
Improving FPGA Simulation Capacity with Automatic

Resource Multi-Threading

Albert Magyar

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-24

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-24.html

May 1, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Improving FPGA Simulation Capacity with Automatic Resource Multi-Threading

by

Albert Forte Magyar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krste Asanović, Co-chair
Adjunct Assistant Professor Jonathan Richard Bachrach, Co-chair

Professor Sanjit Seshia
Associate Professor Kyle Steinfeld

Spring 2021

Improving FPGA Simulation Capacity with Automatic Resource Multi-Threading

Copyright 2021
by

Albert Forte Magyar

1

Abstract

Improving FPGA Simulation Capacity with Automatic Resource Multi-Threading

by

Albert Forte Magyar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Co-chair

Adjunct Assistant Professor Jonathan Richard Bachrach, Co-chair

Modern system-on-a-chip (SoC) development is a highly complex process that spans mul-
tiple levels of design abstraction and cross-cutting requirements. With a rapidly evolving
ecosystem of domain-specific accelerators and wide design spaces to search, the ability to
rapidly evaluate potential chip designs has never been more important. In the modern chip-
design landscape, field-programmable gate arrays (FPGAs) play a critical role in delivering
this simulation capability due to their unique ability to emulate concrete, register-transfer
level (RTL) designs at speeds sufficient to run real applications spanning trillions of cycles of
simulated target-design execution. However, the use of FPGAs for logic emulation presents
challenges, including the perennial difficulty of effectively mapping large target designs to
the finite resources of a given FPGA platform.

To help address this challenge, this dissertation presents a novel approach to manage these
limitations through the use of automatic resource-efficiency optimizations that reduce the
number of FPGA resources required to faithfully implement cycle-accurate emulators of large
chips, all without requiring the tedious manual effort and complexity of previous FPGA-
optimized simulation techniques. By substituting target-design memories with logic-intensive
read and write ports for resource-efficient, cycle-accurate models that serially access FPGA
memory primitives, Golden Gate simulators can avoid the disproportionate impact of
FPGA-hostile memory design patterns on simulators of high-performance processor cores.
Drawing inspiration from software simulators and specialized emulators, where common code
may be repeatedly executed to model an arbitrary number of copies of a given block, I also
introduce an automatic instance-threading optimization, through which the logic resources
required to simulate a given module may be shared across multiple instances, radically
reducing their collective footprint.

2

To support the use of these optimizations across a broad array of user designs, they are
integrated as contributions to Golden Gate, an extensible compiler that translates RTL
designs into cycle-accurate FPGA simulators as part of the open-source FireSim FPGA simu-
lation framework. By structuring simulators as modular dataflow networks, Golden Gate
provides the flexibility to compose the two optimizations along with the ability to com-
bine them with software co-simulation or other advanced simulation features. To evaluate
the performance of the optimizations and to validate the optimizing compiler stack, these
techniques are applied to two input designs: a general-purpose SoC with multiple out-of-
order cores and a domain-specific accelerator with multiple systolic array co-processors. In
each case, finite programmable logic resources limit the maximum number of cores–and
therefore the size of the system–that can effectively be simulated on a simulation platform
consisting of cloud-hosted Xilinx VU9P FPGAs. However, by enabling optimizations in
Golden Gate through simple compiler directives, the same FPGA platform was able to
support configurations of each system with an eight-fold increase in core count relative to
the baseline, providing the ability to simulate sixteen out-of-order cores or eight accelerator
cores at high speed, with deterministic, cycle-accurate results. Ultimately, this significant
increase in per-FPGA capability broadens the utility of commodity FPGAs in simulating
ever-growing chips, while the convenience of automatic compiler optimization helps support
designer productivity in a rapidly accelerating hardware ecosystem.

i

Contents

Contents i

List of Figures iv

List of Tables vi

Glossary of Terms vii

Acknowledgements viii

1 Introduction 1
1.1 Previous Publication, Collaboration, and Funding 3

2 Background 5
2.1 Prior Work in FPGA Emulation . 5

2.1.1 FPGA Prototyping . 5
2.1.2 Commercial Emulation Systems . 6
2.1.3 Decoupled FPGA-Accelerated Simulators 7
2.1.4 The FAME Simulator Taxonomy . 8
2.1.5 FireSim and Golden Gate . 11

2.2 Chisel: A Modern Language for Hardware 12
2.3 The FIRRTL Hardware Compiler Framework 14

2.3.1 FIRRTL Intermediate Representation 14
2.3.2 The Reference FIRRTL Compiler . 15

2.4 The Rocket Chip Generator . 15
2.4.1 Rocket . 15
2.4.2 BOOM . 16

3 Dataflow Simulation with Golden Gate 18
3.1 All Simulators are Hybrid Simulators . 18

3.1.1 Refining the Notion of Decoupling . 19
3.1.2 Incorporating RTL-Specified Models in Hybrid Simulators 20
3.1.3 Hybrid Simulators and Optimization 21

ii

3.2 Compiling Hybrid Simulators with Golden Gate 21
3.3 Latency-Insensitive Bounded Dataflow Networks 22

3.3.1 Combining Multiple Signals Within Channels 26
3.3.2 Multiple Clock Domains . 27

3.4 Compiling Target RTL to LI-BDN Simulators 28

4 The Golden Gate Toolchain 29
4.1 FireSim and Golden Gate . 29
4.2 A FIRRTL-Based Simulator Compiler . 30

4.2.1 Fine-Grained Incremental Lowering with Core FIRRTL Passes 32
4.2.2 Harnessing the Extensible FIRRTL Annotation Interface 33
4.2.3 Built-in FIRRTL Analyses and Consistency Checks 35
4.2.4 Differing Requirements of RTL Compilers and Simulator Compilers . 36

4.3 Compiler Organization . 37
4.3.1 Target Transformation . 38
4.3.2 Decomposed Target Form . 38
4.3.3 Simulator Synthesis . 40

4.4 The Default LI-BDN Transform . 40
4.5 Adding New Optimizations . 41
4.6 Summary . 43

5 Optimizing Multi-Ported Memories 44
5.1 Multi-Ported RAMs . 45

5.1.1 Challenges in Mapping Complex RAMs to FPGAs 46
5.2 Model Microarchitecture . 46
5.3 Adding the Optimization To Golden Gate 46
5.4 Evaluation . 47

5.4.1 Applying the Optimization to Rocket Chip 48
5.4.2 Experimental Results . 48
5.4.3 Improving Performance with Host RAM Banking 52
5.4.4 Summary . 54

6 Optimizing Repeated Instances via Threading 55
6.1 Multi-Threaded FPGA Simulation . 56
6.2 Enabling Multi-Threading in Golden Gate 56
6.3 Generating a Threaded Model . 57

6.3.1 Derivation . 57
6.3.2 Implementation Overview . 60
6.3.3 Input Circuit Preconditions . 60
6.3.4 Thread-Management Logic . 61
6.3.5 Threading State Elements . 62

6.4 Routing I/O at the Threading Boundary . 70

iii

6.5 Evaluation . 71
6.5.1 Applying the Optimization to Rocket Chip 71
6.5.2 Experimental Results with Multi-Core BOOM Systems 72
6.5.3 Broader Applicability to Accelerator-Based Systems 76

7 Composing Multiple Resource Optimizations 80
7.1 Combining Complementary Optimizations 81

7.1.1 Transforming Target Design Topologies 83
7.1.2 Hiding Optimization Latency with Threading 83

7.2 Evaluation . 85
7.2.1 Applying Multiple Optimizations to Rocket Chip 85
7.2.2 Experimental Results . 87

8 A Chisel Temporal Property Verification Toolkit 92
8.1 Background . 93

8.1.1 Related Work in Chisel Verification 93
8.1.2 Linear Temporal Logic Properties . 94

8.2 UCLID5 . 94
8.3 A Chisel-Based LTL Property Verification Flow 96

8.3.1 LTL Property Annotations . 97
8.3.2 Control Annotations . 97
8.3.3 Chisel LTL Property API . 97
8.3.4 Verification Library Transforms . 98
8.3.5 A UCLID5 Backend for FIRRTL . 100

8.4 Case Study: Verifying a Queue . 101
8.5 Leveraging Generators & Object Orientation 103

9 LIME: Verifying Multi-Cycle Models 105
9.1 Structure of the LIME Checker . 105

9.1.1 A UCLID5 Backend for FIRRTL . 106
9.1.2 Modeling Environment Generation 106

9.2 Model Checking LI-BDNs . 107
9.2.1 Partial Implementation . 108
9.2.2 No Extraneous Dependencies . 109
9.2.3 Self-Cleaning . 110

9.3 Verifying Multi-Ported Memory Models with LIME 111

10 Conclusion 112
10.1 Current Status and Future Work . 114

Bibliography 116

iv

List of Figures

2.1 A 32-bit adder model and environment simulating a single cycle of target time. . 7
2.2 BOOM pipeline diagram: evolution across three versions 17

3.1 Composing primitive LI-BDNs to simulate a single synchronous state machine . 24
3.2 Combinational loops vs. bitvector dependency loops 27

4.1 Golden Gate within the broader FireSim stack 31
4.2 Structure of a FIRRTL transform . 33
4.3 Comparison of a typical FIRRTL flow with a simulator compiler 36
4.4 The Golden Gate compiler flow . 39
4.5 Elements of a modular optimization . 41
4.6 Separating simulation-specific annotations from RTL specifications 42

5.1 Microarchitecture of an optimized memory model 47
5.2 Applying the multi-ported memory optimization to Rocket Chip 49
5.3 Utilization comparison of baseline and regfile-optimized simulators 51
5.4 Microarchitecture of a a dual-banked memory model 53

6.1 Elements of a modular optimization . 58
6.2 Pseudocode for threading a FIRRTL implementation of a decoupled model. . . . 61
6.3 Threading register state with small memories 64
6.4 Threading register state with shift registers . 65
6.5 Threading an asynchronous-read memory . 67
6.6 Timing diagram for threaded synchronous-read memory read operation 68
6.7 A simple attempt at threading a synchronous-read memory 68
6.8 A threaded synchronous-read memory with read buffers 69
6.9 Routing channels to threaded models . 70
6.10 Applying the instance multi-threading optimization to Rocket Chip 73
6.11 Utilization comparison of baseline and threaded BOOM simulators 74
6.12 A high-level block diagram of a Gemmini accelerator 77
6.13 Utilization comparison of baseline and threaded Gemmini simulators 79

7.1 An SoC with distinct targets for memory and threading optimizations 82
7.2 Transforming a target hierarchy with nested optimization targets 84

v

7.3 Applying multiple optimizations to Rocket Chip 86
7.4 Simulator LUT utilization vs. core count vs. optimization strategy 88

8.1 An example liveness property expressed in the Chisel LTL language 98
8.2 A Chisel single-entry FIFO queue with an associated LTL specification. 102
8.3 An object-oriented verification generator . 104

9.1 lime Flow . 107
9.2 Partial Implementation Model . 108

vi

List of Tables

5.1 Key specifications for Rocket and LargeBOOM cores 48
5.2 Register file parameters for Rocket and LargeBOOM cores 50
5.3 Performance comparison of baseline and threaded simulators 52
5.4 Performance impact of banking multi-cycle memory models 53

6.1 Comparison of register-threading strategies . 66
6.2 Performance comparison of baseline and threaded simulators 76
6.3 Configuration parameters for Gemmini targets 78

7.1 Qualititative microarchitectural tradeoffs of two optimizations 83
7.2 Observed FMR for simulators with varying core counts and optimizations 89
7.3 Comparison of simulator capabilities vs. optimization strategy 91

8.1 Production rules for legal LTL properties . 95

9.1 Runtime for a LIME Partial-Implementation bounded model check 111

vii

Glossary of Terms

Abbreviations

ASIC Application-Specific Integrated Circuit

FAME FPGA Architecture Model Execution

FPGA Field-Programmable Gate Array

LI-BDN Latency-Insensitive Bounded Dataflow Network

LTL Linear Temporal Logic

MIDAS Modeling Infrastructure for Debugging and Simulation

RTL Register Transfer Level

Definitions

Chisel An open-source hardware description language embedded in Scala

FAME-1 A simulator that may execute one target cycle across multiple host cycles

FAME-5 A simulator where a host resource may represent n copies in the target

FIRRTL Flexible Intermediate Representation for RTL: the output of Chisel

Host The system of hardware & software resources used to implement a simulator

LIME Latency-Insensitive Model Equivalence: a checker for FAME-1 simulators

RISC-V An open standard instruction set architecture

Target The system & environment that are simulated by an architectural simulator

RAMP Research Accelerator for Multiple Processors: a many-core FPGA simulator

viii

Acknowledgments

Though there are many uncertainties in the PhD process, I have been certain throughout
my time at Berkeley that I am very lucky to have an amazing group of colleagues. Their
mentorship led me to pursue graduate school, and their support enabled me to finish.

• I am deeply grateful to my co-advisor Jonathan Bachrach for always believing in me.
From offering a student in class a job to seven years of collaboration, you’ve been a
welcome source of optimism and forward-looking vision.

• Without a common vision, the fantastic collaboration in the Berkeley Architecture
Research group would not be possible. My co-advisor Krste Asanović has helped
foster a true team dynamic, which has been the foundation of lasting relationships
with other graduate students. Krste has always been a reliable source of great ideas
and a dedicated teacher.

• I would like to particularly thank Sanjit Seshia for helping to shepherd our EE219C
project and for his detailed feedback on the ICCAD publication on Golden Gate.

• Unfortunately, I am saddened to hear of the untimely passing of Pramod Subramanyan.
His patient and enthusiastic help as an instructor for EE219C was the greatest enabler
in learning more about model checking and UCLID5.

• As my first mentor in the ASPIRE Lab, Palmer Dabbelt taught me more than I thought
I wanted to know about computers. He is a one-of-a-kind friend who is always willing
to share.

• My long-term collaborator Adam Izraelevitz has always been a source of inspiration.
From letting me sleep on his couch, to working together on class projects, to seven
years of Chisel meetings, he’s always made everything a bit more fun. Most of all, I
appreciate his ability to bring positivity any situation.

• Through many projects (and even more project acronyms), I have always enjoyed
collaborating with Jack Koenig. The quality of his insights are matched only by his
ability to never take himself too seriously.

• I know I am not alone in thanking Andrew Waterman for his consistent willingness
to spend time discussing ideas, even long after his own graduation from Berkeley. His
dedication to teamwork and to continual improvement of mature projects like Chisel
continue to have lasting impact at Berkeley and beyond.

• For many years, Eric Love has been both a reliable friend and a tireless driver of a
close, friendly research group environment. Outside of work, he has been a part of
many of the great memories of my time at Berkeley. In these isolating times, I will
always look back fondly on our many Zoom calls, especially those with our friends
Nathan Pemberton and Jordan Kellerstrass.

ix

• Last, but certainly not least, without the help of David Biancolin, I would never have
made it through the latter half of my PhD. His collaboration in so many aspects of my
research helped make this entire dissertation possible. More importantly, he has been
a tireless source of advising and has always helped me keep a clearer vision of where
my work is headed. Outside of work, his humor and shared interests have made grad
school much more enjoyable.

Outside of work, I would like to thank my family for a lifetime of support. My parents,
along with my sister Lydia and brother Derek, have always made me feel as though I have
the capability to take on anything. I know that grad school can be a test of patience for
any parents, but I never felt pressure to pursue a more immediate or practical path. Finally,
most of all, I would like to thank my fiancée Orianna for always listening when I needed it
most, for being the best Powerpoint editor I know, and for helping show me by example that
finishing grad school is in fact possible.

1

Chapter 1

Introduction

As the semiconductor industry ventures further into the twilight of transistor scaling, there
is broad consensus that improvements in computing performance and energy efficiency must
come from innovations above the transistor in the computing stack. This comes at a time
when there are myriad emerging applications, in domains like AI, virtual and augmented
reality, and the Internet of Things, that depend on the availability of higher-performance,
more energy-efficient computing systems. As a result, system architects have turned to spe-
cialization: in modern SoCs, application cores increasingly yield their area to specialized
accelerators [36]. However, this specialization begets complexity that makes these systems
more difficult to build, verify, and program. This drives up the non-recurring engineer-
ing (NRE) costs of developing new chips, making custom silicon inaccessible to all but
high-volume markets.

The lack of an affordable full-system simulation technology that is both fast and accurate
is one key driver of these NRE costs. A simulator that is too slow cannot exercise bugs
that manifest deep into execution and is thus unusable for software development. However,
a faster, less detailed simulator may differ too greatly from the actual silicon to exhibit
the same bugs and performance pathologies, precluding effective pre-silicon verification and
validation.

Among the leading solutions for digital logic simulation, Field-Programmable Gate Ar-
rays (FPGAs) have long been used for prototyping and emulation of ASICs in both in-
dustry [55] and academia [91, 49]. While FPGAs have great potential as a commercial-
off-the-shelf technology that offers radical speedups over software simulation, no current
FPGA-based system offers the ideal combination of simulation speed, capacity, affordabil-
ity, and ease of use. Direct FPGA prototypes are affordable and fast, but require the user
to manually model the external environment of the device and to invest significant effort to
meet resource constraints. Commercial emulation platforms offer automated scaling to larger
designs, but suffer from high cost of entry and take a large performance hit when partitioning
designs across many FPGAs. While manually resource-optimized simulators such as RAMP
Gold [83] present large increases in per-FPGA capacity, this approach lacks the flexibility to
model arbitrary target designs. When contrasted with the simplicity of software simulation,

CHAPTER 1. INTRODUCTION 2

it is clear that FPGAs provide the potential for large speedups at the expense of flexibil-
ity. In this work, we hypothesize that FPGA simulation can be improved by employing
abstractions inspired by software simulators and specialized emulation processors.

In general, the problem of mapping a design to an FPGA-based emulation platform
centers around translating register-transfer level (RTL) designs to direct FPGA implemen-
tations, which imposes a fundamental capacity constraint: every component in the target
design must have a corresponding component in the FPGA implementation. This is very
much in contrast to either a software simulator or an advanced emulation platform[12], which
use the notion of serial execution to extend the capacity of a finite set of hardware resources
such as an application processor or specialized emulation chip. Traditionally, FPGA capac-
ity limitations have been addressed via manual optimization of the target design (the design
under simulation) to better suit the host FPGA platform, or by partitioning the design
across multiple FPGAs. While these techniques are valuable and often necessary, they are
grounded in the limitations that arise from the direct translation of a target RTL design into
an FPGA implementation. Though this direct translation is convenient, it is unnecessarily
restrictive.

This dissertation presents an alternative approach: automatic construction of resource-
optimized FPGA simulators by introducing a simulator compiler to the simulation workflow.
In contrast with traditional FPGA tools, such a compiler is explicitly aware of the notion
that it is creating a simulator, rather than an implementation. This distinction provides the
freedom for the compiler to transform components of the RTL design into simulation models
that do not rely on an equivalent implementation at the RTL level; rather, these models are
hardware implementations of a specification that implies cycle-accurate simulation of the
target design.

As a concrete implementation of this concept, this dissertation introduces automatic re-
source optimizations in Golden Gate, a simulator compiler framework that accepts target
RTL designs and produces RTL implementations of cycle-accurate simulators. By introduc-
ing this extra level of abstraction, Golden Gate decouples the cycle-by-cycle execution of
the FPGA simulator from the cycle-by-cycle forward progress of simulated target execution
time. While other simulation frameworks have used the notion of independent FPGA and
simulation time to reconcile issues arising from the I/O boundary or to support co-simulation
of software-hosted models, Golden Gate is designed from the start to support optimiza-
tions such as time-multiplexing of FPGA resources to enable flexible tradeoffs of simulation
throughput and resource efficiency. In contrast to previous work in static time-multiplexing
of FPGA resources, Golden Gate employs the Latency-Insensitive Bounded Dataflow Net-
work (LI-BDN) formalism to decompose the simulator into sub-components, each of which
may be independently and automatically optimized. This structure allows Golden Gate
to support a broad class of optimizations that improve resource utilization by implementing
FPGA-hostile structures over multiple cycles, while the LI-BDN formalism ensures that the
simulator still produces bit- and cycle-exact results.

This work focuses on two composable optimizations that provide significant increases
in per-FPGA capacity, allowing much larger systems to be simulated on a single FPGA.

CHAPTER 1. INTRODUCTION 3

The first optimization replaces highly ported memories in the target design with multi-cycle
simulation models that rely on serialized accesses to efficient underlying FPGA memory
resources. While this optimization is applicable only to very specific blocks in the target
design, it provides a significant benefit when applied to RTL implementations of multi-
ported register files in out-of-order processors. In addition, a second optimization focuses
on reducing the effective footprint of a broad swath of the design: the large footprint of the
combinational logic contained in repeated instances of large blocks, which are a signature
feature of modern multi-core systems. When viewing an FPGA simulator as a hardware
implementation of a simulation specification, rather than as a direct implementation of the
target design, it is clear that there is considerable redundancy; therefore, the multi-threading
optimization allows Golden Gate to serialize the simulation of multiple instances. This
optimization provides a radical increase in capacity at the expense of extending the latency
required to simulate a single cycle of the set of instances.

Finally, while these optimizations provide significant benefit in isolation, the advantage
of the structured approach of Golden Gate to generating simulators allows the two opti-
mizations to compose. While the multi-threading optimization radically reduces the resource
utilization of the combinational logic in multiple instances, it does nothing to reduce the foot-
print of FPGA-hostile memories. However, when composed with the memory optimization,
the resulting simulator provides relative capacity increases exceeding the product of the two
optimizations’ individual benefits. Furthermore, as in other domains, the use of multiple
threads of execution is effective at hiding latency increases elsewhere in the system; in prac-
tice, this allows the composed simulator to deliver performance similar to the theoretical
maximum of a simulator employing the instance multi-threading optimization alone.

In addition to the two optimizations, this work involves substantial contributions to
the hardware compiler infrastructure that underpins Golden Gate. In addition to sev-
eral components of the Golden Gate software implementation, the development of these
optimizations included various efforts to validate the behavior of the simulator implemen-
tations. One component of this validation process is LIME, the Latency-Insensitive Model
Equivalence checker. This dissertation presents LIME and other infrastructural improve-
ments as examples of how improved software support can improve productivity in developing
computer-aided design (CAD) tools for simulation and other applications in digital system
design.

1.1 Previous Publication, Collaboration, and Funding

Portions of this work were published at the 2019 International Conference on Computer-
Aided Design as “Golden Gate: Bridging The Resource-Efficiency Gap Between ASICs and
FPGA Prototypes.” This project is designed to integrate with the FireSim[49] project;
specifically, it replaces MIDAS, the hardware compiler that allows FireSim to transform
target designs to add the ability to “pause” the advance of simulated time. While MIDAS
relied on a fairly simple transformation, Golden Gate introduces an optimizing compiler

CHAPTER 1. INTRODUCTION 4

to allow the simulator to trade off time for reduced utilization of scarce host FPGA resources.
The baseline, non-optimizing compiler framework for Golden Gate was developed in

collaboration with David Biancolin. While this dissertation focuses on the research con-
tribution of enhancing FPGA capacity with automatic resource optimization, most of the
engineering effort is associated with co-developing this original software framework. Fur-
thermore, the pattern described in Section 4.5 was also developed through the collaborative
integration of the multi-ported memory models with the rest of the Golden Gate compiler.
Finally, the lime verification tool was originally developed as a class project for EE219C
with David Biancolin and Jack Koenig.

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849. Research was partially funded by ADEPT Lab industrial sponsors
and affiliates Intel, Apple, Futurewei, Google, and Seagate, and supported by gifts provided
by Amazon Web Services and Xilinx.

The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

5

Chapter 2

Background

The work presented in this dissertation draws on a long background of prior work in FPGA
simulation. Many academic and industrial projects have made notable advances in resource-
efficient use of commodity FPGAs, some of which have laid the groundwork for the opti-
mizations presented in Chapters 5 and 6. Furthermore, we rely on a broad assortment of
open-source projects to provide infrastructure for generating parameterized target designs,
developing hardware compiler transforms, and targeting cloud-hosted FPGA host platforms.

2.1 Prior Work in FPGA Emulation

Pre-silicon evaluation of ASICs has long been a core application for FPGAs [25]. While this
takes many forms, including prototyping, emulation, and hardware-accelerated simulation,
each involves mapping a target system (the device being simulated) onto a host system that
includes one or more FPGAs.

2.1.1 FPGA Prototyping

Direct FPGA prototypes, where designs are directly mapped onto FPGA fabric, are a com-
mon way to enable pre-silicon software development and functional validation [1]. At a high
level, an FPGA prototype implementation is produced by providing the RTL design of a chip
as an input to a standard FPGA development suite, such as Xilinx Vivado or Intel Quar-
tus Prime. By appropriately mapping the I/O pins of the FPGA and designing a suitable
board, such an implementation can be used as a near-direct replacement for the chip under
in-circuit emulation.

Ideally, this would be a push-button flow, but in reality, multiple hurdles often necessitate
the labor-intensive development of an “FPGA version” of the design:

1. Device capacity : nontrivial ASICs must be partitioned across multiple FPGAs at the
expense of slower execution rates, longer compile times, and more expensive host plat-
forms [37].

CHAPTER 2. BACKGROUND 6

2. Resource conversions : ASIC power, reset, and clocking structures do not map directly
to the host FPGA and must be replaced [1, 38].

3. I/O modeling : I/O devices and environment models may not map well to the fabric,
necessitating adapters for in-situ prototyping. One recurring example of this issue is
the need to slow down external I/O to match the reduced speed of an FPGA prototype.

With a traditional FPGA prototype, the burden of overcoming these hurdles is left to
the user.

2.1.2 Commercial Emulation Systems

Commercial FPGA-based emulation systems generally consist of a custom hardware plat-
form, along with a set of software tools to streamline the partitioning and I/O modeling prob-
lems [55]. These tools build on advances in inter-chip routing [51, 38] and time-multiplexing
of pins [4] to reduce the speed and productivity overhead of using multi-FPGA host plat-
forms. Furthermore, they may offer transactional emulation mechanisms for interfacing with
I/O models that are co-simulated in a software environment [43, 56], which can resolve the
issue of I/O speed matching by gating the clock in the target design to wait for software.
However, these features come at a price: large monetary cost of entry and slowdowns due to
partitioning.

In addition to FPGA-based systems, multiple commercial emulation platforms rely on
custom emulation chips as an underlying implementation substrate, including the IBM York-
town Simulation Engine [73], Cadence Palladium [12] and Mentor Graphics Veloce [86].
While these systems employ similar multi-chip partitioning strategies to large FPGA emula-
tors, each chip relies on application-specific emulation accelerators that execute an instruc-
tion stream, rather than an intrinsically parallel FPGA implementation. This key distinction
brings many of the advantages associated with programmability, including the flexibility to
accept larger programs (and therefore simulate more logic), along with the ability to imple-
ment arbitrarily complex behaviors, including gate-level simulation and non-RTL constructs
of modeling-oriented HDLs. Furthermore, since these products’ toolchains effectively gen-
erate software images for emulation processors, they have much faster compile times than
those of large multi-FPGA emulators, which may be measured in multiple days. However,
as evidenced by the continuing popularity of FPGA-based solutions, these systems are not
without significant drawbacks: they come at an even higher cost that is prohibitive for all
but the largest chip-building operations, and the flexibility of programmability comes at
the cost of lower emulation throughput. Though academic efforts such as Malibu [35] and
Cyclist [5] have attempted to provide low-cost alternatives, specialized emulation hardware
remains the domain of large CAD tool vendors.

CHAPTER 2. BACKGROUND 7

4
0

Sink

Input ASource

Input B

Source

1

0

Model
Token
Target Value

4
Cycle = 1

Sink

Input ASource

Input B

Source

1

0

4

Sink

Input ASource

Input B

Source

5

Cycle = 2

0

Figure 2.1: A 32-bit adder model and environment simulating a single cycle of target time.

2.1.3 Decoupled FPGA-Accelerated Simulators

While computer architecture research has long relied on software simulators in lieu of com-
plete RTL implementations, the Research Accelerator for Multiple Processors (RAMP) [91]
project aimed to use FPGAs to increase the speed and fidelity of microarchitectural simu-
lations of many-core systems. This cross-university initiative led to the development of nu-
merous FPGA simulators; in contrast with commercial logic emulation systems that model
the behavior of concrete RTL designs, these simulators were generally designed from the
ground up to optimally model a particular target system or class of systems. By exploiting
introspection of the behavior of the target design in the design of the host implementation,
these simulators were able to overcome some of the intrinsic the resource constraints faced
by FPGA prototypes. In particular, some RAMP simulators such as HAsim [71] and RAMP
Gold [83] used optimized RTL timing models to model FPGA-hostile structures like multi-
ported RAMs over multiple FPGA cycles. This host-target decoupling, the ability to simulate
one target clock cycle over a variable number of FPGA-host clock cycles, is the hallmark of
these decoupled simulators.

To support host-target decoupling, the target machine can be simulated as a synchronous
dataflow graph [63] of models ; we give an example in Figure 2.1. To simulate one target
cycle, a model dequeues one token from each of its input ports and enqueues a token into
each of its output ports. The simplest RTL implementation of a model waits for all of its
input tokens to be available and all output ports to be ready before executing; this is a
direct application of Carloni et al. [14]. Simulation models that properly implement this
formalism tolerate latency on the arrival of tokens and may take variable number of host
cycles to compute their outputs. This makes it possible to apply these optimizations without
changing the target’s RTL behavior.

An important measure of decoupled simulator performance is the FPGA-Cycle-To-Model-
Cycle Ratio (FMR) [72]: the average number of FPGA cycles elapsed per simulated target
cycle over a full simulation. The simulation rate of a decoupled simulator can thus be given
as fFPGA/FMR. In contrast, a direct FPGA prototype by definition has FMR = 1 and a

CHAPTER 2. BACKGROUND 8

resulting simulation rate of fFPGA
1.

To date, such optimized simulators have seen little adoption, as their specialized timing
models are difficult to design, optimize, and validate—which for nontrivial models may be
far more complex than simply implementing the target design.

2.1.4 The FAME Simulator Taxonomy

Developed to help navigate the proliferation of academic FPGA simulators developed un-
der the umbrella of the RAMP project, the FPGA Architectural Modeling and Execution
(FAME) [84] taxonomy outlined three primary dimensions of the simulator design space.
The binary presence or absence of three main features—decoupling, derivation from a high-
level abstract description, and multi-threading—are used to encode a number in increasing
order of significance. While this schema presents convenient labels, it belies some of the
subtlety in systems that may potentially combine all three.

Decoupling

The lowest-order bit of the FAME taxonomy denotes whether a simulator is decoupled or
direct. As a result, a simulator with decoupling alone is represented as the 3-bit binary
number 001. For convenience, this is generally referred to as a “FAME-1” simulator.

However, this simple property does not capture any relative degree of decoupling in a
particular simulator. In particular, given that many decoupled simulators are based upon
an implementation split across one or more FPGAs and various software components, it
is worth examining whether there is decoupling within the FPGA component. A simple
decoupled simulator might simply decouple a monolithic FPGA component from the rest of
the simulator, implying that the portion of the system simulated on the FPGA advances in
time in unison. In contrast, more elaborate simulators might feature decoupled interfaces
among disparate FPGA-based simulation models.

Abstractly Specified Models

The next bit—in the 21 place—encodes whether the simulator uses a full RTL design (zero)
or a higher-level description (one) to specify the behavior of the target. It is generally well
understood that the use of higher-level specifications—and their correspondingly weaker
constraints—allow more algorithmic freedom to synthesize optimal implementations. While
RTL provides a relatively strict specification for a system, an abstract model might elide
microarchitectural details and adhere only to an architectural specification. This relaxation
in constraints could lead to a more resource-efficient implementation.

While this broader solution space could theoretically be exploited by a compiler, there is
no guarantee that an automated flow from an abstract specification to an FPGA implemen-

1In some partitioned FPGA prototypes, “FMR” is actually a fixed number greater than one to allow for
serialization-deserialization of target signals that span multiple FPGAs.

CHAPTER 2. BACKGROUND 9

tation would necessarily outperform a traditional RTL-to-FPGA flow. Indeed, one need only
examine the long and incremental road to viability of modern High-Level Synthesis (HLS)
tools—which map behavioral algorithms to hardware implementations—to understand that
abstract specifications do not always lend themselves to producing effective results in hard-
ware systems.

In light of these challenges, real-world efficiency gains from abstract FAME models have
generally come from careful human effort and engineering. A common pattern is the sep-
aration of an abstractly specified simulator into two parts: a simplified functional model
that lacks microarchitectural detail, and a reduced-cost timing model that, while includ-
ing fine-grained microarchitectural detail, may elide the significant fraction of the hardware
dedicated to computing functional results. This timing-functionality split has generally been
achieved through careful hand design of simulation models in prototypical systems such as
FAST [20] and HAsim [71].

This reliance on handwritten design highlights an interesting question about abstract
simulation models: are they more user-friendly than full RTL simulators? Though intrin-
sically subjective, it depends on multiple concrete properties of the entire simulation task,
including the design cycle of the target system, the desired accuracy, the degree of variation
in the target design space, and the time budget available for simulator development.

During early design exploration, the use of an abstract model avoids the need to develop
a fully fledged RTL implementation of the target. However, since there is no general way to
synthesize an implementation realizing the potential efficiency improvements of an abstract
model, this is offset by the need to instead develop an RTL implementation of the model
itself, where the need to explicitly consider the behavior of the host simulator adds additional
challenge. However, while simulators relying on split timing and functional models have seen
limited deployment due to their implementation complexity, well-designed abstract models
can offer considerable flexibility, with new features being prototyped in hours, rather than
days [84].

In contrast, when designs are further along in their life cycle, there is likely already a
full RTL specification. Therefore, the use of abstract models would represent duplicated
effort, and the ideal simulator compiler would operate on the ASIC-ready RTL. Though
this increases the barrier to modeling extreme changes to the the target system, it also
obviates the need to validate such changes in an abstract simulator. While abstract models
may suffer from the same tradeoffs of flexibility and validation that have dogged high-level
software architectural simulators [84], the use of RTL specifications ensures cycle accuracy
by construction. Furthermore, advanced tools for writing hardware generators—discussed
in Section 2.2—can help bridge the productivity gap in exploring large design spaces.

Multi-threading

The highest-order bit in the classification reflects the use of threading, a means by which the
FPGA resource utilization of a simulator can be radically reduced at the cost of simulation
throughput. While a direct mapping of an RTL design to an FPGA will result in a fully

CHAPTER 2. BACKGROUND 10

parallel implementation that is theoretically capable of simulating one target cycle in a
single host FPGA cycle, a threaded simulator will rely on serialization of the implementation
relative to this parallel baseline. As discussed at length in Chapter 6, this is typically achieved
by using a single underlying datapath to simulate multiple identical instances of a particular
block or subset of the target design. While this reduces the peak throughput of the simulator
by a degree equal to the number of replicated instances, scheduling logic that interleaves the
different threads of simulation corresponding with the different instances can achieve good
effective throughput by hiding other latencies, including that of modeling decoupled I/O.

Combining Features

As discussed above, while the FAME taxonomy relies on binary flags to represent the features
employed by a simulator, not all combinations are practical. The decoupled simulators
including these features fell into three primary categories: FAME-1, FAME-3, and FAME-7.

Employing decoupling alone, a FAME-1 simulator relies on the ability to “pause” the
progress of simulated target time to model the I/O of a chip. Though this presupposes a
division of the simulator into separate system and environment components, this is a nat-
ural fit for such simulators, as the system is specified as an RTL design. While FAME-1
simulators have appeared primarily in academic research, including the Green Flash [92]
and MIDAS [54] (discussed further in 2.1.5), this paradigm is also employed by the commer-
cial SCE-MI [43] standard for integrating FPGA-hosted simulations with software-defined
modeling of external I/O.

In general, any abstractly specified component of a simulator would preclude a direct
mapping of target to FPGA implementation, so this feature is naturally coupled with some
degree of decoupling. Therefore, the use of abstract models in a decoupled simulator would
be encoded as 011, and such a simulator would colloquially be called a “FAME-3” system.
Similarly, the use of multi-threading generally implies a decoupling of host FPGA clock cycles
and simulated time. While a “FAME-5” simulator would provide a threaded, decoupled
implementation of a concrete RTL specification, the extant simulators that inspired the
original FAME taxonomy tended to couple the use of threading with the use of abstract
specifications. In particular, advanced “FAME-7” simulators such as HAsim and RAMP
Gold tended to rely on threading of independent functional and timing models for a highly
optimized FPGA resource footprint.

Hybrid Simulators and Model Granularity

While the FAME levels provide an intuitive classification for FPGA simulators, they lack
the nuance to describe the full space of decoupled simulators. For example, while the use of
abstract models would promote a decoupled simulator to FAME-3, it is crucial to note that
this does not preclude the use of concrete RTL specifications for some components of the
target design. Indeed, abstract and RTL specifications each provide distinct and comple-
mentary advantages; a practical hybrid simulator might transform the RTL implementation

CHAPTER 2. BACKGROUND 11

the majority of a target SoC into a decoupled simulator while incorporating abstract models
of difficult-to-implement, expensive components such as DRAM interfaces.

2.1.5 FireSim and Golden Gate

While decoupled FAME simulation offers advantages in capacity, flexibility, and co-simulation
capability, the engineering effort associated with developing a decoupled simulator has proven
to be a significant barrier to adoption. Furthermore, the effort expended on developing
abstractly specified models is often highly coupled to a particular target architecture—
a hindrance to adopting agile hardware design methodologies. To address this gap, the
FireSim [49] project aims to strike a balance between the generality of prototyping and the
desirable features of decoupled simulation. To this end, it occupies a useful niche in the
FAME space: co-simulating software models of off-chip components with a decoupled SoC
simulator derived from full ASIC RTL. Furthermore, with an extreme focus on versatility
and ease of use, it aims to provide a “batteries included” experience to a broad variety of
users.

FireSim is a multi-layered framework that includes not only FPGA simulation tools
for modern SoCs, but also a high-quality reference platform for computer architecture re-
search. It includes configurable generators for Rocket-Chip-based systems (see Section 2.4),
a collection of programmable accelerators, tools for generating Linux-based target software
workloads, and co-simulated network simulation models to enable deterministic, coordinated
simulation of multiple SoCs in a cluster- or datacenter-scale network. When simulating multi-
ple SoC nodes, a networked FireSim simulation can be viewed as the composition of SoC-level
units, each responsible for the cycle-accurate simulation of a single node. This layer involves
a contrast with previous work in decoupling, as the compiler infrastructure of FireSim au-
tomatically generates a decoupled simulation model from the RTL implementation of the
target design. Though the simulator may rely on composition with hand-written or software-
based models, this “core” model is automatically transformed from the input ASIC RTL; in
the simplest case, this becomes a FAME-1 component of an overarching FAME-3 simulator.

To preserve modularity in this complex workflow, the task of transforming the portion
of the target design specified via concrete RTL is performed by a dedicated simulator com-
piler. While many components of the FireSim ecosystem are in some way specialized for
the existing space of target designs, this simulator compiler is more general, operating on a
nearly arbitrary input design. At the time of this writing, there have been two generations
of simulator compilers included with FireSim: MIDAS and Golden Gate.

MIDAS

Throughout its initial development and release, FireSim relied on a non-optimizing compiler,
MIDAS [54], to convert the portion of the target design specified via RTL to a monolithic
decoupled model. The model transformation performed by MIDAS was fairly straightfor-
ward: it automatically added handshaking interfaces to the I/O boundary and added enable

CHAPTER 2. BACKGROUND 12

signals to state updates that could “pause” forward progress, allowing the model to stall
while it waits for tokens [52]. This technique enables co-simulation of network interfaces
to model networks of thousands of target machines [49] and FPGA-accelerated modeling of
the external DRAM interfaces of the target ASIC [8]. While this resembles the clock-gating
approach used to support transactional emulation [43], the flexible decoupled interface with
the target simplifies instrumentation to support power modeling and debugging features [54,
53]. However, while MIDAS effectively added FAME-1 decoupling, the ASIC RTL used
within the model is largely unchanged, yielding the same resource utilization challenges as
FPGA prototypes. Furthermore, this approach assumed the use of both a single clock do-
main and exclusively synchronous reset, restricting its applicability to simple systems not
entirely representative of modern SoCs.

Golden Gate

In order to address the limitations of MIDAS, recent releases of FireSim have relied on
Golden Gate, an optimizing simulator compiler for realistic SoCs [68]. Golden Gate
relies on a higher degree of decoupling, allowing the portion of the target design specified via
RTL to be decomposed into multiple simulator “blocks,” with each independently compiled
to a decoupled implementation and potentially optimized. This modular structure allows the
compiler to be extended to include new features, and the work presented in this dissertation
is implemented as part of Golden Gate. Chapters 3 and 4 provide an introduction to the
overall structure of Golden Gate; this common infrastructure was implemented as a joint
collaboration to enable both optimizations and enhanced support for target design features
to be added to FireSim. The optimizations described in subsequent chapters build upon this
baseline and are incorporated into the latest releases of Golden Gate.

2.2 Chisel: A Modern Language for Hardware

While the hardware design industry generally relies on the Verilog [42] and VHDL [40]
hardware description languages (HDLs) to express register-transfer level (RTL) designs, these
dated languages continue to present productivity hurdles for designers. In particular, while
each has proven to be an effective foundation for modern ASIC flows built around logic
synthesis, their low-level semantics are a strict superset of synthesizable behaviors, allowing
for deeply non-intuitive mismatches with designer expectations. Furthermore, despite the
excessive generality of their low-level operations, both languages have limited support for
parameterization, hindering design reuse.

In many ways, the pitfalls of HDL semantics for logic design are a natural consequence of
their development: neither VHDL nor Verilog was originally intended as a means to develop
concrete hardware implementations; instead, they were intended to describe the behavior
of a system in a modeling or simulation environment. This mismatch has led to perennial
issues where expectations do not match the semantics of the language: misguided inference

CHAPTER 2. BACKGROUND 13

of latch-based state by synthesis tools [27], four-state logic [82], and complicated ordering
of statements [34] have dogged digital designers throughout the modern era of relying on
Verilog-based synthesis tools for RTL design. In response, a broad industry of linters and
other EDA tools has emerged to help guard the gaps between user expectations and Verilog
semantics [79]; while this has proven to be useful in practice, it is an imperfect solution that
also introduces extra complexity and arcane restrictions.

Given these qualities of popular HDLs, designers are faced with the paradoxical real-
ization that such languages are simultaneously far too expressive for strict RTL semantics
but insufficiently expressive to reuse implementations across common parameterization pat-
terns. For example, while Verilog supports generate blocks for static replication of RTL
templates, it lacks support for parameterizing the set of I/O signals of a module or poly-
morphically selecting which of a set of different child modules to instantiate within a parent.
To circumvent these limitations, tools such as Genesis2 [80] employ a strategy similar to a
C preprocessor to embed fragments of Verilog or VHDL within an enclosing program—or
generator—in a scripting language such as Perl. When the script is executed, it assembles
the fragments into a valid HDL specification; this process can employ dynamically vary-
ing execution paths, string interpolation, and rich parameter sets to allow a wide range of
different designs to be produced from a single generator. This paradigm is more generally
an example of staged meta-programming, where the execution of one program leads to the
generation of another [13]. However, this approach suffers from two primary flaws: it does
little to address the potential for mismatches with RTL semantics, and given the disparate
semantics of the stages, it offers no guarantees that a given generator output will even be
valid HDL code.

In contrast to these Perl-based preprocessing flows for Verilog, the Chisel [6] project pro-
vides a safer, more principled approach for meta-programming digital hardware generators.
Rather than employing a second scripting language to assemble fragments of an existing
HDL, Chisel is a hardware construction language (HCL) embedded in the Scala program-
ming language [81]. A Chisel generator uses a simple core API to manipulate elements that
correspond with RTL signals; while this allows the enclosing Scala program to comprise a
highly parameterized generator that dynamically constructs varying circuits through its ex-
ecution, the simplicity of the API guarantees that the resulting circuit is valid. Indeed, since
this API contains only strict RTL behaviors, it is possible to say that any Chisel-generated
circuit is synthesizable by construction.

Given its emphasis on predictable behavior, Chisel has naturally lent itself to CAD
research. As discussed in Section 2.3, the generated circuits are represented via a portable
intermediate representation, FIRRTL, which serves as a foundation for the work presented
in this dissertation. Though FIRRTL is not intrinsically tied to Chisel and can be produced
by other user-level tools, Chisel serves as the primary design language for both the target
designs used in our experimental evaluations (introduced in Section 2.4) and for numerous
instances of simulation-specific hardware in the Golden Gate implementation.

CHAPTER 2. BACKGROUND 14

2.3 The FIRRTL Hardware Compiler Framework

Introduced as part of the compiler infrastructure for Version 3.0 of Chisel, FIRRTL [47],
the Flexible Intermediate Representation for RTL, is an intermediate representation for dig-
ital circuit designs. Inspired by the success of LLVM [60], an Intermediate Representation
(IR) from the software compiler world, the open-source FIRRTL project provides both a
specification and a reference compiler implementation. Beyond its use in the Chisel ecosys-
tem, FIRRTL also provides an ideal infrastructure for writing tools that manipulate digital
circuits; since it is “language-agnostic” with respect to the frontend, user-facing design lan-
guage, it allows tool developers to focus on the core functionality of CAD or simulation
tools.

2.3.1 FIRRTL Intermediate Representation

The FIRRTL representation (IR) is designed to capture the range of essential features for
modern digital circuits at the register-transfer level (RTL). In contrast with a general-purpose
HDL such as IEEE Verilog [42] or SystemVerilog [41], the design of FIRRTL is specialized
for writing transformations that operate at the RTL level, which provides several notable
benefits to the implementer of complex tools like Golden Gate.

1. Unlike Verilog, which is capable of modeling many subtly different forms of concurrent
execution, FIRRTL limits the semantics of assignment statements to RTL behavior.

2. As a direct consequence of the “RTL-only” restriction, all FIRRTL circuits are syn-
thesizable by construction.

3. Since FIRRTL is designed to integrate with powerful front-end languages like Chisel,
it lacks complex features like functions, loops, and generate statements.

4. FIRRTL provides explicit wire and register declarations that intrinsically restrict cor-
responding assignments to be combinational or synchronous, respectively.

5. First-class memories include port and behavior definitions, which avoids the challenges
of inference and errors with multi-dimensional array accesses.

While an alternative to handling Verilog and all its complexities would be to rely on a
specialized netlist format or structural subset of Verilog that disallows procedures, tasks, and
functions, there is also a significant productivity advantage associated with using FIRRTL.
In contrast to a pure netlist, FIRRTL includes convenience features such as composite
types and conditional assignments. With these small additions, FIRRTL represents a happy
medium between an HDL and a netlist that is particularly amenable to writing tools such as
Golden Gate that involve not only transforming a circuit but modifying its RTL behavior
in a programmatic fashion.

CHAPTER 2. BACKGROUND 15

2.3.2 The Reference FIRRTL Compiler

While FIRRTL IR is effectively a language that is specified in a reference manual [65], the
FIRRTL compiler infrastructure includes a default implementation that is structured as an
extensible Scala framework, allowing the reference compiler to be reused and extended in
whole or in part. The core unit of reuse in a FIRRTL flow is a transform, which is a functional
transformation from an input circuit to an output circuit.

2.4 The Rocket Chip Generator

Rocket Chip [3] is an open-source project that provides a configurable generator to combine
multiple processor implementations, coherent caches, accelerators, and peripherals to pro-
duce custom SoCs. It is industry-proven, and has served as the basis for numerous academic
ASIC tapeouts in modern process technologies [77]. By combining a lengthy silicon track
record, modern architectural features, extreme customization, and permissive open-source
licensing, it has proven to be a valuable target design for the FireSim project. Larger, more
feature-rich configurations may provide multiple cores, multiple levels of caches, page-based
virtual memory (with TLBs to cache translations), and support for running Linux. Fur-
thermore, Rocket Chip is tightly integrated with the Chisel language and therefore enables
straightforward experimentation with FIRRTL-based compiler tools such as Golden Gate.
Therefore, the work presented in this dissertation is evaluated against a set of target designs
based on the Rocket Chip generator. While these targets rely on a common generator, the
generated SoCs span a wide range of performance, power, and area (PPA) by varying pa-
rameters such as type and number of cores. In particular, we examine designs based on the
in-order Rocket core and the high-performance, out-of-order BOOM core [16].

2.4.1 Rocket

In its default distribution, Rocket Chip is based on Rocket, a traditional five-stage in-order
pipeline. As with the top-level SoC generator, Rocket is highly parameterizable, with support
for both 32- and 64-bit RISC-V ISAs along with all standard extensions. At the microar-
chitectural level, the bypassing of data from older instructions that have not yet committed
their architectural results to newer, dependent instructions can be enabled to improve per-
formance or disabled to save resources. Efficient hardware support for IEEE 754 floating
point operations can be selectively added, as can variable-latency units for integer multiply
and divide. While Rocket issues instructions in program order, these long-latency operations
can be improved by enabling a scoreboard to allow out-of-order completion.

As Rocket was the first silicon-proven implementation of the RISC-V ISA, it has been
repeatedly validated in both academic and industrial systems. Furthermore, it represents
a sensible combination of performance and efficiency for many applications. Therefore, it
remains a mainstay of RISC-V SoCs, while also providing a mature benchmark for tools in
the Chisel and FIRRTL ecosystem.

CHAPTER 2. BACKGROUND 16

2.4.2 BOOM

BOOM, the Berkeley Out-of-Order Machine, is an open-source out-of-order, superscalar
implementation of the RISC-V ISA. It is organized around explicit register renaming and
a unified physical register file; in this respect, it is similar to notable out-of-order RISC
processors such as the MIPS R10000 [95] or the DEC Alpha 21264 [50]. Like Rocket, BOOM
is implemented as a core generator using Chisel; however, it extends this parameterization
to reflect the broader design space of out-of-order cores. In addition to the sizes of discrete-
capacity structures like register files and reorder buffers, BOOM provides the novel capability
to vary the maximum degree of instruction-level parallelism allowed at various points in the
pipeline. By appropriately choosing the fetch, decode, and issue widths, along with the mix
of execution units, it is possible to generate instances ranging from an efficient two-issue
core to a large, four-issue core comparable in performance to a mobile application processor.
Furthermore, BOOM offers a collection of parameterizable branch prediction algorithms;
users may even define their own, providing a powerful tool for computer architecture research.

Though BOOM provides unique flexibility, it is constrained by the need to provide high-
quality, performant, physically realizable implementations of various design points. Since
selection of these design points presents its own challenges, the BOOM repository includes
several pre-defined default configurations spanning various levels of PPA; these “sane de-
faults” provide good starting points for research and realistic benchmarks for hardware de-
sign tools. Furthermore, as with any large open-source project, BOOM has gone through
multiple revisions. To illustrate the gradual evolution in complexity—and performance—
over time, a high-level pipeline diagram for each version is shown in Figure 2.2. The BOOM
v2 release [15] focused on physical design considerations based on experiments in mapping
the core to a modern 28nm process technology, which led to a successful tapeout. The cur-
rent BOOM release, known as SonicBOOM [96], offers significantly improved performance,
with instructions-per-cycle (IPC) metrics that are competitive with some comparably sized
commercial cores on industry-standard benchmarks.

CHAPTER 2. BACKGROUND 17

Figure 2.2: (Figure used with permission from Jerry Zhao [96]) A set of pipeline diagrams
representing the microarchitectures of the three major BOOM releases. The SonicBOOM
release represents a significant step forward in performance through increased instructions-
per-clock (IPC) over BOOMv2.

18

Chapter 3

Dataflow Simulation with Golden
Gate

In the broad landscape of existing simulation FPGA simulation projects, the presence of
decoupling has been used to delineate advanced simulators from those that rely on directly
mapping input RTL to equivalent FPGA implementations. However, the definition of de-
coupling is largely operational: a decoupled simulator is one that may use multiple clock
cycles of host FPGA execution to simulate a single cycle of target system behavior. In this
chapter, we explore the nuances associated with decoupled simulators, particularly hybrid
or compositional simulators that employ a higher degree of decoupling to enable automatic
optimization of the resulting FPGA implementations. Finally, drawing upon previous work,
we outline a framework for robustly constructing compositional simulators from target RTL
designs.

3.1 All Simulators are Hybrid Simulators

As discussed in Section 2.1.4, advanced decoupled simulators may often apply different sim-
ulator implementation strategies to model different subsets of the the target system. These
hybrid simulators might combine abstract models of some components, such as DRAM or
PCIE interfaces, with a simulation of the remainder of the SoC that is derived from an RTL
specification.

However, even the most basic simulators generally employ some form of hybrid design;
when viewing a simulation as a “closed world,” even a direct FPGA prototype will generally
rely on some software functionality on a general-purpose host processor. Most practical
FPGA-based simulators include at least some software components hosted on a general-
purpose processor. As typified in the SCE-MI standard for software co-modeling, these
often serve to model I/O or other components not implemented in the RTL specification for
the device under test.

In this work, we focus on hybrid simulators that not only support co-simulation, but

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 19

also divide the task of simulating the RTL specification of the target design across a net-
work of communicating simulation models. Each component of this network may simulate
a corresponding partition of the target with an implementation that falls under a different
level of the FAME taxonomy, and the resulting hybrid simulator will involve many internal,
asynchronous communication interfaces that lead to a very high degree of decoupling.

3.1.1 Refining the Notion of Decoupling

Though the FAME taxonomy presents a dichotomy between FPGA prototype and decoupled
simulators where the former requires a one-to-one relationship between target and host clock
and the latter does not, this operational definition makes it difficult to classify many practical
FPGA simulators. FPGA prototypes often involve multiple clock domains, including ones
that do not directly represent a target clock. Large multi-FPGA simulators often use fast
SERDES to serialize the exchange of signal values across the boundaries of the partitions; this
technique to circumvent pin-count limitations spreads one element of simulating a particular
target cycle over multiple periods of a high-frequency host clock. Indeed, even double-
pumping of block RAMs to model highly ported memories exploits the ability to reason
about the FPGA clock as a feature of the host platform. However, simulators employing
these techniques alone do not generally fit with the explicit decoupling found in FAME
simulators.

With this in mind, it is clear that simulators may possess varying degrees of decou-
pling. Arguably one of the most important features of FAME simulators like FAST, HAsim,
ProtoFlex, and RAMP Gold is not merely dividing the work of simulating a target cycle
across multiple host cycles, but allowing the implementation to tolerate variable latency.
This is enabled by the use of asynchronous handshaking interfaces to exchange data among
simulation models, allowing for true decoupling of their execution. Furthermore, such “glob-
ally asynchronous” simulators vary in the degree to which simulation is distributed across
multiple decoupled components; the most advanced simulators like RAMP Gold blend com-
ponents with single-cycle, fixed multi-cycle, and variable latencies [83].

This space of different simulation techniques is explored in some detail by the work on
A-Port Networks [72], which provide an asynchronous protocol for distributing decoupled
simulators across multiple FPGA-based simulation models. In addition to direct prototypes,
in which there is no distinction between the FPGA and target clocks, the authors provide a
taxonomy of four other classes of simulators.

• Unit-delay simulation synchronously advances the target design by one clock cycle after
a static number of clock cycles. Techniques such as double-pumping of block RAMs
and the use of SERDES for inter-chip wires fall under this category.

• Dynamic barrier simulation uses a centralized controller to manage host time, dynam-
ically advancing target time after a variable number of FPGA clock cycles.

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 20

• A-Port networks distribute the simulation across a network of actors and omits a
centralized, synchronized value for simulation time. By relying on decoupled interfaces,
independent models may “slip” forward or backward in time relative to others. The
messages exchanged within the network each represent the value of some target design
variable(s) in the target machine at a particular moment in time that is implicitly
encoded by their FIFO ordering.

• Chandy-Misra-Bryant simulators [17, 10] rely on a protocol that includes explicit rep-
resentations of the time at which an event occurs or a signal takes a particular value.
While this yields algorithmic advances by allowing the simulator to “fast-forward,”
cycle-accurate RTL simulation has a relatively high density of meaningful ”events,”
and the implementation overhead is prohibitive for FPGA simulators.

While these classifications capture many of the distinctions among FAME simulators,
A-Port networks are not the only protocol for implementing distributed, asynchronously
communicating simulators. Therefore, we consider A-Port-based models to be one exam-
ple of the broader class of FAME simulators with distributed models communicating over
asynchronous channels. By introducing a high degree of internal decoupling, these architec-
tures are ideal for hybrid simulators that blend levels of abstraction and incorporate multiple
optimizations.

3.1.2 Incorporating RTL-Specified Models in Hybrid Simulators

While FireSim includes multiple abstractly specified models, the behavior of the vast major-
ity of the target design is specified through ASIC-oriented RTL implementations. Though
the use of abstract models carries numerous potential benefits, including rapid design space
exploration and highly optimal simulator implementations, simulating concrete RTL provides
a higher degree of confidence in the validity of the the results. Furthermore, while architec-
tural simulation can be useful for early experiments, FireSim can be used for performance
validation of designs that are close to tapeout.

Within FireSim, the Golden Gate compiler is responsible for translating the RTL spec-
ification for this subset of the target design into a decoupled simulator capable of interfacing
with the remaining co-simulated models; therefore, while a full FireSim simulator is partially
abstract, the optimizations presented in this work are applicable to RTL simulation. This
highlights a further difficulty of precisely labeling hybrid simulators: the granularity at which
different features are mixed within a single simulator, along with the complementary benefits
of full RTL and abstracted simulation make Golden Gate more difficult to classify. Given
the presence of abstract models, the incorporation of the multi-threading optimization dis-
cussed in Chapter 6 would classify the resulting FireSim instance as a FAME-7 simulator.
However, since the optimization operates only on the RTL-specified portion of the simulator,
we refer to it as a “FAME-5 compiler.”

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 21

3.1.3 Hybrid Simulators and Optimization

The ability to automatically optimize the utilization of FPGA resources by trading off space
and throughput has proven to be one of the most compelling advantages of decoupled simu-
lators [84]. While it is theoretically possible to develop a single, monolithic model that relies
on optimizations such as multi-threading, this is complicated by the fact that the logical
targets of such optimizations—say, repeated instances of processor cores—do not comprise
the entire system. Managing the threaded execution of a subset of the design significantly
complicates such a model; therefore, it is no surprise that existing threaded simulators have
all been hybrid designs, composing a threaded model of the duplicated instances with other
elements of a larger host simulator [71, 22, 83].

While these hand-designed simulators provide empirical evidence for the utility of hybrid
simulators in enabling optimizations, this dissertation hypothesizes that their advantage is
even greater if the optimizations can be applied automatically. The success of peephole
optimization [69] in software compilers has shown that separation of concerns and limita-
tion of scope can make optimizing compilers more tractable to implement. By analogue,
attempting to thread a set of instances in a simulator compiler would likely be simplified by
the ability to rely on composition and therefore disregard the implementation details of the
the remainder of the simulator. Therefore, we contend that a compiler capable of directly
producing hybrid simulators is a necessary prerequisite to automatic resource optimization
of FPGA simulators.

3.2 Compiling Hybrid Simulators with Golden Gate

While automated tools are readily available to convert RTL designs to direct FPGA imple-
mentations, prior work on hybrid simulators has generally relegated compilers to a more lim-
ited role. Advanced simulators using decoupling to mix heterogeneous models have been care-
fully designed from the ground up, including numerous examples from the RAMP project [20,
71, 22, 83]. More recently, the MIDAS compiler has automated the generation of a decoupled
simulation model for an arbitrary RTL block [54]; while this model may be composed with
others in a larger hybrid simulator, MIDAS cannot handle any internal decoupling. With
Golden Gate, we provide a compiler framework capable of transforming and optimizing
hybrid simulators, allowing RAMP-style resource optimizations to be automatically applied
to sub-components of the target design. By introducing internal decoupling to the design,
different parts of the target design may be optimized for the host platform in heterogeneous
ways. Automating this approach presents two main challenges:

1. Automatically decomposing the simulator into a network of decoupled components.
By producing such a network directly from an input RTL specification, the compiler
effectively synthesizes a hybrid simulator.

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 22

2. Expressing optimizations—such as time-multiplexing—as transforms that modify the
components yet still maintain the correct, cycle-exact behavior of the whole simulator.

To ensure that Golden Gate can produce robust, optimized FPGA simulators with no
human intervention, we must rely on a formalism that addresses both of these challenges.
Specifically, the compiler must rely on a correctness model not only for mapping an RTL
specification to a decoupled simulator implementation, but also to govern how it may legally
subdivide this simulator into multiple networked components. Therefore, we model our sys-
tem as a Latency-Insensitive Bounded Dataflow Network (LI-BDN) [89], a type of dataflow
network capable of emulating Synchronous State Machines (SSMs) and provide both cycle
accuracy and forward progress guarantees. While other formalisms may exist for demonstrat-
ing the theoretical soundness of FPGA simulation tools, Golden Gate uses the LI-BDN
abstraction to map target designs onto hybrid simulators with high degrees of internal decou-
pling, enabling heterogenous optimization of different components of the simulator. Indeed,
the ability to ease optimization by modularizing simulator implementations was cited as a
key motivation in the original presentation of the framework. Furthermore, the well-defined
properties of LI-BDNs aid in simulator verification, as discussed in Chapter 9.

3.3 Latency-Insensitive Bounded Dataflow Networks

LI-BDNs are a class of dataflow networks that may be constructed in correspondence to and
represent the behavior of arbitrary synchronous circuits. In this capacity, they implement a
deadlock-free, cycle-accurate simulation of reference RTL design, while allowing the under-
lying implementation to use variable-latency handshaking interfaces among its constituent
sub-components. Furthermore, LI-BDNs provide a mechanism for arbitrary partitions of the
input circuit to be mapped to latency-insensitive implementations, while rules of composi-
tion that guarantee that the composite LI-BDN will correctly simulate the full input design
in aggregate.

A general LI-BDN is defined by a set of restrictions:

1. Nodes of an LI-BDN are connected via bounded queues.

2. Each node of a LI-BDN must itself be an LI-BDN.

3. The base case is a primitive LI-BDN, which is a circuit where all I/O is mediated over
handshaking interfaces or channels.

In this work, we construct simulators structured as LI-BDNs; therefore, we rely on prim-
itive LI-BDNs to simulate individual partitions of the target design. To relate this to the
terminology of the rest of this work, each primitive LI-BDN that simulates a block of hard-
ware is also a simulation model. As shown in Figure 3.1, this partitioning of the design yields
graph cuts that define the I/O of each partition and its connectivity with other partitions.

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 23

Each primitive LI-BDN will have a set of channels that directly correspond with the I/O
boundary of the partition it simulates, and the behavior of the primitive LI-BDN will be
defined by a functional relationship between the sequence of tokens exchanged across these
channels and the values of the corresponding I/Os in the simulated trace.

Partial Implementation

In the presentation of LI-BDNs as a conceptual basis for simulation, this functional relation-
ship is defined as Partial Implementation (PI). The original definition [89] is quoted below;
here, an SSM S may be an entire target design or a well-defined partition of a larger circuit.

A BDN R partially implements an SSM S iff

1. There is a bijective mapping between the inputs of S and R, and a bijective
mapping between the outputs of S and R.

2. The output histories of S andR matches whenever the input histories match.

More colloquially, partial implementation implies that a latency-insensitive simulation
model will produce output tokens sufficient to reconstruct the outputs of a synchronous
block exactly as they would appear in a trace where the block received inputs corresponding
with the input tokens received by the model. In short, the PI property is a formal way
of defining that the model is a cycle-accurate decoupled simulator of the corresponding
synchronous block.

While this functional relationship ensures accuracy, it is insufficient to guarantee forward
progress. Indeed, since simulators of state machines generally rely on fine-grained synchro-
nization, dividing work across multiple parallel implementations can easily lead to deadlock.
While simple solutions include restrictions on the graph cuts dividing work—e.g, dividing
the target design only where signals cross a register or queue—the LI-BDN simulation model
allows for arbitrary partitioning. Instead, it requires that each primitive LI-BDN obey two
more properties: No Extraneous Dependencies and Self Cleaning.

No Extraneous Dependencies

As with the PI property, the No Extraneous Dependencies (NED) property is defined with
respect to both an LI-BDN simulation model R and the synchronous state machine S it
simulates. This relies on the fact that certain tokens produced by the LI-BDN carry rep-
resentations (defined by a bijective mapping) of the values of outputs of the SSM on a
particular cycle, and that a representation of each input value received by the SSM is carried
in some consumed token.

At a high level, the NED property establishes the condition under which an LI-BDN is
obligated to produce a valid token carrying the representation of the value of a particular
output at a particular point in time within some finite amount of time. This condition
depends on the arrival of a particular set of input tokens that is defined by the structure of

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 24

count
UInt<6>

 +
UInt<1>(1)

>
UInt<6>(42)

[5:0]

0

1UInt<6>(0)

count

count_inc

next_count

Partition A

Partition B

Partition C

target_clk

Input SSM

Equivalent Composition of SSMs

Composite LI-BDN Simulating the Input SSM

SSM B

count count_inc

SSM A
count

count_next

SSM C
count_inc

count_next

target_clk

Primitive
LI-BDN

Simulating
SSM C

Primitive
LI-BDN

Simulating
SSM A

Primitive
LI-BDN

Simulating
SSM B

count_next
channel

count_inc
channel

count
channel

Figure 3.1: A conceptual representation of a simulator for a single SSM—in this case, a
6-bit, free-running counter that wraps when count == 42—that is implemented by a com-
posite LI-BDN. The properties that each primitive LI-BDN is guaranteed to obey allow this
composition to deterministically simulate the original SSM without risk of deadlock.

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 25

the SSM: specifically, the set of all tokens carrying the representations of the inputs that are
combinationally connected to the output in question.

This definition [89] of this set for a particular output Oi is quoted below:

For any output Oi of a primitive BDN R which implements SSM S,
CombinationallyConnected(Oi) is the inputs of R corresponding to those inputs
of S that are combinationally connected to the output Oi in S.

With this definition for CombinationallyConnected(Oi), the definition of the NED prop-
erty reflects the fact that if the LI-BDN model has successfully simulated cycle N , it is
possible to produce a valid token representing the value of Oi at cycle N + 1 as soon as all
the tokens representing the values at cycle N +1 of all the inputs combinationally connected
to Oi. This can in turn be translated to a property that deals only with tokens.

Definition of No Extraneous Dependencies: if R has produced at least N tokens on each
output channel, it is possible to produce a valid token representing the value of Oi at cycle
N + 1 as soon as all the tokens representing the values at cycle N + 1 of all the inputs
combinationally connected to Oi.

If the model fails to produce this token within some finite latency after this condition
is satisfied, it has extraneous dependencies ; since the deadlock-avoidance guarantees of LI-
BDNs do not hold if such dependencies exist, they are disallowed by the NED property.
This requirement is a key point of contrast with A-Port networks; while both systems define
mechanisms for distributing simulator control, A-Port models are allowed to wait until all
inputs for a given time step are ready before producing any outputs. Since this could
potentially result in circular dependencies if there were any combination connections between
input and outputs, A-Port networks restrict legal partitions in the simulator. In contrast, LI-
BDNs allow for arbitrary cuts, which can ease certain optimizations, including the modeling
of FPGA-hostile combinational-read memories presented in Chapter 5.

Self Cleaning

While the NED property defines a condition under which the LI-BDN model is obligated
to produce a token representing the value of a particular output, the Self-Cleaning (SC)
property outlines when it is obligated to consume a token that has arrived. By limiting
the circumstances under which an LI-BDN is allowed to exert back-pressure to upstream
producers, it prevents certain classes of deadlock-causing circular dependencies.

Definition of Self Cleaning: Assume that each input channel of R is connected to an
unbounded stream of input tokens. In this case, if R has produced at least N tokens on each
output channel, it is obligated to consume at least N tokens on each input latency within
some finite latency.

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 26

If a simulation model that partially implements an SSM S is a true primitive LI-BDN—
i.e., if it obeys both the NED and SC properties—it fully implements S. Furthermore, the
rules of composition imply that two LI-BDNs that each implement an SSM can implement a
circuit composed of the two SSMs if the connectivitivity of the channels corresponds directly
with the connectivity of the I/Os of the two SSMs. As shown in Figure 3.1, this composition
allows the simulation of a circuit to be divided over an arbitrary number of primitive LI-
BDNs.

3.3.1 Combining Multiple Signals Within Channels

In the formal justification for LI-BDN simulation, the proof that the NED and SC proper-
ties are sufficient to avoid deadlock depends on the fact that a valid SSM may not contain
combinational loops. In particular, the guarantee that the NED property is sufficient to
avoid deadlock depends on the fact that Oi may not be part of the transitive closure of
CombinationallyConnected(Oi); a violation of this requirement would both imply the ex-
istence of a combinational loop and leave open the possiblity of a circular dependency in the
decoupled simulator.

While bitvector (multi-bit) signals or interfaces represent a convenient abstraction for
RTL designers, this presence or absence of combinational loops is defined in terms of indi-
vidual two-state binary signals, which is consistent with the fact that combinational loop
detection is often performed on circuit netlists. This in turn implies that each output Oi

and each element of its associated set CombinationallyConnected(Oi) is defined within the
NED property at the bit level. This has an unfortunate consequence: though it would be
more resource-effecient to represent each multi-bit I/O in the RTL specification of the SSM
with a single channel, combining these formerly independent signals can lead to extrane-
ous dependencies. As shown in Figure 3.2, a circuit that lacks true combinational loops
may result in cycles when translated to a graph representing multi-bit signals and their
combinational dependencies.

Fortunately, the graph representation shown in Figure 3.2 also yields a solution to this
issue. Since the proof that the NED property prevents deadlock due to circular waits for valid
tokens does not depend on the binary nature of the individual signals, combining the multiple
bits of a bitvector I/O into a single channel only poses issues when the bitvector dependency
graph itself contains circular dependencies. While the use of standard combinational loop
detection is insufficent to guarantee freedom from such bitvector dependency loops, it is
possible to materialize the associated graph representation and find its strongly connected
components, and the lack of resulting cycles allows the NED property to be defined in
terms of channels representing bitvector signals. While this check would reject the circuit
in Figure 3.2, signals found along cycles may be broken into constituent single-bit nets to
restore an acyclic dependency graph.

Fortunately, this bitvector-level combinational dependency loop checking is included
within the standard FIRRTL distribution, allowing Golden Gate to analyze circuits and
ascertain whether it is legal to generate LI-BDN models that avoid splitting bitvector signals

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 27

r x[0] y z x[1]

r x[1:0] y z

Cyclic dependency graph of bitvector signals

Acyclic dependency graph of individual bits

 reg r: UInt<1>
 wire x: UInt<2>
 wire y: UInt<1>
 wire z: UInt<1>

 x <= cat(z, r)
 y <= bits(x, 0, 0)
 z <= not(y)

 r <= bits(x, 1, 1)

FIRRTL Specification

Figure 3.2: An illustration of a circuit that is free of combinational loops but results in
cycles in a graph of the combinational dependencies of each named bitvector signal. While
the existence of higher-level composite types such as vectors renders these patterns less
common in FIRRTL than in Verilog, the occurrence of such cycles makes it impossible to
represent x with a single channel.

into multiple channels. Furthermore, it is possible to coalesce any set of inputs or any set
of outputs on a partition into a single node; if the resulting graph is acyclic, it is legal to
pack the representation of the full set within a single channel. These techniques allow the
compiler to minimize resource overhead by reducing the number of channels and associated
queues in the LI-BDN simulator.

3.3.2 Multiple Clock Domains

Throughout the previous sections, LI-BDNs have been presented as a tool to simulate syn-
chronous state machines with networks of decoupled models. However, a modern SoC is
essentially never a monolithic synchronous design; multiple clock domains are a common
feature, and components such as Phase-Locked Loops (PLLs), clock multiplexers, and asyn-
chronously reset register are ubiquitous. While the prevalence of Globally Asynchronous, Lo-
cally Asynchronous (GALS) design principles [14] can allow a purely synchronous simulation
tool to simulate large components of a system, a critical goal of FireSim and Golden Gate
is to model full, realistic target SoCs.

Fortunately, related work on Golden Gate involves extending it to support modeling
these difficult features. By incorporating a variation of the Chandy-Misra-Bryant simulation
protocol [17, 10], a technique that relies on explicitly timestamped messages to synchronize
parallel (often software) implementations of discrete event simulations, Golden Gate may
be extended to model multiple clock domains by introducing a notion of absolute time to
the simulation. Furthermore, truly asynchronous devices like PLLs and clock multiplexers
can be modeled as being synchronous to a virtual, high-frequency clock; while this reduces

CHAPTER 3. DATAFLOW SIMULATION WITH GOLDEN GATE 28

fidelity to the physical chip, it is consistent with the use of finite timescales in software RTL
simulation and provides the benefit of deterministic simulation. While these additional fea-
tures complicate the implementation of both the simulation models and associated channels,
this extension also defines protocols for crossing between a pure LI-BDN modeling a locally
synchronous block of the system and the asynchronous global simulation regime, allowing
the optimizations presented in this dissertation to be incorporated within individual domains
of a GALS target design.

3.4 Compiling Target RTL to LI-BDN Simulators

While Vijayaraghavan et al. [89] introduce the concept of emulating synchronous circuits
with LI-BDNs, they stop short of implementing that concept in a real simulator; others have
since done so in handwritten simulators. To the best of our knowledge, Golden Gate
is the first tool to automatically produce FPGA-accelerated simulators that are structured
as LI-BDN networks, and additionally, lime is the first tool to formally verify primitive
LI-BDNs.

Given the focus on deadlock-free, cycle-accurate simulation of SSMs, LI-BDN simulators
naturally occupy the “concrete RTL” portion of the simulator design space. As described in
more detail in Chapter 4, Golden Gate compiles concrete target RTL inputs to LI-BDNs
by dividing the circuit into several SSM partitions, mapping each partition to a primitive
LI-BDN, and composing these primitive LI-BDNs into a larger network that simulates the
entire input RTL circuit. By adhering to the properties discussed above, components of this
modular simulator may be individually refined with heterogeneous optimizations to produce
a resource-efficient hybrid simulator.

29

Chapter 4

The Golden Gate Toolchain

A major barrier to FPGA prototyping is the necessity to buy in to a proprietary host FPGA
or private cloud platform. Therefore, Golden Gate is implemented as an extension to
FireSim [49], an open-source tool that enables system designers to simulate their target RTL
designs on commodity FPGAs hosted in Amazon’s AWS public cloud. While FireSim already
relies on the decoupled simulation paradigm to support co-simulation of models of network
and DRAM interfaces, it does not actually apply any optimizations to the transformed
target design, so the resource utilization of the target RTL is nearly identical to an FPGA
prototype. In contrast, Golden Gate adds an optimizing compiler to significantly reduce
resource utilization with minimal engineering effort.

In order to make Golden Gate as widely applicable as possible, it is designed to support
a variety of optimizations across different FPGA host platforms. The extensible nature of
the compiler makes it easier to add new optimizations, which are intriniscally supported by
the push-button lime flow.

4.1 FireSim and Golden Gate

As discussed in Section 2.1.5, FireSim is an open-source FPGA simulation platform for
modeling modern SoCs that relies on FPGAs hosted in the Amazon Web Services (AWS)
public cloud. FireSim provides cycle-accurate simulation of systems defined by full RTL
implementations, but it also defines a deterministic, cycle-level interface for integrating co-
simulated, mixed hardware-software models—or bridges—of components that are prohibitive
to implement in RTL.

In order to provide a useful starting point for academic research or commercial use,
FireSim aims to provide not only a simulation platform, but a suite of target designs, target
software, and related tools. When combined with both the suite of CAD tools required to
produce a functioning FireSim simulator, the library of supporting components to manage
integrating the simulator with the host AWS F1 cloud computer instance, implementations
of various bridges, and a vast collection of scripts to automate the process of building and

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 30

running simulations for the end user, it is clear that the full FireSim stack consists of many
layers.

As shown in Figure 4.1, this complexity is reflected in the process of transforming a tar-
get design into a concrete FireSim simulator, which incorporates several different tools and
stages. In this work, we focus on Golden Gate, the compiler responsible for translating
the major portion of the target system that is defined in RTL into a hardware implemen-
tation of a decoupled FPGA simulator. Given the emphasis on cycle-accurate, RTL-based
simulation, this concretely specified partition represents the majority of the functionality of
the target system; furthermore, it accounts for nearly the entire FPGA resource footprint
of the simulator. Therefore, with the ultimate goal of allowing FireSim to simulate larger
systems on finite-sized FPGA devices, we explore Golden Gate as a platform for reducing
the resource footprint of the FPGA implementation that simulates the RTL specification of
the majority of the target system.

4.2 A FIRRTL-Based Simulator Compiler

As discussed in the previous section, the definition of the simulation environment is compli-
cated by the desire to co-simulate components of the target design across both software and
FPGA host platforms. While the overall FireSim system can be viewed as a “closed world”
simulator of a full target system, Golden Gate produces a hardware implementation of a
simulator of the portion of the target design that is specified via the set of components de-
scribed in the input RTL. This simulator interacts with an environment that models the rest
of the target design. Though the implementation of this environment is outside the scope of
Golden Gate and includes both specialized hardware and software models, well-defined
interfaces allow these components to effectively compose to form a simulator of the broader
system.

Within the broad scope of the FireSim FPGA simulation platform, Golden Gate per-
forms the task of transforming an input RTL target design into a concrete implementation
of an FPGA simulator of that RTL design. Throughout this work, we rely upon FIRRTL
(see Section 2.3) as a convenient infrastructure for expressing compiler transformations on
digital circuits; therefore, the input design and output simulator implementation are both
FIRRTL circuits. While many components of FireSim, such as target design generators, co-
simulation models, and software are specialized to particular target designs, Golden Gate
is capable of producing optimized, decoupled FPGA simulators from arbitrary FIRRTL in-
puts; in light of this generality, we refer to it as a simulator compiler. Since Golden Gate
is implemented as a collection of FIRRTL transforms, it relies on several key features of the
associated software infrastructure, including fine-grained incremental lowering, an extensible
annotation interface, anda collection of built-in analyses and consistency checks.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 31

Chipyard SoC
Design Framework

TargetTop.fir

Golden Gate
Simulator Compiler

FPGATop.v

Target Design Generators

Gemmini Systolic
Array Generator

BOOM Out-of-Order
Core Generator

Rocket Chip
SoC Generator

AWS F1 Hardware
Development Kit

Xilinx Vivado

AWS F1
Simulation Host

Instance

Amazon
FPGA Image

Target Software

SPEC
CPU
2017

Custom
Workload

Generators

FireMarshal
Workload

Generation Tool

Target System
Disk Image

Target Bridge
Definitions

Host Software

Bridge Driver
Generation

Host Compilation

Simulation
Results

FireSim Tools

Build System

Cluster Management

Batch Simulation

Debugging Tools

Target Instrumentation

Performance Analysis

Figure 4.1: A high-level overview of the full FireSim stack is used to generate a complete
simulation run. This work focuses on enhancing the Golden Gate simulator compiler
with resource-saving optimizations that increase the simulation capacity of the FPGA host
platform.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 32

4.2.1 Fine-Grained Incremental Lowering with Core FIRRTL
Passes

While FIRRTL IR is simpler than most HDLs, it includes a number of higher-level features,
such as aggregate types (vectors and bundles of signals) and multiple assignment of signals.
In order to simplify the implementation of a given source-to-source transformation, it is often
desirable to make several simplifying assumptions about the circuit that limit the space of
language semantics it must consider. Beyond the presence or absence of specific language
features, such assumptions can have more nuanced definitions, such as assuming the lack of
the use of a particular operator on a particular type of signal.

In order to address the need of FIRRTL-based tools to express such simplifying assump-
tions, the reference FIRRTL compiler is build around a library of fine-grained lowering passes,
which incrementally simplify the circuit by removing features or ensuring that simplifying
properties—such as guaranteeing single static assignment [75] (SSA) of components—hold
across some portion of the circuit. In many cases, such simplifications are mutually orthogo-
nal; however, some carry transitive dependencies: in the example of converting to SSA form,
it is necessary to first simplify “bulk connections” that act upon bi-directional interfaces.
In order to allow transforms to make such simplifying assumptions, the FIRRTL software
infrastructure requires it to declare its prerequisites : the set of transforms that must be
applied to the circuit before the transform in question.

While the notion of prerequisites allows a transform to make simplifying assumptions
about appropriately lowered circuits, a recurring pattern is where a transform has a particular
simplifying assumption as a precondition that is not held as a postcondition. For example,
several transforms in Golden Gate require that aggregate-typed ports on modules be
lowered to more basic types, yet some of those transforms generate new ports with aggregate
types. This pattern of non-monotonic lowering is well supported in FIRRTL [47], and it is
encoded in the software infrastructure through the declaration of an invalidation function,
which may declare that a transform invalidates one or more of its prerequisites or any other
transforms.

In contrast with the prerequisites of a transform, which are declared as a static list, the
invalidation function is a dynamic function whose abstract interface is to accept a transform
and return a Boolean indicating whether the current transform invalidates it. This has
several advantages over a static list in a flow that integrates multiple custom transforms,
since any transform that modifies the circuit cannot be aware of every possible transform
that it invalidates; this uncertainty can be resolved with type casing, where a transform
declares that it invalidates certain classes of transforms or even all transforms outside of
certain classes, such as the built-in transforms of the reference compiler.

Taken together, these features of the FIRRTL software infrastructure enable and encour-
age the development of fine-grained transforms. Though the FIRRTL specification defines
only three official “forms” corresponding with different lowering processes (High, Middle,
and Low FIRRTL), there are currently 27 transforms in the core compiler that incremen-
tally lower the circuit by removing features and simplifying interactions of features—this

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 33

Transform

CircuitState’

Circuit’

Annotations’

Renaming Info

CircuitState

Circuit

Annotations
Automatic
Annotation
Updating

CircuitState’’

Circuit’

Annotations’’

Figure 4.2: Structure of a FIRRTL transform: the transform accepts an in-memory repre-
sentation of a circuit in FIRRTL IR that is augmented with core analyses (such as expression
tree type) alongside a list of annotations. It emits both a new circuit and a new annotation
list that are each the result of applying a pure function to its full input.

number excludes analyses, checks, and optional features. Golden Gate is implemented as
a collection of 21 transforms, each of which is responsible for a particular phase of the compi-
lation process; in practice, this modularity of the software implementation helps enforce the
modularity of the simulator implementation that is key to composing multiple optimizations.

While granular passes offer many convenient properties, they are not without cost. When
provided with a desired list of transformations, a FIRRTL transform manager solves a graph
problem to pick a valid transform ordering. Though it will attempt to optimize the number of
transforms, this ordering will inevitably involve repetition of transforms due to the repeated
re-lowering patterns discussed in this section. While the full Golden Gate flow invokes
only 97 distinct transforms, the total dynamic count of all transform iterations is much
larger at 571 transform executions—predominantly due to repeated invocations of built-in
FIRRTL lowering, analysis, and check passes. However, this cost is not significant to the total
FPGA simulation design loop; while the Golden Gate runtime is measured in minutes,
the runtime for downstream FPGA tools is measured in tens of hours.

4.2.2 Harnessing the Extensible FIRRTL Annotation Interface

Since the FIRRTL infrastructure encourages dividing a custom flow into a number of mod-
ular transforms, each with a limited concerns, it naturally follows that there will be a larger
number of points where one transform communicates information to another. While this
communication centers around each transform providing its FIRRTL IR output as the input
to the succeeding transform, this can be excessively limiting. A given transform may produce
data structures that need to be shared with another, or a flow may require the parameter-
ization of the behavior of transform, such as limiting the scope of lowering to a particular
module. Given the goal of producing a flexible infrastructure, it is impractical to rigidly
codify all such communication in the formal IR. Instead, FIRRTL relies on annotations to
communicate information alongside the IR.

At a high level, annotations are user-defined channels of information of nearly arbitrary
structure between transforms. When they refer to components in the circuit, they do so

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 34

through indirect references known as targets. While the notion of a target is the only stan-
dardized requirement for the data contained in an annotation, it imposes a key requirement:
that the compiler can enumerate all hardware components that are associated with a given
annotation. As shown in Figure 4.2, a transform receives a list of annotations alongside
the IR of the input circuit and outputs a new list (which may be the same) alongside the
transformed IR. However, since this effectively presents an API that must be respected, their
use in the compiler is standardized and subject to several constraints.

In general, a transform concerns itself only with the limited set of annotations that form
part of its defined API. For the example of limiting the scope of a lowering transform to a
particular module, that transform may declare a class of annotation that allows a user or
upstream transform to label the set of modules upon which it should operate. It is important
to note that this does come at the cost of significantly expanding the interface of a given
transform to include all of its associated annotations: in order to productively use it, it is no
longer always sufficient to simply run the transform. As a result, it is advantageous to limit
the number of classes of annotations that may affect the behavior of a particular transform.

Since the set of annotation classes is subject to arbitrary extension, a transform will
receive inputs for which it has no semantic understanding. In general, these extraneous
annotations will be passed through to the output. However, a transform that modifies the
circuit may create an obligation for an unassociated annotation to be updated to remain
consistent with the circuit, which presents an implementation challenge.

In order to accommodate these updates, FIRRTL provides several conventions for an-
notation management [46]. While this annotation management infrastructure is an area of
active development outside the scope of this work, there are several useful patterns. First,
a transform that modifies the circuit in a widely seen way, such as renaming or removing
a component, can rely on a built-in renaming API. This interface lets a transform declare
the list of such modifications it applied to the circuit, and all annotations that refer to
the modified component via targets will be appropriately updated via a set of pre-defined
rules. Furthermore, a transform that undoes the work of another transform does not need to
enumerate its annotations. With the exception of renames, a transform need only directly
manage the consistency of the annotations it produces; a transform that modifies the circuit
should invalidate other transforms that generate annotations encoding the structure of the
circuit.

In both cases, the utility of the convention depends on a taxonomy of targets, annotations,
and transforms, as a lack of structure would lead to all transforms invalidating all other
transforms. This taxonomy, which includes notions such as analysis transforms, analysis
annotations, core compiler transforms, and monotonic lowering transforms is an area of
ongoing research. However, the use of Scala as a host language makes the maintenance
of such a system more straightforward than in a traditional object-oriented language with
features like mixin traits, pattern matching, and a rich type system.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 35

4.2.3 Built-in FIRRTL Analyses and Consistency Checks

Though the extensible FIRRTL infrastructure enables a complex flow to easily be divided
into sequenced transformations, many recurring patterns appear in their implementations.
Since many transforms often wish to perform the same type of analysis about the static or
structural properties of a circuit, the most common are made available as reusable transforms,
including finding combinational paths within a module and elaborating instance hierarchies
in a design.

Each analysis transform has three properties: it does not modify the circuit, it stores the
result of its analysis in a structured annotation, and it replaces any such existing annotation
with an up-to-date version. Furthermore, any transform that modifies the circuit in such a
way as to change the results of such an analysis must declare that it invalidates the analysis.
Rather than enforcing this via an enumeration of all possible analyses, a transform that
modifies the structure of the circuit can use pattern matching to invalidate all analyses
other than whichever it is known to preserve; while this idiom—directly inspired by the
management of analysis passes in LLVM [59]—carries a runtime cost, these transform-based
analyses are generally utilized across short phases of the compiler and represent a small
fraction of overall compiler runtime. Given these properties, a transform that requires the
results of a particular analysis can simply declare it as a prerequisite, recover the analysis
from the circuit’s annotations, and immediately utilize the associate data structures.

While many analyses are suited to the model of invalidation and re-computation for
use in a limited phase, some analyses are so fundamental that the burden of frequently re-
analyzing the entire circuit would significantly slow the compilation process. For example,
both core and custom transforms often desire to associate information about a declared
component (e.g., a register or wire) with expressions that operate on or modify the value of
that component. Therefore, the FIRRTL compiler also promotes a fixed set of analyses to
first-class properties of the in-memory representation of any expression tree or subtree: its
data type, its usage as either the driving or driven signal in the enclosing statement context,
and, in the case of a variable reference, the kind of declared component (e.g., port, wire,
register) it is associated with. Since these analyses are fixed in number, a transform that
modifies the circuit may update them in the “peephole” view of the circuit that it modifies,
rather than invalidating them entirely.

In practice, Golden Gate relies heavily on this library of built-in analyses. The type
information and drive directions carried in the in-memory IR are used in nearly every sin-
gle custom transform, while both the instance hierarchy and combinational path analyses
mentioned above are critical information for the aspects of Golden Gate that modify the
hierarchy of the circuit. Finally, FIRRTL exposes many analyses via the set of built-in check
transforms, which help identify points of failure in custom compiler flows.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 36

4.2.4 Differing Requirements of RTL Compilers and Simulator
Compilers

Unlike most previous work in FIRRTL-based flows, which produce a logically equivalent out-
put circuit after applying some set of lowering transformations, the output of Golden Gate
is a FIRRTL implementation of a simulator. Though FIRRTL is explicitly aimed at produc-
ing custom compilation flows for RTL circuits, the process of producing an optimized FPGA
simulator represents a fundamentally new use case for FIRRTL, with the key difference de-
picted in Figure 4.3. More specifically, while a simulator compiler is bound by the same
“as-if” behavioral guarantees that constrain all optimizing compilers [45], a typical FIRRTL
RTL compiler requires not only that its output be logically equivalent at the register-transfer
level, but that there is a perfect cycle-by-cycle state correspondence between the input and
output circuits. While more aggressive RTL compilers can apply optimizations such as reg-
ister retiming [64] or substitution of individual components that relax this requirement, the
fundamental guarantee is that the output circuit will not produce any observable differences
from interactions with the environment through an interface that is defined by register-
transfer level semantics. For the synchronous digital FIRRTL circuits, traces of interactions
with the environment are defined at a cycle-by-cycle level; in other words, equivalence of
input and output circuits is defined strictly at a synchronous level.

RTL

RTL’

FIRRTL
Transforms

Logical
Equivalence

Checker
=

SSM

LI-BDN

Logical
Equivalence

Checker
≠Golden

Gate

Typical FIRRTL Flow Simulator Compiler Flow

Figure 4.3: A comparison of a typical FIRRTL flow with a simulator compiler. Unlike a
standard FIRRTL transform, where the output is either logically equivalent to the input
or represents a refinement of its RTL specification, the output of a simulator compiler is
a specialized hardware implementation that is capable of simulating the input RTL in a
cycle-accurate manner. In this case, the output LI-BDN implements the input SSM, but its
concrete implementation has a distinct RTL specification.

In contrast, a simulator compiler is free to rely on a different model: the interactions of
the simulator implementation with the simulation environment merely need to encode this
precise, synchronous behavior of the target design. In the context of a producing a hardware

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 37

implementation of a simulator specific to a particular input circuit, this implies that the
generated circuit must accept inputs representing the inputs of the circuit and produce
outputs representing the outputs of the circuit, and it is free to encode these representations
in any synchronous or asynchronous protocol defined by the simulation environment.

Putting this abstract notion in more concrete terms, while most FIRRTL-based compil-
ers will transform input circuits into output circuits that can be defined as equivalent via
FIRRTL semantics alone, Golden Gate will transform the input circuit into a simulator
that produces equivalent behavior in the context of an higher-level interface with its envi-
ronment. As discussed in Chapter 3, we rely on the notion of an LI-BDN implementation
of the target design to define this interface. Therefore, the output of Golden Gate is a
hardware implementation of an LI-BDN that implements the target design per the definition
in Section 3.3.

While this is a departure from the behavior of most FIRRTL transformations, it high-
lights a key advantage of FIRRTL over netlist formats: the ability to rely on source-to-source
transformations rather than structural circuit transformations. Though LI-BDN implemen-
tations of a circuit could take on infinite forms, the goal of producing a reusable compiler
requires a flow that can produce one via successive transformations of the input circuit. Since
Golden Gate is a FIRRTL transpiler, large blocks of FIRRTL code may pass through un-
changed in order to do the “heavy lifting” of implementing much of the logic of the target
design. While small changes in behavior will often require complex traversals of a netlist,
FIRRTL idioms like syntactic pattern matching and insertion of higher-level constructions
are very useful for making radical changes to specific portions of a design.

4.3 Compiler Organization

A key constraint of the Golden Gate toolchain is that each model in the simulator will be
responsible for simulating a partition of the target design. This structural approach provides
separation of concerns, simplifying the task of generating each (potentially optimized) sim-
ulation model. However, since the compiler is structured around FIRRTL source-to-source
transformations that act on modules, rather than netlists, the hierarchy of the target de-
sign can limit the possible topologies of the simulator, and therefore the ability to apply
optimizations at a fine granularity.

Fortunately, FIRRTL transforms provide the ability to modify the hierarchy of the target
design. Furthermore, it is possible to perform these mutations as a pre-processing step before
any simulation models are generated. While this separation of concerns is in keeping with
the general FIRRTL design philosophy of creating layered compiler flows, it also allows the
compiler to re-structure the hierarchy and partition the design while maintaining its logical
equivalence with the original specification.

With this in mind, the Golden Gate compiler is divided into two main phases: Target
Transformation and Simulator Synthesis, as shown in Figure 4.4. The Target Transformation
phase is structured as a typical FIRRTL flow, where custom modifications to the target design

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 38

still preserve RTL semantics. The passes that make up this phase perform much of the heavy
lifting in restructuring and partitioning the circuit, and they can be thoroughly tested by
running off-the-shelf Logical Equivalence Checking (LEC) tools on input-output circuit pairs.
This reduces the footprint and development risk of the code in the later Simulator Synthesis
phases, where the compiler translates the target to a FIRRTL design that is not logically
equivalent under FIRRTL RTL semantics but instead implements a simulator capable of
precisely modeling its RTL behavior.

4.3.1 Target Transformation

While the Golden Gate flow allows arbitrary components of the target design to be marked
for promotion, causing them to each be simulated by a dedicated simulation model, division
of the simulator into multiple models is generally driven by the labeling of blocks as targets
for optimization or the presence of quasi-RTL features such as multiple clock domains. In this
work, we focus on resource-conserving optimizations; therefore, the partitioning of the design
is structured around moving each optimization target into an independent “optimization
domain.” Therefore, during the Target Transformation phase, optimization candidates are
identified and the target’s module hierarchy is mutated into a structure that ultimately
reflects the topology of the final composite LI-BDN.

Target transformations are performed as a series of small operations that consume and
generate metadata encoded in FIRRTL annotation. In order to identify optimization targets,
each optimization has a corresponding analysis pass, which inspects the circuit and con-
sumes designer-provided hints captured—expressed via annotations in the Chisel circuit—or
pattern-matches blocks of hardware that will yield significant resource savings when trans-
formed via a particular optimization strategy. For example, a set of repeated instances of pro-
cessor cores in an SoC might be labeled with an EnableModelMultiThreadingAnnotation,
which designates them as targets for the multi-threading optimization discussed in Chap-
ter 6. When the pass finds a candidate sub-circuit, it wraps it in a module and then labels
the module with annotations that indicate how it should optimized and how its I/O will
correspond to token ports. Once all candidates are identified, the wrapper modules are
“promoted” to the top of the module hierarchy. This process is then repeated for the next
optimization.

4.3.2 Decomposed Target Form

At the end of target transformation, the RTL is in decomposed target form, which is a canon-
icalization of the target design that mirrors the topology of the desired LI-BDN simulator
while still maintaining logical equivalence with the original input. In this form, the main
module at the top of the transformed target hierarchy may contain an arbitrary number of
instances. By definition, each of these direct child instances of the target will be simulated
with a single, dedicated primitive LI-BDN. All modules are labeled with annotations that
indicate how they should be transformed and/or optimized to generate this LI-BDN, and

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 39

Default LI-BDN Transform

Channel Synthesis

Label Defaults

Optimization i - Analysis & Label

Promote Candidates

Optimization i - Model Implementation

Si
m

ul
at

or

Sy
nt

he
sis

Ta
rg

et

Xf
or

m
at

io
n

FPGA
Hostile
Block

Annotations
A: Opt1 Anno
B: Default LI-BDN
C: Channel Anno
D: Channel Anno

FPGA
Hostile
Block

FPGA
Hostile
Block

De
co

m
po

se
d

Ta
rg

et
 R

TL
Ta

rg
et

 R
TL

LI
-B

DN
RT

L

B

C

D

A

Figure 4.4: The Golden Gate compiler flow

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 40

how their inputs and outputs should be coalesced into token channels. Furthermore, the
connectivity graph of the I/O different child instances defines the channel structure of for
the composite LI-BDN generated during simulator synthesis.

4.3.3 Simulator Synthesis

Here, model-implementation passes construct the LI-BDN by replacing modules with a model
based on its annotation. This fundamentally changes the structure of the circuit, but as we
will show, this can be verified using lime (Chapter 9). Model-implementation passes come
in two varieties:

1. Transformation-based: these rely on source-to-source FIRRTL transformations. In
the simplest case, this would involve augmenting the microarchitecture of the SSM
specified by the input RTL for latency insensitivity, but such a transform might also
further transform a primitive LI-BDN into an optimized version.

2. Generator-based: these inspect the structure of the target RTL to parameterize an
LI-BDN model generator. The output of this generator—which may be written in
Chisel—is a complete primitive LI-BDN. This technique would only be used when the
resulting model is very distinct microarchitecturally from the original target SSM, as
is the case for the multi-ported memory optimization discussed in Chapter 5.

4.4 The Default LI-BDN Transform

The default model-implementation pass is transformation-based and converts a target mod-
ule into a primitive LI-BDN as follows:

1. For each output channel, it finds all input channels to which it is combinationally
connected (CC).

2. For each output channel, it generates a predicate, firing, that is asserted when all CC
input tokens are available, and a register, fired, that is set when that output channel
has enqueued but the rest of the model has not yet advanced.

3. It gates all state updates with a finishing predicate. When this signal is high, all
fired bits are reset.

4. It drives finishing by taking the conjunction across all output channels of the term
firedo ∨ firingo.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 41

4.5 Adding New Optimizations

Ultimately, the goal of Golden Gate is to provide a framework that makes enhancements
and modifications relatively tractable. By layering modifications to the target design and
iterative refinements of the simulator LI-BDN, optimizations can integrate with the baseline
flow without any fundamental code changes. As shown in Figure 4.5, adding a new optimiza-
tion to Golden Gate requires a few different components to be defined, each interacting
with multiple layers of the compiler.

Top
Inner

EnableOptimizationXAnnotation

class Outer extends Module {
 val io = …
 val inner = Module(new Inner))
 EnableOptimizationX(inner)
 …
}

Baseline
LI-BDN
for Top

Baseline
LI-BDN
for Inner

EnableOptimizationXAnnotation

Baseline
LI-BDN
for Top

Optimized
LI-BDN
for Inner

Frontend API to Enable Optimization Transform to Refine Baseline LI-BDN

Figure 4.5: The two key components of a Golden Gate optimization: a user-facing API
to enable the optimization, and a FIRRTL transform that refines an unoptimized LI-BDN
to a resource-conserving, optimized version. Note that the extraction of the target compo-
nents labeled for optimization and the conversion of the partitioned circuit into a baseline
composite LI-BDN is handled by the core compiler flow illustrated in Figure 4.4.

In order to apply any optimization, it is first necessary to identify the partition or par-
titions of the target design that will each be simulated via an optimized primitive LI-BDN.
Given the complex design space resulting from this selection problem, and given the focus
on the underlying implementation and optimal performance benefits of each optimization,
this work relies on direct annotation of target blocks to denote these partitions. While it
is possible for a compiler to apply heuristics to automate this process, this is reserved for

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 42

future work. Therefore, the first step in the flow depicted in Figure 4.5 is the generation
of a FIRRTL annotation that labels a particular module as a target for optimization. This
process relies on a frontend Chisel API that must be written for each optimization; fortu-
nately, this interface may rely on Scala type safety to ensure that the annotations are only
applied to components that can be appropriately handled by downstream transformations.
As shown in Figure 4.6, various Scala techniques may be used to separate the calls to this
API that generate the associated FIRRTL annotations from the Chisel implementation of
the target design, eliminating the need to directly modify the RTL for simulation purposes.

def enable_simulator_optimizations(target: TargetSystemTopModule) = {

system.tiles.foreach {

t =>

annotate(EnableModelMultiThreadingAnnotation(t))

annotate(EnableMemoryOptimizationAnnotation(t.core.regfile))

annotate(EnableMemoryOptimizationAnnotation(t.core.fpRegfile))

}

}

Figure 4.6: A method that can enable the application of Golden Gate simulator opti-
mizations to a target design that has already been elaborated. By employing type-safe
cross-module references, this avoids polluting the target RTL with simulation-specific code.

At this point, the annotated target design is passed to the Golden Gate compiler.
In order to take advantage of the modularity offered by the LI-BDN simulator model, any
hierarchical component of the circuit that is a target for optimization will be simulated
by a dedicated primitive LI-BDN. Furthermore, as discussed in Section 4.3.1, the initial
Target Transformation phase of the compiler mutates the RTL circuit to produce a design
hierarchy that reflects the desired topology of the final composite LI-BDN. Therefore, as
shown in Figure 4.5, the labelled component must be extracted to the top level. In order
to allow new optimizations to integrate with the compiler and signal the need to perform
this transformation, their associated target-level FIRRTL annotations can rely on extending
an abstract supertype that generally demarcates the need to simulate a block with its own
dedicated primitive LI-BDN.

At the end of the Target Transformation phase, with the block in question now separated
at the top level of the hierarchy, the Simulator Synthesis phases begins by transforming
each top-level block into a baseline primitive LI-BDN. At this point, the design has been
successfully translated to a distributed FAME-1 simulator; while it lacks any optimizations,
the LI-BDNs modeling the blocks targeted for optimization are themselves still labeled with
the appropriate annotations. This allows the LI-BDN transformation associated with the
new feature to either iteratively refine the baseline implementations—as suggested in the
original presentation of LI-BDN simulators [89]—or to replace it entirely.

CHAPTER 4. THE GOLDEN GATE TOOLCHAIN 43

4.6 Summary

The Golden Gate toolchain is a multi-layered software stack that compiles FIRRTL cir-
cuits to LI-BDN simulators. It is capable of arbitrarily partitioning designs and compiling
each partition to a primitive LI-BDN implementation. For simplicity, early phases rely on
target-level transformations to heavily mutate the topology of the circuit; this preserves logi-
cal equivalence of the circuit with the input specification, enabling in- or out-of-band checks.
Finally, the compiler supports the development of new optimizations. This capability relies
on the core infrastructure to extract and decouple optimization targets before optimization-
specific transformations iteratively refine the primitive LI-BDN implementation.

44

Chapter 5

Optimizing Multi-Ported Memories

As outlined in the preceding chapters, Golden Gate provides infrastructure for partition-
ing a target design and compiling it into a Latency-Insensitive Bounded Dataflow Network
(LI-BDN) of communicating simulation components. While the basic Golden Gate com-
piler flow translates designs into decoupled simulators to allow for flexible co-simulation with
software or abstract hardware models, simulation performance does not inherently improve
via such modularity. Instead, the main benefit arises from specialization: specifically, the
ability to rely on different strategies to translate different partitions of the design to distinct
LI-BDN components, or simulation models.

Section 4.4 outlines an algorithm for translating a partition of a Synchronous State Ma-
chine (SSM) to a primitive LI-BDN. However, it is worth noting that this algorithm could be
applied to the entire portion of the target system that is described as a register-transfer level
(RTL) design. Indeed, absorbing more of the system into a larger primitive LI-BDN would
often result in a net reduction in overhead, as partitioning requires additional queues and
finite state machine logic to manage the larger number of I/O token channels. If splitting
the simulation of the RTL of a target system is to be useful in practice, it must provide some
concrete advantage that outweighs this overhead.

In this thesis, we show that the LI-BDN abstraction enables flexible, composable op-
timizations that allow larger systems to be simulated on existing FPGA platforms. While
these optimizations rely on the more general concept of decoupling to trade simulation perfor-
mance for improved capacity, they leverage the “compositional simulator” design in multiple
ways. By dividing the design into components and heterogeneously applying optimizations,
Golden Gate takes advantage of specialization, as each optimization is applied where
only where it will produce a favorable tradeoff. Furthermore, the LI-BDN structure pro-
vides a convenient way to add a further layer of decoupling in the presence of optimizing
transformations that save FPGA resources at the expense of simulation speed, as higher-
performance components of the simulator can be decoupled from the lower-performance,
resource-optimized components. Finally, from a practical perspective, the division of the
simulator into separate models simplifies the implementation of optimizations, as some op-
timizations may act as “silos” that act upon a limited domain of hardware components,

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 45

relying on this limited scope to construct highly specialized LI-BDN models. In this chap-
ter, we examine one such optimization that radically reduces the FGPA resource footprint
of a particular class of random-access memories (RAMs) commonly found in realistic target
systems. By enabling this RAM optimization, significant gains in total simulation capacity
can be realized.

5.1 Multi-Ported RAMs

Modern SoCs generally include complex on-chip memory hierarchies that span the range from
a processor core’s register file to embedded DRAM, with each level defined by a carefully
chosen set of parameters. In this section, we focus on classes of memories that are ubiquitous
in both the inner memory hierarchy and the microarchitectural implementation of these
systems: static random-access memories (SRAMs), register files, and register arrays. At
the RTL level, these memories present a simple interface where a set of ports can be issued
commands which complete after a fixed latency. Along with width (the size of an entry),
depth (the number of entries), and latency, the configuration of these ports is a critical
architectural parameter; typically, a memory is defined as having m read ports and n write
ports, though some port configurations may include read-write ports that may dynamically
perform either read or write operations.

In modern ASIC design processes, these memories may be implemented with a variety
of underlying digital circuit elements. Large memories of multiple kilobits, such as the
physical memories arrays underlying caches, are typically implemented as SRAMs, which
employ a synchronous read model where read operations return their result after one or
more cycles of read latency. As the area per bit is multiplied by a large capacity, the need
for resource-efficient bitcells generally implies a limited port count, with practical designs
focusing on single- or dual-ported memories [18]. When architects require larger port counts
for memories of significant size, they generally turn to specialized register files. Though
most register file implementations could be classified as SRAMs, they employ specialized
bitcells and periphery logic that can provide large numbers of ports with potentially sub-
cycle latencies [97]. Furthermore, there are many scenarios where an array of values can
be conveniently represented with a memory as a tool of microarchitectural abstraction, but
small capacity or large port count renders the resulting memory inefficient or impractical
to implement with any available SRAM or register file. In these cases, the memory in the
RTL design may simply be translated to a multi-dimensional array of registers during logic
synthesis, with read and write ports being implemented via multiplexers and de-multiplexers,
respectively.

While these underlying implementations are important tools in the ASIC design space,
the eventual mapping of a particular target memory to a digital circuit does not directly
manifest in an FPGA simulation of the design. This is a direct consequence of the role filled
by FPGA simulation methodologies as a model of the RTL behavior of the target design.
In a typical ASIC process, the RTL design will contain RTL models for various memories

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 46

that are logically equivalent at that level of abstraction; in general, these models resemble
large register arrays with appropriate logic added to model the port configuration and access
latency of the memory. Only later on in the design flow will the RTL models be substituted
for concrete implementations. Therefore, in this work, we consider on-chip memories as they
are presented to tools such as Golden Gate: as abstract multi-dimensional state arrays
detached from their eventual implementation target.

5.1.1 Challenges in Mapping Complex RAMs to FPGAs

Modern FPGAs provide abundant memory resources via large numbers of block RAMs
(BRAMs), which typically offer some configuration of a fixed number of ports and may
be linked together to implement arbitrarily large memories. However, this flexibility is
limited by the underlying capabilities of the BRAM instances, which typically limit both
port count and configuration. As a result, multi-ported RAMs in ASIC-oriented designs are
a classic culprit of poor resource utilization in FPGA prototypes, as they cannot be trivially
implemented via BRAMs and are instead decomposed into LUTs and registers [93]. While
using double-pumping, BRAM duplication, or FPGA-optimized microarchitectures [58, 57]
can help, Golden Gate can automatically substitute a decoupled model to further reduce
resource utilization. This enables a target memory with M asynchronous read ports and N
write ports to be implemented by time-multiplexing FPGA-friendly BRAMs. In contrast
to the static time-multiplexing described in [72] and [30], our optimization can decouple
arbitrary target memories and replace them with an optimized model (described in more
detail in Section 5.2) without any constraints on the structure or timing of the target design.

5.2 Model Microarchitecture

The optimized memory model is structured around a dual-port, synchronous read memory
that stores the contents of the simulated memory. In a typical host FPGA platform, this
memory is ideally suited to implementation as a block RAM, unlike the FPGA-hostile mem-
ory that it models. Access to this memory is mediated by an arbiter that selects a maximum
of two target read/write requests per host clock cycle; this arbitration is dynamic, based
upon when the tokens associated with individual ports arrive on their associated decoupled
interfaces. As shown in Figure 5.1, an FSM is associated with each target port; together, this
vector of FSMs tracks the model’s progress in consuming input tokens, performing BRAM
accesses, and producing output tokens.

5.3 Adding the Optimization To Golden Gate

To enable our optimization in Golden Gate, we added an analysis pass that finds anno-
tated RAMs and a generator-based, model-implementation pass that inspects the parameters

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 47

Sc
he

du
le

r Host
block
RAM Read

output
buffers

Vector of FSMs

Figure 5.1: A microarchitectural sketch of a three-read, two-write, optimized Golden Gate
memory model.

of the target RAM (number of ports, port width, depth) and invokes our model genera-
tor (Section 5.2). We also annotated the register file RAMs in our target’s source RTL.
With these passes enabled, Golden Gate detects and promotes a pair of candidate RAMs
for each core of the SoC during target transformation. In simulator synthesis, the implemen-
tation pass consumes the RAM modules and produces equivalent models. At this point, the
rest of the flow proceeds as described in Section 4.3). Enabling memory substitution adds
5 and 69 seconds of FIRRTL compile time to the quad-core Rocket and hexa-core BOOM
configurations, respectively the smallest and largest designs we studied. This is negligible
relative to their FPGA compile times of 6 and 22 hours.

5.4 Evaluation

In order to evaluate the multi-ported memory optimization, we look at the relative uti-
lization of different types of FPGA resources—lookup tables (LUTs), block RAMs, and
DSP blocks—obtained by enabling the optimization in Golden Gate for several Rocket
Chip configurations. Furthermore, since the serialization of memory accesses across multiple
FPGA clock cycles increases the latency to simulate a single cycle of each resource-optimized
combinational memory, we observe the degradation in performance in the optimized simu-
lator relative to the baseline simulator.

However, while these continuous metrics—utilization and performance—give some in-
sight into the tradeoff of resource efficiency and performance, they do not tell the complete

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 48

story. While it is possible to obtain post-synthesis utilization values for arbitrary designs in
FPGA tools such as Vivado, users generally target known FPGA devices with fixed resource
capacities. If a design fails to successfully complete place-and-route or cannot close timing,
the achievable simulation performance is effectively zero. Therefore, the evaluation high-
lights the ability of the optimization to yield Golden Gate simulator implementations of
Rocket Chip designs that would otherwise be impossibly large to simulate on the test host
platform, an AWS F1 instance.

5.4.1 Applying the Optimization to Rocket Chip

To motivate the need for this optimization, we use Golden Gate to replace the register files
in the application processor cores of several multi-core SoC instances produced by the Rocket
Chip Generator [3] described in 2.4. Here, we study two different “core complexes” to explore
the relative impact of optimizing register files across different microarchitectures: a standard
Rocket in-order core and a large configuration of the BOOM out-of-order core. In each case,
we evaluate the impact of substituting each core’s floating point (FP) and integer register files
for optimized memory models by annotating them with MemoryModelAnnotations that hint
to the Golden Gate compiler that each should be simulated by a dedicated multi-cycle
model. A representative quad-core Rocket Chip system, in this case a LargeBOOM-based
design, is shown with the full set of optimization annotations in Figure 6.10.

While Rocket has relatively simple register files, the BOOM core’s unified physical register
files are parameterized to reflect desired instruction window sizes and number of parallel
execution units. Therefore, we describe the relevant configuration details in Table 5.1 and
the associated register-file parameters in Table 5.2.

Rocket BOOM

“Default Rocket” “LargeBOOM”

Decoupled frontend 8-wide fetch, 3-wide decode

Completion scoreboard 96-entry reorder buffer

31 Int & 32 FP registers 100 Int & 96 FP physical registers

Single issue 1 FP, 3 Int, 1 Mem issued per cycle

Table 5.1: Key configuration parameters for the two target cores. Both designs utilize the
RV64GC instruction set and are integrated with Linux-capable Rocket Chip configurations.

5.4.2 Experimental Results

To evaluate the potential savings in FPGA resource utilization from targeting register files
with the multi-ported memory optimization, we examine a range of FireSim configurations
for multi-core target systems, both with and without the optimization enabled. In each

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 49

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

System Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

Tile 3 Tile 2

Tile 1Tile 0

L2 Cache Bank

L2 Cache Bank

Bank 0

Bank 1

O
u
t
e
r

M
e
m
o
r
y

S
y
s
t
e
m

MemModelAnnotation

MemModelAnnotation MemModelAnnotation

MemModelAnnotation

MemModelAnnotation

MemModelAnnotation MemModelAnnotation

MemModelAnnotation

Figure 5.2: A hierarchical block diagram of a quad-core, LargeBOOM-based Rocket Chip
system. Here, each register file is labeled with a MemoryModelAnnotations, providing a hint
to the compiler that each is a beneficial target for the multi-ported memory optimization.

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 50

Type Size Read Ports Write Ports

Rocket integer 31× 64b 2 comb. 1

Rocket FP 32× 64b 3 comb. 2

BOOM integer 100× 64b 8 comb. 4

BOOM FP 96× 64b 3 comb. 2

Table 5.2: Register file specifications for the two target cores. Each is replaced with an
optimized model; resource utilization and simulation speed is compared with the baseline
FPGA mapping.

case, the target design is a Rocket Chip system with a varying number of LargeBOOM
cores, and both the integer and floating-point register files of each core are annotated with a
MemModelAnnotation. After compilation with Golden Gate, each simulator was synthe-
sized and optimized using Vivado 2018.3.

Figure 5.3 compares the overall number of both LUTs and BRAMs required to synthe-
size the optimized and unoptimized simulators. While these post-synthesis results omit both
place-and-route and timing closure, and therefore do not directly represent the feasibility
of implementing a given simulator, they offer useful insight into the achievable level of re-
source savings. In all cases, replacing the cores’ register files with multi-cycle models yields
a very large savings in overall LUT count. As the number of cores increases, the fraction
of the simulator dedicated to simulating the cores increases, and these savings become rela-
tively larger, and when simulating a four-core target, the optimized simulator requires 25%
fewer LUTs than the baseline. Furthermore, the optimization actually allows an even larger
increase in simulation capacity than would be expected from LUT count alone, as FPGA-
hostile memories place enormous routing pressure on the entire design. Therefore, while the
baseline Golden Gate flow can fit only a two-core system on a Xilinx VU9P device, the
register file optimization effectively doubles this capacity, successfully implementing three-
and four-core simulators at an undiminished host clock frequency of 50MHz.

As discussed in Section 2.1.3, replacing components of the target with decoupled models
will impact the FMR—and therefore the simulation throughput—of the simulator. FireSim,
being a decoupled simulator, generally has FMR greater than unity. In particular, FireSim
uses a last-level-cache and DRAM model [8] (utilization included in FireSim Misc. of Fig-
ure 5.3) to implement deterministic simulation of the target’s outer memory system using
host FPGA DRAM. Table 5.3 lists the FMR measured for each simulator configuration over
the course of booting Linux and running a Python sorting benchmark on the target system.

Overall, multi-cycle RAM models increases FMR from 1.62 to 12.1, representing a 7.5x
reduction in throughput. Here, observed FMR is a function of the highest port-count model
in each target, but does not vary across core count, since the models are not combinationally
coupled and therefore execute concurrently. Finally, we note that the FMR penalty of using
multi-cycle models may often be less than the performance penalty of partitioning—while
using only one FPGA and therefore saving both engineering and equipment costs.

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 51

1-B
OOM

2-B
OOM

3-B
OOM

4-B
OOM

0

200

400

600

800

1000

1200

1400

LU
T

co
un

t (
x1

00
0)

VU9P capacity

Post-Synthesis Simulator LUT Utilization
Overhead: FireSim Misc.

Baseline: Logic LUTs
Baseline: LUT RAMs

RF Models: Logic LUTs
RF Models: LUTRAMs

1-B
OOM

2-B
OOM

3-B
OOM

4-B
OOM

0

500

1000

1500

2000

2500

P
os

t-s
yn

th
es

is
 B

R
A

M
 c

ou
nt VU9P capacity

Post-Synthesis Simulator BRAM Utilization
Overhead: FireSim Misc.

Baseline

RF Models

Figure 5.3: A comparison of FPGA resource utilization across baseline and regfile-optimized
simulators of multi-core LargeBOOM-based Rocket Chip targets. FireSim Misc accounts for
all resources in the Amazon-provided shell (v1.4.0) and FireSim hardware for co-simulation;
this is fixed across all designs. We omit DSP48s and URAMs as they are constant across all
designs and lightly used. RF Models three- and four-core BOOM designs failed in placement
due to over-utilization–we report post-synthesis utilization. Optimized versions of the same
designs use 24% fewer logic LUTs and successfully place and route.

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 52

FMR
N LargeBOOM Cores

1 2 3 4

Unoptimized 1.62 1.62 ⊗ ⊗
Regfile models 12.1 12.1 12.1 12.1

Table 5.3: A performance comparison of baseline and optimized-regfile simulators. For each
simulator configuration that could successfully be implemented on a Xilinx VU9P, observed
FMR were collected by booting into Linux and running a Python-based sorting benchmark.
Both the 3- and 4-core LargeBOOM configurations failed to successfully route when the
register-file optimization was disabled. All feasible simulators closed timing at a 50MHz
host FPGA clock frequency, while the ⊗ symbol indicates implementation failure.

For designs that do fit on the FPGA, reduction in routing congestion and register file
delay when using the optimized memory model means that host FPGA timing, the other
significant driver of simulation throughput, will be no worse than in the optimized design.
Here, feasible simulators closed timing at a 50MHz host FPGA clock frequency using Vivado
2018.3 and the default routing strategy prioritizing timing closure. Failing designs were re-
attempted with a congestion-optimizing routing strategy, but this did not result in success
for any previously infeasible simulator configuration.

5.4.3 Improving Performance with Host RAM Banking

While an 8x slowdown might be an acceptable compromise to avoid falling back on an even
slower alternative like partitioning or software RTL simulation, it can result in prohibitively
long runtimes for large target workloads. Ultimately, the low bandwidth of the multi-cycle
memory model proves to be a severe bottleneck on the rest of the simulator. In order to
widen this bottleneck, the host implementation of the model was extended to incorporate
multiple banks of underlying FPGA BRAMs.

Figure 5.4 depicts a highly abstracted microarchitecture for a dual-banked implemen-
tation of a multi-ported memory model. Here, both banks contain identical data, but
each serves half of the target read ports’ operations, with write operations broadcast across
both banks. In general, this approach resembles techniques used to implement multi-ported
synchronous-read memories on FPGAs [58, 57]. However, since these techniques are inte-
grated into a decoupled model, they are used in a novel setting to simulate combinational,
rather than synchronous reads. Furthermore, the size of traditional multi-ported implemen-
tations grows rapidly with increasing number of write ports. Therefore, the banked imple-
mentation performs a maximum of two writes per host FPGA cycle, with each bank utilizing
an underlying True Dual-Port (TDP) BRAM. This enables a dual-banked implementation
to support up to four reads or two writes per cycle. While the enhanced dual-bank scheduler
also skips disabled target write operations, read and write operations for a given cycle are
not allowed simultaneous access to the host BRAMs, preserving deterministic read-write

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 53

Vector of FSMs

Read
Bank1
Sched.

Write
Sched.

Read
Bank0
Sched.

Read
Bank1

Out
Bank1
BRAM

Read
Bank0

Out
Bank0
BRAM

Figure 5.4: A microarchitectural sketch of a dual-banked implementation of a six-read, two-
write, optimized Golden Gate memory model.

collision behavior without extra hardware.

FMR
N LargeBOOM Cores

1 2 3 4

Unoptimized 1.62 1.62 ⊗ ⊗
Naive models 12.1 12.1 12.1 12.1

Banked models 5.37 5.40 5.40 5.39

Table 5.4: A comparison of the relative performance impact of multi-ported memory op-
timizations with naive and dual-banked model implementations. The ⊗ symbol indicates
implementation failure.

By employing a dual-banked implementation of the model, the Golden Gate opti-
mization may lower the performance impact of the register-file optimization at the cost
of increased utilization. Table 5.4 compares overall simulator performance for configura-
tions that differ only in which variant of the multi-ported memory model was employed by
Golden Gate. The banked implementation significantly lowers the observed FMR from
12.1 to 5.4, corresponding to a 125% increase in simulation throughput and a far smaller
3.3x slowdown over the baseline. Furthermore, this implementation resulted in no observ-
able increase in LUT count per model, with run-to-run variation accounting for far larger

CHAPTER 5. OPTIMIZING MULTI-PORTED MEMORIES 54

changes in overall simulator LUT utilization. However, the use of banked memories does
require a larger number of host BRAM macro instances: for the LargeBOOM register files,
each banked model used 4 underlying BRAMs rather than the single BRAM of the naive
model. This four-fold increase is higher than might be expected given the duplication of
data across only two banks, as the naive model allows Vivado to employ a configuration
of the BRAM macro that reduces vertical waste. However, since Figure 5.3 illustrates that
BRAM utilization is generally a very slack constraint in simulator implementation, banking
effectively provides a “free” improvement to the performance-utilization tradeoff.

5.4.4 Summary

Overall, it is clear that this optimization has an outsize impact on simulator utilization.
Despite targeting a very narrow subset of the target microarchitecture, replacing FPGA-
hostile register files with multi-cycle models can double the number of simulated LargeBOOM
cores on a VU9P host FPGA system from two to four. While this does come at a performance
tradeoff, the use of banking can limit this slowdown, requiring only 3.3x as many cycles as the
baseline simulator to model twice as many cores. Finally, since this optimization requires only
a simple hint annotation to be added to arbitrary target designs, it is a broadly applicable
tool that can easily be deployed to help designers work around FPGA capacity limitations.

55

Chapter 6

Optimizing Repeated Instances via
Threading

In software systems, where multiple tasks must often contend for a limited set of computa-
tional resources, multi-threading is a common technique to allocated access in an efficient
manner. Rather than serially completing the tasks in sequence, a system may interleave
their independent instruction streams—or threads of execution—at some finer granularity.
Though this does not affect the total work required for the set of tasks, it increases aggre-
gate throughput following a simple observation: the instructions of one task generally do
not depend on those of another task; therefore, when a task performs an operation having
significant latency and its subsequent, dependent operations cannot be executed, scheduling
an alternate thread will allow the system to perform useful work. While this abstract exam-
ple implies a serial uniprocessor, multi-threading has proven to be a transformative concept
in computer systems with widely varying levels of underlying parallelism.

In this chapter, we discuss the applicability of multi-threading to FPGA simulators as a
framework for increasing the simulation capacity—i.e., simulating larger chips—by trading
off increased execution time for reduced FPGA resource utilization. Furthermore, by rely-
ing on the implementation flexibility of decoupled, Latency-Insensitive Bounded Dataflow
Networks (LI-BDNs) and the compiler infrastructure provided by Golden Gate, we in-
troduce a novel system to automatically multi-thread repeated instances of large hardware
blocks in target RTL designs. By incorporating this transformation as an optional opti-
mization, the Golden Gate simulator compiler may rely on a single underlying threaded
model to simulate the full set of instances. While such a model consumes more resources
than a direct mapping of a single instance, it is far smaller than the full set, while the use of
multi-threading increases per-resource efficiency by reducing the number of idle states in a
decoupled simulator. Finally, we demonstrate the utility of this technique in enabling large,
multi-core SoCs to be simulated on a single commodity FPGA.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 56

6.1 Multi-Threaded FPGA Simulation

Given the broad applicability of multi-threading, it is not surprising that it has appeared as
a feature of multiple FPGA-based simulation systems. In contrast to one classical view of
multi-threading, where it is used to maximize utilization of a particular architecture, employ-
ing the technique in an FPGA simulator goes hand in hand with an interesting architectural
shift: reducing underlying implementation parallelism.

Though a direct FPGA prototype effectively parallelizes all work required to simulate
a time step of a target system, this comes at the cost of high utilization of scarce FPGA
resources. In theory, this work could be divided into multiple serial sub-steps, each requiring
a smaller number of physical resources, effectively reducing parallelism in order to decrease
resource utilization. However, since the expensive reprogramming model of FPGAs provides
less dynamic flexibility than a traditional programmable processor, common structure must
be exploited across the sub-steps to avoid wasting idle hardware. Therefore, previous work
in resource-efficient FPGA simulation generally applies such serialization to repeated blocks
in the target system. The ProtoFlex [22] simulator used a threaded CPU model to simulate
in excess of 1000 SPARC processor cores; however, it relied on handwritten models and
relegated the emulation of some complex behaviors to software. The RAMP Gold [83]
combined a similar approach with an even greater focus on host implementation performance;
by employing a separate threaded, functional SPARC execution model and an efficient timing
model, a 64-core system could be simulated without delegation of any instructions to software
models.

Drawing inspiration from this previous work, we present a multi-threading optimiza-
tion for Golden Gate. In contrast with previous threaded simulators, which are built
around intrinsically threaded models hand-written specifically for a particular simulator,
this optimization is automatically applied to arbitrary input RTL designs as a compiler
transformation.

6.2 Enabling Multi-Threading in Golden Gate

In keeping with the modular nature of Golden Gate, the multi-threading optimization
relies on multiple existing transforms and adds several more. Figure 6.1 depicts the overall
process of generating a threaded model from a target design with repeated instances. In
this example, two Rocket Chip tiles containing BOOM cores are extracted and mapped to
a single threaded implementation.

While threading of models is a property of the host FPGA simulator, Golden Gate
attempts to simplify optimizations by modifying the topology of the target design to resemble
the topology of the desired simulator. In this case, since the two tiles will be simulated by a
separate, threaded model, they are first extracted from the target design hierarchy to separate
“islands” at the top level; the semantics of the Golden Gate API imply that each top-level
block will be transformed into a separate simulation model. This process relies on the existing

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 57

ExtractModels transform to modify the target circuit while maintaining logical equivalence;
when threading is enabled, all instances annotated with a ModelThreadingAnnotation will
be extracted to the top level.

After the target transformation is complete, the circuit is transformed to a baseline
decoupled simulator. As discussed in Chapter 4, each top-level block will be transformed
into a primitive LI-BDN model, and the various models will be composed into a larger LI-
BDN simulator. As shown in Figure 6.1, this results in the two top-level instances of the tile
module being transformed into two instances of the same primitive LI-BDN.

At this point, the set of models corresponding with the original set of duplicate in-
stances must be threaded. Since they are still instances of a common module, and since
the ModelThreadingAnnotation has propagated to label the model instances, it is straight-
forward to analyze the top-level module and find sets of model instances to thread. Using
this analysis, the simulator is transformed in two steps. First, a threaded model capable of
simulating the number of instances in the set is generated by transforming the FIRRTL im-
plementation of the unoptimized model. Finally, the set of model instances is replaced with a
single instance of a threaded model, and their original channel connections are appropriately
routed to and from the new model.

6.3 Generating a Threaded Model

Though the focus of this chapter is on threading decoupled simulation models, the transform
used to generate the FIRRTL implementation of the threaded models is far more general.
Rather than relying on the LI-BDN properties of the input model, it may be described in
terms of an arbitrary synchronous transition system. Here, we consider both the abstract
structure of the transform along with the low-level strategies used to generate a resource-
efficient microarchitecture in the resulting threaded model.

6.3.1 Derivation

Consider a baseline transition system TS, here defined as a Mealy machine on input alphabet
Σ and output alphabet O. For simplicity, we will omit the definition of an initial state, and
assume that the machine merely begins in any valid state.

TS = {Σ,O,Q, δ, λ}
Σ: the alphabet defining potential input symbols

O: the alphabet defining potential output symbols

Q: the finite set of states

δ ∈ Q× Σ→ Q: the transition function that defines the next state

λ ∈ Q× Σ→ Q: the output function on current state and current input

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 58

Original Target Top

Threadable set of instances

BigModule BigModule Other
Block

Bus

Original Target Top

Threadable set of instances

BigModule BigModule

Other
Block

Bus

Primitive LI-BDN simulating rest of target

Threadable set of instances

Primitive
LI-BDN:

BigModule

Primitive
LI-BDN:

BigModule

Target Transformation

Baseline LI-BDN Transform

Primitive LI-BDN simulating rest of target

Threaded Model
Primitive
LI-BDN

Transformed
with Threads

Router

Threading Optimization

Threading
Annotation

Threading
Annotation

Threading
Annotation

Figure 6.1: A high-level overview of how threading is introduced to a Golden Gate sim-
ulator. As shown in Figure 4.5, the optimization depends on two components: the addition
of annotations to denote which instances to thread, along with a transform that iteratively
refines a set of labeled primitive LI-BDNs to a single threaded implementation.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 59

Now consider a set of identically specified transition systems {TS1, · · · ,TSN}, each oper-
ating on the same input alphabet Σ and output alphabet O. Note that each system has
independent current state qk, input symbol ik and output symbol ok, and the state machine
is governed by the following composite behavioral specification.

{TS1, · · · ,TSN} = {Σ,O,Q1, · · · ,QN , δ1, · · · , δN , λ1, · · · , λN}

∀k ∈ [1, N] q′k = δk(qk, ik)

∀k ∈ [1, N] ok = λk(qk, ik)

Since the transition systems are identically specified—though independent—their set of pos-
sible states, transition function, and output functions are necessarily identical. Therefore,
the preceding set may be further simplified. However, the state transitions for all of the
individual systems still proceed in parallel, as indicated by the new behavioral specification.

{TS1, · · · ,TSN} = {Σ,O, N, δ, λ,Q}

∀k ∈ [1, N] q′k = δ(qk, ik)

∀k ∈ [1, N] ok = λ(qk, ik)

Now, we may define the notion of a threaded system TS∗ capable of simulating all of the
individual transition systems. However, rather than allowing it to have an arbitrary transi-
tion function in QN ×Σ→ QN , which would include parallel implementations, we introduce
a new quantity x, representing the index of the active system, and amend the definition of
the system with a function τ for updating the index. Now, we may define a final behavioral
specification for the threaded system.

TS∗ = {Σ,O, N,Q, τ, δ, λ}
τ ∈ [1, N]→ [1, N]: the thread scheduling function

∀k ∈ [1, N] q′k =

{
qk, i 6= x

δ(qk, i), i = x

o = λ(qx, i)

x′ = τ(x)

With this definition in place, it is clear that the threaded variant uses only one invocation
of δ and λ for a given transition, despite allowing all states in the full space QN . This provides
the abstract framework for producing a resource-efficient threaded implementation.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 60

6.3.2 Implementation Overview

As described in the previous section, the threaded implementation may rely on the same
transition relation δ as the original input system. From a FIRRTL compiler perspective,
this implies that the combinational logic of the system—the concrete implementation of this
function—may generally remain unchanged. However, the behavioral rule by which the state
of the system is updated with the application of this transition function no longer applies.
Since this behavior is implicit to the definition of the input system, the design must be
modified to ensure that only the state of the active thread is passed to the state transition
function or modified in a particular cycle. Furthermore, an implementation of the scheduling
function τ must be added to the transformed implementation.

In practice, this modification is most easily performed by modifying the structures in the
design that contain state: registers and memories. By expanding their size to accommodate
a vector of N states, and by adding the appropriate logic to select and update the appro-
priate element of this vector, the threaded implementation may be generated through small
peephole changes to the input RTL.

A high-level outline of this transformation is included in Figure 6.2. One key distinction
between an abstract transition system and a concrete FIRRTL implementation is the exis-
tence of a module hierarchy. Fortunately, though an input model may contain submodules,
its entire specification may be transformed by transforming all modules that appear in its
hierarchy from bottom to top, and by appropriately substituting instances for the resulting
threaded modules. This requires some bookkeeping, as the same module may appear in
both threaded and un-threaded contexts, or even in two contexts with different degrees of
threading. Therefore, the transform must transform a copy of the input module rather than
the original.

6.3.3 Input Circuit Preconditions

In keeping with the general FIRRTL philosophy of dividing hardware compilers into self-
contained layers, the model-threading transform of Golden Gate is relatively isolated
from the rest of the compiler. Rather than relying on deep introspection into the concrete
implementation of decoupled models, it is generally agnostic to the behavior of the upstream
FAME-1 transform that generates the unoptimized LI-BDNs it later optimizes.

Given this generality, the multi-threading transform can multi-thread a nearly arbitrary
input circuit. This operation is defined in terms of a simple host environment, assuming only
the existence of an ungated main host clock. Any block that meets this criterion may be host
multi-threaded N ways; the block may include arbitrary I/O, combinational logic, and state,
and may even rely on clock gating internally to enable or disable updates to state elements
or memories, as long as all such gated clocks are synchronously derived from the main clock.
This not only supports baseline LI-BDN models that rely on clock gating, but even allows
optimized, hand-written variants such as the multi-cycle RAM model to be multi-threaded.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 61

def thread_model(model_module , N):

threaded_modules = {} // cache for transformed modules

def thread_module(module , N):

assert module has host clock port

add thread_idx counter

for each state -containing structure:

replace with a threaded implementation

for each RHS reference using a state -containing structure as a driver:

update to retrieve data from the threaded implementation

for each connection updating a state -containing structure:

route the RHS data to the write port of the threaded implementation

for each submodule instance i:

if !threaded_modules.contains(i.module.name):

threaded_modules[i.module.name] = thread_module(i.module , N)

replace with instance of threaded_modules[i.module.name]

return transformed module

return thread_module(model_module , N)

Figure 6.2: Pseudocode for threading a FIRRTL implementation of a decoupled model.

While such a transformation would significantly reduce the performance of the simulator, it
has proven useful as a “stress test” for the robustness of the Golden Gate compiler.

Although the multi-threading transform is generally applicable to arbitrary models of
arbitrary target designs, it does rely on standard FIRRTL lowering infrastructure. Before a
model is threaded, it is lowered to Low FIRRTL and augmented with standard type and drive
direction analyses. Furthermore, threading depends on successful identification of repeated
instances of the same un-threaded model; this process is aided by various de-duplication
transforms that merge the definitions of modules that contain functionally identical imple-
mentations.

6.3.4 Thread-Management Logic

At its core, multi-threading saves FPGA resources by allowing the simulation of a single
cycle of set of instances to be serialized over multiple cycles. This structure comprises a
transition system containing the state of all the instances, but a simpler transition function
that affects the state of only a single active instance.

In the concrete implementation, the multi-threaded model must contain scheduling logic
responsible for selecting the thread representing the active instance. In general, this schedul-
ing logic may be classified into one of two categories: static, where the order of the threads is
fixed, and dynamic, where it is a function of the environment or external I/O. In particular,
while a static schedule for N instances iterates through them in a round-robin order over
N host FPGA cycles, a dynamic schedule might attempt to preferentially select an instance
with all input tokens available on a given cycle, as it would be more likely to make forward
progress and advance the target simulation of that instance.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 62

While dynamic scheduling offers theoretical advantages in simulation throughput, it
comes at significant implementation cost, as arbitration decisions must be broadcast across
the threaded model. Furthermore, it is important to note that the “workload” faced by the
simulator is generally low in dynamic behavior: whether or not a particular instance—say,
a particular core—is idle on a given target cycle, it must still be simulated. Though some
components of FireSim, such as the network model, present dynamic and unpredictable host
timing in response to target behavior, these components are generally not tightly coupled
with individual cores or other prototypical targets for multi-threading. Therefore, we rely
on a static schedule for its extremely low implementation overhead.

6.3.5 Threading State Elements

With arbitration of I/O channels and thread scheduling handled at the boundary of an
individual threaded model, the core implementation of the threaded model can be generated
by transforming all state in the input design to an array of sub-states and a means to
ensure that only the active sub-state is updated on a given host FPGA cycle. However, in
order to make this process amenable to a source-to-source FIRRTL transformation, we do
not directly materialize any monolithic representation of either the state or the transition
function. Instead, the transform replaces each instance of a structure containing state in
the input circuit—i.e., a register or a memory—with a structure that manages sub-state
selection for the set of state bits contained within the input structure.

In keeping with the overall goal of conserving FPGA resources, Golden Gate special-
izes this process for each of the three common types of state-containing structures in target
RTL designs: registers, asynchronous-read memories, and synchronous-read memories. For-
tunately, this process is greatly simplified by the inclusion of first-class register and memory
primitives in the FIRRTL language. In contrast with a Verilog-based intermediate repre-
sentation, which would require complex and imperfect algorithms to infer which variables
correspond with each type of structure, FIRRTL directly exposes all relevant information,
including clocking, port structure and read & write latency. With the support of these lan-
guage features, each type of structure is transformed via a microarchitectural pattern that
efficiently implements the array of sub-states and the appropriate selection mechanisms.

Registers

While they collectively contain relatively few bits compared to large caches and other mem-
ories, individual registers are by far the most numerous state elements in the input designs.
Though FIRRTL supports registers of aggregate types, such as bundles or vectors, the use of
standard FIRRTL lowering passes as prerequisites of multi-threading implies that registers
contain only signed and unsigned two’s complement types, further increasing the number
of declared registers. Therefore, it is imperative that hardware resulting from transforming
these registers have not only minimal per-bit cost but also minimal overhead per instance.
To this end, Golden Gate includes two alternative flows for threading basic multi-bit reg-

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 63

isters, with each flow converting a register to different structure containing the set of “copies”
of the register in the different simulated instances.

In the first flow, each register is replaced with a small, asynchronous-read memory of the
same data type with a single read and write port. By using the same clock that drove the
original register, updates to the contents of the memory will be appropriately disabled under
the same clock-gating conditions, while its asynchronous reads will be unaffected by clocking.
This memory has depth equal to the number of threads N , and is addressed for both read
and write operations by a wrapping, free-running counter. While the instantaneous value
of this counter is a function of the current thread index, it is important to note that the
address can be generated via an arbitrary bijection with the “true” thread index. This
eliminates any requirement either reset or synchronization of this address value across all
threaded registers in the generated model, allowing an arbitrary number of replicated address
counters to reduce fanout. As shown in Figure 6.3, this transformation relies heavily on
the provision of first-class register and memory objects in FIRRTL. Furthermore, it uses
the built-in analyses discussed in Section 4.2.3 to help classify references to the original
register, substituting the data field of the new memory’s read port where the register was
used as a driver and the data field of the write port where it was being driven. As the
read port instantaneously outputs the current value held in the “slot” corresponding with
the current thread, the enable signal of the read port is tied high. However, since the
input design could potentially rely on both conditional register connections and clock gating
to control when the register’s value might change, the transformation must ensure that the
contents of the memory at the current thread’s address must follow identical state transitions
under identical conditions. While the use of the register’s original clock ensures appropriate
behavior under clock gating, FIRRTL semantics allow multiple solutions to the “conditional
update” problem. Fortunately, a simple concrete solution consists of replacing conditional
register updates with conditional connections of the right-hand side to the new memory’s
write data input and conditional assignment of a set bit to its write enable. However, while
the register-to-memory flow includes this behavior, as a practical consideration, the FIRRTL
lowering phases that precede the multi-threading transform guarantee that all conditional
updates will have been removed from the input design.

While the register-to-memory flow is sufficiently general to apply to all FIRRTL designs,
the multi-threading transform can be configured to map input registers with a different strat-
egy, depicted in Figure 6.4. This alternative microarchitecture replaces each register with a
shift register and a ring-like feedback path. In contrast with the memory-based microarchi-
tecture, these circular shift registers obviate the need to either broadcast or replicate thread
index counters. However, since the data must advance on every FPGA cycle to present the
appropriate state copy for the active thread, the ring must be clocked with the ungated
main host clock. This in turn requires a more elaborate solution to accommodate clock
gating in the input design: a single-bit counter is used to recover whether the gated clock
was active during the preceding rising edge of the host clock. While these counters pose
the same fanout-vs-replication challenges as the thread-index counters of the memory-based
approach, they require fewer hardware resources. As demonstrated in Figure 6.4 for N = 4,

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 64

32bD Q

target_clk

Async-read
memory
Nt x 32b

target_clk

r_addr

w_data

w_addr

r_dataD

t_idx

Q

 reg my_signal: UInt<32>, target_clk

 when in.valid:
 my_signal <= in.bits

 out.bits <= my_signal

 mem my_signal:
 data-type => UInt<32>
 depth => <n_threads>
 reader => r
 writer => w
 read-latency => 0
 write-latency => 1

 mem.r.clk <= target_clk
 mem.r.addr <= t_idx
 mem.r.en <= UInt(1)

 mem.w.clk <= target_clk
 mem.w.addr <= t_idx
 mem.w.en <= UInt(0)
 mem.w.mask <= UInt(1)

 when in.valid :
 my_signal.w.data <= in.bits
 my_signal.w.en <= UInt(1)
 out.bits <= my_signal.r.data

w_enenreg_en reg_en

Baseline Register Threaded Register Simulator

Figure 6.3: A high-level overview of how multiple threads’ copies of an individual register
may be simulated with a combinational-read memory of depth Nthreads that is addressed by
the index of the active thread. A representative input-output pair of FIRRTL code blocks
shows how this structural pattern can be translated to statement-based RTL.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 65

though right-hand-side references that use the original register as a driver are replaced with
references to the active slot in the ring, reusing the name of the original register allows this
substitution to be performed implicitly with no code changes. Similarly, connections driving
the original register are transformed to instead update the register immediately following
the active slot in the ring.

32bD Q

gated_clk

enreg_en

Baseline Register Shift-Register-Based Threaded Register Simulator

32b

gated_clk

1

0
Q

reg_en 1b 1b

XOR

gated_clock_toggled

32b 32b 32b

host_clk

32b

32b
1

0

D

host_clk

host_clk

Figure 6.4: A shift-register-based pattern for holding the state of a simulated register in four
simulated instances’ threads. A specialized component at the bottom of the diagram records
recovers the behavior of a gated clock, allowing this transformation to be applied to circuits
with multiple synchronous that have independent gating conditions.

With both strategies available, the compiler is free to select one or the other—or, indeed,
to mix them at any granularity. While the two techniques are compared in Table 6.1, it is
worth considering how each might be implemented in the Xilinx FPGAs targeted by FireSim.
Given a reasonable range for degree of threading—say, N ∈ [8, 128] instances—the microar-
chitecture in Figure 6.3 will replace an m-bit register with an N×m, single-read, single-write,
asynchronous read memory. Such a memory will invariably be mapped to lookup tables in
RAM mode (LUTRAMs); while these LUTRAMs consume valuable LUT resources, it is cer-
tainly more efficient than an array of flip-flops and multiplexers. While Figure 6.4 initially
appears quite different, it too is capable of being implemented efficiently by re-purposing the
storage underlying LUTs in the form of Shift Register LUTs (SRLs). However, empirical
results with Vivado 2018.3 demonstrated that while the memory-based register-threading
transformation will cause efficient inference of LUTRAMs even at low numbers of threads,
SRL inference was not achieved for any variation of the shift-register-based transformation.
Furthermore, as shown in Table 6.1, the use of small memories led to lower utilization of

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 66

both LUTs and flip-flops. Therefore, the memory-based transformation shown in Figure 6.3
is employed by default for the Golden Gate multi-threading optimization.

Register transformation 2-core LargeBOOM 3-core LargeBOOM 4-core LargeBOOM

LUTs FFs LUTs FFs LUTs FFs

Small memory 748,844 370,354 801,761 389,371 866,681 413,849

Shift register 780,427 614,898 844,212 717,665 928,436 815,358

Table 6.1: Measured post-synthesis resource utilization counts for lookup tables (LUTs)
and flip-flops (FFs) for two different register-threading microarchitectural transformations.
For each simulator configuration, an N -core LargeBOOM target system was mapped to a
simulator, with the N cores’ tiles implemented in a single threaded model.

Asynchronous-Read Memories

As shown in Figure 6.5, asynchronous-read memories are the simplest to thread of all the
state-containing structures. The data-type and port configuration of the memory remains
unchanged, while its depth is multiplied by the number of threads. The drivers of the
ports’ address fields are recovered via analysis of the circuit, and the active thread index
is prepended to the original value; this effectively defines a translation where address (n ×
depth) + i holds the value corresponding with address i in the original memory for thread
context n. When Nthreads is a power of two, this effective address may be computed by
concatenating active thread index with the original address; otherwise, a simple accumulator
is necessary.

Though this transform scales the capacity of the memory linearly in the number of
threads and therefore consumes the same total number of bits as the memories in the original
set of unthreaded instances, it is important to keep the limitations of the host platform
in mind. These asynchronous-read memories are generally mapped to LUTRAMs; while
they are efficient for moderate sizes up to several kilobits, they scale poorly with extreme
depth or complex port configuration. This inefficiency in mapping FPGA-hostile memories—
the primary motivation for the memory optimization discussed in Chapter 5—is effectively
worsened by threading. However, the compositional nature provides a natural solution: as
discussed in Chapter 7, the two optimizations may be combined, allowing those memories
not amenable to threading to be simulated via highly efficient multi-cycle models.

Synchronous-Read Memories

In contrast with asynchronous-read memories, whose internal state corresponds exactly with
the set of addressable data entries, each read port of a synchronous-read memory implicitly
carries extra state: namely, the value read from the memory on the previous rising edge of
the clock. Therefore, any microarchitecture for threading these memories must maintain a

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 67

Async-read
memory

(Nt * 512) x 32b

clk

r.addr

w.data

w.addr

r.data

t_idx

w.en

Baseline Memory Threaded Asynchronous-Read Memory

Async-read
memory

512 x 32b

clk

r.addr

w.data

w.addr

r.dataw_data r_data
w.enw_en

w_addr

r_addr

w_data

w_en

w_addr

r_addr

base
addr

+

+

r_data

Figure 6.5: An asynchronous-read memory may be threaded by increasing the depth by a
factor of Nthreads and offsetting the active read and write addresses. Here, the original driver
of the address is used as an offset from a base address derived from the thread index and
memory depth.

copy of the appropriate read port state for each of the threads, which renders the approach
of simply increasing memory depth unsuitable without the addition of new structures to
maintain this state.

When designing a concrete implementation to meet this abstract specification, it is im-
portant to consider the modified timing of a read operation in the host clock domain. In
particular, to model a synchronous-read memory with a single-cycle read latency for N
threaded instances, the data resulting from a particular read request must actually be re-
turned N cycles later, as depicted for N = 4 in the timing diagram in Figure 6.6. As shown
in Figure 6.7, the addition of N −1 additional pipeline stages would not only correct achieve
this timing, but would provide sufficient additional state capacity for the per-port read data
state. Unfortunately, this simple design relies on an ungated host clock to align the output
of the memory with the active thread; therefore, it cannot be used to thread memories that
are connected to gated clocks in the input design, rendering it unsuitable for transforming
arbitrary decoupled models.

In order to maintain the behavior of the original memory when the clock is disabled,
a simple implementation could employ N independent memories and further clock gating,
disabling the clock for each memory whenever its corresponding thread is inactive. However,
this highly inefficient implementation would not only prevent consolidation into a single
memory, but would also waste scarce clock-gating resources. Instead, we employ the clock-
edge counter circuit introduced in Figure 6.4 to record whether the clock for each read port
was active at the previous host cycle boundary. With this information now encoded as a
synchronous Boolean control signal, simple microarchitectures can be synthesized to manage
the buffering of each thread’s read data. As shown in Figure 6.8, this control signal may
be used as a write enable for a small memory of depth N , with each entry in the memory

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 68

thread_idx 0 1 2 3 0 1 2 3

r.addr 4

r.data m[4]
read latency

x

•

Figure 6.6: A timing diagram depicting how the use of threading effectively extends the
allowable latency for read operations on synchronous-read memories. Here, with Nthreads = 4,
the threaded memory implementation has four cycles to return the read data.

Sync-read
memory

(Nt * 512) x 32b

host_clk

r.addr

w.data

w.addr

r.data

t_idx

w.en

Baseline Memory Simple Threading Attempt: Increase Read Latency

Sync-read
memory

512 x 32b

clk

r.addr

w.data

w.addr

r.dataw_data r_data
w.enw_en

w_addr

r_addr

w_data

w_en

w_addr

r_addr

base
addr

+

+

32b 32b 32b r_data

Figure 6.7: While adding extra pipeline stages alone is an appealing solution to thread
synchronous-read memories, it does not compose with the use of clock gating on the original
memory. This example with Nthreads = 4 is not applicable to decoupled models that rely on
clock gating internally.

containing the current read data state for an individual thread. By generating a memory
to act as an N -entry output buffer for each read port, the behavior of each thread may be
appropriately simulated even in the presence of gated clocks.

While this output-buffering approach introduces extra hardware, it offers two significant
advantages in the resulting FPGA implementation. First, while memories in ASIC RTL may
have arbitrary size, synchronous-read block RAMs (BRAMs) provisioned in modern FPGAs
have fixed sizes with limited parameterization. While they may be combined to implement
larger memories, they are relatively inefficient below a certain minimum depth. Current
Xilinx FPGAs have a minimum BRAM depth of 512, which leads to significant “vertical
waste” when implementing shallower target memories [94]. By striping the contents of the
simulated memories of several threaded target instances across one deeper underlying host
memory, many instances of this vertical waste may be avoided. Furthermore, since the results
of a read do not need to be made available until N cycles later, it is relatively simple to
introduce additional pipelining for sufficiently large values of N . In practice, the pipelined
implementation shown in Figure 6.8 is employed for four or more threads, which effectively

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 69

Sync-read
memory

(Nt * 512) x 32b

host_clk

r.addr

w.data

w.addr

r.data

t_idx

w.en

w_data

w_en

w_addr

r_addr

base
addr

+

+

32b

Small
LUTRAM

Buffer
Nt x 32b

r.addr

w.data

w.addr

r.data

w.en

32b r_data

t_idx

rd_clk

Figure 6.8: A 4-way threaded implementation of a synchronous-read, simple dual port,
512x32b memory. The output buffer stores the data that should appear at the read port
data output for each thread, and the associated addressing logic ensures that the result of a
read from thread i appears at r data four cycles later when the thread is next scheduled.

removes the output delay of the memory from downstream logic paths.
While these examples depict microarchitectures to simulate a memory with a single read

port and a single write port, it is important to note that a buffer must be provisioned for the
read data of each read port and each read-write port. As shown in Figure 6.8, the underlying
host memory is generated with the same port configuration as the original non-threaded
memory: in this case, a single read port and a single read-write port. Since Golden Gate is
generally used to model realistic ASIC RTL, target synchronous-read memories are generally
limited to a single read-write port or a combination of a dedicated read port with either a
write or read-write port; these configurations correspond with common 6T and 8T SRAM
architectures, respectively. In practice, this is not a significant bottleneck for modern Xilinx
or Intel FPGA platforms, as each provides dedicated block memories that may be configured
with up two ports of any type (read, write, or read-write), a broader space than typical target
memories [94, 44]. However, it is worth noting that the ability to add multiple additional
pipeline stages allows the threaded memory model to have a very short critical path delay,
making it possible to double-pump the memory by using both the positive and negative edges
of the ungated host clock. Future modifications to the threading transform could incorporate
double-pumping and extra buffering structures to model memories with a mix of up to four
ports of arbitrary type.

Due to the larger number of components and higher degree of parameterizability in the
resulting microarchitecture, the Scala implementation of the microarchitectural substitutions
that thread synchronous-read memories are significantly more complex than those for either
registers or asynchronous-read memories. However, since a FIRRTL memory has structural
ports, we borrow a technique used in other FIRRTL transformations that modify memories:
the threading transform replaces synchronous-read memories with black-box instances, and
a subsequent transform replaces the black-box modules with concrete implementations. This

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 70

not only helps maintain modularity in the software implementation, but since the threaded
synchronous-read memory module has a strict superset of the I/O of the original memory,
it also limits the changes required to the enclosing module to simply connecting the free-
running host clock and current thread index.

6.4 Routing I/O at the Threading Boundary

After generating an N -way threaded implementation to replace a set of N repeated model
instances, each channel formerly connected to such an instance must be appropriately routed
to the threaded model. Fortunately, the static thread schedule makes this relatively simple.
As shown in Figure 6.9, for each input channel of the threaded model, a static round-robin
arbiter selects a token from the source of the corresponding channel in one of the original
instances. This static schedule is governed by a thread index counter that continuously
iterates through the range [0, N). When the thread with index n is selected, the sources
of data for the input channels of the n-th instance in the original set are selected and may
pass tokens to the input channels of the threaded model. Similarly, while the data from each
output channel of the threaded model is broadcast to all n sinks that would have received data
from the corresponding channel in the original instances, only the sink originally connected
to the n-th instance would be permitted to handshake and receive a valid token in that cycle.

Threaded
 Model

Instance
0 State

Logic
Input Channel A

Input Channel B
Output Channel X

Round
Robin
Arbiter

Round
Robin
Arbiter

Round
Robin
Router

Source: A, Instance 0
Source: A, Instance 1

Source: A, Instance 2
Source: A, Instance 3

Source: B, Instance 0
Source: B, Instance 1

Source: B, Instance 2
Source: B, Instance 3

Sink: X, Instance 0
Sink: X, Instance 0

Sink: X, Instance 0
Sink: X, Instance 0

Figure 6.9: A scheme for routing I/O channels to and from a threaded model implementation.
Since the threads are statically scheduled, a strict, static round-robin arbiter for each common
input channel is sufficient to select the appropriate input sources for the active thread.
Similarly, a statically scheduled router for each common output channel can direct output
tokens to the appropriate sinks in the enclosing LI-BDN.

Since the routing costs of this scheme scale with the number and bit-width of the I/O
channels of the instances selected for threading, it is important to select the appropriate
module in the target design to thread. As a heuristic, choosing the highest-level block of the
design that is still highly duplicated is a reasonable strategy for reducing the cost of the I/O

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 71

routing. Though this may increase the number of channels at the boundary of each repeated
instance, the routing constraints that govern realizable ASIC target systems—the primary
application domain for FireSim—generally lead to larger blocks having a higher ratio of logic
to I/O.

While generating a full, parallel routing infrastructure for selecting tokens by thread is
straightforward to implement in a compiler and reasonably resource-efficient, it is not the
only way to deal with the I/O boundary between threaded and non-threaded portions of a
decoupled simulator. Furthermore, the routers and arbiters that must be instantiated con-
sume a significant number of logic resources. Some previous work has explored alternative
schemes for routing I/O to threaded models. In the HAsim project [71], numerous under-
lying implementations for an on-chip network were synthesized for a simulator employing
a threaded, decoupled model of multiple processor cores. Using a technique referred to as
permutation, the designers effectively managed to thread the queues and routers at the I/O
boundary of the threaded model, significantly reducing implementation overhead. However,
this technique relies on semantic understanding of the structure of the I/O that enter and
exit the threaded model: specifically, it must be interpreted as an on-chip network with a
particular structure. While this enables an extremely efficient implementation, this inference
is not generally compatible with a general compiler like Golden Gate, which must be able
to thread arbitrary RTL with arbitrary unstructured I/O. Therefore, we exclusively rely on
the per-channel arbitration scheme when multi-threading models in Golden Gate.

6.5 Evaluation

As with the multi-ported memory optimization discussed in Chapter 5, we evaluate the
efficacy of the instance multi-threading optimization by generating FireSim simulators for a
set of multiple Rocket Chip configurations. In particular, we explore the impact of increasing
core count on simulator FPGA resource utilization and throughput, both with and without
the optimization. Finally, we compare the peak capacity of a fixed-size FPGA host platform,
measured in number of simulated cores, in order to define the scenarios where applying
the utilization-performance tradeoff of the optimization would represent a practical and
performant solution for simulating large systems.

6.5.1 Applying the Optimization to Rocket Chip

In a symmetric multi-core SoC, the set of identical processor core instances is a natural
target for multi-threading. However, a realistic target will generally have a hierarchy of
components associated with each physical core. Figure 6.10 shows the structure these core
complexes, or tiles, for a Rocket Chip system with four LargeBOOM cores.

Given the desire to maximize the amount of logic reused via threading and to minimize
I/O cuts across the system, the collection of tile instances provides the greatest theoretical
benefit from multi-threading. However, each tile contains not only the core, but its associated

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 72

private L1 caches. As the resource footprint of these caches is dominated by large SRAMs,
it is imperative that these memories are implemented efficiently by the threaded model.
Fortunately, the threading strategy described in 6.3.5 has minimal overhead and actually
removes much of the delay associated with the memory itself from paths involving read and
write operations. Even though state elements like SRAMs derive no intrinsic theoretical
benefit from threading, the use of a single deeper memory in the threaded model to replace
N shallower memories can lead to lower vertical waste when mapped to fixed-size BRAMs,
further enhancing resource efficiency. Therefore, since applying the optimization to the full
tile with both caches presents the greatest potential benefit, this strategy is used throughout
the experimental evaluation.

6.5.2 Experimental Results with Multi-Core BOOM Systems

To evaluate the impact of the instance multi-threading optimization, we compare the FPGA
resource utilization and performance of generated FireSim simulators both with and with-
out the optimization enabled. In each case, the target design is a Rocket Chip system
with a varying number of LargeBOOM cores, and each BoomTile is annotated with an
EnableModelMultiThreadingAnnotation to label it as a potential target for threading. By
adding MTModels to the FireSim platform configuration, we may selectively enable threading
to produce both optimized and baseline simulators by passing each target system through
the standard FireSim and Golden Gate flow depicted in Figure 4.1.

To illustrate the impact of threading on FPGA resource utilization, the results of syn-
thesizing each simulator configuration were obtained from intermediate reports generated by
Vivado 2018.3. Figure 6.11 compares the overall number of both LUTs and BRAMs required
to synthesize the optimized and unoptimized simulators. While these post-synthesis results
omit both place-and-route and timing closure, and therefore do not directly represent the
feasibility of implementing a given simulator, they offer useful insight into the achievable level
of resource savings. In all cases, instance multi-threading significantly reduces the number
of LUTs required by the simulator. Even for the case of a two-core LargeBOOM simulator,
where the overhead introduced by threading is poorly amortized over a small number of
instance threads, the optimized implementation requires 8% fewer LUTs. Furthermore, the
reduction in LUT count grows dramatically with increasing core count: since the threaded
model merely extends the number of entries in its state elements to simulate more cores, this
advantage grows to 28% at three cores and 35% at four cores.

To better understand these savings, we may further divide this LUT utilization into
three sub-categories: resources used by the auxiliary components of FireSim that act as a
“shim” to the host AWS instance, and within the actual LI-BDN simulator generated by
Golden Gate, either LUTs used to implement logic or LUTs used in RAM mode to im-
plement combinational-read memories. While the miscellaneous FireSim components use a
significant number of resources, they are constant across all simulator configurations. There-
fore, the reductions in overall LUT count reflect an even larger change in the relative utiliza-
tion of the LI-BDN implementation. Furthermore, while threading significantly reduces the

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 73

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

System Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

Tile 3 Tile 2

Tile 1Tile 0

L2 Cache Bank

L2 Cache Bank

Bank 0

Bank 1

EnableModelMultiThreadingAnnotation

O
u
t
e
r

M
e
m
o
r
y

S
y
s
t
e
m

Figure 6.10: A hierarchical block diagram of a quad-core, LargeBOOM-based Rocket Chip
system with associated annotations enabling instance multi-threading for simulation. Rather
than threading individual cores, the tile containing each core and its associated caches is
annotated as a member of the candidate set of identical instances for optimization.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 74

1-B
OOM

2-B
OOM

3-B
OOM

4-B
OOM

0

200

400

600

800

1000

1200

1400

LU
T

co
un

t (
x1

00
0)

VU9P capacity

Post-Synthesis Simulator LUT Utilization
Overhead: FireSim Misc.

Baseline: Logic LUTs
Baseline: LUT RAMs

Threaded: Logic LUTs
Threaded: LUTRAMs

1-B
OOM

2-B
OOM

3-B
OOM

4-B
OOM

0

500

1000

1500

2000

2500

P
os

t-s
yn

th
es

is
 B

R
A

M
 c

ou
nt VU9P capacity

Post-Synthesis Simulator BRAM Utilization
Overhead: FireSim Misc.

Baseline

Threaded

Figure 6.11: A comparison of FPGA resource utilization across baseline and threaded sim-
ulators of multi-core LargeBOOM-based Rocket Chip targets. Since the threading opti-
mization requires multiple instances to target, only the baseline utilization is reported for
the single-core system. Each simulator was generated with Golden Gate and synthesized
with Vivado 2018.3. Here, we report post-synthesis utilization values that illustrate relative
utilization of configurations that cannot successfully route and close timing for a VU9P de-
vice. While the two- and three-core threaded implementations closed timing at 50MHz, and
the four-core threaded configuration closed timing at 45MHz, the unoptimized simulators of
three- and four-core systems failed during implementation.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 75

number of LUTs used as logic, the state-threading mechanisms described in Sections 6.3.5
and 6.3.5 offset this benefit to a small degree by generating large numbers of small memories
implemented as LUTRAMs.

In addition to LUTs, Figure 6.11 also compares the number of BRAMs used by each
simulator. Despite the fact that a threaded model requires the same number of synchronous-
read memory bits as the sum of all the instances it replaces, threading also yields significant
savings in this metric. As discussed in Section 6.3.5, target designs often contain memories
with depths too shallow to map efficiently to the fixed-size BRAM macros in modern FPGAs.
Since the threaded model replaces sets of memories with deeper memories aggregating the
contents of the full set, the optimized simulator may avoid significant vertical waste present
in the baseline design.

While these synthesis results provide insight into utilization trends, the ultimate practical
consideration for the simulation user is whether a given system actually fits on a given FPGA
host platform. To first order, this can be related to the number of resources of each type
available on the device; however, the need to reserve significant numbers of resources to
implement interconnect during place-and-route renders 100% resource utilization impossible
in practice [28]. Therefore, Figure 6.11 depicts not only the the capacity of the Xilinx VU9P
devices used by FireSim host platforms, but also an 85% utilization threshold for LUTs
that is a reasonable heuristic for maximum achievable utilization for a large target with
significant interconnect [85]. Indeed, this rule of thumb does correctly predict the outcome
for our experiments, as the unoptimized simulators of both the three- and four-core systems
failed during implementation.

While the baseline FireSim configuration could only simulate a maximum of two Large-
BOOM cores, the optimized simulator is able to double this capacity to four cores. This
does come at a performance tradeoff: as shown in Table 6.2, while the baseline simulators of
one- and two-core systems execute at an overall FMR of 1.62, the two-core threaded simu-
lator delivers only 37% of the throughput at FMR = 4.41. Clearly, given that the simulator
would fit on a VU9P device in both cases, it would not be wise to employ threading for this
two-core target. However, for a user simulating three- or four-core LargeBOOM systems, the
performance of threaded simulator must be weighed against the need to either purchase a
new host system or fall back upon a slower simulation modality. Indeed, the observed FMRs
for three- and four-core simulators are 5.41 and 6.35 (at a reduced 45MHz host clock for the
four-core configuration), which translate to an effective target clock cycle simulation rate of
9.24MHz and 7.07MHz, respectively.

When compared to other alternatives, these results represent relatively high throughput
for simulating a large SoC with multiple 5-issue out-of-order cores. Though software RTL
simulators offer ease-of-use and arbitrarily large capacity, their throughputs for multi-core
SoCs are generally under 1kHz [2]. While partitioned simulators using multiple FPGAs can
offer both scalable capacity and high speed, such systems often deliver only 1-10MHz of
throughput [76, 2] at the cost of a high degree of complexity and designer effort [38]. In
contrast, the threaded simulator offers performance comparable to a partitioned host using a
cost-effective single-FPGA system and a user-friendly, automated compiler flow. By doubling

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 76

the capacity of a simple, cost-effective simulator while maintaining competitive speed, this
optimization enables more effective full-system simulation of multi-core SoCs.

FMR
N LargeBOOM Cores

1 2 3 4

Unoptimized 1.62 1.62 ⊗ ⊗
Multi-threading N/A 4.41 5.41 6.37†

Throughput N LargeBOOM Cores

Sim. cyc/sec 1 2 3 4

Unoptimized 30.9 30.9 ⊗ ⊗
Multi-threading N/A 11.3 9.24 7.07†

Table 6.2: A performance comparison of baseline and threaded simulators. For each sim-
ulator configuration that could successfully be implemented on a Xilinx VU9P, observed
FMR and effective throughput values were collected by booting into Linux and running a
Python-based sorting benchmark. Both the 3- and 4-core LargeBOOM configurations failed
to successfully route when the threading optimization was disabled. All feasible simulators
closed timing at a 50MHz host FPGA clock frequency, aside from the four-core threaded
configuration, where the † indicates a 45MHz max frequency. The ⊗ symbol indicates
implementation failure during placement.

6.5.3 Broader Applicability to Accelerator-Based Systems

While the results with multi-core BOOM-based systems demonstrate the significant poten-
tial of instance multi-threading to optimize FPGA resource utilization, a key strength of
this technique lies in its generality. Repeated instantiation of a common block is an ex-
tremely common design pattern across digital systems that helps exploit parallelism in a
given application domain. Furthermore, the implementation of instance multi-threading as
an automatic compiler optimization in Golden Gate allows this technique to be applied to
simulators of arbitrary FIRRTL circuits to thread any set of identical instances. Therefore,
to help illustrate this broader applicability, the experiments from Section 6.5.2 are repeated
for a multi-core domain-specific accelerator based on the Gemmini systolic array co-processor
for machine-learning applications [33].

Gemmini is a parameterizable co-processor generator that provides native integration
with Rocket Chip and the Chipyard framework. It covers a design space of systolic array
co-processors that arrange a number of small processing elements (PEs) in a two-dimensional
mesh-connected network. By pairing this array with an assortment of boundary logic that
includes a scheduler and a DMA engine, this array of PEs can perform efficient matrix-matrix

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 77

operations on data held either in a local scratchpad or the outer layers of the cache hierarchy
of the enclosing SoC. By specifying different sizes and configuration options, Gemmini co-
processors can capture the requirements of various matrix-multiplication kernels that are
commonly found in the inference passes of deep neural networks (DNNs). Notably, Gemmini
can be parameterized to support various number formats, including bfloat16 16-bit floating
point values. This flexibility supports an agile design process where neural architectures
and co-processor implementations can be rapidly co-designed to deliver efficient end-to-end
performance.

As shown in Figure 6.12, a Gemmini co-processor can be paired with a general-purpose
processor to form a complete accelerator core. The integration with Rocket Chip and Chip-
yard allows these accelerators to be composed with other hardware to create parameterized
systems from one to many cores, with multi-level caches, multiple accelerators, and Linux-
capable memory virtualization schemes. As with other domain-specific systems for machine
learning, Gemmini-based chips may exploit various forms of data- or task-level parallelism
through the use of multiple accelerator cores. Therefore, for this experiment, we consider
a class of target machines that have varying numbers of identical Gemmini accelerator tile
instances, each generated with the parameters described in Table 6.3.

Figure 6.12: (Figure used with permission from Hasan Genc [32]) A Gemmini accelera-
tor pairs a general-purpose, scalar control processor with a systolic array co-processor for
compute-intensive linear algebra operations. As with other systolic array-based accelerators,
Gemmini is aimed at energy-efficient inference for machine-learning applications.

As Gemmini systolic array contains large amounts of logic, these “multi-Gemmini” sys-
tems can be extremely challenging to simulate with conventional FPGA compilation tech-
niques. However, they present the natural opportunity to apply instance multi-threading in
much the same fashion as with the BOOM-based systems: a tile including the accelerator,

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 78

Gemmini Accelerator Parameters

Control processor Medium Rocket (RV64GC)

Systolic array shape Flat 8x8 grid, mesh network

Processing element bfloat16 FMA & accumulator

Table 6.3: A high-level overview of the configuration parameters used to generate each
Gemmini accelerator in the target designs for the instance-threading experiments. In a
multi-core system, each of N tiles will pair such an accelerator with private caches.

private caches, and system bus integration is annotated with a Golden Gate compiler
directive, and the set of all tile instances is simulated by a single threaded model. While
this flow is effectively identical to that depicted in Figure 6.10, each tile now contains a
significantly different internal implementation due to the presence of the large co-processor
block and the use of a smaller Medium Rocket core with no hardware floating-point unit.

Figure 6.13 compares the overall number of resources required to synthesize the optimized
and unoptimized simulators of systems with varying numbers of Gemmini accelerator cores.
In contrast with the general-purpose BOOM designs, mapping the large number of floating-
point fused multiply-add (FMA) blocks in the bfloat16 systolic array results in extensive use
of DSP blocks on Xilinx FPGAs. Therefore, Figure 6.13 compares DSP block utilization
along side that of LUTs and BRAMs, each as a fraction of the total number of each type of
resource available on the host Xilinx VU9P FPGA. As with the BOOM-based target systems,
instance multi-threading drastically reduces the number of logic resources–both LUTs and
DSP blocks–used to simulate a given multi-core system. However, this effect is even more
significant when simulating the multi-accelerator Gemmini systems: while an un-optimized
FPGA compilation flow allows only a single accelerator core to fit on the VU9P host device,
enabling optimizations makes it possible to simulate a much larger eight-accelerator design.
While threaded simulation provides minimal relative reduction in memory implementation
footprint, resulting in 56% BRAM utilization for 8 Gemmini cores, it is notable that the
simulator of the 8-core design uses only 8.7% more LUTs and no more DSPs than the
baseline single-core simulator. This highly efficient capacity scaling underscores the ability
of the multi-threading optimization to fundamentally improve simulation capacity for general
target designs that feature large, repeated instances.

CHAPTER 6. OPTIMIZING REPEATED INSTANCES VIA THREADING 79

Figure 6.13: A comparison of FPGA resource utilization across baseline and threaded sim-
ulators of multi-core Gemmini accelerator targets. Hollow markers indicate post-synthesis
utilization values for simulators that ultimately failed to map to a Xilinx VU9P FPGA, while
solid markers indicate final utilization values for feasible simulators that completed imple-
mentation and closed timing at 45MHz. Here, the use of threading extends the simulation
capacity of the VU9P FPGA from one Gemmini core to eight.

80

Chapter 7

Composing Multiple Resource
Optimizations

As described in Chapter 3, Golden Gate is designed from the outset to support hybrid
simulators that may combine multiple different implementation techniques. In this work,
we describe how this architecture may support the targeted optimization of portions of
the simulator that implement specific partitions of the target design. The optimizations
described in Chapters 5 and 6 reduce the FPGA resource utilization of multi-ported mem-
ories and repeated instances, respectively, by generating multi-cycle implementations that
effectively trade off simulation capacity and throughput. Each transformation generates
a legal Latency-Insensitive Bounded Dataflow Network (LI-BDN) implementation of the
corresponding partition of the target design. While the preceding chapters consider each op-
timization individually, demonstrating how the optimized component may be composed with
a baseline LI-BDN model of the remainder of the target, a key advantage of this approach
is the ability to compose multiple, independently optimized components.

With this capability to combine optimizations, we may explore a new region of the simu-
lator design space employing both instance multi-threading and memory port serialization.
With a closer eye on the tradeoffs of each individual optimization, we also explore their
complementary nature; not only does each provide a benefit for distinct microarchitectural
patterns found in target systems, but the use of threading provides the ability to “hide”
the latency associated with other serializing optimizations, including that for multi-ported
memories. Critically, in order to exploit the complementary benefits of the two optimiza-
tions, the simulator compiler must be capable of extracting fine-grained partitions of the
target design; in practice, this might include complex topologies, such as a multi-ported
memory that is contained hierarchically within a repeated instance that is to be threaded.
Through a set of core transformations, the Golden Gate compiler framework establishes a
mechanism for converting such topologies into a simple composite LI-BDN that is amenable
to optimization.

With this groundwork in place, we outline a simple approach for combining the two
optimizations within a single FireSim simulator. Since modern SoCs contain both repeated,

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 81

large instances (i.e., multiple cores) and expensive, multi-ported memories (i.e., register
files), the basic tradeoffs of the two optimizations yield a simple template for greater resource
savings than either optimization in isolation. Finally, we examine the performance of this
strategy when applied to various configurations of the Rocket Chip SoC generator. While the
relative performance varies across target designs, the combination allows a single FPGA to
simulate previously intractable target designs, including a 16-core design using large BOOM
cores, representing a 700% increase in simulated core count.

7.1 Combining Complementary Optimizations

Given that the ultimate goal of both optimizations is to reduce the number of FPGA re-
sources required to simulate a given target design, a successful combination of optimizations
should yield even greater resource savings than employing either alone. In the common case
where a designer has access to FPGA devices of a fixed and finite capacity, this reduction in
footprint will result in a corresponding increase in the maximum size of the target machine,
allowing a simulator incorporating both multi-ported memory and multi-threading optimiza-
tions to simulate, say, a previously impractically large number of a particular processor core.
However, since Golden Gate will generate a hybrid simulator where the optimizations will
act on independent partitions of the target system, any further benefit of adding additional
optimizations will be weighed against the benefit of simply applying one to a greater portion
of the simulator. For example, if a design contains many repeated instances of a proces-
sor core that are prime targets for threaded simulation, applying the multi-ported memory
optimization to memories in those cores reduces the scope—and potentially the benefit—of
threading.

Fortunately, the two optimizations presented in this work have multiple complementary
properties that suggest potential benefits in combination. Indeed, each is limited in appli-
cability: the multi-ported memory optimization is only applicable to FPGA-hostile, highly
ported memories, while threading can only be applied to a set of identical instances. In
the hypothetical target design shown in Figure 7.1, an SoC might have a multiple instances
of identical specialized accelerators alongside a single out-of-order core that itself contains
a prohibitively complex register files. In this case, the two optimizations can naturally be
applied to distinct components in the hierarchy by compiling the accelerator instances to a
threaded simulation model and the register file to a multi-cycle memory model.

While systems like the one in Figure 7.1 show a simple motivation for combining op-
timizations, it is also worth considering the finer-grained, details of how each translates a
target-design component to an optimized simulator. In cases where a repeated set of in-
stances each contains a highly ported memory, both optimizations could theoretically be
used—but which should? Here too, the optimizations are complementary: while threading
reduces the footprint of the combinational logic by sharing it among simulated instances, it
does not generally reduce the footprint of the state elements. As outlined in Section 6.3.5,
though there are some marginal benefits in aggregating synchronous-read memories across

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 82

Threadable set of instances

Large
Accelerator
Instance 3

Large
Accelerator
Instance 0

Large
Accelerator
Instance 1

Large
Accelerator
Instance 2

Large OoO Core
Expensive
Int Regfile

Expensive
FP Regfile

Private L1
 I-Cache

Private L1
D-Cache

Unified L2 Cache

To Outer Memory System

Optimizable, FPGA-hostile memories

Figure 7.1: A realistic SoC that presents opportunities to save FPGA simulation resources
by applying multiple optimizations, each to a distinct partition of the target hierarchy. The
large, out-of-order core has two register files, each of which might be hostile to FPGA sim-
ulation due to high port count. Furthermore, the multiple instances of the same accelerator
block present a natural opportunity for applying the multi-threading optimization.

instances, the logic to select a given thread’s state increases the absolute cost of each regis-
ter. Worse yet, threading has a pathological impact on highly-ported memories: since these
FPGA-hostile memories generate vast multiplexing logic to implement their many ports,
expanding their size to accommodate several copies has a super-linear logic cost. Given that
this has the potential to significantly increase the absolute total cost of implementing the
instances’ memories, and given the reduction in cost of the instances’ combination logic in
the threaded model, the relative impact of these expensive memories can grow prohibitively
large. In contrast, the multi-cycle memory models provide the maximum benefit for these
difficult memories.

Table 7.1 qualitatively summarizes the relative benefits of each optimization for these
different microarchitectural features; in short, it is clear that there is an opportunity for
synergy. However, realizing this opportunity might require mixing the optimizations at a fine
granularity to efficiently model repeated instances containing memories that are prohibitively
expensive in a threaded implementation. Here, we describe how the Golden Gate compiler
framework can manage these complex target design topologies. Furthermore, we highlight

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 83

how this composition can benefit from efficient thread scheduling, helping to reduce the
relative performance cost of adding an additional degree of serialization to the simulator.

Logic SRAMs Register Files Registers

Memory models no effect no effect large savings no effect

Multi-threading large savings negligible savings large cost moderate cost

Table 7.1: A qualitative comparison of the resource-saving potential of the two optimizations
when transforming various features of the target system’s microarchitecture. The comple-
mentary nature of the benefits suggests the potential for even greater resource savings in
combination.

7.1.1 Transforming Target Design Topologies

While Figure 7.1 may depict an idealized scenario,e the desired targets for each of the two
optimizations are not always removed from each other in the hierarchy. Indeed, as shown
in Figure 7.2, it is common for a target system to have multiple instances of a logic-heavy
module that themselves contain FPGA-hostile multi-ported memories within their individual
submodule hierarchies. This topology requires careful consideration: not only will the inner
memory and outer logic-heavy module each be simulated by a dedicated LI-BDN, but the
primitive LI-BDN simulating the outer module will exclude the memory.

Fortunately, this simulator structure can easily be obtained by properly transforming
the target. As discussed in Section 4.3.1, both the memories and the enclosing logic-heavy
modules must be extracted to the top level during the canonicalization of the circuit. By
topologically sorting the module hierarchy graph and then extracting instances in order
from highest to lowest in the hierarchy, Golden Gate may obtain the desired top-level
partitioning of the circuit. Furthermore, this ordering avoids the creation of spurious wires
running up and down the hierarchy that would otherwise increase both latency and area.

7.1.2 Hiding Optimization Latency with Threading

In software systems, multi-threading helps maximize utilization of finite hardware resources
by reducing the impact of long-latency operations. By interleaving units of work from differ-
ent computational threads, the number of dependencies in a processing element’s instruction
stream can be reduced; as a result, when a memory access that misses in cache or another
similarly costly event occurs, the system may continue scheduling useful work from other
threads that by definition do not depend on its completion. This concept may be realized
through a wide variety of concrete implementations and scheduling patterns: systems may
interleave individual instructions on a single processor core or switch when block, and they
may operate with either static or dynamic thread orderings. Though these approaches may

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 84

Original Target Top

Threadable set of instances

Expensive
Module

Expensive
Memory

Expensive
Module

Expensive
Memory

Other
Block

Bus

Optimizable, FPGA-hostile memories

Original Target Top

Threadable set of instances

Expensive
Module

Expensive
Memory

Expensive
Module

Expensive
Memory

Other
Block

Bus

Original Target Top

Threadable set of instances

Expensive
Module

Expensive
Module

Expensive
Memory

Other
Block

Bus

Expensive
Memory

Pick highest to extract

Pick highest to extract

Figure 7.2: A depiction of the strategy used by Golden Gate to transform a target hier-
archy with nested optimization targets. The instances in the target design are topologically
sorted, and modules earlier in the order—which are “higher” in the the hierarchy—are ex-
tracted to the top level before proceeding to extract modules later in the order. This produces
a canonical form with the fewest possible connections between the modules at the top level.

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 85

vary in ultimate performance, all provide a fundamental capability to increase throughput
by hiding latency in the system.

While the use of the term “multi-threading” to describe the technique of scheduling the
simulation of multiple instances onto one underlying model is common in previous work [71,
83, 84], the comparison is muddled by the atypical baseline for multi-threaded simulators:
naive, fully parallel simulators. Indeed, in the common pattern of composing a threaded
model for N cores with an unoptimized model for the remainder of the SoC, threading pro-
vides no latency-hiding benefit. While a given thread can dispatch tokens to the unoptimized
portion in a decoupled manner, this “operation” takes only a single cycle; in other words,
there is no extended latency to hide.

Fortunately, it is possible to take advantage of this latent latency-hiding capability by
introducing other optimizations into the system. The serialization of accesses employed by
the multi-ported memory optimization increases the latency to simulate a target cycle of
a given memory to several host cycles. As discussed in Chapter 5, pairing these resource-
optimized memory models with a baseline simulator can degrade performance, as the single-
cycle baseline model is frequently waiting for the serialized memory operations to complete.
In contrast, if the I/O tokens for the multi-cycle memory model are dispatched from a
threaded model, the simulator is capable of maintaining its peak theoretical throughput
of one simulated instance per host cycle, successfully hiding the latency of the memory
operation. While this scenario represents an idealized case where all external I/O is ready
each cycle, empirical results demonstrate that the thread scheduling is capable of mitigating
the relative impact of other latency-increasing simulation techniques.

7.2 Evaluation

As in Chapters 5 and 6, our experimental evaluation compares both the FPGA resource
utilization and performance of optimized and unoptimized simulators across a space of Rocket
Chip-based target designs.

7.2.1 Applying Multiple Optimizations to Rocket Chip

A key motivation for the modular structure of Golden Gate simulators is to allow opti-
mizations to independently target the components of the target design where they will have
the greatest impact. Therefore, when mixing the instance threading and multi-ported mem-
ory optimizations, we may take advantage of the complementary nature of their benefits by
directly combining the optimization strategies from Chapters 5 and 6. Since each optimiza-
tion is enabled for a particular block in the target design by adding an Chisel annotation,
this combination may simply add the union of both sets of annotations to the target.

Figure 7.3 depicts the same quad-core LargeBOOM-based Rocket Chip system as Fig-
ure 5.2, where it was annotated to replace each register file with a multi-cycle model, and
Figure 6.10, where it was annotated to thread the set of BOOM tile instances.

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 86

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

System Bus

BOOM Tile

BOOM Core

Page
Table

Walker

BOOM Frontend

L1 I-Cache

TAGE Predictor

L1 D-Cache

Integer
Regfile
8R4W

FP
Regfile
3R2W

Tile Bus

Tile 3 Tile 2

Tile 1Tile 0

L2 Cache Bank

L2 Cache Bank

Bank 0

Bank 1

EnableModelMultiThreadingAnnotation

O
u
t
e
r

M
e
m
o
r
y

S
y
s
t
e
m

MemModelAnnotation

MemModelAnnotation MemModelAnnotation

MemModelAnnotation

MemModelAnnotation

MemModelAnnotation MemModelAnnotation

MemModelAnnotation

Figure 7.3: Applying multiple optimizations to Rocket Chip.

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 87

7.2.2 Experimental Results

As in Chapters 5 and 6, we evaluate the performance benefit of composing multi-ported
memory serialization with instance multi-threading by measuring FPGA resource utilization
for various simulator configurations. Using Rocket Chip targets with a varying number of
LargeBOOM cores, these results may be compared among simulators of target designs of
widely varying size. However, rather than simply comparing the results from the combined
optimizations against those of the baseline simulator, we compare four different optimization
strategies:

• No optimization

• Applying the multi-ported memory optimization to BOOM’s register files

• Threading the tiles in an N -core system

• Combining both memory and threading optimizations in a multi-optimized simulator

Note: The register file optimizations use the dual-banked implementation from Section 5.4.3.

For each optimization strategy, simulators of target configurations with between 1 and
16 LargeBOOM cores were generated with Golden Gate and synthesized with Vivado
2018.3. As in previous sections, the ability to obtain synthesis results for simulators incapable
of successfully completing place-and-route on the default FireSim host VU9P FPGA helps
illustrate utilization trends across a wider range of core sizes. These results are depicted in
Figure 7.4. In contrast with the more detailed results shown in Figures 5.3 and 6.11, we
compare only overall LUT utilization, as block RAMs and other hard macros are never a
tight constraint on simulator implementation.

Overall, the trends shown in Figure 7.4 demonstrate clear synergy between the two
optimizations. The various simulator configurations—consisting of a target core count and
an optimization strategy—displayed widely varying scaling trends. Both the unoptimized
and memory-optimized simulators display nearly linear scaling of post-synthesis LUT count
with core count, but with the memory-optimized simulator gaining on average only 70%
as many additional LUTs per additional core when compared to the baseline simulator.
In contrast, both the threaded and multi-optimized simulators demonstrate—predictably—
far slower growth in LUT count with each added target core. Ultimately, the combined-
optimization strategy displays the best scaling, in part by avoiding the paradoxical effect of
FPGA-hostile memories growing super-linearly under threading. Indeed, the growth in LUT
count is so small that the 16-core multi-optimized simulator requires only a 5.1% greater
number than the 8-core configuration.

This sub-linear scaling provides significant resource savings at high core counts: though
a 16-core simulator would normally require an infeasibly large 4.3 million LUTs, the com-
bination of the two optimizations reduces this to 0.74 million, an 83% reduction. As the
multi-ported memory serialization and instance threading themselves provide 28% and 67%

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 88

reduction, respectively, the combined strategy represents an almost ideal composition of their
individual benefits.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16

To
ta

l F
ire

SI
m

 L
U

T
U

til
iza

tio
n

M
ill

io
ns

N LargeBOOM Cores

Post-Synthesis LUT Utilization vs. LargeBOOM Core Count

Unoptimized Mem. Opt.
Threading Multi-Opt.

Xilinx VU9P Capacity

Figure 7.4: A comparison of the utilization of simulators modeling Rocket Chip SoCs with
varying numbers of LargeBOOM cores. The simulators utilize four different optimization
strategies: no optimizations, employing multi-cycle models to simulate the cores’ eight-
read/four-write register files, using one threaded model to simulate the set of core complex
tiles, and using both optimizations in concert. The shaded markers represent simulator
implementations that successfully routed and closed timing at a 45MHz or 50MHz host clock
frequency, while the hollow markers represent post-synthesis utilization figures for infeasible
simulators that failed during placement. Note that at least two cores must be present to
employ the threading optimization.

While LUT utilization provides some insight into the scaling of the simulators across tar-
get machine size, it is ultimately only a proxy for the ultimate metric: whether the simulator
successfully completes place-and-route and closes timing. Therefore, Figure 7.4 also depicts
whether a given simulator configuration was successfully implemented for the Xilinx VU9P
on used on the AWS F1 host instance. While a maximum of two LargeBOOM cores could
be simulated with the baseline simulator, and each of the two individual optimizations could
extend this to four, applying both optimizations allows sixteen cores to be simulated on the
same VU9P device. This represents a 700% improvement in simulation capacity, radically
extending the capability of the simulator. Here, feasible simulators closed timing at a 50MHz
host FPGA clock frequency using Vivado 2018.3 and the default routing strategy prioritiz-
ing timing closure, aside from the four-core threaded configuration, where the † indicates
a 45MHz max frequency. Failing designs were re-attempted with a congestion-optimizing

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 89

routing strategy, but this did not result in success for any previously infeasible simulator
configuration.

FMR
N LargeBOOM Cores

1 2 3 4 6 8 12 16

Unoptimized 1.62 1.62 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Regfile models 5.37 5.40 5.40 5.39 ⊗ ⊗ ⊗ ⊗

Multi-threading N/A 4.41 5.41 6.37† ⊗ ⊗ ⊗ ⊗
Both optimizations N/A 6.14 9.11 8.11 18.1 24.0 24.0 32.0

Table 7.2: Observed FMR values for simulators with varying core counts and optimization
strategies. For each simulator configuration, an N -core LargeBOOM target system was
mapped to a simulator using the indicated optimizations, and, if implementation and place-
and-route succeeded, observed FMR data was collected by booting into Linux and running
a Python sorting application. Here, the ⊗ symbol indicates implementation failure.

Finally, in order to determine the relative performance of each simulator, average FMR
values were obtained for each feasible simulator configuration across a target workload con-
sisting of booting Linux and running a Python sorting script. The results of these experi-
ments are shown in Table 7.2. Each additional optimization trades parallelism for reduced
utilization; therefore, the multi-optimized simulator displays much higher FMR than the
baseline, with a 16-core simulator requiring 32.0 host FPGA cycles per simulated cycle.
However, while this is significantly slower than the 1.62 average FMR for the unoptimized
simulator, these results must be interpreted in the proper context. Ultimately, the combined
optimizations extend the capabilities of the simulator, not only avoiding a costly fallback to
a far slower simulation methodology, but also allowing it to perform more useful work per
simulated target cycle.

Comparing Simulator Capabilities

While the general utilization and throughput trends shed light on the performance of the
individual and combined optimizations, the ultimate goal of this work is to help circum-
vent the restrictions previously imposed by limited FPGA hardware resources on simulation
capacity. Therefore, it is worth comparing the simulation capacity supported by each opti-
mization strategy for a reference FPGA; in this case, the Xilinx VU9P device found in AWS
F1 instances. For a multi-core SoC like Rocket Chip, we define this capacity in terms of the
maximum number of cores that may be simulated on the device with a given optimization
strategy. Though this is ultimately an imperfect metric of simulation capacity, it reflects
a valuable real-world use case, and a space of various core configurations may be used to
reflect some of the variation in relative benefit of each optimization with changing target
microarchitectures.

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 90

While the resource-saving optimizations do provide corresponding increases in simula-
tion capacity, this comes at a notable increase in the FMR relative to an unoptimized
simulator—fortunately, the potential host clock frequency is generally not slowed due to
the FPGA-friendly microarchitectures generated by the optimizations. In the case where a
user has access to a fixed set of FPGA resources that could not accommodate an unoptimized
simulator, this may represent an acceptable tradeoff, as the alternative is to resort to far
slower software RTL simulation; in other cases (e.g., interactive target-machine workloads),
users may be extremely sensitive to simulator performance.

However, while any fair comparison of simulator capabilities must take these performance
effects into account, FMR alone does not tell the complete story. A simulator modeling
a larger system effectively does more useful work per simulated target cycle. Indeed, in
a software simulator or commercial emulation system (see Section 2.1.2), it is generally
expected that a larger design will result in a lower simulation throughput on the same host
computer. Though this relationship is less direct in traditional FPGA simulation, the ability
to trade off capacity and FMR with Golden Gate optimizations necessitates a performance
metric that takes into account the size of the simulated target system. For the multi-core
SoC target designs examined in this work, we contend that simulated core-cycles per second
is a useful, size-aware metric for simulator throughput.

Table 7.3 summarizes the capabilities of the simulators employing the different opti-
mization strategies in terms of both capacity and performance. Using the LargeBOOM
configuration of the BOOM core, the maximum simulated core count increases from 2 cores
with no optimizations to 16 cores with both multi-ported memory and multi-threading op-
timizations. While the ability to simulate a system with an 8x increase in core count comes
at a significant 19.8x increase in FMR, it is notable that the number of simulated core-cycles
per second is far closer, at 25.0MHz for the optimized simulator compared to 61.5MHz for
the baseline. This is in spite of the fact that the optimized simulator uses only one replica
of the combinational logic “datapath” to implement the state transition function for each
instance, compared to the two copies in the unoptimized two-core simulator. Ultimately, this
illustrates that the optimized simulator is relatively effective at keeping this datapath busy;
while the baseline simulator must frequently stall to wait for external I/O or co-simulated
models, the threaded scheduling is able to hide these latencies, along with the significant
latency of the multi-cycle memory models.

CHAPTER 7. COMPOSING MULTIPLE RESOURCE OPTIMIZATIONS 91

Optimizations Max Cores FMR simulated core-cycles
FPGA cycle

simulated core-cycles (millions)
second

Unoptimized 2 1.62 1.23 61.5

Regfile models 4 5.39 0.74 37.1

Multi-threading 4 6.7† 0.63 28.2†

Both optimizations 16 32.0 0.50 25.0

Table 7.3: A summary of the capacity and performance capabilities of simulators employing
various combinations of optimizations for multi-core SoCs based on the LargeBOOM con-
figuration of the BOOM core. Simulated core-cycles per second is a simulation throughput
metric that incorporates the size of the target design.

92

Chapter 8

A Chisel Temporal Property
Verification Toolkit

In the modern era of hardware design, the process of verifying a design against its spec-
ification represents a significant and growing burden. Broad consensus indicates that for
many projects, verification accounts for a larger share of total engineering effort than de-
sign [31]. While the tools presented in this work are structured as compiler optimizations
for generating FPGA-based simulators, they also represent a significant body of hardware
design implementation artifacts; therefore, they cannot escape the burden of verification.
Each new Golden Gate compiler pass is a form of hardware design generator, and some
optimizations introduce parameterized instances of hand-written blocks to efficiently model
components such as highly ported memories. Though FPGA-based simulators and associ-
ated software tools do not share the extreme risk of post-silicon bugs intrinsic to the ASIC
design process, it is impossible for Golden Gate to provide a useful platform without
significant efforts toward quality assurance.

Given this reality, the implementation of the resource-efficiency optimizations must in-
corporate verification collateral. While the limited resources of “gradware” development are
a significant constraint, the use of the Chisel language and compiler ecosystem present both
challenges and opportunities for functional verification. Though Chisel generally lacks the
mature tool support of legacy hardware description languages like Verilog or VHDL, the
flexibility of both the Scala frontend and the FIRRTL compiler framework allow users to
build their own tools. With this in mind, we present two tools developed in the process
of verifying elements of Golden Gate-based optimizations: a temporal property verifica-
tion library, discussed in this chapter, and LIME, a specialized tool for checking simulation
models, discussed in Chapter 9.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 93

8.1 Background

Since its introduction in 2011, the Chisel language has cited as a driver of increased pro-
ductivity for digital hardware designers across multiple application domains. Its focus on
parameterization has naturally lent itself to developing generators that can produce variants
of a basic design that span different sizes [90], and the use of Scala as a host language has
allowed users to design new programming paradigms to extend reuse beyond the module
level and to automate bus-level integration and parameterization [3, 26]. Beyond the general
added expressiveness of of Scala meta-programming, this success can be partially attributed
to the design of Chisel as a Hardware Construction Language (HCL), which eschews many
of the complicated semantics of existing Hardware Description Languages (HDLs) in favor
of a simple API that encodes synthesizable RTL designs by construction [6]; this simplifi-
cation makes it easier to reason about—and therefore to reuse—existing portions of Chisel
code. However, this restriction leads to a notable hurdle: as a strict hardware construction
language, Chisel has limited support for directly expressing hardware verification constructs.
While designers enjoy increased productivity and improved code quality, Design Verification
(DV) engineers often rely on ad-hoc integration downstream of Chisel and FIRRTL; this gap
is often cited as a challenge in reducing the relative burden of verification in a Chisel-based
hardware development flow [67].

With the goal of helping to narrow this gap, we introduce a framework for incorporating
Linear Temporal Logic (LTL) properties and Bounded Model Checking (BMC) into the ver-
ification of Chisel designs. This framework aims to bring the convenience of tight integration
with Chisel while relying on the UCLID5 modeling system for performing the formal verifi-
cation of the desired properties [11, 78]. By exposing an API at the Scala level, it aims to
offer the reuse and productivity advantages of Scala meta-programming in the verification
domain.

8.1.1 Related Work in Chisel Verification

In response to the perceived “Chisel verification gap,” many existing projects have aimed
to improve the verification flow for Chisel designs, especially in the domain of dynamic
verification, where a Design Under Test (DUT) is simulated in the presence of particular
input stimulus. The core Chisel API includes an assert operation that defines an immediate
assertion requiring a particular Boolean-valued signal to be true at all points in time; this
feature has proven to be valuable in encouraging designers to assume some of the verification
burden. When combined with a basic convention for gating assertions before signals are reset,
this has proven to be a mainstay of dynamic verification for Chisel designs. Furthermore,
the ChiselTest framework provides a means to write low-overhead dynamic unit tests for
hardware blocks by adding a simple peek- and poke-based API that runs within the same
Scala programming environment as the generator of the DUT [66]. This simplified approach
incentivizes designers to invest time in unit testing before delivering blocks to DV engineers,
balancing out the traditionally back-loaded verification workload.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 94

In addition to these core Chisel testing features, multiple research projects have aimed
to better integrate formal methods for verification with Chisel. The SecChisel project in-
troduced a set of tools for adding security labels to designs and checking the bounds of
information flow [29], including a tool for generating SMT-LIB 2.0 [7] representations of
FIRRTL circuits. While this tool is specialized for tracking the visibility of information
and does not include full semantics for FIRRTL, it relied directly on FIRRTL IR without
translation to Verilog, and prototyped a form of property propagation that predated the
adoption of annotations in the FIRRTL implementation. Additionally, in the time since
the development of the UCLID5 backend for FIRRTL, an experimental SMT backend for
translating flat single-module FIRRTL designs directly to SMT-LIB 2.0 has been added to
the FIRRTL repository [61].

In contrast to previous work on dynamic Chisel testing frameworks, the Chisel LTL toolkit
provides tight integration with a model checker to enable low-overhead formal verification.
Rather than requiring manually crafted or directed random stimuli reveal underlying bugs
by elaborating large sets of traces, this approach allows the user to leverage the power of
non-determinism to verify properties across the space of possible inputs. Furthermore, by
building atop an existing model checker, UCLID5, via a thin abstraction, this open-source
system provides the ability to accomplish useful tasks with less implementation overhead than
other approaches to incorporating formal verification into a Chisel-based design cycle [21].

8.1.2 Linear Temporal Logic Properties

When defining properties for the LI-BDN networks that comprise a Golden Gate simu-
lator, we rely Linear Temporal Logic (LTL) [74] formulae. LTL is a widely-used logic that
enables the compact expression of specifications as temporal properties that are expressive
enough to capture many safety and liveness properties as compact formulae.

In this work, LTL properties consist basic propositional logic formulae, along with a
set of temporal operators. This may be expressed as a set of production rules for LTL
property Φ. Here, Ψn is used to refer to any arbitrary LTL property, while p represents an
arbitrary propositional logic formula. In the context of writing specifications for RTL designs,
propositional logic formulae often derive their truth values from Boolean-typed signals, and
a formula requiring such a signal to be true is effectively an immediate assertion.

8.2 UCLID5

The ultimate goal of providing an LTL property verification toolkit for Chisel is not to
re-invent existing methods, but rather to provide productivity advantages through tight
integration with Chisel and Scala. Therefore, in order to check LTL properties of Chisel
systems, we rely on UCLID5, an open-source tool that defines a modeling language and
provides an implementation that includes a variety of methods by which to verify proper-

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 95

Rule Explanation

Φ = p Any propositional logic formula p is an LTL property

Φ = ¬Ψ1 Φ holds iff Ψ1 does not hold

Φ = Ψ1 ∨Ψ2 Φ holds iff Ψ1 holds or Ψ2 holds

Φ = Ψ1 ∧Ψ2 Φ holds iff Ψ1 holds and Ψ2 holds

Φ = X Ψ1 Ψ1 holds for the next time step

Φ = G Ψ1 Ψ1 holds for all traces starting at subsequent steps

Φ = Ψ1 U Ψ2 There is some step where Ψ2 holds, and Ψ1 holds for all earlier steps

Table 8.1: A list of production rules summarizing the range of LTL properties used in this
work.

ties of systems, along with other advanced tools for reasoning about or synthesizing their
implementations [87].

At its core, the Chisel LTL property library relies on translating the FIRRTL circuits
emitted by Chisel and their associated properties to a format that can be be programmati-
cally verified. Furthermore, it is ideal that the format support a few key features:

1. Modeling of concurrent hardware systems and fine-grained bit-vector implementations

2. A module-level abstraction that reflects the organization of Chisel designs

3. One or more languages for expressing temporal properties

While there are a number of appropriate formats that provide all three of these features,
including those of finite state model checkers like NuSMV [24, 23] and even SystemVerilog
with its full assertion language [41], we choose to target the UCLID5 language for two
primary reasons. Unlike SystemVerilog, which as of this writing requires commercial tools
such as Cadence JasperGold [48] to check expressive temporal properties, there is a fully-
featured open-source UCLID5 implementation. Furthermore, while FSM-oriented languages
like NuSMV are sufficient to capture both Chisel circuits and associated LTL specifications,
UCLID5 provides the capability to mix FSM-like and software-like components via modular
abstractions. While this composition of models of both concurrent hardware and procedural
software is outside the scope of this dissertation, there is active interest in modeling behaviors
of hardware-software systems that reflect the realities of present Chisel implementations,
including security properties of the Keystone open-source enclave [62].

While directly translating FIRRTL circuits provides both convenience and fidelity, the
extremely low level of abstraction can also lead to high computational complexity for verifi-
cation tasks. While RTL detail can be useful to reason about the true implementation of a
particular block in a real SoC, it can lead to intractable SMT formulae. By reasoning about
FIRRTL-level implementations only where necessary or convenient, the ability to blend com-

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 96

ponents automatically derived from real Chisel RTL with efficient, abstract software models
can provide a useful tool in solving higher-level verification problems [19].

8.3 A Chisel-Based LTL Property Verification Flow

With these background goals established for the project, we may outline the concrete struc-
ture of the project. Just as the Chisel design flow includes a generator, frontend API calls,
emission of FIRRTL, transpilation and lowering of FIRRTL, and translation to Verilog, the
Chisel LTL property-checking toolchain involves multiple layers.

1. A user-facing Scala API for expressing LTL properties

2. Optional, custom FIRRTL transformations to encode verification-related assumptions

3. A backend for FIRRTL that encodes systems and properties in the UCLID5 language

In the core FIRRTL compiler, information is passed among layers via the well-specified
FIRRTL IR. However, since this IR lacks both temporal properties and directives to control
downstream verification tools (e.g. a BMC bound), the layers of the Chisel LTL toolkit must
agree upon a standardized verification IR to represent such information.

In addition to the layered structure of the design flow, it is also intuitive to consider
the user-facing verification language as a collection of layers, each providing different func-
tionality. Here, we draw inspiration from the IEEE Property Specification Language (PSL)
standard for cross-language temporal properties [39]. Though PSL includes a strictly more
expressive language than LTL that is beyond the scope of this work, it also formally divides
the property specification interface into four layers:

• The Boolean layer consists of Boolean expressions expressed via the host language;
their truth values are defined at a particular instant in time.

• The temporal layer introduces temporal operators and may include Boolean-layer ex-
pressions as atomic propositions within the temporal property language.

• The verification layer contains standardized directives to control verification.

• The modeling layer uses the host language to define behavior of the system. When
verifying an extant design, this includes the HDL implementation.

This layered structure is also a useful design principle for incorporating a temporal prop-
erty library as a “third-party” addition to an existing HDL. In particular, we rely on Chisel
and FIRRTL to provide the interface and the intermediate representation, respectively, for
both the Boolean and modeling layers. However, since Chisel and FIRRTL semantics are in-
sufficient to express the temporal and verification layers, these rely on a custom intermediate
representation contained in FIRRTL annotations. In this implementation, the verification

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 97

IR is embedded within a collection of FIRRTL annotation types that rely on the annotation-
propagation framework described in Section 4.2.2. These annotations broadly fall into two
classes: property annotations, which encode the actual LTL specification, and control anno-
tations.

8.3.1 LTL Property Annotations

When designing a means to encode LTL properties for Chisel designs, there are two critical
objectives: the encoding must be sufficient to represent the full LTL property language from
Table 8.1, and it must have a means by which to incorporate the value of signals in the current
state of the system into the definitions of atomic propositions. Fortunately, since FIRRTL
annotations can contain arbitrary serializable data structures and Scala case classes, it is
possible to define annotation classes that carry Abstract Syntax Trees (ASTs) for arbitrary
languages. Furthermore, annotations rely on the Target API introduced in Section 4.2.2
as a formalized interface for referring to signals within the circuit. By combining these
two features, the annotations may encode arbitrary LTL properties that refer to atomic
propositions that are defined at the Boolean layer as traditional components of the FIRRTL
IR, while also properly tracking changes to these components that arise in the standard
lowering passes of the FIRRTL compiler.

8.3.2 Control Annotations

In addition to a system and a set of temporal properties that encode its specification, a
verification task generally requires a user to specify a strategy. One example of such a
strategy is directing a model checker to perform BMC on a system against the specification;
furthermore, this strategy may take parameters, such as the time bound in the BMC example.
In general, these are elements of the verification layer from the PSL taxonomy.

8.3.3 Chisel LTL Property API

Given that the verification IR combines a very direct representation of LTL properties with
FIRRTL annotation targets to track Boolean-layer signals, a very thin Scala frontend API is
sufficient to implement the LTL language and control directives. By relying on Scala features
aimed at embedding domain-specific languages,including symbolic method names, implicit
conversions, and companion objects [6], the LTL property can be rendered as unobtrusive
as possible.

As shown in Figure 8.1, these features allow properties to resemble traditional LTL
notation. While the AP operator explicitly promotes Boolean-layer signals to the temporal
layer, implicit conversions allow such calls to be omitted when passing arguments to higher-
level LTL operators like F . Finally, wrapping the property in the LTL operator captures its
syntax and associated references to Boolean-layer signals within a FIRRTL annotation. The

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 98

import chisel3._

import chiselucl.control._

import chiselucl.properties.ltlsyntax._

class MyModule extends Module {

...

LTL(G(AP(active && start) ==> F(finish)))

...

Figure 8.1: An example liveness property expressed in the Chisel LTL language

net result is a convenient Scala frontend API that conceals the fact that the verification IR
is an ad-hoc addition to the Chisel and FIRRTL ecosystem.

8.3.4 Verification Library Transforms

As a guiding principle, the FIRRTL infrastructure adopts a variant of the “Unix philosophy”:
it is ideal to divide tools into multiple transforms that each do one thing well. Therefore,
since some steps of UCLID5-based LTL verification flow express fundamental patterns that
are useful in a broader context, these components are packaged as independent, reusable
transforms. Here, we examine two such transforms: a tool for transforming resets into
initializations, and an alternative strategy for lowering arbitrary “don’t care” values to better
exploit non-determinism in verification.

Reset to Initialization Transform

When expressing systems in UCLID5 and other verification languages, first-class initializa-
tion constructs are used to abstractly represent both reset events and other initial-value
assumptions that may exist for the system. In contrast, systems expressed in hardware de-
scription languages such as SystemVerilog that support both design and modeling tend to
draw a dichotomy between reset and initialization. While the former defines how a signal
assumes a known value in response to some stimulus, the latter defines the value the signal
has at the “start of time.” As this lacks a general physical analogue in an ASIC implemen-
tation of a digital circuit, the constraints of automated logic synthesis require designers to
express resets via standard logic constructs such as conditional assignments. Explicit ini-
tialization features are often restricted to simulation contexts, where they takes precedence
at the beginning of execution, or to the semantics of initial states when reasoning about
the design as a transition system. However, some modern FPGAs define a precise “start
of time” immediately after programming, at which point signals take their specified initial
values that immediately follows programming.

Given the broad utility of initialization, it is a first-class construct in both UCLID5
and (System)Verilog. While the core FIRRTL specification lacks a first-class initialization

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 99

construct, support has been added to the default implementation via annotations: if an
asynchronous reset signal is annotated as “preset” signal, all state elements that rely on
that signal for reset will be initialized unconditionally with their initial value. Though
more complex, this has a direct mapping onto dedicated initialization constructs in target
languages (such as initial in Verilog) during emission and is therefore useful for simulation
and verification purposes.

In order to better exploit this feature, the verification transform library includes the
ResetToInitialization transform, which infers whether a design has a single reset do-
main; if it does, it converts all register resets to the initialization pattern. This presents a
powerful simplification when generating downstream UCLID5 models, as it allows the initial
state of the system to represent a consistent post-reset state. Furthermore, translating re-
sets implemented with FIRRTL logic into UCLID5 init constructs significantly reduces the
computational complexity of a model by eliminating the need to predicate checks on a pre-
ceding reset event. Though it is not universally applicable, this translation is convenient for
checking properties in the common case of blocks with well-defined, simple reset semantics.

Arbitrary Value Substitution Transform

Like initialization, another common feature of both UCLID5 and SystemVerilog is the as-
signment of arbitrary value to a signal. In SystemVerilog, this is represented with the use
of the X state as the assigned value (though the semantics of operations on this value render
it difficult to use correctly [82]), while in UCLID5, the ‘havoc‘ statement is used to perform
a non-deterministic, arbitrary assignment to a variable. To enable multiple idioms for as-
signing and using arbitrary values, FIRRTL supports both an invalidation statement and a
conditionally valid expression, and the compiler infrastructure includes transforms to help
lower these constructs to support multiple target languages.

Although FIRRTL IR is offers multiple arbitrary value constructs, significant hurdles
remain to productively using them for verification. In the present compiler implementa-
tion, the mandatory lowering of these constructs ultimately results in the removal of all
arbitrary-value assignments in favor of deterministic assignment with zero; worse yet, dis-
abling this transform will violate the assumptions of downstream transforms. Though this
enhances simulation determinism, it eliminates the bug-finding power of non-determinism
that is critical for techniques like BMC.

Given this limitation, and given the cross-environment appeal of selectively emitting
true arbitrary value constructs, we include an ArbitraryValueSubstitution transform that
relies on annotations and alternative, reversible lowering. By appropriately specifying their
prerequisites, emitters that support arbitrary values in their target language may optionally
select the alternative lowering, allowing appropriate representations of non-determinism to
be carried through to the verification environment.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 100

8.3.5 A UCLID5 Backend for FIRRTL

In contrast with the verification utility transforms, which are more generally applicable, the
final layers of the Chisel LTL property-checking stack are highly specialized to the UCLID5
target language. However, many the benefits of a layered compiler still apply, even if the
reusability is limited. Therefore, the UCLID5 backend is divided into two components:
backend transformations and target language emission. In addition to the final emission
layer, we highlight a Boolean type inference transform that enhances the quality of emitted
models.

Boolean Type Inference

Though UCLID5 is generally well-matched for representing digital hardware, there are some
semantic differences between it and FIRRTL that complicate emission. Most noticeably,
since UCLID5 aims to provide a high degree of type safety, it distinguishes between single-
bit bit-vector (or bv1) values and Boolean values. Though this mirrors VHDL [40] and
provides a natural match for the intended SMT-LIB target format, it presents a significant
mismatch with FIRRTL that unifies the two types. Most critically, the built-in LTL property
component of the UCLID5 language requires atomic propositions to have Boolean type;
therefore, some care is needed to ensure a consistent interface between the Boolean layer
and the temporal layer in the emitted code.

To address this mismatch, the UCLID5 backend flow includes an additional transform to
process Boolean expressions. Since UCLID5 lacks explicit type casts from bv1 to Boolean
or vice-versa, the ultimate fallback for type coercion is a comparison with unity or a ternary
operator, respectively. However, excessive use of these patterns increases model size, which
leads to increased solver runtime. Therefore, the Boolean type inference transform attempts
to minimize the number of coercions using a min-cut algorithm on a typed dataflow graph.

UCLID5 Emission

At the end of the compiler flow, the lowered circuit must be translated to the UCLID5 target
language. Fortunately, since this language is a good match for expressing basic hardware
description languages like Low FIRRTL, and since the transforms described in the preceding
sections further minimize any opportunities for semantic discrepancies, the process is fairly
straightforward.

In the concrete Scala implementation, the UCLID5 emitter is generally similar in struc-
ture to the SystemVerilog emitter in the default FIRRTL flow. As with other FIRRTL
backends, this emitter incorporates settings defined by certain annotations into its emission
strategy, including the generation of init blocks based on the preset annotations introduced
in Section 8.3.4. However, unlike other emitters, the UCLID5 emitter also processes property
and control annotations and emits them as part of the output UCLID5 modules. By preserv-
ing the property annotations from the Chisel layer all the way through UCLID5 emission,
the output LTL properties syntactically reflect the user input, enhancing readability.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 101

8.4 Case Study: Verifying a Queue

As a concrete example of a task that could be solved with the Chisel LTL toolkit, we
check that a simple Chisel implementation of a First-In, First-Out (FIFO) queue obeys a
specification defined by a set of LTL properties. This problem mirrors the Queue example
system from the UCLID5 repository and demonstrates how to add an LTL specification to
a similar system specified in Chisel.

As a simplifying assumption, consider the basic one-entry UnitQueue shown in Figure 8.2.
It has been augmented with several LTL properties that make up a specification, along with
a BMC control annotation. While these properties will hold true on a deeper FIFO that
uses an underlying memory to store enqueued elements, the UnitQueue reduces the code
footprint of each example.

While the design is very simple, it demonstrates most of the key features of the Chisel
LTL toolkit. Furthermore, it illustrates that while the Scala-embedded language makes
it convenient to express a specification, devising an appropriate specification still requires
careful consideration. Here, we consider three properties:

• The output irrevocable property ensures that if the queue has an item available at
its output that is not dequeued, the same item will be available in the next cycle.

• The input eventually output property ensures that any item that enters the queue
will eventually be available at its output, as long as the downstream sink doesn’t block
the queue forever and there is no intervening reset.

• The no spurious backpressure property specifies that the queue cannot remain full
(unable to enqueue) indefinitely if the downstream interface is attempting to dequeue.

Each of these properties mixes Boolean- and temporal-layer constructs. Additionally, the
first two properties include constants – comparisons with constants of unspecified values can
be used to “capture” values and use them as part of temporal specifications. This modeling
construct is defined via the standard Chisel and FIRRTL blackbox interfaces by representing
the constant with a wrapper of the appropriate data type. Finally, it is noteworthy that the
latter two properties are liveness properties [70], which require infinite traces to exhaustively
verify. This demonstrates one of the greatest advantages of relying upon an existing model-
ing system like UCLID5: it implements algorithms to translate bounded checks of liveness
properties to SMT formulae that ensure the system does not re-enter a liveness-violating
state within a particular recurrence diameter [9]. Through the combination of powerful
tools with simple front-end interfaces, designers may rely on an ergonomic, fully automated
flow to harness the power of non-determinism to check properties.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 102

class UnitQueue(width: Int) extends MultiIOModule {

val i = IO(Flipped(Decoupled(UInt(width.W))))

val o = IO(Decoupled(UInt(width.W)))

val data = Reg(UInt(width.W))

val full = RegInit(false.B)

i.ready := !full

o.valid := full

o.bits := data

when (i.fire) { full := true.B }

when (o.fire) { full := false.B }

// If queue has data and it isn't dequeued , it still has that data.

val arbitrary_valid_data = FreeConstant(UInt(width.W))

LTL(

G(AP(! reset.toBool && o.valid && !o.ready && o.bits ==

arbitrary_valid_data) ==>

X(o.valid && o.bits == arbitrary_valid_data)),

"output_irrevocable"

)

// Data entering implies it eventually appears at the output ,

// unless the downstream sink blocks forever or reset occurs

val arbitrary_input_data = FreeConstant ((UInt(width.W))

LTL(

G(F(io.deq.ready)) ==>

G(AP(i.fire && i.bits === arbitrary_input_data) ==>

F(reset.toBool || (o.valid && o.bits === arbitrary_input_data))),

"input_eventually_output"

)

LTL(

G(AP(o.ready) ==> F(i.ready)),

"no_spurious_backpressure"

)

// Run BMC for 10 steps: Queue -ED

BMC (10)

}

Figure 8.2: A Chisel single-entry FIFO queue with an associated LTL specification.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 103

8.5 Leveraging Generators & Object Orientation

As with the core Chisel hardware construction API, an added benefit of the Chisel LTL
property library is the ability to embed API calls within a larger Scala program. In particular,
object orientation can be a useful pattern for expressing a verification generator, and can
enhance reuse of verification collateral by avoiding the need for repeated explicit inclusion
in multiple components

While the properties in Figure 8.2 can all be used to verify the single-entry queue, it is
possible to express some of them as more general properties of the interfaces of the queue. For
example, the output irrevocable property encodes irrevocability of the output ready-valid
interface of the queue, and could broadly apply to many ready-valid interfaces that guarantee
that a valid token will remain present on the interface with constant data until accepted by
the sink. Indeed, the Chisel standard library has the notion of a ready-valid interface with
such properties, with the IrrevocableIO class that is labeled with the following restrictions:

A concrete subclass of ReadyValidIO that promises to not change the value of ‘bits’
after a cycle where ‘valid’ is high and ‘ready’ is low. Additionally, once ‘valid’ is raised
it will never be lowered until after ‘ready’ has also been raised.

By associating this behavior with a Scala generic class, and therefore a parameterized
type, Chisel is able to help provide a degree of safety from some errors. For example, one
common error of composition would be to pass a source with a non-irrevocable ReadyValidIO
output to a connection or function expecting irrevocable behavior; by encoding the distinc-
tion in the type system, generators can be structure to make this impossible. However, while
strong typing is helpful, it is not a panacea, and the Chisel implementation notably lacks any
integrated way to ensure that the requirements of the IrrevocableIO interface are actually
honored.

Fortunately, it is possible to encode these requirements in an LTL specification to com-
plement the benefits of type safety. Furthermore, these properties can be defined in Chisel
LTL API calls contained within the definition of the interface itself. As shown in Figure 8.3,
incorporating properties of an interface in the corresponding Bundle class definition allows
them to be seamlessly applied to every instance. In this way, a library developer may lever-
age object-oriented design to enhance reuse of LTL properties and lower overall verification
burden.

CHAPTER 8. A CHISEL TEMPORAL PROPERTY VERIFICATION TOOLKIT 104

class IrrevocableWithSpec(width: Int) extends Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(UInt(width.W))

val arbitrary_valid_data = FreeConstant(UInt(width.W))

LTL(

G(AP(valid && !ready && bits == arbitrary_valid_data) ==>

X(valid && bits == arbitrary_valid_data)),

"irrevocable"

)

}

class UnitQueue(width: Int) extends MultiIOModule {

val i = IO(Flipped(Decoupled(UInt(width.W))))

// Irrevocable LTL property automatically applied to output!

val o = IO(IrrevocableWithSpec(width.W))

val data = Reg(UInt(width.W))

val full = RegInit(false.B)

...

// Run BMC for 10 steps

BMC (10)

}

Figure 8.3: Similar to a Chisel generator, a verification generator can leverage object-
orientation to ease reuse of common LTL properties.

105

Chapter 9

LIME: Verifying Multi-Cycle Models

With Golden Gate, we demonstrate that pervasive area optimization can be applied to a
large, FPGA-accelerated hardware simulator by substituting FPGA-hostile elements of the
design for FPGA-friendly models. In the construction of a decoupled, compositional hard-
ware simulator, this substitution can include changes to the underlying latencies of isolated
partitions of the design, allowing techniques like time-multiplexing of hardware resources
to be applied without the typical limitations imposed by synchronous FPGA prototypes.
However, these optimizations can only be practical if it is possible to establish with a high
degree of confidence that the decoupled, optimized models of the design avoid breaking the
cycle- and bit-exact correspondence of the simulation results with the ordinal target design.
Fortunately, the LI-BDN formalism provides a framework in which this high-level correctness
goal can be achieved; however, it in turn depends on the correctness of the individual models
of the simulator for both cycle-accuracy and deadlock-avoidance guarantees.

While Vijayaraghavan and Arvind [89] describe the correctness conditions for individual
simulation models as a set of formal properties, it can be difficult to check whether such
an optimized model is truly “simulation equivalent,” as the notion of equivalence is distinct
from the trace containment concept used in other hardware equivalence checks. To address
this gap, we introduce lime, a push-button model checking tool for checking the correctness
of Golden Gate simulation models.

9.1 Structure of the LIME Checker

At a high level, verifying LI-BDN simulator implementations involves checking the three
properties introduced in Section 3: Partial Implementation (PI) of the reference design,
along with the No Extraneous Dependencies (NED) and Self-Cleaning (SC) properties that
guarantee that the simulator will not deadlock. lime achieves this by automatically gener-
ating a Bounded Model Checking (BMC) problem for each of the three properties for a given
model, with each BMC case structured as an input to the UCLID5 [78] verification system.
The lime flow is depicted in Figure 9.1, which shows the how a model-checking problem

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 106

is created from FIRRTL circuits specifying the model (Model.fir) and associated target
component (RTL.fir). lime has two primary phases: it translates the FIRRTL inputs into
the semantics of UCLID5, and then it constructs a model-checking problem for each of the
LI-BDN properties.

9.1.1 A UCLID5 Backend for FIRRTL

To check formal properties of FIRRTL circuits like PI, NED, and SC, it is necessary to have
both a formal model of FIRRTL semantics and an automated tool for representing FIRRTL
circuits in a model-checking environment. To this end, we developed a UCLID5 backend
for the FIRRTL compiler. As described in [47], the FIRRTL compiler is composed of many
lowering passes that progressively remove higher-level constructs from the IR until it is in
a lowered form. At this point, one of multiple emitters is invoked to produce output in a
preferred form. Typically, designs are emitted as Verilog for use by downstream CAD tools,
whereas lime uses our UCLID5 emitter.

We targeted the UCLID5 modeling system as it is open-source, and provides strong sup-
port for compositional modeling across both synchronous and asynchronous systems. While
lime was designed to check LI-BDN properties, the UCLID5 backend is considerably more
versatile. Using Chisel and FIRRTL, designers can write annotations that carry UCLID5
assumptions, invariants, and properties to be emitted alongside the UCLID5 implementa-
tion of the circuit. This enables designers of hardware generators to co-generate verification
collateral, easing the challenge of verifying a generator with a large space of possible output
designs. Since lime is intended to help hardware designers write formally verified LI-BDN
models, we extended UCLID5 to optionally emit VCD waveforms in order to make coun-
terexamples easier to interpret.

9.1.2 Modeling Environment Generation

The Environment Generator is a Python program that generates UCLID5 testbenches to ver-
ify Partial Implementation, NED, and SC for a given reference RTL and LI-BDN model pair.
Since each of these has slightly different modeling environment requirements, we split check-
ing these properties into three separate testbenches. To enable a “push-button” verification
tool, we use metadata produced during FIRRTL compilation to establish correspondences
among the token channels of the LI-BDN simulation model and the I/O of the reference RTL
component, and lime automatically specializes the generated environment to have the ap-
propriate structure. Because appropriate invariants for k-induction must constrain internal
state of the simulation model, they require introspecting on the model implementation in a
manner that is currently incompatible with our automatic testbench generation. Instead, we
use Bounded Model Checking to verify the three properties, and leave an inductive approach
to future work.

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 107

BMC Model
FIRRTL CompilerModel.fir

RTL.fir Channel Info

UCLID Emitter

Lowering

Type-Checking } default
passes

Model.ucl

RTL.ucl

UCLID5
Environment

UCLID5

✘

✔

Figure 9.1: lime Flow

9.2 Model Checking LI-BDNs

In all lime property checking flows, the general structure of the model resembles the diagram
shown in Figure 9.2. Here, the system is the LI-BDN that simulates a given reference RTL
component, and the environment is the set of sources that generate input tokens for the
LI-BDN and the set of sinks that consume output tokens. In this section, “simulation LI-
BDN” is used in lieu of “simulation model,” to avoid confusion with the “model” from model
checking.

When checking PI, NED, and SC properties of simulation LI-BDNs, the environments
always model the sources and sinks as abstract queues. Input queues nondeterministically
present tokens to the simulation LI-BDN and track the number of consumed tokens (dequeue
count). Output queues use credits rather than a finite capacity, with a credit nondetermin-

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 108

�����������

�

�
�

�

�
�

���

�0�������
�

����3�
�

	�
��
���

��
��
�

�
������������

��������32�

�
�2���

2����
����3�2���

�����
����3�����

�
�����

Figure 9.2: Partial Implementation Model

istically being added each step. The advantage of this is that it allows for arbitrary token
arrivals and output back-pressure while offering guarantees that are not respected by ran-
domizing inputs to the LI-BDN; specifically, validity of source data and readiness of sinks
are stable, meaning that a source will not cease to have a valid token if it is not consumed
and a sink will not cease to be ready if it is not provided with a token.

9.2.1 Partial Implementation

PI guarantees that the behavior of the simulation LI-BDN will be a cycle-exact representation
of a particular Synchronous Sequential Machine (SSM), if its environment is itself a cycle-
exact simulation of the inputs of the SSM. Formally, Vijayaraghavan et al. [89] define PI
as:

A BDN R partially implements an SSM S iff

1. There is a bijective mapping between the inputs of S and [the input tokens of] R,
and a bijective mapping between the outputs of S and [the output tokens of] R.

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 109

2. The output histories of S and R match whenever the input histories match, i.e.,

∀n > 0

I(k) for S and R matches (1 ≤ k ≤ n)

⇒O(j) for S and R matches (1 ≤ j ≤ n)

To provide matching input histories and compare output histories, the PI model com-
poses the simulation LI-BDN with the reference SSM RTL. For each input channel, a non-
deterministic sequence of input values is provided to the two implementations: as syn-
chronous, cycle-by-cycle signal for the SSM, and as an abstract source FIFO model for the
LI-BDN. On the output side, abstract sinks record the output token histories of the SSM,
which are then compared with the cycle-by-cycle output histories of the SSM.

Using this construction, the environment forces the input histories of the LI-BDN and
the SSM to match, while capturing their output histories. In this environment, we define PI
as a conjunction of invariants, each ensuring for some output oj that the output histories of
the SSM and LI-BDN match according to correspondence operator =̂ based on the bijection
between output tokens and outputs. Here, the property being verified must assert the
conjunction of the PI invariant PIj for every oj ∈ O.

Invariant PIj

∀i ∈ [0, cycles) i < enq cntj ⇒ SSM histj(i) =̂ BDN histj(i)

9.2.2 No Extraneous Dependencies

Vijayaraghavan et al. [89] formally define the No Extraneous Dependencies (NED) property:

A primitive BDN has the NED property if all output FIFOs have been enqueued
at least n − 1 times, and for each output Oi, all the FIFOs for the inputs in
CombinationallyConnected(Oi) are enqueued n times, and all other input FI-
FOs are enqueued at least n−1 times, then Oi FIFO must eventually be enqueued
n times.

This definition relies on the definition of CombinationallyConnected(Oi), which is a set
of input signals associate with each output Oi in the original SSM. This set is the transitive
closure of combinational connections in a circuit, where a combinational connection is the
use of a value of a signal within the same cycle, such as that of a wire or intermediate
expression, but not that of a state element such as a register or memory. Throughout this
section, we use the notation CC(Oi) to denote such a set associated with output Oi.

To express the NED property in a form amenable to automated checking, we represent
it as the conjunction of multiple LTL properties, each of which enforces that a particular
output o may have no extraneous dependencies. Here, n − 1 from the above description

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 110

corresponds with the minimum number of tokens enqueued by any output channel of the
LI-BDN; therefore, the property expresses an obligation for o to produce an output when
at least n tokens have arrived at all the inputs to which o is combinationally connected, at
least n− 1 tokens have arrived at all other inputs, and no more than n− 1 tokens have been
produced by o. This constraint on o may then be expressed as an LTL property.

NED LTL property for output o

CCj(i) := output oj depends combinationally on input i

obligatedj := min
{i∈I:CCj(i)}

enq cnti > min
{o∈O}

enq cnto∧
min
{i∈I}

enq cnti ≥ min
{o∈O}

enq cnto∧
enq cntoj = min

{o∈O}
enq cnto

NEDj := G
(
obligatedj ⇒ F

(
out readyj R out validj

))
9.2.3 Self-Cleaning

Vijayaraghavan et al. [89] define SC:

A primitive BDN has the SC property, if when all the outputs are enqueued n times,
all the input FIFOs must [eventually]1 be dequeued n times, assuming an infinite source
for each input.

As with PI and NED, the SC property can be expressed as a conjunction of LTL proper-
ties, each specifying when an input i is obligated to eventually dequeue a token. A common
term in all of the properties is the minimum number of enqueued tokens by any output
port; this value corresponds with n in the English-language description of the property. As
part of the LTL property for input channel i, we add a signal obligatedi indicating that the
simulation LI-BDN has dequeued fewer than n tokens from that channel.

SC LTL property for input i

obligatedi ⇔ input channel i has a dequeue obligation

obligatedi := deq cnti < min
{o∈O}

enq cnto

SCi : G (obligatedi ⇒ F (in validi R in readyi))

1Clarified in [88].

CHAPTER 9. LIME: VERIFYING MULTI-CYCLE MODELS 111

9.3 Verifying Multi-Ported Memory Models with

LIME

The lime flow can be applied to any Golden Gate simulation model, but is especially
useful for the widely applicable memory optimization models discussed in Chapter 5. While
the optimized simulation model is the output of a generator that is parameterized in port
count and memory size, checking a subspace of the optimized models using lime provides a
high degree of confidence in the correctness of the transformation. In multi-core SoC, this
overhead is also be amortized across multiple identically parameterized memories.

From a usability perspective, lime is an extremely convenient tool to find bugs in op-
timized simulation models of highly ported memories. For a decoupled simulation model,
it is possible for implementation bugs to appear only in very specific corner cases, such as
a certain interleaving of I/O token arrivals interacting pathologically with the write colli-
sion semantics of the memory. Instead of requiring the effort of a thorough, model-specific
directed random test, lime offers a push-button bounded model check that finds all bugs
that can manifest within the time horizon of the bound. While a 20-cycle BMC bound has
sufficient depth to cover the full space of I/O token arrival interleavings over several target
cycles, Table 9.1 shows that this bound results in quick runtimes; longer BMC checks can
be amortized over many uses of common configurations.

Register file Parameters PI BMC Runtime (s)

Rocket integer 31× 64, 2R, 1W 445

Rocket FP 32× 64, 3R, 2W 334

BOOM integer 100× 64, 6R, 3W 637

BOOM FP 64× 64, 3R, 2W 372

Table 9.1: Runtime for a bounded model check of 20 cycles for the Partial Implementation
property of each optimized memory model.

112

Chapter 10

Conclusion

In this dissertation, we explore novel techniques to surpass traditional capacity limitations
of FPGA-based simulators of digital systems. While existing techniques such as partitioning
designs across multiple FPGAs provide a means to simulate large systems that cannot map
to a single device, these techniques increase both effort and cost and significantly degrade
simulation throughput. Instead, this work focuses on applying compiler optimizations to
automatically translate designs to simulators with reduced resource utilization. Though
these resource-utilization optimizations come at the cost of reducing the number of simulated
cycles or time steps per second of real time elapsed on the host FPGA, they offer the potential
to increase per-FPGA simulation capacity.

The optimizations presented in this work all derive from a simple tradeoff: rather than
simulating a time step in a fully parallel manner, as with an FPGA prototype mapped directly
from the RTL specification of the target design with an FPGA synthesis tool, a simulator
may serialize aspects of this task over a—potentially variable—number of host FPGA cycles.
This concept, known as decoupling, is borrowed from previous work on FPGA simulators such
as HAsim and RAMP Gold. Decoupling opens the door to trading off space and time in the
simulator implementation; in this respect, decoupled simulators are analogous to software
RTL simulators and proprietary emulation systems based on specialized processors.

Unlike previous work in decoupled simulation, we aim to allow chip designers to gener-
ate optimized simulators directly from concrete RTL, without tying the implementation of
the simulator to a particular target system. Therefore, we rely on an extensible simulation
compiler as an implementation platform: the Golden Gate compiler, part of the FireSim
open-source FPGA simulation framework. This compiler, collaboratively developed to sup-
port this dissertation and other research projects, allows a target design to be translated to
a cycle-accurate simulator structured as a Latency-Insensitive Bounded Dataflow Network
(LI-BDN). Such a network, consisting of simulation models communicating via asynchronous
channels, provides a deadlock-free foundation for cycle-accurate simulation. Furthermore,
Golden Gate provides interfaces to partition the target design to alter the topology of
this network, allowing arbitrary components of the target design to be represented by dedi-
cated, latency-insensitive models. In turn, this provides a high-level pattern for optimization:

CHAPTER 10. CONCLUSION 113

individual components that represent fruitful targets for optimization due to their FPGA
resource-utilization footprints are assigned to their own partition, and the resulting models
are iteratively translated to slower but smaller implementations.

With these foundations in place, we present two optimizations, each offering the potential
to significantly reduce the resource footprint of an FPGA simulator:

1. The multi-ported memory optimization targets memories that have complex port con-
figurations, such as processor core register files. By simulating these memories with
dedicated, multi-cycle models that can iteratively compute the behavior of even a
combinational-read memory, it avoids the extreme resource cost of directly synthesiz-
ing FPGA implementations.

2. The instance multi-threading optimization targets repeated instances of a given module
that collectively account for a large fraction of the simulator footprint. To reduce this
cost, we model each instance via a thread of execution on a model that contains only a
single copy of the module’s combinational logic. This technique, inspired by previous
threaded simulators such as ProtoFlex, RAMP Gold, and DIABLO, is realized for the
first time as a transformation that can automatically thread simulators of arbitrary
target RTL.

The two optimizations are evaluated by generating simulators of various configurations
of the Rocket Chip SoC generator. In particular, we examine the ability of each optimization
to extend the capacity of a Xilinx VU9P FPGA (hosted in the Amazon Web Services public
cloud) to simulate a system with a larger number of cores. For this experiment, the systems
instantiate a relatively large 5-issue configuration of the BOOM out-of-order core generator.

Each optimization effectively doubles the capacity of the VU9P as a host platform for
simulating BOOM cores: while the baseline system can simulate only a two-core system,
applying either optimization will allow a four-core configuration to fit. While this capacity
increase comes at a performance cost, with throughput in cycles per second being reduced
to 37% and 23% of the baseline two-core simulator, respectively, both still offer a previously
impossible simulation capability at speeds competitive with partitioning.

While each optimization may be applied in isolation, they offer complementary benefits
when applied to SoCs containing both repeated instances and large memories. Furthermore,
the interleaved scheduling of the threaded simulation of the repeated instances offers the
ability to hide much of the latency cost of the multi-ported memory optimization. By
applying both optimizations, the capacity of the VU9P is extended to sixteen BOOM cores,
a 700% improvement over the baseline. Though such a simulator achieves an effective target
cycle throughput of only 1.56MHz, it represents an eight-fold increase in simulation “work”
per cycle, and radically expands the capabilities of individual FPGAs.

Since the automated optimization passes in Golden Gate are generally applicable to
any FIRRTL design with the appropriate architectural patterns, and since multiple instan-
tiation of a large blocks is a common pattern in many systems, we further explore the use
of instance threading to allow a large, multi-core accelerator to be simulated with a single

CHAPTER 10. CONCLUSION 114

FPGA. In this system, each of a set of N accelerator cores pairs a small control processor
with a systolic array co-processor aimed at linear algebra for machine learning. While only
a single-core system will successfully map to a large Xilinx VU9P device with a standard
compilation flow, the use of instance multi-threading on the accelerator cores extends the
simulation capacity to accommodate an eight-core system. While this 700% increase in sim-
ulation capacity is paired with a corresponding slowdown in simulated cycles per second,
the resulting simulator is able to model more “core-cycles” per second than the baseline.
This result underscores the generality of Golden Gate optimizations and highlights their
potential utility to a broad assortment of external users.

Finally, this dissertation focuses on exploring these optimizations as a research direction,
significant engineering effort has been dedicated to producing a reliable tool that users may
apply across many designs. To this end, we present two tools to detect bugs in complex
Chisel- and FIRRTL-based projects. The first, an LTL property library for Chisel, allows
designers to annotate their RTL with temporal property specifications, providing a low-
overhead mechanism for verifying multi-cycle properties. The second tool, LIME, provides
automated bounded model checking of correctness and deadlock-avoidance properties of LI-
BDN simulators and their components. Both tools rely on a shared underlying infrastructure,
including a FIRRTL backend that translates circuits to the language of the UCLID5 modeling
system.

With these contributions, this dissertation provides a novel capability to automatically
extend the simulation capacity of individual FPGAs. It provides a means to avoid the
perilous “cliff” of exceeding the limits of available FPGA resources without undue effort by
the end user. To this end, the optimizations and associated tools have been released as part
of the open-source FireSim project. Ultimately, we hope that this work may ease the process
of simulating and evaluating large systems and help productivity in digital hardware design.

10.1 Current Status and Future Work

As of this writing, both the multi-ported memory optimization and the instance multi-
threading support have been incorporated into public FireSim releases. To better enable
external users to apply these techniques to new target designs, examples demonstrating
the frontend annotation API and the compiler settings have been added to the public web
documentation. The LTL property toolkit and FIRRTL-to-UCLID5 backend discussed in
Chapter 8 have also been released as part of the open-source ChiselUCL repository [21].

While the optimizations presented in this dissertation offer promising improvements to
FPGA simulation capacity, there are many potential directions for future work. Most press-
ing is the need to apply these tools to a broader array of target designs; while this work
focuses on BOOM-based Rocket Chip systems, the ability for FireSim users to enable the
optimizations in their own designs will allow them to be applied to widely varying target
designs. Further development will also likely include modifications to improve simulator
performance. While the increase in FMR for the optimized simulators in 7 represents a

CHAPTER 10. CONCLUSION 115

reasonable tradeoff when faced with the alternative of not fitting the design on the host
FPGA at all, microarchitectural improvements could improve the relative performance of
Golden Gate. In particular, the baseline primitive LI-BDN transformation limits the
degree of decoupling allowed among the different channels of a model, which can degrade
performance in a hybrid simulator. Future versions of Golden Gate could introduce more
complex control logic to these models, allowing greater decoupling without prohibitive im-
plementation cost.

While the Chisel LTL property library discussed in Chapter 8 has been released as an
open-source tool, it is a relatively immature project. Given the high level of community
demand for verification tools natively supporting Chisel-based designs, there is significant
opportunity for continued development. Potential future work could include automatic runs
of downstream tools like UCLID5, adding other property languages, or supporting different
backends.

116

Bibliography

[1] Doug Amos, Austin Lesea, and Ren Richter. FPGA-based Prototyping Methodology
Manual: Best Practices in Design-for-Prototyping. USA: Synopsys Press, 2011.

[2] Sameh Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit Kapur, Ben-
jamin Parker, Thomas Roewer, Proshanta Saha, Todd Takken, and José Tierno. “A
Cycle-Accurate, Cycle-Reproducible Multi-FPGA System for Accelerating Multi-Core
Processor Simulation”. In: Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2012, pp. 153–162.

[3] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar
Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The
Rocket Chip Generator. Tech. rep. UCB/EECS-2016-17. EECS Department, University
of California, Berkeley, Apr. 2016. url: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-17.html.

[4] Jonathan Babb, Russel Tessier, Matthew Dahl, Silvina Z. Hanono, David M. Hoki,
and Anant Agarwal. “Logic Emulation with Virtual Wires”. In: Trans. Comp.-Aided
Des. Integ. Cir. Sys. 16.6 (Nov. 2006), pp. 609–626. issn: 0278-0070. doi: 10.1109/
43.640619. url: https://doi.org/10.1109/43.640619.

[5] Jonathan Bachrach, Albert Magyar, Palmer Dabbelt, Patrick Li, Richard Lin, and
Krste Asanović. “Cyclist: Accelerating Hardware Development”. In: 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE. 2017, pp. 1011–
1018.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. “Chisel: Constructing hardware in
a Scala embedded language”. In: DAC Design Automation Conference 2012. IEEE.
2012, pp. 1212–1221.

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.6. Tech. rep. Available at www.SMT-LIB.org. Department of Computer Science, The
University of Iowa, 2017.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/43.640619
https://doi.org/10.1109/43.640619
https://doi.org/10.1109/43.640619

BIBLIOGRAPHY 117

[8] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Waterman,
Jonathan Bachrach, and Krste Asanović. “FASED: FPGA-Accelerated Simulation and
Evaluation of DRAM”. In: The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’19. Seaside, CA, USA: ACM, 2019.

[9] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. “Symbolic model
checking without BDDs”. In: International conference on tools and algorithms for the
construction and analysis of systems. Springer. 1999, pp. 193–207.

[10] Randal E Bryant. “Simulation on a Distributed System”. In: Proc. of the 16th Design
Automation Conference. 1979, pp. 544–552.

[11] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. “Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions and Uninter-
preted Functions”. In: International Conference on Computer Aided Verification. Ed.
by E. Brinksma and K. G. Larsen. LNCS 2404. July 2002, pp. 78–92.

[12] Cadence Palladium Z1 Enterprise Emulation Platform. https://www.cadence.com/
content/dam/cadence-www/global/en_US/documents/tools/system-design-

verification/palladium-z1-ds.pdf. 2015.

[13] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. “Implementing
Multi-stage Languages Using ASTs, Gensym, and Reflection”. In: International Con-
ference on Generative Programming and Component Engineering. Springer. 2003, pp. 57–
76.

[14] Luca Carloni, Kenneth McMillan, and Alberto Sangiovanni-Vincentelli. “Theory of
Latency-insensitive Design”. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 20.9 (Nov. 2006), pp. 1059–1076. issn: 0278-0070. doi:
10.1109/43.945302. url: http://dx.doi.org/10.1109/43.945302.

[15] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A Patterson, and Krste
Asanović. “BOOM v2: An open-ource out-of-order RISC-V core”. In: First Workshop
on Computer Architecture Research with RISC-V (CARRV). 2017.

[16] Christopher Celio, David A. Patterson, and Krste Asanović. The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V
Processor. Tech. rep. UCB/EECS-2015-167. EECS Department, University of Califor-
nia, Berkeley, June 2015.

[17] K. Mani Chandy and Jayadev Misra. “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations”. In: Communications of the ACM 24.4 (1981),
pp. 198–206.

[18] Leland Chang, Robert K Montoye, Yutaka Nakamura, Kevin A Batson, Richard J
Eickemeyer, Robert H Dennard, Wilfried Haensch, and Damir Jamsek. “An 8T-SRAM
for variability tolerance and low-voltage operation in high-performance caches”. In:
IEEE Journal of Solid-State Circuits 43.4 (2008), pp. 956–963.

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://doi.org/10.1109/43.945302
http://dx.doi.org/10.1109/43.945302

BIBLIOGRAPHY 118

[19] Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W Kohlbrenner, Krste Asanović,
and Sanjit A Seshia. “Verifying RISC-V Physical Memory Protection”. In: ().

[20] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A Patil, William Reinhart, Darrel
Eric Johnson, Jebediah Keefe, and Hari Angepat. “Fpga-accelerated simulation tech-
nologies (fast): Fast, full-system, cycle-accurate simulators”. In: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). IEEE. 2007, pp. 249–
261.

[21] ChiselUCL: Utilities for generating UCLID5 models from Chisel and FIRRTL descrip-
tions. https://github.com/uclid-org/chiselucl. 2018.

[22] Eric S Chung, Eriko Nurvitadhi, James C Hoe, Babak Falsafi, and Ken Mai. “A
complexity-effective architecture for accelerating full-system multiprocessor simula-
tions using FPGAs”. In: Proceedings of the 16th international ACM/SIGDA sympo-
sium on Field programmable gate arrays. 2008, pp. 77–86.

[23] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. “Nusmv 2: An
opensource tool for symbolic model checking”. In: International Conference on Com-
puter Aided Verification. Springer. 2002, pp. 359–364.

[24] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. “NuSMV:
A new symbolic model verifier”. In: International conference on computer aided veri-
fication. Springer. 1999, pp. 495–499.

[25] Katherine Compton and Scott Hauck. “Reconfigurable Computing: A Survey of Sys-
tems and Software”. In: ACM Comput. Surv. 34.2 (June 2002), pp. 171–210. issn:
0360-0300. doi: 10.1145/508352.508353. url: http://doi.acm.org/10.1145/
508352.508353.

[26] Henry Cook, Wesley Terpstra, and Yunsup Lee. “Diplomatic design patterns: A TileLink
case study”. In: 1st Workshop on Computer Architecture Research with RISC-V. 2017.

[27] Clifford E Cummings. “” full case parallel case”, the Evil Twins of Verilog Synthesis”.
In: Proc. SNUG Boston Meeting. Citeseer. 1999.

[28] André DeHon. “Balancing Interconnect and Computation in a Reconfigurable Com-
puting Array (or, why you don’t really want 100% LUT utilization)”. In: Proceedings
of the 1999 ACM/SIGDA Seventh International Symposium on Field-Programmable
Gate Arrays. 1999, pp. 69–78.

[29] Shuwen Deng, Doguhan Gümüsoglu, Wenjie Xiong, Y. Serhan Gener, Onur Demir, and
Jakub Szefer. “SecChisel: Language and Tool for Practical and Scalable Security Ver-
ification of Security-Aware Hardware Architectures”. In: IACR Cryptol. ePrint Arch.
2017 (2017), p. 193. url: http://eprint.iacr.org/2017/193.

[30] Brandon H Dwiel, Niket K Choudhary, and Eric Rotenberg. “FPGA modeling of di-
verse superscalar processors”. In: 2012 IEEE International Symposium on Performance
Analysis of Systems & Software. IEEE. 2012, pp. 188–199.

https://github.com/uclid-org/chiselucl
https://doi.org/10.1145/508352.508353
http://doi.acm.org/10.1145/508352.508353
http://doi.acm.org/10.1145/508352.508353
http://eprint.iacr.org/2017/193

BIBLIOGRAPHY 119

[31] Harry D Foster. “Trends in Functional Verification: A 2014 Industry Study”. In: Pro-
ceedings of the 52nd Annual Design Automation Conference. 2015, pp. 1–6.

[32] Gemmini, Berkeley’s Systolic Array Generator. https://github.com/ucb- bar/

gemmini. 2019.

[33] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John Wright,
Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, Yakun Sophia Shao, Borivoje
Nikolic, Ion Stoica, and Krste Asanović. “Gemmini: An Agile Systolic Array Generator
Enabling Systematic Evaluations of Deep-Learning Architectures”. In: arXiv preprint
arXiv:1911.09925 (2019).

[34] Mike Gordon. “The Semantic Challenge of Verilog HDL”. In: Proceedings of tenth
annual IEEE symposium on logic in computer science. IEEE. 1995, pp. 136–145.

[35] David Grant, Chris Wang, and Guy GF Lemieux. “A CAD Framework for Malibu: An
FPGA with Time-Multiplexed Coarse-Grained Elements”. In: Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 2011,
pp. 123–132.

[36] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Ben-
jamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. “Under-
standing Sources of Inefficiency in General-purpose Chips”. In: Proceedings of the 37th
Annual International Symposium on Computer Architecture. ISCA ’10. Saint-Malo,
France: ACM, 2010, pp. 37–47. isbn: 978-1-4503-0053-7. doi: 10.1145/1815961.

1815968. url: http://doi.acm.org/10.1145/1815961.1815968.

[37] Scott Alan Hauck. “Multi-FPGA Systems”. UMI Order No. GAX96-16615. PhD thesis.
Seattle, WA, USA, 1995.

[38] William N.N. Hung and Richard Sun. “Challenges in Large FPGA-based Logic Em-
ulation Systems”. In: Proceedings of the 2018 International Symposium on Physical
Design. ISPD ’18. Monterey, California, USA: ACM, 2018, pp. 26–33. isbn: 978-1-
4503-5626-8. doi: 10.1145/3177540.3177542. url: http://doi.acm.org/10.1145/
3177540.3177542.

[39] “IEC 62531:2012(E) (IEEE Std 1850-2010): Standard for Property Specification Lan-
guage (PSL)”. In: IEC 62531:2012(E) (IEEE Std 1850-2010) (2012), pp. 1–184.

[40] “IEEE Draft Standard for VHDL Language Reference Manual”. In: IEEE P1076/D13,
July 2019 (2019), pp. 1–796.

[41] “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Veri-
fication Language”. In: IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012) (2018),
pp. 1–1315.

[42] “IEEE Standard for Verilog Hardware Description Language”. In: IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001) (2006), pp. 1–590.

https://github.com/ucb-bar/gemmini
https://github.com/ucb-bar/gemmini
https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1145/1815961.1815968
http://doi.acm.org/10.1145/1815961.1815968
https://doi.org/10.1145/3177540.3177542
http://doi.acm.org/10.1145/3177540.3177542
http://doi.acm.org/10.1145/3177540.3177542

BIBLIOGRAPHY 120

[43] Accellera Systems Initiative. Standard Co-Emulation Modeling Interface (SCE-MI)
Reference Manual. Jan. 2014.

[44] Intel. Intel Stratix 10 Embedded Memory User Guide. https://www.intel.com/

content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-

s10-memory.pdf. Aug. 2020.

[45] ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++.
Third Edition. Geneva, Switzerland: International Organization for Standardization,
Sept. 2011.

[46] Adam Izraelevitz. “Unlocking Design Reuse with Hardware Compiler Frameworks”.
PhD thesis. EECS Department, University of California, Berkeley, Dec. 2019. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-168.html.

[47] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar,
Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach.
“Reusability is FIRRTL ground: Hardware construction languages, compiler frame-
works, and transformations”. In: 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE. 2017, pp. 209–216.

[48] JasperGold Property Synthesis Apps. Aug. 2012.

[49] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol
Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing
Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste
Asanović. “FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the
public cloud”. In: 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE. 2018, pp. 29–42.

[50] Richard E Kessler. “The Alpha 21264 Microprocessor”. In: IEEE Micro 19.2 (1999),
pp. 24–36.

[51] Mohammed A. S. Khalid and Jonathan Rose. “A Novel and Efficient Routing Ar-
chitecture for multi-FPGA Systems”. In: IEEE Trans. Very Large Scale Integr. Syst.
8.1 (Feb. 2000), pp. 30–39. issn: 1063-8210. doi: 10.1109/92.820759. url: http:
//dx.doi.org/10.1109/92.820759.

[52] Donggyu Kim. “FPGA-Accelerated Evaluation and Verification of RTL Designs”. PhD
thesis. UC Berkeley, 2019.

[53] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach,
and Krste Asanović. “DESSERT: Debugging RTL Effectively with State Snapshotting
for Error Replays across Trillions of Cycles”. In: 28th International Conference on Field
Programmable Logic and Applications, FPL 2018, Dublin, Ireland, August 27-31, 2018.
2018, pp. 76–80. doi: 10.1109/FPL.2018.00021. url: https://doi.org/10.1109/
FPL.2018.00021.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-168.html
https://doi.org/10.1109/92.820759
http://dx.doi.org/10.1109/92.820759
http://dx.doi.org/10.1109/92.820759
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/FPL.2018.00021

BIBLIOGRAPHY 121

[54] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yun-
sup Lee, Jonathan Bachrach, and Krste Asanović. “Strober: fast and accurate sample-
based energy simulation for arbitrary RTL”. In: 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA). IEEE. 2016, pp. 128–139.

[55] Helena Krupnova and Gabriele Saucier. “FPGA-Based Emulation: Industrial and Cus-
tom Prototyping Solutions”. In: Field-Programmable Logic and Applications: The Roadmap
to Reconfigurable Computing. Ed. by Reiner W. Hartenstein and Herbert Grünbacher.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 68–77. isbn: 978-3-540-44614-
9.

[56] Murali Kudlugi, Soha Hassoun, Charles Selvidge, and Duaine Pryor. “A Transaction-
Based Unified Simulation/Emulation Architecture for Functional Verification”. In: Pro-
ceedings of the 38th Annual Design Automation Conference. 2001, pp. 623–628.

[57] Charles Eric Laforest, Ming G. Liu, Emma Rae Rapati, and J. Gregory Steffan. “Multi-
ported Memories for FPGAs via XOR”. In: Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. FPGA ’12. Monterey, Califor-
nia, USA: ACM, 2012, pp. 209–218. isbn: 978-1-4503-1155-7. doi: 10.1145/2145694.
2145730. url: http://doi.acm.org/10.1145/2145694.2145730.

[58] Charles Eric LaForest and J. Gregory Steffan. “Efficient Multi-ported Memories for
FPGAs”. In: Proceedings of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. FPGA ’10. Monterey, California, USA: ACM,
2010, pp. 41–50. isbn: 978-1-60558-911-4. doi: 10.1145/1723112.1723122. url:
http://doi.acm.org/10.1145/1723112.1723122.

[59] Chris Lattner and Vikram Adve. “Architecture for a next-generation gcc”. In: GCC
Developers’ Summit. Citeseer. 2003.

[60] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation”. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[61] Kevin Laufer. SMT Backend. https://github.com/chipsalliance/firrtl/pull/
1826. 2020.

[62] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.
“Keystone: An open framework for architecting trusted execution environments”. In:
Proceedings of the Fifteenth European Conference on Computer Systems. 2020, pp. 1–
16.

[63] Edward Lee and David Messerschmitt. “Synchronous data flow”. In: Proceedings of the
IEEE 75.9 (Sept. 1987), pp. 1235–1245. issn: 0018-9219. doi: 10.1109/PROC.1987.
13876.

[64] Charles E Leiserson, Flavio M Rose, and James B Saxe. “Optimizing synchronous
circuitry by retiming (preliminary version)”. In: Third Caltech conference on very large
scale integration. Springer. 1983, pp. 87–116.

https://doi.org/10.1145/2145694.2145730
https://doi.org/10.1145/2145694.2145730
http://doi.acm.org/10.1145/2145694.2145730
https://doi.org/10.1145/1723112.1723122
http://doi.acm.org/10.1145/1723112.1723122
https://github.com/chipsalliance/firrtl/pull/1826
https://github.com/chipsalliance/firrtl/pull/1826
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876

BIBLIOGRAPHY 122

[65] Patrick Li, Adam Izraelevitz, and Jonathan Bachrach. Specification for the FIRRTL
Language. https://github.com/freechipsproject/firrtl/raw/master/spec/
spec.pdf. July 2020.

[66] Richard Lin, Bjoern Hartmann, and Elad Alon. “Improving Chisel Testing: Reusability
Across Space and Time”. In: Chisel Community Conference. 2018.

[67] Derek Lockhart, Stephen Twigg, Ravi Narayanaswami, Jeremy Coriell, Uday Dasari,
Richard Ho, Doug Hogberg, George Huang, Anand Kane, Chintan Kaur, Tao Liu,
Adriana Maggiore, Kevin Townsend, and Emre Tuncer. “Experiences Building Edge
TPU with Chisel”. In: Chisel Community Conference. 2018.

[68] Albert Magyar, David Biancolin, John Koenig, Sanjit Seshia, Jonathan Bachrach, and
Krste Asanović. “Golden Gate: Bridging The Resource-Efficiency Gap Between ASICs
and FPGA Prototypes”. In: 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE. 2019, pp. 1–8.

[69] W. M. McKeeman. “Peephole Optimization”. In: Commun. ACM 8.7 (July 1965),
pp. 443–444. issn: 0001-0782. doi: 10.1145/364995.365000. url: https://doi.
org/10.1145/364995.365000.

[70] Susan Owicki and Leslie Lamport. “Proving liveness properties of concurrent pro-
grams”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
4.3 (1982), pp. 455–495.

[71] Michael Pellauer, Michael Adler, Michel Kinsy, Angshuman Parashar, and Joel Emer.
“HAsim: FPGA-based high-detail multicore simulation using time-division multiplex-
ing”. In: 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. IEEE. 2011, pp. 406–417.

[72] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, and Joel Emer. “A-Port
Networks: Preserving the Timed Behavior of Synchronous Systems for Modeling on
FPGAs”. In: ACM Transactions on Reconfigurable Technology and Systems (TRETS)
2.3 (2009), pp. 1–26.

[73] Gregory F Pfister. “The Yorktown Simulation Engine: Introduction”. In: 19th Design
Automation Conference. IEEE. 1982, pp. 51–54.

[74] Amir Pnueli. “The Temporal Logic of Programs”. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. SFCS ’77. Washington, DC, USA:
IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32. url: https:
//doi.org/10.1109/SFCS.1977.32.

[75] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. “Global value numbers
and redundant computations”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 1988, pp. 12–27.

https://github.com/freechipsproject/firrtl/raw/master/spec/spec.pdf
https://github.com/freechipsproject/firrtl/raw/master/spec/spec.pdf
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

BIBLIOGRAPHY 123

[76] Graham Schelle, Jamison Collins, Ethan Schuchman, Perrry Wang, Xiang Zou, Gau-
tham Chinya, Ralf Plate, Thorsten Mattner, Franz Olbrich, Per Hammarlund, Ronak
Singhal, and Jim Brayton. “Intel Nehalem Processor Core Made FPGA Synthesiz-
able”. In: Proceedings of the 18th annual ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 2010, pp. 3–12.

[77] Colin Schmidt, Alon Amid, John Wright, Ben Keller, Howard Mao, Keertana Settaluri,
Jarno Salomaa, Jerry Zhao, Albert Ou, Krste Asanović, and Borivoje Nikolic. “Pro-
grammable Fine-Grained Power Management and System Analysis of RISC-V Vector
Processors in 28-nm FD-SOI”. In: IEEE Solid-State Circuits Letters 3 (2020), pp. 210–
213.

[78] Sanjit Seshia and Pramod Subramanyan. “UCLID5: Integrating Modeling, Verifica-
tion, Synthesis and Learning”. In: 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE). Oct. 2018, pp. 1–10.
doi: 10.1109/MEMCOD.2018.8556946.

[79] Setting a New Lint Benchmark. https://www.realintent.com/setting-new-lint-
benchmark.

[80] Ofer Shacham, Omid Azizi, Megan Wachs, Wajahat Qadeer, Zain Asgar, Kyle Kelley,
John P Stevenson, Stephen Richardson, Mark Horowitz, Benjamin Lee, Alex Solo-
matnikov, and Amin Firoozshahian. “Rethinking Digital Design: Why Design Must
Change”. In: IEEE micro 30.6 (2010), pp. 9–24.

[81] Tony Sloane. “Experiences with domain-specific language embedding in Scala”. In:
2008.

[82] Stuart Sutherland. “I’m Still in Love with My X!” In: 2013.

[83] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook, David
Patterson, and Krste Asanović. “RAMP Gold: An FPGA-based Architecture Simulator
for Multiprocessors”. In: Proceedings of the 47th Design Automation Conference. 2010,
pp. 463–468.

[84] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and David
Patterson. “A case for FAME: FPGA architecture model execution”. In: Proceedings
of the 37th annual international symposium on Computer architecture. 2010, pp. 290–
301.

[85] Russell Tessier and Heather Giza. “Balancing Logic Utilization and Area Efficiency in
FPGAs”. In: International Workshop on Field Programmable Logic and Applications.
Springer. 2000, pp. 535–544.

[86] The Veloce Strato Platform: Unique Core Components Create High-Value Advantages.
https://www.mentor.com/products/fv/request?selected=103372&null&fmpath=

/products/fv/techpubs/requestpubs&id=103372. 2018.

[87] UCLID5: formal modeling, verification, and synthesis of computational systems. https:
//github.com/uclid-org/uclid. 2015.

https://doi.org/10.1109/MEMCOD.2018.8556946
https://www.realintent.com/setting-new-lint-benchmark
https://www.realintent.com/setting-new-lint-benchmark
https://www.mentor.com/products/fv/request?selected=103372&null&fmpath=/products/fv/techpubs/requestpubs&id=103372
https://www.mentor.com/products/fv/request?selected=103372&null&fmpath=/products/fv/techpubs/requestpubs&id=103372
https://github.com/uclid-org/uclid
https://github.com/uclid-org/uclid

BIBLIOGRAPHY 124

[88] Muralidaran Vijayaraghavan. “Theory of composable latency-insensitive refinements”.
MA thesis. Massachusetts Institute of Technology, June 2009.

[89] Muralidaran Vijayaraghavan and Arvind. “Bounded Dataflow Networks and Latency-
Insensitive Circuits”. In: 2009 7th IEEE/ACM International Conference on Formal
Methods and Models for Co-Design. IEEE. 2009, pp. 171–180.

[90] Angie Wang, Woorham Bae, Jaeduk Han, Stevo Bailey, Orhan Ocal, Paul Rigge,
Zhongkai Wang, Kannan Ramchandran, Elad Alon, and Borivoje Nikolic. “A real-
time, 1.89-GHz bandwidth, 175-kHz resolution sparse spectral analysis RISC-V SoC
in 16-nm FinFET”. In: IEEE Journal of Solid-State Circuits 54.7 (2019), pp. 1993–
2008.

[91] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christoforos Kozyrakis,
James C Hoe, Derek Chiou, and Krste Asanović. “RAMP: Research Accelerator for
Multiple Processors”. In: IEEE Micro 27.2 (2007), pp. 46–57.

[92] Michael Wehner, Leonid Oliker, and John Shalf. “Towards Ultra-High Resolution Mod-
els of Climate and Weather”. In: The International Journal of High Performance Com-
puting Applications 22.2 (2008), pp. 149–165.

[93] Henry Wong, Vaughn Betz, and Jonathan Rose. “Quantifying the Gap Between FPGA
and Custom CMOS to Aid Microarchitectural Design”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 22.10 (Oct. 2014), pp. 2067–2080. issn: 1063-
8210. doi: 10.1109/TVLSI.2013.2284281.

[94] Xilinx. UG573: UltraScale Architecture Memory Resources User Guide. https://www.
xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-

resources.pdf. Aug. 2020.

[95] Kenneth C Yeager. “The MIPS R10000 Superscalar Microprocessor”. In: IEEE Micro
16.2 (1996), pp. 28–41.

[96] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanović. SonicBOOM: The
3rd Generation Berkeley Out-of-Order Machine. Tech. rep. Technical report, EECS
Department, University of California, Berkeley, 2020.

[97] Victor Zyuban and Peter Kogge. “The energy complexity of register files”. In: Proceed-
ings of the 1998 international symposium on Low power electronics and design. 1998,
pp. 305–310.

https://doi.org/10.1109/TVLSI.2013.2284281
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf

	Contents
	List of Figures
	List of Tables
	Glossary of Terms
	Acknowledgements
	Introduction
	Previous Publication, Collaboration, and Funding

	Background
	Prior Work in FPGA Emulation
	FPGA Prototyping
	Commercial Emulation Systems
	Decoupled FPGA-Accelerated Simulators
	The FAME Simulator Taxonomy
	FireSim and Golden Gate

	Chisel: A Modern Language for Hardware
	The FIRRTL Hardware Compiler Framework
	FIRRTL Intermediate Representation
	The Reference FIRRTL Compiler

	The Rocket Chip Generator
	Rocket
	BOOM

	Dataflow Simulation with Golden Gate
	All Simulators are Hybrid Simulators
	Refining the Notion of Decoupling
	Incorporating RTL-Specified Models in Hybrid Simulators
	Hybrid Simulators and Optimization

	Compiling Hybrid Simulators with Golden Gate
	Latency-Insensitive Bounded Dataflow Networks
	Combining Multiple Signals Within Channels
	Multiple Clock Domains

	Compiling Target RTL to LI-BDN Simulators

	The Golden Gate Toolchain
	FireSim and Golden Gate
	A FIRRTL-Based Simulator Compiler
	Fine-Grained Incremental Lowering with Core FIRRTL Passes
	Harnessing the Extensible FIRRTL Annotation Interface
	Built-in FIRRTL Analyses and Consistency Checks
	Differing Requirements of RTL Compilers and Simulator Compilers

	Compiler Organization
	Target Transformation
	Decomposed Target Form
	Simulator Synthesis

	The Default LI-BDN Transform
	Adding New Optimizations
	Summary

	Optimizing Multi-Ported Memories
	Multi-Ported RAMs
	Challenges in Mapping Complex RAMs to FPGAs

	Model Microarchitecture
	Adding the Optimization To Golden Gate
	Evaluation
	Applying the Optimization to Rocket Chip
	Experimental Results
	Improving Performance with Host RAM Banking
	Summary

	Optimizing Repeated Instances via Threading
	Multi-Threaded FPGA Simulation
	Enabling Multi-Threading in Golden Gate
	Generating a Threaded Model
	Derivation
	Implementation Overview
	Input Circuit Preconditions
	Thread-Management Logic
	Threading State Elements

	Routing I/O at the Threading Boundary
	Evaluation
	Applying the Optimization to Rocket Chip
	Experimental Results with Multi-Core BOOM Systems
	Broader Applicability to Accelerator-Based Systems

	Composing Multiple Resource Optimizations
	Combining Complementary Optimizations
	Transforming Target Design Topologies
	Hiding Optimization Latency with Threading

	Evaluation
	Applying Multiple Optimizations to Rocket Chip
	Experimental Results

	A Chisel Temporal Property Verification Toolkit
	Background
	Related Work in Chisel Verification
	Linear Temporal Logic Properties

	UCLID5
	A Chisel-Based LTL Property Verification Flow
	LTL Property Annotations
	Control Annotations
	Chisel LTL Property API
	Verification Library Transforms
	A UCLID5 Backend for FIRRTL

	Case Study: Verifying a Queue
	Leveraging Generators & Object Orientation

	LIME: Verifying Multi-Cycle Models
	Structure of the LIME Checker
	A UCLID5 Backend for FIRRTL
	Modeling Environment Generation

	Model Checking LI-BDNs
	Partial Implementation
	No Extraneous Dependencies
	Self-Cleaning

	Verifying Multi-Ported Memory Models with LIME

	Conclusion
	Current Status and Future Work

	Bibliography

