. While
adversaries optimize to cross decision boundaries, entropy minimization optimizes to distance
predictions from decision boundaries, interfering with attacks. As the adversary optimizes
its perturbation 0, dent optimizes its adaptation A,¥. Figure 3.2 shows dent’s model (A)
and input () updates.

Dent is dynamic because both A, Y depend on the testing data, whether natural = or
adversarial z +¢d. On the contrary, static defenses depend only on training data through the
model parameters . Figure 3.3 contrasts static and dynamic defenses across the steps of
attack optimization.

Entropy Objective Test-time optimization requires an unsupervised objective. Following
tent [1], we adopt entropy minimization as our adaptation objective. Specifically, our defense
objective is to minimize the Shannon entropy [19] H(7) of the model prediction during testing
g = f(x;0) for the probability g. of class ¢

H@) =— > p(f)logp(ge) (33)

cel,...,.C
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Figure 3.3: The adversary optimizes its attacks 6'"* against the model f. Static defenses
(left) do not adapt, and are vulnerable to persistent, iterative attacks. Our dynamic defenses
(right) do adapt, and update their parameters A, ¥ each time the adversary updates its
attack 0.

Adaptation Parameters Dent adapts the model by A and input by ¥ (Figure 3.2). For
the model, dent adapts affine scale v and shift 3 parameters by gradient updates and adapts
mean g and variance o2 statistics by estimation. These are a small portion of the full model
parameters 6, in only the batch normalization layers [34]. However, they are effective for
conditioning a model on changes in the task [67] or data [1], [35]. For the input, dent updates
Gaussian smoothing g by gradient updates of the parameter 3, while adjusting the filter size
for efficiency [103]. This controls the degree of smoothing dynamically, unlike defense by
static smoothing [77].

In standard models the scale v and shift § parameters are shared across inputs, and so
adaptation updates batch-wise. For further adaptation, dent can update sample-wise, with
different affine parameters for each input. In this way it adapts more than prior test-time
adaptation methods with batch-wise parameters [1], [35].

Our model and input parameters are differentiable, so end-to-end optimization coor-
dinates them against attacks as layered defenses. This coordination is inspired by Cy-
CADA [104], for domain adaptation, but dent differs in its purpose and its unified loss.
CyCADA also optimizes input and model transformations but does so in parallel with sepa-
rate losses. Our defensive optimization is joint and shares the same loss.

Update Algorithm In summary, when the adversary attacks with perturbation ¢*, our
dynamic defense reacts with X! Af. The parameters of the model f and smoothing g are
updated by argming o H(f(g(x+9;X); 0+ A)) through test-time optimization. At each step,
dent estimates the normalization statistics u, ¢ and then updates the parameters v, 5,3
by the gradient of entropy minimization. Figure 3.3 contrasts static defenses and dynamic
defenses that update like dent.

Dent adapts on batches rather than samples. Batch-wise adaptation stabilize optimiza-
tion for entropy minimization. The defense parameters reset between batches.

Discussion The purpose of a dynamic defense is to move when the adversary moves. When
the adversary submits an attack x+6°, the defense counters with Af. In this way, the defense
has the last move, and therefore an advantage.
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Table 3.1: Dent boosts the robustness of adversarial training on CIFAR-10 against AutoAt-
tack. Adversarial training is static, but dent is dynamic, and adapts during testing. Dent
adapts batch-wise, while dent+ adapts sample-wise, surpassing the state-of-the-art for static
defense at robustbench.github.io.

Accuracy (%) NATURAL ADVERSARIAL
STATIC DENT DENT+

€00 = 8/255

[105] 89.6 59.5  74.7 82.3
[106] 84.4 54.4  61.2 75.2
[107] 83.3 43.2  52.3 71.8
[108] 88.0 41.4 476 64.4
€ =0.5

[106] 89.5 73.4 77.8 85.7
[109] 88.7 67.7 69.7 81.3
[110] 89.1 66.4 73.4 85.3
[108] 88.0 66.1 70.3 82.8

Our dynamic defense changes the model, and therefore its gradients, but differs from
gradient obfuscation [87]. Our defense does not rely on (1) shattered gradients, as the up-
date does not cause non-differentiability or numerical instability; (2) stochastic gradients,
as the update is deterministic given the input, model, and prior updates; nor (3) explod-
ing /vanishing gradients, as the update improves robustness with even a single step (although
more steps are empirically better). Dent forces the attack to rely on a stale gradient, as §*
follows A*~!, while the model adapts by Al

3.4 Experiments

We evaluate dent against white-box, black-box, and adaptive attacks with a variety of static
defenses and datasets. For attacks, we choose the AutoAttack [80] benchmark, which includes
four attack types spanning white-box/gradient and black-box/query attacks. For static
defenses, we choose strong and recent adversarial training methods, and we also experiment
with nominally trained models. For datasets, we evaluate on CIFAR-10/CIFAR-100 [30], as
they are popular datasets for adversarial robustness, and ImageNet [29], as it is a large-scale
dataset. We ablate the choice of model/input adaptation, parameterization, and the number
of updates.
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Setup

Metrics We score natural accuracy on the regular test data x and adversarial accuracy on
the perturbed test data x + J. Each is measured as percentage accuracy (higher is better).
We report the worst-case adversarial accuracy across attacks.

Test-time Optimization We optimize batch-wise A (dent) and sample-wise A (dent+).
Dent updates by Adam [37] with learning rate 0.001. Dent+ updates by AdaMod [111] with
learning rate 0.006. Y updates use learning rate 0.25. All updates use batch size 128 and no
weight decay. Dent+ regularizes updates by information maximization [50], [112]. We tuned
update hyperparameters against PGD attacks.

Architecture For comparison with existing defenses, we keep the architecture and training
the same, and simply load the public reference models provided by RobustBench [113]. For
analysis and ablation experiments, we define a residual net with 26 layers and a width
multiplier of 4 (ResNet-26-4) [8], [114], following prior work on adaptation [1], [18].

Attack Types & Threat Model

We evaluate standard white-box and black-box attacks with adversarially-trained models and
nominally-trained models, as well as dent-specific adaptive attacks. We primarily evaluate
against AutoAttack’s ensemble of:

1. APGD-CE [70], [80], an untargeted white-box attack by cross-entropy,

2. APGD-DLR [80], a targeted white-box attack with a shift and scale invariant loss,
3. FAB [115], a targeted white-box attack for minimum-norm perturbation,

4. Square Attack [116], an untargeted black-box attack with square-shaped updates.

These attacks are cumulative, so a defense is only successful if it holds against each type.
Following convention, we evaluate /., attacks with e,, = 8/255 and ¢, attacks with e; = 0.5.
This is the standard evaluation adopted by the popular RobustBench benchmark [113].

We devise and experiment with two adaptive attacks against dent and its dynamic up-
dates. The first interferes with adaptation by denying updates: it optimizes offline against
0 without A, Y updates. The second interferes with adaptation by mixing data: it combines
adversarial data and natural data in the same batch. Both are specific to dent to complement
our general evaluation by AutoAttack.

These attacks fall under the usual white-box threat model. The adversary has full access
to the classifier, including its architecture and parameters, and the defense, such as dent’s
adaptation parameters and statistics. With this access the adversary chooses an attack for
each input, but it cannot choose the inputs (the test set is fixed).
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Table 3.2: AutoAttack includes four attack types, and dent improves robustness to each on
CIFAR-10 against (, attacks. We evaluate without dent (-) and with dent (+).

Accuracy(%) APGD-CE APGD-DLR FAB SQUARE
-+ - + -+ -+

[107] 45.9 57.6 43.2 52.3 43.2 52.3 43.2 52.3

[108] 50.1 60.2 41.6 48.0 41.5 47.7 41.4 47.6

We include one additional requirement: dent assumes access to test batches rather than
individual test samples. While independent, sample-wise defense is ideal for simplicity and
latency, batch processing is not impractical. For example, cloud deployments of deep learning
batch inputs for throughput efficiency, and large-scale systems handle many inputs per unit
time [117].

Dynamic Defense of Adversarial Training

We extend static adversarial training defenses with dynamic updates by dent. Compared to
nominal training, adversarial training achieves higher adversarial accuracy but lower natural
accuracy. The purpose of dent is to improve adversarial accuracy without further harming
natural accuracy.

Dent improves state-of-the-art defenses. Table 3.1 shows state-of-the-art adversarial
training defenses [105], [107]-[110] with and without dynamic defense by dent. Note that dent
does not specialize to the choice of norm or bound, unlike adversarial training, but instead
adapts to each attack during testing. In each case, dent significantly improves adversarial
accuracy and maintains natural accuracy.

Dent updates batch-wise for 30 steps. Dent+ is more robust in fewer steps by sample-
wise adaptation. With sample-wise (v, 8) parameters, dent+ needs only six steps to reach
an adversarial accuracy within 90% of the natural accuracy. These experiments only include
model adaptation of A, without input adaptation of ¥, as we found it unnecessary when
combined with adversarial training.

Dent helps across attack types. Table 3.2 evaluates dent against each attack in the
AutoAttack ensemble. Dent improves robustness to each attack type. We report the worst
case across these types in the remainder of our experiments.
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Table 3.3: Ablation of model adaptation (A), input adaptation (3), and steps on the accuracy
of a nominally-trained model with dent.

A by STEP TIME NATURAL ADZE;RSARIAL
€o = 55¢ €2 =102
x  NONE 0 1.0x 95.6 8.8 9.2
v/ NONE 1 3.6x 95.6 15.0 13.5
X  STAT. 0 1.0x 86.2 25.8 23.6
v/ STAT. 1 3.6 86.3 27.5 24.4
v/ STAT. 10 25.9x 86.3 37.6 30.9
v/ Dyna. 10  26.1x 92.5 45.4 36.5

Dent helps across datasets and architectures. We experiment on ImageNet to check
scalability. We evaluate the defense of [107], one of few defenses that scales to this dataset,
against strong (,.-PGD attacks with 30 iterations, step size of 0.1, and five random starts.
Dent improves the adversarial accuracy by 14 points against PGD at €., = 4/255 and natural
accuracy by 23 points.

Dynamic Defense of Nominal Training

Dent improves the adversarial accuracy of off-the-shelf, nominally-trained models. As dent
does not assume adversarial training, it can apply to various models at test time.

For nominal training, we exactly follow the CIFAR reference training in pycls [28], [118]
with ResNet-26-4/ResNet-32-10 architectures. Briefly, we train by stochastic gradient de-
scent (SGD) for 200 epochs with batch size 128, learning rate 0.1 and decay 0.0005, momen-
tum 0.9, and a half-period cosine schedule.

We evaluate against /., and 5 AutoAttack attacks on CIFAR-10. As the nominally-
trained models have no static defense, we constrain the adversaries to smaller € perturbations.

Dent defends nominally-trained models. Table 3.3 inspects how each part of dent
affects adversarial accuracy and natural accuracy. When applying dent to nominally-trained
models, model adaptation through A is further helped by input adaptation through ¥. In
just a single step, the A update improves adversarial accuracy without affecting natural
accuracy. from 8.8% to 15.0% against /., attacks with just a single step. With 10 steps, and
Y adaptation, dent improves the model’s adversarial accuracy to 45.4% against /., attacks
and 36.5% against /5 attacks. In total, dent boosts /., and ¢, adversarial accuracy by almost
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Table 3.5: Adaptive attack by mixing ad-
versarial and natural data. We report
the adversarial accuracy on mixed batches,
from low to high amounts of adversarial
data. Dent improves on adversarial training
(43.8%) across mixing proportions within 10
steps.

Table 3.4: Adaptive attack by denying up-
dates. We transfer attacks from static models
to dent and then evaluate nominal and adver-
sarial training [70] against £, and ¢y AutoAt-
tack. Attacks break the static models (static-
static), but fail to transfer to our dynamic de-
fense (static-dent).

i,0 STEP 1 10% 25% 50% 75% 90%

NOMINAL ADVERSARIAL
o=l =02 o=t =05 x 1 - 434 432 440 442 4338
X 10 62.4 51.2 49.6 48.7 48.7 47.6
STATIC-STATIC 11.6 11.0 42.0 44.1 ) L7 4 139 il ain
STATIC-DENT 82.5 81.6 50.0 50.2 v ) : : ' : '
v 10 54.9 47.6 47.7 49.7 50.6 50.9

40 and 30 points while only sacrificing 3 points of natural accuracy. Dent delivers this boost
at test-time, without re-training.

Input adaptation helps preserve natural accuracy. Gaussian smoothing significantly
improves adversarial accuracy. This agrees with prior work on denoising by optimization [76]
or randomized smoothing [77]. Tuned as a fixed hyperparameter, smoothing helps adversar-
ial accuracy but hurts natural accuracy. Optimized end-to-end, our dynamic smoothing
reduces the natural accuracy gap. On natural data, the learned ¥ for the blur decreases to
approximate the identity transformation.

Adaptive Attacks on Dent Updates

We adaptively attack dent through its use of adaptaton by (1) denying updates and (2)
mixing batches. To deny updates, we attack the static model offline by optimizing against
0 without A, updates, then submit this attack to dent. This attempts to shortcircuit
adaptation by disrupting the first update with a sufficiently strong perturbation. To mix
batches, we mix adversarial and natural data in the same batch. This attempts to prevent
adaptation by aligning batch statistics with natural data.

Denying Updates The aim of this attack is to defeat adaptation on the first move, before
dent can update to counter it. We optimize against the static model alone to prevent
defensive optimization until adversarial optimization is complete. Under this attack, the
input to dent is the final perturbation derived by adversarial attack against the static model.
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Table 3.6: Dynamic defenses can trade computation and adaptation. More steps are more
robust on CIFAR-10 with /., AutoAttack. Dent+ reaches higher adversarial accuracy in
fewer steps.

STEPS
DENT 0 20 30 40

[105]  59.5 68.3 74.7 76.1
[107]  43.2 48.2 52.3 55.1
[108]  41.4 45.4 47.6 48.7

DENT-H 0 1 3 6
[108] 41.4 46.5 57.7 64.4

We examine whether these offline perturbations can disrupt adaptation. Table 3.4 shows
that dent can still defend against this attack. This suggests that updating, and having the
last move, remains an advantage for our dynamic defense.

Mixing Batches Dent adapts batch-wise, with the underlying assumption that one shared
transformation can defend the whole batch. We challenge this assumption by evaluating
mixed batches of adversarial and natural data. In Table 3.5, we vary the ratio of adversarial
and natural data in each batch and measure accuracy on the adversarial portion.

At the extreme, we consider an adaptive attack with only one adversarial input per batch.
Specifically, we batch one adversarial input with 15 natural inputs randomly chosen from
the test set. This adaptive attack aims to reduce adaptation by the dynamic defense, as
natural inputs do not need adaptation.

Dent is generally robust to batch mixing, and improves over adversarial training in 10
steps or less.

Ablations & Analysis

More updates deliver more defense. The number of steps can balance defense and
computation. Table 3.6 shows that more steps offer stronger defense for both dent and dent+.
However, more steps do nevertheless require more computation: ten-step optimization takes
25.9x more operations than the static model (Table 3.3). As a plus, dent+ is not only more
robust, but also more efficient in needing fewer steps. Note that the computational difference
between dent and dent+ is negligible, as the adaptation parameters are such a small fraction
of the model.
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Table 3.7: Ablation of model adaptation Table 3.8: Sepsitivity analy§is of batch s.ize
and adversarial accuracy with dent. With

static batch statistics (x), small batch sizes
are better. With dynamic batch statistics
(1/), small batch sizes are worse.

with and without normalization statistics
(u,0) and affine parameters (v, 3) updates.

Accuracy(%) NOMINAL ADVERSARIAL

o v, B eoo=% €5=0.2 600=% €,=0.5
w0 TYPE 1 2 4 8 16 32 64

X X 8.8 9.2 43.8 47.3
117 11.2 41.8 141 Nar. 859 86.0 85.9 859 86.1 86.1 86.2
\/ j; 16.8 16.2 49'9 57’3 Apv. 704 69.5 67.8 65.3 61.9 58.6 55.1

X . . . .
\/ \/ 91.2 15.9 50.4 53.0 v/ Nar. 11.1 68.1 76.3 80.9 83.4 84.9 85.8
i i i i v Apv 58 359 483 53.0 553 54.4 52.9

Model adaptation updates depend on the attack type. Dent adapts by adjusting
normalization statistics and affine transformation parameters. Dent can fix or update the
normalization statistics (i, o) by using static training statistics (x) or dynamic testing statis-
tics (1/); Dent can fix or update the affine parameters (v, 3) by not taking gradients (x) or
applying gradient updates (/). Table 3.7 compares each combination: affine updates always
help, but both updates together hurt /5 robustness.

Batch size We analyze dent’s sensitivity to batch size and focus on small batch sizes. Some
real-world tasks, such as autonomous driving, naturally provide a small batch of inputs (from
consecutive video frames or various cameras, for example), and so we confirm that dent can
maintain robustness on such small batches. Table 3.8 varies batch sizes to check dent’s
natural and adversarial accuracy.

3.5 Discussion

In advocating for dynamic defenses, we hope that test-time updates can help level the field
for attacks and defenses. Our proposed defensive entropy method takes a first step by
countering adversarial optimization with defensive optimization over the model and input.
While more test-time computation is needed for the back-and-forth iteration of attacks and
defenses, the cost of defense scales with the cost of attack, and some use cases may prefer
slow and strong to fast and wrong.

Limitations Dent depends on batches to adapt, especially for fully test-time defense with-
out adversarial training. It also relies on a particular choice of model and input parameters.
A different objective could possibly lessen its dependence on batch size and reliance on con-
strained updates. More generally, dynamic defenses may present difficulties for certification
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or deployment, as they could drift. Along with how to update, improved defenses could
investigate when to reset, or how to batch inputs for joint optimization.

Domain Adaptation for Adversarial Defense Inquiry into adversarial defense and
domain adaptation examines two sides of the same coin. Both trade in the currencies of ac-
curacy and generalization but are not in close contact. We expect further exchange between
these subjects to pay dividends in new kinds of dynamic inference for defense and adap-
tation alike. In particular, while dent is inspired by test-time adaptation, defenses could
also be informed by open set/compound adaptation [119] to perhaps cope with multiple
adversaries [84].

Benchmarking Standardized benchmarking, by AutoAttack and RobustBench for exam-
ple, drives progress by competition and empirical corroboration. Dent brings adversarial
accuracy on their benchmark within 90% of natural accuracy for three of the most accurate
methods tested [105], [108], [120]. This is encouraging, but more research is needed to fully
characterize dynamic defenses like dent. However, RobustBench is designed for static de-
fenses, and disqualifes dent by its rule against test-time optimization. Continued progress
could depend on a new benchmark to standardize rules for how attacks and defenses alike
may adapt.

By fighting gradients with gradients, dent shows the potential for dynamic defenses to
update and counter adversarial attacks. The next steps—by attacks and defenses—will tell.
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Chapter 4

Dynamic Scale Inference by Entropy
Minimization

4.1 Introduction

The world is infinite in its variations, but our models are finite. While inputs differ in many
dimensions and degrees, a deep network is only so deep and wide. To nevertheless cope
with variation, there are two main strategies: static enumeration and dynamic adaptation.
Static enumeration defines a set of variations, processes them all, and combines the results.
For example, pyramids enumerate scales [121], [122] and group-structured filters enumerate
orientations [123]. Dynamic adaptation selects a single variation, conditioned on the input,
and transforms processing accordingly. For example, scale-space search [124], [125] selects a
scale transformation from input statistics and end-to-end dynamic networks select geometric
transformations [126], [127], parameter transformations [128], and feature transformations
[67] directly from the input. Enumeration and adaptation both help, but are limited by
computation and supervision, because the sets enumerated and ranges selected are bounded
by model size and training data.

Deep networks for vision exploit enumeration and adaptation, but generalization is still
limited. Networks are enumerative, by convolving with a set of filters to cover different
variations then summing across them to pool the variants [6], [32], [129]. For scale varia-
tion, image pyramids [121] and feature pyramids [47], [130] enumerate scales, process each,
and combine the outputs. However, static models have only so many filters and scales, and
may lack the capacity or supervision for the full data distribution. Dynamic models instead
adapt to each input [131]. The landmark scale invariant feature transform [125] extracts a
representation adapted to scales and orientations predicted from input statistics. Dynamic
networks, including spatial transformers [126] and deformable convolution [127], make these
predictions and transformations end-to-end. Predictive dynamic inference is however insuffi-
cient: the predictor may be imperfect in its architecture or parameters, or may not generalize
to data it was not designed or optimized for. Bottom-up prediction, with only one step of
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Figure 4.1: Generalization across scale shifts between training and testing conditions is
difficult. Accuracy is high and prediction entropy is low for training and testing at the same
scale (left). Accuracy drops and entropy rises when tested at 3x the training scale, even when
the network is equipped with dynamic receptive fields to adapt to scale variation (middle).
Previous approaches are limited to one-step, feedforward scale inference, and are unable to
handle a 3x shift. In contrast our iterative gradient optimization approach is able to adapt
further (right), and achieve higher accuracy by minimizing entropy with respect to task and
scale parameters.

adaptation, can struggle to counter variations in scale and other factors that are too large
or unfamiliar.

To further address the kinds and degrees of variations, including extreme out-of-distribution
shifts, we devise a complementary third strategy: unsupervised optimization during infer-
ence. We define an unsupervised objective and a constrained set of variables for effective
gradient optimization. Our novel inference objective minimizes the entropy of the model
output to optimize for confidence. The variables optimized over are task parameters for
pixel-wise classification and structure parameters for receptive field adaptation, which are
updated together to compensate for scale shifts. This optimization functions as top-down
feedback to iteratively adjust feedforward inference. In effect, we update the trained model
parameters to tune a custom model for each test input.

Optimization during inference extends dynamic adaptation past the present limits of su-
pervision and computation. Unsupervised optimization boosts generalization beyond train-
ing by top-down tuning during testing. Iterative updates decouple the amount of computa-
tion, and thus degree of adaptation, from the network architecture. Our main result is to
demonstrate that adaptation by entropy optimization improves accuracy and generalization
beyond adaptation by prediction (see Figure 4.1), which we show for semantic segmentation
by inference time optimization of a dynamic Gaussian receptive field model [103] on the
PASCAL VOC [132] dataset.
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4.2 Method: Iterative Dynamic Inference by
Optimization

Our approach extends dynamic scale inference from one-step prediction to multi-step iter-
ation through optimization. For optimization during inference, we require an objective to
optimize and variables to optimize over. Lacking task or scale supervision during inference,
the objective must be unsupervised. For variables, there are many choices among parame-
ters and features. Our main contribution is an unsupervised approach for adapting task and
structure parameters via gradient optimization to minimize prediction entropy.

Note that our inference optimization is distinct from the training optimization. We do
not alter training in any way: the task loss, optimizer, and model are entirely unchanged.
In the following, optimization refers to our inference optimization scheme, and not the usual
training optimization.

To optimize inference, a base dynamic inference method is needed. For scale, we choose
local receptive field adaptation [103], [127], [133], because scale varies locally even within a
single image. In particular, we adopt dynamic Gaussian receptive fields [103] that combine
Gaussian scale-space structure with standard “free-form” filters for parameter-efficient spa-
tial adaptation. These methods rely on feedforward regression to infer receptive fields that
we further optimize.

Figure 4.2 illustrates the approach. Optimization is initialized by feedforward dynamic
inference of Gaussian receptive fields [103]. At each following step, the model prediction and
its entropy are computed, and the objective is taken as the sum of pixel-wise entropies. Model
parameters are iteratively updated by the gradient of the objective, resulting in updated
predictions and entropy. Optimization of the parameters for the Gaussian receptive fields is
instrumental for adapting to scale.

Objective: Entropy Minimization

Unsupervised inference objectives can be bottom-up, based on the input, or top-down, based
on the output. To augment already bottom-up prediction, we choose the top-down objective
of entropy minimization. In essence, the objective is to reduce model uncertainty.

More precisely, for the pixel-wise output ¥ € [0, 1]9>*HXW for C classes and an image of
height H and width W, we measure uncertainty by the Shannon entropy [19]:

H;;(Y) ==Y Py = c)logP(y;; = c) (4.1)

for each pixel at index 7,7 to yield pixel-wise entropy of the same spatial dimensions as the
output.

Entropy is theoretically motivated and empirically supported. By inspection, we see that
networks tend to be confident on in-distribution data from the training regime. (Studying the
probabilistic calibration of networks [71] confirms this.) In our case, this holds for testing
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minimize minimize minimize
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entropy entropy entropy

Figure 4.2: Overview. Dynamic receptive field scale (top) is optimized according to the
output (bottom) at test time. We optimize receptive field scales and filter parameters to
minimize the output entropy (middle). Optimizing during inference makes iterative updates
shown from left to right: receptive field scale adapts, entropy is reduced, and accuracy is
improved. This gives a modest refinement for training and testing at the same scale, and
generalization improves for testing at different scales.

scales similar to the training scales, with high entropy on segment contours. On out-of-
distribution data, such as scale shifts, the output entropy is higher and less structured. For
qualitative examples, see Figures 4.1 and 4.2.

This objective is severe, in that its optimum demands perfect certainty (that is, zero
entropy). As a more stable alternative, we consider adaptively thresholding the objective by
the average entropy across output pixels. We calculate the mean entropy at each iteration,
and only take the gradient of pixels with above-average entropy. This mildly improves
accuracy.

Our final objective is then:

LY)=> H;(Y) for §={i,j:H;;>H,} (4.2)
i,jes
where S is the set of pixels with entropy above the average H,,. At each step, we re-calculate

the average entropy and re-select the set of violating pixels. In this way, optimization is
focused on updating predictions where the model is the most uncertain.

Variables: Task and Structure Parameters

We need to pick the variables to optimize over so that there are enough degrees of freedom to
adapt, but not so many that overfitting sets in. Furthermore, computation time and memory
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demand a minimal set of variables for efficiency. Choosing parameters in the deepest layers of
the network satisfy these needs: capacity is constrained by keeping most of the model fixed,
and computation is reduced by only updating a few layers. The alternative of choosing all
the parameters, and optimizing end-to-end during inference, is ineffective and inefficient:
inference is slower and less accurate than feedforward prediction.

We select the task parameters Oy of the output classification filter, for mapping from
features to classes, and the structure parameters 6., of the scale regression filter, for map-
ping from features to receptive field scales. Optimizing over these parameters indirectly
optimizes over the local predictions for classification scores Y and scales 3.

Why indirectly optimize the outputs and scales via these parameters, instead of direct op-
timization? First, dimensionality is reduced for regularization and efficiency: the parameters
are shared across the local predictions for the input image and have fixed dimension. Ad-
ditionally, this preserves dependence on the data: optimizing directly over the classification
predictions admits degenerate solutions that are independent of the input.

Algorithm: Initialization, Iteration, and Termination

Initialization The unaltered forward pass of the base network gives scores VO and scales

A

20,

Iteration For each step t, the loss is the sum of thresholded entropies of the pixel-wise

predictions Y®. The gradient of the loss is taken for the parameters o) e and 95216. The
(t+1

) .
ealo - Given the new parameters, a partial

optimizer then updates both to yield oty and 6
forward pass re-infers the local scales and predictions for YD and 2t+1 . This efficient

computation is a small fraction of the initialization forward pass.

Termination The number of iterations is set and fixed to control the amount of inference
computation. We do so for simplicity, but note that in principle convergence rules such as
relative tolerance could be used with the loss, output, or parameter changes each iteration
for further adaptivity. Figure 4.3 shows the progress of our inference optimization across
iterations.

4.3 Experiments

We experiment with extending from predictive to iterative dynamic inference for semantic
segmentation, because this task has a high degree of appearance and scale variation. In
particular, we show results for iterative optimization of classifier and scale parameters in a
dynamic Gaussian receptive field model [103] on the PASCAL VOC [132] dataset. By adapt-
ing both task and structure parameters, our approach improves accuracy on in-distribution
inputs and generalizes better on out-of-distribution scale shifts. We ablate which variables
to optimize and for how many steps, and analyze our choices by oracle and adversary results.
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Figure 4.3: Iterative dynamic inference by our entropy minimization. We optimize output
entropy with respect to task and scale parameters. (a) Input and ground truth. (b) Output
entropy. (c¢) Output prediction. Our optimization reduces entropy and improves prediction
accuracy.

These experiments establish the efficacy of entropy minimization during inference for scale
adaptation, while oracle results show opportunity for further progress.

Data and Metric PASCAL VOC [132] is a well-established semantic segmentation bench-
mark with 20 semantic classes and a background class. The original dataset only has 1,464,
1,449 and 1,456 images with segmentation annotations for training, validation, and testing,
respectively. As is standard practice, we include the additional 9,118 images and annotations
from [134], giving 10,582 training samples in total. We measure accuracy by the usual metric
of mean intersection-over-union (IoU). We report our results on the validation set.

Architecture We choose deep layer aggregation (DLA) [135] as a representative state-of-
the-art architecture from the family of fully convolutional networks [47]. DLA utilizes the
built-in feature pyramid inside the network via iterative and hierarchical aggregation. Our
implementation is based on PyTorch [136].

Training We train our model on the original scale of the dataset. We optimize via stochas-
tic gradient descent (SGD) with batch size 64, initial learning rate 0.01, momentum 0.9, and
weight decay 0.0001 for 500 epochs. We use the “poly” learning rate schedule [137] with
power 0.9. For the model with no data augmentation (“w/o aug”), the input images are
padded to 512 x 512 . As for the “w/ aug” model, data augmentation includes (1) cropping
to 512 x 512, (2) scaling in [0.5, 2], (3) rotation in [—10°,10°], (4) color distortion [138], and
(5) horizontal flipping.
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(a) 1x feedforward

(b) 3x feedforward

(¢) 3x optimization

Figure 4.4: Visualization of dynamic receptive field sizes across scale shift. Darker indicates
smaller, and brighter indicates larger. (a) is the feedforward inference at 1x scale while (b)
and (c) are the feedforward prediction baseline and our iterative optimization at 3x scale.
Observe that (a) and (b) are visually similar, in spite of the 3% scale shift, showing that the
predictor has failed to adapt. Optimization adapts further by updating the output and scale
parameters, and the dynamic receptive fields are accordingly larger. This is shown by how
(c) is consistently brighter than (b).

Testing We test our model on different scales of the dataset in the [1.5,4.0] range. We
optimize the model parameters for adaptation via Adam [37], batching all image pixels
together, and setting the learning rate to 0.001. The model is optimized episodically to each
input, and the parameters are reset between inputs. No data augmentation is used during
inference to isolate the role of dynamic inference by the model.

Results

We compare the semantic segmentation accuracy of our optimization with a prediction base-
line and optimization by oracle and adversary. The baseline is a one-step dynamic model
using feedforward scale regression to adapt receptive fields following [103]. We train on a
narrow range of scales and test on a broader range of scales to measure refinement, the
improvement for the training scales, and generalization, the improvement for the new scales.
This baseline is the initialization for our iterative optimization approach: the output and
scale predictions for the initial iteration are inferred by the one-step model. For analysis re-
sults, the oracle and adversary optimize during inference to respectively minimize/maximize
the cross-entropy loss of the output and the truth.

As reported in Table 4.1, our method consistently improves on the baseline by ~2 points
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Table 4.1: Comparison of our method with the feedforward scale regression baseline and the
oracle. Results are scored by intersection-over-union (higher is better). “w/o aug” excludes
data augmentation, where “w/ aug” includes scaling, rotation, and other augmentation.
Even though data augmentation reduces the effect of scale variation, our method further
improves accuracy for all scales.

1.5 20 25 30 35 4
scale regression 68.2 59.3 50.2 41.8 34.0 275
w/o aug entropy optimization (ours) | 69.0 60.1 51.9 43.5 35.8 29.2
oracle 72.0 644 558 475 392 321
scale regression 742 70.8 65.8 59.8 535 46.8
w/ aug entropy optimization (ours) | 74.6 71.7 67.7 61.8 56.0 49.0
oracle 78.0 75T 723 678 624 556

Table 4.2: Ablation of the number of iterations for optimization. Entropy minimization
saturates after 32 steps, while oracle optimization continues to improve.

1.5 20 25 3.0 35 4
step 0 scale regression 68.2 59.3 50.2 41.8 34.0 275
step 32 entropy optimization (ours) | 69.0 60.1 51.9 43.5 35.8 29.2
oracle 72.0 644 558 475 392 321
step 128 entropy optimization (ours) | 69.0 60.3 52.1 43.5 352 285
oracle 73.3 68.6 61.8 54.0 45.7 385

for all scales, which indicates that our unsupervised optimization for iterative inference helps
the model generalize better across scales. When the scale shift is larger, there is likewise a
larger gap.

To evaluate the effect of data augmentation, we experiment with (“w/ aug”) and without
(“w/o aug”). Data augmentation significantly improves generalization across scales. Note
that our optimization during inference still improves the model with data augmentation by
the same amount.

Ablations

We ablate the choice of parameters to optimize and the number of updates to make.

We optimize during inference to adapt the task parameters (score) of the classifier and
structure parameters (scale) of the scale regressor. The task parameters map between the
visual features and the classification outputs. Updates to the task parameters are the most
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Table 4.3: Analysis of entropy minimization (compared to oracle and adversary optimization)
and ablation of the choice of parameters for optimization (score, scale, or both). The ora-
cle/adversary optimizations minimize/maximize the cross-entropy of the output and truth
to establish accuracy bounds. The adversary results show that our method helps in spite
of the risk of harm. The oracle results show there are still better scales to be reached by
further progress on dynamic inference.

test on 1x test on 3x
score scale both | score scale both
scale regression 69.8 69.8 69.8 | 59.8 59.8 59.8
entropy optimization (ours) | 70.2 70.7 70.6 | 61.1 61.8 62.3
oracle 73.7 756 777 | 639 678 7T1.3
adversary 67.4 55.9 524 | b57.4 474 444

direct way to alter the pixelwise output distributions. Updates to the structure parameters
address scale differences by adjusting receptive fields past the limits of the feedforward scale
regressor. From the experiments in Table 4.3, both are helpful for refining accuracy and
reducing the generalization gap between different scales. Optimizing end-to-end, over all
parameters, fails to achieve better than baseline results.

Iterative optimization gives a simple control over the amount of computation: the number
of updates. This is a trade-off, because enough updates are needed for adaptation, but
too many requires excessive computation. Table 4.2 shows that 32 steps are enough for
improvement without too much computation. Therefore, we set the number of steps as 32
for all experiments in this chapter. For our network, one step of inference optimization takes
N% the time of a full forward pass.

Analysis

We analyze our approach from an adversarial perspective by maximizing the entropy instead
of minimizing. To measure the importance of a parameter, we consider how much accuracy
degrades when adversarially optimizing it. The more performance degrades, the more it
matters. Table 4.3 shows that adversarial optimization of the structure parameters for scale
degrades accuracy significantly, indicating the importance of dynamic scale inference. Jointly
optimizing over the task parameters for classification further degrades accuracy.

While better compensating for scale shift is our main goal, our method also refines
inference on in-distribution data. The results in Table 4.3 for 1x training and testing show
improvement of ~1 point.

We include qualitative segmentation results in Figure 4.5 and corresponding scale infer-
ences in Figure 4.4.
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Figure 4.5: Qualitative results from the PASCAL VOC validation set [132]. Our model is
trained on 1x scale and tested on 3x scale. (a) and (e) are the input image and ground
truth. (b) indicates the reference in-distribution prediction on 1x scale. (c) is the out-of-
distribution prediction for the feedforward dynamic baseline. (d) is the out-of-distribution
prediction for our iterative optimization method. Our method corrects noisy, over-segmented
fragments and false negatives in true segments.
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4.4 Related Work

Dynamic Inference Dynamic inference adapts the model to each input [131]. Many
approaches, designed [124], [125] and learned [67], [103], [126]-[128], rely on bottom-up
prediction from the input. Our method extends bottom-up prediction with top-down opti-
mization to iteratively update the model from the output. Recurrent approaches to iterative
inference [139], [140] require changing the architecture and training more parameters. Our
optimization updates parameters without architectural alteration.

Entropy Objective We minimize entropy during testing, not training, in effect tuning
a different model to each input. The entropy objectives in existing work are optimized
during training, especially for regularization. Entropy is maximized/minimized for domain
adaptation [17], [63], [141], [142] and semi-supervised learning [24], [143]. In reinforcement
learning, maximum entropy regularization improves policy optimization [144], [145]. We
optimize entropy locally for each input during testing, while existing use cases optimize
globally for a dataset during training.

Optimization for Inference We optimize an unsupervised objective on output statistics
to update model parameters for each test input. Energy minimization models [146] and
probabilistic graphical models [147], [148] learn model parameters during training then opti-
mize over outputs during inference. The parameters of deep energy models [149], [150] and
graphical models are fixed during testing, while our model is further optimized on the test
distribution. Alternative schemes for learning during testing, like transduction and meta-
learning, differ in their requirements. Transductive learning [57], [151] optimizes jointly
over the training and testing sets, which can be impractical at deep learning scale. We
optimize over each test input independently, hence scalably, without sustained need for the
(potentially massive) training set. Meta-learning by gradients [152] updates model parame-
ters during inference, but requires supervision during testing and more costly optimization
during meta-training.

4.5 Conclusion

Dynamic inference by optimization iteratively adapts the model to each input. Our results
show that optimization to minimize entropy with respect to score and scale parameters
extends adaptivity for semantic segmentation beyond feedforward dynamic inference. Gen-
eralization improves when the training and testing scales differ substantially, and modest
refinement is achieved even when the training and testing scales are the same. While we
focus on entropy minimization and scale inference, more optimization for dynamic inference
schemes are potentially possible through the choice of objective and variables.
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Chapter 5

Target Data Is All You Need:
On-Target Adaptation

5.1 Introduction

Deep networks achieve tremendous success on various visual tasks at the expense of massive
data collection and annotation efforts. Even more data is needed when training (source)
and testing (target) data differ, as the model must be adapted on the new data to maintain
accuracy. To reduce the annotation effort on new data, unsupervised domain adaptation
(UDA) approaches transfer knowledge from labeled source data to unlabeled target data.
Standard UDA requires simultaneous optimization on the source and target data to do so.
However, this requirement may not be entirely practical, in that shifted or future target
data may not be available during training. Furthermore, (re-)processing source data during
testing may be limited by computation, bandwidth, and privacy. Most importantly, it is
the target data that ultimately matters for testing. In this chapter, we therefore turn our
attention from source to target, and how to learn more from it.

Recent work adapts to the target data without the source data or even adapts during
testing. However, these “source-free” and “test-time” approaches still rely heavily on the
source parameters for fine-tuning. Source-free adaptation initializes from source parameters
then optimizes on target data without the joint use of source data [50], [51], [59]. Test-time
adaptation partially updates source parameters on the target data while testing [1], [18],
[35]. Such approaches reduce reliance on the source data, and can even improve accuracy,
but have they made full use of the target data? Many of the model parameters are fixed
[1], [35], [50] or regularized toward the source parameters [51], [59]. We investigate whether
more can be learned from target, and more accuracy gained, by not transferring the source
parameters.

We propose on-target adaptation to unshackle the target representation from the source
representation. To do so, we (1) factorize the representation from the classifier and (2)
separate the source parameters from the source predictions. By factorizing the represen-
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Figure 5.1: Domain adaptation adjusts a model trained on source data for testing on target
data. We contrast methods by their updates on source and target. Unsupervised domain
adaptation (UDA) jointly learns 50/50 on source/target. Source-free adaptation transfers
source parameters, then selectively learns on target. Our on-target approach learns 100% of
the testing model parameters on target by neither sharing nor transferring source parameters,
but instead distilling source predictions.

tation from the classifier, we can train the representation entirely on the target data by
self-supervision. Given this on-target representation, we can then supervise a new classifier
from source predictions by distillation [153], without transferring the source parameters. Not
transferring parameters frees our target model from the constraints of the source architec-
ture, so that we can experiment with distinct target architectures. In this way, we can even
change the model size to optimize a target-specific model that is more accurate and more
efficient. In contrast to prior work on adaptation, this uniquely allows for learning 100% of
the target model parameters on target data, as illustrated by Figure 5.1.

To realize our proposed factorization and separation, we employ contrastive learning,
source-free adaptation, and teacher-student distillation. We initialize the target representa-
tion by self-supervision with contrastive learning. We turn the source model into a teacher
model by source-free adaptation, and then generate pseudo-labels to supervise distillation.
We lastly train the student model on the teacher supervision, starting from the target repre-
sentation and new classifier parameters, and repeat this teacher-student cycle by resetting the
student classifier parameters between epochs. Contrastive learning has recently enabled self-
supervised representations to compete with or even surpass supervised representations [154]—
[159]. We show it provides a sufficient target representation.

Our experiments show on-target adaptation achieves state-of-the-art accuracy and com-
putational efficiency on common domain adaptation benchmarks. For model accuracy, our
method brings ~3% absolute improvement compared to state-of-the-art unsupervised and
source-free domain adaptation methods on VisDA-C [49] and ImageNet Sketch [160] while
reducing 50%-+ of parameters. For computation, our method reduces FLOPs by 50+% and
memory by 75+% for each forward pass of the target model. In the long-tailed classifica-
tion setting, on-target class distribution learning equals the state-of-the-art learnable weight
scaling [161] without needing source data. Ablation experiments support the generality of
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on-target representation learning across architectures, contrastive learning methods, losses,
and amount of optimization.

Our contribution is to investigate whether the source data should be the primary source
of target model parameters, and to propose an alternative: on-target adaptation. Our insight
is that the source representation can be fully decoupled from source supervision. Domain
adaptation normally emphasizes the representation of source data, by either jointly optimiz-
ing on source data or transferring source parameters. On-target adaptation emphasizes the
representation of target data instead, by distilling source predictions into a self-supervised
target representation. We are the first to show this is feasible, as a new kind of source-
free adaptation. Furthermore we show it improves accuracy and reduces computation on
standard benchmarks like VisDA-C.

5.2 Related Work

Adaptation On-target adaptation is unique in its decoupling of the target representation
from the source representation. Prior adaptation approaches transfer the source representa-
tion to the target, either by joint optimization or by initialization. To transfer the source
model to a visually different target domain, unsupervised domain adaptation (UDA) learns
a joint representation for both domains for visual recognition tasks, such as image classifica-
tion [162], object detection [163], semantic segmentation [164]. Some of the most representa-
tive unsupervised domain adaptation ideas are 1) maximum mean discrepancy [165], [166];
2) moment /correlation matching [167], [168]; 3) domain confusion [16], [43]; 4) GAN-based
alignment [104], [169]. All these UDA methods need simultaneous access to both source and
target data. In practice, it might be impossible to meet this requirement due to limited
bandwidth, computational power, or privacy concerns. Therefore, test-time training [18],
source-free adaptation [50], and fully test-time adaptation [1] settings focus on adapting a
source model by fine-tuning on the target data without source data. Exciting concurrent
work even adapts without the source model by only using source predictions [170]-[172].
These “black-box” adaptation methods exclusively optimize teacher and student predictions,
with distillation losses and output regularizers. While we likewise apply teacher-student
learning, our work is complementary in using contrastive learning as a loss on the input for
the student representation.

Semi-supervised learning Many UDA methods follow the practice of semi-supervised
learning, especially pseudo labeling [39] which is to utilize the model prediction to generate
supervision for the unlabeled images. The typical setup of unsupervised domain adaptation
methods is to jointly optimize with ground truths on the source and pseudo labels on the
target [166], [173]-[175]. When source data annotations are not available, DeepCluster [176]
and SHOT [50] further leverage weighted k-means clustering to reduce the side effects on
noisy pseudo labels. Similarly, our method does not require access to labeled source data,
while only relying on the target images with generated pseudo labels. In addition, our
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Stage 0: train source model with ground truth Stage 1: test-time adaptation on source model Stage 2: contrastive learning on target domain Stage 3: train target model with pseudo-label
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Figure 5.2: On-target adaptation proceeds in four stages. Source data is colored in orange
while target data is colored in blue. Stage 0 is the only stage to use source data. Stage
3 is the stage that connects source and target: the target representation from stage 2 is
fine-tuned as a student model on the predictions of the teacher model from stage 1. Note
that no parameters are shared or transferred from source to target, so the target parameters
are fully learned on target data.

method heavily benefits from the contrastive learned target domain representation, which is
treated as initialization to overcome the misleading of noisy pseudo labels.

Long-tailed recognition Long-tailed recognition tackles imbalanced class distributions
in real-world data. Existing work divides into three groups: 1) re-balancing the data distri-
bution [177]-[180]; 2) designing class-balanced losses [181]-[189]; 3) transfer learning across
classes [190], [191]. All of these methods address imbalance by altering training, so that the
model may learn more balanced features, and a classifier that covers common (head) and
rare (tail) classes. We instead adapt the classifier for long-tailed recognition during testing.

5.3 Method: On-Target Adaptation

The goal of the proposed on-target adaptation is to tackle domain shift during the test-time
with only a source model, without the access of annotation and source data. Specifically, the
supervised model with source parameter f(-;6°) trained on source images x* and labels y*
needs to generalize on unlabeled target data ' when an unneglectable domain shift happened.
Our on-target adaptation (Figure 5.2) is proposed to obtain target model parameter 6" purely
during test-time.

Stage 0 (source): train model with labeled source data We train a deep ConvNet
and learn source parameter #° by minimizing vanilla cross-entropy loss £(¢*®,y*) on labeled
source data (z°,y®). Specifically, L(7°,y°) = —X.p(y?) log(p(y:)) for the predicted probabil-
ity g; of class ¢, where target probability y;, is 1 for the ground truth class g¢ and 0 for the
rest.
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Stage 1 (teacher): adapt source model without source data We update the source
parameter 6° during testing to minimize information maximization (InfoMax) loss [112].
Specifically, InfoMax loss augment entropy loss L, = —X.p(4%) log(p(yh) with diversity ob-
jective Laiw = Dr (9" || $1c)—1og(C). where Dy, indicates the KullbackLeibler divergence,
1¢ is an all-one vector with C' dimensions. Here %lc indicates the target label vector with
evenly distributed % probabilities, where L4, is propose to enforce the global diversity over
classes.

As for the parameters to optimize over, we follow the motivation of decoupling the
representation and classifier. When the classifier is frozen, the goal of optimization is to
mitigate domain shift by deriving proper target features from the source model. In particular,
we keep the classifier the same on both source and target domain, and obtain A by the
gradient of the test-time objective (InfoMax), to update the representation part of model
parameter 6°.

Stage 2 (student): initialize target model with contrastive learning Instead of
fine-tuning from source model, we choose to initialize the target feature purely from target
data. Benefiting from the recent advances in contrastive learning methods, we train an
unsupervised model with purely unlabeled target images. Specifically, we initialized target
representation via improved momentum contrast learning (MoCo v2) [156], [157]. It is worth
noting that our method does not require a specific contrastive learning method. In other
words, the default MoCo v2 could be easily replaced by a more recent self-supervised learning
model, such as SwAV [155], SimSiam [154], Barlow Twins [159]. Such a modular design makes
it easier to benefit from the latest advance in contrastive learning. We have performed an
ablation study on the choice of contrastive learning method in Section 5.4.

Stage 3 (teacher-student): transfer knowledge from teacher to student We use
the adapted source model f(-;0°+A) as the initial teacher model to generate pseudo labels 3"
on unannotated target images x!. Then we fine-tune the student model f(-;6") initialized by
contrastive learning on target data with cross-entropy loss L(9',y") = —X.p(y*) log(p(9L)).
Specifically, we use normal distribution with a mean of zero and standard deviation of 0.01
for the classification head, since contrastive learned model does not contain classifier. The
teacher would be replaced with the latest student to gradually denoise pseudo labels for the
subsequent phase. Meanwhile, the contrastive learned model would re-initialize the student
feature to eliminate the accumulated errors from imperfect pseudo labels. In other words,
the student model would start over one more time with only newer pseudo labels for the
next transferring phase.

Figure 5.3 illustrates the procedure of transferring the knowledge from teacher to student.
Specifically, the interaction between teacher and student models benefits from consistency
regularization and pseudo-labeling, inspired by a recent semi-supervised learning approach
called FixMatch [192]. During the transferring, we augment the target images with random
cropping, random flipping, and AutoAugment with ImageNet policy, as “strong” augmen-
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Figure 5.3: Teacher-student (stage 3) learning in our method. Transfer learning between the
teacher (orange) and the student (blue), where pseudo labels are generated on the weakly-
augmented images. The model is trained on the strongly-augmented target data to match
the pseudo labels.

114

tation, while the “weak” augmentation is the combination of resizing and center cropping
when generating pseudo labels. Relying on the assumption that the model should generate
similar predictions on data-augmented versions of the same image [193]-[195], consistency
regularization enforces the cross-entropy loss between student output on strongly-augmented
images and teacher output on weakly-augmented images.

5.4 Experiments

Setup

Datasets We evaluate our method on both domain adaptation and long-tailed recognition
benchmarks, including VisDA-C [49], Office Home [196], Sketch [160], ImageNet-LT [191],
and iNaturalist-18 [197]. Figure 5.5 presents some of example images to illustrate domain
shifts.

Metric We report top-1 accuracy (denoted as acc.) on the whole dataset for all datasets.
On VisDA-C, we additionally report the percentage accuracy of each category and the cor-
responding average of all categorical accuracies (denoted as avg.), due to the imbalanced
distributed label space. On Office Home, we calculate the average for all kinds of domain
shifts as the summary number for each method. On long-tailed recognition benchmarks, we
additionally report percentage accuracy on many-shot (more than 100 samples), medium-
shot (20-100 samples), and few-shot (less than 20 samples) following the evaluation protocol
from [161], [191].

Baselines We choose the most recent fully test-time adaptation method, TENT [1], and
source-free adaptation framework, SHOT [50], as our “online” and “offline” adaptation base-
lines. TENT does not alter training, while SHOT minimally customizes the source architec-
ture and training. Entropy minimization is the target optimization objective for both TENT
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and SHOT. SHOT additionally regularizes optimization by the information maximization
(InfoMax) loss [112], [198], [199] to augment entropy minimization on each sample with di-
versity maximization across samples. Following SHOT, we therefore augment TENT into
TENT-IM by including this regularization. Alongside their role as baselines, these methods
can serve as teacher models for our stage 1. We also compare with unsupervised domain
adaptation (UDA) baselines, including DANN [16], DAN [165], ADR [200], CDAN+E [201],
CDAN+BSP [202], CDAN+TN [203], SAFN [204], SWD [205], DSBN-+MSTN [206], STAR [207].
It is worth noting that all these UDA methods are fine-tuning from the ImageNet pretrained
ResNet-101 source model, with access to both source and target data. TENT-IM and SHOT
likewise initialize their representation from the source model. In contrast, our method trains
ResNet-18 from scratch, and entirely on the target data, by contrastive learning for the
representation and teacher-student learning for the classification.

For long-tailed recognition, we choose learnable weight scaling (LWS) [161] as the train-
time baseline. LWS first decouples the full model into representation and classification,
and then only re-scales the classifier parameters with class-balanced sampling. Our on-
target class distribution learning extends LWS to test-time, by re-scaling the parameters on
unlabeled target data.

Architecture For comparability with state-of-the-art models, we choose 18/50/101-layer
ResNet models [8] for both main results and ablation studies. When reproducing the prior
works, we keep the architecture the same, for example, the weight-normalization [208] aug-
mented ImageNet pretrained ResNet-101 for SHOT [50].

Implementation

Our implementation is in PyTorch [27] and depends on the VISSL [209], MMClassifica-
tion [210], and Weights & Biases [211] libraries.

Stage 0 (source) We train residual networks [8] with various depths (including 18, 50,
101), and initializations (ImageNet pretraining or Kaiming init [212] when training from
scratch). We optimize cross-entropy loss by SGD with an initial learning rate 0.1, momentum
0.9, weight decay 0.0001, batch size 256. We do not apply label smoothing [213] except for
SHOT [50], as it specifically includes it. We adopt the standard data augmentation pipeline
from ImageNet training, such as random cropping, random flipping, and color jitter. We
choose ImageNet statistics as the default input mean and variance for all models.

Stage 1 (teacher) We experiment with three types of teacher models: 1) source-only, 2)
TENT-IM [1], 3) SHOT [50]. To optimize this altered loss, we choose SGD with learning rate
0.0001, momentum 0.9, and weight decay 0.0001. In addition to batch normalization [34],
we also update convolutional layers except the final classification layer. As for SHOT, We
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Table 5.1: Each stage of our on-target adaptation improves target accuracy. Contrastive
learning (stage 2), for fitting the representation on target data alone, helps whether or not
the teacher is adapted (stage 1).

#1 test-time #2 contrastive #3 teacher VisDA-C train Imagenet Office

method
adaptation learning student —val  —test —Sketch Home
source-only 21.8 23.9 27.6 51.7
test-time adaptation v 314 34.3 35.6 53.8
on-target adaptation v 28.3 31.8 27.9 54.3
without contrastive v v 43.3 46.0 40.5 56.8
29.1 .
on-target adaptation v v I 33.9 X X
v v v 49.9 51.2 X X

execute the authors’ open-sourced codebase with the same hyperparameters for various archi-
tectures (ResNet-50 and ResNet-101), initialization (from scratch and ImageNet pretrain),
and domain shifts (train to val/test splits on VisDA-C).

Stage 2 (student) We experiment with two designs as students: 1) source-only, 2) con-
trastive learning. Specifically, we leverage some of off-the-shelf contrastive learning methods
to initialize target-domain representation, such as MoCo v2 [157], SimSiam [154], SWAV [155],
Barlow Twins [159]. Compared to their training recipes on ImageNet, we have more epochs
on VisDA-C val/test with the same batch size, learning rate, data augmentation, and model
architecture, to make the training procedure longer with the smaller amount of images.

Stage 3 (teacher-student) By default, the whole knowledge distillation consists of three
phases, where each phase has 10 epochs to train the student model with the hard pseudo
label. The student would be reset to the contrastive model to avoid error accumulation at
the beginning of every phase. The teacher would be replaced with the latest student before
starting the next phase, so that the quality of pseudo-labeling could be improved gradually.
We utilize SGD with an initial learning rate 0.01, momentum 0.9, weight decay 0.0001, batch
size 256, and cosine annealing scheduler [214].

On-target adaptation

Table 5.1 reports reports the change in target accuracy for each stage of on-target adaptation
on VisDA-C. The source model is ResNet-50 trained from scratch. The target model is
ResNet-18. Source-free adaptation is done by TENT-IM. In teacher-student learning, the
student, with either the source (teacher) or our on-target (contrastive) representation, is
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Require: model f; # source model, for predictions
Require: model f: # target model, for representation
Require: image transform t,, # weak augmentation
Require: image transform ts # strong augmentation
fo < fs # source model for the first teacher
for i + 1 to N do # for each epoch
fi <= ft # initialize by contrastive learning VisD A val
for b < 1 to B do # for each mini-batch
y + fi—1(tw(x)) # teacher
7+ fi(ts (x)) # student

VlsDA train

ImageNet

£ « Loss(§,y’) # hard-label cross-entropy VisDA test Sketch Office Home
end for
end for
return fny # student model for testing Figure 5.5: Example images from VisDA-
C, ImageNet, ImageNet-Sketch, and
Figure 5.4: On-target pseudo-code. Office-Home.

Table 5.2: Classification accuracy of on-target adaptation on VisDA-C (validation) across all
categories and averaged over classes (avg.) and images (acc.). R18/50/101S denotes ResNet-
18/50/101 randomly initialized from scratch and R18/50/101P denotes ResNet-18/50/101
pretrained on ImageNet.

method network plane bcycl bus car horse knife mcycl person plant sktbrd train trunk avg. acc.
ADR [200] R101P 942 485 84.0 729 90.1 749 926 72.5  80.8 61.8 822 288 73.6 738
CDAN+E [201] R101P 852 669 83.0 50.8 842 749 881 74.5 834 76.0 819 38.0 739 71.0
CDAN+BSP [202] R101P 924 61.0 810 575 89.0 80.6 90.1 77.0 842 779 821 384 759 734
SAFN [204] R101P 936 613 84.1 706 941 79.0 918 79.6  89.9 55.6  89.0 244 76.1 756
SWD [205] R101P 90.8 825 8L.7 70.5 91.7 695 86.3 775 874 63.6 856 292 764 756
DSBN+MSTN [206] R101P 947 86.7 760 720 952 751 879 81.3 911 68.9 883 455 80.2 792
STAR [207] R101P 95.0 84.0 846 73.0 916 91.8 8.9 784 944 84.7 87.0 422 827 80.4
TENT-IM [1] R50S 58.9 40.1 50.2 236 226 253 @ 29.8 24.8 229 30.2 451 20.1 328 314

TENT-IM + Ours R50S 90.1 66.0 752 413 292 112 570 60.8  40.1 51.1 736 238 51.6 509
TENT-IM + Ours R18S 90.5 652 79.6 388 26.7 129 516 59.9 442 46.0 T71.1  24.0 50.9 49.9
SHOT [50] R101P 946 86.6 79.5 55.6 93.6 96.1 798 80.7 89.2 89.0 86.1 57.1 823 778
SHOT + Ours R18S 96.0 89.5 843 672 959 942 910 8L.5 93.8 89.9 89.1 582 859 828

trained on the predictions of the teacher. This is repeated for multiple epochs. The on-
target representation (stage #2) improves accuracy with and without source-free adaptation
of the teacher, as it only depends on the target data.

VisDA train — val Table 5.2 compares our method with state-of-the-art unsupervised
(upper part) and test-time (lower part) domain adaptation approaches from VisDA-C train
to val splits. The proposed on-target adaptation significantly improves the existing test-time
adaptation methods. It is worth noting that all these existing methods need to keep the same
architecture when joint-training or fine-tuning on the source model. On the contrary, our
method could utilize a much more lightweight model, such as ResNet-18 as shown in this
table. For example, our method brings 184+ points improvement compared to source-free
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Table 5.3: Classification accuracy of our method supervised by three teachers: source-only,
SHOT, and TENT-IM on VisDA-C (test). R50S/R101S denotes ResNet-50/101 randomly
initialized from scratch and R50P/R101P denotes ResNet-50/101 pretrained on ImageNet.

source-only ours TENT-IM ours SHOT ours

network avg. acc. avg. acc. ‘ network avg. acc. avg. acc. ‘ network avg. acc. avg. acc.

R50S 221 239 309 33.9]| R50S 342 343 49.3 51.2 | R101P 893 884 91.7 916
R50P 344 377 39.8 43.5 | R50P 60.4 624 748 77.7 | R50P 76.4 78.0 81.1 83.0

Table 5.4: Adaptation on ImageNet-Sketch. Table 5.5: Adaptation on Office-Home.

method network  accuracy method network  accuracy
Anisotropic [215]  ResNet-50 24.5 DANN [16] ResNet-50  57.6
Debiased [216] ResNet-50  28.4 DAN [165] ResNet-50  56.3
Crop [217] ResNet-50 30.9 CDAN+E [201] ResNet-50 65.8
SAFN [204] ResNet-50 67.3
TENT-IM [1] ResNet-50  35.6 CDAN+TN [203]  ResNet-50  67.6
TENT-IM + Ours ResNet-18 37.5 TENT-IM [1] ResNet-50 538
TENT-IM + Ours ResNet-50  40.5 TENT-IM + Ours ResNet-18  56.8

adapted teacher TENT-IM, while reducing over 50% parameters and runtime flops, and 75%
memory consumption at each feed-forward of target model.

VisDA train — test Table 5.3 compares our method with state-of-the-art unsupervised
(upper part) and test-time (lower part) domain adaptation approaches from VisDA-C train
to test splits. Similar to Table 5.2, our method dramatically improves the performance of
all kinds of teacher models.

In the following two paragraphs, we discuss the potential application of on-target adap-
tation without contrastive learning. When test-time data is not sufficient enough to finish
the contrastive learning, we could skip contrastive learning on target data (stage 2) of the
proposed method. In other words, we directly fine-tune the target model initialized by the
source model. We believe that adaptation performance could be further improved once the
contrastive learning could no longer be data-hungry or target domain data could be abun-
dant.

ImageNet — Sketch Table 5.4 reports the empirical results on generalization regarding
ImageNet/Sketch as source/target domain. For on-target adaptation, we try two student
models: model as same as the teacher model (ResNet-50) and small supervised model pre-
trained on ImageNet (ResNet-18). Our method additionally brings ~5/3% improvements
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compared to the teacher model with the same/shallower student models, where the teacher
model, TENT-IM, already outperforms the previous state-of-the-art by ~5%.

Office Home Table 5.5 compares our method with state-of-the-art unsupervised (upper
part) and test-time (lower part) domain adaptation approaches for the various domain shifts
in Office Home. Our method advances the average accuracy over all domain shifts of teacher
model (TENT-IM) by 3%.

On-target class distribution learning

In this section, we argue for calibrating classifier during the test-time, without any mod-
ification on training procedure, aiming at long-tailed recognition task. Here we treat the
long-tailed data as the source domain while regarding the class-balanced data as the target
domain. During training, instance-balanced sampling provides a generalizable representa-
tion to start with. Then the classifier is re-scaled during the test-time on the class-balanced
data.

First, we train the source domain model with the instance-balanced sampling, which
samples each sample with the same probability. In this way, the learned classifier has a
higher prior probability on the head compared to the tail. Then we calibrate the parameters
of the classifier while freezing the feature with test images and pseudo labels, following the
practice of our on-target adaptation. It is worth mentioning that we do not utilize contrastive
learning to re-initialize the representation on target data or tune the feature part in teacher-
student (stage 3). The major reason for such a choice is to follow the practice of LWS [161],
which points out that the domain shift only exists within class distribution so that only
classifier needs to be calibrated.

The empirical results indicate that our method could automatically calibrate the cat-
egorical prior and adaptive fit the test data distribution without the access of training
data. Table 5.6 demonstrate that our test-time on-target adaptation could achieve com-
parable performance compared to state-of-the-art training-time methods on ImageNet-LT
and iNaturalist-18 datasets. We report results for two popular ConvNets, ResNet-50 and
ResNet-101, as teacher models trained on long-tailed data. Our method achieves compara-
ble overall performance with the train-time method (LWS) on both datasets. Compared to
the vanilla ResNet-50 and ResNet-101, our fully test-time method significantly improves the
overall performance by a large margin. Considering the accuracy of few-shot (less than 20
samples) categories, our method outperforms the train-time practice on three out of four
cases, extending the usage scenarios of train-time long-tailed recognition methods.

Ablation Studies

Stage 0: network & initialization The upper part of Table 5.7 presents the numbers
of SHOT/TENT-IM with ResNet in various depths (18, 50, 101) and initializations (from
scratch, ImageNet pretrain). We observe that our method consistently improves the teacher
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Table 5.6: Comparing our method performance with learnable weight scaling (LWS) on long-
tailed benchmarks including iNaturalist18 and ImageNet-LT. Note that LWS adapts during
training while our method can adapt during testing, which is more efficient.

iNaturalist18 ImageNet-LT
method many medium few acc. many medium few acc.
ResNet-50 72.2 63.0 57.2 61.7 64.0 33.8 5.8 41.6
+ LWS [161] 65.0 66.3 65.5 659 57.1 45.2  29.3 47.7
+ On-Target Class Distribution — 64.2 66.3 65.9 65.9 55.7 46.0 28.6 474
ResNet-101 75.9 66.0 59.9 64.6 66.6 36.8 7.1 44.2
+ LWS [161] 69.6 69.1 679 68.7 60.1 47.6 31.2 50.2
+ On-Target Class Distribution — 66.5 69.1 68.3 68.5 58.9 48.7 31.8 50.3

Table 5.7: Classification accuracy on VisDA-C (validation). “Imagenet pretrain” indicates
whether we utilize ResNet pretrained on ImageNet at stage 0. “Source only” indicates
whether we skip test-time adaptation (stage 1) and directly use the source model to generate
pseudo labels at stage 3.

imagenet source SHOT ours imagenet source TENT ours
network pretrain  only avg. acc. avg. acc. network pretrain  only avg. acc. avg. acc.
ResNet-50 X X 49.7 483 69.1 67.3 ResNet-50 X X 32.8 314 509 499
ResNet-50 v X 75.0 745 T77.8 T78.6 ResNet-50 v X 60.9 60.2 75.1 73.8
ResNet-101 v X 823 778 859 828 ResNet-18 X X 34.0 33.1 514 514
ResNet-101 v v 49.9 55.5 60.0 65.6 ResNet-50 X v 17.8 21.8 223 29.1

models with various model architectures and initializations, which indicates the usability and
versatility of the proposed framework. When adapting from synthetic to real-world domains,
the ImageNet pretrained model should not be utilized to start with, due to the learned
inductive bias of its parameters. Therefore we also experiment on training from scratch for
teacher models. Larger capacity does not lead to better generalization when training from
scratch. On the contrary, We observe that a deeper ImageNet pretrained ConvNet provides
a stronger inductive bias from the beginning.

Stage 1: test-time adaptation The lower part of Table 5.7 presents the numbers of
source-only models as teacher, without any source-free adaptation (TENT-IM/SHOT). The
final accuracy after teacher-student suffers from the poorer quality of the initial pseudo label.
ImageNet pretraining could alleviate such a phenomenon, but the numbers with test-time
adapted teachers are still significantly better than the source-only ones. Comparing these
empirical results with Table 5.2, TENT-IM boosts the initial/final accuracy by 15.0/28.6



CHAPTER 5. TARGET DATA IS ALL YOU NEED: ON-TARGET ADAPTATION 55

Table 5.8: Classification accuracy on VisDA-C (validation). Left side: Ablation results on
the student model with various initialization. Right side: Ablation results on the contrastive
learning method using MoCo, SwAV, SimSiam, and Barlow Twins.

method avg. acc. ‘ method avg. acc.
TENT 328 314 |  Ouss (MoCo) 509 49.9
VisDA-C train 45.3 43.3 SwAV 50.5 49.4
ImageNet 47.3  46.2 SimSiam 48.7 47.6
ImageNet (MoCo) 46.6 45.5 Barlow Twins 46.3 44.8

points, while SHOT brings 32.4/25.9 points improvement. In a word, test-time adaptation
should be leveraged in preparation for trustworthy pseudo labels.

Stage 2: on-target feature The left part of Table 5.8 presents the ablation study of
student architecture and initialization. When the student model is not initialized on target
data, such as source data (VisDA-C train) or the external large dataset (ImageNet), the
overall accuracy drops 4+ points, which indicates the necessity of on-target feature learning.
We also ablate the same contrastive learning algorithm (MoCo v2) on a different data source,
such as VisDA-C val and ImageNet. The empirical results indicate that more external data
does not bring any advantage, which echos our statement on the target-specific representation
learning.

Stage 2: contrastive learning The right part of Table 5.8 presents the results with var-
ious contrastive learning frameworks, including SwAV, SimSiam, Barlow Twins. We train
these contrastive learned models with the same number of epochs to have a fair comparison.
Compared to the performance of the teacher model, all these learned features bring a no-
ticeable improvement, achieving the comparable numbers with the reference performance of
MoCo v2. We observe that our method is not sensitive to the choice of contrastive learning
method. In this way, our on-target adaptation could be further improved by introducing a
more advanced contrastive learning approach in the future.

Stage 3: more phases Table 5.9 presents the detailed numbers for each phase during
teacher-student. We observe that the first phase already significantly outperforms the test-
time adapted teacher model, which is also the state-of-the-art practice. The following several
phases gradually improve the results, taking the last generation student as the next teacher.
Considering the speed-accuracy trade-off, we choose to have three phases as our default
setup, even though more phases could lead to a better result. For example, 9-phase (3x)
optimization brings up around 9 points improvement compared to our default 3-phase (1x)
one with TENT-IM as the initial teacher model.
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Table 5.9: Classification accuracy of our method on VisDA-C (validation). “Soft” indicates
that the hard-label cross-entropy loss is replaced with the soft-label KL divergence loss for
each even-numbered phase. Note that our default number of phases (phase 3) is highlighted.

teacher soft phase 0 phase 1 phase2 phase3 phase4 phase5 phase6 phase7 phase8 phase9

TENT X 32.8 44.2 48.2 50.9 52.7 54.3 56.0 57.0 58.1 58.9
32.8 44.3 53.5 56.4 59.9 61.4 63.6 64.2 65.1 65.6

SHOT X 82.3 84.8 85.5 85.9 86.2 86.3 86.3 86.3 86.2 86.3
4 82.3 84.7 85.2 85.6 85.2 85.7 85.0 85.4 84.9 85.2

Stage 3: soft label Table 5.9 presents the ablation study on the design choice of loss
function. Our default setup only utilizes hard labels with cross-entropy loss. Actually, our
framework also benefits from the soft label with KullbackLeibler divergence loss, following
the popular practice of knowledge distillation [153]. We observe that the mix of both hard
and soft label bring up the best performance. we replace the cross-entropy loss (hard la-
bel) with KullbackLeibler divergence (soft label) for the even number of phases. We set the
number of epochs as one for all these interpolated soft label phases for a more computational-
friendly practice. The known drawback is that the soft label part typically needs specific
tuning on learning rate, loss weight, temperature, and so on. Existing works [65], [192],
[219] discuss sharpening (temperature) and thresholding (confidence threshold) to improve
the performance of semi-supervised learning. Instead, we only ablate the default Kullback-
Leibler divergence loss without bells and whistles like temperature and confidence threshold.
Our default training objective chooses to be the most robust hard label with cross-entropy
criterion for all the other experiments.

5.5 Discussion

Domain adaptation is itself adapted to many different needs: unsupervised domain adapta-
tion jointly optimizes over labeled source and unlabeled target data, source-free adaptation
adapts to target given source parameters instead of source data, and test-time adaptation
even adapts while making predictions. Across each of these varieties, the source comes first.
The target representation is either aligned to the source representation or it is initialized
from it by transfer learning. On-target adaptation departs from this standard practice by
transferring the source predictions without the source representation. This decoupling is
unconventional, but useful, because it enables learning all of the target model parameters
on the target data. Given enough target data, on-target adaptation improves accuracy by
learning the model for target data on target data.
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Chapter 6

Back to the Source: Diffusion-Driven
Test-Time Adaptation

6.1 Introduction

Deep networks achieve state-of-the-art performance for visual recognition [8], [220]—[222], but
can still falter when there is a shift between the source data for training a recognition model
and the target data for testing [12]. Shift can result from corruption [9], [223]; adversarial
attack [74]; or natural shifts between simulation and reality, different locations and times, and
other such differences [49], [224]. To cope with shift, adaptation and robustness techniques
update inference to improve accuracy on target data. In this chapter, we examine two key
axes of adaptation, when to adapt—during training or testing—and what to adapt—the
model or the input, and propose a uniquely test-time input adaptation method driven by a
generative diffusion model.

The dominant paradigm for adaptation is to update the model during training by joint
optimization over source and target [15], [43], [104], [225], [226]. However train-time adapta-
tion faces a fundamental issue: not knowing how the data may differ during testing. While
train-time updates can cope with known target domains, what if new and different shifts
should arise during deployment? In this case, test-time updates are needed to adapt the
model (1) without the source data and (2) without halting inference. Source-free adapta-
tion [18], [50], [51], [59], [227], [228] satisfies (1) by re-training the model on new targets
without access to the source. Test-time adaptation [1], [18], [35], [229] satisfies (1) and (2)
by iteratively updating the model while making predictions. Updating the model during test-
ing makes inference more robust to shift, but with some additional disadvantages. Model
updates could be too computationally intense to scale to many targets, which each need
their own model, and the updates may be sensitive to different amounts or orders of data
from the target(s), in which case it may fail to help or even harm robustness. In summary,
existing methods concentrate on updating the source model.

We propose to update the target data during testing instead. To update the data, we
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(a) Setting: Multi-Target Adaptation (b) Cycle-Consistent Paired Translation (c) DDA (ours): Many-to-One Diffusion

Figure 6.1: One diffusion model can adapt inputs from new and multiple targets during
testing. Our adaptation method, DDA, projects inputs from all target domains to the
source domain by a generative diffusion model. Having trained on the source data alone,
our source diffusion model for generation and source classification model for recognition do
not need any updating, and therefore scale to multiple target domains without potentially
expensive and sensitive re-training optimization.

project test inputs back to the source domain by generative diffusion modeling. Our diffusion-
driven adaptation method, DDA, learns a diffusion model of the source data during training,
then projects inputs from all targets during testing. Figure 6.1 shows how just one generative
model of source enables adaptation from multiple targets. DDA trains a diffusion model to
replace the source data, for source-free adaptation, and adapts target inputs while making
predictions, for test-time adaptation. Figure 6.2 illustrates how DDA adapts the input then
applies the source classifier without model adaptation.

Our experiments measure robustness to input corruption to compare and contrast in-
put updates and model updates. For input updates, we evaluate and ablate our proposed
DDA method. For model updates, we evaluate entropy minimization methods (Tent [1]
and MEMO [229]), which are the state-of-the-art for fully test-time online updates, and
BUFR [230], which is the state-of-the-art for source-free offline updates. DDA achieves
higher robustness than MEMO in all cases, and helps where Tent degrades due to limited,
ordered, or mixed data. As a model-agnostic input adaptation method, DDA improves across
standard (ResNet-50) and state-of-the-art convolutional (ConvNeXt [222]) and attentional
(Swin Transformer [221]) architectures without re-tuning.

Our contributions:

o We propose the first diffusion modeling approach for test-time adaptation to corruption,
DDA, and propose a novel self-ensembling scheme to select how much to adapt.
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o We identify and empirically confirm weak points of test-time model updates—small
batches, ordered data, and mixed domains—and highlight our test-time input updates
to address these natural but currently challenging regimes.

o We experiment on the ImageNet-C benchmark to show that our DDA improves over
test-time model adaptation across corruptions, architectures, and data regimes.

6.2 Related Work

We relate our uniquely generative test-time input adaptation method to existing methods
for model and input adaptation. We also highlight diffusion modeling as the key approach
for our generative modeling of the source data.

Model Adaptation Model adaptation aims to update the source model on target data
to improve accuracy. While myriad varieties exist, we focus on source-free adaptation—not
needing the source data while adapting—and on test-time adaptation—making predictions
while adapting—because DDA is a source-free and test-time method. Source-free adapta-
tion [18], [50], [51], [59] makes it possible to respect practical deployment constraints on com-
putation, bandwidth, and privacy. Nevertheless, most methods involve a certain amount of
complexity and computation by altering training [18], [50], [51], [59] and interrupting testing
by re-training their model(s) offline on each target [50], [51], [59], [230]. DDA is source-free,
as it replaces the source data with source diffusion modeling. However, it differs by adapting
the data and not its diffusion model or recognition model. Furthermore, it does not alter
training of the recognition model, as it can train the diffusion model in isolation. By keeping
its models fixed, DDA handles multiple targets without halting testing for model re-training,
as source-free model adaptation must. Test-time adaptation [1], [18], [35], [231] updates the
model without holding up inference. (Fully test-time methods are more extreme still, and
do so without any access to training or source data.) Such test-time model updates can be
sensitive to their optimization hyperparameters along with the size, order, and diversity of
the test data. On the contrary, DDA updates the data, which makes it independent across
inputs, and thereby invariant to the batching, order, or mixture of the test data. DDA can
even adapt to a single test input without augmentation, unlike test-time model adaptation.

Input Adaptation Input adaptation aims to translate data between source and target.
DDA carries out test-time input adaptation from target to source by diffusion. Prior meth-
ods adapt during testing, but differ in their purpose and technique, or adapt during training,
but cannot handle new target domains during testing. When testing, translation goes from
target to source, allowing direct application of the source model without having to (re-)train
it for target, as done by diffusion-driven defense [232] for robustness to attack. When train-
ing, translation goes from source to target—real or synthesized—to provide additional data
or auxiliary losses, as done by style transfer [233]-[236], conditional image synthesis [104],
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project target to source with diffusion models select how much to adapt by self-ensembling
I

classifier H ensemble }—>“goldﬁnch”

A

Figure 6.2: DDA projects target inputs back to the source domain. Adapting the input
during testing enables direct use of the source classifier without model adaptation. The
projection adds noise (forward diffusion, green arrow) then iteratively updates the input
(reverse diffusion, red arrow) with conditioning on the original input (guidance, purple arrow).
For reliability, we ensemble predictions with and without adaptation depending on their
confidence.

[237]-[242], or adversarial generation [40] for robustness to shift. A key work in this line is
CyCADA [104], which translates from source to target with generative modeling by Cycle-
GAN [237]. While CyCADA is generative like DDA, CycleGAN requires paired source and
target data for training, and so it cannot adapt to multiple and varied targets during testing.
In contrast, DDA only requires source data during training, and can adapt to multiple target
domains with a single model.

Diffusion Modeling Diffusion [243]-[248] is an emerging approach to generative modeling
that operates on the input space by iteratively refining samples. In essence, diffusion models
learn to “reverse” noise to generate an image by gradient updates w.r.t. the input. The
type of noise matters, and standard diffusion models rely on Gaussian noise. In this chapter,
we investigate how a strong diffusion model can project corrupted target data to the source
data distribution, which involves corruptions that are highly non-Gaussian. We apply the
denoising diffusion probabilistic model (DDPM) [249] in this new role of diffusion-driven
adaptation. Guided diffusion models improve generation by optimization based on class
labels [250], [251], text [252], [253] and images [254], but test-time adaptation denies the
necessary data for their use. While diffusion has been applied to adversarial defense [232],
we are the first to adopt it for test-time adaptation to corruptions. Diffusion is key to
our source-free and test-time adaptation method, in replacing the source data with source
diffusion, and in updating target data without needing to update the model across batches
or target domains. We apply diffusion in this fashion to propose a source-free adaptation
method that uniquely scales to multiple target domains without the addition or optimization
of parameters.
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6.3 Method: Test-Time Diffusion-Driven Adaptation

We propose diffusion-driven adaptation (DDA) for test-time input adaptation by generative
modeling with diffusion. During training, we train a generative diffusion model on the source
domain data, and train a discriminative classification model on the source domain data and
annotations. During testing, given a test input from the target domain, the diffusion model
projects it to the source domain, and then the classification model makes its prediction from
the original and translated input. Figure 6.2 illustrates inference with DDA through projec-
tion, classification, and ensembling of the predictions over the target and source-projected
inputs.

DDA does not need any target data during training, and in principle it can handle
an arbitrary number of target domains during testing. Of course, its ability to effectively
project a given input to the source domain may vary for each target. DDA can adapt a
single test input at a time, making it an episodic method, which does not require batching
or cumulative updates. In contrast, existing test-time model adaptation methods, such as
Tent [1] and BUFR [230], degrade on on too little data (small batches), on dependent data
(in non-random order), or on mixed data across different target domains (with multiple
corruptions) See Sec. 6.4 for our comparison of input and model adaptation. By not relying
on the batching or ordering of the data, our DDA approach can better address practical
settings that require inference as the data arrives, such as perception for autonomous driving.

Background: Diffusion for Image Generation

Diffusion models are a class of latent variable generative models that have recently demon-
strated state-of-the-art performance for image synthesis. Given a clean image sampled from
the real image distribution xy ~ ¢(zy), the forward process of the diffusion model defines a
fixed Markov chain, to gradually add Gaussian noise to the clean image xy over T' time steps,
producing a sequence of noised images xq, xs, - - - ,xy. Mathematically, the forward process
is defined as

T

q(x1.7|20) = HQ(mt‘xtfl); q(z¢ | 242) =N (3%; V1= B, 5t1) ) (6.1)

t=1

where the sequence, i, ..., 87, is a fixed variance schedule to control the step sizes of the
noise.

On the other hand, given the noise sampled from a Gaussian distribution X7 ~ N (0,1),
the reverse process of the diffusion model iteratively removes the noise to generate a clean im-
age in T time steps. The reverse process is formulated as a Markov chain with parameterized
Gaussian transitions

p(zo.r) = p(ar) Hp(:vt_1|xt), po(Ti_1 | x) =N (ast_l;,ug (z4,t), 07 (24, 1) I) . (6.2)

t=1
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In denoising diffusion probabilistic models (DDPM) [249], we set oy (x4,t) = oI to time-
dependent constants. jiy is parameterized into a linear combination of z; and ey(x,t), where
€g(xy,t) is a function that predicts the noise component of a noised sample z;. The param-
eters of g (x,t) are learned by optimizing the variational bound of negative log-likelihood
E[— log pe(z0)]. With the above parameterization and following DDPM [249], the training ob-
jective Lgmple simplifies to the mean-squared error loss between the actual noise € ~ N(0,1)
in x; and the predicted noise:

‘Csimple = Hﬁg(l't,t) - 6||2- (63)

Since the training objective is derived from the variational bound on the negative log-
likelihood E[—log pg(z)] of the data, the diffusion model learns a generative model of the
source data distribution.

Diffusion-Driven Input Adaptation

Here we detail the key step of our diffusion-driven adaptation approach: the projection of
target test inputs to the source data distribution by diffusion. Specifically, we project the test
image to the source domain by running the forward process followed by the reverse process
of the diffusion model. Note that our approach is orthogonal to the choice of diffusion
model as long as the chosen model can be trained on the source data. Equipped with a
diffusion model of the source data, our approach applies this single model to the projection
of single/multiple/mixed target domain data to the source domain.

We describe the steps of our method and highlight each as it is illustrated in Fig. 6.2.
Given an input image xg from the target domain and an unconditional diffusion model
trained on the source domain, First the forward process (Eq. 6.1 of the diffusion model, the
green arrow, perturbs the image with Gaussian noise. We denote the image sequence derived
by N iterative forward steps as zg, x1, -+ ,xn, where N is a hyper-parameter controlling the
amount of noise added to the input image. We name N as “diffusion range” for simplicity.
Then the reverse process (Eq. 6.2, the red dotted arrow, iteratively removes noise for N steps
to generate the denoised image sequence % _;, % o, -+ ,x§. Since the diffusion model is
trained on the source domain, the generated image x should have higher likelihood under
the source data distribution than the test image xy, in so much as the diffusion model is fit
to the domain.

While this projection can adapt the input, a trade-off arises when choosing the diffusion
range N. Too little diffusion, when N is small, fails to project outside of the target domain
back to the source. However, too much diffusion, when N is large, fails to project inside of
the same class across domains. Our ideal goal is to adapt the input from the target domain to
the source domain while preserving its discriminative content for the classification task. The
issue is that domain and class information may be interdependent, which makes it difficult
to identify the optimal trade-off between domain adaptation and class preservation.

Based on our observation that the class information can relate strongly to the structure
(low-frequency signal) of an image, we regularize diffusion to better preserve this structure.
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Algorithm 1 Diffusion-Driven Input Adaptation

1: Input: Reference image g

2: Output: Generated image

3: M: refinement range for the iterative latent refinement

4. N: diffusion range

5. Sample xny ~ q (xy | o) > perturb input
6: T — TN

7. fort < N ...1do

8 & ~py(af_y|af) > unconditional proposal
9: if ¢ > M then

10: 1~ q(xeq | x0) > condition encoding
11: w{ 1 ¢p(w—1) + (T—op) (2]_,) > ép(-) : low-pass filter with scale factor D
12: else

13: x) | —a]

14: end if

15: end for

16: return z

Inspired by ILVR [254], we adopt an iterative latent refinement process, the purple dotted
arrow, which conditions on the input image in the reverse process. This refinement enforces
the structural, and therefore class, alignment between the generated image and the input
image. In particular, we adopt a linear low-pass filtering operation implemented by ¢p(-), a
sequence of downsampling and upsampling operations by a scaling factor of D, The low-pass
filtered image represents the structural information of an image. At each time step ¢ in the
reverse process, we force ¢p(zf) to be identical to ¢p(z;). Mathematically, we add a latent
refinement operation after sampling 2 ; based on 7,

f?—l ~ Do (ig—1 | xf) ) mf—l = ¢p (z4-1) + (I = ép) (ig—l) . (6.4)

The latent refinement is conducted when ¢ > M, where M is a hyper-parameter named
“refinement range”.

In summary, we first perturb the input image from the target domain with noise by
the forward process of the diffusion model, and then run the reverse process with iterative
latent refinement to carry out input adaptation with minimal alteration of class-dependent
information. In this way, we generate an image in the style of the source domain that
preserves the class identity of the given target image. Algorithm 1 outlines our approach for
projecting the target image to the source domain with diffusion.

Selecting How Much to Adapt by Self-Ensembling

Once we have adapted the target domain inputs to the source domain by diffusion, our
source-trained classification model can make predictions on the adapted images. In most
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cases, diffusion preserves enough discriminative information in the adapted inputs for correct
classification. However, diffusion may occasionally generate imperfect or ambiguous images
that are more like source data but result in misclassification. In such cases, the classification
model may be more accurate on the original, unadapted input, even with its domain shift.

Motivated by these failure cases for diffusion, we propose a self-ensembling scheme to
aggregate the predictions over the original and adapted inputs. Specifically, as we have
both the original test image xy and generated image z{ from diffusion, we first apply the
classification model to both inputs. The confidence of the C classification predictions on
the original, unadapted and generated, adapted input are denoted as p € R® and p? € R,
respectively. The ensembled prediction fuses the predictions based on the average confidence,
i.c., argmax, 3 (p. + p?), where c € {1,...,C}.

This self-ensembling scheme automatically selects how much to rely on the adapted and
unadapted inputs. Selecting in this way increases the robustness of adaptation by rejecting
unsuitable results of generative modeling.

6.4 Experiments

Setup

Dataset ImageNet-C [9] is a standard robustness benchmark for large-scale 1000-way im-
age classification. It consists of synthetic but natural corruptions (e.g., natural noise and
blur, digital artifact, and different weather conditions) applied to the ImageNet [29] valida-
tion set of 50,000 images. It includes 15 corruption types at 5 levels of severity. We measure
robustness as the top-1 accuracy of predictions on the most severe corruptions (level 5) on
ImageNet-C. We evaluate DDA with the same hyperparameters in all experiments, except
as noted for ablation and analysis.

Adaptation Settings We consider adaptation with and without separation of the target
domains/corruption types. The first independent adaptation: this is the standard setting for
robustness experiments on ImageNet-C, where adaptation and evaluation are done indepen-
dently for each corruption type. The second joint adaptation: this is a more natural and
difficult setting, where adaptation and evaluation are done jointly over all corruptions by
combining their data. The settings are equivalent for “episodic” methods that make inde-
pendent predictions across test inputs. Note that the regular source-only model is episodic,
as is our DDA method. However, many model adaptation methods are not—Tent [1] and
BUFR [230] included—because model updates on one input alter predictions on other inputs.
Experimenting with both settings allows for standardized comparison with existing work and
exploration of adaptation without knowledge of the target domains.

Classification Models We experiment with multiple classification architectures to ensure
general improvement. We select ResNet-50 [8] for a common architeture to standardize on,
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Table 6.1: Input adaptation is more robust in the episodic setting of image-wise adapta-
tion. Episodic inference is independent across inputs, which includes source-only prediction
without adaptation and model updates by MEMO or input updates by DDA (ours). We
evaluate standard accuracy on ImageNet and robustness to corruption on ImageNet-C with
maximum severity (level 5). All results are top-1 accuracies (higher is better).

Data/ FLOPs/ Source-Only MEMO DDA
Architecture  Size Params | ImageNet Acc. ImageNet-C Acc.
RedNet-26 1K/224% 1.7/9.2 76.0 15.0 20.6 25.0
ResNet-50 1K/224% 4.1/25.6 76.6 18.7 24.7 27.3
Swin-T 1K/224* 4.5/28.3 81.2 33.1 29.5 37.0
ConvNeXt-T 1K/2242 4.5/28.6 81.7 39.3 37.8 41.4

RedNet-26 [255] for a compact architecture, plus Swin [221] and ConvNeXt [222] to evaluate
the state-of-the-art in attentional and convolutional architectures. Experimenting with Swin
and ConvNeXt sharpens our evaluation of adaptation as these architectures already improve
robustness. Table 6.1 lists their FLOPS, number of parameters, and accuracy on the source
data.

Benchmark Evaluation: Independent Adaptation

Input updates are more robust than model updates with episodic adaptation.
We begin by evaluating source-only inference (without adaptation), model adaptation with
MEMO, and input adaptation with our DDA. Each method is episodic, in making separate
predictions for each input, for fair comparison. MEMO adapts to each input by augmentation
and entropy minimization: it minimizes the entropy of the predictions w.r.t. the model
parameters over different augmentations of the input. By relying on data augmentation,
MEMO avoids trivial solutions to optimizing so many parameters on a single input. DDA
circumvents this issue by not updating the model at all, and instead updating the input
itself. Table 6.1 summarizes each source classifier and compares the robustness of each
method. DDA achieves consistently higher robustness than MEMO. For the state-of-the-art
architectures, the Swin-T transformer and the ConvNeXt-T convolutional network, DDA
still delivers a ~ 2 point boost.

DDA consistently improves across corruption types and prevents catastrophic
failure. Figure 6.3 analyzes the robustness of DDA across each corruption type individually.
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Figure 6.3: DDA reliably improves robustness across corruption types. We compare the
source-only model, diffusion-only adaptation, and DDA with diffusion and self-ensembling.
DDA is the best on average, and reliably improves over diffusion-only inference with few
exceptions. Self-ensembling with DDA prevents catastrophic drops (on fog or contrast, for
example).

We observe that diffusion without self-ensembling could consistently outperform source-only
on most high-frequency corruptions. As for low-frequency corruptions, our proposed fusion
by self-ensembling automatically selects how much to adapt. In this way, the failure cases
of diffusion modeling do harm the final prediction, which avoids catastrophic drops on more
global corruptions like fog and contrast.

DDA is not sensitive to small batches or ordered data. The amount and order of
the data for each corruption type may vary in practical settings. For the amount, source-free
methods use the entire test set at once, while test-time methods may choose different batch
sizes. For the order of the target data, it is commonly shuffled (as done by Tent and other
test-time methods). We evaluate at different batch sizes and with and without shuffling to
understand the effect of these data regimes. Figure. 6.4 plots sensitivity these factors. DDA
and MEMO are totally unaffected, as episodic methods, but Tent is extremely sensitive.
Controlling the amount and order of data during deployment may not always be possible,
but Tent requires it to ensure improvement (and not failure).

Challenge Exploration: Joint Adaptation

The joint adaptation setting, in which the data for all corruption types is combined, presents
a new challenge. In this new setting, the amount, order, and mixture of the data can be
varied to further complicated adaptation for methods that depend on batching or ordering
of the domains. As episodic methods, which adapt to each input independently, MEMO and
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Figure 6.4: DDA is invariant to batch size and data order while Tent is extremely sensitive.
To analyze sensivity to the amount and order of the data we measure the average robustness
of independent adaptation across corruption types. DDA does not depend on these factors
and consistently improves on MEMO. Tent fails on class-ordered data without shuffling and
degrades at small batch sizes.

DDA can both address small batches, ordered data, and mixed domains. On the other hand,
non-episodic methods, such as model adaptation with cumulative updates across inputs, have
no such guarantee.

DDA is more robust than model adaptation in the joint setting. We further
compare with MEMO and test-time batch normalization [35] (BN) in the joint setting. We
evaluate with ResNet-50 because it is a standard architecture for these model adaptation
methods. The accuracies are 27.3% for DDA, 24.7% for MEMO, and 10.3% for BN. Although
BN is competitive in the independent setting, in the joint setting sharing the mean and
variance across all corruptions types is insufficient for adaptation. BUFR [230] lacks ResNet-
50 results, and we could not tune it to be better than source-only accuracy.

DDA assumes less and succeeds where Tent degrades. We compare to Tent [1], a
representative fully test-time model adaptation method, which cumulatively updates during
testing. Tent can help the most when its assumptions of large enough batches and randomly
ordered data are met, but may otherwise harm robustness. In contrast, the accuracy of DDA
is independent of batch size and data order, and helps robustness in each setting.

Ablation and Analysis of Diffusion-Driven Adaptation

We ablate the different diffusion steps that update the input. As described in Sec. 6.3,
our diffusion-driven adaptation method is composed of a forward process, reverse process,
and guidance (or refinement). We experiment with three settings as follows: (1) We first
run the forward process (i.e., add Gaussian noise) on the input image and then run the
reverse process of the diffusion model to denoise, without the iterative refinement module.
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Table 6.2: DDA is reliably more robust when the target data is limited, ordered, or mixed.
Deployment may supply target data in various ways. To explore these regimes, we vary
batch size and whether or not the data is ordered by class or mixed across corruption types.
We compare episodic adaptation by input updates with DDA (ours) and by model updates
with MEMO against cumulative adaptation with Tent. DDA and MEMO are invariant to
these differences in the data. However, Tent is highly sensitive to batch size and order, and
fails in the more natural data regimes.

Mixed Mixed

Method Batch Size | RedNet-26 ResNet-50 Swin-T  ConvNeXt-T
Classes Types
Source-Only 15.0 18.7 33.1 39.3
MEMO [229] N/A N/A 20.6 24.7 29.5 37.8
DDA (ours) 25.0 27.3 37.0 41.4
X X 1/64 0.8/0.2 0.1/04 2.8 /23 10.5 /9.6
Tent [1] X v 1/64 0.8/0.3 0.1/0.3 8.0 /22 18.8 / 6.5
v X 1/64 08/7.7 01/226|30/41.0 11.0/50.1
v v 1/64 0.8 /34 0.1/65 | 85/369 189 /474

This setting is denoted as “forward+reverse”. (2) We start from a random noise and run
the reverse process of the diffusion model with the iterative refinement module as guidance,
which we denote as “reverse+refinement”. (3) Our DDA model with combines both, i.e., we
run the forward process on the input image and then run the reverse process of the diffusion
model with the iterative refinement module as guidance. Figure 6.5 shows performance of
“forward-reverse”, “reverse-refinement”, and our DDA approach which includes the forward
process, reverse process, and iterative refinement. The results demonstrates that each step

contributes to the robustness of adaptation.

6.5 Discussion

DDA mitigates shift by test-time input adaptation with diffusion modeling. Our experiments
on ImageNet-C confirm that diffusing target data back to the source domain improves ro-
bustness. In contrast to test-time model adaptation, which can struggle with scarce, ordered,
and mixed data, our method is able to reliably boost accuracy in these regimes. In contrast
to source-free model adaptation, which can require re-training to each target, we are able
to scalably adapt from multiple targets by keeping our source models fixed. These practical
differences derive from our conceptual shift from model adaptation to input adaptation and
our adoption of diffusion modeling.
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‘RedNet—QG ResNet-50 Swin-T  ConvNeXt-T

corrupted  forward reverse+ DDA original

image +reverse  refinement image .
Y B 7 3 5 forward+reverse 24.2 24.5 24.9 25.8
£ reversetrefinement 29.6 30.5 35.0 37.0
= DDA (ours) 34.3 35.6 384 40.5
;5 forward+reverse 13.8 13.9 14.4 15.0
f\ reverse+refinement 14.8 15.2 19.7 23.7
< DDA (ours) 145 15.3 19.7 23.6
& forward+reverse 19.3 19.5 20.2 21.0
g reverse+refinement 30.5 32.0 36.0 39.1
= DDA (ours) 36.4 37.2 39.8 42,9

Figure 6.5: Ablation of diffusion updates justifies each step. We ablate the forward, reverse,
and refinement updates of our DDA method. We omit self-ensembling from DDA to focus
on these input updates. Forward adds noise, reverse denoises by diffusion, and refinement
guides the reverse updates. DDA is best with all steps, but forward and reverse or reverse
and refinement help on their own.

Having examined whether to adapt by input updates or model updates, we expect that
reconciling the two will deliver more robust generalization than either alone.

Limitations The strengths and weaknesses of input adaptation complement those of model
adaptation. Although our method can adapt to a single target input, it must adapt from
scratch on each input, and so its computation cannot be amortized across deployment. In
contrast, model adaptation by TTT [18] or Tent [1] can update on each batch while cumula-
tively adapting the model more and more. Although diffusion can project many targets to
the source data, and does so without expensive model re-training, it can fail on certain shifts.
If these shifts arise gradually, then model adaptation could gradually update too [256], but
our fixed diffusion model cannot.

We rely on diffusion, and so we are bound to the quality of generation by diffusion.
Diffusion does have its failure modes, even though our positive results demonstrate its present
use and future potential. In particular, diffusion models may not only translate domain
attributes but other image content, given their large model capacity. Our use of image
guidance helps avoid this, but at the cost of restraining adaptation on certain corruptions.
New diffusion architectures or new guidance techniques specific to adaption could correct
these shortcomings.
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Chapter 7

Conclusion

In this thesis, we have discussed how to generalize in dynamic environments via fully test-time
adaptation. [ firmly believe that we should focus more on building an adaptive, dynamic,
generalizable agent, especially in the era of the foundation models and embodied AI. There
are still quite a few open challenges and questions that need to be addressed. Below, I briefly
summarize two promising future directions.

One of the most attractive directions is to leverage the most recent advance in foundation
models [257]. The paradigm shift of foundation models comes from unsupervised learning on
a large-scale multi-modality dataset and then adapting to various downstream tasks. The
value of fully test-time adaptation is further highlighted in this scenario. Since re-training
foundation models could be typically quite time-consuming, we cannot afford any modifi-
cation to the training procedure for adaptation purposes. That is precisely the motivation
behind fully where only test data is involved. Since foundation models could be seen as
a reliable starting point to make a prediction, we could trust the confidence of foundation
models and gradually refine the prediction via entropy minimization. With the help of fully
test-time adaptation, I believe foundation models could be a solid basis for more downstream
applications.

Another future direction is to extend the proposed test-time adaptation framework to
other domains and modalities, such as language, touch, sound, and so on. Robot perception
for embodied Al is naturally a multi-modality system, where each sensory modality could
internally hold an inexplicit consistency among each other, previously explored in [258], [259].
Such a cross-task consistency should also play an important role, as a promising optimization
objective, in the application of fully test-time adaptation.

We hope that the research on fully test-time adaptation in this thesis can identify a novel
direction to enhance a model— adapting itself in a self-supervised manner and yielding a
new model with every update. Such a dynamic model should be able to learn continuously
to generalize to new environments throughout its lifetime.
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