
SCL: A Secure Concurrency Layer For Paranoid

Stateful Lambdas

Eric Chen
Alexander Thomas
Hanming Lu
William Mullen
Jeffery Ichnowski
Rahul Arya
Nivedha Krishnakumar
Ryan Teoh
Willis Wang
Anthony D. Joseph
John D. Kubiatowicz

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-232

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-232.html

October 21, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

SCL: A Secure Concurrency Layer For Paranoid
Stateful Lambdas

Kaiyuan Chen, Alexander Thomas, Hanming Lu, William Mullen, Jeff Ichnowski,
Rahul Arya, Nivedha Krishnakumar, Ryan Teoh, Willis Wang, Anthony Joseph, John Kubiatowicz

University of California, Berkeley
{kych, alexthomas, hanming lu, wmullen, jeffi, rahularya, nivedha, ryanteoh, williswang, adj, kubitron}@berkeley.edu

Abstract—We propose a federated Function-as-a-Service
(FaaS) execution model that provides secure and stateful execu-
tion in both Cloud and Edge environments. The FaaS workers,
called Paranoid Stateful Lambdas (PSLs), collaborate with one
another to perform large parallel computations. We exploit
cryptographically hardened and mobile bundles of data, called
DataCapsules, to provide persistent state for our PSLs, whose
execution is protected using hardware-secured TEEs. To make
PSLs easy to program and performant, we build the familiar
Key-Value Store interface on top of DataCapsules in a way that
allows amortization of cryptographic operations. We demonstrate
PSLs functioning in an edge environment running on a group of
Intel NUCs with SGXv2.

As described, our Secure Concurrency Layer (SCL), provides
eventually-consistent semantics over written values using un-
trusted and unordered multicast. All SCL communication is
encrypted, unforgeable, and private. For durability, updates
are recorded in replicated DataCapsules, which are append-
only cryptographically-hardened blockchain with confidentiality,
integrity, and provenance guarantees. Values for inactive keys are
stored in a log-structured merge-tree (LSM) in the same Data-
Capsule. SCL features a variety of communication optimizations,
such as an efficient message passing framework that reduces the
latency up to 44x from the Intel SGX SDK, and an actor-based
cryptographic processing architecture that batches cryptographic
operations and increases throughput by 81x.

I. INTRODUCTION

Distributed computing uses workers on multiple hosts to
jointly run a single task. Existing Function-as-a-Service (FaaS)
providers, such as AWS Lambda [8], have pushed distributed
computing to an extreme: users can launch hundreds or
thousands of distributed workers concurrently. Some FaaS im-
plementations, such as Cloudburst [38], even support stateful
executions, in which distributed workers share storage with
one another. At this time, the serverless FaaS model has
become quite popular for a wide variety of applications.

Edge computing, in contrast to cloud computing, exploits
resources at the edge of the network, presenting a variety of
opportunities for low-latency, high-bandwidth communication,
lower energy usage, and better privacy. It is arguably the
next major computing paradigm after cloud computing [44].
Providing a stateful, serverless model of access to resources at
the edge seems ideal for a variety of emerging IoT and robotic
applications, since it is directly compatible with the paradigm
of on-the-fly allocation of compute and storage resources by
mobile devices as they transit regions on the edge of the
network [23, 39, 41].

Smart Factory

City

Home

SCL
PSL

Cloud

Edge

Fig. 1: Paranoid Stateful Lambdas (PSLs) exploit pervasive
and abundant computational resources from the edge and
cloud, thus enabling a universal plane of secure and stateful
in-enclave execution. The Secure Concurrency Layer (SCL),
provides coherent and eventually-consistent semantics over
data writes between PSLs, while ensuring durability using
network-embedded DataCapsules.

Unfortunately, general-purpose Edge computing presents a
number of challenges [19, 35] and is thus not widely used
by existing FaaS implementations. One huge challenge is that
the edge environment is often not as trustworthy as the cloud;
resources at the edge of the network may be owned and
maintained by novice users or malicious third parties. Further-
more, physical security is less prevalent in edge environments,
leading to a variety of physical attack vectors. Compromised
devices, while appearing legitimate, could steal information,
covertly monitor communication, or deny service. Even worse,
malicious entities could seek to alter information in subtle
ways that are not immediately obvious, but which corrupt edge
applications in damaging or even dangerous ways. Application
writers often attempt to “roll their own” data protection in
ad-hoc and sometimes buggy ways, leading to data breaches
and security violations. Clearly, the lack of a standardized
approach to both protect and easily utilize information on the
edge hinders exploitation of edge computing resources.

Paranoid Stateful Lambdas: In this paper, we introduce the
first FaaS execution service that enables secure and stateful
execution for both cloud and edge environments, while at
the same time being easy to use. The FaaS workers, called

1

Fig. 2: DataCapsule: a cohesive representation of information
analogous to a shipping container. Internally, it is an ordered
collection of immutable records that are linked to each other
and signed. Its unique, routable identity is derived from hashes
over metadata including ownership credentials.

Paranoid Stateful Lambdas (PSLs), can collaborate to perform
large parallel computations that span the globe and securely
exploit resources from many domains. See Figure 1. We
provide an easy-to-use data model and automatically manage
cryptographic keys for compute and storage resources.

We take a two-fold approach to supporting PSLs. First, we
exploit trusted execution environments (TEEs), such as those
provided by Intel SGX [7, 15] and ARM TrustZone. TEEs
provide confidentiality and integrity of executed functions
while also providing strong isolation of data, computation, and
cryptographic assets from the untrusted kernel or hypervisor.
Through attestation, a multi-PSL application can be served by
an untrusted, third-party service provider.

Second, we package persistent state in cryptographically
hardened bundles of data called DataCapsules [29]. Each
DataCapsule is a “blockchain [48] in a box,” exploiting a stan-
dardized metadata format to guarantee provenance, integrity,
and privacy via cryptography. With append-only semantics,
DataCapsules provide a permanent audit-trail of operations
on their contents, thus allowing undo-like operations, multi-
version support, and mediation in the presence of malicious
failure. See Figure 2. While DataCapsules can be embedded in
any network storage environment, they are particularly pow-
erful when combined with a data-centric network such as the
Global Data Plane (GDP) [29], which allows DataCapsules
to be stored, migrated, and interacted with anywhere in the
network. In this paper, we treat the DataCapsule service as a
black box provided by the underlying infrastructure.

This combination of TEEs (for active computation and data
in use) and DataCapsules (for data at rest or in motion)
provides a powerful combination that enables secure, stateful
computation in insecure environments. While DataCapsules
by themselves provide a standardized way to encapsulate and
protect information as it moves within the network (leading to
a global, federated data service), we ease the burden of PSL
programmers by presenting them with a familiar key-value
store (KVS) interface. This is implemented on top of Data-
Capsules via a protected “runtime system” we call a Common
Access API, or (CAAPI). Consequently, communicating PSLs
may interact via shared keys in the key-value store.

Performance Challenges:While security is one of our primary

motivations for implementing the PSL framework, we also
wish to enable high performance parallel computation using
PSLs. This goal is hindered in multiple ways: First, the
distributed nature of PSL-based parallelism leads to a need
for relaxed consistency for most writes in our KVS. We
discuss how to implement an eventually-consistent model for
put() operations that allows interacting PSLs to operate
with independence from one another while still detecting
denial of service attacks and bounding the maximum write
propagation delay over an unordered and untrusted network.
Our mechanism further enables a release-consistent locking
scheme [20].

Second, all communication between collaborating enclaves
must be encrypted and signed to prevent malicious parties from
forging, corrupting, or observing such communication. This
security tax can be significant if not mitigated through batching
and suppression of locally overwritten updates. We show how
our relaxed consistency implementation permits a variety of
cryptographic optimizations.

Third, the strong isolation provided by TEEs is a double-
edged sword: while shielding in-enclave applications from
external malicious parties, it imposes a strong impediment
to communication across the enclave barrier. The common
communication approach [15] involves hardware-specific at-
testation and complicated key exchange protocols for one-
to-one communication, the complexity only increasing with
larger enclave group sizes. Even crossing the enclave barrier
on a local node using the popular SGX container framework
(GrapheneSGX [43]) can exhibit horrendous overhead, com-
bining an expensive context switch with byte-wise data copy-
ing1. Our approach to speeding up communication exploits the
standardized DataCapsule format (which protects information)
combined with heavy optimization of communication across
the enclave barrier and a fast but untrusted multicast tree for
communication.

The Secure Concurrency Layer: Much of our communi-
cation innovations are embodied in the eponymous Secure
Concurrecy Layer (SCL), one of the primary topics of this
paper. SCL is an in-enclave cache manager that securely
and efficiently relays data between multiple enclaves while
providing well-formed update semantics. In our system, a
given PSL interacts with remote PSLs by issuing KVS put()
operations to its own local cache. SCL translates these write
operations into encrypted and signed update records compat-
ible with the underlying DataCapsule. The updates are then
propagated to other enclaves as well as the network-embedded
DataCapsule (for durability) over an untrusted and unordered
network multicast tree. SCL provides eventual consistency
semantics over the written values, but enforces epoch-based
resynchronization for liveness2. SCL also features various
performance optimizations. For example, SCL uses a circular

1The standard system call facility for SGX incurs between 8,000 and 20,000
cycles for an ecall and takes 8,000 cycles for an ocall.

2Our system utilizes a Log-Structured Merge(LSM) tree to efficiently store
idle Key-Value pairs, namely those not currently in PSL caches.

2

buffer based message passing design, which passes messages
across secure enclave boundary 44x faster than using standard
send ecalls. To parallelize the cryptographic computations,
such as encryption, hashing, and signing, SCL uses an actor-
based architecture for computing the DataCapsule’s headers.
When combined with batching, these optimizations increase
throughput by 81x over the unoptimized baseline.

We design and implement the PSL FaaS infrastructure using
SCL. PSL-enabled worker nodes can run directly on top
of SCL by static linking or dynamic script interpretation3.
To bootstrap secure enclaves with appropriate cryptographic
identities, we design a key management scheme inspired by
the Bitcoin wallet [6] and an optimized attestation protocol.
Unlike previous works [25, 45] that only support Intel SGX
and assume SGXv1, we implement SCL on Asylo [21, 22], a
hardware-agnostic framework that allows SCL to run on most
mainstream TEE hardware. The result is a third-party service
running on the edge that can satisfy on-the-fly requests to
securely execute PSL applications using compute and storage
resources embedded in the edge environment.

We claim the following contributions in this paper:
• Paranoid Stateful Lambdas (PSLs): We introduce the

notion of Paranoid Stateful Lambdas and show the design
and implementation of our PSL execution environment.

• Separation of State and Computation: We propose
to use DataCapsules as the ground-truth vehicle for
communication among different types of secure enclave
hardware with confidentiality, integrity, and provenance
guarantees.

• SCL KVS: We design, implement and evaluate SCL,
a secure and eventually-consistent replicated KVS that
facilitates inter-enclave communication and bounds max-
imum write latency while mitigating denial of service.
We implement associated key distribution and attestation
protocols.

• Communication Optimizations: We reduce and amor-
tize the communication and cryptographic overhead by
rearchitecting the cryptographic pipeline and designing a
circular buffer based message passing mechanism.

II. BACKGROUND

A. Secure Enclaves
Our design does not assume specific secure enclave hardware
or a set of supported instructions; we only require the trusted
hardware to have semantics for memory protection and attes-
tation. Here, we introduce Intel Software Guard Extensions
(SGX) [15] due to its wide adoption. SGX allows users
to create a secure, isolated environment protected from the
privileged host OS, hypervisor, or any hardware devices con-
nected to the host. SGX protects against physical adversaries
and uses a hardware Memory Encryption Engine (MEE) to
guarantee the confidentiality and integrity of enclave memory.
All enclave memory must occupy a specific section of memory

3In the future, we hope to support dynamic linking of PSL binaries residing
in DataCapsules.

in the enclave page cache (EPC). If an EPC page is evicted,
it is encrypted and stored onto the disk. An EPC page that is
loaded back into memory is integrity checked and decrypted.

The host OS is still responsible for mapping page tables
and allocating memory, but subsequent memory accesses are
checked by SGX. SGX ensures that enclave memory can only
be accessed by the specific enclave the page is allocated to
when walking the page table. In SGXv1, the EPC is a limited
resource and has a static limit of 128MB shared across all
enclaves, while SGXv2 dynamically allocates an EPC that can
be oversubscribed by multiple secure enclaves.

SGX can also verify the identity of an application running
inside a secure enclave. Intel allows for an attestation report of
an enclave to be generated. This report includes a measurement
of the code and data sections of the application binary signed
by a hardware root of trust and can be verified through Intel’s
Attestation Services (IAS).

B. DataCapsules and the Global Data Plane
We briefly discuss the benefits of adopting DataCapsules [29]
as the underlying storage objects for PSLs. DataCapsules are
bundles of data containing data chunks (“records”), along with
cryptographic relationships between these records (i.e. hashes)
and proofs of membership and/or provenance for these records
(i.e. signatures); see Figure 2. DataCapsules have an owner,
which is a public/private key pair. Anyone with the private
owner key can add records to a DataCapsule but cannot modify
existing records. Consequently, write operations are append-
only and must be accompanied by a signature from the Data-
Capsule owner. Read operations return a proof of membership,
consisting of a signature and a chain of hashes along with data.
Thus, it is possible to perform secure operations on remote
DataCapsules embedded within the network.

The Merkle-tree structure of hashes and signatures within
a DataCapsule provides two major benefits: First, it is a
Conflict-Free Replicated Data Type (CRDT). This means any
two partial DataCapsule replicas can be easily synchronized
by simply taking the union of records between them; the
resulting tree is uniquely defined by the backlinks (hashes).
Second, it prevents malicious parties from forging records or
corrupting existing records; the worst that a malicious party
could do with a DataCapsule is executing a freshness attack
by denying the presence of recent records. Freshness attacks
can be prevented or mitigated in a variety of ways, including
replication, periodic timestamping of records, and caching of
pointers to the most recent records. For our PSL infrastructure,
we start by requesting the most recent records from a trusted
service provider, then maintain the most recent “wavefront”
of signed records within our active enclaves. As a result of
their hardened nature, DataCapsules can migrate to the edge
and benefit from its storage and networking resources.

Since DataCapsules can be viewed as secure logs, they
can encapsulate a wide variety of storage “patterns,” such as
key-value stores (in this paper), filesystems, data streams, and
databases. All that is required to implement such patterns is
a layer of software, called a common access API (CAAPI),

3

Multicast Tree
(Global Data Plane)

Worker Enclaves

SCL w/CAAPI

Lambda Program

Memtable Concurrency
Control

C
rypto Actor

C
ircular Buffer

Worker Enclaves

SCL w/CAAPI

Lambda Program

Memtable Concurrency
Control

C
rypto Actor

C
ircular Buffer

Worker Enclaves

SCL KVS CAAPI

Lambda Program

Memtable Concurrency
Control

C
rypto Actor

C
ircular Buffer

Third-Party DataCapsule Server

Write Verifier Caching
Indexer

Proof of
Membership

In-Enclave LSM-tree based DB

C
rypto Actor

Circular Buffer

SCL KVS CAAPI
Memtable Concurrency

Control

Tree-based Storage
And Checkponting

Crypto Actor

C
ircular Buffer

Untrusted
Local
Storage
(Cache)In-Enclave FaaS Leader

Key Dis.
ManagerCode Attester

Client

Fig. 3: An Overview of Paranoid Stateful Lambdas. The client first attests the integrity of the Secure FaaS Leader code. The
FaaS Leader distributes cryptographic keys and dispatches FaaS task (Lambda Program) to other attested Worker Enclaves.
Workers perform stateful FaaS computation by communicating with other Workers on GDP-based multicast tree. SCL enables
secure communication by providing a replicated KVS abstraction. For persistence, PSL uses an in-enclave LSM-tree based
database that stores inactive keys. In this paper, we focus on the security and communication aspect of PSL.

that accepts standard user requests (e.g. POSIX filesystem
requests) and translates them to operations on the underlying
DataCapsule. Such CAAPIs run in secure enclaves, since they
need access to cryptographic keys to produce signatures and
to encrypt/decrypt information over the DataCapsule API.

In this paper, we assume that DataCapsules reside in some
network server that is able satisfy DataCapsule read and
write operations. However, the true power of DataCapsules
is revealed in the context of a data-centric network such
as the Global Data Plane (GDP) [29]. Each DataCapsule
has a unique 256-bit identity derived from a hash over the
public owner key and other metadata. The GDP can route
messages to a DataCapsule using its identity rather than a
location (i.e. an IP address). Thus, a data client can send reads
and writes to a DataCapsule without knowing its location4.
Thus, with the GDP, PSLs could launch anywhere and access
their data simply by possessing (1) the unique identity of
the DataCapsule containing its data, (2) the cryptographic
ownership and encryption keys for the DataCapsule, and (3)
a connection into the GDP.

III. PARANOID STATEFUL LAMBDA

Paranoid Stateful Lambdas (PSLs) provide unifed access to
the computation and storage resources of the cloud and edge.
They provide access to the abundance of edge servers which
have better locality and lower latency than would be avail-
able with cloud-only environments. The serverless abstraction

4When multiple DataCapsules exist with the same identity, they are
assumed to be equivalent; thus the GDP will try to route queries to the
“closest” equivalent DataCapsule. Replication thus provides a mechanism for
content distribution, providing a cryptographically hardened form of CDN
with well-defined, in-network update semantics, unlike alternatives such as
NDN [47].

enables applications to be transparent about the underlying
infrastructure.

Paranoid: PSL allows clients to launch a scalable number of
distributed workers (i.e. Lambdas) on both cloud clusters and
edge servers. Recognizing that servers on the cloud and edge
may come from mutually distrustful service providers, PSL
executes all the privacy-sensitive programs in secure enclaves,
guaranteeing the confidentiality and integrity of all executions.

For the threat model, PSL adopts the typical ”cloud/edge
attackers” who can listen and tamper with any communica-
tions or computations. For example, the attack may come
from a compromised operating system kernel or a malicious
staff member, both situations in which the attacker has full
control over the system. SCL guarantees the confidentiality,
integrity, and provenance of any data in execution and in
transit. The trusted computation base (TCB) of SCL is limited
to the processor chip, PSL code, and sandboxed application
code running in an enclave, which explicitly excludes the
operating system managed by the cloud provider. The design
of SCL guards against message replay attacks and detects
DDoS attacks at a granularity of a user-defined time inter-
val (epoch). However, PSL does not guarantee against side-
channel attacks, given that Intel SGX suffers from various
side-channel vulnerabilities [11, 13, 36]. However, there are
various techniques [11, 31, 36, 37] proposed to mitigate the
risk of side channel attacks.

Stateful: Beyond other secure FaaS implementations [5], PSL
supports stateful execution of distributed workers, meaning
that one in-enclave worker is able to communicate with work-
ers in other enclaves or even workers that will be executed in
the future [38]. Statefulness has already become a necessity in

4

Cloud Server #2Cloud Server #1Edge Server #1

Enclave
PSL Distributed

Worker

SCL Client
Put/Get

SCL Multicast Tree

Trusted Untrusted Secured

Enclave
PSL Distributed

Worker

SCL Client
Put/Get

Enclave
PSL Distributed

Worker

SCL Client
Put/Get

DataCapsule DataCapsule DataCapsule

Fig. 4: The architecture of SCL. In-enclave workers commu-
nicate with each other by interacting with PSL using put()
and get() operations. The KVS updates are propagated by
SCL with a secure data structure called a DataCapsule.

many popular FaaS applications: for example, ExCamera [18],
numpywren [33], mplambda [23].

In order for Lambdas to be Paranoid and Stateful, PSL con-
sists the following main components: (1) Secure Concurrency
Layer (SCL): enables secure communication between multi-
ple enclaves, (2) In-Enclave LSM-tree based DB: provides
persistence and durability of the DataCapsule, (3) PSL Secure
FaaS: securely attests SCL, distributes cryptographic keys, and
dispatches tasks to Worker Enclaves, and (4) Global Data
Plane [29]: provides global routing infrastructure.

Secure Consistency Layer: In designing PSL, we recognize
the need to have a secure layer that allows enclaves to com-
municate and concurrently share objects. This layer provides
security and consistency semantics for transient messages over
untrusted and unordered multicast. Consequently, distributed
worker programs can use this layer as a form of shared mem-
ory, and PSL as a whole can use this layer to dispatch program
scripts and coordinate idle secure enclaves. An analogy to
this layer is BigTable for Google or Dynamo for Amazon,
infrastructure which provides a KVS layer as foundational
communication abstraction to higher level applications.

To enhance performance, we designed an eventually-
consistent replicated KVS that presents a shared memory view
to all the secure enclaves connected to the same network multi-
cast tree. If an enclave makes KVS updates to the local cache,
the changes will be propagated to all other secure enclaves
by broadcast. The secure enclaves maintain the same copy
of memory cache. SCL partitions the KVS into a memtable
that fits in main memory, and PSL has a Log-Structured Merge
(LSM) tree inspired by RocksDB [40] that stores inactive keys.

IV. SCL DESIGN

A. Overall Architecture
The essence of SCL is that every secure enclave replicates a
portion of the underlying DataCapsule (Section IV-B), namely
the portion dealing with active keys. This portion can be
thought of as a write-ahead log. By allowing this log to branch,
we free workers to be independent of one another for periods

Rec5
Rec2

Rec4Rec3

Rec1

σ
σσ

σσ

Record 5

Record 5
Hash Pointers

Rec5 Encrypted
Data Block

Top
H

ash

Record 2
Name Hash

Record 4
Name Hash

Record 5
Name Hash

Writer’s Signature

Time
Fig. 5: Every DataCapsule record is encrypted, signed, and
appended to the DataCaspule by including one or more hashes
to previous records.

of time. The intuition is that we arrange these temporarily
divergent histories to include sufficient information to provide
well-defined, coherent, and eventually-consistent semantics.
We do so while allowing updates to be propagated over an
insecure and unordered multicast tree.

Figure 4 provides an overview of SCL’s architecture. Each
enclave maintains an in-memory replicated cache called a
memtable. All put() operations are placed into the local
memtable, timestamped, and linked with previous updates
before being encrypted, signed, and forwarded via multicast.
The code which performs these operations is a CAAPI that
provides the KVS interface on top of the DataCapsule storage.

The DataCaspule record appends are propagated by a
network multicast tree. If an enclave receives a record to
append, it verifies the cryptographic signatures and hashes,
and merges the record with its own replica of the DataCapsule.
The merge does not require explicit coordination due to the
CRDT property of the DataCapsule hash chain, but the hash
chain is periodically synchronized to bound the consistency.
DataCapsule changes are also reflected to the memtable with
the eventual consistency semantics. SCL enables fast KVS
read queries because of its shared memory abstraction, so all
get() operations can directly read from the enclave’s local
memtable without querying other nodes.

B. DataCapsule Contents For SCL

Figure 5 shows a visual representation of DataCapsule contents
for SCL. Each record contains one or more SHA256 hash
pointers to previous records, encrypted data, and a signature.
Multiple previous hash pointers occur during epoch-based
resynchronization, which we discuss shortly. The data block
of a record includes SenderID, a unique identifier of the
writer, Timestamp, that indicates the sending time of the
record, and Data, the actual data payload. In SCL, Data
is an AES-encrypted string that contains the updated key-
value pairs. The record contains a Signature signed on the
entire record with Elliptic Curve Digital Signature Algorithm
(ECDSA) using the private key of the writer.

5

Writer #1

Coordinator

Writer #2

Rec1

Rec2 Rec4

Rec3 Rec5

Rec6

SYNC SYNC

Time

σ σ σ

σσσ

σ σ

Fig. 6: DataCaspule hash chain with two concurrent writers
(#1 and #2) using epoch-based resynchronization. The writers
write to the same hash chain and the coordinator uses a SYNC
report to aggregate the DataCapsule updates from each writer.

C. Memtable
The Memtable KVS is an in-enclave cache of the most
recently updated key-value pairs. The key-value pairs are
stored in plaintext, as the confidentiality and integrity of
the memtable are protected by the secure enclave’s EPC.
In-enclave distributed applications communicate with other
enclaves by interacting with the memtable using the standard
KVS interface: put(key,value) to store a key-value pair
and get(key) to retrieve the stored value for a given key.

SCL communicates with other enclaves to replicate the
memtable consistently across enclaves. Local changes to the
memtable are propagated to other enclaves and updates re-
ceived from other enclaves are reflected in the local memtable.
When receiving an update from other enclaves, the memtable
performs verification and decryption before putting the key-
value pair into the memtable. To achieve coherence, updates
received from remote enclaves are only placed in the local
cache if they have later timestamps (see below).

D. Consistency
SCL guarantees eventual consistency of values associated with
each key, namely that if there were no further updates to a
specific key k, then get(k) from each of the in-enclave
memtables should return the latest value. In addition, SCL
guarantees the property of coherence among values, namely
that no two enclaves will ever observe two updates to a given
key in different orders. Since updates are propagated over
an unorder multicast tree, SCL needs to order the DataCap-
sule updates in the memtable, and reject updates that are
causally earlier than the ones already in the memtable. Naive
approaches may lead to undesirable outcomes: for example,
replacing the memtable’s value whenever a new record arrives
leaves the memtable in inconsistent state.

To decide the order of the updates, SCL uses a Lamport
logical clock to associate every key-value pair with a logical
timestamp. Without relying on the actual clock time, SCL
increments a local Sequence Number (SN) whenever there is
an update to the local memtable. When receiving a new Data-
Capsule record, it also synchronizes the SN with the received
SN in the record by SN ← max(localSN, receivedSN)+1.

Although a vector clock is usually deemed as an upgrade to
Lamport logical clocks by including a vector of all collected
timestamps, SCL uses a Lamport clock because a DataCapsule

already carries equivalent versioning and causality informa-
tion, and a vector clock introduces additional complexity and
messaging overhead to the system. The reason for not using the
actual timestamp from the operating system is that getting such
timestamp costs more than 8,000 CPU cycles due to enclave
security design [45]. Getting trusted hardware counters from
RDTSC and RDTSCP instructions is also expensive (60-250
ms) [9] only supported by SGX2.

E. Epoch-based Resynchronization
For performance, SCL branches the DataCapsule data structure
by letting every enclave write to its own hash chain. Every
append includes a hash pointer to the previous write from the
same writer, instead of the previous write across all enclaves.
To merge the hash chains maintained by each writer, SCL uses
a synchronization (SYNC) report as a rendezvous point for all
DataCapsule branches. The resultant DataCapsule hash chain
is structured in a diamond shape like Figure 6. All writers’ first
writes include a hash pointer to the previous SYNC report,
and the next SYNC report includes a hash pointer to the last
message of every writer. The SYNC report is useful in the
following ways:

• Detecting the freshness of a message: Every message in-
cludes a monotonically increasing SYNC report sequence
number, which is incremented when a new SYNC report
is generated. As a

• Fast Inconsistency Recovery: After an enclave receives
a SYNC report, it can use the hash pointers to backtrack
to previous messages from the same writer until it reaches
the last SYNC report. It detects a message is lost if a hash
pointer cannot be recognized during the backtrack.

The usage of SYNC reports establishes a notion of epoch-
based resynchronization, a tradeoff between synchronization
overhead and consistency. With epoch-based resynchroniza-
tion, the user defines a synchronization time interval called an
epoch. Between the epochs, the enclaves use timestamps to
achieve coherency and eventual consistency. At the end of an
epoch, enclaves cross-validate their own DataCapsule replica
with the SYNC report generated by a special Coordinator
Enclave (CE).

F. Multicast Tree
We conclude this section by showing the overall structure of
the multicast tree. Multicast enables one node on the multicast
tree to communicate with multiple nodes by routers. Routers
receive the message and re-broadcast the message to multiple
nodes or routers. The overall structure forms a multicast tree.
The tree-like structure extends the scalability that allows more
than one router to handle the communication. SCL is agnostic
to the multicast tree topology, as long as a node on the
tree publishes the message, and all the rest of the nodes
can receive that message. As a result, we can abstract SCL’s
multicast tree structure as a plane where worker enclaves pub-
lish DataCapsule updates through multicast routers, the third
party durability storage can log all the messages and third-
party authenticators can verify the validity of the DataCapsule
hashchain.

6

G. Duraibilty and Fault Tolerance
We discuss the durability semantics of SCL, and how we use
it to store inactive keys. We also discuss SCL when facing
multiple types of failures.

SCL Durability with DataCapsule: Any secure enclave in
SCL may fail by crashing or losing its network connection,
causing it to fall behind or even leave its in-memory states
inconsistent. SCL is durable if a such enclave can recover
all of the in-memory states (i.e. the memtable) consistently
and catch-up with the on-going communication. Due to the
equivalence of the DataCapsule hash chain and the memtable
shown in Section IV-C, the durability of SCL is achieved by
making the DataCaspule hash chain persistent. An analogy
to SCL’s durability is Write-ahead Logging(WAL) in many
databases, which logs an update persistently before committing
to the permanent database. In SCL, DataCapsule is the append-
only log that records the entire history of the memtable, which
a crashed enclave can use to recover. The crashed enclave
can merge its local inconsistent DataCaspule hash chain with
the persistent DataCapsule received from other components,
either an in-enclave LSM tree DB or DataCapsule servers. The
CRDT property of DataCapsule guarantees the consistency of
the hash chain after the merge.

DataCapsule Replication: A DataCapsule replica may fail by
crashing or network partitioning, resulting in service interrup-
tion by SCL. A DataCapsule replica may also be corrupted
and lose partial or the entire SCL data permanently. To
ensure durability and availability of DataCapsule replicas, we
implement a continuous DataCapsule replication system that
uses write quorum to tolerate user-defined f replica failures or
network partitioning in the system without disturbing the PSL
computation.

Coordinator Failure: The failure of the coordinator only in-
fluences the resynchronization interval, but does not influence
the strong eventual consistency given by the CRDT property
of DataCapsules and the logical timestamp of the memtable.
However, one can use multiple read-only shadow coordinators
to improve the fault tolerance and to remove the single point
of failure. If multiple consistency coordinators are on the
same multicast tree, one consistency coordinator can actively
send RTS broadcasts to the multicast tree. Other consistency
coordinators remain in shadow mode until a SYNC report is
not sent for an extended period of time.

H. CapsuleDB
CapsuleDB is a key-value store inspired by LSM trees and
backed by DataCapsules. It is built to specifically take ad-
vantage of the properties of DataCapsules to provide long-
term storage of large amounts of data as well as accelerate
PSL recovery beyond reading every single record in the
DataCapsule. Figure 3 shows how CapsuleDB fits into the
PSL framework with its separate enclave running on behalf of
the Worker Enclaves.

CapsuleDB has two main data structures, CapsuleBlocks
and indices, as well as its own memtable. CapsuleBlocks are

groups of keys, each of which represents a single record
in the DataCapsule backing the database. It’s data storage
structure is inspired by level databases such as RocksDB
[40] and SplinterDB [12]. Data is split into levels, each with
increasing size. In CapsuleDB, Level 0 (L0) is the smallest
while subsequent levels L1, L2, and so on increase by a factor
of ten each time. Each level is made up of CapsuleBlocks.
In L0, each block represents a memtable that has been filled
and marked immutable. Blocks in lower levels each contain
a sorted run of keys, such that the keys in the level are
monotonically increasing.

The index manages which CapsuleBlocks are in each level,
the hashes of each block, and which blocks contain active data.
The index also acts as a checkpoint system for CapsuleDB, as
it too is stored in the DataCapsule. While the main purpose of
storing the index in the DataCapsule is to ensure CapsuleDB
can quickly restore service after a failure, it has the added
benefit that old copies of the indices serve as snapshots of the
database over the lifetime of its operation.

Writing to CapsuleDB CapsuleDB participates in SCL just
like the worker enclaves. Consequently, every write is stored
into CapsuleDB’s local memtable. In this way, it has visibility
to the most recent values written by the workers. Once the
memtable fills, it is marked as immutable and appended to
the DataCapsule. The resulting record’s hash is then stored
in L0 in the index. If this write causes L0 to become full,
the compaction process, described below is triggered, pushing
compacted blocks out to the DataCapsule.

Reading from CapsuleDB Retrieving a value from Cap-
suleDB is triggered by a get operation from one of the worker
enclaves when it attempts to find a value that is not stored in
its local memtable. This get is routed to CapsuleDB where
it begins at the CapsuleDB’s memtable. If the requested key
is not found, the request moves to the index for CapsuleBlock
retrieval. Note that once CapsuleDB finds a value for the
requested key, it multicasts the result as a put on the multicast
tree with a timestamp from the blocks—exactly as if it were
a worker enclave.

When searching for the most recent value associated with
a key, CapsuleDB checks the index associated with L0. If
the key is found after scanning through each block, then
the corresponding tuple is returned. If the search fails, the
process is repeated at L1. However, L1 is sorted, so our
search can be performed substantially faster. In addition, L1
is likely too large to bring fully into memory, especially
given the tight memory constraints imposed by some secure
enclaves. As such, only the requested block is retrieved from
the DataCapsule. Again, it is checked to see if the requested
KV pair is present. If not, the same procedure is run at lower
levels until it is found, or CapsuleDB determines it does not
have the requested KV pair.

Indexing the Blocks The index is at the core of CapsuleDB
and serves several critical roles. Primarily, it tracks the hashes
of active CapsuleBlocks to quickly lookup keys. Whenever

7

a block is added, removed, or modified, the hash mapping is
updated in the index. When compaction, the process of moving
old data to lower levels, occurs, the index updates which levels
the moved CapsuleBlocks are now associated with. In this
way, CapsuleDB can always quickly find the most recently
updated CapsuleBlock that may have a requested key. Further,
CapsuleDB keeps a complete record of the history of updates
to the KV store, effectively acting similiar to a git repository.

Since the index is written out whenever it is modified,
the CapsuleDB instance can be instantly restored simply by
loading the most recent index. Then, only the records since
the last update need to be played forward to restore the most
recent KV pairs that were in CapsuleDB’s memtable.

Compaction Compaction is critical to managing the data
in any level-based system. CapsuleDB’s compaction process
uses key insights from the flush-then-compact strategy of
SplinterDB [12] to limit write amplification. Each level has
a maximum size; we say a level is full once the summed sizes
of the CapsuleBlocks in that level meets or exceeds the level’s
maximum size. This triggers a compaction.

All writes to CapsuleDB are first stored in the in-memory
memtable. Once the memtable fills, it is marked as immutable
and written to L0 as a CapsuleBlock, also simultaneously
appending the block as a record to the DataCapsule. Once
L0 is full, compaction begins by sorting the keys in L0. They
are then inserted into the correct locations in L1 such that after
all the keys are inserted L1, the level is still a monotonically
increasing run of keys. Any keys in L0 that are already present
in L1 would replace that data in L1, since the L0 value and
timestamp would be fresher. Finally, the CapsuleBlocks and
their corresponding hashes are written out to the DataCapsule
and updated in the index, marking the end of compaction.

V. OPTIMIZATIONS

In this section, we discuss optimizations that significantly
improve the throughput of SCL. Because of the high over-
head of various cryptographic operations when constructing
DataCapsule fields, we propose an actor-based architecture to
pipeline the cryptographic operations. The proposed pipeline
also enables high-throughput batching and message prioritiza-
tion. We discuss our circular buffer, a design that efficiently
passes messages across application-enclave boundary.

A. Actors and Batching
For security, one DataCapsule transaction involves encryption,
signing and hashing. These cryptographic operations combined
introduce large computational overhead to the critical path
when the client issues a put. Because frameworks such as
Intel SGX SDK [13] and Asylo [21] do not support async
operations, SCL introduces actors to amortize the overhead.

When the client issues put(k, v), SCL piggybacks a
timestamp t to the key-value pair and pushes the (k, v, t) tuple
to a thread-safe Data Queue. The control and coordination
messages, such as RTS and EOE, are sent to a thread-safe
Control Queue. We call the Data Queue and Control Queue
together the Crypto Actor Task Pool. SCL starts multiple

Crypto Actor Task
Pool

Client Input

Da
ta

 Q
ue

ue

C
on

tro
l Q

ue
ue

Consistency

Encrypt Hash Sign

C
irc

ul
ar

 b
uff

er
(N

et
w

or
k)

Encrypt Hash Sign

Encrypt Hash Sign

Crypto Actors

Fig. 7: An SCL endpoint with three actors. Both Clients and
DataCapsule Consistency coordinator push data and control
messages to Crypto Actor task pool. The crypto actors take
messages from the queue and perform encryption, hashing and
signing. After processing, the crypto actors put the processed
message into the circular buffer.

threads as crypto actors. These actors take the messages
from the task pool, first drawing from the higher priority
Control Queue due to latency constraints, and process them
into encrypted, hashed, and signed DataCapsule transactions.
The generated DataCapsule records are put into the circular
buffer and propagated to other enclaves.

Batching: To optimize the overall throughput and amortize
the cost of transmission, SCL can batch multiple key-value
pairs in the same DataCapsule record. A crypto actor takes
(k, v, t) tuples from the Task Pool. The batch size is the max
of the user-preset batch size and the remaining tuples in the
task pool. The actor serializes all the control messages and
key-value tuples into a Comma-Separated Values (CSV) string
and feed into cryptographic pipeline.

B. Circular Buffer
All secure enclave applications are partitioned into trusted
enclave code and untrusted application code. The trusted
enclave code can access encrypted memory, but cannot issue
system calls; the reverse is true for untrusted application
code. The boundary of this application-enclave partition is
marked by ecalls, and ocalls. In order to transfer the data
crossing the application-enclave boundary, a standard and
straightforward approach is to invoke ecalls and ocalls di-
rectly, which is adopted by popular SGX container framework
GrapheneSGX [43], and even enclave runtime environment
Asylo [22]. The untrusted application establishes a socket and
uses send and recv to pass messages on behalf of the enclave
code. However, this approach incurs extremely high overhead.
The high cost of a context switch is coupled with byte-wise
copying the buffer in and out (contrasted with zero-copying).
An ecall usually takes 8,000 to 20,000 CPU cycles, and an
ocall usually takes 8,000 CPU cycles on average.

SCL enables efficient application-enclave communication
by leveraging a circular buffer data structure. SCL initializes

8

Worker
NodeUser

FaaS
Leader

Job
Scheduler

ɠ�(QFU\SWHG��
3URJUDP

ɡ�(QFU\SWHG��
3URJUDP

ɢ�.H\�'LVWULEXWLRQ ɣ�.H\�'LVWULEXWLRQ

Verified by Attestation Untrusted

Worker
Node
Worker
Node

Fig. 8: The launching procedure of PSL. Users dispatch
encrypted programs to the job scheduler and to the worker
nodes, and distribute cryptographic keys with a separate and
secure channel. The channel is verified by attestation.

application and enclave by allocating two single-publisher
single-consumer circular buffers (one for each communica-
tion direction) in untrusted plain-text memory. The memory
addresses of the allocated buffers are sent to the enclave by
ecalls. The circular buffer contains a number of slots, each of
them containing a pointer to the data and its size. Because the
enclave allocates and uses encrypted pages on EPC, the out-
of-enclave application cannot read the content directly given
the pointer. SCL allocates and manages several chunks of free
plaintext memory and uses pointers to the plaintext memory
chunk for the circular buffer.

Using a circular buffer avoids unnecessary ecall and ocall
context switches, and, unlike switchless calls [28], the writers
also do not need to wait for readers to finish reading the
message. This allows the writers to write multiple messages
concurrently and asynchronously to the circular buffer.

VI. PSL WITH SCL

We discuss the experience and implementation effort to use
SCL for PSL. Every PSL worker is started with a Worker
Enclave in SCL, and attested by In-Enclave FaaS Leader. The
code for PSL is directly executed on sandboxed Javascript
engine. Our key distribution and management protocol pro-
vides every worker enclave with unique private keys derived
from a master key by the FaaS Leader. The keys can be easily
generated, verified and rotated to prevent potential key leakage.

A. Sandboxing
To isolate in-enclave applications from the PSL infrastruc-
ture, we use a sandboxed Javascript interpreter, Duktape, to
dynamically interpret the Lambda program at runtime. In
order for sandboxed Javascript program communicate with
its other counterparts, we modify the Duktape and introduce
two functions put and get to interact with SCL. We note
that the program is transparent with and sandboxed from the
underlying cryptographic schemes, so that it cannot observe
and unintentionally leak the cryptographic secrets.

B. Attestation
PSL builds its attestation protocol on top of the Asylo’s
attestation primitives. For each worker or FaaS leader that
requires code running in the enclave, it starts with an Assertion
Generation Enclave(AGE) as a Quoting Enclave(QE) that

helps generates quotes on behalf of the enclave. The QE
is certified by the Provisioning Certification Enclave (PCE),
which uses Provisioning Certification Key (PCK) that is writ-
ten, and distributed by Intel to sign QE’s hardware REPORT.
The PCK certificate chain can be traced back to Intel SGX
Root Certificate Authority(CA). After receiving an assertion
request from a remote attester, the worker or FaaS leader
establishes bi-directional local attestation with AGE to forward
the assertion request from the remote attester and to get the
assertion from the AGE. After the remote attester verifies the
assertion, they establish a secure gRPC channel and the remote
attester sends confidential information, such as crypographic
keys, to the worker or FaaS leader.

C. Launching Process
Each PSL worker node starts a lambda runtime in the en-
clave, which is registered with a third-party job scheduler.
To launch a PSL workload, the user contacts the job sched-
uler with an encrypted program and corresponding launching
configurations, such as how many lambdas are needed. The
job scheduler contacts idle worker nodes within its registry
and forwards the encrypted program to the potential worker
nodes. To prevent malicious worker nodes, the user sends
cryptographic keys via a separate channel through FaaS leader
that runs in an enclave. After verifies the identity of the FaaS
leader using remote attestation, the worker distributes the keys
to the FaaS leader. The workers which receive the encrypted
program also verify itself with remote attestaion with the FaaS
leader. After the workers are authenticated, the FaaS leader
forwards the cryptographic keys to the worker nodes, and
the worker nodes can decrypt and run the program. When
the PSL workload is finished, all the user-related confidential
information, such as the content of the memtable, is cleared
by a RESET command by the FaaS leader, because restarting
the lambda runtime may take longer time. The FaaS leader
keeps track of the idleness of the workers and only distribute
keys to the idle workers. The workers after RESET need to
be re-attested for the next PSL workload.

D. Key Management
In PSL, key management is needed for worker enclaves to
verify each other’s identity, and to satisfy the security guaran-
tees of DataCapsules. Our key management design goals are:
1) Provenance: by providing a unique key pair per worker
enclave; 2) Authentication: each worker enclave needs to sign
with the (derived) DataCapsule owner identity; 3), PSL uses a
hierarchical structure with a parent FaaS Leader and multiple
child Lambda Enclaves. We want to design a key management
scheme to efficiently manage hierarchically structured key
pairs with low overhead.

To derive a each set of public/private key pairs from a
master key, we use Hierarchical Deterministic (HD) Wallet
from Bitcoin Wallet[30]. HD Wallet is a key management
scheme that allows all the child public keys to be derived from
a single parent public key. We use hardened derived child keys,
a scheme of HD wallet to prevent the problem of HD Wallet
that the leakage of the child private key leaks the private key

9

of the parent. HD Wallet enables efficient key management in
PSL as follows: 1) After attestation between the client and the
FaaS Leader, the client sends its owner key to the FaaS Leader.
2) The FaaS Leader generates a child public/private key pair
for the current running application. 3) The FaaS Leader uses
the application child key pair to generate multiple grandchild
key pairs, one per worker enclave. 4) The FaaS Leader attests
and sends every enclave its grandchild key pair. 5) FaaS Leader
multicasts the application public key to all enclaves. 6) Each
worker enclave derives the other worker enclaves’ public keys
using the application public key.

With this key management scheme, both provenance and
authentication are achieved. In particular, 1) every worker
enclave has its own signing key (i.e. provenance), and 2) every
worker can sign messages on behalf of the owner identity using
a derived grandchild key pair (i.e. authentication). This scheme
minimizes key exchanges among the client, the FaaS Leader,
and worker enclaves. For n worker enclaves, the initial key
exchange overhead reduces from possibly O(n2) for a naive
key management scheme to O(n).

Key Leakage and Rotation We enable efficient key rotation
scheme with SCL that can derive and distribute a new set of
key pairs for the workers from the new hardened key pair.
This prevents the cryptographic key leakage over time. This
is done by (1) client deriving a new child hardened key pair
and multicasting the public key to all enclave workers; (2) the
FaaS Leader then derives a new set of key pairs for the workers
from the new key pair. To handle lost multicasted messages
or enclave worker failure, we can rely on SCL’s consistency
coordinator and include the current parent public key in the
SYNC reports. This ensures that any enclave worker can verify
that they are using the correct signing keys in a given epoch
by validating the keys against the consistency coordinator’s
SYNC reports. The frequency in which key rotation occurs
depends on the user’s threat model. Users may choose to rotate
keys per function invocation. This ensures any new function
invocations may not affect previous function invocations.

VII. IMPLEMENTATION

Our codebase contains 32,454 LoC in C++ excluding com-
ments and 43,011 LoC code base in total counted by cloc[1].
The core SCL KVS code consisted of roughly 4,000 lines of
code in C++, excluding the attestation, distributive application
implementations, and experiment scripts. We implement the
KVS directly on top of Asylo instead of on a containerized
enclave environment. This yields a much smaller TCB than
related works such as Speicher [9].

Asylo is a hardware-agnostic framework for TEEs, sup-
porting Intel SGX(v1 and v2) and ARM TrustZone. It also
provided a POSIX compliant library that made it easier to
port existing applications into enclaves. We use ZeroMQ to
implement network multicast and communications between
Worker Enclaves. We use gRPC to create a secure FaaS Leader
Enclave, which can generate HD Wallet keypairs and startup
enclave workers. We use DukTape, an embedded JavaScript

engine in C++, to sandbox enclave applications, now that
enclaves can directly execute JavaScript code.

CapsuleDB is implemented in C++ and is 2200 LoC.
It also uses several features of Asylo and the structures
created in the PSL implementation. We use a similar memtable
implementation, but leverage mutexes on each entry instead of
a spinlock. Due to the implementation timeline, the current
version of CapsuleDB writes data to disc rather than to a
network attached DataCapsule using the Boost serialization
library. The DataCapsule replication service contains about
1,000 LoC in C++ excluding comments. We use RocksDB
as embedded persistent storage for each DataCapsule replica,
ZeroMQ to implement network communication between Data-
Capsule replicas, and OpenSSL for signature and verification.

VIII. EVALUATION

SCL leverages DataCaspules as the data representation to
support inter-enclave communication. To quantify the ben-
efits and limitations, we ask: (1) How does SCL perform
as a KVS(§VIII-B)? (2) How do circular buffer (§VIII-D),
and replication (§VIII-C) affect the overhead? (3) How long
does it take to securely launch a PSL task? (§VIII-E) (4)
How much does SCL pay to run in-enclave distributed
applications(§VIII-F)?

A. Experiment Setup
We evaluate PSL on fifteen Intel NUCs 7PJYH, equiped with
Intel(R) Pentium(R) Silver J5005 CPU @ 1.50GHz with 4
physical cores (4 logical threads). The processor has 96K
L1 data cache, a 4MiB L2 cache, and 16GB memory. The
machine uses Ubuntu 18.04.5 LTS 64bit with Linux 5.4.0-
1048-azure. We run Asylo version 0.6.2. We report the average
of experiments that are conducted 10 times. For each NUC, it
runs two PSL threads by default.

B. End-To-End Benchmark of SCL

Benchmark Design: An end-to-end evaluation of SCL starts
the worker sends the first acknowledgement to the user, and
ends when the client receives its last request’s response from
the workers. We evaluate the performance using a workload
generated by YCSB workload generators. Due to the dif-
ference between get and put protocols, we focus on the
read-only and write-only workloads. All workloads comply
zipfian distribution, where keys are accessed at non-uniform
frequency. For each get, we evaluate the performance of get-
ting from the local memtable of the lambda(get(cached)),
and of getting the data from CapsuleDB(get(uncached)).
Each get request is synchronous that the next request is sent
only if it gets the value of the previous get request.

Overall Performance: Figure 9 shows the throughput of
the end-to-end YCSB benchmark. The aggregated throughput
of put. The get(CapsuleDB) throughput is flattened as
we increate the number of the lambdas, because we run
one single CapsuleDB instance that handle all the queries,
which is bottlenecked as the number of lambdas that issue
get(CapsuleDB) increases.

10

2 3 4 5 6 7 8
Number of Lambdas

104

105

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

) Put(SCL)
Get(SCL)

1 2 3 4 5
Number of Lambdas

103

104

lo
g-

sc
al

e
ag

gr
eg

at
ed

th

ro
ug

hp
ut

(o
pe

ra
tio

ns
/s

ec
)

Put(With CapsuleDB)
Get(With CapsuleDB)

Fig. 9: The aggregated throughput of PSL on put-only and
get-only workload of YCSB benchmark. The gets are differ-
entiated by whether it is cached in the memtable(left) or the
lambda needs to query CapsuleDB(right).

4 6 8 10
Number of Lambdas

9.0

9.5

10.0

10.5

11.0

Th
ro

ug
hp

pu
t i

n
Lo

g
Sc

al
e

(w
rit

e/
se

c)

Without Replication
With Replication

Fig. 10: A line graph that shows end-to-end write-only
benchmarks for SCL with vs. without replication. Throughput
numbers are in log scale.

C. Replication-enabled End-To-End Benchmark

Benchmark Design: Replication-enabled end-to-end eval-
uation measures the performance of the SCL layer with
durability. In particular, it includes the overhead of workers
sending each write to the DataCapsule replicas, a quorum of
DataCapsule replicas receive data and persist it on disk, and
then acking the worker. We evaluate the performance using
a workload generated by YCSB workload generators. Since
replication involves only write operations, we evaluate a write-
only workload. The workload involves a zipfian distribution,
with keys accessed at a non-uniform frequency.

Overall Performance: Figure 10 illustrates the performance
of the DataCapsule backend. It shows that SCL with repli-
cation has reached a bottleneck after 9 workers while SCL
without durability continues to scale. The performance drop
and bottleneck are due to several reasons: 1) disk operations
are inherently slow; 2) the burden on replication system’s
leader is high for collecting acks from DataCapsule replicas
and sending the aggregated ack back to worker. We aim to
improve SCL with replication by mitigating the workload on
the replication leader.

D. Circular Buffer Microbenchmark

Benchmark Design: The circular buffer provides efficient
application-enclave communication. We compare the perfor-

of clock cycles App to Enclave Enclave to App
SGX SDK 20515.02 8608.57
HotCalls 936.89 757.96
Circular Buffer 461.10 525.54

TABLE I: Circular Buffer Microbenchmark We evaluate
the number of clock cycles required for communications
between the enclave and application in both directions.

Worker

FaaS
Leader

User

Load enclave file
0.16s

Attestation
& key distribution

(User & FaaS Leader)
0.093s

Attestation
(FaaS Leader

& Worker)Job Scheduling
& Dispatch

Key Dist.
& launch

··········

0.30s

0.103s 0.05s

Fig. 11: Latency breakdown of the Paranoid Stateful Lambda
launching process. The bold line represents the critical path
of the lambda launching process. The total launching time to
run code in authenticated worker is less than 0.61 second.

mance of the circular buffer with the SGX SDK baseline and
the state-of-the-art HotCall. We evaluate them based on the
number of clock cycles required for communications in both
the application to enclave direction and vice versa.

Overall Performance: As shown in Table I, baseline SGX
SDK incurs a significant overhead of over 20,000 clock cycles
from application to enclave, and over 8,600 clock cycles from
enclave to application. For both directions, HotCall is able to
reduce the overhead to under a thousand clock cycles. Our
circular buffer reduces overheads even further. Our solution
only requires 461.1 and 525.54 clock cycles from applica-
tion to enclave and vice versa. Compared to state-of-the-art
HotCall, our solution provides 103% and 44% improvements,
respectively.

E. Lambda Launch Time

Benchmark Design: We evaluate the launching process of
PSL by running Workers and FaaS leader in SGXv2 hardware
mode, which the worker lambda, FaaS leader and user on
different physical Intel NUCs machines. For each NUC, it runs
Asylo AGE in hardware mode with PCE signed by Intel that
helps enclave generates attestation assertions. We assume the
machines already have the pulled the prebuilt lambda runtime
binaries and execute the runtime. The cold-start bootstrapping
process lasts 42 seconds on average in our experiment setting.

Lambda Launch Breakdown: Figure 11 show the latency
breakdown of the launching process. It takes 0.30s for the
user to reach out to the scheduler, and for the scheduler to find
and forward the encrypted task to the potential workers. Then
the workers load associated runtime and data to the enclave,
which takes 0.16s. We parallelize the worker loading time with
the attestation. that the user remotely attests the FaaS Leader
to verify that the FaaS leader is running authenticated code in
SGX enclave. After the worker’s enclave file is loaded, it takes
0.103s on average for the FaaS leader to remotely attest the

11

No. TTFS TTFS Cost/Time Cost/Time
Planners Baseline SCL Baseline SCL

1 61.9 sec TIMEOUT 0.30 N/A
2 115.5 sec TIMEOUT 0.16 N/A
4 89.4 sec 481.5 sec 0.09 0.77
8 34.7 sec 207.9 sec 0.08 0.13

TABLE II: Motion Planning Benchmarks

worker enclave. We note that this attestation latency is mostly
constituted by the network delay of grpc request and the local
attestation assertion generation time of the worker’s AGE, so
it does not incur scalability issue with the FaaS leader when
multiple workers are launched at the same time.

F. Case Study: Fog Robotics Motion Planner
We experiment with a sampling-based motion planner that is
parallelized to run on multiple concurrent serverless processes,
MPLambda [23], and modifying it to use SCL. Most of the
porting effort done was to integrate MPLambda’s build system
into Asylo. The modification is about 100 LoC. Many system
calls that MPLambda uses are proxied by Asylo.

Using MPLambda with SCL, we compute a motion plan
running a fetch scenario in which a Fetch mobile manipulator
robot [17] declutters a desk. We measure the median wall-
clock time to find the first solution by the planners. We also
measure the median average path cost per time of the lowest
cost path the planners return. This captures how efficiently
the planners can compute the best path. Because the planner
uses random sampling, we run the same computation multiple
times with different seeds. As with previous experiments, we
run this test on Intel NUCs 7PJYH, equipped with Intel(R)
Pentium(R) Silver J5005 CPU @ 1.50GHz with 4 physical
cores (4 logical threads). We set a timeout of 600 seconds for
the planners to compute a path.

We run up to 8 planners, running on separate Intel NUCs
using SCL and comparing this to running MPLamda without
SCL. We observe an increase in performance as we scale out
the number of planners. Each planner runs computationally
heavy workloads and PSL introduces several threads (i.e.
crypto actors, zmq clients, OCALL/ECALL handlers) that
take away CPU time from the planner thread. Furthermore,
MPLambda planners use the Rapidly-exploring random tree
(RRT*) [24] algorithm, to search for paths by randomly
generating samples from a search space, checking whether
the sample is feasible to explore, and adding the sample
to a constructed tree data structure. The tree data structure
may grow large and take up a significant amount of memory.
Memory in SGX is a limited resource and increased memory
pressure leads to more misses in the EPC and requiring paging
in and out of enclaves frequently. There is work on limiting
the memory usage of RRT* by bounding the memory for the
tree data structure, which we can adopt in future work. [2].

IX. RELATED WORK

Current Frameworks for FaaS: Existing cloud-based FaaS
implementations, such as AWS Lambda [8] or OpenFaaS [32],
underutilize computing resources on the edge of the network.

Attempts to deploy such frameworks to the edge, such as
Akamai [4], do not deliver the security guarantee required by
the Edge Computing. S-FaaS [5], Clemmys [42] uses TEE and
cryptographic attestation to protect the confidentiality of the
execution. For all the aforementioned FaaS frameworks, they
do not support stateful FaaS execution [38].

Secure Execution with TEE: PSL is motivated by the vision
that the distributive worker can run securely in a TEE on a
single host, making the security and efficiency of communica-
tion among multiple enclaves a logical research problem. This
vision is supported by a variety of available container services
and platforms, for example, TEE-enabled container services
such as GrapheneSGX [43], Scone [7], and Occlum [34] and
hardware TEE platforms [27] , Elasticlave [46] and Penglai
[16]. Snort [26] is an in-enclave intrusion detection framework
that also uses a circular buffer for communication. We note our
approach differs from Snort in that they use circular buffers to
convert hugepages in DPDK, while our circular buffer design
is to eliminate the context switch in ecalls/ocalls.

KVS based on TEE: Existing TEE-based KVS designs
mainly focus on single-TEE persistence and performance
optimizations. ShieldStore [25] solves the 128MB limitation
of SGXv1 by conducting most processing outside the enclave.
Each key-value pair is encrypted and protected with a signature
when it leaves the enclave, and the main data structures of
the KVS are also stored outside the enclave. The in-enclave
KVS server handles queries from an out-of-enclave client by
fetching encrypted key-value pairs from untrusted memory.
Speicher [9] and DiskShield [3] implement secure storage
inside a secure enclave, so that the TEE can exchange data
securely to the underlying storage of the host. Both SCL and
Speicher [9] use a LSM-based structure for durablity, but SCL
takes a step further to integrate the stored data blocks as part
of the DataCapsule hash chain, and to enable efficient inter-
enclave communication. SCL also has a much smaller TCB
required than Speicher. EnclaveCache [10] and Omega [14]
supports shared, in-memory KVS cache but does not support
communication of enclaves from different hosts.

X. CONCLUSION

We introduced Paranoid Stateful Lambdas, a federated FaaS
framework for secure and stateful execution in both cloud and
edge computing environments. We focus on the security and
communication aspects of PSL by exploiting the properties
and extensions of DataCaspules, a cryptographically-hardened
blockchain. We propose an abstraction, the Secure Concur-
rency Layer, that provides security and eventual consistency
to the enclaves, as well as discuss its durability and fault
tolerance semantics. On our end-to-end benchmark, SCL has
up to 81x higher throughput and 2.08x lower latency than the
unoptimized baseline. Our system throughput scales linearly
with the number of the lambdas, and our lambda task can be
dispatched to authenticated workers within 0.61 second.

12

REFERENCES

[1] Cloc. http://cloc.sourceforge.net/. Accessed: 2021-05-1.
[2] Olzhas Adiyatov and Atakan Varol. Rapidly-exploring

random tree based memory efficient motion planning.
pages 354–359, 08 2013.

[3] Jinwoo Ahn, Junghee Lee, Yungwoo Ko, Donghyun
Min, Jiyun Park, Sungyong Park, and Youngjae Kim.
Diskshield: A data tamper-resistant storage for intel sgx.
In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, pages 799–812,
2020.

[4] Akamai. Akamai serverless edge. https:
//www.akamai.com/us/en/products/performance/
serverless-computing-edgeworkers.jsp.

[5] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew
Paverd, and Michael Steiner. S-faas: Trustworthy and
accountable function-as-a-service using intel sgx. In
Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, pages 185–199,
2019.

[6] Andreas M. Antonopoulos. Mastering Bitcoin. O’Reilly
Media, 2017.

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell,
et al. SCONE: Secure Linux Containers with Intel
SGX. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), volume 16, pages
689–703. USENIX Association, November 2016.

[8] AWS. AWS Lambda. https://aws.amazon.com/lambda/,
note = Accessed: 2021-05-1.

[9] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia,
Christof Fetzer, Michio Honda, and Kapil Vaswani. Spe-
icher: Securing lsm-based key-value stores using shielded
execution. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 173–190, 2019.

[10] Lixia Chen, Jian Li, Ruhui Ma, Haibing Guan, and Hans-
Arno Jacobsen. Enclavecache: A secure and scalable
key-value cache in multi-tenant clouds using intel sgx.
In Proceedings of the 20th International Middleware
Conference, Middleware ’19, page 14–27, New York,
NY, USA, 2019. Association for Computing Machinery.

[11] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and
Yinqian Zhang. Detecting privileged side-channel attacks
in shielded execution with déjà vu. In Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, page 7–18,
New York, NY, USA, 2017. Association for Computing
Machinery.

[12] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. Splinterdb: Clos-
ing the bandwidth gap for nvme key-value stores.
In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 49–63, 2020.

[13] Intel Corporation. Intel(r) software guard extensions sdk
for linux* os. https://download.01.org/intel-sgx/linux-1.
8/docs/Intel SGX SDK Developer Reference Linux
1.8 Open Source.pdf, 2017.

[14] Cláudio Correia, Miguel Correia, and Luı́s Rodrigues.
Omega: a secure event ordering service for the edge. In
2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 489–
501. IEEE, 2020.

[15] Victor Costan and Srinivas Devadas. Intel sgx explained.
IACR Cryptol. ePrint Arch., 2016(86):1–118, 2016.

[16] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
memory protection in the penglai enclave. 2021.

[17] Fetch Robotics. Fetch research robot. http://fetchrobotics.
com/research/.

[18] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363–376, 2017.

[19] Pedro Garcia Lopez, Alberto Montresor, Dick Epema,
Anwitaman Datta, Teruo Higashino, Adriana Iamnitchi,
Marinho Barcellos, Pascal Felber, and Etienne Riviere.
Edge-centric computing: Vision and challenges. ACM
SIGCOMM Computer Communication Review, 45(5):37–
42, 2015.

[20] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In ISCA. ACM, 1990.

[21] Google. Asylo. https://asylo.dev/. Accessed: 2021-05-1.
[22] Google. Asylo socket. https://asylo.dev/docs/reference/

runtime.html. Accessed: 2021-05-1.
[23] Jeffrey Ichnowski, William Lee, Victor Murta, Samuel

Paradis, Ron Alterovitz, Joseph E Gonzalez, Ion Sto-
ica, and Ken Goldberg. Fog Robotics Algorithms for
Distributed Motion Planning Using Lambda Serverless
Computing. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 4232–4238,
2020.

[24] Sertac Karaman and Emilio Frazzoli. Sampling-based
algorithms for optimal motion planning, 2011.

[25] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun
Jeon, and Jaehyuk Huh. Shieldstore: Shielded in-memory
key-value storage with sgx. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[26] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona
Vij. Snort intrusion detection system with intel soft-
ware guard extension (intel sgx). arXiv preprint
arXiv:1802.00508, 2018.

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn

13

Song, and Krste Asanović. Keystone: An open
framework for architecting tees. arXiv preprint
arXiv:1907.10119, 2019.

[28] Microsoft. Openenclave switchless. https:
//github.com/openenclave/openenclave/tree/master/
samples/switchless. Accessed: 2021-05-1.

[29] Nitesh Mor, Richard Pratt, Eric Allman, Kenneth Lutz,
and John Kubiatowicz. Global data plane: A federated
vision for secure data in edge computing. In 2019 IEEE
39th International Conference on Distributed Computing
Systems (ICDCS), pages 1652–1663. IEEE, 2019.

[30] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

[31] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting SGX
enclaves from practical side-channel attacks. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 227–240, Boston, MA, July 2018. USENIX
Association.

[32] OpenFaaS. Openfaas. https://www.openfaas.com/.
[33] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas,

Shivaram Venkataraman, Ion Stoica, Benjamin Recht,
and Jonathan Ragan-Kelley. Numpywren: Serverless
linear algebra. arXiv preprint arXiv:1810.09679, 2018.

[34] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan.
Occlum: Secure and efficient multitasking inside a single
enclave of intel sgx. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
955–970, 2020.

[35] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, 3(5):637–646, 2016.

[36] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-sgx: Eradicating controlled-channel attacks
against enclave programs. 01 2017.

[37] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security,
ASIA CCS ’16, page 317–328, New York, NY, USA,
2016. Association for Computing Machinery.

[38] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Jose M Faleiro, Joseph E Gonza-

lez, Joseph M Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful functions-as-a-service. arXiv preprint
arXiv:2001.04592, 2020.

[39] Ajay Kumar Tanwani, Nitesh Mor, John Kubiatowicz,
Joseph E. Gonzalez, and Ken Goldberg. A Fog Robotics
Approach to Deep Robot Learning: Application to Object
Recognition and Grasp Planning in Surface Decluttering.
In Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA, May 2019.

[40] Facebook Database Engineering Team. Rocksdb: A
persistent key-value store for flash and ram storage.
https://rocksdb.org/, May 2021. Accessed: 2021-05-25.

[41] Nan Tian, Ajay Kumar Tanwani, Ken Goldberg, and
Somayeh Sojoudi. Mitigating Network Latency in Cloud-
Based Teleoperation using Motion Segmentation and
Synthesis. In Proceedings of the International Sympo-
sium on Robotics Research, ISRR, Oct 2019.

[42] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod
Bhatotia, and Christof Fetzer. Clemmys: Towards secure
remote execution in faas. In Proceedings of the 12th
ACM International Conference on Systems and Storage,
pages 44–54, 2019.

[43] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-sgx: A practical library os for unmodified
applications on sgx. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 645–658, 2017.

[44] Rob van der Meulen. What edge computing means for
infrastructure and operations leaders. shorturl.at/evwD0.

[45] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with hotcalls: A fast interface for sgx
secure enclaves. ACM SIGARCH Computer Architecture
News, 45(2):81–93, 2017.

[46] Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and
Prateek Saxena. Elasticlave: An efficient memory model
for enclaves. arXiv preprint arXiv:2010.08440, 2020.

[47] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van
Jacobson, kc claffy, Patrick Crowley, Christos Pa-
padopoulos, Lan Wang, and Beichuan Zhang. Named
Data Networking. ACM SIGCOMM Computer Commu-
nication Review, 44(3):66–73, July 2014.

[48] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping
Chen, and Huaimin Wang. An Overview of Blockchain
Technology: Architecture, Consensus, and Future trends.
In IEEE International Congress on Big Data (BigData
Congress), pages 557–564. IEEE, 2017.

14

