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Abstract

Towards Ubiquitous Augmented Reality in Structured Environments

by

Joseph Andreas Menke

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Augmented reality has incredible potential to change the way we interact with information.
Smart mobile devices have enabled us to be constantly connected to an ever expanding source
of information known as the internet. Augmented Reality devices can present a method for
organizing this information and ensure that relevant information is present in the location
where it is most useful. Similarly, the spatial organization of information alongside physical
objects can present new forms of creativity and artistry. These devices use computer vision
algorithms to understand the structure of objects in the world as well as the devices’ location
relative to these objects. This understanding is used to display virtual objects in such a way
as to appear present in the physical world. While these algorithms present a viable solution in
many situations, they still have many failure cases that can prevent the ubiquitous adoption
of these devices.

This thesis discusses methods for improving the localization and mapping capabilities of these
Augmented Reality devices by exploiting the structure that is present in many man-made
environments. A discussion of some open problems in augmented reality is presented in the
context of the open source package OpenARK. The remainder of thesis discusses methods
for improving localization and mapping and 3D reconstruction. A method is presented for
incorporating planar structures from a Time of Flight depth sensor into a state of the art
Visual Inertial Odometry algorithm. This algorithm is demonstrated to improve localization
accuracy in low light and low texture environments and maintain realtime performance
on a mobile device with limited Time of Flight depth sensing range and limited compute
resources. A method is presented for enabling the realtime matching of image wireframes.
Image wireframes represent the junctions, lines and intersection relationships that form the
structure of the scene. This algorithm exploits these relationships to improve the matching of
image wireframes beyond standard feature matching. This method is further demonstrated
to be capable of exploiting the additional constraints introduced by multiple cameras.
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Chapter 1

Open Augmented Reality Kit

1.1 Introduction

Open Augmented Reality Kit (OpenARK) is a software development kit that explores those
algorithms necessary for state of the art Augmented Reality (AR). OpenARK is capable
of performing Simultaneous Localization And Mapping (SLAM) that can accurately track
devices across entire buildings. OpenARK is also capable of generating accurate 3D models
of the environments, enabling realistic occlusions as well as interactions between the environ-
ment and virtual objects. Lastly, OpenARK performs hand tracking that enables the user
to interact with these virtual devices through gestures. We developed OpenARK to provide
an open source way for students to learn about the computer vision algorithms necessary for
Augmented Reality and a fast way for companies and researchers to get started developing
for Augmented Reality. This work builds upon several other open source packages, combin-
ing these works and adding our own algorithms to provide a complete Augmented Reality
solution.

In this chapter we present a breif high-level introduction to those algorithms used in
OpenARK and discuss how they are combined to enable an effective AR experience. We
also discuss how our work on this kit has motivated the open problems in SLAM and 3D
reconstruction that we begin to address in the remainder of the thesis.

1.2 OpenARK Hardware

In addition to a computer, OpenARK utilizes the commercially available Intel Realsense
d435i camera system. This camera system consists of: one global shutter RGB camera, two
time-synchronized global shutter IR cameras, an IR dot matrix projector, an Inertial Mea-
surement Unit (IMU), and an internal hardware clock. Each of these components contributes
to OpenARK’s ability to provide a compelling augmented reality experience.

The two time-synchronized global shutter IR cameras are utilized for localization and
mapping. Global shutter cameras capture the entire image frame at the same time instant.
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Rolling shutter cameras, which are commonly used in modern smartphone devices, capture
images a single row at a time. While this keeps costs low, motion of the camera introduces
distortion into the captured image of rolling shutter cameras. While the effects of rolling
shutter cameras can be estimated [54, 25], this introduces additional noise and complexity
to the algorithm.

The time synchronization between the between these cameras enables the formation of
a stereo pair. In this way, features in these cameras can easily be matched and their 3D
positions triangulated. The IR dot matrix projector, projects a precise dot pattern onto
the environment that enables image patches to be matched across these two image frames
even when no visual texture would otherwise be present (such as the camera viewing a white
wall). This enables a dense depth image to be produced for many scenes. This type of
camera arrangement is often called a structured light depth camera [4]. Note that these dot
matrix features do not, however, represent features that can be matched over time as their
positions are not fixed in the environment but rather move as the camera moves.

The Inertial Measurement Unit (IMU) provides information about the relative transfor-
mation between camera frames. Not only does this added information improve the accuracy
of the overall location estimate, it adds robustness by providing information that may oth-
erwise be unavailable. For example, fast rotational motion induces heavy motion blur into
a camera capture. This can prevent features being identified and matched across images. A
system that only relied on visual information would have no way to estimate the pose of the
camera in these scenarios. The IMU can provide an estimate of the rotation and translation
in these scenarios. An important aspect of this is the internal hardware clock. This provides
accurate timestamps to all sensors in the system. Specifically this enables the system to
know the time difference between when a camera image and an IMU measurement arrives.
While methods have been proposed for estimating these timestamps [25], a single hardware
clock contributes to a simpler and more accurate system.

We have optimized OpenARK to make use of these various components in order to provide
an experience that is computationally efficient while enabling state of the art capabilities.

1.3 OpenARK SLAM

When a virtual object is “placed” at a specific position in the world, the AR system uses an
estimated pose to compute how this virtual object would have looked from this perspective
if it were physically placed in the environment. This artificial view is then rendered over the
view of the environment and displayed to the user, enabling the illusion of presence. The
process of precisely estimating the pose of the AR device is called Simultaneous Localization
And Mapping (SLAM).

The OpenARK SLAM system divides the SLAM problem into two parts: a local tracking
system, and a global mapping system. The local mapping system is built on the open-source
Visual Inertial Odometry (VIO) system described by Leutenegger et al. [52]. This algorithm
estimates the pose of the current camera, the poses of a sliding window of “keyframes”, and
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the 3d positions of all features observed by these keyframes. A new camera frame is added
to the optimization problem as a keyframe any time the current frame has little overlap
with the most recent keyframe. This reduces the optimization of redundant information as
compared to adding every camera frame as a keyframe. Each time a keyframe is added
to the optimization problem the oldest keyframe and the features associated with it are
marginalized out and passed to the global mapping system.

The global mapping system keeps all the past keyframes in a single optimization problem.
An optimization problem optimizing over the keyframe poses and the positions of all the
features observed by these keyframes would quickly become intractable. As a result, in order
to keep the optimization problem manageable, only the poses of these keyframes optimized.
The feature positions are not optimized by the global mapping system. Instead, as each
keyframe is added to the global mapping system the estimated relative transform between
the current and previous keyframe is added as a residual to the optimization problem. The
features for the current keyframe are converted to a bag-of-words descriptor using the open-
source package DBoW2 [19]. Here we have modified DBoW2 to enable the use of BRISK [51]
descriptors in order to reuse the descriptors computed by the local tracker. This bag of words
descriptor provides an efficient method for comparing images, enabling us to determine if the
current keyframe overlaps with a previous keyframe in our map. If an overlapping keyframe
is found, we attempt to compute a transform between these two keyframes by matching
features across these keyframes. To reduce the dependence on the quality of the estimates
from our local tracker, we utilize the depth image provided by the d435i to compute the 3d
position of each feature relative to the keyframe. If a transform is successfully estimated we
add this estimate as a residual to our optimization problem. This process is called “loop
closure”. Each time a loop closure is found, we solve the optimization problem using iterative
linear approximation (via Ceres Solver [2]). This optimization problem is often called pose
graph optimization [70].

This global mapping system utilizes loop closures to correct the errors that are slowly
introduced by approximations made by the local tracker. If the time between loop closures is
large, the estimated poses of certain keyframes could change drastically when a loop closure
is found. This means that any virtual objects placed in the scene using those estimates
would have an incorrect pose. To account for this, every virtual object is tied to a keyframe,
and the objects pose is specified relative to that keyframe’s pose. In this way, every time a
keyframe is found and the pose graph is optimized, the virtual object’s pose is also updated.
An example of how the localizaton and mapping system enables virtual objects to appear
physically present from different viewpoints is shown in Figure 1.1.

Unfortunately, any visual mapping system is likely to have failure cases such as scenes
with little visible texture or many repeated features. This can lead to a very disorienting
experience as virtual objects appear to drift from their assigned location due to incorrect
pose estimates. To deal with this we introduce a feature to detect these cases and reset the
estimator. This feature is added directly into the local tracker to enable immediate detection
of these failure modes. Our system enables detection of failures due to lack of visual texture,
repeated features, and other failure cases. When the local tracker is reset, we must also begin
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Figure 1.1: A visualization of the a virtual cube projected onto a camera image using the estimated
camera position from OpenARK SLAM

a new global map as we can no longer trust our estimated location relative to the previous
map. In doing this, we also save the previous global map. Each time a new keyframe is
introduced, we then check for overlapping keyframes, not just in the current global map, but
in the previous global maps as well. If a transform can be found relative to a keyframe in a
previous global map, this keyframe is added to that map, and the system is able to proceed
as if no failure had occurred. While this procedure makes failure cases more bearable to the
user, the reduction of failure cases completely remains an open problem that this thesis will
begin to address.

1.4 OpenARK Reconstruction

In addition to estimating the pose of the augmented reality device, determining the 3D shape
of the environment plays a big role in making virtual objects appear present in the physical
scene. For example, mapping surfaces in the environment in 3D can enable us to compute
realistic occlusions and enable virtual objects to interact with the mapped environment.

To this end, OpenARK follows the method introduced as KinectFusion [36] in order to
map the environment using a Truncated Signed Distance Field (TSDF) representation. Here
we utilize the output of the OpenARK SLAM system in order to obtain a more accurate
pose estimate than would be possible with the KinectFusion approach. The original paper
utilized a voxel-grid memory representation for the TSDF. This approach only allows very
small scenes to be represented at high resolution, even on modern devices. Several approaches
have since been introduced to reduce the memory usage of TSDF maps such at oct-tree [32]
and hash-map [68] representations. To this end, OpenARK utilizes the open-source package
Open3d [111] which utilizes a hash map representation of the TSDF and also provides a
marching cubes [61] implementation for computing a mesh from the TSDF.

While the hash map representation drastically reduces the size of the map relative the
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the voxel grid, there does still come a point where keeping the entire TSDF in memory
becomes intractable. Further, we run into a similar problem as described in the previous
section. If we progress for a long period of time before a loop closure, errors will accumulate
and make the estimated TSDF incorrect. Utilizing the loop closure to optimize the TSDF
remains a computational challenge. While some have introduced methods for optimizing the
mesh directly, such as the work of Whelan et al. [95], we utilize a simpler method that will
address both the loop closure and growing memory issues together. Instead of computing a
single TSDF representation of the entire environment, we compute a representation of only
the environment in a block around the device’s current location. Whenever the device leaves
this block a new block is generated and the old block is saved as a mesh. Similar to how
virtual objects were treated in the previous section, each mesh is associated with a specific
keyframe and has its pose specified relative to that keyframe. In this way every time the
keyframe pose is updated, the mesh position is updated as well. This leads to a constant
memory representation of the TSDF at runtime, enabling us to map very large scenes. As
we no longer optimize the TSDF inside a block we have left behind, there will be some error
in the corresponding mesh that cannot be optimized out. As long as the local tracking error
is small relative to the size of the block, the errors in the corresponding mesh will be small.

A downside of this mesh partitioning is that components of the mesh may be duplicated
many times on disk if a location of the scene is visited repeatedly. To resolve this, and
enable the most accurate mesh estimate, we save the color and depth images corresponding
to each keyframe, as well as the most optimized pose for each keyframe. After the session
is complete, the mesh can then be recomputed offline at a higher resolution using the op-
timized keyframe poses. We believe this represents a practical compromise enabling both
fixed memory online reconstruction and accurate high resolution offline reconstruction. An
example mesh computed by this method is shown in Figure 1.2.

If we look towards a future where AR is ubiquitous, we may run into issues when trying to
simply represent the environment as a mesh created from a TSDF. Specifically, accurately
representing the world using this type of mesh requires a large amount of data that may
become intractable to share across users. Instead we may look towards more compact repre-
sentations, specifically those that provide strong priors on the structure of the environment,
to reduce the amount of data required to represent the world. One such structure is the
image wireframe [35, 113, 114]. In this thesis we will address some challenges in moving
towards using wireframes for Augmented Reality.

1.5 OpenARK Hand Tracking

While 3D reconstruction enables virtual objects to interact with the physical environment,
hand tracking represents a common method of enabling the user to interact with the virtual
objects. While many hand tracking methods exist [15, 55], OpenARK proceeds with the
relatively simple method described by Zhou et al. [108]. This method utilizes the depth
image provided by the d435i to simplify the hand tracking problem. This method proceeds
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Figure 1.2: A example colorized 3D Mesh generated by OpenARK Reconstruction

in two steps: hand detection and fingertip classification.
The hand detection method proceeds by first detecting and removing planar objects from

the scene. This has two purposes. First it removes many of the pixels from the scene from
consideration as part of the hand. Second it enables us, later in the pipeline, to detect
when the hand is interacting with a planar surface, and allow us to use this surface like a
touch screen. Next the remaining pixels in the depth image are clustered using a flood-fill
algorithm. A classifier is run on each pixel cluster to determine if the cluster corresponds to
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the user’s hand. This classifier is based on a set of heuristics that exploit a known device
orientation relative to the user, followed by a Support Vector Machine classification.

Once the hand is detected, an algorithm is run on the hand to detect visible fingertips and
their locations. For this process, we compute the 2D contour of the hand and find concavities
in this contour. A series of simple heuristics determines if each concavity is adjacent to a
finger. If a concavity is determined to be finger adjacent, the fingertip position is determined
as the maximum value of this concavity. This 2D fingertip position is then projected into
3D using the observed depth. Example detection results are shown in Figure 1.3.

Figure 1.3: Example fingertip detection results generated by OpenARK Hand Tracking [108]

The relative 3D fingertip positions can then be combined with the OpenARK SLAM
system to compute the positions of the fingertips relative to any virtual object in the scene.
This enables the use of virtual buttons, touch gestures on surfaces, and much more. An
example application built using OpenARK is shown in Figure 1.4.

The result of this algorithm is a fast and simple approach to hand and fingertip detection.
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Figure 1.4: Example application built using OpenARK Hand Tracking. The user is able to scale
the virtual object by touching the white dots and moving their fingers closer together or further
apart

In addition, the choice to detect fingertips enables very familiar gestures from the user, such
as the swipe gestures used on typical smartphones or track pads. There do remain challenges
however. Particularly, because the hands are often used relatively close to the device, they
can take up much of the camera image. This can lead the SLAM system to mistakenly use
features detected on the hands for estimation, leading to poor results. A similar form of this
problem is present in a variety of scenarios such as navigating a crowded room. To reach
ubiquitous adoption, our SLAM system must be able to determine which features represent
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useful static objects in the scene. By utilizing a wireframe detection network for feature
matching, we hope to be able to address these issues.

1.6 Conclusion

While these systems work well in many cases, there still remain several challenges to achieve
ubiquitous Augmented Reality. Most commercial augmented reality systems have some sort
of Simultaneous Localization And Mapping “reset” feature similar to (though potentially
more complex than) the system described in this chapter. These reset systems are designed
around detecting situations where SLAM is unable to perform accurately, or situations where
the approximations made by the SLAM system result in a poor estimate. These situations
include, among others, low light and low texture environments, repeated image features, and
varied lighting conditions. The remainder of this thesis will be directed at addressing some
of these challenges.
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Chapter 2

Planar Structures

2.1 Introduction

Real-time motion estimation on mobile devices has remained a popular topic thanks to
the rise of augmented reality (AR). Google’s Tango and ARCore, and Apple’s ARKit have
validated the use of Visual Inertial Odometry (VIO) for 3D localization of a mobile device in
real-time, providing 6 degree-of-freedom (6-DoF) position and orientation (pose) relative to
a gravity aligned frame. We refer to 6-DoF tracking as the process by which motion states
(including 6-DoF poses) are generated and served for a real-time constrained use-case, such
as rendering an AR object.

A typical VIO system obtains visual measurements from one or more cameras perceiving
only pixel irradiance and measurements of linear acceleration and rotational velocity from an
inertial measurement unit (IMU). In addition to the poses of a mobile device over time, a 6-
DoF tracking process could reconstruct point clouds from the extracted visual features from
surrounding environments, which allows camera-based images to be augmented to display
virtual objects in physical world. As a well-known example, the multi-state constraint kalman
filter (MSCKF) has demonstrated real-time 6-DoF tracking capability with high precision
[65], even under the adversary conditions such as limited computing power, rolling shutter
cameras, coarse calibrations, and low-cost IMUs [26] that are typically found on consumer-
grade mobile devices.

However, a 6-DoF tracking process relying on point-based visual features is unable to
provide accurate estimates of the motion states when the surrounding environments con-
tain little visual texture, see Fig. 2.1. This is because these systems depend on multiple
observations of the detectable and reliable visual features. Without these visual features
as measurements, the motion states could not be corrected by observation update. There
has been significant research into structural features that can be tracked across the multi-
ple scans of a sensor to complement point-based visual features, such as line observations
[46, 104], 3D curves [69, 103], small image patches [86, 107], and planes [18]. Engel et. al.
[14] used direct image alignment to generate consistent map for feature-less SLAM. Of the
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available structural features, planes are commonly used due to their well-defined models and
prevalence in man-made environments. Therefore, a VIO system can adopt both visual and
plane measurements to correct the drift of the 6-DoF poses over time.

Many research groups previously adopted active depth sensing techniques to enable device
localization and 3D reconstruction in low-texture environments [36, 96, 105, 31]. The active
depth sensing techniques currently available for a practical application include structured
light [4], coded light [93], ToF depth sensor [48], and LIDAR sensor [53].

Figure 2.1: An example of 6-DoF tracking in a low-texture environment. The top windows show
the captured image and the bottom windows show the corresponding 6-DoF tracking trajectory.
(a) VIO is initialized and tracking in a normally textured environment; (b) healthy 6-DoF tracking
for a while and the device moves closer to the textureless region; (c) tracking lost and drifts because
there are not enough visual features when the device is still facing the low-texture region and no
valid 6-DoF poses are output.

Recently many smartphones have been equipped with ToF depth sensors. Compared with
dedicated depth sensors in robotics applications [88, 17, 29, 10], the sensing range of these
sensors are typically limited. In addition, the depth image from the ToF depth sensor and
gray-scaled image from the camera are typically obtained at different time instants, and an
estimation algorithm of 6-DoF tracking process has to consider this effect while maintaining
real-time efficiency.
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The main contributions of this chapter include: (1) An analytical error model is proposed
to encode the ToF planes into structural measurements for motion state estimation. (2) It
proposes a generic and effective solution of seamlessly integrating plane measurements into
an MSCKF-based VIO system. (3) The proposed solution maintains real-time performance
of the 6-DoF tracking on consumer-grade mobile devices with limited ToF depth sensing
range and computing resource. Given these characteristics our proposed solution is able to
effectively improve 6-DoF tracking even in low-texture environments. Fig. 2.2 illustrates the
flowchart of data processing in our system.

Figure 2.2: A flowchart of our VIO system. The motion tracking coordinator schedules the receiving
and processing of the sensor data (IMUs, RGB images and depth images), and the visual-inertial
filter updates the motion states by the visual and structural (plane) measurements.

2.2 Related Work

Planar structure based localization has been widely studied in previous research work. Salas-
Moreno et. al. [16] showed that planes could provide a smaller map representation than
occupancy grid methods but improve the overall performance. It was noted that both systems
had degraded performance when the depth image did not provide full 3D constraints. Sun et.
al. [84] used planes to compute constraints to estimate transformations between successive
frames. The system fell back on non-planar features when the involved planes were not able
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to provide full constraints, thus it still did not fully constrain the system. Similarly, Pathak
et al. [72] described a closed-form solution to transform motion state estimates between
frames using planes and reverted to wheel odometry estimates when the system was not
fully constrained. Due to the short sensing range of the ToF depth sensors in our work, the
VIO system will not be fully constrained in many scenarios and motion estimation by using
depth sensor alone is an impractical solution.

Weingarten and Seigwart [94] proposed an EKF-SLAM method using wheel odometry
and laser scanners. Their paper noted that a plane should have only 3 degrees of freedom,
although it was often modelled by more parameters to avoid singularities. Their formula-
tion proposed a model with symmetries and perturbations, which allowed a 7 parameter
plane state parameterization along with a 3x7 binding matrix for computing the minimal
parameterization. In contrast, our solution utilizes the parameterization from Förstner and
Khoshelham [18], and applies it to an EKF formulation. This formulation only keeps a
4 parameter plane state along with a 3x2 projection matrix for computing the minimal
parameterization.

Kaess [40] introduced a unit quaternion parameterization of plane measurements and a
quaternion error for the minimal representation. It allowed the gradient based approximation
in a graph optimization framework. This work was later applied to the visual and inertial
constraints in [33, 34]. Geneva et al. [21] introduced a new parameterization denoted as
closest point (CP) parameterization, which proved better performance than the quaternion
parameterization. This work also utilized a graph-based optimization framework, in which
planes were expressed relative to the pose where they were first observed. In their solution,
the CP parameterization did not have singularities, but that is not the case in our proposed
solution because we employ a framework on the basis of EKF, in which only a few planes
are observed at a time and these planes are represented in a global coordinate frame to
enable more computational efficiency. The CP parameterization in EKF-based framework
has singularities when the plane intersects with the global origin, even though it rarely occurs
as presented in Yang et al. [101] that did use the CP parameterization [21] in an EKF-based
framework without explicit issues. However, our solution still designs a parameterization
to employ EKF-based framework while avoiding the singularities altogether. The main
difference between our work and [101] lies in two aspects. First our proposed solution is based
on the sensors from a smartphone instead of a dedicated depth sensor. Second our solution
enables real-time 6-DoF tracking with visual and plane measurements from smartphones.

2.3 Plane Measurement Model

This section will present the plane extraction from a ToF depth image and the error model
of the plane measurements.
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Plane Detection And Matching

A depth image received from the ToF depth sensor consists of 3D points in its coordinate
frame. A RANSAC-based method is used for plane detection from a ToF depth image. For
each iteration of the RANSAC, 3 points are selected to fit a plane with the normal vector
n in 3 by 1 in the depth sensor coordinate frame. Next the distance from the plane to the
coordinate origin d is computed as:

d = −n>p̄ (2.1)

where p̄ is a 3 by 1 vector representing the mean of the points used for the plane normal
computation. For each remaining point, the distance dp from the point to the plane is
computed as:

dp = n>p− d (2.2)

If dp is below a threshold, the point is considered as an inlier. This is repeated until a
sufficient number of inliers are found or a maximum iteration number is reached. With a
sufficient number of inliers, the plane normal is refined by a least square fit of all the inliers.
Next we mask out the inliers of this plane and repeat the process for the remaining points
until the termination conditions are met.

Each plane measurement from depth image at tm searches for its observation at the
previous depth image at tm−1, through normal, distance and gyro compensation. Only the
plane measurements with matched counterparts are used to estimate the motion states.

Error Model of Plane Measurement

For each plane measurement extracted from a depth image and expressed in the local depth
sensor coordinate frame, the error model of the plane normal is computed under the two
following conditions. Firstly, the plane normal only has 2 degrees of freedom, e.g. a horizontal
plane can be rotated by “pitch” and “roll”. Secondly, the per-point noise is highly correlated
and thus a single point should not be considered as an independent measurement. The
per-point noise correlation originates mainly from the ToF depth sensor with multi-path
interference errors [37], which could cause similar corruptions across neighboring points.

Then the error of a plane normal n is parameterized as a combination of the rotations
about two orthogonal axes.

n = Re1(θ1)Re2(θ2)n̂ (2.3)

where n̂ is the estimated value of the plane normal, Re1(θ1) ∈ SO(3) and Re2(θ2) ∈ SO(3)
are rotation matrices representing rotations around the vectors e1 ∈ R3 and e2 ∈ R3 by θ1
and θ2 respectively. Obviously

[
e1 e2 n

]
form an orthonormal basis of space R3 containing

the plane.
By applying small angle approximation of given the detected planar basis e1 and e2, the

above equation can be written as:

n ≈ (I3 − θ1be1×c)(I3 − θ2be2×c)n̂ (2.4)
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With small θ1 and θ2 values, the higher order terms are ignored without introducing
significant error. Also note that e1 × n = −e2 and e2 × n = e1. Thus the above equation
turns to:

n ≈ n̂ + B̂m

[
θ2
θ1

]
(2.5)

where B̂m =
[
−e1 e2

]
is named as the planar basis, and will be involved in the modelling

of a plane measurement. Then the error of plane normal measurement is approximated as
B̂>m (n− n̂).

On the condition that θ1 ∼ N (0, σ2
θ1

) and θ2 ∼ N (0, σ2
θ2

), the values to determine for
plane measurements are σθ1 , σθ2 , e1, and e2. Among multiple options to model e1 and e2,
we choose the major and minor axis of the points corresponding to the plane, because these
two directions enable the best estimate of σθ1 and σθ2 . Since the inlier points of a plane
are heavily correlated, we can compute the error of the plane by using only two points in
addition to the mean point. To reduce the plane error as much as possible, we select the two
points with the largest projections along e1 and e2 respectively.

Given a point p1 ∈ R3 which has the largest projection along e1 of the points in the
plane. p′1 = p1−∆p1 where ∆p1 ∼ N (0,Σp1) and Σp1 is a diagonal matrix with σ2

x, σ
2
y, and

σ2
z at its main diagonal.

The σz of the ToF depth sensor is linearly scaled with the depth at a value determined
by the camera specification. The σx and σy are not only scaled linearly with depth, but also
depending on the resolution and focal length of the camera.

With the noise of p1, we can compute its effect on the plane rotation around p2 by the
small angle approximation, as shown in Fig. 2.3. It obtains:

θ2 = tan(θ2) =
distance from plane

projection along e1
=

n ·∆p1

p1 · e1

(2.6)

σ2
θ2

=
n>Σp1n

(p1 · e1)2
(2.7)

The same method can be used to compute σθ1 from the point with the largest projection
along e2. Next, we set both σθ1 and σθ2 to be the average of the two values. After this
operation, plane error depends more on the average radius of its inlier point cloud, less on
the choices of the planar basis e1 and e2.

To compute the error of the plane distance to the coordinate origin as Eq. 2.1, we still
treat the points as correlated with each other and obtain the noise from the mean point.
The plane distance depends on the plane normal.

Σdd =
[
p̄>B̂m n>

] [Σnn 02×3
03×2 Σp

] [
p̄>B̂m n>

]>
(2.8)

where

Σnn =

[
σ2
θ2

0
0 σ2

θ1

]
(2.9)
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Figure 2.3: The error of plane rotation θ2 around the axis e2 is computed from the noise of point p
with a large projection into the axis e1. Note that the small plane and the large plane are parallel,
and the two red lines denote the projection of ∆p into the plane normal direction n.

Furthermore the cross-covariance of the plane normal and distance should be computed as:

Σdn =
∑

(d− d̄)(n− n̄)> = −p̄>B̂mΣnn (2.10)

where the single mean point p̄ is projected to the planar basis B̂m before its relation with
the plane normal in 2 degrees of freedom. Thus the 3 by 3 covariance of a single plane
measurement from depth image is given by:

Σmm =

[
Σnn Σ>dn
Σdn Σdd

]
(2.11)

2.4 State Estimation with Plane Measurements

The section will introduce the parameterization of a plane in the state vector. It will also
relate the plane measurements from the ToF depth sensor with the system states. Note
that a system state (or named as state) includes the motion states such as 6-DoF poses and
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velocities, calibrations such as sensor bias, visual points and planes, as presented in Section
2.5 for more details. This section only describes the plane states and measurements.

Plane State Parameterization

A plane can be denoted by a unit-norm vector n as normal and a scalar d as the distance from
the coordinate origin to this plane, and any 3D point pk on the plane leads to pTk · n + d =
0. Specifically all these quantities are expressed with respect to a gravity-aligned global
coordinate frame {G}. Then a single plane state is represented by a 4 by 1 vector:

xplane =
[
Gn> Gd

]>
(2.12)

Since plane normal n is a 3 by 1 vector with unit-norm constraint, the parameterization
of plane normal is not minimal, so it cannot be directly applied to an EKF-based filtering

framework. To solve this issue, a 2 by 1 error state ne =
[
k1 k2

]>
is introduced and the true

plane normal state could be parameterized as the following:

Gn =G n̂ + Bp

[
k1
k2

]
(2.13)

where Gn̂ represents an estimate of Gn and Bp is a 3 by 2 matrix with the 2 columns perpen-
dicular to Gn̂. Note that Bp is the estimated state of planar basis in the global coordinate

frame and evolves into its true state as filter updates, while the B̂m defined in Section 2.3
is a planar basis measurement computed from the ToF depth image. Moreover, an additive
error is adopted for the state of plane distance. Therefore the error state representation for
a plane is given by:

x̃plane =
[
n>e

Gd̃
]>

=
[
k1 k2

Gd̃
]>

(2.14)

In the above parameterization, a plane error state has size 3, compatible with the degrees
of freedom of a generic plane in R3, so this parameterization can be applied to the EKF-based
filtering framework.

Plane Normal Measurement Model

Motivated by the noise model of plane normal measurement, the following constraints could
be established to connect the measured plane normals with the EKF states:

zn = 0 = B̂>m
D
I R I

GR Gn + wn (2.15)

Specifically zn is the 2 by 1 projection of the measured normal onto B̂m. B̂m represents
the planar basis obtained during plane detection from the ToF depth image, DI R represents
extrinsic between depth sensor coordinate frame {D} and IMU coordinate frame {I}, I

GR
represents the current orientation of the global coordinate frame {G} in IMU frame, and
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Gn is plane normal state. The noise of normal measurement is given by wn and it is zero
mean with covariance given by (2.9). If an estimate of filter states is available, the 2 by 1
projection of the plane normal measurement is estimated as:

ẑn = B̂>m
D
I R I

GR̂ Gn̂ (2.16)

The residual of plane normal measurement used for state update could be obtained by:

rn = zn − ẑn = B̂>m
D
I R

(
I
GRGn− I

GR̂Gn̂
)

+ wn

≈ Hn
xI

x̃I + Hn
xplane

x̃plane + wn

After linearization, the Jacobians Hn
xI

and Hn
xplane

relate the residual of plane normal
measurement with the error states of current IMU pose xI and the error states of plane xplane.
The two error states are included in the state vector, so the plane normal measurement can
be directly used for EKF update.

Plane Distance Measurement Model

To derive the measurement model for plane distance, we start to derive constraints to satisfy
when the proposed normal plus distance parameterization are expressed with respect to
different coordinate frame. In the context of our problem, we are interested in constraints
between the depth sensor coordinate frame {D} and global coordinate frame {G} used to
represent a plane measurement. If a point pk is on a plane defined by n and d, the two
following constraints are satisfied according to plane equations:

Dn> Dpk + Dd = Gn> Gpk + Gd = 0 (2.17)

Then the distance expressed in the depth sensor coordinate frame {D} could be related
to plane state parameterization in global coordinate frame {G} and is further simplified to:

Dd = Gd+ Gn>
(
GpI + I

GRT IpD
)

(2.18)

Thus the plane distance measurement model is given by:

zd = Gd+ Gn>
(
GpI + I

GRT IpD
)

+ wd (2.19)

Similar to normal measurement, estimates of plane distance measurement is obtained by:

ẑd = Gd̂+ Gn̂>
(
Gp̂I + I

GR̂T IpD

)
(2.20)

Thus the residual for plane distance measurement is given by:

rd = zd − ẑd = zd − Gd̂+ Gn̂>
(
Gp̂I + I

GR̂T IpD

)
≈ Hd

xI
x̃I + Hd

xplane
x̃plane + wd



CHAPTER 2. PLANAR STRUCTURES 19

Similarly to plane normal measurement, after linearization, the Jacobians Hd
xI

and Hd
xplane

relate the residual of plane distance measurement with the error states of current IMU pose
xI and the error states of plane xplane. Same as the plane normal, the plane distance
measurement can also be directly used for EKF update.

2.5 System Integration

Overview of Estimation Algorithm in VIO System

Our VIO system relies on an MSCKF-based estimator and this section will give an overview
of the underlying estimation algorithm of 6-DoF tracking. Our goal is to estimate the 6-
DoF poses of a mobile device equipped with an IMU composed of a 3-axis accelerometer
and a 3-axis gyroscope, a rolling-shutter (RS) camera and a ToF depth sensor with respect
to a gravity-aligned global coordinate frame {G}. Specifically our framework estimates the
following state vector:

x =
[
x>I x>I1 . . . x>IN f>1 . . . f>M p>1 . . . p>K

]>
where xI represents the current IMU pose and its definition is given as following:

xI =
[
Iq>G

Gp>I
Gv>I b>g b>a

]>
(2.21)

The states xIi , i = 1 . . . N represent the latest N clones of IMU poses maintained in the
sliding window. fj, j = 1 . . .M are M visible points as visual features using inverse-depth
parameterization. Furthermore, it includes K plane states as parameterized in Section 2.4.

Each received IMU measurement is used to propagate the estimated states and covariance
[26]. For the feature points extracted from a received RGB image, a stochastic cloning of IMU
pose containing orientation and position will be performed. A difference of Gaussian (DoG)
detector is employed to generate the feature points, which are then temporally matched by
2-pt RANSAC[49]. This process produces feature tracks as visual measurements for state
estimation. A feature track is processed by the two following approaches according to its
track length. When the track length of a feature track is less than or equal to N , the feature
track is triangulated into a 3D point from all its observations by Gauss-Newton minimization.
After computing the residuals and Jacobians of all the observations and feature states are
marginalized and all the observations of the features are used for filter update without
maintaining feature states in the state vector. On the other hand, if the track length of a
feature track is more than N , the feature track is processed in the same way as above for
the first N feature measurements and then initialized into state vector. For any subsequent
observation after first N observations it will be processed by using standard EKF-SLAM
method. Since the images in our system are obtained from an RS camera, we follow the
approach in [26] which proven to be an accurate yet efficient approach to consider RS effect.
For mobile device with RS imaging, the RGB image is typically captured row-by-row and
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we assume that timestamp of an image is chosen to be the time instant when middle row of
the image is captured.

To keep the computational cost of processing feature tracks relatively bounded at each
time instant, the total number of features processed by the two above methods is fixed. In
addition, a Mahalanobis-gating test is performed before the observation of a feature track
is used for filter update. The number of feature points maintained in the state vector is
also fixed, and therefore those features that lost tracking are removed from the state. This
allows a newly-observed feature with longer track length to be added into the state, and
brings in newer constraints for 6-DoF pose estimation. Similarly, IMU poses xIi maintained
in the sliding window are removed once all its associated feature tracks are consumed for
filter update.

Integration of Plane Measurements into VIO System

The aforementioned framework of a VIO system only deals with two sources of sensor data:
inertial measurements from IMU and feature tracks from camera. This section will introduce
the method to cope with plane measurements obtained from the processing of ToF depth
images in the existing filtering framework. Our current work assumes that the camera and
ToF depth sensor have pre-synchronized clock. No explicit issues about the clock synchro-
nization were found in our experiments, and the temporal alignment between the two sensors
will be performed in future work.

RGB images and depth images are rarely emitted at the exactly same timestamp. Sup-
pose that two consecutive RGB images are captured at timestamps tk and tk+1 and a ToF
depth image is captured at timestamp tm, and the temporal ordering of these images is
tk ≤ tm ≤ tk+1. These measurements are always processed in the same order as the arrival
of the RGB and depth images. Firstly the estimated state and covariance are propagated by
using IMU measurements up to time tm. Instead of performing a stochastic cloning of the
states at time tm as in processing RGB image, an EKF-SLAM style update is performed by
using all the available plane measurements. After the state update with plane measurements,
it follows the same process as the existing framework, propagating the state vector into the
next image for a state update with visual measurements. Our proposed solution introduces a
minimal change of the existing framework, and no extra states other than plane normal and
distance are added specifically for the plane measurements. Fig. 2.4 illustrates the ordering
of receiving and processing the visual and plane measurements. However, one might argue
that the aforementioned assumption is not always guaranteed, and it is still possible that the
plane measurements at tm arrive later than the visual measurements at tk+1, especially in a
multi-threaded setup. However, according to the experiments, the out-of-order case is not
common unless the ToF plane extraction takes a longer time than ∆t(m, k+ 1) = tk+1− tm.
In those cases, we should just ensure the efficiency of ToF plane extraction.

As described above, all the planes from ToF depth images follow the standard EKF-
SLAM process. When a plane is observed for the first time, it is initialized into the state
vector using the method in [101]. For any subsequent measurements that match the same
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plane, a Mahalanobis-gating test is used to reject the ineligible plane tracks, and then we
perform an EKF-SLAM update by the plane measurements. Similar to the visual feature,
a plane state is also removed from the state vector once the plane tracking is lost. Given
the method of processing plane measurements, the computational complexity of dealing with
plane states for the state vector is cubic in the number of planes. However, due to the limited
sensing range of the depth sensor on consumer-grade mobile devices such as smartphones,
the number of planes to maintain in the state vector is small enough, and the experimental
results in Section 2.6 show that our VIO system with plane measurements maintains real-
time performance of the 6-DoF tracking on the smartphones.

Figure 2.4: Top: the upper axis denotes the time of receiving sensor data, and the bottom axis
denotes the time of starting a state update when the measurements computed from the sensor data
are ready. The arc arrows denote that a vision-based state update can utilize the most recent 6-DoF
pose that is estimated from the state update with plane measurements at a previous ToF depth
image. Bottom: a short period of processing sensor data into feature measurements is clipped out
of our experiments to depict the relations of RGB images and ToF depth images in practice.

2.6 Experiments

Experimental Setup

To benchmark the proposed solution, sensor data from a cusomer-grade mobile device are
recorderd for offline processing. Each collected dataset contains IMU measurements, RGB
images and depth images and is called a session below. To evaluate the proposed solution
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in low-texture environments, many sessions used in benchmarking are collected with abun-
dant structure planes and scarce point features (e.g white table and wall). Ground truth
trajectories of each session is obtained from VICON system [91] and hand-eye calibration is
performed so that trajectories from VICON and VIO estimates could be aligned.

Metrics and Experimental Results

The experiments of 6-DoF tracking in low-texture environments demonstrate that tracking
lost and drifts frequently occur in the estimated positions without the ToF plane measure-
ments. With the support of ToF depth sensor, our VIO system can obtain more accurate
estimates of device positions, as shown in Fig. 2.5.

This figure also depicts no significant changes on the estimated device orientations, be-
cause the integration of gyro measurements in our system enables high-quality approxima-
tions of device orientations for a limited time, even after the position tracking is lost.

The evaluation of 6-DoF tracking is based on the root mean squared error (RMSE) values
between the VIO estimated trajectory and the VICON ground truth trajectory for each of the
testing sessions. The two trajectories have been aligned and equally sampled by timestamps
before their comparison.

Global position RMSE is defined to compute the position errors of each pair of sample
points at the same timestamp from the two trajectories. It evaluates the degree of fitting
the two trajectories under the same coordinate frame.

The results in Table 2.1 show that the ToF planes effectively reduce the global position
RMSE by more than 80%. The original VIO system suffers from tracking lost and drift in
low-texture environments, resulting in unpredictably large errors (e.g. more than 10 meters)
in comparison with ground truth.

Local position RMSE is defined to compute the position transformations of consecutive
sample points at the same timestamp from the two trajectories. The global position RMSE
requires the temporal and 6-DoF spatial alignment of the two trajectories so that they can
be compared under the same coordinate frame, while this local position RMSE needs only
the temporal alignment. If a trajectory has a large global position RMSE value but a small
local position RMSE value, it means that the 6-DoF tracking encountered some drifts but
is not totally lost in most of the time, and could be fixed by 3D mapping if in a normally
textured environment.

Fig. 2.6 illustrates the example global position RMSE and local position RMSE. The
results in Table 2.2 show that the sessions with ToF planes effectively also reduce the local
position RMSE by 62.50%.

Our original VIO system has real-time performance on general smartphones. So the
computational cost of the plane extraction from ToF depth images and the additional filter
update by plane measurements in VIO has to be taken into account. A latency metric is
defined as the elapsed time from receiving an image to publishing the 6-DoF pose at the
exposure time of that image.
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Figure 2.5: The global errors of the 6-DoF poses between VICON and VIO trajectories under the
same coordinate frames in each comparison. The session (a) is captured from a normally textured
environment with enough visual features, while the sessions (b-d) are captured from low-texture
environments. We can observe that the global positions of the base cases in (b-d) could have errors
larger than 5 meters, which means the 6-DoF tracking has been drifted and no valid 6-DoF poses
are output.

According to the evaluation results in Table 2.3, the consuming time is increased by
approximately 17.4%. But the average latency 72.809ms on the testing sessions means that
this VIO system can still guarantee the real-time performance on general smartphones.

2.7 Conclusion

This chapter presents an effective solution of VIO degradation in low-texture environments.
This system adopts a ToF depth sensor to identify the planar structure, builds error models
for plane normal and distance, and applies the plane measurements to the filter update of
the system states. This work shows that plane states and measurements can be successfully
incorporated into an existing MSCKF framework, and a VIO system processing both visual



CHAPTER 2. PLANAR STRUCTURES 24

Global position RMSE

Session Original w/o ToF [m] Improved w ToF [m] Percentage

01 12.2 2.1 -82.79%
02 16.6 1.52 -90.84%
03 1.1 0.0508 -95.38%
04 2.53 2.84 12.25%
05 11.8 0.266 -97.75%
06 20.8 0.321 -98.46%
07 0.243 0.255 4.94%
08 5.52 1.12 -79.71%
09 0.239 0.195 -18.41%
10 0.708 0.716 1.13%
11 1.56 0.496 -68.21%

overall 6.664 0.898 -86.52%

Table 2.1: The Global position RMSE values in meters obtained respectively from the original
VIO without using ToF plane measurements and the improved VIO with ToF plane measurements.
Note that each session runs for at least 20 times to avoid the influence of randomness in our VIO
system, and the “overall” comes from the mean value of all the runs of all the sessions.

and plane feature measurements can keep the real-time performance of 6-DoF tracking on
smartphones equipped with a ToF depth sensor.

In the future, the ToF depth sensors will be finely calibrated instead of using the default
parameters. Plane measurements will also be applied to VIO initialization, so that this
system does not rely on a successfully initialized VIO system from a normally textured
environment. To alleviate the extra latency resulting from plane extraction, the VIO system
should be able to automatically perceive the surrounding textureness and enable the on-
demand depth sensor in low-texture environments.
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Local position RMSE

Session Original w/o ToF [m] Improved w ToF [m] Percentage

01 1.93 0.273 -85.85%
02 2.06 0.141 -93.16%
03 0.246 0.03 -87.80%
04 2.74 2.99 9.12%
05 1.26 0.125 -90.08%
06 4.11 0.124 -96.98%
07 0.429 0.445 3.73%
08 0.965 0.432 -55.23%
09 0.12 0.11 -8.33%
10 0.761 0.768 0.92%
11 0.367 0.183 -50.14%

overall 1.362 0.511 -62.50%

Table 2.2: The Local position RMSE values in meters obtained respectively from the original VIO
without ToF plane measurements and the improved VIO with ToF plane measurements. Note that
each session runs for at least 20 times to avoid the influence of randomness in our VIO system, and
the “overall” comes from the mean value of all the runs of all the sessions.

Latency

Session Original w/o ToF [ms] Improved w ToF [ms] Percentage

01 60.5 71.3 17.85%
02 59.6 71.7 20.30%
03 63.3 75.1 18.64%
04 60.5 75.5 24.79%
05 62.4 75.9 21.63%
06 61.7 75.2 21.88%
07 57.5 66.6 15.83%
08 61.4 69.6 13.36%
09 63.2 71.1 12.50%
10 66.9 74.9 11.96%
11 65.2 74.0 13.50%

overall 62.018 72.809 17.4%

Table 2.3: The latency in milliseconds from receiving an image to publishing the 6-DoF pose at the
timestamp of that image. Note that each session runs for at least 20 times to avoid the influence
of randomness in our VIO system, and the “overall” comes from the mean value of all the runs of
all the sessions.
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Figure 2.6: Top: the illustration of the global position RMSE and local position RMSE metrics in
our evaluations. Bottom: an example pair of VICON and VIO trajectories from a practical session.
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Chapter 3

Wireframe Matching

3.1 Introduction

3D reconstruction is an important task for many computer vision applications such as
robotics and Augmented Reality. While computing power continues to increase, the bur-
den of collecting data remains a fixed cost for the user. As such, many are looking towards
reducing the data required at runtime to generate accurate reconstructions. One method to
achieve this is to use large amounts of data, collected ahead of time, to provide a strong prior
on how data collected at runtime should be interpreted [56, 27, 58, 57, 114]. In the extreme
case this allows depth reconstruction from a single monocular image [22, 78, 77]. However
these approaches can be fragile to minor changes in camera parameters such as angle or
focal length [13, 28] and overcoming these issues may require an intractable amount of data.
Instead we may look to spend additional compute cycles to ensure we make the most out of
the data we collect at runtime, thereby reducing the need to collect redundant data.

Due to the inherent ambiguity in visual features, a significant amount of information is
discarded due to an inability to accurately associate these features across images. Graph
matching has been shown to be successful as a method for comparing images [80, 12, 59] or
matching features in images [89], however, due to the high compute cost, it has only been
applied in cases with relatively few (≈ 40) nodes. If realtime performance can be achieved,
this potentially provides us with a better way to associate structures in an image, and reduce
the amount of information lost.

In this chapter we combine the above approaches, utilizing a neural network trained to
identify important structures (ie. wireframes) in the scene [113], and then apply Graduated
Assignment (GA) graph matching [23] to match these structures between images, achieving
improved performance over baseline feature matching. We further show that our simplifi-
cation of GA is able to achieve realtime performance (30 FPS) on graphs with up to 300
nodes without a loss in accuracy compared to GA. We show that this approach can also be
applied to achieve improved performance in standard feature matching without the use of a
wireframe.
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3.2 Related Works

Wireframe Detection

A wireframe consists of a set of straight lines and their intersected junctions and is analo-
gous to line drawings commonly used in architecture design [35]. These lines and junctions
represent some of the most fundamental elements that can be used to infer the geometric
structure of the scene. They are also a compact representation, using far less information to
describe the scene than point clouds or occupancy grids.

Wireframes can be detected using a simple line segment detector [92] and the junctions
inferred through some simple heuristics [74]. Huang et al. [35] showed that these wireframes
can be more accurately detected using a neural network trained on a well labeled dataset.
Zhou et al. [113] further improved these results by switching to an end to end parsing scheme.
We utilize the publicly available network from Zhou et al. [113] in our results going forward,
however our method for wireframe matching is not dependent on the particular method of
wireframe extraction used. An example wireframe detection is shown in Figure 3.1. Notice
that the wireframe typically involves a sparse set of connections between junctions. That is,
a given junction only has a few lines associated with it and is only directly connected with
a small number of other junctions.

Figure 3.1: Example wireframe detection result overlayed on the RGB image (left) and overlayed
on a black image (right).

Graph Matching

As we discuss later, a wireframe can be considered a graph linking visual features in an
image. Therefore, it is reasonable to consider wireframe matching in images as a special
case of graph matching. Graph matching is a very difficult problem with many applications.
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Several different methods are employed that can achieve approximate solutions to the general
problem. The most basic of these is the Hungarian algorithm [47] which solves the assignment
problem given a measure of similarity of a variable to each assignment. This has been applied
by several groups to give an approximate solution to the graph matching problem under
various measures of similarity between nodes [39, 1, 38, 79].

While these algorithms can work well given a good similarity metric, the majority of
these algorithms are “local” algorithms meaning they can only compare the similarity of a
region around a given node. This has issues if there are repeated structures in the graph.
More advanced approaches looks to solve an optimization problem (shown in Section 3.4)
that maximizes the overall coherence of the graphs [23, 11, 110, 109, 50, 60, 89, 3]. Of these,
the Graduated Assignment algorithm (GA) [23] has been used extensively in computer vision
especially in matching image skeletons [80, 59, 12].

More recently, several algorithms have been shown to outperform GA [11, 110, 109, 60,
89]. Unfortunately these papers utilize an open source implementation [11] of GA that does
not have good performance under the parameters defined in the original paper. Specifically,
the open-source implementation performs a scaling on the similarity matrix that causes the
algorithm to take very small steps at each iteration. While we cannot re-implement all the
above algorithms, removing this scaling causes significant improvement to the GA algorithm
for tests made by Zhou and De la Torre [109], leaving it on par with the best algorithms
evaluated in the paper.

Feature Matching

The matching of wireframes can also be considered a special case of standard feature match-
ing where the visual similarity of either the lines or junctions is used to match these features
across images. Many methods exist that look at robustly describing the image patch around
the feature in a way that can be easily compared across images [9, 51, 76, 62, 92, 106].
These approaches establish a distance metric between features, such as Hamming distance
for binary descriptors [9]. A simple brute force matching approach is to match each feature
with its closest feature under this metric. This is what we term “standard feature matching”
in this chapter. While these methods work very well, these features suffer greatly in the
presence of repeated textures; a common occurrence in man-made environments.

Similar in spirit to our approach is that of graph cuts [7] which can be used to efficiently
find a labeling of pixels that minimizes an energy function. This has a wide variety of ap-
plications in the field of computer vision, but most relevant here is the application to stereo
feature matching [43] and multi-view feature matching [44]. Rather than matching sparse
features directly, these methods attempt to assign a depth or disparity label to each pixel.
This requires a known transformation between images, which we may not have at the time
of matching. It also requires a fixed number of disparity labels limiting the resolution of the
reconstruction. Note that, while graph cuts can solve a wide variety of energy minimiza-
tion problems, known as submodular functions [45], graph matching does not fall into this
category [89].
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3.3 Contribution

The contributions of this chapter are as follows:

1. We propose a simplification of the Graduated Assignment algorithm that, for certain
tasks, can achieve realtime performance without a significant reduction in accuracy.
Tasks involving 3D models, such as path planning and obstacle avoidance, often require
realtime performance but, until now, this type of matching algorithm has been outside
realtime performance for many scenarios.

2. We propose a novel wireframe matching algorithm using the simplified Graduated
Assignment that utilizes the visual similarity of junctions and lines. This represents
an important step towards automatic 3D wireframe reconstruction, which will enable
compact models that can be used in robotics and augmented reality.

3. We demonstrate the applicability of the simplified Graduated Assignment algorithm to
realtime feature matching. This allows the simplified Graduated Assignment algorithm
to be applied, and increase the performance of, a wide variety of tasks involving feature
matching such as simultaneous localization and mapping and 3d object tracking.

3.4 Problem Statement

A wireframe can easily be represented as a graph, where each junction represents a node
of the graph, and each line represents an edge. The converse is also an option, where each
line represents a node and each junction an edge. In either case, to optimize matching of
wireframes images, we need to define the metric to optimize over. The simplest metric is to
maximize matching nodes whose connected nodes are also connected in the corresponding
image. This is a standard graph matching problem:

max
M

Sgm(M) =

1n∑
a=1

2n∑
i=1

1n∑
b=a+1

2n∑
j=i+1

CabijMaiMbj, (3.1)

s.t. ∀a
∑2n

i=1 Mai ≤ 1, ∀i
∑1n

a=1 Mai ≤ 1, ∀aiMai ∈ {0, 1},

where Sgm is the similarity function we would like to maximize. If we denote the two
graphs 1G and 2G then 1n and 2n are the number of nodes in 1G and 2G respectively.
We can represent 1G ∈ R1n×1n and 2G ∈ R2n×2n as sparse matrices where 1Gab = 1 if
node a is connected to node b and 0 otherwise. 2Gij follows similarly. Cabij represents the
compatibility of these edges. That is:

Cabij =

{
1 1Gab

2Gij = 1

0 otherwise
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The Matrix M ∈ R1n×2n represents the correspondence of nodes, with Mai = 1 indicating
the matching of node a in 1G to node i in 2G. The inequality constraints in this optimization
enforce that a node in 1G can only be matched to at most one node in 2G. It is important to
note here that the matrix C need not be computed directly. If 1G and 2G are represented as
sparse matrixes, the similarity function Sgm can be computed very efficiently in O(1l2l) time
(where 1l and 2l are the number of edges in 1G and 2G respectively) by iterating through
the non-zero elements of 1G and 2G.

An alternative method to the above would be to additionally maximize the visual simi-
larity of the nodes:

max
M

Sagm(M) =

1n∑
a=1

2n∑
i=1

1n∑
b=a+1

2n∑
j=i+1

Cab,ijMaiMbj + α

1n∑
a=1

2n∑
i=1

Θnode
ai Mai, (3.2)

s.t. ∀a
∑2n

i=1 Mai ≤ 1, ∀i
∑1n

a=1 Mai ≤ 1, ∀aiMai ∈ {0, 1},

where Θnode
ai represents the visual similarity of the node a in 1G to node i in 2G. α is a

weighting parameter to trade off between the importance of the two tasks. This becomes an
attributed graph matching problem.

Lastly we could go further and maximize the visual similarity of the edges connecting
the nodes.

max
M

Sawgm(M) =

1n∑
a=1

2n∑
i=1

1n∑
b=a+1

2n∑
j=i+1

Θedge
abij MaiMbj + α

1n∑
a=1

2n∑
i=1

Θnode
ai Mai, (3.3)

s.t. ∀a
∑2n

i=1 Mai ≤ 1, ∀i
∑1n

a=1 Mai ≤ 1, ∀aiMai ∈ {0, 1},

where Θedge
abij represents the visual similarity of the edge between nodes a and b in 1G to

the edge between nodes i and j in 2G. Θedge
abij will only be non-zero when Cabij is non-zero.

Similar to Equation 3.1, we do not need to compute Θedge directly. Instead, we make the
sparse matrices 1G and 2G contain the index of an edge in a edge similarity matrix of size
1l x 2l and once again iterate through the non-zero elements of 1G and 2G. Equation 3.3 is
a form of attributed weighted graph matching.

As all of the above are generalizations of the inexact graph matching problem, they,
unfortunately, fall into the class of NP-Hard problems [89]. As such, we look to find an
approximate solution to this problem.

3.5 Algorithm Overview

Graduated Assignment is well described by Gold and Rangarajan [23] and has been shown
to be capable of providing an approximate solution to the problem above. While GA is
very efficient with a complexity of O(1l2l), where 1l and 2l are the number of edges in 1G



CHAPTER 3. WIREFRAME MATCHING 32

and 2G respectively, the number of iterations required can still induce a high compute cost.
We motivate a faster algorithm by looking at what reductions can be made to GA for the
wireframe matching task. In this section we describe our simplified solution as it compares to
the original algorithm. While the simplifications have the potential to reduce the accuracy of
the final matching, we attempt to motivate why this accuracy reduction should be minimal.
The solution here is described specifically as applied to Equation 3.3, however the solutions
for Equations 3.1 and 3.2 follow similarly.

First we define the energy function as the negative of the similarity function (Eawgm =
−Sawgm) and maximize the similarity function by minimizing the energy function. If we de-
fine an initial correspondence matrix M0 and take the first order Taylor Series approximation
of this energy function we get:

Eawgm(M) ≈ Eawgm(M0)−
1n∑
a=1

2n∑
i=1

Qai(M
0
ai −Mai) (3.4)

Qai = αΘnode
ai +

1n∑
b=a+1

2n∑
j=i+1

Θedge
abij M

0
bj (3.5)

From this we find that we can descend on our energy function by maximizing:

1n∑
a=1

2n∑
i=1

QaiMai (3.6)

By finding the M that maximizes (3.6) and repeatedly relinearizing about our new M we
can repeatedly descend on this function until we achieve a local optimum. This, however, is
still non-trivial due to the constraints we impose on M in Equation 3.3.

The Set Constraint

As with the original algorithm, to deal with the constraint Mai ∈ {0, 1}, we employ a
continuation method known as simulated annealing or graduated non-convexity [75]. This
involves relaxing the constraint to allow the elements of M to lie in the continuous range
[0, 1]. A control variable β is used to slowly push the values of M to either 0 or 1. This is
done by utilizing the softmax function:

x′i =
eβxi∑n
j=1 e

βxj
(3.7)

By increasing β over time we approximate our original constraint. In GA, multiple iterations
are used to descend on Eawgm(M) for each value of β. For several reasons, this may not be
necessary. First, we don’t actually need to converge for a given value of β, we just need to
get to a value of M where the next β still leaves us in a good local concavity. Second, we
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don’t necessarily need to converge to the minima at the last step either, as we can instead
perform a greedy assignment step to fully enforce the constraint Mai ∈ {0, 1}. This involves
taking the max of each row in M, setting it to 1, and setting all other elements of M to
0. Lastly, we note that as the graph becomes more sparse, the number of nonlinear terms
decreases, thus reducing the need for multiple iterations. As wireframes typically form very
sparse graphs, we propose that in performing a single descent step for each value of β we do
not sacrifice significant accuracy as compared to the iterative approach.

The Uniqueness Constraint

The inequality constraints on M (∀a
∑2n

i=1 Mai ≤ 1, ∀i
∑1n

a=1 Mai ≤ 1) enforce that at each
node in 1G is uniquely matched to, at most, a single node in 2G. One way to enforce
these constraints is to first note that if these were equality constraints (∀a

∑2n
i=1 Mai =

1, ∀i
∑1n

a=1 Mai = 1) and M were a square matrix then M would be what is known as a
doubly stochastic matrix. It is well known that any square matrix with all positive elements
can be converted into a doubly stochastic matrix via the Sinkhorn-Knopp algorithm [81].
This involves alternating between normalizing all rows and normalizing all columns until the
algorithm converges. Thus, if our matrix is square, we can simply add an additional row and
column of “slack variables”, and by applying the Sinkhorn-Knopp algorithm, we enforce our
inequality constraint on our original matrix.

GA uses the Sinkhorn-Knopp algorithm with slack variables to both enforce the unique-
ness constraints and determine outliers (the issue of non-square matrices is not addressed).
For image feature matching there exist many good methods for determining outliers. As
such, we propose only enforcing the constraints unilaterally and apply external outlier rejec-
tion to remove non-unique feature matches. It is noted by Gold and Rangarajan [23] that
performing only one iteration of the Sinkhorn-Knopp algorithm is identical to only enforcing
the constraint in one direction. This also removes the need for slack variables. It is worth
noting that each Sinkhorn-Knopp iteration is only O(1n2n) rather than O(1l2l). That is,
it’s complexity grows with the number of nodes in the graphs rather than the number of
edges. In a densely connected graph this change does not reduce the computational cost
significantly as the number of edges would far exceed the number of nodes. As mentioned
above, however, wireframes in a man-made environment are likely to be very sparse meaning
that this step makes up a significant part of the algorithm’s compute cost.

Additional Parameters

The recommended parameters for the original GA, given by Gold and Rangarajan [23], are:
the initial annealing parameter β0 = 0.5, the final annealing parameter βf = 10, the rate of
increase βr = 1.075, the maximum number of descent iterations for a given β tmax

2 = 4, and
the maximum number of Sinkhorn-Knopp iterations for each descent tmax

3 = 30. There are
several changes to these parameters for our algorithm.
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Figure 3.2: Effect of each of the simplifications from section 3.5 on the average runtime of wireframe
matching on fr3. sGA is the full simplified algorithm with all the changes applied. “A” are
the reductions proposed in the “Set Constraint” subsection. “B” are the reductions proposed
in the “Uniqueness Constraint” subsection. “C” are the reductions proposed in the “Additional
Parameters” subsection.

First, both t2 and t3 are effectively set to 1 due to the reductions proposed above. Second,
we note that the rate of our simulated annealing algorithm is typically intended to be small
to attempt to push us slowly towards a global optimum. If we accept that we are only
looking to improve on our energy function and not necessarily achieve a global optimum,
then we can increase this parameter significantly as compared to the original algorithm.
Thus we increase the parameter βr to 1.5. Lastly for our work, we initialize M to the node
similarity matrix Θnode. As we are not starting from an entirely random initialization of M,
we increase β0 slightly to 1.0.

The full simplified GA is shown in Algorithm 1. The recommended parameters are the
following: β0 = 1, βf = 10, βr = 1.5.

These changes together have the effect of reducing the total worst case number of
Sinkhorn-Knopp iterations (which are O(1n2n)) by a factor of 1000, and the worst case
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number descent steps (which are O(1l2l)) by a factor of 30 as compared to the original GA
with recommended parameters. The effect of each of these changes on runtime is shown in
Figure 3.2.

Algorithm 1: Simplified Graduated Assignment For AWGM

β ← β0
M← Θnode

while β < βf do
∀a ∈ 1n∀i ∈ 2n
Qai ← αΘnode

ai +
∑1n

b=a+1

∑2n
j=i+1 Θedge

abij M
0
bj

∀a ∈ 1n∀i ∈ 2n
Mai ← eβQai

∀a ∈ 1n∀i ∈ 2n
M′

ai ← Mai∑2n+1
j=0 Maj

∀a ∈ 1n∀i ∈ 2n
Mai ← M′

ai∑1n+1
b=0 M′

bi

β ← β ∗ βr
end
M←greedy assignment(M)

3.6 Applications

In this chapter we look at two applications of our simplified GA. While our primary interest
is in the matching of image wireframes, we understand that the cost of wireframe extraction
(when specialized hardware is unavailable) would likely outweigh the benefits of having a
realtime matching algorithm. As such, we are also interested in the applicability of the
simplified GA to standard feature matching. The use in standard feature matching (for
which we use ORB features), would allow this algorithm to potentially improve a wide
variety of algorithms that use feature matching in their pipeline. These algorithms include
Simultaneous Localization And Mapping and 3D object tracking.

Wireframe Matching

We utilize the publicly available, pretrained network from Zhou et al. [113] for wireframe
extraction. In this network the number of detected junctions is set to 250 for each image,
and we keep all lines with a score of 0.9 or greater up to a maximum of 2500 lines. While the
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network always produces 250 junctions, it is possible for these junctions to be in identical
locations and so we remove duplicate junctions before proceeding. In order to support visual
feature matching, we extract BREIF [9] descriptors around each junction, and binary line
descriptors [92, 106] around each line. While either junctions or lines can be used as the
nodes, we decided to use junctions as the nodes of the graph. The similarity matrix Θnode ∈
R1n×2n is therefore computed by first finding the Hamming distance of the BRIEF descriptors
from the first image to those from the second image. We truncate the distance to a maximum
value dmax = 50 for easier matrix scaling. This however gives us a measure of distance rather
than a measure of similarity, and so we transform the matrix by: Θnode

ai = (dmax−Γnode
ai )/dmax

where Γnode is the matrix of descriptor distances. The reduced (1l x 2l) line similarity matrix
follows similarly. As both the line and feature matches are similarly scaled and measure
similar information, we set the α parameter to 1.

ORB Feature Matching

For our standard feature matching tests, we first detect a maximum of 300 ORB [76] features
in each image. To convert our set of features in each image into a graph, we add an edge
between any two features whose distance in image space is less that τ pixels. We then
optimize using the energy function defined in Equation 3.2. This has the effect of optimizing
under the premise that features that are close in one image, are likely to be close in the second
image. This is true whenever the scene is relatively static and the features are far from the
image plane compared to the translation between the two images. For our experiments
using ORB features we set τ to 10 pixels on 640x480 resolution images and only consider
matches whose hamming distance is less than 50. We do not compute edge similarity for
this experiment, however many others have proposed a wide variety of similarity measures
[89, 110, 11], that could also be used in practice.

3.7 Experiments

We compare the two versions of Graduated Assignment discussed in this chapter. We denote
the original method as “GA”, and our simplified GA as “sGA”. Our baseline comparison in
both of the above cases is standard brute force feature matching (denoted “BF”). As this does
not use any line information we compare against two versions of the above algorithms. The
first which we denote with the suffix “ Node”, only uses node similarity (solving Equation
3.2 rather than 3.3). The suffix “ Both” denotes the use of both node and edge similarity.
As we do not compute edge similarity for ORB feature matching, all the algorithms used in
that experiment use only node similarity.

For GA we employ a slight deviation from the algorithm described by Gold and Ran-
garajan [23], which applies the Sinkhorn-Knopp algorithm directly despite that, in many
cases, the number of rows and columns is not equal. Though they achieve good performance
in practice, a rectangular matrix cannot simultaneously have each it’s columns and each of
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its rows sum to 1. To solve this, we employ a simple modification to the Sinkhorn-Knopp
algorithm. Instead of normalizing all rows and columns, we normalize all rows and columns
except the one row and column added as slack variables. This results in a matrix where all
rows and all columns except the added row and column sum to one. In our experiments this
achieves significantly better performance on both square and non-square matrices.

In addition we looked to compare against the the Dual Decomposition algorithm proposed
by Torresani et al. [89]. We found, however, that running Dual Decomposition took several
hours for a single image. Instead we turn to the next highest performing algorithm evaluated
by Torresani et al. [89]: Max-Product Belief Propagation (denoted “BP”). Here we trans-
form the problem by removing the inequality constraints in Equation 3.3 and instead add
them as a large cost term. Thus the function we maximize via Belief Propagation is as follows:

max
M

Sbp(M) =

1n∑
a=1

2n∑
i=1

1n∑
b=a+1

2n∑
j=i+1

Θedge
abij MaiMbj

+ α

1n∑
a=1

2n∑
i=1

Θnode
ai Mai − η

1n∑
a=1

2n∑
i=1

2n∑
j=i+1

MaiMaj

− η
1n∑
a=1

1n∑
b=a+1

2n∑
i=1

MaiMbi, (3.8)

s.t. ∀aiMai ∈ {0, 1},

where η is a large constant. As stated by Torresani et al. [89], this problem is equivalent
to Equation 3.3, however this formulation introduces a large number terms to the energy
minimization problem.

Dataset

We evaluate our algorithms on two scenes from the TUM [82] dataset: the “fr2/large no loop”
(which we denote fr2) and “fr3/long office household” (which we denote fr3) scenes. These
scenes are indoor man-made structured environments, where we feel that wireframe recon-
struction would be applicable. For each scene we sample two neighboring images from every
10 images. This results in a total of 335 test pairs for the first scene and 258 for the second.
Notably, the rgb images in fr3 are rectified to have no lens distortion. The fr2 images, how-
ever, are not rectified but the distortion parameters are known. As the TUM datasets have
ground truth trajectory information, we can compute the ground truth Fundamental Matrix
and count the number of inliers whose Symmetric Epipolar Distance falls below a threshold.
While this is not an exact measure of correct matches, it allows us to estimate the average
improvement in the number of correct matches over the baseline.
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fr2 Wireframe Matching Results

Algorithm % Improv. Avg. Improv. Avg. FPS
sGA Node 32.74% 12.60 267.52
sGA Both 39.26% 15.24 259.74
GA Node 34.74% 13.46 3.26
GA Both 39.50% 15.32 3.34
BP Node 8.84% 3.50 0.15
BP Both 25.96% 10.39 0.15

fr3 Wireframe Matching Results

Algorithm % Improv. Avg. Improv. Avg. FPS
sGA Node 26.62% 14.77 235.95
sGA Both 31.70% 17.43 228.63
GA Node 28.12% 15.64 2.81
GA Both 31.91% 17.61 2.89
BP Node 6.28% 3.85 0.13
BP Both 20.33% 11.75 0.13

Table 3.1: Wireframe matching results in two scenes from the TUM dataset

3.8 Results and Discussion

For each algorithm the average percent improvement is calculated as: 1
K

∑K
k=1

ιk−ι#k
ι#k

where

K is the number of images in the scene, ιk is the number of inliers found by the algorithm for
image k, and ι#k is the number of inliers found by the baseline algorithm. Dividing by the
number of inliers found in the baseline algorithm is an attempt to normalize for the difficulty
of the matching, however for reference we also present the non-normalized results calculated
as 1

K

∑K
k=1 ιk − ι

#
k . To remove scenes with heavy motion blur or insufficient visual texture,

we do not consider images where the brute force matching method fails to find at least 10
inliers.

The results for Wireframe matching are shown in Table 3.1. For fr2, the brute force
matching algorithm correctly matched an average of 44 nodes out of an average of 117 nodes
detected in each image. For fr3, the brute force matching algorithm correctly matched an
average of 62 nodes out of an average of 127 nodes detected in each image. We see that, in
both scenes, sGA has near identical performance to GA, increasing the number of correctly
matched features by over 25% when using only node similarity and over 30% when using
both node and edge similarity. We see that the BP algorithm takes significantly longer than
both sGA and GA and only achieves a 20-25% improvement, even when using both node
and edge similarity. The increased runtime is likely due to the large number of terms added
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by transforming the uniqueness constraints.

Figure 3.3: Effect of increasing the time between images on fr3. Offset indicates the number of
images between the compared images in the sequence. We see that the total number of inliers
(right) decreases, but the percent improvement over the baseline (left) is maintained.

We further tested to see if these results would hold as the rotation and translation between
the images increased. For this we performed a similar sampling as described in section 3.7
except, instead of neighboring images, we chose images at an increased offset apart. As
shown in Figure 3.3, the percent improvement does not change significantly as the offset is
increased. This hints that, while our features’ similarity matrix becomes less accurate as
the offset increases, the wireframe extraction remains accurate, and therefore continues to
enable improvement over the baseline. The small drop in accuracy by sGA Node at the 16
image offset may indicate a greater susceptibility of sGA to noise in the similarity matrices
than GA.

The results for ORB feature matching are shown in Table 3.2. For fr2, the brute force
matching algorithm correctly matched an average of 132 nodes out of an average of 287 nodes
detected in each image. For fr3, the brute force matching algorithm correctly matched an
average of 175 nodes out of an average of 297 nodes detected in each image. In this experiment
we see that sGA still achieves a 15% improvement, with the standard GA only giving a
slightly better improvement. As the graph for ORB feature matching is somewhat less sparse
than the wireframe case, this slight improvement may indicate that the additional iterations
of GA are more important when there are more non-linear terms in the optimization problem.
BP however fails to provide any benefit in this case. This could indicate a fragility to noise
in the graph, or an inability to scale to large numbers of nodes.
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fr2 ORB Matching Results

Algorithm % Improv. Avg. Improv. Avg. FPS
sGA 23.05% 20.34 31.78
GA 24.08% 22.81 0.55
BP 1.05% -4.95 0.01

fr3 ORB Matching Results

Algorithm % Improv. Avg. Improv. Avg. FPS
sGA 15.51% 21.87 36.52
GA 17.49% 24.67 0.57
BP -5.53% -11.75 0.01

Table 3.2: ORB matching results in two scenes from the TUM dataset

3.9 Conclusion

We have demonstrated a realtime algorithm for the matching of image wireframes that
achieves significant improvement over brute force feature matching. We have further shown
how this simplification of the Graduated Assignment algorithm can be applied to the stan-
dard feature matching problem. In the future we plan to look at how this algorithm could
be applied to utilize other types of structure in a scene. For example, this algorithm could
be used to match semantic object labels in sequences of images. Additionally we would like
to look into utilizing a GPU for parallelization of both the standard Graduated Assignment
algorithm as well as this simplified algorithm.
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Chapter 4

Applications of Wireframe Matching
to Multi-Camera Rigs

4.1 Introduction

There have been many impressive results in both Simultaneous Localization and Mapping
(SLAM) and 3D reconstruction using monocular camera systems. As we move towards a
SLAM and 3D reconstruction system that can operate continuously and ubiquitously, it may
be necessary to introduce multiple cameras to increase reliability. For example monocular
camera systems rely on an inertial measurement unit (IMU) to determine the scale of the
scene during 3D reconstruction. Unfortunately, due to the dependence of the IMU bias
parameters on the state, the true scale is inherently unobservable [30]. Stereo and multi-
camera rigs have been used very successfully to improve robustness and add reliable scale to
mapping and reconstruction [66, 73, 83, 41, 52].

The goal of wireframe reconstruction is to enable robust and compact reconstructions of
structured environments. As we move towards this goal we can look towards multi-camera
rigs to present a reliable method for generating accurate 3D structures. In the previous
chapter, we showed that by utilizing a modified graduated assignment algorithm we can
improve feature and wireframe matching in monocular camera systems. In this chapter
we present several methods for utilizing multiple cameras for matching wireframes across
camera rigs. We present a method for merging multiple wireframe estimates from a camera
rig into a single wireframe where the 3D positions of some nodes can be computed. We then
improve the matching between rigs by encouraging features observed by multiple cameras
within a new camera rig to be matched to the same feature in this merged wireframe. We
further adapt the graduated assignment algorithm to the Iterative Closest Point algorithm for
utilizing 3D constraints induced by the merged wireframe for feature matching and transform
estimation. Lastly, we demonstrate how visual and geometric features can be combined to
further improve matching. The quality of matching induced by each algorithm is evaluated
on realistic image sequences.
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These systems together present the basis of a multi-camera wireframe reconstruction
method.

4.2 Related Work

3D Wireframe Detection

A wireframe consists of a set of straight lines and their intersected junctions that make up
the structural components of the scene [35]. If the 3D positions of these lines and junctions
can be estimated, the wireframe could represent a compact model of the world. Zhou et al.
[114] extend the work of Huang et al. [35] to additionally predict the 3D positions of these
lines and junctions under the Manhattan assumption. A related problem is that of room
layout estimation which only estimates the lines and junctions corresponding to the walls
and floors of the scene. Several networks estimate room layout from a single RGB image
[115, 99, 100]. Both Zou et al. [115] and Yang et al. [99] employ a Manhattan assumption,
while Yang et al. [100] employ a soft Manhattan assumption.

To our knowledge, this work presented in this thesis represents the first method for
utilizing multiple cameras for 3D wireframe estimation and the first method to perform 3D
wireframe estimation without a Manhattan assumption.

Multi-Camera SLAM

Multi-camera rigs have been used to great success in visual localization and mapping [66,
73, 87, 83, 41, 52]. Many of these algorithms do not detect feature matches between over-
lapping cameras [73, 87], instead relying on outlier rejection to prevent features from being
matched to incorrectly in one or more cameras. Those that do compute matches between
overlapping cameras typically only do so for the 3D constraints gained from this [66, 52] or
to additionally remove outliers [83, 41]. Both these methods discard the additional visual
descriptors that result from having seen the feature from multiple views. In this work, we
present a novel algorithm for multi-camera feature matching that is able to utilize not only
the visual information of multiple descriptors, but also the connectivity relationships that
results from wireframe detection in multiple cameras.

Multi-Graph Matching

As discussed in the previous chapter, a wireframe can be considered a graph linking visual
features in an image. Therefore, it is reasonable to consider the problem of matching multiple
sets of wireframe detections as a multiple graph matching problem. Enforcing that matched
nodes in each pair of graphs are consistently matched to the same node in every other graph
is known as cycle consistency. Several papers exist that attempt to match multiple graphs
while maintaining cycle consistency [98, 85, 97, 71], however the computational complexity
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of these algorithms exceeds what is attainable in realtime for the number of nodes required
for 3D reconstruction. The work of Zhou et al. [112] is able to operate in realtime, however
it only optimizes for cycle consistency after pairwise matchings are complete, and still incurs
higher computational complexity than our algorithm. Our work is a subset of the multi-
graph matching problem where we seek to match multiple graphs to a single “keyframe”
graph and only enforce cycle consistency in cycles involving the “keyframe” graph. Further,
we fix matches between graph pairs where neither graph is the keyframe graph. This is
because we can remove outlier matches between cameras in the rig due to the known camera
extrinsics. This allows us to develop an algorithm that is linear in the number of cameras
and linear in the number of overlaps (though the number of overlaps may be quadratic in the
number of cameras in the rig) allowing the efficient matching of multiple graphs in realtime.

Iterative Closest Point

The use of multiple appropriately placed cameras allows us to immediately triangulate points
in 3D, this enables the possibility of using 3D information rather than visual information
for computing correspondences between camera rigs. One of the most common methods for
this is through the Iterative Closest Point (ICP) algorithm [5]. Significant amounts of work
have been done relating to ICP. Bouaziz et al. [6] introduce a set of robust cost functions
are developed for the Iterative Closest Point algorithm that show increase robustness in the
presence of outliers. Similar to these cost functions we utilize the Cauchy-loss to robustify
our result. Tykkälä et al. [90] utilize a depth cost term is combined with a visual term
to form an ICP error function, however no results are given with regards to the accuracy
of this method. Luck et al. [63] use a stochastic simulated annealing method alongside a
robust cost function to allow the algorithm to escape local minima. This method involves
randomly searching for a new point outside of the local minima, which can be very slow if
minima are far. In our work we apply a deterministic annealing strategy to Iterative Closest
Point through the graduated assignment algorithm. This allows us to incorporate wireframe
information, but also enables the application of simulated annealing to K-nearest neighbors
Iterative Closest Point. Most similar to our approach here is that of Zhou et al. [109] which
performs alternating minimization between graph matching and 2D transform estimation.
In our work we go beyond this to perform SE(3) transform estimation under determinis-
tic annealing in addition to the standard matching-transform alternation and demonstrate
improved accuracy as a result. We also demonstrate how this can be used to fuse both
geometric and visual information into a single optimization problem. An example of this
iterative matching method is shown in 4.1.

4.3 Contribution

The contributions of this chapter are as follows:

1. An algorithm for combining multiple image wireframes into a single wireframe estimate.
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2. An algorithm for efficiently incorporating matches across overlapping images into the
wireframe matching problem to improve matching between camera rigs.

3. An extension of wireframe matching to the Iterative Closest Point (ICP) algorithm
that is able to significantly improve matching between 3D points.

4. A joint matching and transform estimation algorithm that incorporates both visual
and 3D constraints to improve feature matching.

Figure 4.1: A visualization of the Iterative Wireframe Matching procedure. (red) The projection of
a 3D wireframe onto the current image using the current transform estimate. (black) The observed
wireframe for the current image. As the transform is updated with each iteration, the estimated
wireframe more closely aligns with the observed wireframe.

4.4 Problem Statement

In this chapter we demonstrate how to match wireframe detections across rigs consisting of
multiple cameras. To do this we first create a single estimated wireframe from the multiple
cameras in a single camera rig. We will call this our “keyframe wireframe”. We then attempt
to compute a matching from a new camera rig to this keyframe wireframe. This is similar
to the use of keyframe images in SLAM [42, 52, 102], and also to the use of a virtual “true”
graph in multi-graph matching [112, 71]. As in the previous chapter, we will represent our
wireframes as graphs, and attempt to match a set of graphs to our keyframe graph. We
denote the keyframe graph as keyG. It contains keyn nodes. Each wireframe in our camera
rig corresponds to a graph 1G...mG where m is the number of cameras in the rig. Each
graph for the camera rig has 1n...mn nodes respectively. We can represent each graph as a
sparse matrix where Gab = 1 if node a is connected to node b and 0 otherwise. We then
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seek to find a matching between nodes in graphs 1G...mG to corresponding nodes in keyG.
A basic form of this problem would look like:

max
1M...mM

Spair(1M...mM) =
m∑
c=1

cn∑
a=1

keyn∑
i=1

cn∑
b=a+1

keyn∑
j=i+1

cCabij
cMai

cMbj+αvis

m∑
c=1

cn∑
a=1

keyn∑
i=1

cΘnode
ai

cMai

(4.1)

s.t. ∀ca
∑n

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
The Matrices 1M...mM represent the correspondence of nodes, with cMai = 1 indicating the
matching of node a in cG to node i in keyG. cΘnode

ai represents the visual similarity of the
node a in cG to node i in keyG. cCabij represents the edge compatibility of the edge between
nodes a and b in cG to the edge between nodes i and j in keyG. That is:

cCabij =

{
1 cGab

keyGij = 1

0 otherwise

αvis is a weighting parameter to trade off between the importance of visual node similarity
versus edge compatability. This solves for the pairwise matching between each cG and the
keyframe graph keyG and can be solved in O(mτGkeyG) time, where τGkeyG is the time it
takes to match a single graph cG to keyG. Due to noise in our similarity matrices and noise
in the graphs themselves, this may not provide the true matching for each wireframe. As
such, we can expect to do better by incorporating more information into the problem.

If we know that certain cameras in the camera rig overlap, then we can expect that certain
nodes in these wireframes should correspond to the same node in the keyframe wireframe
keyG. This is known as cycle consistency. We define the set P to contain pairs of overlapping
cameras. Here we assume we can compute known correspondence matrices between graphs
in overlapping cameras. This assumption arises from the assumption that we have a known
extrinsic calibration between cameras in the rig. This allows us perform outlier rejection on
the matching computed across these cameras. The matching before outlier rejection can be
computed by any method, however here we choose to use the pairwise wireframe matching
approach from the previous chapter. Computing these known correspondence matrices takes
O(pτGG) time, where p is the number of overlapping camera pairs and τGG is the time it
takes to match a single graph dG to its overlapping partner eG. As a result, we can optimize
for cycle consistency by optimizing the following:

max
1M...mM

Scycle(1M...mM) =
m∑
c=1

cn∑
a=1

keyn∑
i=1

cn∑
b=a+1

keyn∑
j=i+1

cCabij
cMai

cMbj+αvis

m∑
c=1

cn∑
a=1

keyn∑
i=1

cΘnode
ai

cMai

+ γ
∑
{e,f}∈P

en∑
a=1

fn∑
b=1

keyn∑
i=1

efMab
eMai

fMbi (4.2)
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s.t. ∀ca
∑n

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
efM is the correspondence matrix resulting from the pairwise matching of overlapping cam-
eras e and f and γ is a weighting parameter. Because efM is sparse, this computation
only adds O(pnkeyn) computation. For wireframe matching, where the number of nodes is
relatively large, and the number of overlapping cameras in a rig is typically relatively small,
this adds additional computation on the same order as our original problem, which (if solved
with graduated assignment) is O(mkeyll) with keyl >= keyn and l >= n.

Additionally, the use of overlapping multi-camera rigs, allows us to compute the relative
3D position of many of the nodes in our wireframe. This allows us to use an estimated
transform between the current camera rig, and our keyframe camera rig, to compute distances
between wireframe nodes. In cases where visual information is inaccurate (for example in
the case of a light source attached to our camera causing visual features to change as the
camera moves), this geometric distance metric could subsume our visual distance metric. By
including the estimated transform in our optimization, we can iteratively compute both the
wireframe matching and the estimated transform between the camera rigs. The resulting
problem has the form:

max
T,1M...mM

Sicpgm(T, 1M...mM) =
m∑
c=1

cn∑
a=1

keyn∑
i=1

cn∑
b=a+1

keyn∑
j=i+1

cCabij
cMai

cMbj

+ αgeo

m∑
c=1

cn∑
a=1

keyn∑
i=1

cδnodeai (T) cMai (4.3)

s.t. T ∈ SE(3) ∀ca
∑n

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
T is the SE(3) transformation representing the pose of the new camera rig relative to the
keyframe, parameterized as a 4 by 4 transformation matrix. cδnodeai is a measure of similarity
between the 3D node position in the keyframe wireframe and the node position in camera
c. This can be either a 3D-2D similarity measure, using the projection of the keyframe node
onto camera c and the 2D position of the corresponding node in cG, or a 3D-3D similarity
measure, using the 3D position of the keyframe node and computing the 3D position of nodes
in the new camera rig using overlapping cameras.

If we remove the terms involving edge consistency from Equation 4.3 we are left with:

max
T,1M...mM

Sicp(T, 1M...mM) = αgeo

m∑
c=1

cn∑
a=1

keyn∑
i=1

cδnodeai (T) cMai (4.4)

s.t. T ∈ SE(3) ∀ca
∑n

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
which is a standard problem in robotics, typically solved via the Iterative Closest Point
algorithm [5] and this is where we will look for inspiration on solving Equation 4.3.

Finally we can combine all of the above together by incorporating both geometric and
visual information:
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max
T,1M...mM

Sjoint(T, 1M...mM) =
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s.t. T ∈ SE(3) ∀ca
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i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
While this requires both visual and geometric similarity to be computed, the fusion of infor-
mation should result in a more accurate matching.

In the following sections we will describe how compute a 3D wireframe from a single
camera rig and how to solve each of the above problems using the sGA algorithm presented
in the previous chapter. We will also examine the impact each of these changes makes on
the accuracy of our results.

4.5 Computing 3D Wireframes

This section describes how to combine multiple wireframes from a given camera rig into
a single wireframe estimate. That is given a set of wireframe graphs 1G...mG our goal is
to merge these graphs into a single estimated wireframe graph keyG. keyG represents the
keyframe wireframe for which the cameras in a new camera rig will be matched to. The
first step to computing keyG is to compute correspondence matrices between wireframes in
overlapping camera pairs. While various matching techniques can be used, we utilize the sGA
method from the previous chapter. The next step is to perform outlier rejection. For this
we form the fundamental matrix from the known camera extrinsics and remove all matches
with a Symmetric Epipolar Distance greater than a threshold. This gives us a good estimate
of the correspondences between overlapping cameras.

To build our graph from these correspondences, all nodes from all cameras are added
to a single graph. At this point, the graph contains duplicates of corresponding nodes. To
remove these we iteratively merge nodes that correspond, keeping track of all cameras they
were observed in. The next step is to compute the connectivity matrix. This is done in a
manner similar to occupancy mapping [64]. Each entry in the matrix will contain the log-
odds estimate of occupancy. For each pair of nodes in each wireframe graph cG, the entry
in the connectivity matrix will be incremented by the log of the observation probability if
the nodes are connected in cG or decremented by the log of the observation probability if
the nodes are not connected in cG. All entries with a log-odds greater than a threshold
are assumed to be connected, and below disconnected. This process is shown in Figure 4.2.
Finally the 3D position of each node with more than a given threshold of observations is
computed via least squares triangulation.
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Figure 4.2: Process of merging multiple wireframe estimates. The individual wireframe estimates
are shown in A. Solid lines represent nodes that are observed to be connected. In B all the nodes are
added to a single wireframe. In C, matched nodes are merged, retaining connectivity information
and a pointer to each observation. A dashed line is added between nodes which were observed
to be unconnected in an image. In D, the connectivity information is merged. Note that where
nodes were observed to be both connected and unconnected the observations are combined using
log-odds and compared against a threshold, in this case resulting in the nodes being unconnected.
The connectivity to a node with only one observation remains unchanged.

4.6 Multiple Wireframes and Cycle Consistency

The matching of multiple wireframes to a keyframe wireframe (solving Equation 4.1) proceeds
similarly to the sGA method described in the previous chapter. As this problem is separable
into multiple independent optimization problems, sGA can be applied independently to
match each graph cG to the keyframe graph keyG. However, this separation does not hold
when cycle consistency is taken into account. Instead the correspondence matrices must be
solved for together in a single application of sGA. Despite this, only minor modifications to
the sGA algorithm are required.

As before, we define the energy function as the negative of the similarity function (Ecycle =
−Scycle) and maximize the similarity function by minimizing the energy function. If we define
an initial set of correspondence matrices as 1M0...mM0 and take the first order Taylor Series
approximation of this energy function we get:
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Ecycle(1M...mM) ≈ Ecycle(1M0...mM0)−
m∑
c=1

cn∑
a=1

keyn∑
i=1

cQai(
cM0

ai −c Mai) (4.6)

cQai = αvis
cΘnode

ai +

keyn∑
b=a+1

cn∑
j=i+1

cCabij
cM0

bj + γ
∑

{{e,f}∈P |e=c}

fn∑
b=1

keyn∑
i=1

efMab
fM0

bi

(4.7)

s.t. ∀ca
∑cn

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
From this we find that we can descend on our energy function by maximizing:

m∑
c=1

keyn∑
a=1

cn∑
i=1

cQai
cMai (4.8)

s.t. ∀ca
∑cn

i=1
cMai ≤ 1, ∀ci

∑keyn
a=1

cMai ≤ 1, ∀cai cMai ∈ {0, 1}
The constraints on this optimization are treated identically to sGA. A single β parameter

is used across all correspondence matrices, however normalization is performed independently
across each matrix. In addition the sGA algorithm from the previous chapter is modified
slightly to an additive annealing parameter update rather than a multiplicative one. That
is, at each iteration β is updated as β = β + βr rather than β = β ∗ βr as this was generally
shown to give better results for less computation. We denote algorithms in this chapter that
optimize for cycle consistency with the suffix “-cy”. The full algorithm, “sGA-cy”, is shown
in Algorithm 2.

4.7 Iterative Wireframe Matching

The triangulation of 3D points in the keyframe wireframe allows us to to perform wireframe
matching using geometric distances between nodes. We compute this distance as the distance
between the projection of the 3D points onto our camera rig and the 2D detected node
positions. As our sGA algorithm uses a similarity metric, rather than a distance metric,
we will convert this distance into a similarity metric by subracting the distance from a max
distance and normalizing the values. Thus our final geometric similarity metric between
node a in cG and node i in keyG has the form:

cδnodeai = min(0, (dgeomax − ||(cza −c h(cTextTpi))||2/dgeomax) (4.9)

where ch(p) is the camera projection function incorporating the camera intrinsic matrix and
distortion parameters. pi is the triangulated 3D position of node i in keyG represented in
homogeneous coordinates. cza is the 2D position of node a in cG. cText ∈ SE(3) is the
known camera extrinsic for camera c, parameterized as a 4 by 4 transformation matrix. dgeomax
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Algorithm 2: Simplified Graduated Assignment For Multiple Wireframes with
Cycle Consistency

β ← β0
∀c ∈ m:
cM← cΘnode

while β < βf do
∀c ∈ m∀a ∈ keyn∀i ∈ n:
cQai ← αvis

cΘnode
ai +

∑keyn
b=a+1

∑cn
j=i+1

cCabij
cM0

bj

+γ
∑
{{e,f}∈P |e=c}

∑fn
b=1

∑keyn
i=1

efMab
fM0

bi

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cMai ← eβ

cQai

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cM′

ai ←
cMai∑n+1

j=0
cMaj

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cMai ←

cM′
ai∑keyn+1

b=0
cM′

bi

β ← β + βr
end
∀c ∈ m
cM←greedy assignment(cM)

is the maximum allowed distance. For those nodes where no 3D information is computed,
we could chose to remove these nodes from the optimization, however this means that we
have no chance of correctly matching these nodes. Instead, if a 3D position could not be
found for node i in keyG, cδnodeai is set to 0 ∀ca. This enables us to still use the connectivity
matrix to attempt to match these nodes.

In solving Equation 4.3, we draw inspiration from the Iterative Closest Point algorithm
[5]. The Iterative Closest Point algorithm alternates between computing a matching between
a series of points, and computing the least squares estimate of the transform given that
matching. A basic form of this would be to alternate between using sGA to compute a
matching using the given transform and computing the transform given this matching. This
would be a direct application of ICP to multiple wireframe matching and is similar to the
method proposed by Zhou et al. [109]. In this chapter we denote this algorithm “ICP-sGA”.

Simplified Graduated Assignment, however, is already an iterative algorithm, and so it
may be considered to perform transform estimation at each iteration of sGA. That is, for
each value of β we update both the matrices 1M...mM and the transform estimate T, using
our current estimates of 1M...mM as weighted correspondences for transform estimation. We
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denote this algorithm “sGA-tr”. This method is akin to a weighted K-Nearest-Neighbors
version of ICP where K is reduced as the number of iterations increases. This method applies
some of the benefits of graduated non-convexity to the transform estimation [24] but also
introduces some issues. At the beginning of sGA, when β is close to 0, all the elements of our
correspondence matrices are nearly identical. This guarantees that our transform estimation
will contain an extremely large number of outliers, which is known to give poor performance.
Instead, we introduce a threshold tK and only perform transform estimation using those
correspondences with weight greater than this threshold. Due to the normalization applied
during sGA, this effectively restricts K to a maximum value of 1/tk. As a result, transform
estimation will not be performed until β is large enough. To further increase robustness we
utilize a robust cauchy-loss function and require that a minimum number of correspondences
tn must have a weight greater than tk before transform estimation can be performed. Thus,
our transform estimation takes the form:

If (
∑m

c=1

∑cn
a=1

∑keyn
i=1 1(cMai > tk)) > tn:

min
T
Etrans(T) =

m∑
c=1

cn∑
a=1

keyn∑
i=1

log(1− 1(cMai > tk)
cδnodeai (T) cMai) (4.10)

s.t. T ∈ SE(3)

This problem is minimized using iterative linear approximation descent (Levenberg-
Marquardt). Note that the optimization over T must be handled carefully as T is rep-
resented as a 4 by 4 matrix but the space of SE(3) only has 6 degrees of freedom [67]. We
perform this minimization in C++ using Ceres-Solver [2].

It turns out that a combination of these methods outperforms either method individually.
In this combined method, we include the transformation estimation in the sGA loop, use
the final matching to perform another transform estimation step, and then repeat sGA from
scratch using this new transform estimate. This is repeated until convergence or a maximum
number of iterations is reached. This joint method we term “Iterative Wireframe Matching”
or “IWM”. The full algorithm is shown in Aglorithm 3 and a visualization of this process is
shown in Figure 4.1.

The same modifications from Section 4.6 can be used to additionally optimize for cycle
consistency.

4.8 Joint Iterative Wireframe Matching

As may be expected, when both visual and geometric information is available, it is possible to
combine both visual and geometric similarity into a single optimization problem and thereby
improve the quality of the matching. The joint algorithm is shown in Algorithm 4. This
joint algorithm changes very little from the algorithm in the previous section (Algorithm
3). We combine the terms for node similarity and trade off these terms using weighting
parameters. We also include the terms for cycle consistency. Despite small size of these
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Algorithm 3: Simplified Graduated Assignment For Iterative Wireframe Matching
it← 0
while it < itmax do

β ← β0
∀c ∈ m:
cM← cΘnode

while β < βf do
∀c ∈ m∀a ∈ keyn∀i ∈ n:
cQai ← αgeo

cδnodeai (T) +
∑keyn

b=a+1

∑cn
j=i+1

cCabij
cM0

bj

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cMai ← eβ

cQai

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cM′

ai ←
cMai∑n+1

j=0
cMaj

∀c ∈ m∀a ∈ keyn∀i ∈ n:
cMai ←

cM′
ai∑keyn+1

b=0
cM′

bi

if (
∑m

c=1

∑cn
a=1

∑keyn
i=1 1(cMai > tk)) > tn then

min
T
Etrans(T) =

m∑
c=1

cn∑
a=1

keyn∑
i=1

log(1− 1(cMai > tk)
cδnodeai (T) cMai)

end
β ← β + βr

end
∀c ∈ m
cM←greedy assignment(cM)

min
T
Etrans(T) =

m∑
c=1

cn∑
a=1

keyn∑
i=1

log(1− cδnodeai (T) cMai)

it← it+ 1
end

changes, the impact on how the algorithm behaves may be significant. Specifically, the
use of a visual similarity metric that does not depend on the transform between camera
rigs may result in a matching that is not significantly changed with the transform. This
can result in a local convexity that is very large with respect to the transform estimate
and thus make the impact of transform estimation minimal. Performing the transform
estimation inside the graduated non-convexity loop, however, may allow the algorithm to
escape this local minima. As such we evaluate separately the performance of this combined
similarity metric using each of the proposed geometric matching algorithms. We denote these
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algorithms “vICP-sGA”, “vsGA-tr”, and “vIWM” respectively. When cycle consistency is
introduced, these algorithms become “vICP-sGA-cy”, “vsGA-tr-cy” and “Joint IWM” or
“JIWM” respectively.

Here the choice of weighting parameter to trade off between the two similarity metrics is
likely significant. While we simply determined these weighting parameters manually, it has
been proposed that nonlinear inverse optimization may be used to learn these parameters
from a given dataset [89].

4.9 Experiments

We evaluate our algorithms on two sequences from the EUROC MAV [8] dataset: “MH 01 easy”
and “V1 01 easy”, along with the first sequence from the KITTI [20] dataset: “00”. These
scenes utilize multiple (two) camera rigs and provide ground truth trajectory information
for these rigs. We utilize the ground truth trajectories to compute the ground truth Funda-
mental Matrix and count the number of inlier matches whose Symmetric Epipolar Distance
falls below a threshold. While this is not an exact measure of correct matches, it allows us to
estimate the average improvement in the number of correct matches over the baseline. For
each scene we sample two images from every 10 images. We test the results of our matching
algorithms under varying temporal distance between images. Specifically for the EUROC
sequences, which are captured at 20Hz, we test images that are 1, 5 and 10 images apart.
For the KITTI 00 sequence, which is captured at 10Hz, we test images that are 1, 3, and 5
images apart. This separation between images is denoted “shift” in our results.

We perform three experiments on these datasets. In the first experiment, denoted “Cycle
Matching” we evaluate the benefit of adding a cycle consistency cost to the sGA algorithm.
That is, we evaluate the benefit of solving Equation 4.2 versus solving Equation 4.1 by
evaluating the number of inliers induced by applying sGA to each problem.

In the second experiment, denoted “Geometric Matching”, we evaluate methods to utilize
a geometric cost term (Equation 4.9) for wireframe matching. Specifically we compare the
three proposed methods of solving Equation 4.3 (“ICP-sGA”,“sGA-tr”, and the combined
method “IWM”) to the standard ICP method (solving Equation 4.4). Again, we evaluate
the number of inliers induced by these algorithms.

Finally, in the third experiment, denoted “Joint Matching” we evaluate how visual and
geometric cost terms can be combined to improve matching. In this, we compare permu-
tations of the above algorithms to solve Equation 4.5 (either with our without the cycle
consistency term) against simply using a modified cost term for ICP that utilizes the visual
similarity as well as the geometric similarity for the matching step.

It should be noted that the EUROC MAV sequences are captured in environments (a
large machine shop and a room with mattress lines walls), that are not well represented
by the training data of our wireframe detection network. As a result, we may expect to
see reduced performance gains as compared to the KITTI sequence which contains outdoor
urban environments. The KITTI dataset, however, contains larger transformations between
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Algorithm 4: Simplified Graduated Assignment For Joint Iterative Wireframe
Matching
it← 0
while it < itmax do

β ← β0
∀c ∈ m:
cM← cΘnode

while β < βf do
∀c ∈ m∀a ∈ keyn∀i ∈ n:
cQai ← c(αvisΘ
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if (
∑m

c=1

∑cn
a=1

∑keyn
i=1 1(cMai > tk)) > tn then

min
T
Etrans(T) =

m∑
c=1

cn∑
a=1

keyn∑
i=1

log(1 + 1(cMai > tk)
cδnodeai (T) cMai)

end
β ← β + βr

end
∀c ∈ m
cM←greedy assignment(cM)

min
T
Etrans(T) =

m∑
c=1

cn∑
a=1

keyn∑
i=1

log(1 + cδnodeai (T) cMai)

it← it+ 1
end

images, which may reduce performance of our Geometric Matching algorithms. The rgb
images in KITTI 00 are rectified to have no lens distortion. The images of the EUROC
sequences are not rectified but the distortion parameters are known. For these sequences
wireframe detection is performed on the distorted images and the junction positions are
undistorted for use in Geometric and Joint Matching experiments. These sequences used
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together represent a range of possible situations for the evaluation of our algorithms.
As mentioned in Section 4.6, we have modified sGA to use an additive annealing pa-

rameter update. As a result the new βr will vary slightly from the original result. In this
work we set βr = 0.5. Note that this results in a little over twice as many iterations as
compared to the previous chapter. This is to ensure that the Geometric Matching methods
have enough iterations to compute the transformation when this transformation is large.
If, the transformation is known to be small or the geometric matching is not used, βr may
be increased, reducing the number of iterations. For consistency these parameters are used
across all experiments in this chapter. The remaining parameters, which are either new or
unchanged from the previous chapter, are as follows: β0 = 1.0, βf = 10 γ = 1.0, αvis = 1.0,
tk = 0.2,tn = 10. For Geometric Matching Experiments αgeo is set to 1.0, however for Joint
Matching Experiments αgeo is set to 0.5 (except for “vis-ICP” which had the best perfor-
mance at αgeo = 0.3). For both Geometric and Joint matching experiments dgeomax is set to
320 pixels and itmax is set to 15.

For all experiments where visual similarity is used, we employ BRISK [51] feature de-
scriptors extracted around the image location of each node. To compute image similarity
we use the function: cΘnode

ai = (dvismax − cDnode
ai )/dvismax where cDnode

ai is the hamming distance
between descriptors of node a in cG and node i in keyG and dmax is set to 200. For the
keyframe wireframe where nodes have multiple descriptors associated with them, only one
descriptor is used.

4.10 Results and Discussion

For each algorithm the average percent improvement is calculated as: 1
K

∑K
k=1

ιk−ι#k
ι#k

where K

is the number of sample pairs in the sequence, ιk is the total number of inliers found by the
algorithm for pair k, and ι#k is the total number of inliers found by the baseline algorithm
for the same pair. Dividing by the number of inliers found in the baseline algorithm is an
attempt to normalize for the difficulty of the matching. For reference we also present the
average number of inliers found by each algorithm. To remove scenes with heavy motion
blur or insufficient visual texture, we do not consider images where the baseline method fails
to find at least 20 total inliers across both images in the camera rig.

Cycle Matching Experiments

The percent improvement and average inlier results for the Cycle Matching experiments are
shown in Figure 4.3 and Table 4.1 respectively. We observe that the addition of the cycle
consistency terms to the optimization problem does increase performance as compared to
the standard sGA result. Across all sequences, the impact of including cycle consistency
terms increases with the separation between images, where the matching is more difficult.
We also see a greater impact of cycle consistency on the KITTI sequence as compared to the
EUROC sequences. As the KITTI sequence is better represented by our wireframe network
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Cycle Matching Experiments

Figure 4.3: Average percent improvement of inliers for wireframe matching algorithms on three
sequences for varying levels of image separation (“shift”). Each bar represents the improvement
of the associated algorithm over a matching that only uses visual feature similarity for feature
matching. “sGA” is the simplified Graduated Assignment method from Chapter 3. “sGA-cy” is
the proposed method of optimizing for cycle consistency across multiple images.

training dataset, this increased impact may be the result of more accurate detection of
wireframes by the network. An alternate explanation would be the increased lighting changes
of the outdoor scene cause reduced performance of visual matching, making the structural
wireframe detection more important. Either of these explanations is also consistent with
the increased performance difference between sGA and the baseline visual matching on the
KITTI sequence. The average frames per second (FPS) for each algorithm is shown in Table
4.2. We observe here that, using our algorithm, adding cycle consistency terms does very
little to impact average run time of the sGA algorithm, making this a practical way to
optimize for this constraint. Note that this does not include the cost to compute pairwise
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Cycle Matching Results

dataset shift vis sGA sGA-cy

MH 01 easy 1 177.12 194.56 195.54
MH 01 easy 5 147.36 166.88 168.42
MH 01 easy 10 128.14 149.68 151.64
V1 01 easy 1 110.76 120.12 120.54
V1 01 easy 5 79.56 87.44 87.93
V1 01 easy 10 64.00 71.70 72.50

Kitti 00 1 106.25 128.74 130.64
Kitti 00 3 67.77 90.65 93.34
Kitti 00 5 63.75 88.38 90.56

Table 4.1: Average number of inliers for wireframe matching algorithms on three sequences
for varying levels of image separation (“shift”). “vis” represents a matching that only uses
visual feature similarity for feature matching. “sGA” is the simplified Graduated Assignment
method from Chapter 3. “sGA-cy” is the proposed method of optimizing for cycle consistency
across multiple images. The best results for each sequence are shown in bold.

matches as this will depend on the algorithm used, however example pairwise sGA timing
results are given in the previous chapter.

Geometric Matching Experiments

Figure 4.4 and Table 4.3 show the percent improvement and average inlier results for the
Geometric Matching experiments. We observe that all of the proposed geometric matching
algorithms are able to achieve highly significant performance increases as compared to the
direct application of the Iterative Closest Point algorithm. This may be unsurprising in a
few ways. First, sparse feature matching is not a good candidate application for Iterative
Closest Point as the sparsity of the problem induces very large local concavities. Second, the
need for features to be triangulated before a geometric distance can be computed means that
those features which could not be triangulated have no chance of being matched correctly
by the standard ICP algorithm. Our algorithms overcome these difficulties by optimizing
for edge consistency, a metric of similarity independent of transform. This both increases
the likelihood that the algorithm will converge to a good local optimum, but also provides a
metric of similarity to those features that would not have a similarity metric otherwise.

We see that IWM further outperforms the separate methods ICP-sGA and sGA-tr. As
with the cycle consistency, this improvement increases with image separation hinting that
the combined method is more important as the difficulty of the matching increases. We
also again see a greater improvement on the KITTI dataset. This may be the result of the
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Algorithm Runtime (FPS) Results

Algorithm MH 01 easy V1 01 easy Kitti 00

vis 624.33 1184.50 621.99
sGA 29.70 65.32 26.16

sGA-cy 27.27 60.50 24.62
ICP 55.56 123.06 53.71

sGA-tr 26.09 51.94 22.91
ICP sGA 2.65 10.31 4.04

IWM 2.33 9.13 3.84
vICP 123.67 385.28 169.10

vICP-sGA 4.25 13.85 6.75
vsGA-tr 23.81 48.36 21.47
vIWM 4.38 14.35 6.53

ICP-sGA-cy 3.90 15.27 6.16
vsGA-tr-cy 22.39 45.42 20.36

JIWM 3.97 13.31 6.20

Table 4.2: Average FPS for wireframe matching algorithms on three sequences. This average
is computed across all images and all shift values for a given sequence.

larger transformations between images on the KITTI dataset requiring a larger region of
convergence than what is provided by ICP-sGA or sGA-tr individually.

The average FPS for these algorithms is shown in Table 4.2. We observe that adding
transform estimation in the form of sGA-tr has very little impact on the run time as compared
to the standard sGA method. Note however that the chosen parameters for sGA have been
increased to enable sGA-tr to perform well and the standard sGA method can perform well at
over twice this speed if the parameters are changed. sGA-tr notably still maintains realtime
performance for these datasets. The IWM method, though having the best accuracy of these
three algorithms, also has the slowest run time as it performs sGA-tr repeatedly.

Joint Matching Experiments

Figure 4.5 and Table 4.4 show the percent improvement and average inlier results for the
Joint Matching experiments. In these results we observe that direct application of ICP using
a combined visual and geometric similarity term does yield a small improvement over just
using visual similarity for matching. This improvement is significantly increased, however,
by the introduction of sGA. As before the IWM (vIWM and JIWM) methods generally out-
perform the ICP-sGA (vICP-sGA and vICP-sGA-cy) and sGA-tr (vsGA-tr and vsGA-tr-cy)
methods, with this improvement increasing with image separation. Similarly the methods
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Geometric Matching Experiments

Figure 4.4: Average percent improvement of inliers for wireframe matching algorithms on three
sequences for varying levels of image separation (“shift”). Each bar represents the improvement
of the associated algorithm over a standard ICP result. “ICP-sGA” uses sGA for the association
of points in the ICP loop rather than nearest-neighbors. “sGA-tr” is a modified sGA algorithm
which optimizes for the transform inside the sGA algorithm. “IWM” is the proposed algorithm
combining of ICP-sGA and ICP-tr.

which enforce cycle consistency outperform those that do not, with this improvement in-
creasing with image separation. However, unlike the Geometric Matching experiments, the
sGA-tr methods here outperform the ICP-sGA methods. In investigating this we observed
that ICP-sGA converged very quickly (often in only two iterations). This likely indicated
that the matching resulting from visual similarity terms often push ICP-sGA directly to a
local optimum that is difficult to escape from. The inclusion of transform estimation inside
sGA, however, allows transform estimation to be performed when the assignment matrix is
smoother, potentially resulting in a better local optimum.

The average FPS for these algorithms is shown in Table 4.2. Notably the vIWM and
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Geometric Matching Results

dataset shift ICP ICP-sGA sGA-tr IWM

MH 01 easy 1 49.46 122.28 122.33 122.63
MH 01 easy 5 38.71 101.79 91.95 103.26
MH 01 easy 10 29.73 84.62 71.57 86.78
V1 01 easy 1 42.05 89.95 89.94 90.19
V1 01 easy 5 28.28 64.80 58.72 66.08
V1 01 easy 10 20.74 49.58 41.22 50.45

Kitti 00 1 49.28 81.65 72.98 83.84
Kitti 00 3 27.01 41.93 38.47 42.72
Kitti 00 5 23.60 42.23 40.37 42.64

Table 4.3: Average number of inliers for wireframe matching algorithms on three sequences
for varying levels of image separation (“shift”). “ICP” is the result of the direct application
of the Iterative Closest Point algorithm to wireframe matching. “ICP-sGA” uses sGA for the
association of points in the ICP loop rather than nearest-neighbors. “sGA-tr” is a modified
sGA algorithm which optimizes for the transform inside the sGA algorithm. “IWM” is the
proposed algorithm combining of ICP-sGA and ICP-tr.

.

JIWM methods have faster runtimes than IWM. This is due to the aforementioned decrease
in the number of outer loop iterations performed by these methods. When realtime perfor-
mance is required the vsGA-tr-cy method is likely the method of choice due to the relatively
low added cost and high matching accuracy. When realtime performance is not required and
the importance of matching correctly is high, the JIWM method remains a viable solution.

4.11 Conclusion

We present a series of algorithms for matching wireframes across multi-camera rigs. These
algorithms intelligently incorporate known extrinsics calibration information to improve wire-
frame matching results. These algorithms are capable of optimizing cycle consistency across
pairs of overlapping images, optimizing geometric similarity, and jointly optimizing visual
and geometric similarities. By comparing permutations of these components under realistic
image sequences, we are able to evaluate the benefit of each component. In the future we
hope to utilize the algorithms presented in this chapter to perform large scale wireframe
reconstructions.
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Joint Matching Experiments

Figure 4.5: Average percent improvement of inliers for wireframe matching algorithms on three
sequences for varying levels of image separation (“shift”). Each bar represents the improvement
of the associated algorithm over a matching that only uses visual feature similarity for feature
matching. “vICP” is the direct application of Iterative Closest Point using the joint similarity
term. “vICP-sGA” uses sGA for the association of points in the ICP loop rather than nearest-
neighbors. “vsGA-tr” is a modified sGA algorithm which optimizes for the transform inside the
sGA algorithm. “vIWM” is the combination of vICP-sGA and vsGA-tr. “vICP-sGA-cy” is vICP-
sGA with the additional optimization of cycle consistency. “vsGA-tr-cy” is vsGA-tr with the
additional optimization of cycle consistency. “JIWM” is the proposed joint matching algorithm
which is vIWM with the additional optimization of cycle consistency.
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Chapter 5

Final Remarks

This thesis has identified and begun to address several problems relating to Simultaneous
Localization and Mapping (SLAM) and 3D reconstruction in the context of Augmented
Reality. These problems include the lack of features in low texture environments, changing
features due to lighting conditions and dynamic objects, and the inefficient representation
of 3D models in the scene.

By utilizing planar structures identified in depth images, we are able to incorporate depth
information efficiently and effectively to improve performance in low-texture environments
and reduce the likelihood of tracking failure in these situations. This algorithm was specif-
ically designed to have minimal impact on the amount of required computation, while still
improving accuracy under the limited depth sensing range of mobile time of flight sensors.
While this is a step towards reducing the failure cases of SLAM in structured environments,
to reduce these cases completely it is likely that longer range depth sensors will need to be
used, and additional types of structure incorporated into our estimation problem.

This thesis further considers the image wireframe as a type of structure for improving
SLAM and 3D reconstruction. The image wireframe represents those lines and their inter-
sections that make up the structural components of the scene. A neural network is used to
detect these lines and intersections, which has demonstrated high precision and recall for
this task. A high precision indicates that wireframe features are less likely to be the result
of non-structural components such as shadows or creases in fabric. As a result, the use of
these features may be a solution to SLAM failures that occur when normal point features
change over time. A high recall indicates that the majority of the structural components
in the scene are identified by the neural network. This indicates that the wireframe can be
used as a compact representation of the overall structure of the scene.

A requirement for enabling both these tasks is the accurate matching of wireframes across
images. This thesis presents a method for accurately and efficiently matching wireframes
across images by exploiting the connectivity information provided by the image wireframe.
This method is extended to provide increased accuracy using the additional information
provided by multiple cameras when available. It is also shown how geometric constraints
can be used in place of visual similarity when visual similarity in unreliable, such as in the
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case of a light source attached to the camera device.
This thesis additionally presents a basic method for merging image wireframes into esti-

mated 3D wireframes given a matching between the junctions in the wireframe. It remains
to be demonstrated, however, the accuracy of a large scale wireframe reconstruction that
would result from this method. It is also open to future work how to convert an estimated
3D wireframe into a representation usable by Augmented Reality devices. We hypothesize
that minimum clique finding in the graph representation of the wireframe, followed by De-
launy Triangulation run on each clique would represent an efficient method of converting a
3D wireframe into a compact mesh representation commonly used in Augmented Reality.
We hope to address this in future work.

Lastly, it is important to note that while the image wireframe detection network has both
high precision and recall, it is by no means perfect. As there are inherent ambiguities in
the information about structure provided by a single monocular camera image, the network
must rely on some other context clues in the image to determine when structure is likely
present in the scene. The depth image, however, provides significantly more information
about the 3D structure of the scene. As we look towards the future, it is likely that best
solutions will result from the combination of depth and traditional RGB cameras in a big
data framework. In looking towards the goal of ubiquitous Augmented Reality we continue
to work towards the integration of these systems in order to enable the reliable detection of
structure in a variety of environments.
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[73] Taihú Pire et al. “S-PTAM: Stereo parallel tracking and mapping”. In: Robotics and
Autonomous Systems 93 (2017), pp. 27–42.

[74] Srikumar Ramalingam et al. “Manhattan junction catalogue for spatial reasoning
of indoor scenes”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2013, pp. 3065–3072.

[75] Anand Rangarajan and Rama Chellappa. “Generalized graduated nonconvexity al-
gorithm for maximum a posteriori image estimation”. In: [1990] Proceedings. 10th
International Conference on Pattern Recognition. Vol. 2. IEEE. 1990, pp. 127–133.

[76] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011
International conference on computer vision. Ieee. 2011, pp. 2564–2571.

[77] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. “3-d depth reconstruction from
a single still image”. In: International journal of computer vision 76.1 (2008), pp. 53–
69.

[78] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. “Learning depth from single
monocular images”. In: Advances in neural information processing systems. 2006,
pp. 1161–1168.

[79] S Serratosa. “Speeding up fast bipartite graph matching through a new cost matrix.
Int”. In: Journal of Pattern Recognition 29.2 (2015).

https://doi.org/10.1109/ICCV.2015.272
https://doi.org/10.1109/IROS.2009.5354061
https://doi.org/10.1109/IROS.2009.5354061


BIBLIOGRAPHY 71

[80] Daniel Sharvit et al. “Symmetry-based indexing of image databases”. In: Proceedings.
IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.
98EX173). IEEE. 1998, pp. 56–62.

[81] Richard Sinkhorn. “A relationship between arbitrary positive matrices and doubly
stochastic matrices”. In: The annals of mathematical statistics 35.2 (1964), pp. 876–
879.

[82] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”. In: Proc.
of the International Conference on Intelligent Robot Systems (IROS). Oct. 2012.

[83] Ke Sun et al. “Robust stereo visual inertial odometry for fast autonomous flight”. In:
IEEE Robotics and Automation Letters 3.2 (2018), pp. 965–972.

[84] Q. Sun et al. “RGB-D SLAM in Indoor Environments With STING-Based Plane Fea-
ture Extraction”. In: IEEE/ASME Transactions on Mechatronics 23.3 (June 2018),
pp. 1071–1082. issn: 1083-4435. doi: 10.1109/TMECH.2017.2773576.

[85] Paul Swoboda et al. “A convex relaxation for multi-graph matching”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 11156–11165.

[86] Petri Tanskanen et al. “Semi-direct EKF-based monocular visual-inertial odome-
try”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 6073–6078. doi: 10.1109/IROS.2015.7354242.

[87] Sarah Tariq and Frank Dellaert. “A multi-camera 6-dof pose tracker”. In: Third IEEE
and ACM International Symposium on Mixed and Augmented Reality. IEEE. 2004,
pp. 296–297.

[88] Yuan Tian et al. “Occlusion and Collision Aware Smartphone AR Using Time-of-
Flight Camera”. In: International Symposium on Visual Computing. Springer. 2019,
pp. 141–153.

[89] Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother. “Feature correspon-
dence via graph matching: Models and global optimization”. In: European conference
on computer vision. Springer. 2008, pp. 596–609.
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