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Abstract

Generators for Wireless Systems Prototyping

by

Paul Jeffrey Rigge
Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Borivoje Nikolić, Chair

Low-latency and high-reliability wireless systems are of increasing interest. There are
a number of important emerging use-cases including autonomous vehicles, augmented
and virtual reality, and robotics that demand low latency and high reliability. Current
wireless systems do not deliver the performance that these applications require. There
are many reasons, some of which are being addressed by standardization efforts such
as 5G Ultra-Reliable Low-Latency Communication (URLLC), but reliability is only
addressed to a limited extent.

The fundamental problem that must be overcome by ultra-high reliability wireless
systems is fading. Relaying is a good way to overcome fading and has been shown to be
a promising technique for low-latency high-reliability wireless communication.

Relaying techniques have promising results with analytical models and in simula-
tions, but it is not clear how well these models translate to the real world. The low-
latency, high-reliability regime is different from the space occupied by Wi-Fi and LTE,
which are more throughput-oriented. To demonstrate the efficacy of these relaying tech-
niques, it is important to build a prototype that demonstrates the system concept and
allows performance measurements to be made.

Building prototypes of a low-latency, high-reliability wireless system is difficult. For
one, it makes using common software-based prototyping techniques difficult because
of latency and performance requirements. Custom hardware is necessary for evaluat-
ing many of the promising ideas for achieving URLLC. Furthermore, in the process of
implementing the system, designers will likely discover new problems and better solu-
tions. Unfortunately, custom hardware is difficult and time-consuming to design and
verify. Small conceptual changes to the wireless scheme can result in significant archi-
tectural changes to a hardware implementation. Current mainstream hardware design
tools and methodologies are ill-suited for tracking these sorts of changes as high-level
abstractions, code reuse, and open-source libraries are very limited, especially compared
to conceptually similar software tools.

This work envisions a future where designers use high-level abstractions for custom
1



hardware. We appeal to the way current machine learning frameworks allow produc-
tive exploration and fast iteration on network architectures while still affording efficient
implementation on a wide range of target platforms. Similarly, future hardware design
tools and methodologies should allow domain experts to be productive with high level
abstractions that generate efficient and correct hardware. In the context of wireless sys-
tems, protocol designers should be able to generate hardware with the same ease they use
tools like Matlab or Python for simulation.

Working towards this vision, this thesis presents a generator-based agile de-
sign methodology for wireless systems. Dsptools, a Chisel library for writ-
ing reusable signal processing hardware, is an important tool that enables this
methodology. Agile design methodologies, generator-based design, and power-
ful hardware libraries are all important building blocks for realizing this vision.

Professor Borivoje Nikolić
Dissertation Committee Chair
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Chapter 1

Introduction

Prototyping is where promising new ideas meet reality for the first time. Being
able to rapidly prototype new ideas allows for them to be iterated upon and improved
more quickly or abandoned if unforeseen shortcomings are found. This work is centered
around prototyping techniques for ultra-reliable low-latency communication (URLLC),
and how those techniques evolve through the process of prototyping.

This work discusses not only building wireless URLLC, but also prototyping gen-
erally. The organization of the writing represents this. Early sections focus on wireless
techniques, which are made progressively more concrete as the discussion shifts towards
building prototypes. Of course, the evolution of these ideas was not a linear progression;
there was a back-and-forth and ideas evolved mutually.

1.1 Ultra-Reliable Low-Latency Communication

Low-latency wireless communication is increasingly important for emerging appli-
cations. Cyber-physical systems involve many computer-driven systems interacting with
the physical world. These systems benefit from being able to communicate and may inter-
act with physical phenomenon that require decisions to be made at very short timescales,
often at least as quickly as human reaction time. These systems often can be thought
of as control systems, either centralized or distributed. Autonomous vehicles communi-
cating with each other for platooning or traffic management are one prominent family
of use-cases. Augmented reality (AR) and virtual reality (VR) are another category of
applications that demand low latencies at timescales dictated by human reaction speeds.
Low latency is critical for providing immersive interaction, for example overlaying virtual
objects on the physical world [54] and catching balls in VR[34]. In [32], Fettweis calls
this family of applications the “tactile internet”.

1



Existing applications using wired networks for latency-sensitive communication may
also benefit from low-latency wireless communication. Critical control applications in
factory automation and robotics applications see frequent downtime from stressed wires
fracturing. Many existing systems that use wires could significantly reduce cost, com-
plexity, and weight by replacing them with wireless communication systems [122].

Reliability is critically important for many low-latency applications. Many cyber-
physical applications by their nature have important and challenging safety requirements.
Control algorithms can be designed to take unreliable communication into account [91],
but this often relies on a good model of the reliability of the channel and has implications
on stability and cost of control. The design of control algorithms is simplified by being
able to assume reliable communication, and existing wired systems can be retrofitted to
be wireless much more easily if the wireless link is as reliable as the wired.

Ultra-reliable low-latency communication (URLLC) is desirable if it can be achieved
wirelessly, but there are many questions:

• What techniques are needed for URLLC?

• How different is a URLLC system from existing wireless systems that optimize
for throughput, power, range, etc.?

• How much does it cost in power, computing, and spectrum to achieve URLLC?
Is it practical?

Reliability

L
a
te

n
c
y

2G

Increasing

Spectral

Efficiency

Interactive & 

Control

WirelessHART

3G

4G

WiFi

1ms

10ms

1s

10
-3

10-910-6

100ms

WISA

5G

5G

ULL

Figure 1.1. Illustration of relationship between typical reliability, latency, and spectral
efficiency for various wireless standards. This is meant to be illustrative but not exact, the
values of these parameters will be situational.
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Existing wireless communication standards are not optimized for URLLC. Fig. 1.1
shows where interactive and control applications sit in the reliability/latency/spectral effi-
ciency space relative to some wireless standards. The 802.11 and cellular standards occupy
an area in the figure where latency and reliability are “good enough” for applications such
as web browsing, VOIP calls, and gaming. Latency has steadily improved over the gen-
erations of cellular standards, but the primary improvement has been spectral efficiency.
WISA is a standard for wireless audio, and as such requires modest spectral efficiency
with low latency, but the latency and reliability are not good enough for interactive and
control applications. WirelessHART has the ability to achieve very high reliability but
is not designed to have very low latency. Interactive and control applications occupy
their own corner of the figure. 5G ultra-reliable low-latency communication (URLLC)
proposals also have low latency, but the reliability is not to the same level demanded by
interactive and control applications.

The requirements demanded by interactive and control applications are different than
those provided by existing wireless standards. As a result, the techniques used to achieve
URLLC may need to be very different from techniques used in throughput- or power-
oriented standards.

1.1.1 Problem Formulation

Latency and Reliability

Latency is often specified as a single number, for example “the propagation time of
the signal is 1 µs”. However, in many cases a latency constraint without a reliability
constraint is not very useful. Formally, latency can be thought of as a stopping time
associated with an event 𝐸 of interest, and 𝐸 can be probabilistic in such a way that the
stopping time associated with 𝐸 has a distribution.

It is important to discuss latencies corresponding to events that are useful. A degen-
erate example is designing a system with “zero latency” by choosing an event where a unit
of information is communicated, called 𝐸, where 𝐸 takes 0 time but Pr[Error|𝐸] = 1. In
less degenerate circumstances, error correction codes and retransmissions can be used to
increase the reliability beyond the raw error rate of the channel, but these can add (po-
tentially random) latency. Reasoning about the latency of more complicated events can
be difficult; rather than a single quantity, there may be an unwieldy distribution. When
latency specifications allow for randomness at all, it is usually via a percentile, for example
“the 99.99th percentile latency is no more than 50 µs.” This style of specification is most
useful when building a system out of parts that are much more reliable than the overall
system needs to be, allowing the designer to ignore the rare events and treat the latency
as a number instead of a distribution. However, when building ultra-reliable systems,
it may be prohibitively expensive to get individual components that are more reliable
than the overall system. In that case, specifying latency with a percentile is less useful as
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the 99.99th percentile latency does not necessarily say very much about the 99.9999th
percentile latency.

Control Application

Industrial control applications are widely deployed and require low-latency and high-
reliability communication. They serve as a good exemplar for determining requirements
for wireless networks that will enable useful new applications. Industrial control appli-
cations are implemented with wired fieldbus standards, commonly Sercos III. Consider
the following problem formulation based on such applications [123].

There is a controller, called 𝐶, and 𝑛 nodes {𝑠𝑖}0≤𝑖<𝑛. We consider 𝑛 chosen such
that 10 ≤ 𝑛 ≤ 100. The controller and the nodes are in an indoor environment and
relatively close to each other such that all nodes and the controller are “within range” of
each other, that is on average each node expects to have similar SNR to each other node.

For control applications, nodes send packets containing sensor measurements to the
controller, and receive packets containing actuation instructions. These packets are gen-
erally a position and/or velocity vector, typically between 10 and 50 bytes in a packet.
Throughout this work, unless otherwise specified there are 20 bytes per packet. Call this
entire information exchange a cycle.

C
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Figure 1.2. Star topology. The controller 𝐶 is the center of the star, with individual
connections to each node {𝑠𝑖}0≤𝑖<0.

In this arrangement, information moves in a star topology, depicted in Fig. 1.2. Note
that this information flow does not necessarily reflect the communication that takes place,
it only depicts the way entities produce and consume information.

A cycle must take a short amount of time in order to ensure that the system is re-
sponsive when interacting with the physical world. This work assumes a cycle time of
2 ms, which in [32] is said to be the minimum latency to be able to interact physically
with humans. This cycle time is not a strict constraint on individual transmissions; nei-
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ther the order nor the time an individual transmission takes matters as long as the entire
cycle completes successfully in time.

Control systems are typically implemented with wired systems, and it is desirable to
have a drop-in wireless replacement for these systems1. One way to achieve this is to
try to build a wireless system where point-to-point links perform similarly to a wired
system, but this is difficult. The gigabit ethernet over copper commonly used in control
applications requires a link-level bit error rate (BER) better than 10−10 [92]. Building a
wireless link with this kind of performance is difficult and prohibitively expensive. How-
ever, the reliability of an individual link is not what truly matters; rather, the reliability
of a cycle is what ultimately matters.

A wireless implementation of URLLC does not need to achieve 10−10 BER for
each link in order to achieve an acceptable cycle error rate. A cycle time of 2 ms and
probability of cycle error of 10−9 to 10−8 are representative targets for many control ap-
plications [123], which corresponds to an error occurring roughly once a year on average.

The high-level, application-centric system parameters discussed here are summarized
in Table 1.1. A wireless system that meets these requirements is a drop-in replacement
for wired fieldbus systems in industrial control applications. Furthermore, meeting these
requirements enables other emerging applications such as AR/VR and autonomous ve-
hicles.

Parameter Value Description

𝑛 10 – 100 Number of nodes in the system

𝑇𝑐𝑦𝑐 2 ms Duration of a complete cycle

𝑃𝑒𝑟𝑟 10−9 Probability a cycle fails

Table 1.1. Requirements for communication systems supporting low latency applica-
tions.

1.1.2 Achieving Reliability

In the indoor, close-range communication scenario posed here, multipath fading is
a fundamental barrier to achieving URLLC [102]. Multipath fading is the result of
reflected copies of a transmitted signal interfering with each other. With some prob-
ability, the interference results in a receiver getting very low or no measurable signal
power, resulting in dropped packets, repeated retransmissions, or similar depending on

1Development and certification of control systems is expensive, time-consuming, and often requires
domain-specific expertise, especially when safety is a concern. Retrofitting existing networks without
having to update the rest of the system minimizes switching time and costs.
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the communication standard. Having a low-latency requirement compounds this prob-
lem. For carrier frequencies used in cellular and Wi-Fi standards2, the coherence time
of the channel is longer than the latency requirement. This means that a node in a deep
fade does not have enough time to wait for its channel to improve.

One potential solution to fading is to increase transmit power until the receiver has
an acceptable SNR. However, achieving high reliability this way may require overpow-
ering very deep fades, and a transmitter that can achieve such high transmit power
is prohibitively expensive and may not be allowed for safety, regulatory, or cost rea-
sons. Instead, some form of diversity scheme is needed to overcome fading. Stud-
ies [102, 101, 103, 99] have shown that spatial diversity is a useful technique for achiev-
ing URLLC. Spatial diversity exploits the fact that the wireless channel is a broadcast
medium and uses extra users to relay information around bad channels.

Relaying techniques are promising because they provide a mechanism for achieving
extremely high reliability. However, relaying adds some latency, and if done poorly can
add a large amount of latency. If every user takes turns relaying for every other user, it
increases the total number of transmissions by a factor of 𝑛, and latency for the network
scales (poorly) by 𝑛2. Therefore, a key feature of the studies mentioned above is ways of
limiting the overhead in having relays. In particular, space-time codes and network cod-
ing can dramatically reduce the overhead of relaying. However, it is not entirely clear that
all these techniques are practical to implement and will achieve their promised reliability
in real-world settings. Furthermore, these techniques rely on modeling assumptions that
need to be verified because of the extreme reliability requirements. This work focuses on
building prototypes that enable studies of the practicality of these low-overhead relaying
schemes.

1.2 Demonstration of System Concepts

The relay-based URLLC systems discussed in this work involves using new wireless
techniques. Demonstrating the value of these ideas involves validating predictability of
channels and relay selection algorithms with real-world measurements. Building pro-
totypes further demonstrates the value of these ideas and is especially critical for high-
reliability systems because these systems are built around modeling assumptions that a
prototype helps validate.

2Cellular and Wi-Fi standards are designed with different latency-reliability targets, and as a result can
exploit time diversity. In simple terms, this means they choose to keep retransmitting until the channel
improves.
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1.3 Prototyping

A prototype should be as simple as possible while still capturing the important char-
acteristics of the solution. Simplicity allows for faster iteration and makes it easier to
interpret how well the prototype works. However, prototypes still need to be realistic
enough to actually demonstrate the system concept and make meaningful performance
measurements.

One important aspect when building a prototype is choosing the system boundary.
Often, prototypes can be made by isolating one piece of the system and testing it, later
using standard parts, models, or offline simulation to extract relevant performance met-
rics and fill in the missing parts of the system. In other cases, especially where models
are difficult to make (e.g. there is complex interaction with a human), isolating one piece
of the system may lead to less meaningful results.

Where possible, it is best to prototype on general purpose processors rather than
implementing custom hardware. Software prototyping is faster, cheaper, and requires
less specialized knowledge. Software-defined radio (SDR) platforms such as GNURa-
dio [39] are convenient for quickly implementing a working system, but they are ill-
suited for the extremely low-latency relaying that is required. In GNURadio, high level
functionality can be implemented in Python, a productivity language, and performance-
critical functionality can be implemented in C++, a performance language. This allows
designers to iterate quickly and still achieve reasonable performance, especially as gen-
eral purpose processors continue to get faster and have more cores. However, it is not
always possible to use SDRs to implement prototypes.

Relay-based URLLC systems present several challenges for software-based imple-
mentation, and as a result must be implemented with custom hardware [48]. One chal-
lenge is that SDRs typically batch up inputs to achieve good performance. There is a
substantial amount of overhead in synchronizing across cores, performing vector oper-
ations efficiently, scheduling workers, and moving data. To achieve good performance,
it is important that systems such as GNURadio batch data into large enough chunks.
Batchings and schedules that achieve good throughput can have large latencies. This
issue is further compounded by the fact that the latency may be unpredictable on gen-
eral purpose hardware. Caching effects, operating systems, and the overall complexity of
general purpose cores can make workload runtimes variable, which is undesirable when
evaluating an ultra-reliable system.

Where general purpose hardware struggles, purpose-built custom hardware can be
matched to the latency and reliability requirements of an application. FPGAs are com-
monly used platform for prototyping custom hardware, especially for wireless systems.
FPGAs use a similar design flow as application-specific ICs (ASICs), but can be repro-
grammed quickly and easily. This work uses FPGAs with commercial RF daughter cards
for the frontend and custom digital hardware for the baseband.

While FPGAs enable prototyping of custom hardware, designing hardware is time-
consuming and difficult compared to writing software. This is a huge problem for making
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a prototype where it is essential that a small team of domain experts be able to quickly
iterate on ideas.

For software prototypes, there are a rich set of open source libraries and frameworks
that allow developers to be instantly productive. Furthermore, software prototypes can
combine the use of performance languages for the portions of the design that matter and
productivity languages for everything else, as in GNURadio or TensorFlow. Software
prototyping favors starting with small examples and working incrementally towards a
goal with an agile methodology.

In contrast, open source hardware has traditionally been of limited use and difficult to
use. Hardware tools struggle to make a good trade between performance or productivity,
tending towards one extreme or the other. Agile development is difficult for hardware
designs.

This work focuses on making the design of custom signal processing hardware easier,
faster, and less error prone. These efforts are important steps in enabling a future where
hardware prototyping is just as productive and efficient as software prototyping.

1.3.1 Agile Design

Typical hardware designs are built using a waterfall model [57]. The waterfall model,
depicted in Fig. 1.3, involves breaking down the design task into a series of tasks that
happen one after another. For hardware design, the sequence of tasks is specification
writing, architecture design, implementation, testing, and finally shipping. There is a
relatively rigid dependency between these tasks; the later stages cannot finish before pre-
vious stages are complete, and late design changes can be very difficult.

In contrast, agile design models have been very successful for software development.
The main emphasis of the agile model is iterative improvement. Instead of delivering
a complete, finalized output, the first iteration under the agile model should deliver a
simplified version of the system. These simplifications should make it much easier and
faster to deliver. Then the design process is repeated and improvements are incrementally
made.

There are several advantages to the agile model. One of them is that performing the
design loop multiple times makes it easier to estimate the time and difficulty of the steps
in the design process. Under the waterfall model, it is possible to run into difficulties part-
way through a project that an agile project could expose at the beginning. Furthermore,
specifications evolve due to external factors like market changes or uncertain customers,
and agile projects are better equipped to incorporate changes to specifications throughout
the design cycle.

The agile design model relies on being able to perform design and verification itera-
tions quickly. Design automation is a powerful tool for increasing the speed of iteration.
Reusable components, fast verification, and high level design are important enablers for
agile design.

8



Specification

Design

Implementation

Verification

Tape-out

Validation

F1 F2 F3

Specification

Design

Implementation

Verification

Tape-in

Validation

F1 F2 F3

F1 F2

F1 F2

F1 F2

Tape-in

F1 F2

F1/F2

F1/F2

F1’ F3 F3’

F1’

F1’

F1’

F1’/F2/F3

F1’/F2/F3

F3 F3’

F3 F3’

F3 F3’

F1’/F2/F3’

F1’/F2/F3’

F1’/F2/F3’

Tape-out F1’/F2/F3’

F1/F2 F1’/F2/F3

Validation F1’/F2/F3’F1/F2 F1’/F2/F3

Figure 1.3. A representation of the waterfall and agile design models. The F labels rep-
resent features. Under the waterfall model, depicted on the left, all features go through
the design sequence together, producing a tape-out result when all features have com-
pleted the entire design process. Under the agile model, depicted on the right, features
are added incrementally and individual features can be iterated upon or even abandoned.

Reuse in hardware design via IP blocks is typically done at a coarse level. IP blocks
generally implement some high level standardized functionality and has standard inter-
faces and may be configurable to some degree. This style of reuse is useful, but the degree
to which IP blocks are configurable is usually limited. Furthermore, IP blocks are not
typically useful for more fine-grained functionality or design patterns that are scattered
throughout a design.

1.3.2 High Level Synthesis

High level synthesis (HLS) is a popular technique that enables reuse and higher level
abstractions for hardware design. HLS maps a description of an algorithm from a general
purpose programming language (generally C/C++) to a hardware implementation. This
is analogous to synthesis, which maps algorithms expressed in a hardware description
language to a hardware implementation, but general purpose programming languages
generally do not have constructs for expressing low-level circuit elements, for example
registers or clocks. The idea is that a general purpose programming language will express
the algorithm at a higher level of abstraction and allow the synthesis tool to make choices
about the hardware implementation.

Like machine learning frameworks such as Tensorflow [8] or PyTorch [73], the ul-
timate goal of HLS is to allow designers to be productive in a high level language and
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still get good quality-of-result (QoR). Unfortunately, current HLS tools are not entirely
successful at providing both of these features. Getting good QoR with HLS tools is
commonly cited as a challenge and often pushes HLS designers into abandoning some
of the high-level abstractions that make HLS appealing.

Designers typically must guide HLS tools via #pragmas that direct the compiler
to perform some action, for example specifying how to unroll loops or how to map IO.
These #pragmas are important knobs for performance tuning a design. However, they
can be difficult to reason about and can interact with each other, so small changes to
the design or pragmas can result in large changes in the performance of the output. The
proper tuning can differ based on the context the code is being used in, which makes
getting reusable code that has good QoR difficult under HLS.

Another issue with HLS is the fact that the general purpose programming language
generally does not make a distinction between the code that gets mapped to hardware
and the metaprograms that determine what code should be generated. For example,

if (add) {

out = in0 + in1;

} else {

out = in0 − in1;

}

In the previous example listing, it is not clear if add is a variable used as part of
a meta-program that determines whether or not the circuit implements an addition or
subtraction operation, or if instead it is an input to a circuit that performs both addition
and subtraction and selects one of the operations to output. This distinction can be
important for QoR.

HLS tools that produce high-quality output are generally closed source commercial
tools. They are typically not very extensible. Pragmas or TCL directives are the preferred
way of interacting with the tool, but these tools generally do not allow for creating custom
pragmas to interact with a compiler plugin. Even though many HLS tools are LLVM-
based, most tools map LLVM to a hardware-oriented internal representation and do not
expose this to users. As such, compiler plugins are not typically supported.

1.3.3 Generators

HLS can be thought of as adopting a “top-down” approach, starting with a high-
level abstraction and mapping it down to a low level hardware implementation. Hard-
ware generators represent an alternative, “bottom-up” approach. Like HLS, hardware
generators offer the ability to design hardware with high-level abstractions. However,
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generators also offer a much higher degree of control over the output hardware. This
combination of high-level abstraction with fine-grained control is perhaps spiritually
similar to Halide [78] or TVM [25] compilers that allow for fine-grained optimizations
of deep learning workloads.

A hardware generator is a program that takes input parameters and generates a cir-
cuit according to those parameters. Chisel [18], a hardware construction language for
writing generators, uses underlying constructs similar to those in hardware description
languages (HDLs) like Verilog. However, Chisel is embedded in Scala and thus can
use the powerful constructs available in a modern, general-purpose programming lan-
guage. Furthermore, Chisel enforces a strict separation from the hardware constructs
and meta-programming constructs.

One simple example is the distinction between 3.U, which is a hardware integer
literal with value 3, and 3, which is an integer that can be used during circuit generation,
but does not represent hardware. For example, 3 can be used as a limit in a for loop, but
cannot be assigned to an output of a module. 3.U should not be used3 as an integer, but
it can be used to assign to an output of a module. This separation makes it very clear
what parts of the program will generate hardware and what parts do not, a distinction
which can be less clear in an HLS flow. By separating general purpose programming
language constructs from constructs that map to hardware, Chisel allows for designers
to use low-level circuit primitives available in a typical HDL with high-level constructs
available in a modern productivity language.

The Chisel ecosystem is extensible. Chisel generated designs are divided into a fron-
tend and backend inspired by the design of LLVM. The compiler frontend consists of
a program accepting parameters and elaborating the design, producing an intermediate
representation called the Flexible Intermediate Representation for RTL (FIRRTL). The
frontend can label elements in the output circuit with annotations that may trigger dif-
ferent functionality in the backend. The backend takes the FIRRTL from the frontend,
which contains some higher level abstractions, and runs a series of transformations on
the intermediate representation (IR) that ultimately lower the circuit to a concrete rep-
resentation, which can be serialized as Verilog. Annotations from the frontend trigger
user-defined transformations to be run. The user-defined transformations can modify the
circuit in very powerful ways, for example instrumenting the circuit with performance
counters automatically.

The Chisel ecosystem is extensible in another important way: libraries in Chisel can
provide new functionality at multiple levels of abstraction. In contrast to HDLs like
Verilog where the notion of a library usually means something like an IP block, Chisel
libraries can provide reusable functionality at high granularity and at different levels of
abstraction. For example, a Chisel library can provide a high level API for functionality
that adds a backend transform to perform very low level modifications to the circuit.

3With some introspection, the value of the literal can sometimes be recovered and could hence be used
as a limit in a for loop. However, expressions like 2 < 3.U will not type check and it is generally a type
error to use a UInt like it is a normal integer.
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Dsptools is an example of a Chisel library. It provides reusable components that
help with writing custom signal processing hardware. It was developed for and used
extensively in this work. Reusable components in Dsptools are not just the commonly
used IP blocks. Typeclasses in Dsptools allow a designer to abstract over the numeric
type used in a module, for example allowing a designer to write one description of an FIR
filter that can target both real- and complex-valued filters. This allows more fine-grained
reuse and flexibility of reconfiguration than is typical of IP blocks.

1.3.4 Verification

Verification is the process of testing and debugging a design, generally evaluated
against requirements or a golden model. It is often cited as the long pole in the chip-
design tent. Verification has a strong impact on time-to-market as well as the number
of re-spins needed for a design, both of which are critical to the success of a project.

The Universal Verification Methodology (UVM) is an industry-standard methodol-
ogy for verifying designs. In UVM, verification tasks are split into separate components:
drivers that generate stimulus, monitors that collect outputs, assertions that enforce cir-
cuit properties, and scoreboards that check if the actual outputs matched the expected
outputs based on the input. One of the benefits of this partitioning of functionality is
that these components can be reusable, saving verification time.

Generating designs can make verification more difficult and can add complexity when
using UVM-style methodologies. Generated names are a commonly cited issue for de-
signs generated by Chisel. Extra nodes generated by the compiler in the process of lower-
ing more abstract operations to more concrete operations often have meaningless names
like _T_30 or _GEN_4096, which can obfuscate the circuit and make tracing the root
cause of a bug more difficult. This problem is somewhat fundamental to the nature of
generated hardware; generators should be generating code. This kind of problem also
exists to some extent in HLS designs. With time to mature and be integrated alongside
standard industry tools, these sorts of problems can be mitigated.

Another way in which generated designs can increase the verification burden is by
enabling designers to make sweeping changes late in the design process. To the design
team, this is a feature: tweaking the specification at the last second and getting a new,
substantially different design out quickly is powerful. To the verification team, this sort
of late change has the potential to throw a lot of their previous work out the window.

A good solution to this problem is to make the verification environment parameter-
ized in the same way as the design environment. Chisel testers can introspect the design
to extract parameters and programmatically generate stimulus and assertions. This is very
powerful, but it is important that the verification environment be at least as powerful as
the design environment. To that end, Dsptools provides testing infrastructure for testing
type-generic designs.
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1.4 Research Contributions

This work presents a system architecture for achieving wireless URLLC. It also
presents a methodology for prototyping systems with custom digital signal processing
hardware and a transceiver developed with this methodology. The needs of the system
architecture inform the design of the prototyping methodology.

The architecture consists of a custom OFDM-based baseband written in Chisel using
Dsptools. This custom baseband enables experimentation with relay-based communica-
tion schemes for URLLC. The baseband is interfaced with an RF frontend and an FPGA
with ARM CPU running Linux with a driver for the baseband, allowing for conventional
Linux-based software to interact easily with the radio.

Reusable components that use Dsptools are key enablers of the methodology. The
methodology includes designing generators for custom signal processing hardware.
There are constructs that aid in translating the mathematical abstractions to efficient
hardware. Furthermore, the methodology automates packaging this custom signal pro-
cessing hardware into an SoC using standard interfaces. Automation for verification is
also discussed, especially in the context of using generator parameters to create flexible
verification suites.

These tools and methodologies are important building blocks for enabling productive
high-level design exploration. Ultimately, the goal of these building blocks is to build
compilers that enable domain experts, especially in wireless systems, to quickly and effi-
ciently build hardware to evaluate new ideas.

1.5 Outline

Chapter 2 presents an overview of important background such as existing wired stan-
dards, 5G standardization of URLLC, and channel modeling. Background for agile
hardware development and automation in design and verification are also presented.

Chapter 3 discusses some techniques for achieving URLLC. This includes work
from [102, 101, 103, 104]. Different relay-based schemes and their relative merits are
discussed.

Chapter 4 discusses how to implement these techniques at the PHY and MAC lev-
els, as well the requirements this imposes at the PHY and MAC levels. OFDM-based
transceivers are discussed, and design decisions in the context of relay-based URLLC are
explored.

Chapter 5 discusses the viability of dynamic relay selection proposed in Chapter 3
with analysis, simulation, and real measurement data. This includes work from [95, 100,
99].

Chapter 6 discusses a generator-based methodology for designing and verifying cus-

13



tom signal processing hardware. This methodology is employed to develop a prototype
system. This includes work from [120, 82, 19, 119].

Chapter 7 presents work on designing and implementing pieces of a prototype, along
with a discussion of the methodology for designing and verifying prototypes.

Chapter 8 concludes this work and proposes some areas of future research.
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Chapter 2

Background

2.1 Low-Latency, High-Reliability Communication

This work combines concepts from both wireless systems and hardware design. This
chapter reviews literature in both areas, starting with wireless concepts including coop-
erative communication, network coding, and channel modeling, as well as discussion
of recent standardization efforts with 5G. Then we review literature in hardware design
and verification, including high-level synthesis, UVM, and generator-based hardware
design.

2.1.1 Wired Protocols

Typically, applications in industrial control use wires to communicate between con-
trollers, sensors, and actuators. Point-to-point communication via simple analog current
loops was an early method used for control systems and is still used today. The rise of
digital signaling allows for more complex network topologies than simple point-to-point
systems. Fieldbus systems are more scalable than point-to-point systems and dramati-
cally reduce the number of wires for large systems. Some examples of industrially ori-
ented fieldbus standards are SERCOS III, Profibus, and CAN [86, 76, 27]. SERCOS
III is one of several standards that use ethernet. Time-sensitive networking (TSN) is a set
of standards that augment ethernet with mechanisms for bounding latency, controlling
variation of latency, and other mechanisms for ensuring reliable communication [109].
Originally developed for audio-video bridging (AVB), TSN is being considered for use
in industrial and automotive applications [68].

For automotive and aerospace applications, wires add significant weight and
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cost [123]. Furthermore, wires add points of failure in systems where wires are un-
der strain, for example a robotic arm with wires that run through moving joints. Wires
eventually break after flexing too many times, which are a significant source of downtime
in robotic systems. Wired systems also present challenges for scalability and deployment
that make wireless systems look attractive [127].

2.1.2 Wireless Systems for Industrial Automation and Control

The many shortcomings of wired networks for industrial automation and control
motivate the investigation of wireless solutions. Wireless Sensor Networks (WSNs) em-
ploy wireless communication for monitoring applications [11]. Typically, WSNs consist
of small, battery-powered, low-cost motes that collect data and report relatively infre-
quently to extend battery life. Often, WSNs maximize the amount of time a mote stays
in the sleep state to conserve power, which is a very different design goal than commu-
nication for real-time control, and leads to very different solutions [40].

Wireless communication has been proposed for other industrial control applications.
WirelessHART and ISA100 support reliable communication via techniques such as fre-
quency hopping and mesh networking with path diversity [51]. However, they do so
with high latency as each packet takes 10 ms and multi-hop communication and re-
transmissions are common. These standards are designed and more suited for monitoring
applications than for critical control applications. ZigBee PRO [12] is another standard
targeting industrial control, but does not employ frequency hopping and is thus ill suited
for providing high reliability [51]. Wireless extensions to existing fieldbuses have also
been proposed, but the use of techniques like CSMA result in unbounded delays that
make them unsuitable [24].

Another approach for bringing wireless communication to low-latency, high-
reliability applications is to take popular standards like 802.11 or LTE and modify
them to support this new class of applications. As is, these standards are not suitable
for URLLC. Both standards have many sources of deterministic delay; fixed delays,
long preambles, and coarse scheduling granularity make very low latency impossible.
Further, there are unpredictable sources of error. In 802.11, CSMA allows for po-
tentially unbounded delays when many users are trying to access the channel. Long
ACK/NACK chains in LTE routinely make some transmissions in LTE take several
frames to complete, each of which is 10 ms.

802.11 for Control Applications

There are some standardization efforts to address these shortcomings and allow
802.11 and 5G systems to be used for URLLC scenarios. 802.11ax introduces several
new features of interest for latency- and reliability-sensitive applications. Trigger-based
multi-user uplink allows many users to transmit smaller packets together with consid-
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erably less overhead, and new techniques for scheduling allow for efficient scheduling
of transmissions to meet latency requirements [30]. Together, these techniques address
many of the inefficiencies 802.11 incurs when used for control-oriented networks.

5G Standardization of URLLC

5G standardization efforts recognize supporting URLLC as an important goal [58].
Industrial use-cases are envisioned, planned, and being evaluated.

5G standardization work is gathered in discrete releases, and at any given time there
is generally one release that implementations are being designed for, one release that is
being evaluated, and a new release that is being discussed. 3GPP Release 15 (“Rel-15”)
introduced new features for 5G systems to begin adding support for URLLC commu-
nication [6]. This release addresses the latency component of URLLC more than the
reliability component [37]. It does so by addressing several of the limitations in the con-
ventional way 4G and 5G operate, including coarse frame granularity, long orthogonal
frequency-division multiplexing (OFDM) symbols, and scheduling issues, illustrated in
Fig. 2.1. 5G is expected to be more flexible and support a wider range of applications than
previous 3GPP standards, and one such way it achieves this is through flexible numerol-
ogy. Sizing for important parameters such as cyclic prefix length, subcarrier spacing,
symbol duration, and scheduling intervals are very flexible, and some parameters have
been chosen to efficiently support the short packet lengths and low latency required by
URLLC applications. Front-loaded demodulation reference signal (DMRS) places pi-
lots before data and allows channel estimation to be performed earlier. Mini-slots in the
downlink as well as grant-free uplink scheduling allow for efficient scheduling of short
packets with low latency. URLLC traffic is expected to coexist with other traffic, and
there are multiple strategies proposed for allowing this [45].

3GPP Release 16 (“Rel-16”) added several new features for URLLC [7]. Time Sen-
sitive Computing (TSC) is based on ethernet’s TSN [37] and has features, largely cen-
tered around providing good synchronization, low latency, and low variability in latency.
Rel-16 also enhances 5G-LAN services, which allows for more efficient user-to-user
communication when users are collocated. Transmission and reception points (TRPs)
can transmit or receive jointly (generally non-coherently), allowing the possibility of ex-
ploiting spatial diversity.

Rel-15 supports data duplication at the packet data convergence protocol (PDCP)
layer. Path diversity is discussed in the context of directional mmWave radios. Joint
multi-TRP may provide a mechanism for exploiting diversity, but as of now it is a build-
ing block for a solution rather than a solution. Some studies have been performed for
multi-user diversity in the 5G context [58], but standardization efforts seem not to have
moved in any direction towards providing diversity techniques for URLLC.
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Figure 2.1. Illustration of 5G URLLC features. A new symbol structure specifically
tailored for URLLC is described. In contrast to the conventional symbol structure that
exists in 4G (top left), the new symbol structure puts pilots first and separate from data,
followed by control and data (top right). A new type of slot is also allowed, depicted on
the bottom. A frame is composed of sub-frames which have a fixed number of OFDM
symbols. Mini-slots are defined for the small packets encountered in URLLC. They are
variable-length, with as few as 2 symbols. They are also scheduled differently to support
low latency.
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2.1.3 Diversity Techniques for URLLC

Diversity is a key technique for achieving reliable wireless communication in the
presence of fading1. The idea behind diversity techniques is that the same information
can be sent via different channels to improve reliability[111]. The channels can be spread
over some combination of time, frequency, or space, but as long as they are not failing
in correlated ways, adding more paths will increase the probability that the transmission
succeeds.

Diversity techniques are critical for reliable wireless communication. WSNs com-
monly employ time (via retransmissions), frequency (via frequency hopping), and spatial
(via path diversity) diversity to achieve high reliability. WirelessHART employs all these
techniques. Time diversity is unfortunately not suitable for URLLC applications as the
latency requirement is often on the same time scale as or shorter than the coherence time.
As a result, the channel will change too slowly to get enough realizations to achieve high
reliability.

Frequency diversity is more feasible to implement for URLLC, but has some scal-
ability limitations [102]. Furthermore, frequency diversity depends on the availability
of independent channels at different carrier frequencies, which may impose restrictive
environmental constraints and implementation burden.

Spatial diversity via user cooperation [84] is an attractive technique for achieving
URLLC. Target applications have a large number of nodes, and therefore have a large
number of antennas to exploit. Spatial diversity can be exploited in two ways. Transmit
diversity uses multiple transmit antennas to reliably send a message to a specific user, and
receive diversity uses multiple receive antennas to ensure a specific message is received.
Distributed antennas can achieve the full transmit diversity, so physical arrays are not
intrinsically more reliable [55].

2.1.4 Coding for URLLC

Coding techniques are not suited for overcoming fades, but they are still important
for efficient and reliable communication when the channel is not faded. URLLC imposes
some challenges upon conventional coding techniques because of the short packet sizes.
Polyanskiy [75] gives us tools to understand ideal code performance of short block-length
codes. Several 5G candidate codes including polar codes, LDPC, turbo, and tail-biting
convolutional codes (TBCC) have been studied at short block lengths [107, 89]. There is
not a clear winner among these, although TB-CC and polar codes may be more attractive
than the alternatives. BCH codes are also promising [90]. Other work in coding-free
wireless control has also been performed [60], although without addressing deep fades
for ultra-reliable systems.

Recent work in [46] proposed RNN-based codes with locality inspired by convolu-
1Notably, coding techniques are not suited to overcoming fades.
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tional codes that allow for decoding before receiving the entire message. These RNN-
based codes outperform convolutional codes and are also robust and adaptive to channel
conditions.

2.1.5 Channel Modeling

Work in [99, 100] presents a modification of [102] that reduces implementation
complexity by removing all simultaneous transmissions, instead selecting a small number
of high-quality relays. If a small number of relays can be used with confidence that
they will have good channel realizations, this will dramatically reduce requirements for
synchronization and channel coding. Time-division multiplexing of relays is attractive
because of its simplicity, and if high reliability can be achieved with a small number
of relays, the overhead may be acceptable. Of course, this approach relies critically on
reliably choosing relays with good channels, which in turn depends on the characteristics
of the wireless channel.

Relay selection algorithms in the literature typically use some long-term average be-
havior of a link as optimization criteria [47]. However, these algorithms are less suitable
for ultra-reliable communication because of multipath fading. Links with the same aver-
age SNR may have very different instantaneous SNRs because of multi-path fading; or,
even worse, a link with lower average SNR may have higher instantaneous SNR because
the normally better link may be fading. Studies in [98, 99] investigate channel dynamics
in this regime and propose using algorithms to predict whether a relay’s channel is going
into or out of a fade.

The performance of relay selection algorithms depends critically on channel dynam-
ics. Therefore, it is fair to question if a model captures all the behavior salient to se-
lecting a good relay. In an ultra-reliable setting, rare events neglected in a model may
result in failures a model would not predict. It is not clear if standard models such Jakes’
model [44] and Rayleigh fading are useful in evaluating relay selection algorithms for
URLLC.

2.2 System Prototyping

Prototyping systems with custom hardware is difficult. In contrast to the software
world where prototyping is often done by combining open source software which allows
the designer to focus on novel features, the hardware world has a much smaller ecosystem
and much less reuse. The stark difference between the two worlds seems to be outsized
relative to the fundamental differences between the two communities; hardware design
often consists of similar tasks to software design. This section goes through elements of
the hardware ecosystem and identifies pain points as well as potential solutions.
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2.2.1 Agile Methodologies

Moore’s law has been a driving force in the hardware industry for some time. With
exponential improvements in both transistor cost and performance, general-purpose
hardware was an attractive solution to many problems. Even if specialized hardware
performed better and cost less at large volume, it might have only an 18-month window
before a general-purpose part matched or improved upon it. As Moore’s law is slow-
ing/ending, general-purpose hardware enjoys a less advantageous position, and numer-
ous specialized hardware accelerators have become widespread. The modern system on
chip (SoC) integrates multiple specialized accelerators with general-purpose processing
to provide a good combination of performance, energy efficiency, and programmability.
As SoCs grow in functionality and see widespread use in an array of applications, the
number of accelerators has grown.

Increasing transistor counts allow for increased design complexity, which may also
increase time to market and non-recurring engineering (NRE) expenses. One major
revolution was the advent of digital synthesis, which reflected the reality that manual
design could not scale to designs of a certain complexity [85, 94, 41]. Some amount of
lost performance was accepted, with the understanding that the critical portions of the
design could still be hand-crafted. Since the advent of synthesis, the trend of specializa-
tion has only increased the complexity of designs, but there has not been a corresponding
increase in designer productivity. The design flow has been improved over time, but still
fundamentally works upon similar principles and levels of abstraction.

The waterfall model, introduced in Sec. 1.3.1, is the industry standard, and hardware
tools and methodologies reflect this. The waterfall model is more challenging to apply
as systems increase in complexity. This legacy also presents challenges for prototyping,
which by their nature have some unknown challenges.

Agile design methodologies are a response to the waterfall model. Originally advo-
cated for large scale software development [35], agile methodologies emphasize iteration,
late changes, early and continuous delivery, and a collaborative working environment.
There have been attempts to apply agile methodologies to hardware design [57], but
challenges still remain. One important component of agile methodologies for hardware
design is the use of hardware generators [88], which will be discussed in more detail in
Sec. 2.2.4.

Agile methodologies are a natural fit for prototyping. By its very nature, a prototype
has uncertainty that can be addressed well by iterating on working subsets of the desired
functionality.

2.2.2 Hardware Description Languages

The popular hardware description languages (HDLs), Verilog and VHDL, were
originally designed in the 1980s. Programming languages have undergone significant
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changes as new approaches address shortcomings or find new ways of working. In par-
allel, the combined effect of Moore’s law, increasing design complexity, and improving
synthesis flows mean that the cost of abstractions in hardware design decreased. How-
ever, HDLs have been slow to adopt new constructs that allow for higher-level abstrac-
tions.

SystemVerilog added some useful constructs, especially those for object-oriented de-
sign, but in practice they are used more for verification rather than design. In particu-
lar, language features in SystemVerilog enable the universal verification methodology
(UVM), an industry standard methodology for verifying designs in a way that promotes
reuse via modular design. Support for SystemVerilog constructs in synthesis tools was
slowly adopted and is still incomplete in most tools.

SystemVerilog has very limited support for metaprogramming, and is also poorly
suited for the mathematics required in custom signal processing blocks. SystemVerilog
is not a “productivity language” in the spirit of Python or Ruby. Packaging, modules,
dependency management, etc. are poorly supported or entirely unsupported by HDLs.

There are many ways to express some constructs in HDLs, some of which may not
be synthesizable or may have unexpected results (e.g. accidentally creating latches). Lin-
ters for HDLs are essential for avoiding these problems. They are also proprietary and
expensive, which is problematic for open-source projects.

A design is more than the HDL description of a circuit. There is a lot of other
design collateral that goes into implementing a design. This collateral can take the form
of constraint files, TCL scripts, custom macros, or manual actions taken by an engineer
driving a CAD tool2. Whatever the form it takes, tools can often produce better results
when given guidance about the specific design. High-level abstractions can obscure these
efforts, and this extra collateral can make the savings from using high-level abstractions
smaller.

2.2.3 High-Level Synthesis

High-level synthesis (HLS) tools differs from HDLs in that a high level software
language is translated to RTL. The input language can be a general-purpose program-
ming language, often C or C++ [126, 66, 22]. Generally, only a subset of the language
can be synthesized. Memory allocation, operating system interaction, and unbounded
recursion are some examples of constructs that generally cannot be synthesized. They
can also be domain specific languages [42, 67].

Because HLS tools translate software abstractions to hardware implementation,
there are places where mismatch between those models can lead to inefficiencies [124].
HLS tools often require external guidance via directives or #pragmas to achieve good

2Software, firmware, package designs, and datasheets are further from the design but are also important
collateral

22



quality of result (QoR), which limits reusability and couples the algorithm description
with the implementation.

Commercial HLS tools are generally closed source and do not support plugin archi-
tectures. This lack of extensibility makes it difficult to customize compiler behavior.

2.2.4 Generator-Based Hardware Design

Like HLS, hardware generators attempt to raise the level of abstraction in hardware
design. However, rather than starting with a software description that gets translated
into hardware, generators directly produce RTL.

The simplest version of a hardware generator is a small standalone program that sub-
stitutes strings into an RTL template. These are easily written as one-offs, but do not
compose well or lead to much flexibility or reusability across a design.

The next step up from this is inline code generation, conceptually similar to how
PHP is embedded in HTML. Genesis2 [87] is an example that uses Perl as the em-
bedded language. Similar approaches are used internally at many companies. This style
of generator can be difficult to impose a strong type system or other mechanisms that
enforce safety constraints.

Other generators are implemented as their own language distinct from the RTL that
is ultimately emitted. Spiral [77] is focused on signal processing applications and uses
its own mathematically-oriented domain specific language (DSL). It often makes sense
to embed these languages as DSLs within an extant popular general-purpose language.
Magma [110], PyMTL [62], MyHDL [29], Nmigen/Migen [63], are some examples
in Python. Clash [17] is an example in Haskell. Simulink and Matlab with HDL-
Coder [65] can generate RTL that includes IP from many Matlab library components.
Chisel [18] and SpinalHDL [72] (a fork of Chisel) are generator languages embedded
in Scala.

Chisel is used for this work. Scala is a general-purpose programming language that
combines object-oriented and functional language features [70]. Chisel was initially de-
signed with RISC-V processor generators in mind, in particular the Rocketchip gener-
ator [16].

Chisel has been used successfully to create complex hardware libraries. Diplomacy is
a library from Rocketchip, a RISC-V SoC generator, that allows for general parameter
negotiation, and is especially useful for generating SoC interconnect [26]. BOOM, an
out-of-order RISC-V processor generator, uses Rocketchip extensively as a library [23].
Gemmini is a systolic array generator that can be easily integrated into Rocketchip
SoCs [36]. Chipyard is a project that aggregates many Chisel projects and allows cores
and accelerators written in Chisel (as well as other IP) to be integrated into complex
SoCs [13].

Chisel’s design is inspired by LLVM [56] in that there is a frontend language that
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generates an intermediate representation (IR), a backend that transforms the IR in a
sequence of transformations, and then a final emission stage where the IR is converted to
an output form. Chisel’s IR is called the Flexible Intermediate Representation for RTL
(FIRRTL), and the backend is referred to as the FIRRTL compiler [43]. After a series
of transformations that perform tasks such as width inference, dead code elimination,
constant propagation, deduplication, etc., the FIRRTL compiler emits Verilog that can
be used with any synthesis flow.

FIRRTL has a notion called annotations that attach metadata to entities in the FIR-
RTL graph. User-defined custom transformations can consume, modify, and add these
annotations, as well as modify the IR directly. This functionality is very powerful; li-
braries can generate annotations that trigger custom functionality later in the imple-
mentation flow. This enables libraries to implement functionality across many levels of
hierarchy. Some examples of powerful FIRRTL transformations include Chiffre [31],
which generates fault injection logic; Strober [53], which generates performance coun-
ters for power modeling; and MIDAS [52] or Golden Gate [64], which transform RTL
for efficient FPGA simulation.

FIRRTL also includes powerful functionality for scheduling transformations. A de-
pendency API allows transformations to specify what transformations they expect to
run before them, and which transformations they invalidate. A scheduler ensures that
transformations are run in the right order and the right number of times to satisfy the
constraints.

2.2.5 Verification

Verification is the bottleneck for design. Headcount, cost, and time-to-market are all
dominated by verification. Improving designer productivity at the expense of verification
is counterproductive to the overall design effort, and is a real danger of generator-based
methodologies [61].

The bulk of verification tasks in industry are accomplished via simulation-based
methods. UVM is the industry-standard design pattern by which simulation-based ver-
ification is decomposed into reusable tasks [113]. Assertions, checking for properties on
outputs, and evaluation against golden models are all used to evaluate the correctness
of the design under test (DUT). Coverage metrics are used to determine what fraction
of the design has been evaluated by the verification suite and guide future verification
efforts. Hitting complete coverage is an important milestone in the design process.

Stimulus is typically generated manually by verification engineers, but automatic
stimulus generation is sometimes applicable and remains an active area of research. Stim-
ulus can be generated randomly, but for most designs it is critical to bias the sampling
such that interesting parts of the design are exercised quickly. Coverage information can
be useful feedback for quickly generating “interesting” inputs [114, 108, 33].

Formal verification is a family of techniques that, in contrast to simulation-based
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verification, evaluates the correctness of the DUT based on some sort of proof system,
formal specification, or formal method. Model checking is a popular technique within
the formal verification umbrella, which involves checking properties that are generally
expressed using temporal logic. Commercially-used tools such as JasperGold must also
apply a number of heuristics to designs in order to get good performance.

Formal tools are valued for the confidence they can give in the correctness of a de-
sign, but suffer from scalability issues and limited user expertise. As a result, in industry
they are generally targeted at small portions of the design that are well suited to formal
methods or are particularly high value.

These techniques are all applicable to generated designs, although there are some
unique challenges. As discussed in Chap. 1, generated names are a commonly cited issue
for Chisel-generated designs, as well as other code generation schemes3. Generated
RTL may have different hierarchy than the code generating the RTL, or some tools
flatten layers of hierarchy4. Generators that optimize the output RTL may change size,
name, or appear and disappear without necessarily being closely related to the portion of
the design being tweaked. Answering questions such as “why is the output valid signal
stuck at 1” can be made more difficult to answer if the generation flow removes all the
logic that resulted in a constant output. All of these issues add friction to the debug loop.

Solutions to these problems must rely on increased automation for verification and
physical design. This may in turn require more expert engineers to support the automa-
tion flows as opposed to the current approaches which scale by increasing the number
of verification engineers. One example of this kind of automation is generating circuit
metadata along with the circuit, and having testbenches generate test harnesses and input
sequences based on the metadata. IPXact [115] is a format for expressing this kind of
metadata. It is used by commercial products like Cadence’s Verification Workbench and
JasperGold to automate test environment generation. Is has also been used with Chisel
designs to generate stimulus for unit tests of generated blocks [19].

2.2.6 Physical Design

Physical design is also of critical importance to the outcome of a hardware design.
QoR directly impacts performance, power, and cost, all of which are critical for a prod-
uct’s ability to compete in the marketplace. Even for FPGAs, getting good QoR can be
important; getting a design to fit on even a large FPGA can be difficult.

Similar to verification, generated designs can increase friction for physical design
flows. There have been some attempts to use machine learning for floorplanning and
place-and-route [28] which may eventually lower the need for the sort of manual in-

3Beyond the ergonomic issues, this may present difficulty in iterative design processes, for example
correlating with a coverage database or floorplanning.

4The hierarchy of the generated design may also have important physical design implications. Hierar-
chical flows are critical for large designs and requires careful partitioning.
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tervention that generated designs make difficult. Until then, solutions that increase the
ability to automate physical design flows are attractive.

Hammer [121] is a modular VLSI flow that has been integrated into the Chipyard
project. The idea behind hammer is to abstract over process, technology, and EDA tools
by providing APIs that ultimately generate the TCL scripts, constraints, etc. that are
needed to run a flow. The ultimate goal of Hammer is that the APIs will essentially be
usable like any other FIRRTL annotation and any layer of the Chisel/FIRRTL/Hammer
stack can feed metadata down the implementation path.

2.2.7 Numerics in Hardware Design

HDLs are generally unfriendly to implementing math-heavy hardware. In languages
that are friendly for numerics, features such as generics, numeric towers, and higher-
order functions are often useful for writing reusable and clear code. HDLs generally
provide +, −, *, and maybe \% operations on 2’s complement integers and not much
more.

In many workloads, the cost of mathematical operations may be incidental to other
costs such as memory size/power, routing overhead, etc. Custom signal processing
workloads are generally very math-heavy, and often rely on using as few bits as possi-
ble throughout the design to get good power, performance, and area. As a result, it is
critical that designers have fine-grained control over their designs.

MathWorks’s HDLCoder, mentioned earlier, is much friendlier for describing
math-heavy algorithms. There are automatic float-to-fixed conversion, filter generators,
and lots of useful IP. However, as a closed source flow with limited metaprogramming
facilities, combining separate designs can be difficult.

HLS systems are also generally more friendly for expressing numerics. One concern
for HLS systems is having fine-grained control of the output. These systems often have
special types for arbitrary-width integers or fixed-point numbers that can help get better
efficiency, but it can be difficult to control other important aspect of the output design.

This work makes extensive use of libraries designed to aid in designing custom signal
processing hardware [120]. Details are discussed more in Chap. 6. At a high level, the li-
braries provide high-level abstractions for specifying numeric algorithms based on Spire,
a new interval type that has tighter width-inference semantics than standard Chisel types,
and a bitwidth optimization platform. Portions of this methodology have been used to
successfully tape out multiple projects [19, 119] as well as to perform this work.
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Chapter 3

Techniques for Achieving URLLC

This chapter discusses various techniques for achieving URLLC, especially tech-
niques that exploit spatial diversity with relaying. Occupy CoW is the basic technique for
relaying with low latency. Other techniques that add network coding and relay selection
on top of Occupy CoW are also discussed.

3.1 Problem Formulation

Many of the standardization efforts for URLLC remove protocol-level sources of
latency and overhead that make small packets inefficient. However, fading is generally
not addressed by these measures and occurs with high enough probability to be relevant
to URLLC. As a result, even if the average and median latency are improved, the tail
behavior will still be dominated by fading as illustrated in Fig. 3.1.

As discussed in Sec. 2.1.3, exploiting spatial diversity via relaying is an attractive
technique for overcoming deep fades. The remainder of this chapter outlines several
approaches for relaying in the URLLC context that we have investigated.

3.2 Occupy CoW

Occupy CoW (Control over Wireless) employs simultaneous relaying to achieve re-
liability. “Simultaneous relaying” refers to the fact that many relays may share the same
information (e.g. the uplink packet for user 6) and can therefore use a distributed space-
time code to allow multiple transmitters to utilize the same transmission resource (e.g.
timeslot). A full treatment is given in [105], but a general overview is provided here.
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Figure 3.1. Many of the standardization efforts for URLLC address sources of latency
from overhead in the protocol, but do not address the sources of latency that come about
from poor channel conditions.

3.2.1 Protocol Description

We assume each user generates one fixed-size packet for the controller per cycle, and
receives one packet from the controller of the same size every cycle, i.e. the information
flows in a star topology. There is a variant in [105] for generic information topologies, but
for the sake of clarity we will describe the simpler star-topology variant. The protocol
is scheduled and known to all users in the network in advance and each packet has a
dedicated timeslot.

Occupy CoW consists of three main stages, each of which have their own dedicated
timeslots:

1. Downlink: The controller broadcasts every controller-to-actuator packet. Every
user attempts to receive the entire packet (instead of going to sleep, for example).
Each user needs to receive the controller-to-actuator packet intended for them,
but also tries to receive every other packet in the event that they are needed to act
as a relay.

2. Uplink: The uplink portion is divided into timeslots for each user. During their
timeslot, a user broadcasts its sensor-to-controller packet. The controller attempts
to receive the message, but all other users in the network try to receive the packet
in the event that they are needed to act as a relay.

3. Relay: The relay portion is divided into timeslots for each user, and each user’s
timeslot is further divided into a timeslot for the controller-to-actuator packet
and another for the sensor-to-controller packet. During the relay timeslot for
user 𝑖, every user who successfully received a controller-to-actuator or sensor-to-
controller packet for user 𝑖 will transmit it in the appropriate timeslot. There may
be multiple relay phases to allow multi-hop relaying Having one relaying phase
will be referred to as “two-hop” because the transmission took one hop for the
relay to receive it and another hop for the relay to transmit it. Having two relaying
phases will be referred to as “three-hop”.
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There are two scheduling variants: a fixed relaying schedule variant and an adaptive
relaying schedule variant. The fixed variant schedules a relay timeslot unconditionally
for every user, even if their transmission succeeded in the first two phases. The adaptive
variant only assigns timeslots to users who had a failed transmission in the uplink phase.
This requires the controller to assess which users had failed transmissions and an extra
timeslot for the controller to broadcast a schedule for the relay phase. This scheduling
phase occurs between the uplink and relaying phases. The full time in the relaying phase
is always utilized; the fewer the number of users that need to be relayed, the lower-rate
the transmission is.

The description above is illustrated in Fig. 3.2 for a 10-user example with the adaptive
variant.
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Figure 3.2. Illustration of Occupy CoW, adaptive variant. The bottom right corner
depicts the connectivity of the users; some have sufficient SNR to succeed in phase 1
and others only have sufficient SNR to succeed in phase 2. Each column moving from
right to left shows the actions taken by users in the network at each phase. Each row
is a different user, starting with the controller followed by the 10 users 𝑆0 through 𝑆9.
Each rectangle has a color depicting the actions being taken, symbols indicating if the
user succeeded receiving the message or is relaying, and an outline indicating the status
of the user’s uplink and downlink messages. This figure originally appeared in [102].

Another way in which Occupy CoW schemes can be varied is by phase length. The
canonical version of Occupy CoW assigns the same amount of time for the Downlink,
Uplink, and Relay phases. However, it is reasonable to optimize the length of each of
these phases for reliability and such schemes are also considered.
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3.2.2 Performance

The work in [105] produced analytical expressions for the probability of cycle error
for various Occupy CoW schemes under certain conditions. These conditions are:

• All channels are assumed to have the same fixed nominal SNR and are assumed to
have independent Rayleigh fading. Each user is assumed to have perfect knowl-
edge of the channel state information (CSI) of its own good channels, but are
not assumed to have any knowledge of its own faded channels or any other user’s
channels.

• Channels are assumed to have a single tap.

• Each link is “good” (i.e. information is ultimately received with no errors or era-
sures) if the rate of transmission is less than or equal to the channel capacity.

• Channels are assumed to be reciprocal.

• Sender diversity is harvested perfectly; that is, if there are 𝑘 simultaneous trans-
mitters, then this is the same as there being 𝑘 independent attempts for commu-
nicating the mession.

• Implementation effects for coding are not considered and no transmission or de-
coding errors are undetected.

Under these assumptions, analytical expressions are derived and some interesting
observations can be made. Fig. 3.3 shows a comparison of some Occupy CoW schemes
with some alternative schemes.

The one-hop scheme is a scheme with no relaying; only the downlink and uplink
phases are used with relaying phase. No spatial diversity is exploited, so overcoming
fades requires potentially huge SNRs in the 80 dB to 100 dB range. Even with a genie
that optimally allocates channel resources to the users in deep fades (called ‘1 hop with
genie-aided HARQ’ in the plot), 1 hop schemes require very high SNRs. Coding is not
very effective at overcoming deep fades.

The ‘frequency hopping repetition code’ line in Fig. 3.3 shows the effectiveness of
exploiting frequency diversity instead of spatial diversity. The repetition code refers to
the idea that failed transmissions are retried at a different, independently-faded carrier
frequency potentially many times. The annotated numbers reference the minimal num-
ber of independently-faded carrier frequencies required to achieve the reliability spec at
the given SNR. One thing to note is that the number of frequencies is fairly large; it may
be unrealistic to expect the environment to natively have 20 carrier frequencies that fade
independently. Furthermore, the frequency hopping scheme scales poorly in comparison
to the Occupy CoW schemes because the SNR requirement increases with network size.

Once the Occupy CoW schemes reach approximately 7 dB, there is enough spatial
diversity for the Occupy CoW scheme to perform better than the frequency hopping
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Figure 3.3. Performance of Occupy CoW. The 𝑥-axis represents the network size and
the 𝑦-axis represents the minimum SNR required to meet the latency and reliability
requirements. Lower SNR is better. The 1 hop lines represent schemes with no relaying
and show the SNR required to overcome fades directly. The frequency hopping line
represents a scheme where users can retry failed transmissions at a new, independently
faded carrier frequency. The 2 hops and 3 hops optimized lines represent Occupy CoW
schemes. This figure originally appeared in [102].
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scheme. Furthermore, the Occupy CoW schemes scale much better with network size.
The two lines represent two different variants of the Occupy CoW scheme: an unopti-
mized 2-hop scheme and a phase-length optimized 3-hop scheme. Optimizing phase
lengths and using 3 hops does provide some benefit, but the SNR savings are relatively
small. Simplicity of implementation may favor the 2-hop scheme because of the small
difference.

3.2.3 Summary

Occupy CoW is a relatively simple scheme that performs well for URLLC scenarios
under some assumptions. It exploits the rich supply of spatial diversity available in a net-
work with a large number of nodes without a large amount of overhead. The practicality
of Occupy CoW depends largely on how realistic the modeling assumptions are, and
how sensitive it is to modeling error.

3.3 XOR-CoW

Network coding encompasses a large category of coding techniques wherein per-
forming coding across multiple nodes in a network can achieve better performance than
coding along a single link as if it were a point-to-point connection. The famous examples
in [10] demonstrate that network coding can be applied to great effect when the infor-
mation structure supports it. XORs in the Air [50] is a simple but powerful application
of network coding to relaying systems. We apply this technique to Occupy CoW in a set
of schemes we call XOR-CoW [101], pictured in Fig. 3.4.
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Figure 3.4. Illustration network coding, in particular the XORs in the Air scheme. The
left depicts using relays with no network coding. Because the 𝐶 → 𝑆 messages and
𝑆 → 𝐶 messages are performed separately, it takes 4 time steps total. The right depicts
using relays with network coding, namely by having the relays XOR the 𝐶 → 𝑆 and
𝑆 → 𝐶 messages. This allows the two relay time steps to be merged, and the entire
scheme takes 3 time steps instead of 4. This figure originally appeared in [101].
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The idea is that the downlink-relay and uplink-relay phases can be fused. Simply
XORing the downlink and uplink packets is sufficient; the controller can remember the
downlink packet and XOR it with the relay packet to recover the uplink packet, and the
sensor node can similarly recover the downlink packet. Fusing the two relay phases into
one phase provides more channel resources per bit of information and thus reduces the
SNR required to meet URLLC constraints.

Figure 3.5. Performance of XOR-CoW. Performance with 20-byte and 60-byte packets
is shown. Frequency hopping, 3-hop optimized Occupy CoW, and XOR-CoW are
compared. 3-hop optimized Occupy CoW and XOR-CoW perform similarly. This
figure originally appeared in [101].

This works best when there is one relay phase as the XORing can only be applied
to the last relay phase. Therefore, it is useful to compare the 2-hop XOR-CoW scheme
to the 3-hop Occupy CoW scheme, shown in Fig. 3.5 for 20 and 60 byte payloads.
Interestingly, for smaller network sizes optimized 3-hop schemes are slightly better, but
only slightly. Furthermore, after the network size is large enough the XOR-CoW scheme
performs better.

The relative simplicity of the XOR-CoW scheme, as well as the potentially better
performance for larger networks, makes it an attractive option for a practical URLLC
system. Of course, this performance is somewhat specific to scenarios where the uplink
and downlink packet sizes are equal. In more general scenarios where information flows
are non-symmetric, XOR-CoW may be less favorable.
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3.3.1 Robustness

Work in [97] analyzes the sensitivity of Occupy CoW and XOR-CoW schemes to
modeling error. Non-reciprocal channels, non-quasi-static channels, imperfect diversity
harvesting, and non-independence are all studied. Non-reciprocal and non-quasi-static
channels have a relatively small impact. The impact of imperfectly harvesting diversity
depends on just how much diversity can be harvested, but the most important modeling
assumption is independence. When channels are too likely to fade dependently, the SNR
requirements skyrocket. This is unsurprising as the entire basis of these techniques is to
exploit the independence provided by spatial diversity.

It is critical to understand the sensitivity of these techniques to modeling error when
building prototype systems.

3.4 Relay Selection

After independence, the next most important modeling assumption behind the
schemes presented here is the assumption of being able to harvest full sender diversity.
There are several reasons to think this may not be true in implementations. After a certain
number of relays, it seems reasonable that synchronization error, phase noise, channel
effects, or other phenomena may cause an extra relay to add more noise than signal.

One way to achieve reliable communication without requiring simultaneous trans-
missions to achieve full sender diversity is to use a smaller number of “good” relays. Stud-
ies in [98, 100, 96] show how users can used observed channel information to reliably
choose relays that will have good channels to both the sensor node and the controller.
These techniques will be addressed in Chap. 5.

3.5 Summary

This chapter outlined techniques for achieving URLLC. They utilized spatial diver-
sity via relaying to overcome fading channels and achieve high reliability. Network cod-
ing and relay selection techniques are useful refinements to these ideas. The next chapter
will discuss implementing these ideas, in particular the PHY and MAC requirements.
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Chapter 4

PHY and MAC Considerations for

Relay-Based URLLC

The techniques discussed in Chapter 3 abstract away many PHY and MAC imple-
mentation details. These abstractions are valuable when exploring new ideas and getting
a sense of what circumstances are needed to achieve the requirements, but ultimately it
is important that an implementation have an PHY and MAC that is practical to realize.

There are some ideas from Chapter 3 that guides the design of a PHY and MAC.
One idea is that transmissions should be scheduled in a time-divided fashion. Another
idea is that relays will be transmitting the same message, which allows for the possibility
that relays can transmit simultaneously. It is important that these relay transmissions do
not interfere with each other.

Besides these things, there is a lot of freedom in how to implement a transceiver for
relay-based URLLC. In the cases where there is freedom to make arbitrary choices about
the design of the PHY or MAC, we choose to make similar choices to those in the 802.11
standard. This is not necessarily because 802.11 has made the most optimal choices.
Rather, it is because 802.11 has seen widespread deployment and usage in consumer and
industry spaces. It is useful to frame these design decisions like so: “What changes must
be made to 802.11 in order to support URLLC?”1

1It might seem more natural to use 5G systems, especially the URLLC proposals, than 802.11. To the
extent that 5G allows for new numerologies, it could be argued that for this work there is not a substantial
difference between 802.11 and 5G. However, URLLC proposals in 5G add significant complexity to allow
for different numerologies and low latency scheduling. It is this author’s judgement that 802.11 is a simpler
baseline system with a fewer changes needed to support relay-based URLLC.
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4.1 OFDM
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Figure 4.1. OFDM allows for simple channel estimation and equalization for wideband
channels. A frequency selective wideband channel gets convolved with the input, and
after the FFT in OFDM each subcarrier will correspond to a small portion of the chan-
nel. If 𝑁𝐹𝐹𝑇 is chosen large enough, these small portions of the channel can be assumed
to be approximately constant.

Orthogonal frequency-division multiplexing (OFDM) is a common scheme for en-
coding data for transmission over a channel. In contrast to single-carrier modulation
schemes, which directly modulate a signal to the full available bandwidth, OFDM maps
data to multiple subcarriers. OFDM does this by utilizing the fast-Fourier transform
(FFT), which can be thought of as dividing a single wideband channel into a number of
parallel narrowband channels as depicted in Fig. 4.1. Channel estimation and equaliza-
tion can be easier for these narrowband channels.

Channel estimation can be performed in many ways with OFDM. The time-domain
estimation techniques used for single-carrier systems can be used with OFDM, and
equalization can be performed in either the time or frequency domain. However, it
is more typical to see channel estimation and equalization performed in the frequency
domain. Generally, the FFT size for an OFDM system is chosen to be large enough
that each subcarrier can be thought of as a narrowband channel (that is, a single-tap
channel). The subcarrier spacing, given by BW/𝑁𝐹𝐹𝑇, is an important parameter. 𝑁𝐹𝐹𝑇
can be chosen such that the subcarrier spacing is significantly smaller than the coher-
ence bandwidth, which is a measure of how variable the channel is. If this condition is
true, each subcarrier can be thought of as a single-tap channel, which greatly simplifies
the complexity of channel estimation. 𝑁𝐹𝐹𝑇 can be increased to accommodate a wider
channel, and the FFT, channel estimation, and channel equalization can scale well to
accommodate a more complex channel. This feature is one of the main reasons OFDM
is popular.

Preamble-based estimation schemes, depicted in Fig. 4.2, involve transmitting at
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Figure 4.2. Representation of how subcarriers can be organized into pilots and data,
shown on the time-frequency plane. Preamble-based schemes, depicted on the top left,
have pilots at the beginning of a transmission and then all data after. Pilot-based schemes
always have data and pilots intermixed, as shown on the top right. Preambles and pilots
can be used together, as shown on the bottom.

least one known OFDM symbol before transmitting data. The receiver will see a value
on each subcarrier 𝑖 given by 𝑦𝑖 = ℎ𝑖𝑥𝑖+𝑛𝑖. In the high-SNR case, a simple division is all
that is needed to estimate ℎ𝑖 for each subcarrier. Knowledge about ℎ⃗ and ⃗𝑛, for example
that the noise is colored or that the channel has at most 8 taps, may allow for more ways
to refine estimates of ℎ𝑖. Generally, though, estimating ℎ𝑖 is parallelizable and requires
at most a division, which comes with some hardware expense but is often cheaper than
an equivalent time-domain based equalizer.

Pilot-based estimation schemes intermix known data, called pilots, with the data
to transmit that is unknown to the receiver. The estimation problem is similar to the
preamble case, but because the pilots are interleaved with data, some subcarriers’ chan-
nels may need to be inferred from the channel estimates of nearby carriers. There are
many possible interpolation schemes that interpolate channel estimates across time and
frequency. These interpolation schemes, as well as choosing the number of pilots to use
in a symbol, require knowledge about the channel complexity and dynamics as well as
application requirements.

Preamble- and pilot-based estimation schemes can be used together. The preamble
can give a good initial estimate and then pilots can track changes to the channel over
the course of a long message. OFDM provides very simple and flexible tools for per-
forming channel estimation and equalization that can be tailored to specific channel and
application conditions.
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Channel equalization in OFDM is generally performed by a single complex multiply
by the inverse of the channel estimate.

OFDM is a popular choice for many widely deployed standards including 4G, 5G,
802.11, DSL, and cable modems. The cost of an FFT is often a good tradeoff for the
ease of channel equalization and high-order modulation it enables. OFDM was selected
for this project because of these properties. Where possible, the numerology (FFT size,
size of cyclic prefix, etc.) was kept consistent with 802.11.

The choice of preamble- or prefix-based channel estimation is an important decision.
For the uplink and relaying phase, the overhead of having a preamble for each user is hard
to justify. For 30 users with 𝑁𝐹𝐹𝑇 = 64 (given by 802.11G), almost 10% of a 2ms cycle
time would be consumed by preambles alone.

4.2 Synchronization

Synchronization is of critical importance for any scheduled MAC. In the schemes
discussed here, there will be downlink, uplink, and relay phases. The downlink phase
consists of a one-to-many transmission, and therefore does not need to be synchronized
with other users particularly well. The uplink and relay phases, however, consist of many
small packets being transmitted by different users. Each transmission will have a timeslot
scheduled, and poor synchronization will result in missing the timeslot, failing to send
the desired data, and potentially interfering with some other transmission.

Furthermore, some of these schemes depend on scheduling simultaneous relay trans-
mission. This occurs when multiple relays all share the same information and transmit it
at the same time. The problem with poor synchronization is the same as for the uplink
case with the added danger of poor frequency synchronization, as illustrated in Fig. 4.3.
If there is a large carrier-frequency offset (CFO) between two transmitters, they may
interfere with each other and ruin the transmission. As a result, it is important that users
be well synchronized in both time and frequency2.

Estimation of the CFO can be done in multiple ways. In OFDM, a blind CFO
estimation can be performed by taking advantage of the fact that the cyclic prefix of a
symbol should be the same as the end of the symbol; finding the phase shift between the
CP and end of the symbol can be used to find the CFO. This can be relatively slow to
converge because of short CPs and short OFDM symbols resulting in noisy estimates.
Preambles can also be used to estimate CFO, at the expense of adding the overhead of a
preamble that blind estimation does not require.

Adding a preamble to the controller packet and performing CFO correction at the
transmit side in every user allows CFO estimation to be performed accurately based on a

2There are techniques for synchronizing networks in a scalable way, for example [38]. However, using
these techniques in the URLLC context is challenging as they add overhead and achieving highly-reliable
synchronization is still a challenge.
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Figure 4.3. Time and frequency synchronization are critical to URLLC systems. The top
figures depict good time synchronization on the left, where two simultaneous transmit-
ters are within a guard interval (determined by the CP), and bad time synchronization
on the right, where one of the simultaneous transmitters is out of the guard interval
and clobbers the subsequent transmission. The bottom figure depicts how CFO results
in inter-carrier interference (ICI). A single transmitter’s CFO can be corrected at the
receiver, but multiple transmitters with CFOs that are too large will degrade SNR sig-
nificantly.

preamble. This gives a better CFO estimate than blind estimation at reasonable overhead
(i.e., the overhead does not increase as the number of users increases).

4.2.1 Synchronization in OFDM

OFDM has a standard technique for proscribing the required time synchronization
accuracy. Each OFDM symbol can have a cyclic prefix (CP) of a parameterized length.
It is called a cyclic prefix because the samples of the prefix come from the end of the
OFDM symbol, making the combined CP + symbol look periodic. The beginning of
the OFDM symbol can be taken as anywhere within the cyclic prefix and because of the
cyclic shift property of the FFT, it will only look like a linear phase shift after the FFT.
The CP can be chosen to be any size, but ideally should be chosen to be small relative to
the size of the OFDM symbol length 𝑁𝐹𝐹𝑇 to avoid large overhead.

In an OFDM system, frequency synchronization is usually performed by correcting
the CFO at the receiver before taking the FFT. This is because the correction, a multi-
plication by a complex exponential with the appropriate frequency, is fairly cheap in the
time domain. In the frequency domain, this correction becomes a convolution.

However, in the case of simultaneous transmissions, each transmitter may have dif-
ferent CFOs relative to the controller and each other. Different relative motions between
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users will mean that the Doppler shifts will be different. This makes correcting CFO very
difficult at the receiver.

A simpler approach is to try to correct CFO at the transmitter. Each user will esti-
mate their CFO relative to the controller, and all future transmissions will be multiplied
by a complex exponential to match the carrier frequency of the controller. If this esti-
mation is performed well, the remaining offsets between users in the network will come
from Doppler shift. Even if perfect knowledge of all other users in the network is avail-
able to every user (which is generally impractical), it may not be possible to find an offset
that results in zero perceived CFO between receivers.

Therefore, it is generally preferable to choose system parameters that make Doppler
shifts small enough to be negligible. In the case of OFDM, the rule of thumb is generally
that the remaining CFO after correction should be less than 1% of the subcarrier spac-
ing. If we take channel bandwidth and carrier as given, this creates a relation between
the Doppler frequency (determined by the maximum velocity of scatterers and users)
and the subcarrier spacing (determined by 𝑁𝐹𝐹𝑇). Thus, we see there is some tension
here between time and frequency synchronization. Decreasing 𝑁𝐹𝐹𝑇 makes the fre-
quency synchronization easier by increasing subcarrier spacing, but makes the overhead
of a cyclic prefix more expensive.

For the parameters generally used in this work, say 𝑓𝐶 = 2.4 GHz, BW = 20 MHz,
and 𝑁𝐹𝐹𝑇 = 64, subcarrier spacing is 312 kHz and the Doppler shift is 3.12 kHz when
the maximum velocity is 390 m/s. This is rather large, so for these parameters Doppler
shift is not an important contributor to CFO. However, for LTE-inspired parameters
BW = 30.72 MHz, and 𝑁𝐹𝐹𝑇 = 2048 (keeping 𝑓𝐶 = 700 MHz), subcarrier spacing
is 15 kHz and the corresponding maximum velocity is 18.75 m/s, which is quite a bit
slower and much more likely to be problematic3.

In contrast to the simultaneous-relay transmission case, time-dividing relay transmis-
sions does not require correcting CFO at the transmit side. However, if the parameters
are chosen such that the Doppler shift is small relative to the subcarrier spacing, it may
be beneficial to do so. This is because users will be getting more information from the
controller than any one individual user.

3The tradeoff between time and frequency synchronization is not entirely real in an important sense
that this example is ignoring. For URLLC, there may not be enough data to meaningfully use large FFT
sizes. If there are only 20 bytes being transmitted, having 𝑁𝐹𝐹𝑇 = 2048 is probably not making good use
of the channel because there are too many subcarriers in one symbol. In this case, increasing FFT size to
amortize a large cyclic prefix is not necessarily going to be helpful.
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4.3 Spatial Coding with Simultaneous Relay Transmis-

sions

Simultaneous relay transmissions are motivated by the idea of many users transmit-
ting the same information simultaneously to increase the reliability of the transmission.
It is analogous to a crowd of people shouting a sentence to make sure a nearby person gets
the message. Like the analogy of the crowd, it is possible that the message will get lost
if the transmitters interfere with each other. Previous sections have discussed the conse-
quences of poor synchronization, but another possible failure mode is unlucky channel
realizations that result in transmitters destructively interfering. This phenomenon is es-
sentially the same as the fading this technique is trying to overcome.

Spatial codes can be used to ensure that this kind of interference does not occur
with too high a probability. Spatial codes describe how a group of transmitters should
transmit together to achieve some goal. MIMO with independent spatial streams is one
form of spatial coding which has the goal of increasing throughput. Spatial codes can also
be used to increase reliability; in fact, throughput and reliability exist in a well-studied
tradeoff[129].
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Figure 4.4. Cyclic Delay Diversity (CDD) applies random cyclic shifts to different trans-
mitters OFDM symbols. This prevents relays from destructively interfering and allows
simultaneous relays to exploit spatial diversity.

Cyclic delay diversity (CDD) is a simple space-time code that is easily applied to
help OFDM systems to exploit diversity [21]. It has been proposed as a way for relay-
based OFDM systems to avoid interfering with each other and exploit spatial diversity
in [125]. The idea is to perform a random (per-transmitter) cyclic shift on an OFDM
symbol before performing the IFFT. The same cyclic properties of the DFT that the CP
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relies on mean that the randomly adding cyclic shift at the transmitter looks like a channel
with a random delay. This decorrelates the channel responses of different transmitters
without requiring significant changes to the architecture of OFDM transceivers. This
prevents relay transmitters from destructively interfering, effectively manifesting spatial
diversity as a more frequency selective channel. This is depicted in Fig. 4.4.

4.4 Channel Estimation

Channel estimation is difficult for the relay-based URLLC proposed here. Using
numerous relays to increase reliability necessitates estimating numerous channels, but
meeting low latency requirements means that this estimation must come with relatively
low overhead.

The typical way channel estimation is done for an OFDM based system was discussed
earlier in Sec. 4.1. This involves using either preambles or pilots to send pre-agreed
symbols on some subcarriers. Using preambles results in very large overhead for the
relays which have very small packets to transmit. Therefore, it makes sense to use pilot
tones for the relay transmissions. However, the controller is sending data for every user,
and has enough data to amortize a preamble. The added benefits of a preamble for CFO
estimation and synchronization, as well as being consistent with how 802.11 is defined,
makes using a preamble for the controller a good choice. This design uses a preamble for
the downlink transmissions, selected to be the L-STF preamble signal from 802.11 [74].

4.4.1 Simultaneous Relay Transmissions

Under the simultaneous relay transmission scenario, it is possible that most users in
the network will transmit simultaneously. This has the consequence that that channel
may be significantly more complex than a point-to-point channel; that is, there may be
more degrees of freedom in the channel. In fact, CDD by design increases the complexity
of the channel by trying to decorrelate the channel responses.

Increased channel complexity means that more resources, be they preambles or pilots,
must be dedicated to channel estimation. This increases the overhead of communication,
especially for short packets that cannot amortize the time spent estimating the channel.
Determining precisely how many pilots are needed is challenging because it depends on
the environment in a fairly complex way. The number of relays transmitting simultane-
ously, the correlation of the channels, and the complexity of a point-to-point channel
factor into how many pilots are needed. It is expected that most potential relays will
have good channels, so the worst case (a very complex channel) is also the common case.
However, if the number of users is large relative to 𝑁𝐹𝐹𝑇, or if the underlying channel is
of relativeley high complexity, the number of pilots needed to estimate the channel may
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be prohibitively expensive, perhaps even more expensive enough that using a preamble
is preferable.

Further compounding these issues, each relay transmission can potentially have dif-
ferent relays participating. This makes it difficult to reuse channel estimates over time,
which would be one way of potentially reducing the number of pilots needed.

For the parameterization chosen for this design, the number of degrees of freedom in
virtual channel that results from the simultaneous transmissions may be greater than or
equal to the number of subcarriers 𝑁𝐹𝐹𝑇. With 𝑁𝐹𝐹𝑇 = 64 and the number of users set
to 30, each user having a 2-tap channel will make using a preamble preferable to pilots,
even for very short transmissions. In different systems with a smaller number of users
or a larger amount of data per user may change this relationship. For this system, every
relay transmission consists of 3 OFDM symbols, so an extra symbol for a preamble adds
considerable overhead. This high overhead makes the extra cost of time-multiplexing a
small number of relays less drastic, and the simplicity of time-multiplexing relays is very
appealing.

4.5 Channel Coding

Channel coding is also of critical importance for relay-based URLLC. In
throughput-oriented scenarios like those contemplated by 802.11 or LTE, the goal
is to close the gap to capacity to be as small as possible. Techniques like coding
over large blocks (e.g. 1024 or 2048 bits) and precise rate-matching via hybrid ARQ
(HARQ) help achieve that goal. However, in the URLLC scenarios discussed here,
packets are too small to allow for such large block sizes and latency requirements make
feedback techniques like HARQ difficult. Therefore, short-block length performance is
an important consideration for URLLC.

The Polyanskiy bound characterizes the relationship between coding rate and error
probability for finite block-length codes [75]. The study in [123] uses this bound that
coding schemes are able to achieve the URLLC requirements considered here, but does
not make specific recommendations as to a specific code that will achieve the require-
ments. The architecture in [123] uses long, potentially very low rate retransmissions4.
Repeat-accumulate (RA) and accumulate-repeat-accumulate (ARA) codes are conve-
nient codes when low rate is desired, which for ultra-high reliability could be desirable.
Similarly, fountain codes provide a straightforward way of generating precisely as many
bits as are needed and no more. However, in the case of a URLCC system, real-time

4Having a large pool of relays, which was not considered in [123], makes low rate transmissions un-
necessary. As long as all users have similar nominal SNRs, having enough relays ensures that at least one
of them will have a good channel.
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feedback about the reception of a transmission is expensive5. Instead, it is important to
pick codes that perform well for a short packet length.

Studies in [89] present codes that perform well for short packet lengths. Tail-biting
convolutional codes are competitive in this regime. Convolutional codes are already de-
fined in the 802.11 standard and decoders are simple to implement, so are a good choice
for this work. For development purposes, a simple rate 1/2 code with constraint length
𝐾 = 2 and generator polynomial [3, 1], but a higher performance implementation should
use one of the codes with longer constraint length evaluated in [89].

4.6 Summary
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Figure 4.5. Description of communication scheme for URLLC. There are three phases
within a cycle: downlink, uplink, and relay. In the downlink, the controller sends a
preamble followed by data symbols containing actuation commands for each user. In the
uplink, each user takes turns transmitting. The relay phase consists of several sub-phases,
each one where relays retransmit data for a different user.

This chapter outlines the rationale behind design decisions for an OFDM-based
URLLC communication scheme. These decisions are summarized in Fig. 4.5.

5Here perhaps is an opportunity for a full-duplex system to make a good impact. Full duplex systems
allow for very fast feedback paths, allowing a receiver to tell a transmitter that the transmission has been
successfully received with very little delay. This might favor usage of fountain codes or low-rate codes with
HARQ.
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Chapter 5

Predicting Relay Quality

Simultaneous relaying can achieve low latency, but has implementation challenges
as discussed earlier. Instead, using a subset of possible relays was proposed because it
is more implementation friendly. Fewer relays simplifies synchronization and channel
equalization. If a small enough subset is used, the overhead of time-dividing the relays
can be an acceptable trade for its simplicity of implementation.

Of critical importance is the number of relays used. If the subset of relays used is large,
then there is little improvement over using them all, and possibly increased overhead from
coordinating them. If the subset of relays used is too small, the system may not be able
to achieve the reliability requirement.

If a user could know a priori which relays would have faded channels and which would
not, then only one relay would be needed to achieve the reliability requirement. In reality,
users must contend with the future channel state of the network being uncertain. A relay
that has a high-quality channel during a user’s uplink phase may go into a fade during
the user’s relay phase, as depicted in Fig. 5.1. Channel dynamics dictate the ability of
users to predict future channel state, and therefore determine the minimum number of
relays needed to achieve the reliability requirement.
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Figure 5.1. Given two potential relays, 𝑅1 and 𝑅2, determining which will be the best
future relay depends on channel dynamics. Between the time that the channel is esti-
mated, the relay is selected and informed, and the actual relay transmission occurs, the
channel state 𝑅1 may have changed considerably. The best relay at the time of channel
estimation (𝑅1) may not be the best when the transmission is scheduled (𝑅2). Chan-
nel dynamics must be accounted for to do a good job with relay selection. This figure
originally appeared in [83].

5.1 Channel Models

5.1.1 Coherence Time

Coherence time is a useful abstraction for understanding wireless systems. The basic
idea of coherence time is that when a channel does not change instantaneously1, it is
reasonable to approximate the channel as being piecewise-constant; that is, for a short
interval of time determined by the coherence bandwidth the channel does not change2.
This approximation is useful; for example, the idea of a preamble followed by data relies
on the premise that the channel does not change significantly in the interim. This kind
of approximation is not uncommon in URLLC work, for example [49, 59] which both
assume channels are static throughout a cycle.

Making a piecewise-constant approximation can hide important details in some cir-
cumstances. One example is in finding zeros, in which case you have a (potentially poor)
approximation of the location of the zero, or could even entirely miss a zero.

1In this case, the fading process is assumed to be bandlimited. Moving objects in the environment are
assumed to have bounded speed.

2This is analogous to the sampling theorem. If the channel variation is band-limited, it can be repre-
sented and reconstructed with its values at discrete times. Of course, the channel is not actually constant
between these intervals, but it is a useful approximation in some contexts.
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Finding zeros is closely related to finding which channels cross the decodability
threshold. For the purposes of relay selection, it is important to know that even though a
channel is above the decodability threshold at the start of a cycle, it may not stay that way
throughout the entire cycle. By the sampling theorem, as long as the channel is being
measured frequently enough, it can be reconstructed. It is theoretically possible that a
relay could be in fade for less than a cycle and not to be able to see it for an arbitrary
amount of time.

Relay selection techniques for URLLC require a more nuanced notion of coherence
time. Rather than making a piecewise-constant approximation, we are instead interested
in time horizons over which we can make probabilistic statements about future events
given the past channel state. Given an event 𝐸(𝑡 + 𝜏) at some future time 𝜏, we say that
𝜏 is the time horizon over which the estimator �̂� can predict 𝐸 with reliability (1 − 𝑝) if:

Pr [𝟙{�̂�(𝑡 + 𝜏)} ≠ 𝟙{𝐸(𝑡 + 𝜏)}|ℎ(𝑡)] ≤ 𝑝.

If, for example, 𝐸(𝑡) = {‖ℎ(𝑡)‖2 > 𝑥} for some decoding threshold 𝑥, then we in-
terpret 𝜏 as the time horizon over which we can predict if ℎ(𝑡) will be faded. In the
case of relaying, we are actually interested in two channels: the channel between the
user to the relay and the channel between the relay and the controller. In that case,
𝐸(𝑡) = {min (‖ℎ𝑈𝑅‖, ‖ℎ𝐶𝑅‖) > 𝑥} for some decoding threshold 𝑥.

This notion of time horizon is tailored to an application in a way that coherence time
is not. Of course, this makes the time horizon less generally applicable, but it is much
more useful in making precise statements for system design.

5.1.2 Channel Dynamics

We wish to analyze channel models with this more application-driven notion of co-
herence time in mind. Rayleigh fading is a useful model to start with as a lower bound;
having no line-of-sight (LoS) path in an indoor environment increases the probability of
being in a fade relative to fade distributions with a LoS component (for example, Rician
fading). Authors in [9] show that channel dynamics are similar in urban and suburban
environments for Rayleigh, Rician, and Nakagami channel models at 3GPP frequen-
cies. They present a model for channel variation where the key parameter is maximum
Doppler shift, not a model-specific channel parameter, implying that more nuanced
channel models give rise to similar channel dynamics. In most of the cases analyzed,
this model showed good fit with measured data. From this, we conclude that analysis
using Rayleigh fades is a good model for design exploration in this context.

Jakes’s model treats Rayleigh fades as a sum of sinusoids [44]. We intend to isolate
the contribution of multipath to channel variations at small timescales.

Consider a two-dimensional room with 𝑛 static scatterers distributed uniformly at
random with a static single-antenna transmitter in the middle of the room and a single-
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Figure 5.2. Room setup with 𝑛 static scatterers, a static transmitter, and a mobile receiver.
This figure originally appeared in [99].

antenna mobile receiver moving at constant speed 𝑣 in some uniformly random direction.
This scenario is depicted in Fig. 5.2, and has been explored in [99]. For a transmitter
transmitting a tone at frequency 𝑓𝑐 (wavelength 𝜆𝑐), the channel coefficient between the
transmitter and the receiver at time 𝑡 is given by

ℎ(𝑡) = 1
√𝑛

𝑛
∑
𝑖=1

exp ⎛⎜⎜
⎝

𝑗
2𝜋 (𝑑(Rx)

𝑖 (𝑡) + 𝑑(Tx)
𝑖 (𝑡))

𝜆𝑐

⎞⎟⎟
⎠

,

where 𝑑(Rx)
𝑖 (𝑡) is the distance of scatterer 𝑖 from the receiver at time 𝑡 and 𝑑(Tx)

𝑖 (𝑡) is
the distance of scatterer 𝑖 from the transmitter. Normalizing by 1

√𝑛 makes the marginal
variance equal for different numbers of scatterers.

The position of the receiver ⃗𝑠(𝑡) is given by

⃗𝑠(𝑡) = ⃗𝑠0 + ⃗𝑣𝑡 = (𝑥0 + 𝑣𝑡 cos 𝜙, 𝑦0 + 𝑣𝑡 sin 𝜙) ,

where ⃗𝑠0 = (𝑥0, 𝑦0) is the initial position of the receiver (uniformly distributed in
the room) and 𝜙 is the angle of motion with respect to the 𝑥-axis (unfiromly distributed
on [0, 2𝜋). Given scatterer 𝑖 with position ⃗𝑠𝑖 = (𝑥𝑖, 𝑦𝑖), the distance of the receiver from
scatterer 𝑖 at time 𝑡 is

𝑑(Rx)
𝑖 (𝑡) = ‖ ⃗𝑠(𝑡) − ⃗𝑠𝑖‖

= √(𝑥0 + 𝑣𝑡 cos 𝜙 − 𝑥𝑖)
2 + (𝑦0 + 𝑣𝑡 sin 𝜙 − 𝑦𝑖)

2

= √𝑑(Rx)
𝑖 (0)2 + (𝑣𝑡)2 + 2𝑣𝑡𝑑(Rx)

𝑖 (0) cos (𝜃𝑖 − 𝜙), (5.1)
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where 𝜃𝑖 is the angle made by the line joining the scatterer and receiver at time 𝑡 = 0,
which is independent of 𝜙.

The cross-covariance of the channel coefficient ℎ(𝑡) is given by

𝑘(𝑣, 𝑡) = 𝔼[ℎ(𝑡)ℎ∗(0)]

= 1
𝑛 𝔼 ⎡⎢

⎣

𝑛
∑
𝑖=1

exp (𝑗2𝜋
𝜆𝑐

(𝑑(Rx)
𝑖 (𝑡) − 𝑑(Rx)

𝑖 (0)))

+ ∑
𝑖≠𝑗

exp (𝑗2𝜋
𝜆𝑐

(𝑑(Rx)
𝑖 (𝑡) − 𝑑(Rx)

𝑗 (0) + 𝑑(Tx)
𝑖 − 𝑑(Tx)

𝑗 ))⎤⎥
⎦

.

Because 𝑑(Rx)
𝑖 (𝑡) and 𝑑(Rx)

𝑗 (0) are independent for 𝑖 ≠ 𝑗 and the scatterers are dis-
tributed uniformly throughout the room, the expectation of the cross term is 0.

𝑘(𝑣, 𝑡) = 𝔼 [exp (𝑗2𝜋
𝜆𝑐

(𝑑(Rx)
𝑖 (𝑡) − 𝑑(Rx)

𝑖 (0)))] . (5.2)

Substituting (5.1) into (5.2) with a small movement approximation of 𝑣𝑡
𝑑𝑖

≈ 0 gives
a covariance function of

𝑘(𝑣, 𝑡) = 𝐽0 (2𝜋
𝜆𝑐

𝑣𝑡) , (5.3)

where 𝐽0(⋅) is the Bessel function of the first kind.
Fig. 5.3 shows the autocorrelation and power spectral density given by (5.3), as well

as some simulation results. The simulation is performed by repeatedly placing scatterers
and a receiver uniformly at randomly, choosing a random direction for the receiver to
move, and moving the receiver a small interval in each timestep. The simulations add a
LoS component and show no significant divergence from the analytical model.

Each time a user performs channel estimation, it can be thought of as sampling the
channel. In a low-latency system, small transmissions occur frequently and channel es-
timation is performed frequently, so the channel is being sampled with high frequency.
By the sampling theorem for bandlimited random processes, we know that with high
enough frequency sampling captures all the information content of the process. In this
sense, low-latency communication is favorable for relay prediction; frequent transmis-
sions give users the information needed to track the channel state without significant
overhead.

A natural question is how frequently the channel must be sampled. From the PSD in
Fig. 5.3, we see a peak beyond which the PSD rapidly decays which corresponds to the
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Figure 5.3. Simulated autocorrelation and PSD for channels with 𝑓𝑐 = 5.8 GHz. “LoS
Fraction” is the fraction of the signal energy in the line-of-sight path. These figures
originally appeared in [83].

maximum Doppler shift, i.e. the maximum relative velocity between the receiver and the
scatterers or transmitter. As a result, the sampling rate needed to track the channel well
is directly related to the maximum velocity of objects in the system. For 𝑓𝑐 = 5.8 GHz
and maximum velocity of 10 m s−1, sampling at 1 kHz is sufficient.

We apply the model discussed above to understand the relationship between the
channel, communication latency, and number of relays required for reliable commu-
nication. Assuming there are 𝑘 independent relays, we are interested in the probability
that the best relay (as determined by an estimator based on sampling the channel) is not
above the decoding threshold. The authors in [100] call this 𝑝lower. The main parameters
relevant to determining 𝑝lower are

1. The frequency at which the channel is sampled (estimated)

2. The future time horizon over which predictions about the channel are being made

3. The number of potential relays to choose between

4. The nominal SNR

Fig. 5.4 has a result from [100], which shows how sampling frequency and the future
time horizon are related. For 𝑘 = 9, we see that prediction error is very low for short
future time horizons and fast sampling frequencies. As the future time horizon increases,
or the sampling frequency decreases, the prediction error quickly degrades to the error
probability if a random relay is picked without any prior knowledge.
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Figure 5.4. Probability of the ‘best’ relay (as determined based on past measurements
with a predictive model) being in a deep fade for varying sampling frequency and future
time horizons. The model order is 3, the number of relays to choose from is 𝐾 = 9 (solid
lines) and 𝑘 = 4 (dotted lines), nodes are moving in a random direction at speed 10 m/s
and nominal SNR is 5 dB. This figure originally appeared in [100].

5.2 Channel Measurements

5.2.1 Experimental Setup

We perform measurements in a way conceptually similar to the simulations per-
formed in Fig. 5.3. The experiment consists of a receive antenna and a transmit antenna
in an indoor environment. The receive antenna is moved along a straight line while the
receiver performs channel estimation. The transmit antenna is held in a fixed position for
a sequence of measurements and is moved to a new location after the receiver completes
its path. Line-of-sight between the transmitter and receiver is suppressed with a sheet
of aluminum foil at the transmitter.

Two different measurement setups were employed. The first used a commercial
transceiver with RF frontend, ADC, and DAC to estimate channel coefficients. The
second used a vector network analyzer (VNA) to achieve the same task.
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Transceiver-Based Setup

The measurement setup was located in an office building in downtown Berkeley. The
hardware platform consisted of an Analog Devices (ADI) FMCOMM-3 RF frontend
and Xilinx ZC706 FPGA for the baseband. The transmitter and receiver utilized the
same board in order to share a local oscillator (LO), removing the need to correct for a
frequency offset3.

The ADI reference designs for the FMCOMMS boards [14] were modified to add
a custom baseband implementation as shown in Fig. 5.7 and Fig. 5.8 [80], including
stream ↔ memory DMAs and logic to control the timing of a capture. These blocks
represent a subset of the baseband described in Chap. 7. This baseband was implemented
using Dsptools and the methodology described in Chap. 64.

A Gold sequence with period 4095 is truncated to length 1029 and transmitted with
period 10295. The sequence was transmitted repeatedly, and raw samples were captured
at the receiver, saved to a file, and postprocessed to find a series of channel estimates.

The position of the receiver was controlled by an XY-table with Parker Automa-
tion 404XE linear actuators, Ares servos, and 6K6 motion controller, shown in Fig. 5.5.
A serial interface was used to send commands to the motion controller to position the
antenna. This apparatus positions the receive antenna with accuracy < 0.1 mm. A com-
puter coordinated the collection of channel estimates and antenna movement, and a web
application running on the FPGA provided an API for initiating and downloading chan-
nel estimates [81]. This is depicted in Fig. 5.2.1.

The antenna is moved on a linear path approximately 50 cm long at a velocity of
150 mm/s. The carrier frequency was 5.8 GHz, approximately the highest frequency
for common Wi-Fi deployments. Each measurement is 3 seconds long with samples
taken at 10 MS/s. The AGC is fixed to a constant value for every measurement. The
transmitted signal is 1029-periodic and the channel is estimated for each period of the
sequence, so the effective rate at which the channel is estimated is approximately 9.7 kHz.
Channel estimation recovers a complex value for the dominant channel coefficient.

The stream of samples is streamed to main memory via a stream ↔ memory DMA.
A Linux kernel module implements a driver for using the synchronizer and DMA. A
Django web application running on the ZC706 FPGA provides an API for interacting
with the driver to initiate and download data captures.

3A frequency offset adds difficulty because it presents the same way as a Doppler shift. When measur-
ing the channel, we would like to remove the LO contribution to frequency offset while leaving in Doppler
shift.

4Chap. 7 goes into more detail, but in summary DspBlocks and diplomacy are used to implement
custom streaming memory-mapped peripherals, parameterized Chisel testers unit test these blocks, and a
top-level block integrates these blocks and presents IOs that can be connected to the Xilinx and ADI IP
that are present in the reference design.

5Truncating the sequence was not done for any benefit, it was a result of an implementation detail on
the FPGA. The number 1029 was not chosen for any benefit.
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Figure 5.5. The XY-table. On the top is the XY-table, consisting of a Parker 6K6 motion
controller is connected to two servo controllers for X and Y axis control. On the bottom
is a diagram of the XY-table shown from above looking down.

53



Linux

ADI Drivers

ADI Config SW

baseband.ko

Django 

Server
ControllerNetwork

XYTable

Serial

Figure 5.6. Block diagram showing how the XY-Table and FPGA are used together to
record captures.
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Figure 5.7. Block diagram showing custom baseband integrated on PL fabric with ADI
IP.

VNA-Based Setup

The second measurement setup consists of a Rohde & Schwarz ZNB8 2-port vec-
tor network analyzer (VNA), SkyCross 2-2931-A wide-band antennas, and a positioner
that moved 1 mm between channel measurements. The channels are captured in a rich
scattering environment with no line-of-sight component. To achieve a high SNR, the
IF bandwidth was set to 1 kHz which resulted in a SNR in the range of 30 dB to 40 dB.
The VNA captured the channel at frequencies from 2.3 GHz to 6.0 GHz with a lin-
ear frequency spacing of 500 kHz. Several campaigns were conducted to prove that the
measurements are repeatable. The VNA-based measurements were performed in Lund,
Sweden by Christian Nelson [83], for which the author is grateful.

Sync DMA

Bus

Mem

Rx Tx

AXI-4

axi_clk

clk

Figure 5.8. Block diagram of custom capture blocks.
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5.2.2 Measurement Results

TransceiverVNA
Measurements Measurements

Figure 5.9. Representative examples of time-varying channel amplitude from the
transceiver-based setup and VNA-based setup. This figure originally appeared in [83].

Fig. 5.9 is the amplitude of the estimated channel for a typical measurement from
the transceiver-based setup. It is evident that the experimental setup is able to observe
meaningful channel dynamics. Channel autocorrelations (specifically, circular autocor-
relation) and power spectral densities are shown for the transceiver-based measurements
in Fig. 5.10.

The spatial autocorrelation plot does not show perfect agreement, but they have sim-
ilar drop-offs from the main lobe with periodic ripples after the initial drop. The power
spectral density plots show good agreement. The PSD is relatively flat at low frequen-
cies until it peaks at the maximum Doppler shift. All measurements showed peaking at
approximately the same frequency. The peaks at 3 Hz are consistent with the velocity of
the antenna, which is given by 𝑣 𝑓𝑐

𝑐 =2.9 Hz for the parameters in this experiment. After
the peak, all measurements show the expected roll-off of 20 dB/decade.

Captured power spectral densities are shown for the VNA-based measurements in
Fig. 5.11. As in Fig. 5.10, the measurements have the expected shape with a peak at the
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Spatial Autocorrelation Spatial Power Spectral Density

Analytical

Measured Analytical

Measured

Figure 5.10. Normalized correlation and power spectral density of channel measure-
ments at 5.8 GHz. Note that the spatial autocorrelation plot is in distance units whereas
the power spectral density plot is in temporal frequency units. The scaling of the PSD
plot emphasizes that the peak is at the expected frequency corresponding to the max-
imum Doppler shift. Both figures are normalized so that lag 0 of the correlation is 1.
Bold black lines are the expected analytical result. All other lines are different mea-
sured results with the transmit antenna moved in-between measurements. These figures
originally appeared in [83].
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Figure 5.11. The figures above show measured power spectral densities from the VNA-
based setup. Each line corresponds to a different measurement. The top figure has 𝑓𝑐 =
915 MHz, the center has 𝑓𝑐 = 2.45 GHz, and the bottom has 𝑓𝑐 = 5.8 GHz. These
figures originally appeared in [83].
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Figure 5.12. Architecture of neural network used to predict channel quality. The two
inputs are the power of the past two channel measurements. All layers are fully connected
with bias offsets. The sigmoid function is used as the activation function for all nodes.
There is an input layer, two hidden layers, and an output layer. 𝑦[𝑛] gives a score that
can be interpreted as the estimated probability that ℎ[𝑛] will be above the decoding
threshold.

maximum Doppler shift. Unlike Fig. 5.10, the figures are presented with spatial (rather
than temporal) frequency. In spatial frequency, the peak location is given by 𝑓𝑐

𝑐 , so we
expect the peak to be 8 Hz for the 2.45 GHz measurement and approximately 19 Hz for
the 5.8 GHz measurement. The measurements are consistent with this. Overall, these
measurements show good consistency with Jakes’s model and the simulations in Fig. 5.3.

5.3 Relay Selection

Armed with measurements, we now apply relay selection algorithms to the data and
evaluate their performance. This is similar to the study in [95] which applied relay selec-
tion algorithms to simulated data.

5.3.1 Problem Setup

We evaluate some simple relay selection algorithms. A time horizon of Δ = 6.67 ms
is chosen, which corresponds to 1 mm of movement at the chosen maximum velocity
of 15 m/s. Each prediction algorithm uses 𝑚 past channel estimates spaced Δ apart,
i.e. {ℎ(𝑡 − Δ), ℎ(𝑡 − 2Δ) … ℎ(𝑡 − 𝑚Δ)}, to predict if ℎ(𝑡) is a good channel. Channel
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powers are used in all cases for prediction. Channel measurements are normalized and a
decoding threshold is chosen such that each channel measurement has outage probability
of 27%, which corresponds to a nominal SNR of 4 dB and decoding threshold of 0 dB.

The measured data is preprocessed as described in Sec. 5.2.1. The input to the net-
work is a 𝑚-tuple of channel qualities (|ℎ(𝑡 − 𝑖Δ)|)0<𝑖≤𝑚The expected output is a 0/1
variable that indicates if the channel to be predicted was above or below the decoding
threshold. For each position the transmitter is placed at, which we consider to be a
distinct emulated relay, there are 941594 input/output pairs.

5.3.2 Prediction Algorithms

Polynomial (Lagrangian) interpolation and a simple neural net were evaluated as
channel prediction algorithms. The neural-net in [95] used 𝑚 = 2 past channel esti-
mates, but did not yield good results on measured data. Adding another hidden layer
and widening the hidden layers from 2 to 5 resulted in improved performance6. The neu-
ral net is fully connected and has two hidden layers with five nodes each, as depicted in
Fig. 5.12. The sigmoid function is used as the activation function at each node. The out-
put can be considered an estimate of the probability that the channel will be satisfactory,
given the past channel qualities.

The data is divided into training, validation, and testing sets, which consist of 9, 8,
and 30 relays respectively. Training is performed via standard stochastic gradient descent
on the training set. Hyperparameters are optimized with a tree-structured Parzen esti-
mator on the validation set. Each channel prediction algorithm is evaluated in two ways:
single-link estimation and paired-link estimation. In the single-link case, the prediction
algorithm looks at a pool of 𝑛 links corresponding to 𝑛 potential relays. The estimator
gives a score to each channel based on past measurements and the link with the high-
est score is selected. The fraction of time the selected link is good is an estimate of the
prediction algorithm’s ability to select good links on an individual basis.

In a relay selection scenario, there are two channels that need to be good for the relay
to succeed: the controller-to-relay channel and the sensor-to-relay channel. The paired-
link estimation evaluation emulates this scenario. Channel measurements are assigned
to each other such that two channels form a pair. The channels are individually scored
by the chosen prediction algorithm and a combined score is computed as the minimum
of the two scores. The pair of channels with the best combined score is evaluated, and
if it is below the decoding threshold we call it a failure. The fraction of time that a pre-
diction algorithm fails is therefore an estimate for the probability that the relay selection
algorithm would fail to choose a good relay.

6It is not clear why the network should be a particular size, nor is using a fully connected network
particularly well-suited to this scenario. The intention is to demonstrate that a relatively small, simple
network can achieve good performance. As the measurements here are noisier than the simulated data
in [95], it is perhaps not surprising that the network needed to be expanded to perform well.
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Figure 5.13. Results of various channel prediction algorithms. The single-link estimation
results have 𝑛 = 30 relays and the paired-link estimation results have 𝑛 = 15 relays for
a total of 30 distinct channels. These figures originally appeared in [83].

5.3.3 Channel Prediction Results

Both single- and paired-link estimation results are shown in Fig. 5.13. Static relay
selection performs poorly because the outage probability is relatively high. Linear inter-
polation works better than quadratic interpolation, which may be explained by Lagrange
interpolation’s sensitivity to noise. The neural net performs best, but linear interpolation
performs well too.

The paired-link estimation in Fig. 5.13 has worse failure probabilities than the single-
link estimation. There are only 15 relays to choose between as opposed to 30 relays
for single-link). Furthermore, there are two different ways to fail. However, the same
trend is present for the paired-link estimation and the linear interpolation and neural net
estimators are dramatically better than static relay selection.

5.4 Summary

This chapter discussed the efficacy of relay selection techniques for relay-based
URLLC. Measured data was compared to analytical models and simulation results and
showed good agreement, validating earlier results that showed the promise of relay se-
lection techniques. Furthermore, predictive models were applied to the measured data
to show that users can reliably select good relays. The next chapter will change topics to
discuss techniques for prototyping custom hardware.

60



Chapter 6

Methodology for

Signal Processing Designs

Early in the development of a system, requirements are often fluid. As more of
a system gets fleshed out, designers will understand what they are building better and
identify shortcomings and improvements for what they initially set out to build. Good
design methodologies and tools enable designers to change a component with minimal
disruption to the rest of the system.

Some principles that are important for a good hardware design and verification
methodology are:

• Re-use

• Safety

• Agility

The following sections will discuss these principles and how to design systems and
tools that allow for flexible design.

6.1 Re-use

Abstraction is recognizing a pattern and giving it a name. Once an abstraction is
made, it can be reapplied in different contexts without reiterating all the details. Ab-
straction, and the shortcuts through re-use it enables, are critical to designing complex
systems.
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Hardware design relies critically on abstractions at every level of the design hierarchy,
but re-use is often hampered by tools and methodologies. This lack of ability to make
good abstractions is especially stark in comparison to software design, where there is a
rich history of tools and methodologies that support very powerful abstractions. This
section discusses ways of promoting re-use in hardware design.

6.1.1 Generators

Metaprogramming is a set of features that allow programs to introspect and manip-
ulate programs. Macros, eval(), reflection, and templates are all examples of language
features that can be considered metaprogramming. Metaprogramming is very powerful
because it can allow for very concise expression and reusable code.

The key differentiation between conventional HDLs and generators is that generators
provide rich metaprogramming features that HDLs lack. How is metaprogramming
useful for hardware design? Like software, many aspects of hardware designs can be
generalized.

Today, a “hardware library” is typically an IP block, i.e. a coarse-grained reusable
block with mostly standard interfaces. Sometimes, they can be configured to some ex-
tent. For example, Xilinx provides many configurable IP blocks such as an FFT with
configurable size or a crossbar with configurable number of ports[1]. These IP blocks
are reusable components that generally use standard interfaces to ease integration into a
larger system.

IP blocks are very useful, but unfortunately only within limited scope. One issue
is that the ability to reconfigure IP is usually fairly limited; things like input/output
bitwidths, number of processing elements, and number of pipeline registers are fairly
common. Less common is configuration that supports dependency injection that would
allow for powerful customization. As a consequence, a common problem is that IP can-
not implement the exact desired functionality. Changing IP or adding workarounds
outside the IP can be difficult and add risk.

Chisel provides many more opportunities for reuse. Modules in Chisel can have
much richer parameterization. Scala has a powerful type system and supports object
oriented and functional programming paradigms. These are all useful for parameterizing
hardware blocks.

Powerful programming language features provide opportunities for reuse. Encod-
ing enums in the type system allows the compiler to help catch improperly configured
hardware and provide warnings for when a module’s author missed a case. Object ori-
ented design allows parameters to be put in objects that collect and organize information.
Having functions as first class objects allows for powerful generators where RTL can be
injected by a user of the library. Polymorphic generators make it possible to design
reusable components.
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6.1.2 Modular Design

Modular design involves separating functionality into discrete, independent units.
When a design pattern emerges, modular design allows the common functionality to be
factored out and reused.

Using common interfaces, for example AMBA interfaces, is an important part of
modular design. Common interfaces aide integration and verification, as well enabling
as LEGO-style design where individual blocks are interchangeable.

Diplomacy Background

Diplomacy is a Chisel library that is shipped as a part of the Rocketchip genera-
tor [16]. It is a high-level library for different components to negotiate parameters in a
principled way. It is particularly useful for generating interconnect where both master
and slave sides of the interface may have requirements on the parameterization of the bus
interface1. Diplomacy provides a mechanism by which both sides of the interface can
specify parameters, after which a diplomatic Node implementation will determine if the
connection can be formed and what parameterization the hardware bundle will have. To
facilitate the “parameter negotiation,” diplomacy employs a two-stage elaboration:

1. In the first stage, parameters are specified but no hardware is generated. Every
diplomatic component is elaborated so parameters can be negotiated throughout
the entire system.

2. In the second stage, every diplomatic component has been stage-1 elaborated. All
parameters are known and the diplomatic Node can resolve all the bundle param-
eterizations. Concrete IOs and hardware are generated in this stage.

Rocketchip contains diplomatic implementations of AHB, APB, AXI-4, and
TileLink, as well as commonly used functions such as crossbars, memories, and con-
verters for the different interfaces.

Diplomatic AXI-4 Stream Interface

AXI4-Stream is an AMBA standard for streaming interfaces. The standard has many
optional fields, but is at its core fairly simple. It defines the semantics of a ready/valid
handshake, and then there are a number of fields that contain, describe, or modify data.

The AXI4Bundle type contains the fields depicted in Fig. 6.1:
In the standard, all signals except valid are optional. In the implementation here,

ready and last are also mandatory for Chisel-implementation reasons. Optional fields
1An overview of how diplomacy works with a TileLink use-case can be found in [26].
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Figure 6.1. Illustration of signals in the AXI-4 Stream standard.

are implemented using UInts with width equal to zero, which get treated as constants
by FIRRTL and removed from IOs. In many cases, an absent signal being replaced
with 0 is fine, but special care should be taken for strb and keep. However, Bool in
Chisel is a UInt with fixed width equal to one, so it cannot be easily treated as optional.
ready and last are mandatory because they are chosen to be Bools. ready is a Bool
because it is desirable that the bundle be a DecoupledIO to make it easy to use with
library components such as Queue, Arbiter, etc., and DecoupledIO has ready as a
Bool.

The AXI4-Stream bundles can be used directly, but the recommended way to use
AXI4-Stream is as a diplomatic interface. This means there is a two-stage elaboration:
in the first, parameters are elaborated by a Node, and in the second hardware is generated,
giving a Bundle as depicted in Fig. 6.2.

There are node types for kinds of blocks:

• AXI4StreamIdentityNode: a node that passes parameters through without any
modification

• AXI4StreamMasterNode: a node that can only be on the right-hand-side of
assignments (a source)

• AXI4StreamSlaveNode: a node that can only be on the left-hand-side of as-
signments (a sink)
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class LM extends LazyModule {

// used in stage 1 of elaboration

// identity node have in and out with the same parameters

val streamNode = AXI4StreamIdentityNode()

lazy val module = new LazyModuleImp(this) {

// used in stage 2 of elaboration

// in and out are bundles corresponding to the input and

output streaming bundles

// (the underscores are parameters objects− sometimes it’s

nice to see the

// parameters that diplomacy came up with

val (ins, _) = streamNode.in.unzip

val (outs, _) = streamNode.out.unzip

ins.zip(outs).foreach { case (in, out) =>

out <> in // connect in to out

}

}

}

Figure 6.2. Example illustrating diplomatic AXI-4 Stream interface.
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• AXI4StreamNexusNode: a node that accepts many inputs and many outputs,
and may mutate parameters accordingly

• AXI4StreamAdapterNode: a node that changes parameters

Some useful blocks for AXI-4 stream designs are implemented in Dsptools:

• AXI4StreamFuzzer: a fuzzer useful in synthesizable tests

• AXI4StreamWidthAdapter: adapters for adjusting the width by integer ratios

• Mux: programmable number of inputs and outputs, with control status registers
(CSRs) to set which input goes to which output

• DMA: a stream <-> memory map (AXI-4) DMA.

There are also async node types that can be used for automated clock domain cross-
ings. This allows one to use crossing wrappers to cross in or out of a clock domain.
However, the built-in rocket CrossingWrapper doesn’t know about this implementa-
tion of AXI4-Stream, so the trait HasAXI4StreamCrossing needs to be mixed in.

Fig. 6.3 shows a sketch of what clock crossings with AXI4-Stream looks like.

val island = LazyModule(new

CrossingWrapper(AsynchronousCrossing()) with

HasAXI4StreamCrossing)

island.clock := someOtherClock

val streamBlock = island { LazyModule(new

WhateverStreamModule) }

val out = AXI4StreamSlaveNode()

out := island.crossAXI4StreamOut(streamBlock.streamNode)

Figure 6.3. This is an example of how to use diplomacy to perform clock crossings with
AXI-4 stream interfaces. The island variable defines a clock domain, which is set to
use someOtherClock as the clock. The parameter used to construct the island vari-
able is called AsynchronousChrossing, which indicates that the default async FIFO
should be instantiated for the crossing. This behavior can be customized. streamBlock
is constructed inside the island and therefore uses someOtherClock as its clock. The
crossAXI4StreamOut function crosses the streaming interface to the outer clock do-
main, instantiating async FIFOs automatically.
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DspBlock

A DspBlock is a unit of signal processing hardware that can be integrated into an
SoC. It has a streaming interface and a memory interface. More concretely, DspBlock
is a trait that has two members:

• an AXI4-Stream diplomatic node

• an optional, abstract memory interface diplomatic node.

The memory node is optional, that is it has type Option[T] where T is the type of
the node. If the memory node is None, the block will not have a memory interface and
will only have streaming interfaces.

The type of the memory node is a generic type T. In practice this means that
a DspBlock can utilize any of the memory interfaces supported by rocket (AHB,
APB, AXI-4, TileLink). It is a common design pattern to make abstract versions of
a DspBlock and then bind implementations of the memory interface later, for example:

• An abstract FIRBlock that describes an FIR filter with programmable taps

• AXI4FIRBlock extends FIRBlock that instantiates an AXI-4 interface

• TLFIRBlock extends FIRBlock that instantiates a TileLink interface

In fact, a library author could make their own diplomatic implementation of a mem-
ory interface not supported by rocket (along with an implementation of regmapper) and
create their own flavor of FIRBlock without changing the original FIRBlock class at
all.

The definition of DspBlock is

trait DspBlock[D, U, EO, EI, B <: Data] extends LazyModule {

... }

The type parameters D, U, EO, and EI are parameter types of the memory interface
and B is the bundle type of the memory interface. There are flavors of DspBlock for
each memory interface, for example

trait TLDspBlock extends DspBlock[

TLClientPortParameters,

TLManagerPortParameters,

TLEdgeOut,

TLEdgeIn,

TLBundle] { ... }
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Control Status Registers
Rocketchip’s regmap API is a useful way of generating logic for control and status reg-
isters (CSRs). The regmap API is generic with respect to the type of the memory inter-
face. The trait HasCSR can be mixed into DspBlock to make the block’s memory node
use the regmap API. An example DspBlock called ByteRotate is shown below.

// D, U, EO, EI are memory interface parameter types

// B is memory interface bundle type

abstract class ByteRotate[D, U, EO, EI, B <: Data]()(implicit

p: Parameters) extends DspBlock[D, U, EO, EI, B] with

HasCSR {

// Identity node− input and output have the same parameters

val streamNode = AXI4StreamIdentityNode()

// module is the hardware that gets generated after

parameters are resolved

lazy val module = new LazyModuleImp(this) {

// get bundles for streaming inputs and outputs

val (in, _) = streamNode.in.unzip

val (out, _) = streamNode.out.unzip

val n = in.head.bits.params.n

val nWidth = log2Ceil(n) + 1

// register to store rotation amount

val byteRotate = RegInit(0.U(nWidth.W))

def rotateBytes(u: UInt, n: Int, rot: Int): UInt = {

Cat(u(8*rot−1, 0), u(8*n−1, 8*rot))
}

out.head.valid := in.head.valid
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in.head.ready := out.head.ready

out.head.bits := in.head.bits

for (idx <− 1 until n) {

when (byteRotate === idx.U) {

out.head.bits.data := rotateBytes(in.head.bits.data, n,

idx)

}

}

// generate logic for memory interface

regmap(

// address 0 −> byteRotate register

// uses default read and write behavior− can override with

RegReadFn and RegWriteFn

0x0 −> Seq(RegField(1 << log2Ceil(nWidth), byteRotate))

)

}

}

regmap() takes a list of pairs of type (address −> Seq[RegField]. RegField
contains a reference to the hardware being accessed by the memory field, as well as meta-
data about the register such as name and read/write/execute permissions. The defaults
for reading and writing a register perform as expected, but also allow for adding custom
behavior on reads and writes.
Chains
Composability is important for libraries to be useful. A group of DspBlocks can be
connected to form a large DspBlock.

HierarchicalBlock is the general version of this concept. It has a list of
blocks called blocks: Seq[Block] and a list of connections called connections:
Seq[(Block, Block)]. It also defines a connect function that describes how the
edges in connections should be connected. The default is to simply do the diplomatic
connection on the streamNode (lhs.streamNode :=rhs.streamNode), but it may

69



be desirable to add queues, instrumentation, etc. depending on the implementation con-
text.

One version of a HierarchicalBlock is a Chain. A Chain connects blocks se-
quentially, makes a crossbar, and connects every block with a memory interface to the
crossbar. Because Chains are themselves DspBlocks, Chains can be nested.
Standalone Blocks
The primary function of diplomacy is to enable parameters to be negotiated by different
blocks across a design. Diplomacy can make unit testing somewhat difficult:

• Diplomatic nodes are not meant to be top level IOs, but unit tests need the DUT
to be top level

• Sink and/or source nodes are needed to parameterize diplomatic nodes

Preparing a DspBlock to be unit tested (especially by chisel-testers
PeekPokeTester) can be tedious and error-prone, so Dsptools includes functionality
to automate making DspBlock a top-level standalone DUT. This is achieved with mixin
traits: - StandaloneBlock is the base trait and creates top level IOs that are connected
to AXI4StreamMasterNode and AXI4StreamSlaveNode for the input and output of the
DspBlock - Flavors like TLStandaloneBlock and AXI4StandaloneBlock special-
ize to specific memory interfaces

StandaloneBlock et. al. should not generally be mixed in with a DspBlock’s
class. This mixin is typically reserved for top level blocks.

// DON’T DO THIS!!! (UNLESS YOU’RE POSITIVE IT’S WHAT YOU WANT)

class MyBlock() extends AXI4DspBlock with AXI4StandaloneBlock

{ ... }

Instead, it should be mixed into the tester, like these truncated examples below:

abstract class PassthroughTester[D, U, EO, EI, B <: Data](dut:

Passthrough[D, U, EO, EI, B] with StandaloneBlock[D, U, EO,

EI, B])

extends PeekPokeTester(dut.module)

class AXI4PassthroughTester(c: AXI4Passthrough with

AXI4StandaloneBlock)

extends PassthroughTester(c)

The tester then needs to be invoked with the mixin, like so:
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// do the mixin here

val lazymod = LazyModule(new AXI4Passthrough(params) with

AXI4StandaloneBlock)

val dut = () => lazymod.module

chisel3.iotesters.Driver.execute(Array(”−tbn”, ”firrtl”,

”−fiwv”), dut) {

c => new AXI4PassthroughTester(lazymod)

} should be (true)

StandaloneBlock et. al. work by using Rocketchip’s BundleBridges.
BundleBridges are diplomatic nodes that can contain any kind of bundle and can also
be used to punch out IOs. Diplomatic converters converter BundleBridges to/from
AXI4-Stream, AXI-4, TileLink, etc., and the BundleBridge is punched out to IOs.

6.2 Safety

One risk of generated RTL is that bugs can also be generated faster. It is critical to
not only leverage automation for speed, but also for preventing and detecting bugs. A
rich type system is a powerful tool for preventing bugs.

6.2.1 Types

One goal of Dsptools is to map mathematical constructs to hardware. In typical
RTL descriptions of hardware, the underlying mathematical structure is not well pre-
served. Verilog and VHDL provide addition and multiplication for signed and unsigned
integers, but beyond that the language doesn’t provide much support for mathematical
operations. Designers must implement their own reusable mathematical functionality.
This functionality typically is reused at the module level, which can be unwieldy and
encourages relatively coarse reuse.

Chisel can make use of powerful language features available in Scala that are not
present in Verilog or VHDL. In Scala, operators can be overloaded, which allows one to
instantiate complex behaviors for a wide range of operations.
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Dsptools implements several useful types with implementations of mathematical op-
erations. This allows designers to directly express a mathematical idea.

Floating Point

Dsptools provides a non-synthesizable floating point type. This allows a designer to
start implementing an algorithm without needing to specify precision everywhere so IOs,
control logic, and the algorithm can be validated. A floating point version of a circuit
can be validated against a golden model with similar precision, or can itself serve as the
golden model.

The floating point implementation uses Verilog real types, which are generally non-
synthesizable. The FIRRTL interpreter and treadle backends do not simulate Verilog,
so an alternative mechanism uses Scala models for floating point operations.

Bundle
Uint <64>

Black Box

$bitstoreal Operation 
(e.g. +) $rtoi

Bundle
Uint <64>

Figure 6.4. Non-synthesizable floating point implementation. A black box is used that
calls operations like $bitstoreal that are a part of FIRRTL.

.

Fixed Point

Fixed point types are implemented in Chisel and FIRRTL2. Like UInt and SInt,
types, FixedPoint numbers can be declared without a width and have FIRRTL’s width
inference algorithm infer the widths. FixedPoint numbers also have a binary point
associated with them, which is also inferred by the width inference algorithm, as show
in Fig. 6.5, which is a good example of a module using the Ring typeclass.

Intervals

Chisel’s width inference algorithm is relatively simple and conservative. The analysis
is performed individually for each operation, ignoring the context of previous operations.
This means the width inference algorithm can be overly pessimistic, for example in this
somewhat degenerate case:

2Bits is sealed, so fixed point types need to be defined in chisel. A library cannot define them unless it
is wrapped in an aggregate type. Literals do not work very well with aggregate types. This is an ongoing
issue to be resolved. Ideally, something like Fixed Point would be able to be added as a Chisel library.
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val sel = Wire(Bool())

val a = Wire(FixedPoint(width = 10.W, binaryPoint = 9.BP))

val b = Wire(FixedPoint(width = 12.W, binaryPoint = 10.BP))

val reg = Reg(FixedPoint())

when (sel) {

reg := a

} .otherwise {

reg := b

}

Figure 6.5. An example showing width inference of FixedPoint numbers. The register
reg is not given a width or binary point; instead, it is inferred.

UInt(2.W) + UInt(1.W) + UInt(1.W) + UInt(1.W) + UInt(1.W) //

=> UInt(6.W), but max is 7 (3 bits!)

For Intervals, inference is performed on ranges rather than on widths. Each node
in the circuit has a range associated with it that is inferred, just as in the case of width
and binary points.

Complex Numbers

Dsptools defines a complex type. It is generic as to the underlying type, e.g.
DspComplex[SInt] or DspComplex[FixedPoint] are valid. The only requirement
is that the type of the fields have a Ring typeclass that provides addition, multiplication,
and additive and multiplicative identities.

DspContext

DspContext is a mechanism for automatically managing metadata about signal pro-
cessing operations. This metadata consists of pipelining, rounding, and precision set-
tings.

Operations in Dsptools come in two flavors: a ‘normal’ flavor and a context_ fla-
vor. Normal operations like addition (+) work as expected, not adding any pipelining
or rounding. context_ operations insert pipeline registers and perform rounding as
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described by the scope of the operation, so (a context_+ b) will behave differently
than (a + b).

The context’s settings are set by a hierarchical scoping mechanism like so:

DspContext.alter(DspContext.current.copy(trimType = NoTrim,

binaryPointGrowth = 3, numMulPipes = 2)) {

val prod = a context_* b

io.out := prod

}

6.2.2 Numeric Polymorphism

Polymorphism is a language feature that allows programmers to write interfaces that
accept objects of different types. Conceptually, one might think of the type of an object
as being a parameter to a function, class, etc. In the context of circuit generators, poly-
morphism can be used in many ways. Polymorphism is used internally throughout the
Chisel codebase; Reg, Wire, etc. are all polymorphic and can be used to make registers
or wires of UInts, SInts, Bundles, etc. In the context of hardware generators, we call
this data polymorphism, that is polymorphism where the contents of the data are opaque
to the generator and the generated circuit performs some function related to storage,
movement, serialization, deserialization, etc.

A more sophisticated and familiar example of data polymorphism is a FIFO, as
shown in Fig. 6.6.

object Queue {

def apply[T <: Data](enq: ReadyValidIO[T], entries: Int = 2,

pipe: Boolean = false, flow: Boolean = false):

DecoupledIO[T] = {

... }}

Figure 6.6. Function signature for Chisel’s standard library implementation of Queue.
Notice the type constraint T <:Data that enforces T is a subtype of Data, meaning that
it is a hardware type that can exist in a circuit. There are no other constraints, so no
operations like addition or multiplication can be performed on objects of type T.

Data polymorphism is useful, especially for writing the general purpose processors
that Chisel was initially designed to implement. However, in the context of writing cus-
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tom signal processing hardware, we often run into situations where we want to perform
an operation on the data3.

We say that polymorphic generators that perform numeric operations on the poly-
morphic types have numeric polymorphism. Some use-cases for generators with numeric
polymorphism are outlined here:

• Float to Fixed “Conversion”: Writing a floating point model and then automat-
ically converting it to use fixed point numbers is a common use-case. Polymorphic
generators can be used to achieve similar functionality, although conversion is not
the best way to describe how it works. One polymorphic generator is written that
can generate circuits for either floating point or fixed point numbers. A genera-
tor author can begin writing and testing with floating point in mind, verify that it
works, and then specialize it for fixed point. One advantage of this is that tweaking
the fixed point version automatically updates the floating point version, preventing
golden model-implementation mismatch. See Fig. 6.7 for an illustration.

• Real and Complex Generators: Many signal processing blocks are applicable to
real or complex inputs with relatively minor modification. FIR filters, summing,
and interpolators are some examples. Operations like addition, subtraction, and
multiplication are conceptually the same for these types but are implemented dif-
ferently. Polymorphic generators allow a designer to make a test one block that
can be applied to both real- and complex-valued inputs.

• Special Number Representations: In some situations, alternative number rep-
resentations can be advantageous for a specific application, for example sign-
magnitude representations for situations in which the inputs are frequently very
close to zero (transitions between -1 and 0 flip more bits in two’s complement
than sign-magnitude) or 𝑛-ary representations when modulus operations are fre-
quently performed. With many design methodologies, deciding to use an alter-
native number representation means throwing away existing blocks that use two’s
complement or performing conversion. Polymorphic generators open the possi-
bility for reusing existing designs with new number representations in a typesafe
way.

Implementing generators with numeric polymorphism comes with some challenges
which are outlined here.

One approach is to enumerate all possible operations in a type and use it as a type
constraint, for example replacing T <:Datawith T <:Data with Num[T]4. The type

3Even data polymorphism is outside of the ability for conventional HDLs to support well because
of their lack of first class functions. It can be emulated to some degree with parameters for widths and
string representing different categories for the module to generate different logic conditionally, but numeric
polymorphism relies even more heavily on support for first class functions and is thus awkward to emulate
in HDLs.

4Chisel has aNum trait that defines many operations, including+, −, *, /, %, and comparison
operators.
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Algorithm 
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Implementation

Fixed Point 
Implementation

•Implement basic 
functionality
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golden model
•Integrate with 
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•Tune rounding + 
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•Area optimizations

Figure 6.7. Illustration of how generators with numeric polymorphism can be used to
provide functionality similar to float-to-fixed conversion.

parameter T is necessary to determine the return type of operations, which immediately
presents one problem. If there is a type A extends Data with Num[A] and a type
B extends A, that is, A is a type with numeric operations and B inherits from A (perhaps
to customize the behavior of some operation), the return type of those operations in Bwill
be A instead of the desired B. Scala has some patterns to work around this, for example
the standard library has abstract types with Like as a suffix that concrete instances inherit
(Seq vs SeqLike).

Another problem with Num is that one might want to have multiple notions of a
number. Complex numbers should not support all the operations that a real number
does (for example, comparison). If inheritance is being used as a tool to describe numeric
types, should real inherit from complex because more operations are possible for real
numbers? Should complex inherit from real because conceptually complex numbers are
an extension of the reals? Furthermore, inheritance can make it difficult to incorporate
types from outside of the inheritance structure, for example types from a different library.
Often, wrappers and converters need to be made between two different libraries, and the
complexity can grow very quickly as more libraries are added.

Duck typing is an alternative to using inheritance structures within a type system,
but comes with strong downsides. Using the type system to catch errors is very valuable,
especially in the context of hardware where verification generally takes more effort than
design.

Ad-hoc polymorphism represents a good compromise between the structure of
inheritance-based subtyping and the flexibility of duck typing.

6.2.3 Typeclasses

Typeclasses are a language feature for implementing ad-hoc polymorphism. In Scala,
they are implemented with syntactic sugar for implicit parameters, and typeclasses are
similar to implicit parameters in some ways. A polymorphic function that is generic
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with respect to a type T can be declared with a type constraint requiring a typeclass
TypeClass like so:

trait TypeClass[A] { def doSomething(a: A): A }

def polyFunc[T : TypeClass](in: T): T = { ... }

polyFunc will typecheck when called on variables of any type, as long as a typeclass
with type TypeClass[T] is defined, in which case we say T has an implementation of
TypeClass available. If an implementation of TypeClass is not available for T, it will
not typecheck.

The type constraint T : TypeClass allows polyFunc to call
TypeClass[T].doSomething(in). The use of Scala implicits allows this somewhat
awkward construction to be simplified to in.doSomething(), but this more conve-
nient syntax is not actually calling a function on in, but is in fact redirecting it to the
typeclass implicit object. This is an important distinction.

It is important to note that this relationship is different than inheritance, written
in Scala T <:BaseClass. In this case, polyFunc can only be called on types T that
are or inherit from BaseClass. The typeclass constraint places no requirements on an
inheritance structure and performing operations based on the typeclass constraint does
not directly call anything on in, instead proxying those calls through a typeclass object.
This indirection is what allows typeclasses to be somewhat like duck typing.

Dsptools provides numeric typeclasses based on those from the Spire library [112].
Some important ones are:

• Ring, which refers to the algebraic structure. It supports +, −, *, **, and
has members for the additive identity zero and the multiplicative identity one.
An example usage looks like

def doSomething[T <: Data : Ring](a: T, b: T, c: T): T = {

(a − b) * c

}

• Eq, which defines === and =/=, the equality operators. Notably, these operations
return Chisel Bools as opposed to Scala Booleans. This is the biggest point of
divergence between the Dsptools and Spire typeclasses. In Spire, conditionals are
all evaluated at runtime and hence deal with true and false. In Dsptools, the
typeclasses are being used to generate a circuit, so the value of a conditional is not
known at circuit elaboration time.

• PartialOrder extends Eq, which adds comparison operators that return a
valid signal alongside the value to indicate if the values are comparable.

• Order extends PartialOrder, which defines comparison operations.
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• Sign, which defines abs and related sign-testing operations

• Real extends Ring with Order with Sign, which aggregates all the op-
erations above while also adding ceil, round, floor, and isWhole.

• Integer extends Real, which adds a mod operation to Real.

class TransposedStreamingFIR[T <: Data:Ring](

inputGenerator: => T, outputGenerator: => T,

tapGenerator: => T, numberOfTaps: Int) extends Module {

val io = IO(new Bundle {

val input = Input(inputGenerator)

val output = Output(outputGenerator)

val taps = Input(Vec(numberOfTaps, tapGenerator))

})

val products: Seq[T] = io.taps.reverse.map { tap: T =>

io.input * tap // Ring multiplication

}

val last = Reg(products.head.cloneType)

last := products.reduceLeft { (left: T, right: T) =>

val reg = Reg(left.cloneType)

reg := left

reg + right // Ring addition

}

io.output := last

}

Figure 6.8. Example FIR filter using Dsptools typeclasses.
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Most operations defined in these typeclasses have two flavors, a ‘normal’ flavor and
a ‘contextual’ flavor. The ‘normal’ flavor should perform the operation in a single-cycle
fashion consistent with how Chisel width-inference rules normally work. For example,
a + b using the Ring typeclass on a UInt should operate the same way as if there were
no typeclass5. The ‘contextual’ flavor performs the operation using the DspContext
and its settings in the current scope, as discussed in Sec. 6.2.1. Pipeline registers and
rounding may be performed differently based on the current context.

The following use-cases refer to the FIR filter example in Fig. 6.8.

Use Case: Float-to-Fixed Conversion

The following code shows an example of using a polymorphic generator to generate
both floating point and fixed point versions of an FIR filter from Fig. 6.8. This is a good
alternative workflow to popular “float-to-fixed conversion” workflows.

val protoFloat = DspReal()

val protoFixed = FixedPoint(10.W, 5.BP)

val protoFixedOut = FixedPoint(20.W, 8.BP)

Module(new TransposedStreamingFIR(protoFloat, protoFloat,

protoFloat, 10)

Module(new TransposedStreamingFIR(protoFixed, protoFixed,

protoFixedOut, 10)

Use Case: Real and Complex Filters

The following code shows an example of two module instantiations using the same
generator from Fig. 6.8. They both instantiate FIR filters using FixedPoint represen-
tations, but the first is a real-valued filter and the second is a complex-valued filter. They
both use the same polymorphic generator.

val protoFixed = FixedPoint(10.W, 5.BP)

val protoFixedOut = FixedPoint(20.W, 8.BP)

val protoComplex = DspComplex(protoFixed)

val protoComplexOut = DspComplex(protoFixedOut)

5This prevents bugs from confusion around whether there is a typeclass present.
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Module(new TransposedStreamingFIR(protoFixed, protoFixed,

protoFixedOut, 10)

Module(new TransposedStreamingFIR(protoComplex, protoComplex,

protoComplexOut, 10)

Use Case: CORDIC

CORDIC is an algorithm for computing a number of hyperbolic and transcendental
functions that maps efficiently to hardware, using only shifts and add/subtract operations
with a look-up table (LUT). CORDIC is an interesting example for polymorphic gen-
erators because the division operation relies on the representation of the number in order
to efficiently implement the division with a shift. A CORDIC using a built-in Chisel
type does not need to take this into account because built-in types are all two’s comple-
ment and define shifting. However, a polymorphic CORDIC must use an additional
typeclass, called BinaryRepresentation, which adds operations that are possible for
numbers using binary representation. Division via shifting is one of those operations6.

Fig. 6.9 shows a stage of the CORDIC algorithm implemented for FixedPoint,
and Fig. 6.10 shows the same stage implemented in a polymorphic way with the
BinaryRepresentation typeclass. It is important to note that they look almost iden-
tical. Even blocks that rely on the underlying representation of the number are not so
difficult to generalize to more types.

Use Case: User-Defined Types with Library Generators

Composability is important for code to be reusable. A polymorphic generator writ-
ten with Dsptools should be usable with a type not defined by Dsptools or any of its
dependencies.

The example in Fig. 6.11 shows what it looks like to take a pre-existing generator (in
this case, an integrator) and generate a version of it that uses a newly defined, custom type
that does not exist in Dsptools (in this case, an integer represented in sign-magnitude
form).

6These operations could be emulated for non-binary representations, but this circumvents the intent
of having an efficient division operation. In some cases, like non-synthesizable floating point, it is useful
to do so anyways.
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class CordicStage(params: CordicParams[FixedPoint]) extends

Module {

val io = IO(new Bundle {

val in = Input(CordicBundle(params))

val vectoring = Input(Bool())

val shift = Input(UInt())

val romIn = Input(FixedPoint(params.nStages.W,

(params.nStages−1).BP))

val out = Output(CordicBundle(params))

})

val xshift = io.in.x >> io.shift

val yshift = io.in.y >> io.shift

val d = Mux(io.vectoring,

io.in.y.signBit(),

!io.in.z.signBit()

)

io.out.x := AddSub(!d, io.in.x, yshift)

io.out.y := AddSub( d, io.in.y, xshift)

io.out.z := AddSub(!d, io.in.z, io.romIn)

}

Figure 6.9. Fixed point implementation of CORDIC stage.
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class CordicStage[T <: Data : Ring : BinaryRepresentation](val

params: CordicParams[T]) extends Module {

val io = IO(CordicStageIO(params))

val xshift = io.in.x >> io.shift

val yshift = io.in.y >> io.shift

val d = Wire(Bool())

when (io.vectoring) {

d := io.in.y.signBit()

} .otherwise {

d := !io.in.z.signBit()

}

io.out.x := AddSub(!d, io.in.x, yshift)

io.out.y := AddSub( d, io.in.y, xshift)

io.out.z := AddSub(!d, io.in.z, io.romin)

}

Figure 6.10. Polymorphic implementation of CORDIC.
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class Integrator[T<:Data:Ring](genIn: T, genReg: T) extends

Module {

val io = IO(new Bundle {

val in = Input(genIn.cloneType)

val out = Output(genReg.cloneType)

})

val reg = RegInit(genReg, Ring[T].zero) // init to zero

reg := reg + io.in

io.out := reg

}

// Declare new type

class SignMag(val magWidth: Option[Int]=None) extends Bundle {

val sign = Bool()

val magnitude = magWidth.map(w => UInt(w.W)).getOrElse(UInt())

}

// Implement typeclass with operations for new type

trait SignMagRing extends Ring[SignMag] {

def plus(f: SignMag, g: SignMag): SignMag = ???

def times(f: SignMag, g: SignMag): SignMag = ???

// etc.

}

// Run the generator!

Module(new Integrator(new SignMag(Some(4)), new

SignMag(Some(10))))

Figure 6.11. An implementation of a custom sign-magnitude type that can be used with
a polymorphic integrator generator.
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6.2.4 Integrating Signal Processing Blocks into an SoC

Custom signal processing hardware is generally one component of a large, compli-
cated system. The usefulness of this custom hardware is often dependent on how it
is integrated into an SoC. Memory interface standards and parameterizations, DMA
designs, and programming interfaces are important dimensions to the design-space ex-
ploration.

Dsptools provides functionality that makes it easier to interface custom signal pro-
cessing hardware with a Rocketchip-based SoC. A DspBlock can be made generic with
respect to its memory interface, so it is possible to explore the trade-off between perfor-
mance, area, and power for different memory interfaces for different blocks in an SoC.
This is also helpful when prototyping a system in different contexts. It might be desirable
to target AXI-4 for emulation with Xilinx FPGAs, but to target TileLink for taping out
a Rocketchip based SoC. Polymorphic generators allow one description to target both
environments.

Dsptools is integrated with Chipyard [13], a project for building RISC-V based
SoCs. Dsptools-based designs can be integrated into SoCs that use Chipyard’s wide
range of cores and accelerators, including RISC-V cores such as Rocket, BOOM, and
Ariane [128] and accelerators like Hwacha, Gemmini, and NVDLA [69].

6.2.5 Collateral Generation

In addition to RTL, generators can output collateral that aides in verifying, integrat-
ing, and writing software for a design. For verifying generated designs, it can be very
useful to have metadata describing the DUT. Chisel testers can introspect the design,
but other verification flows cannot. IP-XACT [115] is a serialization format for express-
ing metadata about circuits. It was used in [19] to allow Chisel-generated RTL to be
tested by Python scripts that generated stimulus based on the parameterization of the
design, as well as test harnesses that were generated based on the IP-XACT description
of the circuit. This sort of metadata serialization is a critical step in making verification
flows for generated designs.

This IP-XACT flow was enhanced to work generically with any block written in
Chisel. The main mechanism by which metadata is described in Chisel is with annota-
tions. Annotations can target any entity with a FIRRTL circuit, can trigger transforma-
tions to run in the FIRRTL compiler, and can be generated at any point in the design, be
it from the user, a library author, or even a FIRRTL transformation. Many Rocketchip
components will automatically annotate entities with useful information, for example
memory interfaces may be annotated with information about their parameterization and
the memory map, if one exists.

An experimental Dsptools feature7 implements a custom FIRRTL transform that
7This can be found at https://github.com/ucb-bar/dsptools/tree/ipxact-emitter-2
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searches for FIRRTL annotations that describe a design, gathers them, and translates
them into IP-XACT. This feature works incrementally; if no relevant annotations are
found, IP-XACT that describes the RTL’s physical port structure and file location is
emitted. If some annotations describing the type and parameterization of an IO is found,
then a physical-to-logical mapping is also emitted. If an annotation describing a memory
map is also found, then that is also translated and emitted as IP-XACT. Other annota-
tions describing the parameterization of the generated module can also be captured by
this transform and properly emitted in the output IP-XACT.

Generated designs can also emit software for interacting with the design. In [19],
C headers with address maps, design information (e.g. presence of blocks, how many,
etc.), and helper functions were emitted alongside the design RTL. This helps prevent
software from being out of sync with the RTL, or cause a compilation error if it there is
a problem.

Another kind of collateral that can be useful for generators to emit is useful debug
information. Chisel has an annotation for commenting output Verilog. This function-
ality can be used by FIRRTL passes to add comments describing what was done, which
may help debugging generated Verilog. One example is an experimental FIRRTL pass
that adds comments for every FixedPoint value that labels what the binary point is for
that value8. This can be very helpful when debugging values with long chains of inferred
widths.

Verilog attributes are another kind of metadata that can be added with annotations
via a FIRRTL pass. One use case for this is to add Verilog attributes adding a signal to
Xilinx’s ChipScope debugger for on-chip debugging. Without this sort of automation,
this kind of task is often done via TCL scripts that must be kept in sync with the design as
names and hierarchy change. This is especially frustrating when out-of-sync TCL scripts
cause failures late in the implementation flow, so automation is especially attractive.

6.3 Agility

Re-use and safety are of critical importance for agility. Reusable code saves wasted
time reinventing the wheel and lets one invest time in the interesting parts of the design.
Safety allows one to make changes with some amount of confidence that the changes
will work. Without safety, agility is impossible because most time will be spent verifying
changes instead of making changes. The three important principles discussed at the
beginning of this chapter are all related.

Agility merits its own discussion. The features discussed here may not provide much
benefit in terms of re-use and safety, but they serve the ultimate goal of agility.

8This can be found at https://github.com/freechipsproject/firrtl/pull/1036.
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6.3.1 Backend Inference

Complex generators can make it difficult to figure out the widths and precisions
for every section of a circuit. However, part of the reason for designing custom signal
processing hardware is to benefit from the use of lower precision where possible. Width
inference in Chisel supports a philosophy of specifying widths where they are important,
e.g. high impact on QoR, and infer widths elsewhere. Places where widths are likely to
have high impact on QoR tend to be IOs, memories, and multiplies.

FixedPoint types bring this philosophy to a richer kind of number than a UInt or
SInt. In addition to widths, binary points are also inferred. Intervals are similar to
FixedPoint numbers but even more aggressive at removing unneeded bits, as described
in Sec. 6.2.1.

Beyond these kinds of static width inference9, it is possible to optimize bitwidths
based on observations from simulating the design with real data. An instrumented ver-
sion of the FIRRTL interpreter [3], which is one of the execution engines for Chisel
testers, tracked maximal values each node in the FIRRTL graph experienced for a num-
ber of simulations. Using this information, criteria such as “fit the maximal value” or
“size each node to fit values ≤ 𝑛𝜎 away from mean” could be applied to trim bits for
some nodes10. This process is applied iteratively until no bitwidths are reduced.

These width optimization techniques are compared in Fig. 6.12. Interval can pro-
vide a significant improvement over FixedPoint, and the dynamic methods generally
improve even further. The gains are generally largest for designs that use a relatively small
number of bits.

8×8 Systolic DCT 8×8 Strassen’s DCT 8×8 Strassen’s MatMul

Static Analyses:
Dynamic Analyses:

Figure 6.12. Area results for various methods of width optimization for representative
designs. This figure originally appeared in [120].

6.3.2 Lightweight Unit Testing

Unit testing is a critical piece of the overall verification effort. Unit testing aids a de-
signer in understanding what hardware was generated from the code they have written.

9In some cases, such as for linear time-invariant (LTI) systems as in [118], direct formulas for minimal
bitwidths can be evaluated.

10For dynamic bitwidth optimization it is important that the input be representative of the actual inputs.
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Writing generators is metaprogramming, so it is often non-obvious to a designer what
hardware they have generated, especially in degenerate parameterizations. Unit tests
help the integration testing effort by performing simple tests in a fast, lightweight en-
vironment before getting to the slower, generally more cumbersome integration testing
environment.

Making it easy and quick to write good unit tests is very important. Making tests easy
to write makes it more likely that tests will be written early in the design cycle and makes
it so that more tests are written. These early tests are very valuable because catching bugs
early is more valuable than catching bugs late.

Chisel testers provides a harness for writing lightweight tests for Chisel designs.
These testers elaborate the design under test (DUT), provide a low-level API for in-
teracting with the DUT, and provide a mechanism for signaling success or failure and
marking where failures occurred.

The low level API consists of:

• peek: read the value currently held by a top-level IO

• poke: set a top-level IO to a given value

• expect: peek a top-level IO and signal failure if the value does not match the
expected value

• step: advance the simulation one clock cycle

Dsptools extends these testers to provide convenience APIs for interacting with nu-
meric types. One example is being able to call peek, poke, and expect on fixed and
floating point numbers with double precision numbers. Without these convenience
functions, a test for a fixed point design would need to find the binary point of all fixed
point IOs and scale inputs and outputs accordingly. With the convenience functions, it
is much more direct. expect calls can be configured to have an error tolerance so that
calls such as expect(io.out, 1.0 / 3.0) work.

6.3.3 Generic Testers

Verification generally takes more engineering effort and time than design. Hardware
generators make design faster, but can add to the verification effort. In order for gener-
ators to be useful, it is important that the verification infrastructure be just as flexible as
the designs being testing.

One area where this is difficult is when testing polymorphic generators. One of the
design goals of such generators is to enable library users to use a generator with their own
custom types. How can such designs possibly be tested?
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It is infeasible to test every possible design point for polymorphic generators. A more
practical solution is to write polymorphic testers. Like the generators they are testing,
polymorphic testers treat types as arguments.

Generator poke(io.in, 
3.0)

DspTester

UInt Instance Floating Point 
Instance

Fixed Point 
Instance

Figure 6.13. Generic tester

Dsptools provides testers with generic flavors of peek and poke which figure out if
the underlying type is fixed point, floating point, real, complex, etc. and perform the
correct conversion. Chisel-testers also has a typeclass mechanism for specializing peek
and poke for custom types, which would be suitable for user-defined types. In this way,
someone writing a test should make a test generator that is generic with respect to T and
can be specialized to any type, even user-defined types.

6.3.4 VIPs for Chisel Testers

Verification IPs (VIPs) raise the level of abstraction in verifying a design. VIPs gen-
erally allow a test author to generate and gather stimulus and outputs at the transaction
level, decoupling what the input and output transactions contain from how they are sent.

Chisel testers provide a low-level API for interacting with DUTs, and because they
are written in a powerful programming language it is possible to build powerful abstrac-
tions on top of these low level operations. Dsptools implements VIP-style drivers and
monitors in Chisel testers for some common interfaces, including AXI-4, AXI-4 Stream,
and TileLink11.

AXI4StreamModel is a mixin trait that can be added to a Chisel PeekPokeTester.
It adds the ability to add VIP-style drivers and slave/monitors to AXI4-Stream in-
terfaces. This lets one specify behavior at a transaction level and not worry about the

11These VIPs were written before Chisel testers 2, which added primitives for concurrency to Chisel
testers. These concurrency primitives make it much easier to write VIPs and provide a safe mechanism
that should be preferred to the way Dsptools emulates concurrency. Additionally, since the VIPs were
written Chisel has added support for bundle literals, which removes the need for some of the scaffolding
in Dsptools’s VIPs.
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cycle-by-cycle behavior. AXI4StreamModel is composed of two more granular traits:
AXI4StreamMasterModel and AXI4StreamSlaveModelwhich only provide drivers
and slaves respectively.

A driver is made by calling bindMaster(port) on a top-level AXI4-Stream port,
and a slave is made by calling bindSlave(port). After making the master and slave
drivers, the test code should enqueue transactions and expected transactions. step()
will still step the clock, and the drivers will manage the streaming interfaces automat-
ically. stepUntilCompletion() will step until every driver is done, or until a pro-
grammable timeout.

The PassthroughTester in Dsptools is a good example:

val master = bindMaster(in)

val slave = bindSlave(out)

// fill queue

master.addTransactions((0 until expectedDepth).map(x =>

AXI4StreamTransaction(data = x)))

stepToCompletion()

// queue should be full

expect(in.ready, 0)

expect(out.valid, 1)

// empty queue

slave.addExpects((0 until expectedDepth).map(x =>

AXI4StreamTransactionExpect(data = Some(x))))

stepToCompletion()

Because it is such a common pattern to make DspBlocks generic with respect to the
memory interface, it is important to make it easy to write testers that are also generic
with respect to the memory interface. MemMasterModel is a mix-in that provides a
simple API for reading and writing to memory interfaces via a generic VIP. Mix-ins that
specialize MemMasterModel to AXI-4, TileLink, etc. flavors are also provided. This
allows a test author to write one test that works against AXI-4, TileLink, etc. flavors of
the same design. An example is shown below.
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abstract class StreamMuxTester[D, U, EO, EI, B <: Data](c:

StreamMux[D, U, EO, EI, B]) extends PeekPokeTester(c.module)

with AXI4StreamModel with MemMasterModel {

val inMasters = c.ins.map(i=>bindMaster(i.getWrappedValue))

val outSlaves = c.outIOs.map(o=>bindSlave(o.getWrappedValue))

// queue up input transactions

for ((in, inIdx) <− inMasters.zipWithIndex) {

in.addTransactions(Seq.fill(outSlaves.length)(

AXI4StreamTransaction(data = inIdx)))

}

for (offset <− 0 until c.module.ins.length) {

// set the input−>output mapping

for (outIdx <− 0 until c.module.outs.length) {

memWriteWord(c.beatBytes * outIdx, (offset + outIdx) %

c.module.ins.length)

}

// add output assertions

for ((out, outIdx) <− outSlaves.zipWithIndex) {

out.addExpects(Seq(AXI4StreamTransactionExpect(data =

Some((offset + outIdx) % inMasters.length))))

}

step(20)

}

stepToCompletion(silentFail = true)

}
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// Tester for AXI−4 flavor of StreamMux

class AXI4StreamMuxTester(c: AXI4StreamMux) extends

StreamMuxTester(c) with AXI4MasterModel {

override def memAXI: AXI4Bundle = c.ioMem.get.getWrappedValue

}

// Tester for TileLink flavor of StreamMux

class TLStreamMuxTester(c: TLStreamMux) extends

StreamMuxTester(c) with TLMasterModel {

override def memTL: TLBundle = c.registerNode.in.head._1

}

6.3.5 Tape-ins
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Figure 6.14. Release frequency of tape-ins for CRAFT II project. A version of this
figure originally appeared in [19].
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One coarse way to measure the agility of a methodology is to see how long it takes
to add new features. In [20, 19], RTL dumps were handed off from a design team to a
verification and implementation team. Each iteration on an RTL dump was considered
a tape-in. Fig. 6.14 depicts the frequency of releases during this project. After initial
releases which involved setting up the flow, the time between releases dropped before
reaching a steady state of approximately 1-3 days between releases. Of course, not every
release represents the same amount of work, but each release did contain new features.
The key takeaway is that this methodology was delivering on frequent releases of new
features.

6.4 Summary

This chapter presented tools and methodologies for agile development of custom sig-
nal processing hardware. Much of this methodology is supported by Dsptools, a Chisel
library for this kind of application. These tools and methodologies are applied to the
URLLC problem in the next chapter.
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Chapter 7

System Concept Demonstration

Demonstrating the feasibility of new ideas via prototyping is an important step in
proving the value of new ideas, especially when there are questions as to the accuracy of
models and to the feasibility of implementation. Chap. 6 presented tools and methodolo-
gies for designing custom signal processing hardware. This chapter shows how to apply
these techniques to build prototypes of OFDM-based systems based on those described
in Chap. 4.

7.1 Transceiver Modeling

The experiments in Chap. 5 give strong evidence that relay selection algorithms work
well in a real-world environment. Still, there is a key question about the validity of
the modeling assumptions that needs to be answered: does it actually harness enough
diversity to achieve high-reliability communication? There are several difficult-to-model
ways that it might fail to achieve high-reliability communication:

• Channels could be correlated in a way that interferes with relay selection, e.g. the
relay selection algorithm could fail for different users at correlated times.

• Synchronization error could cause relays to miss their timeslot.

• The control channel for relaying could be too error prone. Relays could incorrectly
receive their request to relay.

• The analog frontend may have trouble receiving from multiple relays with guard
intervals that are too small, perhaps because of automatic gain control struggling
to converge before data is received.
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Some of these factors depend on the implementation of the transceivers and the pro-
tocols they use to communicate. Building working wireless transceivers can be difficult,
and so it might seem desirable to model a transceiver. However, for the high-reliability
regime it is important not to sweep sources of error “under the rug” (in a model).

Attempting to create a model that captures everything that could go wrong in some-
thing you might build is not a fruitful endeavor. Such a model could be overly pes-
simistic, or it could be that you miss a critical problem. Building prototypes is one way
to cut through these modeling problems.

Replacing models with prototypes creates new challenges. Working prototypes are
an existence proof, but non-working prototypes are not a non-existence proof. It is im-
portant to have some confidence that the prototype is feasible to build. Another problem
with prototypes is that they must exist in the real world, occupy space, and exist in real
time. To show that something is reliable may take too much time with a prototype;
models are often needed to show reliability.

For the target specifications of this work (30-user network with approximately one
communication error per year), it is simply not practical for us to deploy such a large
network for the amount of time it would take to demonstrate the targeted reliability. We
must use a model to allow us to evaluate our system more quickly. The question then
arises as to what simplifications can be made. Importance sampling is a popular and
powerful technique for investigating rare events. The basic idea is to evaluate a function
on a subspace of the sample space, carefully selecting the subspace such that

• The rare events of interest occur more frequently in the subspace than in the entire
sample space

• The function’s behavior on the subspace can be generalized to the entire sample
space (often analytically)

In the case of our low-latency, high-reliability communication system, the function
of interest is system error rate of a given system implementation, the sample space is the
set of channel realizations. Generally, what is done is to evaluate the system in harsh
conditions, for example low SNR, and use a model to extrapolate from the low SNR
behavior how the system would behave at nominal SNR.

This type of extrapolation is more troublesome when the model is complex. If the
model is too simple, however, it may neglect an important error event that is irrelevant
at low reliabilities but dominates at high reliabilities. This is of particular concern when
a model is not designed with high reliability in mind. Models designed to be useful
in high-throughput scenarios may not capture all of the relevant behavior for URLLC
scenarios.

Importance sampling is more dangerous for complicated models because of the dan-
ger of neglecting small but critical corner cases. For our relaying-based wireless systems,
the model is very complicated, and because there are relays, the entirety of the receive
and transmit chains needs to be well understood. Furthermore, there are multiple, si-
multaneous relays, so the behavior of the network as a whole must be understood (as
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opposed to a single node). Therefore, it is best to restrict the modeling effort to a portion
of the problem that is well understood, for example the channel, and use a prototype in
place of a model where the problem is less well understood.

7.2 Transceiver Prototype

The following sections outline the components of the prototype transceiver [79]. The
transceiver is implemented on a Xilinx ZC706, which is a board that includes a Zynq-
7000 SoC, memory, and a large amount of I/O connectivity. The Zynq-7000 SoC has
both a hard ARM core and programmable logic (PL) for implementing custom hard-
ware. An ADI FMCOMMS-3 daughter card is connected via FMC. ADI has reference
designs [14] that have been modified to add a custom baseband implementation as shown
in Fig. 7.1.

ARM Core

FPGA PL

ADI IP

Rx/Tx Config

DMA

I/O

Baseband

Memory DMA

FMCOMMS

Daughter Card

AGC

FIR Filter

ADC + DAC

Figure 7.1. The ZC706 FPGA features a hard ARM core with integrated programmable
logic (PL) on FPGA.

The ADI reference designs also include a software environment for interacting with
the FMCOMMS board. A full desktop Linux operating system is augmented with
drivers and application software for configuring the board and IP. Example applications
allow for capturing samples, looking at the PSD, changing carrier frequency or sampling
bandwidth, etc.

A custom Linux kernel module is written for interacting with the baseband, as de-
picted in Fig. 7.2. The driver exposes a file /dev/baseband that applications can use
to interact with the custom baseband hardware. A set of ioctl calls can be used to con-
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figure and interrogate the state of the baseband and the DMA. Once configured, read
and write will trigger the DMA to capture or send samples, respectively.

Similarly, kernel drivers provided by ADI expose files for configuring the FM-
COMMS daughter card and ADI IP, for example allowing applications to configure
the channels enabled, bandwidth, center frequency, transmit/receive mode, or filtering
of the received signal. ADI also provides graphical applications that interact with the
drivers to provide an easy to use interfaces for configuring the radio. The typical way we
worked with the boards was to use the graphical configuration tool to set up the FM-
COMMS board and IP first, and then run a separate application that only interacts with
the custom baseband1.

Linux

ADI Drivers

ADI Config SW

Baseband Driver (baseband.ko)

Application

ADI IP

Rx/Tx Config

DMA

I/O

FMCOMMS

Daughter Card

AGC

FIR Filter

ADC + DAC

DMA Baseband

Read/Write
/dev/baseband

IOCTL

RF

Figure 7.2. A Linux kernel module implements a driver that exposes a file called
/dev/baseband that allows applications to interact with the baseband.

Fig. 7.3 shows a more detailed view of the custom baseband and DMA. There are
two clock domains: the AXI clock domain and the Rx clock domain (which is shared
with the Tx). The AXI clock domain runs at 100 MHz and the Rx clock is configurable

1If dynamic reconfiguration of the ADI daughter card or ADI IP is necessary, for example if frequency
hopping is employed, then a single application would need to interact with both the ADI drivers and the
custom baseband driver.
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at runtime, but for this work is usually 20 MHz. The Rx input stream comes from the
ADI IP via an AXI-4 stream interface. It goes through an aligner block first, which is
generally unused2. The baseband can be configured to bypass most of the receive chain
via a programmable splitter and stream mux. If the bypass is enabled, raw samples go to
a skid buffer before arriving at the DMA to be dumped into memory. If the bypass is not
enabled, samples go through the TimeRx block and FreqRx blocks, and then ultimately a
width adapter that packs decoded bits into the word size the DMA expects. The TimeRx
block performs all processing (e.g. packet detection, CFO correction, etc.) in the time
domain, and the FreqRx block performs an FFT and then performs all processing (e.g.
channel estimation, demodulation, etc.) in the frequency domain. The DMA has access
to a local scratchpad as well as an AXI-4 master port that masters the SoC’s DRAM. The
DMA can also be used to stream from memory to an AXI-4 stream master, which feeds
into to the Tx block before a clock crossing that ultimately goes to the ADI transmitter.

Rx Clock Island AXI Clock Island

DMA

TimeRx

FreqRx

Tx

AXI XBar Int XBar

Splitter

Skid

Aligner

Width 

Adapter

AXI XBar

Local

Scratchpad

AXI-4

(to memory)

Rx

Stream In

Rx Clock Island

Tx

Stream Out

AXI-4

(from µP)

Interrupt

(to µP)

Figure 7.3. Top level of custom baseband.

7.2.1 Time-Domain Portion of Receiver

The TimeRx block is depicted in Fig. 7.4. It performs time synchronization, fre-
quency synchronization (i.e. CFO correction), and removes cyclic prefixes. Synchro-
nization is based on autocorrelation, similar to Matlab’s wlanPacketDetect [5]. Be-
cause the preamble is periodic, its autocorrelation will have peaks when the overlap is

2This block is generally only used if the baseband is configured to bypass the TimeRx and FreqRx block
and only capture raw samples. The aligner block allows separate captures to begin at the same time within
a programmable-length period.
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close to the period. An autocorrelation block, depicted in Fig. 7.5, outputs both the
autocorrelation of the input signal and a running sum of the energy of the signal. These
two quantities go to a peak detection block that determines if there is a preamble and
where it starts. The output of the autocorrelation block is also fed to a phase estimator,
which is used to estimate the CFO.

The autocorrelation block is configurable, both in the sense that the generator is
parameterized and in the sense that at runtime it can be reconfigured to detect different
preambles. The autocorrelation generator is polymorphic; it will generate autocorrelators
for any type that has a Ring typeclass. The other parameters include

• maxApart: The maximum delay to use for the correlation.

• maxDepth: The maximum length of the running sum.

• addPipeDelay: The number of pipeline registers to insert after additions.

• mulPipeDelay: The number of pipeline registers to insert after multiplications.

From

ADC

Autocorr
Peak 

Detector

Phase 

Est.
NCO

✕Sync
CP

Remove

Time Synchronization

CFO Estimation

CFO Correction

To

FreqRx

Figure 7.4. TimeRx block.

The output of the autocorrelator goes to a peak detector. The criterion for detecting
a peak is runtime-configurable, implementing

‖𝐴[𝑛]‖2 > 𝛼‖𝐸[𝑛]‖2 + 𝛽
where 𝐴[𝑛] is the output of the correlation, ‖𝐸[𝑛]‖2 is the running sum of the energy3,
and 𝛼 and 𝛽 are programmable coefficients determining the threshold. A programmable-
length running sum is used to check that a configurable number of peaks are seen within
a window of time. This avoids spurious detections.

3Rescaling 𝛼′ = 1
𝑛2 𝛼 allows for using the running average of the energy in a simple way.
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Figure 7.5. Block diagram showing the autocorrelation block. A memory based shift
register delays the input data, and the output is split to two different paths. The top path
computes the magnitude of the delayed signal and goes through a configurable-length
moving average, implemented with a shift register and accumulator that subtracts the
output of the shift register. The bottom path computes the conjugate and then multi-
plies that by the un-delayed input signal before also going through a configurable-length
moving average.
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Once the peak detector determines that there is indeed a packet, the Sync block
will pass the packet to the downstream blocks. When there is no packet detected, it
simply accepts all samples and drops them until a packet is found. When there is a
packet detected, it drops a runtime-programmable number of samples, passes a runtime-
programmable number of samples to the next blocks, and then returns to waiting for
another packet. This is implemented as a state machine with a counter.

The output of the autocorrelation block is used in a second path for estimating and
correcting CFO. Phase estimation is implemented with a CORDIC block in vectoring
mode [117]. The CORDIC algorithm is an efficient way of converting vectors between
Cartesian and polar coordinate systems using only shifts, adds, and a small lookup ta-
ble [15]. In this case, the so-called vectoring mode converts the Cartesian coordinates to
polar coordinates, the angular part of which will be used as a phase estimate. The phase
of the autocorrelation is directly related to the CFO via

Δ̂𝑓𝑛
𝑓𝑐

= 1
2𝜋𝐿∠ ⎛⎜

⎝

𝑁−1
∑
𝑖=0

𝑥𝑛−𝑖𝑥∗
𝑛−𝑟−𝐿

⎞⎟
⎠

,

where 𝑁 is the length of the running sum and 𝐿 is the autocorrelation lag.
Rather than directly taking the output of the autocorrelation block and feeding it into

a CORDIC, the autocorrelation output is averaged first. The averaging is implemented
with a simple forgetting factor, i.e. 𝑥𝑛+1 = 𝛼𝑥𝑛 +𝑦𝑛 where 𝑥𝑛 are the estimates and 𝑦𝑛 is
the new autocorrelation output. Choosing 𝛼 = 0 removes all averaging. It is important
to do this averaging before performing the phase estimation due to the nonlinear nature
of the phase estimation.

There are many variants of CORDIC implementations. CORDICs can perform
one of or both vectoring and rotation modes, and via different lookup tables compute
hyperbolic functions or square roots. CORDICs can also vary based on how the function
is implemented; one broad category is if it is iterative or pipelined, and if it rescales the
output.

A CORDIC generator written in Chisel attempts to support this wide range of vari-
ants of CORDIC. Both iterative and pipelined CORDICs are supported. A goal of the
generator design is that different flavors of CORDIC should re-use as much common
code as possible. The core reusable unit of the CORDIC block is called CORDICStage,
depicted in Fig. 7.6.

CORDICStage is generic with respect to the type of the data it operates on and
uses typeclasses to provide the necessary operations. The constraints are T <:Data :

Ring : Signed : BinaryRepresentation. Each typeclass is necessary for:

• Data: T must be a Chisel type, Data is the supertype of all types that can become
hardware elements in Chisel.

• Ring: CORDIC requires being able to add and subtract.
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Figure 7.6. Block diagram for a CORDIC stage. 𝑛 is the shift amount, which is an input
to the block. For some parameterizations, 𝑛 may be fixed for a stage, but it is not fixed
generally. 𝑚 and 𝑑𝑖 and functions that may vary with the selected mode of the CORDIC.
The design of the generator allows for these to be implemented as generic functions of
the inputs, and also allows more inputs to be added (e.g. a select between vectoring and
rotation).

• Signed: CORDIC requires being able to check the sign of inputs and the residue.

• BinaryRepresentation: CORDIC divides by powers of 2 via shifts. This
typeclass provides an interface for shifting numbers.

A stage has 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛 as inputs and 𝑥𝑜𝑢𝑡, 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡 as outputs. There is another
input for the value coming out of the ROM. If the stage is being used in a setting where
it can switch between different functions (for example trigonometric and hyperbolic), the
value of the ROM may be changed externally based on which function is being computed.
If the stage is being used in a pipelined setting, the ROM input may be a fixed value.
The is also an input for the shift amount, which in a pipelined setting may also be fixed.

The final input is a config object. The idea of the config object is that in some cases,
the CORDIC will need to be configured differently to do different functions. For ex-
ample, if the CORDIC can switch between vectoring and rotation modes, there should
be an input setting which mode is being used, and there should be logic changing the
behavior based on what the input says. The config object provides both of these. There
is a portion that is a (potentially empty) bundle that, when populated, provides fields
for determining the mode. Then there is another portion that provides functions that
generate the logic that consumes these inputs.

Another important portion of the CORDIC generator is the generation of the
ROM values. The code that generates the ROM’s values requires another typeclass:
CovertableTo. This typeclass describes how to generate hardware for literal values,
for example how to represent 1.45 as a generic type T. For the trigonometric and hyper-
bolic functions, these ROMs are generated using the fromDouble(value, proto)
function of the ConvertableTo typeclass. This constructs an instance of T with literal
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value value and which matches width with a prototype proto. This ensures that all
values in the table have the same type/width. A SyncROM is used to generate a ROM
given the values generated by fromDouble.

SyncROM4 is a way of generating ROMs that map well to FPGAs. It makes use of
Chisel’s BlackBox facility because the way Chisel natively generates Verilog is not very
efficient for ROMs. Chisel’s normal way of generating a ROM using a Vec generates a
lot of temporary values and if statements. This does not scale well for large ROMs, which
ideally would get mapped to a BRAM on Xilinx IP. SyncROM generates a BlackBox
which follows the Xilinx template for BRAM-mapped ROMs (using a case statement
and a registered output). This is generated with the HasBlackBoxInline facility in
Chisel which supports annotating BlackBoxes with a string that will get written to a
separate Verilog file as part of the FIRRTL compilation flow. This string is program-
matically generated from the values generated by ConvertableTo. A dot-f file is also
generated by this flow, which simplifies the integration of these generated blackboxes
into a build system5.

The CORDIC stage is then wrapped by a top level generator. For a pipelined
CORDIC, many stages are laid out, some with pipeline registers between them. For
the iterative CORDIC used in this design, one stage and one ROM are generated along
with a register to store 𝑥, 𝑦, 𝑧 and a state machine to configure the CORDIC stage and
update the registers. In this case, only the phase is used so no gain correction factor is
applied. A top-level API is provided so that a CORDIC can be constructed as follows:

val cv = IterativeCORDIC.circularVectoring(protoXY, protoZ)

val cr = IterativeCORDIC.circularRotation(protoXY, protoZ)

Once the phase is estimated, it is multiplied by a programmable coefficient to convert
it into an estimate for frequency correction that must be applied to remove the CFO. This
frequency estimate is fed into a numerically controlled oscillator (NCO) that modulates
the input stream. The NCO uses a quarter-wave sine table implemented once again
using the SyncROM construct. The NCO has two outputs, one 90° out of phase from the
other so the output can be interpreted as a complex exponential. A Taylor approximation
(number of terms is a parameter) is performed to interpolate between entries in the table.

The output of the NCO modulates (via a complex multiply) the input samples once a
packet is detected. Subsequently, a simple state machine with programmable size cyclic
prefix and FFT strips the prefix and passes the data symbol through to the FreqRx block.

4SyncROM was based on earlier work by Angie Wang for generating efficient LUTs for ASICs. This
implementation maps to BRAMs on Xilinx FPGAs instead, and uses the HasBlackBoxInline
facility to simplify the build system.

5This is especially useful for when the number or name of the black boxes changes with different pa-
rameterizations. It’s a good practice to include serialized parameters in the name of black boxes to avoid
namespace collisions, so this is very common to have happen in practice. Having to rewrite build scripts
every time a parameter changes is a waste of time and energy, so it is important to have the backend
implementation and verification flows be flexible to parameterization changes.
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7.2.2 Frequency-Domain Portion of the Receiver

The first step of the frequency-domain portion of the receiver is the FFT. The FFT
is a radix 22 single-path delay feedback FFT [93].
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Figure 7.7. Block diagram of radix-22 single-path delay feedback FFT [93]. A size 64
FFT is pictured here.

One interesting aspect of implementing this FFT in Chisel is how to manage bit-
growth. Depending on the input statistics, different bit-growth (or normalization) tech-
niques are used, but one common rule of thumb is to add a bit every other stage of a radix-
2 FFT. Implementing these kinds of rules takes some care when writing a type-generic
generator because the underlying representation is abstracted.

In this FFT generator, the proto (i.e. a variable that contains the prototype for
constructing a new instance of type T, including width information) is tracked from
stage to stage, right alongside the control signals, inputs, and outputs. A new proto is
computed every other stage by doing (x context_+ x).cloneType, where x is some
concrete hardware instance constructed from proto. Using context_+ ensures that the
DspContext setting for how addition should be performed (e.g. with or without bit-
growth) will be used to determine how bit-growth should be managed. For example,
if addition is saturating, then no bit-growth will occur. Furthermore, for fixed-width
types such as floating point where it does not make sense to add extra bits, no extra bits
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will be added. However, in cases where addition does add extra bits, performing the
addition and calling cloneType will give a new proto that has the right number of
bits. Computing new protos by performing operations on them is generally preferable
to special-casing each type that the generator supports.

After the FFT, channel estimation is performed. Pilot subcarrier locations are given
as a parameter to the channel estimation generator, and a state machine keeps track of
which samples are pilots and which are data. Each subcarrier corresponding to a pilot is
put in a queue that goes through an estimator block. The estimator block implements

̂𝑦 = 𝑥∗

‖𝑥‖2 ,

where 𝑥 is the received pilot and ̂𝑦 is an estimate of the correction factor to invert the
channel.

The magnitude function is implemented with a complex multiply, and the divider
is implemented using non-restoring division. One important aspect of the divider is
that it operates directly on UInts. This is because the non-restoring division algo-
rithm relies on an alternative number representation where bits represent one of {−1, 1}.
Non-restoring division allows for efficient implementation, but does so by exploiting
the number representation in a way that Dsptools’s typeclasses abstracts away. The
BinaryRepresentation typeclass provides some ability to expose a limited API for
doing things like division via powers of two by shifting, but this API is intentionally
limited to prevent baking in too many assumptions about the underlying representation.
Non-restoring division performs shifting, sign bits, and bitwise negation, so it was writ-
ten using UInts rather than generic type T with typeclasses. The channel estimator
block is responsible for converting T to UInt and back. In the case of the FixedPoint
implementation that ultimately gets implemented, this involves manually doing some
bookkeeping for the binary point.

On the output side, each subcarrier corresponding to a pilot will output the coeffi-
cient for correcting the channel. Each subcarrier corresponding to data will simply pass
through the data.

The output of the channel estimation block goes to the equalizer block. Subcarri-
ers that contain pilots are treated separately from subcarriers that contain data. Each
data subcarrier is multiplied by a coefficient corresponding to the neighboring pilot sub-
carriers (which now contain the estimated correction factor). The coefficients are sinc
interpolations of the neighboring coefficients.

The output of the channel equalization block is fed into a block that removes the
now unneeded pilot subcarriers, and then is fed into a demodulation block. The de-
modulation block implements simple soft QPSK demodulation where the values of the
log-likelihood ratios (LLRs) corresponds to the real and imaginary part of the symbol.

The final block in the FreqDomainRx is a deserializer which bundles all the LLRs
into words that match the DMA’s width. The output of the receive chain feeds into the
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DMA, which can efficiently move the stream into main memory for further processing
by the ARM CPU. In particular, FEC and header parsing can occur, after which enough
information is known as to whether a relay transmission needs to be scheduled.

7.2.3 Transmitter

For prototyping purposes, the transmitted signal can be precomputed. The baseband
has a scratchpad memory that can store the precomputed transmit signal to ensure there
is no contention for main memory between the receive and transmit chains.

It is critical that transmissions be able to be scheduled very precisely. To enable this,
a time gate block is placed between the DMA streaming output and the transmit DAC
output. The time gate applies backpressure until a counter in the DAC clock domain
reaches a programmable value, which is interpreted as the desired transmit time. After
the counter reaches the desired value, the backpressure is removed and the output flows
from DMA to DAC.

7.3 Verification

Unit tests were implemented using Chisel-testers and the Dsptools extensions
that allow for testing type-generic generators with typeclasses. Unit tests for some
DspBlocks that use the VIP-style drivers and monitors are also implemented.

It is important to test that all the pieces function correctly once they are integrated.
Clock crossings are particularly important because Chisel-testers model is largely single
clock6.

Furthermore, some of the advantages Chisel has for testing related to introspection
and the type system were less useful for top-level integration testing. Xilinx IP used a dif-
ferent naming convention and different subset of AXI signals than Chisel’s Rocketchip-
based AXI implementations. To ease integration with the Xilinx IP, the top-level Chisel
design did not use Rocketchip’s AXI Bundle types, but instead used different types that
used Xilinx’s naming convention. Using different bundle types makes it difficult to use
the VIPs that rely on being able to introspect the design for parameters and expect the
bundle to have the expected types and names.

For some top-level integration tests, SystemVerilog was used. The Xilinx AXI-4 and
AXI-4 Stream VIPs were used to generate stimulus and check outputs. A simple test
that checked the DMA worked to send and receive samples was implemented.

This test was not enough to ensure the DMA worked with the memory subsystem of
6Testers-2 [2] has good support for multiple clocks and concurrency, but was not mature at the time

this verification work started.
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the FPGA, however. The AXI-4 memory model was more permissive than the AXI-4
port to the memory controller on the FPGA. The ChipScope Integrated Logic Analyzer
(ILA) was instrumental in debugging the DMA for this.

More top-level integration tests of the baseband were implemented using cocotb [4].
Cocotb is a Python-based library for writing testbenches. It uses Python coroutines to
model concurrent events in a simulation, and uses Python’s powerful and flexible lan-
guage constructs to make writing simulation components easy. Furthermore, because of
Python’s powerful standard library and wider ecosystem, a lot of models can be created by
stitching together library components. For projects like this involving wireless systems,
the NumPy [71] and SciPy [116] projects can be particularly useful.

One problem to overcome when using cocotb with this project had to do with nam-
ing. Similarly to chisel-testers, cocotb drivers and monitors expect certain naming con-
ventions for the buses they model. A small modification to cocotb enabled monitors and
drivers to perform logical to physical name mapping. For example, an AXI-4 driver that
internally calls the write address channel AWADDR could be connected to a bus that calls
the same port mem_awaddr with

AXI4Driver(dut, ”mem”, clock, AWADDR=”awaddr”)

This enabled cocotb to use existing drivers and monitors with signals that were named
with Xilinx naming conventions7.

The testing setup is depicted in Fig. 7.8. The testbench has functions for configuring
the many blocks within the baseband. In particular, functions that perform DMA actions
are used to initiate transmission and reception. A C model of the transmitter is used via
SWIG [106] to populate the memory with a transmission, and ultimately transmit a
signal via a DMA memory-to-stream action. The transmission ultimately leaves via the
dac interface, goes through a channel model, and then arrives at the adc interface to be
processed by the receive portion of the baseband. The DMA writes this reception to the
memory via a stream-to-memory action, whereupon the testbench checks the reception.

7.4 Implementation

The custom baseband described above is included as an IP block [80] in the ADI
reference design [14]. A TCL script removes connections between the FMCOMMS
ADC and DAC with DMAs, inserting the custom baseband in-between. The reference
design includes drivers and applications for interacting with the design that function as

7Name mapping functionality could be added to chisel-testers, but the testers perform type checking
and introspect on those types to extract parameters. It would require a substantial reimagining of the
testers API to change this, and removing the ability to introspect those types safely removes much of the
utility of chisel-testers.

106



Baseband

AXI-4 

Driver

Testbench

s_axi

m_axi

AXI-4 

Driver

Memory Model

adc dac
AXI-4 Stream 

Driver

AXI-4 Stream 

Monitor

Channel 

Model

Figure 7.8. Block diagram of the cocotb simulation environment. The baseband DUT
has four interfaces that have VIPs connected to them. The AXI-4 Stream interfaces
have a driver at the ADC input and a monitor at the DAC output, and are connected
by a loopback that applies a software model of a channel. The AXI master interface
(m_axi), which in the complete system would master a bus connected to main memory,
is connected to a VIP with a simple model of a memory. This memory has a mechanism
for backdoor access by the testbench. The AXI slave interface (s_axi) has a VIP which
serves as the interface by which the testbench stimulates the design.
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before after adding the baseband design8. The TCL script also adds the custom baseband
to the memory map, and the Linux devicetree is modified to include entries for the
custom baseband9.

The time-domain and frequency-domain portions of the receiver are assigned to their
own pblocks and manually placed to help ensure good QoR. The resulting utilization is
given in Table 7.1.

Name Slice LUT Slice LUT % of Baseband

TimeRx 1714 6.9%

FreqRx 15228 61.4%

Scratchpad 4376 17.6%

DMA 1037 4.2%

Busses 690 2.8%

Clock crossings 816 3.3 %

Misc. 912 3.7%

Total 24773 100%

Table 7.1. FPGA utilization (post-implementation).

7.5 Summary

This chapter presented a number of useful blocks for building custom basebands for
OFDM-based systems. Techniques discussed in Chap. 6 were applied in to design and
verify blocks useful for OFDM-based systems.

8The reference design’s ADC-to-DMA connections are not changed, the baseband is simply a second,
passive consumer of the ADC stream. The transmit side of the baseband passes everything through by
default; a register needs to be set to enable the baseband to do its own transmissions.

9Rocketchip has functionality for generating devicetrees, but unfortunately it is not used here. One
reason is that AXI peripherals do not generate devicetree information in Rocketchip.
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Chapter 8

Conclusion

Many interesting ideas require custom hardware prototyping to evaluate their use-
fulness. Communications schemes that use relaying to achieve ultra-reliable low-latency
communication are one such example, and there are a wide array of other applications
that demand custom signal processing hardware.

This work presents the journey of building tools useful for prototyping an ultra-
reliable low-latency wireless system. One part of that journey is designing the com-
munication scheme and making sure that it is both realizable and able to meet the target
requirements. The other part of that journey is building tools and methodologies to build
a prototype system as the communication scheme evolved. This thesis contributes the
following:

1. An implementable system design for relay-based URLLC

2. Methodologies and tools for developing and verifying custom signal process-
ing hardware generators. Dsptools is a Chisel library that enables much of this
methodology.

3. Implementation of baseband components for realizing OFDM-based communi-
cation.

Chapter 1 introduces the URLLC problem and discusses the prototyping with cus-
tom hardware. Chapter 2 presents background information about URLLC, 5G stan-
dardization, channel modeling, as well as a review of hardware design and verification
practices, especially design automotation that promotes agile design. Chapter 3 presents
relay-based URLLC techniques in detail, along with commentary on their relative mer-
its.

Chapter 4 discusses PHY and MAC level implementation details for the relay-based
URLLC techniques discussed earlier. In particular, OFDM is discussed in the context
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of URLLC, as well as requirements for synchronization, channel estimation and equal-
ization, and coding.

Chapter 5 discusses the viability of relay selection techniques that are motivated by
the desire for simple implementation. Analysis, simulation, and measurement data es-
tablish the efficacy of dynamic relay selection.

Chapter 6 presents a generator-based methodology for the design and verification of
custom signal processing hardware. Dsptools, Chisel language features, and methodolo-
gies are discussed in a more general context, and then are applied to URLLC in Chap-
ter 7. There is a discussion of design decisions for the prototype, as well as a discussion
of the methodology that was applied for the design.

Exploring system ideas and developing tools and methodologies for enabling that
exploration creates a virtuous cycle. The exploration is aided by new tools and method-
ologies, and the tools and methodologies are made more useful by having a real problem
to be applied to.

Ultimately, these tools and methodologies are useful steps towards a future where
domain experts can efficiently explore design spaces with hardware prototypes. For wire-
less systems, this would allow protocol designers to specify (or change) a system at a high
level and quickly generate (or regenerate) high quality hardware prototypes to evaluate
the system.

8.1 Future Work

These communication schemes are by no means ready to be deployed in a production
environment. One interesting area for future work would involve trying to map these
ideas about relaying into existing standards. For simplicity, many network functions
such as joining and leaving, authentication, and coexistence have been neglected from
being fully addressed by this work.

There are numerous opportunities for future work to improve on these tools and
methodologies. Developing a larger portfolio of reusable signal processing blocks for the
Chisel ecosystem is one important component. Efforts to improve the overall verification
environment in Chisel are being undertaken by others in the community, and should
continue to provide functionality to support signal processing applications. In particular,
native support for concurrency in the Chisel verification environment enables UVM-
style verification, which the VIPs developed for DspBlocks would benefit from.

FIRRTL has recently evolved to have more support for fine-grained scheduling of
transforms and to have transforms with complex dependencies on each other. This func-
tionality enables a new style of Chisel generator which is especially useful for signal
processing where specific microarchitectures for blocks are chosen after other parts of
the system are elaborated, for example an FIR filter implementation could be chosen
to rate-match the blocks before and after the filter. This style of development enables
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optimizations that have been available to HLS compilers but have been more difficult to
apply for generators.

Another direction for exciting future work is in using diplomacy to manage data
movement. Diplomacy provides many powerful tools; regmapper in particular is very
useful for DspBlocks, as well as generating bus structures and managing clock crossings
and reset. However, there are fewer tools for generating bus masters, especially things
that look like specialized DMAs. A stream ↔ AXI-4 DMA was written for this design,
but it could be made to be more flexible and general. Making an API like regmapper
for bus masters would be an interesting and useful thing to build.

More abstractly, this work is part of a larger movement for using specialized compilers
for increased productivity. This kind of work seeks to empower domain experts with tools
that better reflect the mental model employed within a domain, and by so doing allow
simple conceptual changes to actually be simple to implement. By allowing designers to
be more productive, teams can be smaller, move faster, and by trying more ideas find the
best ones. Furthermore, more productive hardware design makes designing hardware
more valuable and more accessible.
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