
Generator-Based Design of Custom Systems-on-Chip

for Numerical Data Analysis

Alon Amid

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-247

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-247.html

December 1, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Generator-Based Design of Custom Systems-on-Chip for Numerical Data Analysis

by

Alon Amid

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolić, Co-chair
Professor Krste Asanović, Co-chair

Professor Bin Yu

Summer 2021

Generator-Based Design of Custom Systems-on-Chip for Numerical Data Analysis

Copyright 2021
by

Alon Amid

1

Abstract

Generator-Based Design of Custom Systems-on-Chip for Numerical Data Analysis

by

Alon Amid

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Co-chair

Professor Krste Asanović, Co-chair

With the end of Dennard scaling and the subsequent demise of Moore’s Law, the contin-
uous demand for higher computing performance and efficiency is increasingly met through
specialization of digital processors. In particular, numerical data processing and machine-
learning applications incur high computational costs but often have common computational
structures, acting as prime targets for hardware customization. Specialization of digital
designs is accompanied by substantial non-recurring engineering (NRE) costs, which limit
the proliferation of customized designs. This work presents tools and methodologies for the
development of custom systems-on-chip (SoCs) for numerical data analysis applications. An
integrated generator-based framework for SoC development is demonstrated through SoC
customization and hardware/software co-design for numerical data analysis and machine-
learning applications. The development of full-system support from hardware accelerators
through system software leads to the identification of several co-design opportunities for in-
creasing accelerator utility in custom SoCs. Specifically, we demonstrate the development of
high-performance custom software library implementations to support accelerated numeri-
cal data analysis on custom SoCs developed using the Chipyard integrated generator-based
framework for custom SoC design. We further identify a need to provide support for pro-
cessing of a high variety of matrix shapes and sizes in SoC deep learning accelerator matrix
engines for accelerated processing of numerical data analysis workloads, and demonstrate
up to a 1.25× improvement in the utilization of a matrix engine on small and rectangular
matrices through hardware-managed static scheduling, dynamic scheduling, and hardware-
managed commutative micro-threading.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Hardware Specialization . 2
1.2 Numerical Data Analysis . 4
1.3 Dissertation Scope and Outline . 5

2 Algorithms for Numerical Data Analysis 8
2.1 Machine Learning and Numerical Data Analysis 8
2.2 Data Analysis Algorithms and Dense Linear Algebra 9
2.3 High-Performance Numerical Data Analysis 11
2.4 Arithmetic Intensity of Numerical Data Modeling Kernels 13
2.5 Computational Motifs for Accelerated Computing 16

3 Hardware for Numerical Data Analysis 19
3.1 Data Parallel Architectures . 19
3.2 1-D Data-Parallel Accelerators . 21
3.3 Hwacha Decoupled Vector Accelerator . 22
3.4 2-D Data-Parallel Accelerators . 25
3.5 Gemmini Spatial-Array Accelerator . 28
3.6 Hwacha vs. Gemmini . 33

4 Generator-based System-on-Chip Design 35
4.1 System-on-a-Chip . 35
4.2 Generator-based Digital Design . 37
4.3 Generator-based Test Chips . 38
4.4 Challenges of Generator-Based Agile Hardware Design 40
4.5 Integrated Generator-Based Design Methodology 42
4.6 Generator-based System-on-Chip Design Summary 49

ii

5 The Chipyard Integrated SoC Development Framework 50
5.1 SoC Customization in Chipyard . 58
5.2 SoC Design Frameworks . 65
5.3 Agile Hardware Development Using Chipyard 67
5.4 Accessibility and Education . 73

6 Generator-based SoC Hardware/Software Co-Design 87
6.1 Generator-Based SoC Design Space Analysis 88
6.2 Generator-based Software Debugging and Optimization 99
6.3 Generator-based Performance Tuning . 106
6.4 Generator-based SoC Hardware/Software Co-Design Summary 111

7 Software Customization for Numerical Data Analysis 113
7.1 Software Mapping to Specialized Accelerators 113
7.2 Software for Supplemental Use of DNN Accelerators for Numerical Data Analysis119
7.3 BLAS and LAPACK . 121
7.4 BLAS Implementations . 123
7.5 BLAS/BLIS for Gemmini and Hwacha . 127
7.6 BLAS-3 Performance Evaluation . 151
7.7 Application-Level Performance . 152

8 Hardware/Software Co-Design for Numerical Data Analysis 164
8.1 Hardware/Software Co-Design for Supplemental-Use 164
8.2 Matrix Engines for Numerical Data Analysis vs. DNNs 165
8.3 Matrix Engine Controllers . 172
8.4 Matrix Engine Controller Scheduling . 174
8.5 Memory Access Tail Latency . 178
8.6 Co-Design of Matrix Engine Controller . 180
8.7 Hardware/Software Co-Design for Numerical Data Analysis Summary 193

9 Conclusion 195
9.1 Summary and Contributions . 195
9.2 Future Work . 196

Bibliography 198

A Observations on the RISC-V Vector Standards Process 225

iii

List of Figures

2.1 Data analysis workload categories and overlaps between them. 10

3.1 Hwacha accelerator instance with N vector lanes. 24
3.2 Microarchitecture of one Hwacha vector lane. 25
3.3 Gemmini system diagram. 29
3.4 Microarchitecture of Gemmini’s two-level spatial array template. 30
3.5 Gemmini software programming flows. 33

4.1 Increasing complexity of custom RISC-V SoC test chips built at Berkeley using
the Rocket Chip SoC generator between 2012-2019 39

4.2 Standard libraries in hardware and software language ecosystems. 44
4.3 Generator/Instance hybridization. 45
4.4 Iterative generator-based design space exploration cycle. 46

5.1 Chipyard design flow diagram. 51
5.2 Chipyard I/O and harness management. 56
5.3 Chipyard software development flow. 58
5.4 Accelerators and co-processors in a Chipyard SoC. 61
5.5 RoCC Interface . 64
5.6 An example baseline SoC configuration consisting of a single 4-wide BOOM out-

of-order application-class processor, a shared L2 cache, and mix of UART, TSI
and GPIO peripheral interfaces. 69

5.7 An SoC configuration adding a Gemmini machine learning accelerator to the
baseline SoC config using a single configuration line. 69

5.8 An SoC configuration replacing the single BOOM out-of-order core with 4 smaller
Rocket in-order cores and smaller Gemmini accelerators to evaluate PPA tradeoffs. 71

5.9 Post-synthesis area estimates using a commercial FinFET process comparing a
powerful single-core system with an alternative equivalent parallel multi-core sys-
tem. 72

5.10 Physical-design friendly hierarchy generated after FIRRTL transformations. . . 73
5.11 Example Chipyard generator configurations used in a memory hierarchy lab exercise. 80
5.12 Multi-class flow using unified generator-based system framework. 81

iv

5.13 Lab flows across multiple courses teaching both hardware and software consider-
ations . 82

6.1 FPGA-accelerated simulation of Hwacha-accelerated SoCs with DDR3, block de-
vice, network, and other peripheral models, using various configurations of gen-
erated target SoC RTL. 90

6.2 Dense DNN inference/training software stack 92
6.3 Design space evaluation of the speedup of inference and training of the SqueezeNext

DNN model on the vector accelerator across tiles, lanes, and L2 cache sizes com-
pared to a minimal reference scalar implementation. 93

6.4 Sparse graph processing workload software stack. 94
6.5 Design space evaluation of vectorized PageRank on different graphs using Graph-

Mat infrastructure and the vector accelerator across tiles, lanes, and L2 cache
sizes compared to a minimal reference scalar implementation. 94

6.6 Dual-core system-on-chip with Rocket Linux-capable RISC-V application cores,
a Gemmini accelerator attached to each Rocket core, a shared L2 cache, and
standard peripherals. 96

6.7 ResNet-50 performance (by operation type), normalized to the performance of
the Base configuration. 98

6.8 AutoILA generator-based integrated logic analyzer (ILA) integration flow. . . . 100
6.9 Debugging information segmentation triggering based on software-level informa-

tion within the simulated world as well as hardware-level global information in
FireSim. 103

6.10 AutoCounter generator-based out-of-band counter insertion flow. 104
6.11 AutoCounter performance counters automatically inserted to an example NIC

design and connected out-of-band to the simulation manager. 106

7.1 Deep learning software ecosystem. 120
7.2 Numerical computing software ecosystem. 122
7.3 Reference SoC configuration for custom BLAS/BLIS implementation using Gem-

mini and Hwacha. 128
7.4 Areas of special attention within the BLIS algorithm for the target micro-architecture

using Gemmini and Hwacha . 129
7.5 Usage flow diagram of the RELAXED NUMERICS POSIX environment variable. . . 134
7.6 BLIS kernels vs. microkernels and their projection on Gemmini. 135
7.7 SGEMM kernel performance on square matrices using a 1 GHz SoC with DDR3

backing memory. 137
7.8 Datatype conversion approaches from 32-bit single-precision floating-point to 16-

bit bfloat16 on the target SoC. 140
7.9 Row-major and column-major matrix data layouts in contiguous memory for

matrices and their transpose. 142
7.10 Gemmini Hardware Transposer . 144

v

7.11 STRSM kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory. 145

7.12 SGEMM kernel performance on small square matrices using a 1 GHz SoC with
DDR3 backing memory. 148

7.13 STRSM kernel performance on small square matrices using a 1 GHz SoC with
DDR3 backing memory. 149

7.14 STRMM kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory. 152

7.15 SSYRK kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory. 153

7.16 Matrix decomposition performance using custom accelerator BLAS. 158
7.17 Application-level performance using custom accelerator BLAS. 161

8.1 Arithmetic intensity histogram of BLAS-3 operations within a batch-1 ResNet-50
DNN forward pass, and a blocked-Householder QR decomposition and SVD of
the UCI Human Activity Recognition training dataset. 167

8.2 Theoretical peak performance roofline model for a Gemmini matrix engine. . . . 170
8.3 Gemmini matrix multiplication hardware finite state machine controller. 174
8.4 Arbitration mechanism between A matrix and B matrix loads in Gemmini’s load-

address generator. 177
8.5 Gemmini utilization under different hardware controller operand matrix com-

mand arbitration parameter values . 178
8.6 Gemmini utilization and observed DMA tail latency across different shared SoC

memory system scenarios. 179
8.7 Gemmini (8× 8) utilization using a hardware-managed static scheduling policy. 181
8.8 Gemmini (8× 8) in-order vs. out-of-order execution average utilization. 184
8.9 Example matrix operation blocks depending on a single cache line. 186
8.10 Commutative micro-threads within the loop unroller FSM. 188
8.11 Gemmini micro-threads interleaving schemes. 190
8.12 Comparison of accelerator utilization across Gemmini micro-threads interleaving

schemes. 191
8.13 Gemmini utilization using hardware-managed commutative micro-threads. . . . 192
8.14 Speedup distributions of an out-of-order 8×8 Gemmini controller with 8 commu-

tative micro-threads compared to a baseline in-order controller across a collection
of matrix shapes. 193

vi

List of Tables

2.1 Building blocks for numerical analysis and their characteristics. 15
2.2 Building blocks for DNNs and their characteristics 17

3.1 Example Gemmini generator parameters. 31
3.2 Gemmini vs. Hwacha Comparison . 34

5.1 Comparison of non-commercial SoC design frameworks. 68

6.1 Hwacha-based SoC configurations . 90
6.2 Resource contention SoC configurations . 97

7.1 Comparison of BLAS library implementations. 125
7.2 Numerical precision support in commercial matrix multiplication accelerators. . 130
7.3 Speedup limits based on Amdahl’s Law for 1600x1600 matrix factorizations. . . 160

A.1 RISC-V vector extension proposal draft version comparison table. 227

vii

Acknowledgments

There are so many people to thank and acknowledge as part of the experience of a PhD.
It is often said that a PhD is an individual endeavour, but I believe that in the modern
research age it is rare to find any type of work that can succeed without teamwork and
collaboration.

I have been fortunate to work with world-class faculty at Berkeley; professors who chal-
lenged my way of thinking, but also introduced me to new ideas and perspectives on problem-
solving and system trade-offs. I would especially like to thank my supervisors Bora Nikolić
and Krste Asanović, as well as Yakun Sophia Shao, Ion Stoica, Kurt Keutzer, Jim Dem-
mel, Randy Katz, and Jonathan Ragan-Kelly who have helped, collaborated, and advised
on multiple projects and ideas. I would also like to thank Prof. Bin Yu for serving on the
dissertation committee, and for her contributions to my understanding of applied statistics
and data science.

As a person with interests spanning across the EE/CS divide, I was lucky to be affiliated
with several research centers and labs within the Berkeley EECS department: ASPIRE,
ADEPT, and BWRC. I would like to thank the staff who helped ensure that research op-
erations run smoothly, and addressed any issue or question I had with incredible speed and
diligence. I could not have completed the work in this dissertation without Tami, Ria, Rox-
anna, Kosta, and the incredible Candy Corpus. I would also like to thank the research staff
who help maintain and expand the research infrastructure that was used in this dissertation
- Jim Lawson, Chick Markley and James Dunn. When speaking of people who hold the
EECS department together, it would be hard to imagine a Berkeley EECS PhD experience
without Shirley Salanio - the guardian angel of EECS graduate students.

I would like to give special thanks to my main partners in crime and leaders of the
Chipyard and FireSim projects, Sagar Karandikar, David Biancolin, Abraham Gonzalez and
Jerry Zhao. I have learned so much about the computer architecture research community,
open-source project management, and software development from them, as well as about
what it takes to successfully engage in academic projects as a team, promote open-source
projects, and support stable software releases and development cycles. These are invaluable
skills that no paper or course could teach me. I would like to give another special thanks to
my go-to technical guru, Albert Ou, who would always answer even my most trivial questions
at any hour of the day (or night). I’ve learned countless debugging techniques from Albert,
and I was always amazed by his breadth of knowledge across the entire spectrum of the
computing stack. I’d also like to thank Hasan Genc, the leader of the Gemmini project, for
countless hours of discussions on the phone, and for navigating the project through often
challenging paths.

I thank my past and present colleagues, collaborators, and most importantly, friends, in
the BAR, ADEPT, ASPIRE, and BWRC labs: Colin Schmidt, John Wright, Albert Magyar,
Adam Izraelevitz, Donggyu Kim, Howard Mao, Martin Maas, Nathan Pemberton, Albert
Ou, Jenny Huang, Sam Steffl, Seah Kim, Ameer Haj-Ali, Vignesh Iyer, Pranav Prakash,
Harrison Liew, Daniel Grubb, Sean Huang, Ben Keller, Pi-Feng Chiu, Andrew Waterman,

viii

Jack Koenig, Chris Celio, Eric Love, Arya Reais-Parsi, Dan Fritchman, Dayeol Lee, Dima
Nikiforov, James Dunn, Chick Markley, Jim Lawson, Lisa Wu Wills, David Kohlbrenner,
Shweta Shinde, Paul Rigge, Keertana Settaluri, and Stevo Bailey. The people of BAR have
been more than just colleagues, but friends who I’ve had the fortune of traveling with across
California, in the mountains and on the beaches, in basketball arenas and airplane boneyards,
and on countless Zoom lunches throughout the COVID-19 pandemic.

Throughout my time at Berkeley, I was fortunate enough to be an active member of
several organizations, including the Electrical Engineering Graduate Student Association
(EEGSA), and its CSGSA counterpart. While I initially joined simply as a favor to my
friend David Fridovich-Keil to help with some finance and paperwork as a treasurer, I ended
up finding an opportunity to make tangible changes impacting the EECS graduate student
community and graduate student experience. I was fortunate enough to work with, and learn
from, change-makers and friends such as Sylvia Herbert, Josh Sanz, Kelly Fernandez, Justin
Yim, Avi Pandey, Sidney Buchbinder, Gabe Fierro, Kristina Monakhova, Kevin Laeufer,
Eldon Schoop, Jake Sporrer, Laura Brink, Mike Danielczuk, Saavan Patel, Hani Gomez,
Matt and Carolyn Matl, Mauricio Bustamante, Ryan Kaveh, and so many countless others
who volunteer their time in order to make Berkeley EECS a better place for current and
future graduate students, and make sure that EECS graduate students have an experience
that goes beyond just research work.

I also found a welcoming home within the graduate student community of Berkeley Hillel.
Whether it was weekly Shabbat dinners, holiday parties, or retreats to the mountains, I
always felt the backing and support of the Jewish community and enjoyed contributing back
to it. I would like to thank the graduate student community who welcomed me during my
first year, including David, Zach, Zoe, Andy, Todd, Mark, Shante, Rosie, Dan, Sara, and
Lauren, as well as the Berkeley Hillel staff, particularly Rabbi Adam, Lauren, Molly, Emily,
and Danielle.

Looking back at the beginning of this experience, I probably would not have ended up
in Berkeley if my friend Eyal Cidon did not convince me to apply for a PhD program in the
US. Together with Jenya Pergament, having the support of two high school friends pursuing
PhDs in EE and CS in the Bay Area was invaluable, and created an environment where I
was always able to get a taste of home when I needed it. While we ended up pursuing our
PhDs in rival universities across the bay, I could not have asked for a better high school class
(Hebrew Reali School of Haifa class of 2007). Equally as important are my undergraduate
professors at Technion who led me to this path, and kept in communication throughout my
time in Berkeley, especially Avinoam Kolodny and Ran Ginosar. I’m also grateful to Ruth
and Prof. Bob Brayton, who graciously hosted me when I first arrived in Berkeley. Having
a place to land when I arrived relieved a lot of stress of the transatlantic relocation, and I
will forever be grateful to them for hosting me during that time.

Finally, I would like to thank my family back home. My parents, Gil and Yael, my
“fun car” sisters Gal and Maayan, and my newest family member Michael, who were always
available for a phone call, video chat, or “half-way” meeting somewhere in Europe. I’ve had
the privilege of growing up in a house with both a love for computers from a very young age,

ix

as well as a sympathetic ear regarding any personal or professional concerns. I always know
my family has my back with any choice I make or any problem I have, and that knowledge
and feeling can overcome any distance.

This work was supported in part by the Defense Advanced Research Projects Agency
through the Circuit Realization at Faster Timescales Program under Grant HR0011-16-
C0052 and the Real Time Machine Learning Program under contract FA8650-20-2-7006; in
part by the Advanced Research Projects Agency-Energy, U.S. Department of Energy, under
Award DEAR0000849; in part by the NSF CCRI Award 2016662; in part by the NSF CISE
SHF Award 1955450; and in part by ASPIRE and ADEPT Lab industrial sponsors and
affiliates. The views and opinions of the author expressed herein do not necessarily state or
reflect those of the U.S. Government or any agency thereof.

1

Chapter 1

Introduction

Throughout the past decade, the computing industry has been slowly coming to terms with
the reality and challenges of the end of Moore’s law. This ending of Moore’s law is due to
a mix of technological factors, such as the limits of planar lithography-based atomic-scale
devices and increased power density resulting from the end of Dennard scaling, as well as
economic factors, such as the cost of sub-micron process technologies. Nevertheless, increas-
ingly efficient computing remains a necessity, with the recent big data and machine learning
revolutions acting as prime drivers for high-performance computing. Different communities
within the computing world have been pursuing multiple research and development efforts in
order to continue and meet the increasing computing requirements of the growing software
industry. These can generally be classified into three main categories:

1. Scale-Out: Distribute the workload across many machines.

2. Device and Packaging Physics: New devices, process technologies, packaging technolo-
gies, or computing physics such as carbon nanotubes, quantum computing, phase-
change memory, memristors, etc.

3. Specialization: Specialized hardware for particular applications with limited use-cases.

Each of these approaches provides different capabilities that enable increased comput-
ing performance and efficiency, but which also add constraints and assumptions regarding
algorithms, software, and fabrication, that limit their usage scenarios when compared with
traditional general-purpose computing.

Scale-out computing derives both its power and its limits from the properties of paral-
lelism. Workloads which expose sufficient parallelism theoretically enable unlimited scaling,
but at the same time are still limited by Amdahl’s law. This ability to scale horizontally ben-
efits from programming models which can generalize to arbitrary parallel programs, flexible
application-dependent scaling, and mature software infrastructure platforms such as MPI,
MapReduce, Spark, Ray, and DASK [243, 72, 284, 193, 219]. However, this same ability to
scale can also incur a large power and energy cost, as synchronization and other overheads of

CHAPTER 1. INTRODUCTION 2

parallel execution can result in less-than-optimal utilization of the underlying computation
resources and large amounts of data movement.

Device and Packaging physics provides new properties and capabilities such a non-
volatility, low-power operation, sustainability, and tighter device integration across multiple
dimensions. Nevertheless, there are still many open questions in terms of cost, yield, relia-
bility, endurance, size, determinism, and other properties of such devices. Furthermore, such
devices will require new design infrastructure, which will take time to mature, as well as new
software abstractions that will be able to utilize these new device properties. While advances
in device physics provides a long-term prospect for more efficient computing, and packag-
ing innovations have the potential to enable better modularity and scalability, resolving the
associated open questions will take time.

Hardware specialization provides the benefits of higher energy efficiency and per-
formance improvements beyond simple parallelism [257], but is limited by programming
models, developer productivity and challenging software stacks. Hardware specialization
can be performed by using current technologies and tools, and provides immediate impact
for a select number of applications. However, it requires an equally expensive investment
in software support for each unique instance of hardware. Some examples of specialized
hardware include digital signal processors (DSPs), artificial-intelligence (AI) accelerators,
field-programmable gate arrays (FPGAs), and graphics processing units (GPUs).

The future of computing will require a combination of these different approaches: scale-
out systems with specialized and heterogeneous hardware across different nodes and new
device physics supporting custom hardware for lower power based on the specialized prop-
erties of each node. In this dissertation, we focus on the hardware-specialization aspects of
computing, with a particular interest in machine-learning and data-analysis applications as
target workloads and driving applications.

1.1 Hardware Specialization

While application-specific integrated circuits (ASICs) have existed since the early days of
the microelectronics industry, with common applications in signal processing and commu-
nication, specialized hardware has taken the computing industry by storm in recent years.
These include mobile application processors, graphics accelerators for gaming and movie
production, video transcoders, and AI accelerators. In contrast to traditional ASICs, these
specialized processors often involve complex software ecosystems, requiring various levels
of programmability and integration with larger and more complex systems. These spe-
cialized processors require significant design and fabrication resources, but in return they
demonstrate orders-of-magnitude better performance and energy efficiency compared to the
general-purpose processor alternative.

In the academic community, specialized accelerators are often designed from scratch
and tailored for a particular application or algorithm to demonstrate maximal efficiency of
performance through tailored data paths and control paths. This approach is often taken

CHAPTER 1. INTRODUCTION 3

in industry as well, although subsequent generations of the accelerator may build upon the
first generation, allowing for some amortization of first-generation design costs.

Nevertheless, the development costs of this approach to specialization are extensive. The
design of specialized hardware is a cumbersome process with immense non-recurring engi-
neering (NRE) costs. The drivers of these NRE costs are diverse: they include architecture
and detailed design, prototyping, verification, validation, physical design, IP qualification,
software development, and much more. A contemporary custom chip can cost well over a
hundred million dollars in NRE, and this means that only very high-volume chips are likely
to amortize and justify their NRE.

Recent trends in open specifications and open-source software and hardware are helping
reduce some of these costs. Free and open instruction set architectures (ISAs) such as RISC-V
serve as a substrate for both hardware and software to build upon while providing the freedom
for extension and specialization. Similarly, open-source hardware and software efforts help
distribute the burden of development and maintenance of common building blocks which do
not provide competitive or innovative advantages. This allows for the resources invested in
specialization and customization to be re-directed towards innovation rather than boilerplate
development.

The state-of-the-art in hardware customization and specialization has primarily focused
on methods and tools for hardware description and synthesis. For example, high-level syn-
thesis (HLS) for both ASICs and FPGAs [59, 240] is a tool-based method to rapidly gen-
erate hardware descriptions from software programs. However, HLS tools still require non-
negligible manipulation of the high-level software description in order to be able to generate
synthesizable hardware. HLS is often a good fit for dataflow-centric hardware with lim-
ited control-flow, limiting it to only a subset of the specialized hardware spectrum, leaving
open the challenge of full-system customization. Alternative high-level hardware-description
frameworks such as Bluespec System Verilog [197] and Chisel [23] attempt to lower the cost
of hardware customization by providing high-level hardware-description primitives and func-
tionality while maintaining the RTL abstraction (in contrast to HLS tools, which use software
abstractions). While these tools provide platforms for increased productivity in digital hard-
ware design, their benefits remain at the hardware-description productivity level, while the
majority of hardware customization costs are still incurred throughout the multiple design
flows and system integration stages of hardware customization. To improve productivity
at the hardware-system-level, generator-based approaches to processor and digital system
design have been proposed as an additional layer on top of high-level hardware-description
frameworks [198, 22, 170, 234, 126]. In these generator-based approaches, highly parameter-
ized and modular implementations of digital designs using high-level programming language
abstractions enable generation of a broad range of RTL designs. Generators describe dig-
ital designs at the RTL level in conjunction with additional functional programming and
metaprogramming primitives to encode a high level of parameterization and modularity.

The advancements in hardware description, generation, and synthesis tools help increase
hardware design productivity towards the desired goal of lowering the customization cost of
complete systems-on-a-chip (SoC). The Oxford English Dictionary defines the word “cus-

CHAPTER 1. INTRODUCTION 4

tomization” as modify (something) to suit a particular individual or task. As such, one
key perspective in the customization of SoCs is to not start from scratch, but rather re-use
components from existing SoCs. As a result, SoC design frameworks have been proposed
as platforms for custom SoC design, intended to compose jointly with the aforementioned
advancements in hardware developments tools [43, 26, 212]. Efficient re-use of hardware gen-
erators in combination with ad-hoc custom hardware description can significantly improve
the productivity of custom digital hardware system design. In this work, we demonstrate
SoC customization through composition of generators in order to lower the NRE of SoC
development. This composition and customization does not end with the hardware descrip-
tion or IP blocks, but continues all along the SoC development flow, including verification,
implementation, and software development.

1.2 Numerical Data Analysis

Numerical analysis predates the invention of modern computers by several centuries. Never-
theless, since the creation of modern electronic processors and micro-processors, numerical
analysis has been a prime consumer of computing technologies and has affected many key
developments in the computing industry, including the standardization of floating-point com-
putation and parallel computing platforms.

Numerical computing has been at the core of many scientific modeling and data analysis
applications from molecular and atomic dynamics to atmospheric and celestial mechanics.
Computation for analysis at these scales requires immense computing capabilities which were
the driving applications for the early supercomputers of the 20th century. However, high-
performance numerical computing for data-driven analysis, which was once the realm of only
scientists and mathematicians, has now become a necessity for a large number of commercial
applications and household tasks. New professions in data science and machine-learning
research are consuming ever-growing computation resources with the goal of developing data-
driven models for insights and prediction. A recent refrain, highlighted in a 2017 article in
The Economist, identifies data as “the new oil” [206]. The “big data” revolution enables
new classes of applications and technologies, many of them centered around machine learning
and data analysis.

Throughout the years, many techniques have been developed to extract information from
large amounts of numerical data, from early classical statistics to modern deep learning.
Optimization, linear modeling, dimensionality reduction, feature extraction, and neural net-
works require computation over large amounts of numerical data in order to obtain mean-
ingful results. Through heavy reliance on linear algebra, these techniques have been able
to utilize the large body of work on high-performance numerical computing using efficient
linear-algebra algorithms to enable new tools and data-driven applications. Their high re-
liance on vector, matrix, and tensor data representations and linear-algebra computations,
also make them amenable to hardware customization.

CHAPTER 1. INTRODUCTION 5

As such, state-of-the-art numerical computing software often originates from the require-
ments of scientific computing and has utilized data-parallel and vectorized computation
across platforms ranging from vector supercomputers [125, 223], through packed-SIMD ISA
extensions such as Intel’s SSE and AVX and ARM’s NEON and SVE in general purpose
processors [179, 248, 191], and most recently highly parallel programmable GPUs [55,
56]. Recently, the high computational demands of matrix computations in deep-learning
applications have led to the addition of specialized matrix and tensor hardware units in pro-
cessor architectures designed to support high-performance numerical computing [140, 56],
as well as discrete tensor accelerators dedicated only to deep learning and the processing of
large amounts of data [149]. Writing software for these specialized architectures requires
careful attention to data parallelization opportunities, since general-purpose programming
languages and tools have yet to achieve efficient automated mapping and compilation to pro-
cessor architectures beyond traditional scalar processors. State-of-the-art software libraries
used for numerical data analysis often manually map common linear algebra operations to
specialized architectures in order to achieve high performance and efficiency.

As general-purpose computing increasingly exhibits diminishing performance and effi-
ciency returns with the end of Moore’s law, numerical computing and numerical data anal-
ysis continue to be a driving force for high-performance computing, with the range of target
platforms extending from supercomputers to mobile devices. In this work, we focus on hard-
ware that can be used for modern deep-learning applications as well as traditional statistics,
and the customization required for it to be applicable to the broad field of numerical data
analysis.

1.3 Dissertation Scope and Outline

This work presents tools and methodologies for the development of custom systems-on-chip
(SoCs) for numerical data analysis applications. An integrated generator-based framework
for SoC development is demonstrated through SoC customization and hardware/software
co-design for numerical data analysis and machine learning applications. The development
of full system support from hardware accelerators through system software leads to the
identification of several co-design opportunities for increasing accelerator utility in custom
SoCs.

Specifically, this works builds upon the aforementioned high-productivity hardware de-
scription tools and generator-based design approaches but focuses on the system-level aspects
of SoC design, which include system configuration and component integration, design-flow
integrity, system-level design space exploration, and system-level HW/SW co-design. We
demonstrate how re-use and integration of several key generator-based tools together with
a unified configuration abstraction provide new capabilities in SoC design, from pre-silicon
inception and exploration stages to complete implementation and verification flows. We
demonstrate how this approach differentiates generator-based SoC design from alternative
SoC design approaches through multiple levels of configurability, and a single source of design

CHAPTER 1. INTRODUCTION 6

truth across the entire hardware and software development flow.
The driving applications throughout the dissertation are numerical data analysis work-

loads, from deep learning through classical statistics. While the primary focus of recent state-
of-the-art hardware specialization has been deep learning, this work highlights a broader class
of applications which are based on linear algebra computations for numerical data analysis.
This broader class of applications can be supported by custom hardware for vector and ma-
trix computations. As part of the SoC customization process, we highlight generator-based
specialized hardware for matrix and vector computations, and its integration as part of a
custom SoC. We demonstrate the complete design and customization process, from hard-
ware through software, and highlight the challenges and opportunities enabled through a
rapid generator-based customization process for this class of numerical data analysis driving
applications. In particular, we identify several co-design opportunities for improved support
for small matrix computations, which can be enabled or disabled by the hardware generator
during the SoC development process based on the requirements of the custom SoC target
application class.

Chapter 2 provides background on numerical data analysis applications, their computa-
tional properties and motifs, and techniques used for high-performance numerical analysis.

Chapter 3 provides background on hardware architectures used to accelerate such com-
putational patterns found in numerical data analysis workloads and introduces the Hwacha
vector unit and Gemmini matrix engine which are used to accelerate the aforementioned
computational patterns within the context of this dissertation.

Chapter 4 introduces ideas and methodologies pertaining to generator-based SoC design,
challenges based on previous experiences applying those ideas in practice, and methodological
approaches which help address those challenges and encode them using relevant tools and
design flows.

Chapter 5 presents the Chipyard integrated SoC-development framework, which is the
primary vehicle used to implement the generator-based SoC design methodology, through
automation and integrated tooling. This chapter describes the main components and tools
of the Chipyard framework, the ways it can be applied to custom SoC design, and its impact
on accessibility of education related to custom generator-based SoC design.

Chapter 6 introduces several hardware-software co-design capabilities enabled by genera-
tor-based tools within the Chipyard framework. Specifically, it demonstrates full-system
design space exploration enabled by generators, debugging and optimization enabled by
generator-based FPGA-accelerated simulation, and performance tuning through templated
integration of automatically generated software header files.

Chapter 7 presents the customization and mapping of the numerical data analysis soft-
ware stack onto SoCs designs and hardware accelerators generated by the Chipyard frame-
work, with a particular focus on mapping the data science application stack onto the Gem-
mini matrix engine.

Chapter 8 presents matrix engine hardware-software co-design opportunities for numeri-
cal data analysis applications, identified and evaluated through the mapping of the numerical
computing software stack onto Chipyard-generated SoC.

CHAPTER 1. INTRODUCTION 7

Chapter 9 concludes the work by summarizing the key contributions of this dissertation
and suggesting opportunities for future research directions.

8

Chapter 2

Algorithms for Numerical Data
Analysis

With the extensive availability of digital data, data science has emerged as a discipline linking
together knowledge from multiple industries and academic fields in order to harness data to
its fullest extent. To this end, data scientists are combining traditional statistical modeling
methods with modern deep learning methods to identify new insights from data analysis and
construct efficient prediction, inference and training models.

2.1 Machine Learning and Numerical Data Analysis

Data analysis enabled by modern computing capabilities has propelled the data revolution
into prominence across a multitude of application domains. From anomaly detection and
business intelligence (BI) extracted through immense data logs, through biological and ge-
nomics research, recommendation systems, computer vision, and natural language processing
enabled through advanced modeling methods, the ability to efficiently process large numer-
ical data sets is impacting every aspect of our lives. As the size and diversity of data sets
continue to grow, the science around their processing is evolving as well.

Data science spans a wide range of data processing tasks, from data acquisition and
cleaning through exploratory analysis to modeling, prediction and inference. The latter
parts are often aggregated and referred to as Machine Learning (ML). ML is a study of
data-driven algorithm development, and is often considered to be a branch of both modern
statistics and computer science. Machine-learning algorithms improve and evolve through the
collection and refinement of data. The discipline has grown and expanded from traditional
statistical methods through data-mining and unsupervised methods to modern deep neural
networks. In particular, numerical data, in contrast to other data forms such as strings
and objects, is amenable to processing founded on the basis of mathematical and statistical
algorithms. Such numerical data can be collected through sensors and simulations or be used
to model other real-world objects such as images and colors. In this work, we are interested

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 9

in both exploratory data analysis as well as production data modeling and machine learning
pipelines.

Data-modeling pipelines are used for both model construction and training, as well as
prediction and inference based on the model. Data-modeling pipelines often require several
types of methods, including data preparation, feature extraction, and model construction,
all in order to generate insightful data-driven models and conclusions. Each step in these
pipelines may require different numerical processing methods. Starting from the source of the
data, data-modeling pipelines may compute and validate basic properties of the data such as
covariance matrices. Next, numerical data often requires extensive pre- and post- processing
to make it amenable for efficient data analysis or training in supervised learning models.
Such processing includes data transformation through parsing, permuting and cleaning. An
equally important part of processing may include clustering or other dimensionality-reduction
techniques to identify important features or reduce the space of classification classes. Di-
mensionality reduction can also be used to efficiently communicate features and gradients
between remote models. The incorporation of a theoretical or formal model within the
pipeline may also require solving one or more linear systems in order order to encode addi-
tional features. Finally, data passes through the final parts of the modeling pipeline which
can incorporate training or inference of various machine-learning models, including linear
regressions, support vector machines, deep neural networks, or any other data-driven mod-
eling algorithm. The composition of all these tools and methods often consists of both data
movement and numerical transformation of the data, and in particular, linear-algebra-based
transformations of the data.

Due to the recent conflation of the terms “machine learning”, “deep learning”, and “deep
neural networks” (DNN), in both scientific and popular literature, throughout this disser-
tation we will attempt to avoid the term “machine learning”. We will use the term “deep
learning” or “DNN” to describe machine learning based on deep neural networks, and we will
use the term “data analysis” to describe exploratory data analysis as well as what may some-
times be referred to as “classical statistics” or “classical machine learning,” which includes
dimensionality reduction, clustering, linear models, and so on. Figure 2.1 helps illustrate the
differences and overlaps between these categories of domains, with numerical data analysis
being a subset of the broader data analysis domain overlapping with machine-learning and
deep-learning.

2.2 Data Analysis Algorithms and Dense Linear

Algebra

The foundation of numerical data analysis and classical statistics is linear algebra: weighted
systems of equations, eigenvalue problems, projections, low-rank approximations, and least-
squares regressions, all require extensive numerical computations on tensors, matrices, and
vectors. Deep neural networks, which have been the subject of some recent divergence from

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 10

Figure 2.1: Data analysis workload categories and overlaps between them.

classical machine learning and statistical methods for data modeling, are also heavily de-
pendent on dense linear algebra computations, to some extent even more so than classical
statistics and data analysis. Numerical data sets are typically represented as vectors, matri-
ces, and tensors. Through the manipulation of the dimensionality and geometry of numerical
data, dense linear algebra methods extract abstract features, generalizations and anomalies
which form the building blocks of data-driven models.

Several examples of key data analysis methods and their associated linear algebra prob-
lems include:

• Principal component analysis (PCA) - Linear dimensionality reduction by projecting
data to a lower-dimensional space. Extracting and selecting the principal components
of the data helps reduce the dimensionality of a high-dimensionalilty dataset while
maintaining as much of the data’s variation as possible. Dimensionality reduction is
especially useful as part of exploratory data analysis, but can also be used as part of a
data-modeling pipeline. PCA is in fact the singular value decomposition (SVD) from
linear algebra, used to find the orthogonal projection of the matrix.

• Clustering - Grouping data samples into groups (clusters) through an unsupervised
process based on their numerical features. Two popular forms of clustering are K-
means and spectral clustering. K-means clustering partitions the data into k clusters
where a data sample belongs to a cluster with the nearest mean, which is typically
found through a heuristic iterative process involving several matrix multiplications.
Spectral clustering constructs a similarity matrix of the samples in the dataset (based

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 11

on some form of similarity), performs an eigen decomposition on the Laplacian of the
similarity matrix, and performs K-means clustering on the first k eigen-vectors.

• Linear regressions - Construction of a linear model of a system based on a dataset
of samples and features. Typically consists of solving a linear least-squares problem
on an overdetermined matrix (with the potential additional regularization), sometimes
with regularization parameters (Ridge regression, Lasso regression). The linear least-
squares problems can be solved by directly solving the normal equations (ATAx = AT b)
or using matrix decompositions such as QR decomposition or SVD.

• Deep neural networks (DNNs) - Artificial neural networks with multiple layers between
the input and the output, used as universal function approximators and universal
classifiers. Artificial neural networks are biologically inspired computing structures,
in which each layer is composed of multiple “neurons” which apply a potentially non-
linear transformation on the input. Common layers in DNNs are implemented using
matrix-vector multiplications, matrix-matrix multiplications, and convolutions.

• Support vector machines (SVMs) - A supervised learning algorithm used primarily
for classification and regression. SVMs project the data into a higher-dimensional
space in order to construct hyperplanes which can separate classes of data points with
maximal margins. Training a support vector machine requires solving a quadratic
problem, in which most optimization methods are based on dense linear algebra and
matrix multiplications. Inference using SVMs requires summing over a simple matrix-
vector or matrix-matrix multiplication related to a kernel function selected to suit the
problem.

• Random projections - techniques for dimensionality reduction based on probabilistic
guarantees, where points from a sufficiently high dimensional space are projected to a
lower-dimensional space while maintaining the pairwise distances between the points.
The projection is performed by multiplying the original data matrix of size m×n with
a random matrix of size n × k, where k is the desired lower dimension. The random
matrix is initialized based on a known distribution (for example, Gaussian) and has
normalized columns.

While this list in not exhaustive, in this work, we focus workloads that act as part of
the data-modeling pipeline, including dimensionality reduction through clustering and PCA,
linear modeling, and deep neural networks. Together, these techniques allow data scientists
to construct and analyze complex numerical datasets with both explicit and latent properties.

2.3 High-Performance Numerical Data Analysis

The foundations of computer-based numerical data analysis lie in the lessons learned from
years of research in high performance computing that have had long lasting implications on

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 12

the modern data analysis software stack.
While early high-performance numerical computing libraries were designed primarily with

re-usability in mind, their portability and taxonomy later enabled performance optimization
techniques thanks to their well-defined interfaces and problem structures.

The high-performance computing community has identified that by partitioning linear
algebra problems into “blocks” (or “tiles”), one can extract two primary advantages which
assist in obtaining high performance from a parallel computer with a memory hierarchy:
parallel processing both at the inter-block level and the intra-block level, and reduction
of communication through a surface-to-volume effect for the ratio of operations to data
movement [76]. These principles lie at the core of high-performance numerical data analysis
in both hardware and software implementations.

Parallel Processing

Computer architecture literature traditionally recognizes three major types of parallelism:
instruction-level parallelism (ILP), thread-level parallelism (TLP, sometimes also called task-
level parallelism) and data-level parallelism (DLP):

• Instruction-level parallelism represents the ability to overlap the simultaneous execu-
tion of multiple instructions within a single instruction stream (or thread).

• Thread-level parallelism represents the ability to overlap the simultaneous execution
of multiple independent instruction streams, implying multiple independent program
counters.

• Data-level parallelism represents the ability of a single operation or instruction to be
performed simultaneously on multiple elements of data (whether in a single instruction
stream or multiple instruction streams).

All three types of parallelism can be exploited both through software techniques and hard-
ware techniques, although some may be more prevalent than others. ILP is most commonly
exploited in hardware implementations through pipelining, dynamic scheduling and specula-
tion. High-performance software will extract ILP through software pipelining, loop unrolling
and Very Long Instruction Word (VLIW) compilation to assist the hardware in overlapping
independent instructions. TLP is most often exploited in hardware through multi-processors
(sometimes called multi-core processors) and simultaneous multithreading (SMT) processors.
Software will extract TLP using threading libraries such as POSIX threads (pthreads) or
OpenMP. DLP can be exploited in hardware using single-instruction multiple-data (SIMD)
instructions which enable static scheduling and wide datapaths. Software will utilize data-
level parallelism through explicit SIMD programming, auto-vectorizing compilers (which
transform loops to SIMD instructions), and high-level data-parallel programming languages.
ILP, TLP and DLP are not mutually exclusive, and are typically used in tandem in order to
maximize processor performance.

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 13

Communication

Algorithms generally have two types of costs: arithmetic and communication. Communica-
tion is the cost of moving data between levels of a memory hierarchy or over an interconnect
connecting processing units. The cost of communication can often be reduced to two main
components: bandwidth and latency [27]. Communication can be observed in computer
architecture across various levels of the computing system: I/O, on-chip networks, off-chip
networks, and the memory hierarchy. Communication-avoiding algorithms have been re-
searched since the early 1970s-1980s [155, 89, 147] with the goal of improving performance
through reduction in communication costs.

While parallel processing may help reduce the arithmetic cost of an algorithm, it often
incurs an additional communications cost. For example, a lower-bound on communication
in parallel matrix multiplication for the “memory-scalable” case was found to be Ω(n2/

√
P),

where P is the number of processors [142]. As can be observed, in a parallel system with
P processors, this means that the lower bound on the total amount of communication in
the system would be Ω(P × n2/

√
P) = Ω(

√
P × n2), which is

√
P times the lower bound of

communication in the single-processor memory-scalable case (P = 1).
Similar communication lower bounds pertaining to sparse and dense linear algebra prob-

lems have been proven in recent years [27], leading to advances in communication-optimal
algorithms that are used across a variety of numerical data analysis problems. These
communication-avoiding schemes can be captured both in software implementations and
specialized hardware implementations which rely on high degrees of computational paral-
lelism.

2.4 Arithmetic Intensity of Numerical Data Modeling

Kernels

From a computational perspective, dense linear algebra is considered to be a compute-
intensive class of workloads. A useful measure of whether a workload is likely to be compute-
bound or memory-bound is the arithmetic intensity (or operational intensity) of the work-
load [277]. Arithmetic intensity is a property of a workload or an algorithm (as opposed to
a property of the “problem”, or a property of the hardware). It measures the ratio between
computational (arithmetic) operations to data movement operations. As such, it measures
the ratio of operations which require processing capabilities vs. operations which require
memory capabilities (or memory bandwidth). The definition of an “operation”, as well as
the exact units used to measure arithmetic intensity, may change based on the context of
the problem. In high-performance scientific computing, arithmetic intensity is often mea-
sured in floating-point operations (FLOPs1), while data movement is measured in bytes.

1Due to frequent confusion, we clarify that the notation “FLOPs” is the plural of FLOP (a FLoating-
point OPeration), and measures operation count, while the notation “FLOP/s” or “FLOPS” is a measure
of throughput, denoting floating-point operations per second

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 14

As a corollary, since deep-learning inference may use quantized integer computations rather
than floating-point computation, the arithmetic intensity measure for deep neural networks
uses integer operations (OPs) rather than floating-point operations. Similarly, some deep-
learning researchers consider only the data movement of weight parameters rather than data
movement of both weight and activation data [149]. In this work, we consider all necessary
data movement, including DNN activation data.

Table 2.1 lists the arithmetic intensity properties of several key dense linear-algebra
operations used for numerical data analysis. In particular, we focus on matrix operations and
matrix decompositions, since numerical datasets are often represented in the form of matrices.
We observe that most matrix operations have arithmetic intensity that grows with the size
of the input matrix. There is a large body of work on increasing the arithmetic intensity
of matrix decomposition algorithms and minimizing communication using blocking/tiling
techniques. We further elaborate on these within the context of the LAPACK and BLAS
software libraries in Chapter 7.

A particular subset of dense linear algebra and machine learning of recent interest are
operations that compose deep neural networks (DNNs). DNNs have been at the forefront of
advancements in computer vision, natural language processing (NLP) and additional data-
driven modeling and prediction domains. They are made up of a large and diverse class
of linear algebra operations ranging from convolutions, through sparse and dense matrix-
vector and matrix-matrix operations, and even optimization and gradient computations as
part of the training process. Table 2.2 lists several key DNN operators and their arithmetic
intensity properties. Typical layers in computer vision DNNs include spatial convolutions,
which perform two-dimensional or three-dimensional convolutions over the input tensors
(Ok,p,q =

∑R
r

∑S
s

∑C
c Xc,p+r−R/2,q+s−S/2Wk,c,r,s); fully connected layers, which multiply an

input feature vector by a weight matrix (oi =
∑

j Wijxj+bi); and pooling layers, which reduce
the dimensions of activation tensors through averaging, maximizing or minimizing across the
size of a filter. Typical layers in NLP DNNs include embedding layers, which transform an
object from a vocabulary encoded as a one-hot vector into a vector embedded within a
high-dimensional space by performing a table-lookup operation; long short-term memory
(LSTM) layers, which are recurrent layers that use feedback connections between features
across the time dimension (ht = NonLinearity(Wihxt + bih +Whhh(t−1) + bhh)) together with
a set of gates to regulate the flow of information in order to control vanishing gradients;
and attention layers, which build upon bi-directional LSTMs and add all-to-all relationships
across input feature vectors through additional weight matrices (effectively resulting in a
series of matrix multiplications) [266]. Notably, a large number of DNN operators exhibit
arithmetic intensity that grows with the size of their parameters (a “surface-to-volume”
effect).

Research on deep neural networks has traditionally focused on improving their infer-
ence accuracy and generalization ability, often through larger numbers of parameters and
increased amount of computation. As such, compositions of operators such as spatial convo-
lutions, fully connected layers, and attention, are continuously increasing the computational
cost of deep neural networks. We note that throughout the evolution of deep neural net-

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 15

Table 2.1: Building blocks for numerical analysis and their characteristics (LAPACK 3.9.0
implementations, matrix size m× n).

FLOPs Memory Footprint Arithmetic Intensity

Matrix-Vector
Multiplication

2nm nm + 2m
2n

n + 2

Matrix
Multiplication

2nmk nm + mk + kn
2nmk

nm + mk + kn

LU Decomposition mn2 − n3/3 mn mn2 − n3/3

mn

QR Decomposition
(Blocked Householder*)

2mn2 − 2n3/3 mn +O(nb)
2mn2 − 2n3/3

mn +O(nb)

Cholesky
Decomposition

n3/3 n2/2
2

3
n

Singular Value
Decomposition** [99]

Σ : 4mn2 − 4n3/3

U, V : kRn + 2Rmn + 4Rn

Σ : mn +O(m)

U, V : m2 + n2 +O(4n2)

Σ :
4mn2 − 4n3/3

mn +O(m)

U, V :
kRn + 2Rmn + 4Rn

m2 + n2 +O(4n2)

Linear
System Solve

2
3
n3 + 2n2 n2 + 3n

2
3
n3 + 2n2

n2 + 3n

Linear
Least Squares*

2mn2 − 2n3/3 + 2mn + n2 mn + nb + m
2mn2 − 2n3/3 + 2mn + n2

mn + nb + m

*The parameter b represents the block size in a blocked algorithm. We assume m > n.
**SVD is solved using iterative algorithms. Therefore, the number of FLOPs and memory
footprint can only be estimated. We estimate the number of FLOPs based on the cost of
various operations within the SVD listed in Golub and Van Luan [99], assuming k iterations,
m >> n, and computing R singular vectors.

works, a subset of networks have focused on improving efficiency as opposed to accuracy of
DNNs [280, 130]. This class of computationally efficient DNN models, which are designed
to run within latency and energy constrained environments, is based on a set of computa-
tionally efficient operators with smaller parameter sets or higher arithmetic intensity. These
operators include depthwise convolution, pointwise convolution, and group convolution, each
of which reduces or partitions one of the dimensions of the traditional spatial convolution.
The pointwise convolution is a traditional spatial convolution with a filter size of 1× 1. As
such, it has smaller parameter memory footprint, but also lower arithmetic intensity. A spa-
tially separable convolution factorizes a square (R×R) convolutional filter into two vectors
(1×R and R×1), hence reducing the parameter memory footprint and arithmetic operation
count by a factor of the filter size (R). The group convolution partitions the input channels
and output channels to G groups, removing dependencies between the groups. This reduces

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 16

the number of compute operations and parameter size by a factor of G, but also reduces
data re-use (due to the elimination of data-reuse across groups). A particular case of group
convolution, in which the number of groups is equal to the number of input channels is called
“depthwise convolution”. This operation, which was popularized in DNNs models designed
for small memory footprints (e.g. MobileNet [127]), has very low arithmetic intensity since
it effectively maximizes the reduction in data re-use in group convolutions by maximising
the number of groups, which may sometimes lead to a performance degradation despite the
decrease in memory footprint and arithmetic operation count. We include several such ef-
ficient operators in Table 2.2 to demonstrate the impact of operator and layer selection on
the arithmetic intensity of DNN inference.

As is the case with matrix decompositions and dense linear algebra for traditional data
analysis and scientific computing, we observe that the arithmetic intensity of DNN operators
typically grows with the sizes of the operator parameters (number of channels and filters,
and sizes of filter kernels and activation tensor dimensions). Notably, some DNN operators
exhibit higher arithmetic intensity than others despite similar parameter sizes. Such obser-
vations have been used in the past to devise DNN models that execute more efficiently on
various processor architectures [97]. Within the context of hardware for data-science, it
is generally preferable to have operators with higher arithmetic intensity, since compute re-
sources are typically “cheaper” to add compared to providing additional memory bandwidth.
At the same time, it has also been found that preferences for high arithmetic intensity vs.
smaller memory footprints are highly dependent on the type of hardware architecture, with
certain high arithmetic intensity models running faster on compute accelerators while result-
ing in slower performance on traditional CPUs [107]. Despite this diversity of operations, the
vast majority of data analysis and DNN operations are based on highly data-parallel linear-
algebra computations, which exhibit relatively high levels of arithmetic intensity, ranging on
the orders of tens to hundreds of operations per byte. For example, the ResNet-50 DNN
model [118] has an arithmetic intensity of approximately 100 operations per byte (depending
on the precision of computation) [201, 271].

2.5 Computational Motifs for Accelerated Computing

With the popularization of parallel and distributed computing across the computing spec-
trum, several attempts have been made at identifying and characterising fundamental com-
putational kernels with the goal of containing and simplifying their parallelization [21, 67,
58]. Often described as computational motifs such as dwarfs or giants, these motifs (which
include dense linear algebra, sparse linear algebra, spectral methods, N-body methods, struc-
tured grids, map-reduce, and others) represent common computational kernels that can be
found across a set of applications from various diverse domains such as machine learning,
databases, graphics, and embedded computing.

The analysis of these motifs has led to the understanding that certain hardware design
patterns indeed fit a broad set of compute kernels. Vector architectures and SIMD units

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 17

Table 2.2: Building blocks for DNNs and their characteristics

Parameter size OPs Memory Footprint Arithmetic Intensity

Spatial
Convolution

CKRS 2CKRSPQ PQ(C + K) + RSCK 2CKRSPQ
PQ(C+K)+RSCK

Fully Connected
CHWKPQ 2CHWKPQ CHW + CHWKPQ 2CHWKPQ

CHW+CHWKPQ

Pooling
0 CHW CHW 1

Embedding
V E L LE + V E L

LE+V E

Attention
4E2 8LE2 + 4L2E 4E2 + +5LE + L2A 8LE2+4L2E

4E2+5LE+L2A

LSTM
16E2 + 10E 8E2 8E2 + 16E 16E2+10E

8E2+16E

Factorized Spatial
Convolution

CKR 2CKRPQ PQ(C + K) + RCK 2CKRPQ
PQ(C+K)+RCK

Pointwise
Convolution
(DK = 1)

CK 2CKPQ PQ(C + K) + CK 2CKPQ
PQ(C+K)+CK

Group Convolution
CKRS/G 2CKRSPQ/G PQ(C + K) + RSCK/G 2CKRSPQ

GPQ(C+K)+RSCK

Depthwise
Convolution

(C = K = G)

CRS 2CPQRS 2CPQ + CRS 2CPQRS
2CPQ+CRS

Channel Shuffle
0 0 2CPQ 0

Shift Convolution
CK 2CKPQ PQ(C + K) + CK CKRPQ

PQ(C+K)+RPQ

Channel
Aggregation

(
∑

i Ci)KRS 2(
∑

i Ci)KRSPQ PQ(
∑

i Ci + K) + (
∑

i Ci)KRS
2(

∑
i Ci)KRSPQ

PQ(
∑

i Ci+K)+(
∑

i Ci)KRS

*We use the dimension terminology used by NVIDIA to denote the tensor and kernel di-
mensions: the number of input channels C, the input height H, the input width W , the
number of output channels K, the output height P , the output width Q, the filter height R,
the filter width S. The embedding, LSTM, and attention layers use a different classification
of parameters, in which we assume L represents the number of objects being embedded (se-
quence length), the parameter V represents the size of the embedding vocabulary, and the
parameter E represents the embedding dimension (or input/hidden dimension in internal
layers). The attention layer can also use an additional parameter to represent the number
of attention heads, listed as A.

CHAPTER 2. ALGORITHMS FOR NUMERICAL DATA ANALYSIS 18

were found to be very efficient for the dense linear algebra motif, while multi-core architec-
tures provide additional load-balancing required for the sparse linear algebra motif. These
hardware architecture patterns and the associated software libraries which are able to utilize
them efficiently have been integrated into modern high-performance processors and their
respective software stacks.

A quote attributed to Prof. Katherine Yelick and Prof. James Demmel notes that
“hardware accelerators are a method of turning a compute-bound problem into a memory-
bound problem”. More precisely, hardware compute accelerators are indeed a method of
turning compute-bound problems into memory-bound problems (when sufficient computa-
tional resources are provided and utilized in the accelerator), and the majority of hardware
accelerators presently available in commercial products are indeed compute accelerators.
Compute accelerators accelerate workloads through the addition of parallel and specialized
computational units for high-intensity math and bit sequence manipulation. In contrast,
memory-system acceleration often requires speculative or prior knowledge of non-standard
or data-dependent organization of data in memory. This often materializes through memory
prefetching, scheduling, custom caching, and bandwidth allocation, in order to accelerate
memory-bound problems. Since compute accelerators often do not require such prior or
speculative knowledge of non-standard data organization in memory, compute accelerators
are sometimes considered to be more “general” and “programmable”. Domain-specific ac-
celerators such as ray-tracing accelerators and multimedia transcoding accelerators are often
a mix of compute acceleration and memory-system acceleration.

As transistor density and on-die resources continues to increase with modern process
technologies (albeit, bound by power), all while memory bandwidth remains constrained
by pin-counts and surface areas, providing additional on-chip compute resources is often a
simpler endeavor than providing additional memory system resources. Hence, from the per-
spective of accelerating computational motifs, using compute accelerators has the potential
to generate high return on investment due to their applicability across multiple application
domains. As noted in Section 2.4, compute kernels associated with numerical data analysis
algorithms generally exhibit high arithmetic intensity and fall under the category of compute-
bound problems within the dense linear-algebra motif. Hence, hardware accelerators for this
motif can provide performance and efficiency gains for this broad class of workloads. Further
fine tuning and customization of accelerators and systems within this domain for particular
subsets of algorithms can provide additional gain, while still maintaining high performance
and applicability to a wide class of applications within the motif. In the following chapters,
we will introduce how customization of hardware systems and accelerators and be applied
to acceleration of numerical data analysis algorithms.

19

Chapter 3

Hardware for Numerical Data
Analysis

With the growing computational requirements of numerical data analysis algorithms and
the increasing amounts of data that needs to be processed, dedicated hardware that is able
to take advantage of their computational properties has been designed in order to support
high-performance processing. This dedicated hardware takes advantage of data-parallelism,
as well as common linear algebra computational motifs found in numerical data analysis
workloads.

3.1 Data Parallel Architectures

Numerical data analysis is traditionally characterized by computation on large amounts of
data. This computation is often repetitive over each data element, exposing a high degree
of data-level parallelism. Throughout the history of modern computing, the leading edge
of high-performance computing has always included demand for data-level parallelism [20,
122]. Early supercomputers such as the CDC STAR-100 [125], Cray-1 [223], and their suc-
cessors were based on vector processing instructions. These vector supercomputers extracted
performance using SIMD vector processing instructions that were able to orchestrate and
feed data at a high rate to the arithmetic units. This ability to feed data to the arithmetic
units at a high rate required high memory bandwidth. Notably, there were some differences
in memory hierarchies across vector supercomputers - for example, the CDC STAR-100 was
a vector memory-memory architecture while the Cray-1 was a vector-register architecture.
Vector-register architectures reduced some of the memory bandwidth requirements by en-
abling intermediate data reuse within vector registers.

In the 1980s-1990s data-parallel vector supercomputers fell in popularity and were mostly
replaced by general-purpose CMOS superscalar microprocessors, which had much lower cost
due to their much larger market volume. CMOS superscalar microprocessors were able to
exploit instruction-level parallelism, enabled through high-density CMOS process technolo-

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 20

gies and on-die integration. Superscalar microprocessors eliminated the need for explicit
vectorization of code, providing high performance and higher flexibility for a broader range
of applications. Since data-parallelism can also be represented in the form of instruction-
level parallelism, CMOS superscalar microprocessors were deemed strictly superior to vector
supercomputers in cost-performance and took over their place in the high-performance com-
puting market.

Nevertheless, instruction-level parallelism is limited by the scope and resources of the
instruction windows and prediction mechanisms of the processor. With the end of Dennard
scaling [73] and the emergence of the “Power wall” [21] during the 2000-2010s, the energy
and power costs of increasingly wider high-frequency superscalar microprocessors had be-
come untenable with diminishing returns on die area, resulting in a return to architectures
that exploit parallelism explicitly. Thread-level parallelism (TLP) in the form of multi-core
architectures, and data-parallel parallelism in the form of wider SIMD ISA extensions and
GPUs, emerged as attractive solutions for continuously increasing computing demands under
the constraints of bounded power envelopes.

However, multi-core machines were not a panacea for performance improvement in the
post-Dennard-scaling era. Multi-core thread-parallel machines incur a cost for state and
instruction management logic for each thread or instruction stream. Together with inter-
thread synchronization, coherency, and communication overheads, the costs of thread-level
parallelism may at times out-weigh its benefits. Given that performance improvement from
explicit parallelism is bounded by Amdahl’s law [8], the scaling limits of such explicitly
parallel architectures depend on the type of target platform. Server processors with many
independent instruction streams are able to utilize multi-core architectures with tens of
independent thread-parallel cores, while energy-conscious mobile processors will typically
not have more than 2-8 independent cores due to limited thread-level parallelism in mobile
workloads.

Data-parallel architectures provide opportunities for additional performance and effi-
ciency gains on a subset class of applications. Data-parallel SIMD and vector instructions
provide the processor with semantic guarantees regarding the properties of the larger com-
putations, which enable efficient micro-architectural optimization and static scheduling of
operations. These main properties are homogeneity of operations across elements, indepen-
dence of operations across elements, and regular element access patterns within a vector
register file and/or memory instructions [20]. The compact nature of data-parallel instruc-
tions also benefits instruction caches and reduces instruction-fetching requirements. Their
properties enable micro-architectural implementations with higher energy efficiency com-
pared to scalar or superscalar processors. For example, a regular access pattern enables a
high-bandwidth vector register file to be constructed of smaller banks with a reduced num-
ber of ports. Similarly, since operations are grouped together, a smaller number of control
path wires are required, reducing both leakage and switching energy. These execution pat-
terns further lend themselves to energy reduction thanks to a reduction in the number of
instruction fetches and TLB accesses.

Data-parallel instructions and extensions have become a staple of modern ISAs, with

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 21

x86 supporting packed-SIMD instructions through the SSE and AVX series of extensions,
Power including the Altivec and VSX extensions, and ARM offering the NEON packed-
SIMD and SVE vector extensions [248, 179, 191, 74, 105]. RISC-V implementations have
included several non-standard vector extensions [46, 290, 153, 279, 230], with a proposal
for a standard vector extension being developed as part of the RISC-V standardization
process. Observations on the RISC-V vector extension standardization process can be found
in Appendix A.

Of notable mention in discussions of data-parallel architectures is the Graphics Process-
ing Unit (GPU). The GPU is a processor designed for offloading of highly parallel graphics
computation. It originates from a different type of workstation than the CPU and was orig-
inally not intended to be used for general-purpose parallel computation. In fact, it bears
no common lineage with the evolution of data-parallel computation within CPUs [122].
Nevertheless, GPUs are based on many of the same data-parallel architectural patterns that
evolved within CPUs and general-purpose computing. GPUs are composed of a collection of
multi-threaded SIMD processors. Hence, one can think of a GPU as a multi-threaded chip
multi-processor (CMP) in which each processor is in-fact a data-parallel vector processor
rather than a traditional scalar processor. As such, GPUs invest their die resources primar-
ily into sustaining high-throughput under the assumption of abundant data-parallelism, as
opposed to a more even balance between throughput and latency of operations for general-
purpose computation in CPUs.

In recent years, the emergence of machine learning and dense linear algebra as key work-
loads, together with the availability of on-chip area resources (but limited power budget),
has led to the popularization of 2-dimensional (2-D) spatial hardware computation units for
operations such as matrix multiplication or convolutions. These 2-D spatial units take ad-
vantage of data-parallelism and data-reuse possibilities across dot-product computations to
implement more efficient computation patterns. Together with 1-D data-parallel units, these
2-D units are now commonly found in server CPUs [140], GPUs [38, 55, 56], mobile phones,
and other custom accelerators and systems [149, 233, 113]. The following sections will de-
scribe some of the properties and implementation design spaces for 1-D and 2-D data-parallel
units, as well as the specific implementations used in the evaluation in this work.

3.2 1-D Data-Parallel Accelerators

Traditional data-parallel micro-architectural implementations can be generally categorized
as temporal, spatial, or a mix of the two. Temporal implementations rely on an assump-
tion of long vector lengths in order to hide memory access latency and amortize a deep
execution pipeline for high throughput, while spatial implementations utilize wider datap-
aths to provide a spatial degree of parallelism which also enables a possibility for further
instruction-level parallelism (ILP).

While early supercomputing vector machines such as Cray-1 and CDC STAR-100 relied
on narrow temporal micro-architectural implementations, other more modern implementa-

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 22

tions such as the Fujitsu A64FX rely on spatial implementations (specifically, a 512-bit
wide spatial implementation) to implement vector ISA extensions such as the ARM Scalable
Vector ISA extension (SVE) [248].

There are many additional nuances to data-parallel implementation (superscalar, regis-
ter renaming, etc.), but for simplicity, we can think of the following two design points as
representing extreme ends of the temporal and spatial implementation philosophies:

1. A temporal implementation based on an in-order pipeline decoupled from the scalar
process pipeline, a banked vector register file, and narrow datapath (32-64 bits). We
will refer to this design point as temporal.

2. A superscalar out-of-order pipeline tightly coupled with the scalar processor, a multi-
ported vector register file with register renaming, and a wide datapath (128-512 bits).
We will refer to this design point as spatial.

Each design point allows for micro-architectural and software optimization using the ab-
stracted dimension, while at the same time limiting similar optimizations across the exposed
dimension. For example, temporal vector machines are able to utilize different vector ele-
ment layouts within their vector register files in order to optimize register file bandwidth and
pipeline utilization, while in contrast, spatial machines are constrained to specific memory
layouts since the wide datapath must correspond to the respective memory layout. Con-
versely, temporal machines can rely on deep pipelines or multi-cycle execution which provide
high-throughput on long vectors but increase the processing latency of short vectors, while
spatial implementations can support low-latency processing of short vector at the cost of a
potential utilization penalty. The different implementation approaches also impact the pro-
gramming model: for example, spatial machines allow for simple re-interpretation of data
within vector registers, since they often assume contiguous layout of data within the regis-
ter. In contrast, temporal machines, which can benefit from data-layout optimizations, may
require sufficient abstraction at the software level which can prevent such re-interpretation
of data.

3.3 Hwacha Decoupled Vector Accelerator

Hwacha [167, 174, 173, 228] is an open-source decoupled vector accelerator developed at
UC Berkeley focused on maximizing energy efficiency while remaining a favorable compiler
target. In this section, we describe Hwacha as background to help understand its use within
the complete system design process of generator-based SoCs for numerical data analysis, as
used in Chapters 5, 6, and 7. Hwacha is a temporal vector micro-architecture, and it has
been developed as a RISC-V non-standard extension that integrates with the Rocket Chip
generator [22] through the Rocket Co-processor interface (RoCC). Several VLSI implemen-
tations have been taped-out in 16 nm, 22 nm, 28 nm, and 45 nm technology nodes at 1 GHz+
clock frequencies [169, 290, 153, 279, 230, 100, 229].

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 23

Similarly to traditional vector architectures, Hwacha offers a more flexible programming
model than fixed-width SIMD architectures by exposing a vector length register to the soft-
ware. This allows software to query and manipulate the vector length, achieving both porta-
bility and scalability by abstracting the actual number of compute units in the microarchi-
tecture. The same code executes correctly on all Hwacha configurations of any hardware
vector length. A stripmine loop can handle fringe elements gracefully without extra scalar
code.

The user-visible register state consists of vector data registers (vv0-255), vector predicate
registers (vp0-15), scalar shared registers (vs0-63), and scalar address registers (va0-31).
The vector data registers are used to store vectorized data that will be processed by the
machines. Scalar address registers are meant for scalar values used in address computations
such as base addresses and strides, while scalar shared registers are meant for scalar values
used as part of arithmetic computations. As such, scalar shared registers can be read and
written within a vector-fetch block, while scalar address registers are read-only within vector-
fetch blocks, simplifying support for non-speculative light-weight access-execute decoupling.

The vector data registers are the primary vector data storage elements within the Hwacha
architecture. The vector register file is treated as a fine-grained configurable resource, en-
abling software to exchange unneeded registers or numerical precision for longer vectors.
The control thread indicates the desired number of architectural registers and their element
widths, and the vector unit re-partitions the physical state and maximizes the hardware
vector length accordingly.

The vector predicate registers are used for predicated operations in order to provide
support for vectorized control flow. The combination of simple vector predication and con-
sensual branch instructions based on a small set of quantifier conditions suffices to efficiently
handle complex control flow [171]. The instruction encoding permits all vector operations
to be predicated.

Hwacha Programming

Hwacha implements a vector-fetch programming model [167]. In this model, vector in-
structions execute independently of the RISC-V control thread in self-contained vector-fetch
blocks, launched by the control thread using a custom instruction that conveys a PC to the
vector unit. This dissociation simplifies code generation and further aids microarchitectural
optimizations. Through this structured division of responsibilities, the control thread should
be able to complete the stripmining loop faster and be able to continue doing useful work,
while the worker thread is independently executing vector instructions.

Nevertheless, this programming model also comes with challenges. Scalar data must be
communicated from the control thread to the vector unit through dedicated data movement
instructions or through memory. This communication generates an overhead for every vector-
fetch block, which in principle should be negligible compared to the execution time of the
vector-fetch block itself. However, this imposes a challenge in automatically generating
and optimizing code across multiple vector-fetch blocks. This programming model has many

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 24

V
e
ct

o
r

La
n
e
 0

V
e
ct

o
r

La
n
e
 1

V
e
ct

o
r

La
n
e
 N
-1

…

Master Sequencer

L1 VI$

Vector
Reduce

Unit

Scalar
Unit

V
C

M
D

Q

RoCC
Frontend

Hwacha

RISC-V
Control

Processor

L1-to-L2 TileLink Crossbar

Figure 3.1: Hwacha accelerator instance with N vector lanes.

similarities to the modern relationship between CPUs and GPUs, in which the CPU acts as a
control thread for GPU kernel operations. However, they differ in the cost of communication
(due to the integrated nature of Hwacha within the shared memory system), as well as in
the management of the private memory.

Hwacha Micro-architecture

Hwacha incorporates ideas from access/execute decoupling [242], decoupled vector architec-
tures [85], and cache refill/access decoupling [30], applying them in a cache-coherent memory
system. Extensive decoupling enables the microarchitecture to effectively tolerate long and
variable memory latencies with an in-order design.

Figure 3.1 presents the high-level structure of Hwacha, implemented as a discrete co-
processor with its own independent front-end. This vector-fetch decoupling relieves the
control processor to resolve address calculations for upcoming vector-fetch blocks, among
other bookkeeping actions, well in advance of the accelerator.

Hwacha consists of one or more replicated vector lanes, each of which is organized around
a dense vector register file constructed of four 1R/1W SRAM banks as shown in Figure 3.2.
The lanes employ temporal execution to efficiently saturate long-latency functional units by
pipelining multiple elements of a vector across a number of consecutive cycles. To continu-
ously supply operands at full bandwidth without stalls, the banks follow a systolic schedule
that eliminates port conflicts. The Hwacha master sequencer schedules and distributes oper-

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 25

ations to the vector lanes, while local lane sequencers and expanders decompose instructions
into smaller micro-operations and schedule them in a systolic fashion across the lane banks.

ALU ALU

VRF
1R1W
SRAM

PLU PLU

PRFBank 0

Operand Crossbar

Predicate Crossbar

Bank 1 Bank 2 Bank 3

Bank 1
Control

Bank 2
Control

Bank 3
Control

Bank 0
Control

E
x
p

a
n

d
e
r

L
a
n

e
 S

e
q

u
e
n

c
e
r

M
a
st

e
r

S
e
q

u
e
n
ce

r

S
h

a
re

d
 F

u
n

c
ti

o
n

a
l
U

n
it

s

V
e
c
to

r
M

e
m

o
ry

 U
n

it

VAQ

VSDQ

VLDQ

VPQ

128b

L2

Figure 3.2: Microarchitecture of one vector lane. VRF = vector register file, PRF
= predicate register file, ALU = arithmetic logic unit, PLU = predicate logic unit, VPQ
= vector predicate queue, VAQ = vector address queue, VSDQ = vector store data queue,
VLDQ = vector load data queue.

Hwacha is implemented as a generator, such that various micro-architectural parame-
ters such as the number of lanes, vector register files sizes, sequencer slots and functional
units can be configured at elaboration time to support a variety of functionality and per-
formance targets. For example, some of the fabricated test-chip implementations of Hwacha
were configurations as single-lane configurations [279], while others comprised of dual-lane
configurations [230].

3.4 2-D Data-Parallel Accelerators

Matrix and tensor computations are classes of data-parallel computations that can typically
exploit parallelism and data re-use across more than a single dimension. Conventional 1-
D data-parallel accelerators are able to parallelize a single loop level within a nested-loop
structure. In contrast, two-dimensional (2-D) data-parallel accelerators can parallelize and
re-use data across two loop levels within a nested-loop structure.

For example, a matrix multiplication requires a three-level nested loop:

f o r (m=0; m < M; m++) {
f o r (n=0; n < N; n++) {

f o r (k=0; k < K; k++) {
C[n , m] += A[m, k]∗ B[k , n] ;

}}}

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 26

If we use the hw for notation to indicate a data-parallel loop that is accelerated in
hardware (whether using a spatial implementation or a temporal implementation), only the
innermost loop of a matrix-multiplication nested-loop implementation can be accelerated
using a 1-D data-parallel accelerator:

f o r (m=0; m < M; m++) {
f o r (n=0; n < N; n++) {

hw for (k=0; k < K; k++) {
C[n , m] += A[m, k]∗ B[k , n] ;

}}}

With 2-D data-parallel accelerators, the two innermost levels of the nested-loop structure
can be accelerated using the 2-D data-parallel accelerator:

f o r (m=0; m < M; m++) {
hw for (n=0; n < N; n++) {

hw for (k=0; k < K; k++) {
C[n ,m] += A[m, k]∗ B[k , n] ;

}}}

While there has been some recent work regarding temporal 2-D data-parallel acceleration
within 1-D vector units [227], the vast majority of 2-D data-parallel acceleration research and
development in recent years has focused on spatial architectures. Spatial architectures are
a class of accelerator architectures that exploit high computational parallelism using direct
communication between an array of relatively simple processing elements (PEs). Compared
to SIMD and vector architectures, spatial architectures have relatively low on-chip memory
bandwidth per PE, but they have good scalability in terms of routing resources and memory
bandwidth. Spatial architectures vary with the complexity of the processing elements and
the complexity of the interconnects. Processing element complexity can range from a simple
single operation such as a fused multiply-add, to a fully capable processor with instruction
decoding and full-fledged ALU. Interconnect complexity can range from static uni-directional
single-input single-output interconnect, to complete networks-on-chip with addressing and
routing capabilities to each processing element in the spatial array. This variety of spatial
design points enabled by the two-dimensional space results in a spectrum of architectural op-
tions ranging from highly flexible re-configurable arrays [213, 190] to more targeted spatially
unrolled fixed-function implementations.

2-D spatial arrays, and systolic arrays in particular, have been a topic of research in com-
puter architecture for many years [161, 160], but until recently have failed to find commercial
adoption in modern multiprocessors. Systolic arrays are one type of spatial architecture in
which the routing between the processing elements is statically fixed to orchestrate a se-
quence of operations across the PEs in a “systolic” fashion. While matrix computations,
and matrix multiplication in particular, have been a kernels of importance in dense linear
algebra for many years, superscalar microprocessors and vector/SIMD processors have been
a design point that sufficiently answers both general-purpose computing needs and occa-

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 27

sional high-performance computing needs. Nevertheless, the increasing demands of dense
linear-algebra computing in deep learning have tipped the scale, leading to adoption of spa-
tial architectures within mobile SoCs, GPUs, and high-performance discrete accelerators for
machine learning. The high-computational cost of dense linear-algebra operations such as
matrix multiplication and convolutions within deep learning models (for example, convolu-
tions constitute 90% or more of the computation in DNNs for computer vision), together
with the ubiquity of deep-learning solutions across an increasingly widening range of appli-
cations such as computer vision, natural-language processing and signal processing, have led
to the integration of spatial architectures within the mainstream computing hardware stack.

Systolic arrays encode in hardware the same basic principles used in high-performance
computing software: reduction in communication cost while maximizing data-parallelism.
By using a large number of processing elements, systolic arrays maximize data-parallelism
across a large number of data elements. By communicating data only between adjacent
processing elements, systolic arrays reduce the cost of communication since the wire distances
are short and the data does not need to travel through a complex memory hierarchy [147,
161, 160]. Thanks to the high degree of parallelism and data reusability of convolutions and
matrix-multiplication operations, these systolic or spatial architectures are a natural option
for accelerating DNNs.

Spatial architectures have been integrated into silicon-based systems under a variety of
system configurations: as integrated components within GPU SIMD processors [204], as dis-
crete PCIe-attached accelerator devices [149, 189], as peripheral accelerators on SoCs [241,
246, 120], and as CPU-integrated units [140, 247, 144]. Each configuration has profound
implications on software implementation as well as latency, power and energy constraints.
For example, spatial architectures that are integrated within larger compute units (CPU,
GPU) can perform finer-grained operations in conjunction with their host unit. In contrast,
peripheral accelerators integrated on an SoC may provide energy and power efficiency but
incur latency in operating-system overheads and peripheral-device management. Similarly,
decoupled accelerators may provide benefits for only very large matrices due to communica-
tion and setup costs, while tightly integrated accelerators could lower this threshold.

Spatial Characteristics

Spatial architectures utilize dataflow as a means for reducing communication between pro-
cessing elements. Dataflow defines an order of computation and order of data movement
across a set of processing elements. Typical dataflows for a matrix-multiplication spatial
architectures include input-stationary (IS), weight-stationary (WS), and output-stationary
(OS). In each dataflow, one of the matrices involved in the operation (where the first ma-
trix operand is referred to as the “input”, while the second matrix operand is referred to
as “weights”) is statically resident in the spatial array, while the other two matrices “flow”
through the two dimensions of the spatial array. The Eyeriss project [51] proposed a tax-
onomy for classifying convolutional neural network (CNN) accelerator dataflows according
to the type of data each PE locally reuses. The four dataflows proposed in the taxonomy

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 28

are weight stationary (WS), output stationary (OS), row stationary (RS), and no local reuse
(NLR). In a WS dataflow, each filter weight remains stationary in the PE register file. In
an OS dataflow, the accumulation of the output feature stays stationary in the PE, and the
partial sums are stored in the PE register file. In a NLR dataflow the PEs do not exploit
data re-use at the local register file level, but rather use inter-PE communication for input
feature map re-use and partial sum accumulation. In a RS dataflow, each PE operates on
one rows of filter weights and one row of the input feature map, and generates one row of
partial sums. In the RS dataflow, partial sums from different PEs are then accumulated
together to generate the output feature map. Evidence has suggested that different CNN
layer types, shapes, and sizes, map with different levels of efficiency to different dataflows in
spatial architectures [162, 14], advocating for hybrid dataflow architectures.

The memory hierarchy of a spatial architecture can be further extended beyond the
register files within each PE with larger memories shared across several PEs. These larger
shared memories can be managed in the form of explicitly addressed scratchpad memories
or with large register file abstractions. Spatial architectures typically require higher memory
bandwidth than temporal architectures due to their larger number of computational units.
The structured nature of spatial architecture enables structured access patterns to these
memories shared across several PEs, which can reduce their complexity and enable banked
low-ported memory designs.

The interconnect within a spatial architecture determines the level of flexibility, and often
the programming model, of a spatial architecture. A static interconnect limits the spatial
architecture to fixed operations, fixed operation sizes, and fixed dataflows. On the other
extreme, a fully dynamic interconnect enables the architecture to implement a variety of
operations and operation sizes, but requires a complex routing and programming scheme.
Modern spatial architectures often select a hybrid approach, which may enable limited or
hierarchical interconnect reconfigurabiliy to support a diversity of operations, sizes, and
dataflows.

3.5 Gemmini Spatial-Array Accelerator

Gemmini [96, 95] is an open-source generator of DNN accelerators developed at UC Berkeley,
spanning across different spatial hardware architectures, programming interfaces, and system
integration options. In this section, we describe Gemmini as background to help understand
its use within the complete system design process of generator-based SoCs for numerical
data analysis, as used in Chapters 5, 6, 7, and 8. A high-level system diagram of a Gemmini
accelerator is illustrated in Figure 3.3. Gemmini provides a flexible architectural template
to support a diverse set of numerical and structural microarchitecture parameters. Several
VLSI implementations have been taped-out in 12 nm, 16 nm, and 22 nm technology nodes
at 500 MHz-1 GHz clock frequencies. In addition, Gemmini also produces software binaries
tuned for each generated hardware instance, either through a push-button programming
interface via the ONNX Runtime [214, 64, 90] or a low-level, Gemmini-provided Application

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 29

CPU

Core

L1 I+D

L2

DRAM

Gemmini

Controller

DMA Engine

Local TLB

Scratchpad
Bank 0…

Transposer

Spatial
Array

++++++
Accumulator

SRAM

Bank K

Bitshi

ReLU

Dependency Mgmt

RoCC Cmd

RoCC PTW

Matrix Scalar
Multiplier

Pooling
Engine

im2col

Figure 3.3: Gemmini system diagram. [96] (© 2021 IEEE).

Programming Interface (API) that is portable across Gemmini-generated accelerators.

Gemmini Micro-architecture

The foundation of Gemmini’s architectural template is a spatial architecture with spatially
distributed processing elements (PEs), each of which performs dot products and accumu-
lations, with different structural parameters (e.g., dataflows or spatial architectures) and
numerical parameters (e.g., array size and bitwidth). The spatial array reads data from a
local, explicitly managed scratchpad memory, made up of banked SRAMs, and writes results
either to that same scratchpad or to local accumulator storage with a higher bitwidth than
the input data. In addition, Gemmini also supports other commonly-used DNN kernels,
e.g., pooling, non-linear activations (ReLU or ReLU6), and matrix-scalar multiplications,
through a set of configurable peripheral circuitry units. Gemmini accelerators can include
fixed hardware controllers, implementing finite-state-machines controlling the execution of
matrix multiplications or convolution operations. As is the case with the Hwacha vector
unit, Gemmini has been developed as a RISC-V non-standard extension that integrates with
the Rocket Chip generator through the RoCC interface and connects to an SoC memory
system though a shared last level cache, as illustrated in Figure 3.3.

Gemmini’s spatial array template is composed of a two-level hierarchy to provide flexible
compositions of microarchitecture structures, as demonstrated in Figure 3.4. The spatial
array is composed of a rectangle of tiles, where tiles are connected via explicit pipelined reg-
isters. Each individual tile can be further broken down into a rectangular array of Processing
Elements (PEs), where PEs in the same tile are connected combinationally without pipelin-
ing registers. Each PE performs a single multiply-accumulate (MAC) operation every cycle,

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 30

Figure 3.4: Microarchitecture of Gemmini’s two-level spatial array template.

using either the weight- or the output-stationary dataflow or both. Every PE and every tile
shares inputs and outputs only with its adjacent neighbors. Using this two-level hierarchy, a
Gemmini instantiation can implement a systolic array architecture by configuring each tile
to include only one PE. Alternatively, it can also implement parallel vector registers with
combinational multiply-accumulate reduction trees by configuring fewer tiles with multiple
PEs within each tile, similar to accelerators such as NVDLA [241] and DianNao [50, 52].
The default Gemmini configuration uses a systolic-array architecture, with support for a
weight-stationary dataflow.

Gemmini supports a large number of parameters, allowing a high degree of customization
over the compute characteristics, memory capacity, and SoC-level characteristics of any
accelerator that is generated. The most relevant parameters, described in Table 3.1, configure
all parts of the compute stack, from the dataflow of the spatial array to the cache hierarchy
of the host CPU and the main memory. For example, the datatype of the PEs can be
configured to signed integers, unsigned integers, or floats, of any size defined by the user.
We highlight several of these configuration parameters:

Datatypes: DNN workloads show a large amount of variety with regards to the datatypes
they operate on. For example, inference on the edge is often done with 8-bit fixed-point num-
bers, while training and inference in the cloud are typically performed using single-precision
or low-precision floating point numbers. Recent research is also enabling the use of a va-
riety of new floating-point representations which diverge from the standardized IEEE-754
format [251, 220, 148, 108]. Gemmini allows users to specify arbitrary new datatypes, with
user-defined multiply-accumulate (MAC), rounding, and comparison functions, by leverag-
ing the robust typeclass support in Chisel [23]. For traditional types, Gemmini provides
signed and unsigned fixed-point numbers, as well as parameterizable floating-point formats

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 31

Category Parameter Recommended Range

Spatial
Array

Mesh Rows 1–256
Mesh Columns 1–256
Tile Rows 1–256
Tile Columns 1–256

Dataflow
Weight/Output stationary,

or both

Accelerator
Memory

Scratchpad Capacity 256 bytes–16 MB
Accumulator Capacity 256 bytes–8 MB
Scratchpad Banks 1–4
Accumulator Banks 1–4
Accumulator Ports 1-2

Execution
Schedule

ROB Entries 4–128
Load Queue Entries 2–128
Store Queue Entries 2–128
Execute Queue Entries 4–128

Controller

PE Latency 0–4 cycles
DMA Bus Width 64–256 bits
DMA Block Size 32–64 bytes
TLB Entries 2–64

Datatypes

Datatype SInt/UInt/Float/User-defined
Input Bitwidth 8–32 bits
Output Bitwidth 8–32 bits
Accumulator Bitwidth 16–64 bits

Operators
Multiply by Scalar Present/Not + Width
Transposer Present/Not
Pooling Present/Not
Im2col Present/Not

Table 3.1: Example Gemmini generator parameters.

using the Berkeley Hardfloat library [117].
Dataflow: The dataflow of the spatial array can be fixed at elaboration-time or con-

figured to be runtime-adjustable. Gemmini supports both output-stationary and weight-
stationary spatial arrays by setting the Dataflow parameter, which will impact the internal
configuration of the PEs. DNN workloads often exhibit a high degree of variation in layer
shape and size, meaning that weight reuse might be higher in some layers, while output reuse
is higher in others [162, 14]. To enable efficient computation across all these types of layers,
the runtime-adjustable dataflow support in Gemmini generates PEs that are equipped with
multiplexers allowing them to switch between the weight- and output-stationary modes at

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 32

runtime.
Optional compute blocks: Peripheral compute blocks supporting DNN operations

such as non-linear activation functions, max-pooling, transpositions, and image-to-column
(im2col) transformations can be optionally left out of the generator to save area and power
consumption for custom SoCs which do not require them. This enables a high level of
customizability for a variety of workloads both within the DNN domain, as well as for
general purpose matrix workloads.

Execution Control: Controller parameters such as the number of entries in the various
queues and buffers in the system can be adjusted based on the properties of the outer memory
system and the internal compute array. This allows for fine-grained tuning of the controller
to achieve balance in the system between the compute array and the SoC memory system.

Gemmini Programming

Gemmini supports multiple programming options. Gemmini can be programmed using fine-
grained RISC instructions, as well as through coarser-grain CISC instructions which issue
their own sequence of RISC operations using finite state machines implemented in hardware.
Both instruction types are issued by the host processor through the RoCC interface as part of
the program’s instruction stream. Like other RoCC accelerators, Gemmini supports virtual
memory addressing by maintaining its own TLB as well as by communicating with the host
processor page table walker through the RoCC interface.

In addition, Gemmini provides a multi-layer software flow to support different program-
ming scenarios, illustrated in Figure 3.5. At the high-level, Gemmini supports a push-button
software flow which reads ONNX-formatted DNN descriptions [90] and generates software
binaries that will run them through the ONNX Runtime environment [64, 214]. Alterna-
tively, at the mid-level, the generated accelerator can also be programmed through C/C++
APIs, with tuned functions for common DNN kernels such as convolutions fused with ac-
tivation functions, residual additions, matrix multiplication, and pooling. Finally, at the
low-level, Gemmini also provides macros allowing programmers to call the Gemmini custom
instructions directly, giving the most fine-grained level of control. Gemmini generates an
accompanying software header file containing various parameters, e.g. the dimensions of
the spatial array, the dataflows supported, and the compute blocks that are included (such
as pooling, im2col, or transposition blocks). This enables the high- and mid-level APIs
to tune their template implementations based on the properties of the generated instance,
and automatically take advantage of whichever Gemmini hardware blocks were chosen to
be elaborated. We further elaborate on this generated header file and its usage model in
Chapter 6.

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 33

Figure 3.5: Gemmini software programming flows.

3.6 Hwacha vs. Gemmini

Hwacha and Gemmini represent examples of 1-D and 2-D data parallel accelerators. How-
ever, they differ in several aspects beyond simply the dimension of acceleration. Table 3.2
contrasts Hwacha and Gemmini across several key architectural and micro-architectural
properties.

In contrast to Hwacha, which relies primarily on temporal vectorization, Gemmini is
more heavily reliant on spatial acceleration and a large number of execution units. At the
same time, the Gemmini controller uses hardware-managed double-buffering for hiding the
latency of memory accesses, in order to be able to sustain high utilization of the spatial array
of execution units. This hardware-managed double-buffering adds an additional temporal
dimension of work distribution to the Gemmini controller, a temporal aspect which can only
be amortized for sufficiently large matrices (large than the size of the buffers), similar to
Hwacha requiring long vectors to amortize the latency of its deep pipeline. Additionally, the
two accelerators use different instruction-issue and control-management schemes: Hwacha
uses a vector-fetch model, in which it fetches its own instructions and is not reliant on
instruction issue from the host processor, while in contrast, Gemmini does not fetch its
own instructions, and is fed instructions directly from the host processor through the RoCC
interface. However, Gemmini supports both coarse- and fine-grained instruction schemes,
while Hwacha support only one granularity of instructions applicable to the active vector
length. In the Gemmini instruction scheme, complex coarse-grain instructions are translated
by Gemmini to a sequence of operations that are issued by the Gemmini controller to the
execution and memory units. Alternatively, the host CPU can also directly issue simple
fine-grained instructions which correspond to these same operations. While Hwacha also
breaks down instructions into sequences of micro-operations, these control sequences are not
programmable by the host CPU.

Within the context of numerical data analysis, it is important to note that while 1-D
vector units provide superior performance on element-wise operation, 2-D spatial units pro-
vide a valuable advantage in reduction of operations. This is due to reduced communication

CHAPTER 3. HARDWARE FOR NUMERICAL DATA ANALYSIS 34

between accumulation operations within the 2-D spatial unit. A test-chip in 22nm FinFET
process technology, which included both the Hwacha vector accelerator and a very early
version of a 16 × 16 8-bit integer configuration of the Gemmini accelerator, demonstrated
that Gemmini could be at least 10× more energy-efficient and 2-5× faster than Hwacha on
simple matrix-multiplication workloads [100].

Table 3.2: Gemmini vs. Hwacha Comparison

Hwacha Gemmini

Fast Memory Vector Register File
Scratchpad and
Accumulators

Memory
Management

VMU DMA

Data-Reuse Pipeline Systolic Array

Instruction Issue
Hwacha

(Vector-fetch)
Host Processor

(Rocket/BOOM)

Micro-op Issue
Hwacha

(Sequencer)
Controller OR
Host Processor

Scheduler
8-slots

(default value, configurable
generator parameter)

16-slots
(default value, configurable

generator parameter)
Sparsity
Support

Predicate Registers None

Datatype
Support

Int8 AND
Int16 AND
Int32 AND
Int64 AND
FP16 AND
FP32 AND

FP64

Int8 OR
Int16 OR
Int32 OR
Int64 OR
FP16 OR
FP32 OR

FP64

35

Chapter 4

Generator-based System-on-Chip
Design

In the face of the slowdown in technology scaling, sustaining improvements in system ca-
pability requires a greater use of domain-specific architectures. This era of specialization
is being seen as a new golden age of computer architecture [121] but creates the challenge
of escalating development costs. Differentiated architectures require productive digital sys-
tem design methods for architectural exploration, system integration, verification, validation,
and physical design. To reduce development costs, generator-based agile design processes for
hardware development have been proposed with the goal of increasing hardware developer
productivity through component re-use and modular design.

Generator-based SoC development enables extensive pre-silicon architectural exploration,
validation and optimization based on complete digital RTL designs and test chips, as op-
posed to more abstract models used in traditional design-space analysis. This “vertically
integrated” approach to hardware development, which complements further vertical integra-
tion trends across the computing stack, enables tighter design cycles between architecture
and implementation through re-usable parameterized implementations.

4.1 System-on-a-Chip

The system-on-a-chip (SoC) represents the evolution of on-die integration of electronic sys-
tem components. In the past, different components of a computing system such as the
processor, the L1 cache, the L2 cache, peripherals, and I/O controllers were all fabricated
on different chips and then composed together in packages or on boards. With the contin-
uous evolution of integrated-circuit scaling technologies and electronic design automation
(EDA) tooling, the increase in transistor density has enabled single die integration of sys-
tem components that previously used to be on separate chips. On-die integration increases
communication bandwidth and reduces communication costs between system components
in terms of both latency and energy. As such, SoC architectures have become popular in

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 36

energy-conscious use-cases such as mobile application processors and embedded devices.
The core components of an SoC are the application processor, the memory system, and

I/O controllers. In modern SoCs, the central processor is often surrounded with a multi-level
hierarchical memory system, connectivity peripherals (UART, SPI, USB, Bluetooth, WiFi,
etc.), and additional application-specific co-processors. In some embedded SoCs the proces-
sors can be exchanged with simpler micro-controllers. Modern SoCs use component special-
ization in order to maximize performance and energy efficiency. Specialization starts with
careful selection of the profile of the central processor. These profiles can range from simple
32-bit micro-controllers to 64-bit high-performance superscalar out-of-order processors. In
multi-core SoCs, specialization can span multiple cores resulting in a mix of heterogeneous
CPU cores on a single SoC, enabling runtime scheduling of applications to the core which
most-closely meets the application’s latency, throughput, and power requirements. In com-
mercial products, this approach is branded as big.LITTLE® in ARM’s commercial offering
and Hybrid Technology in Intel’s commercial offerings (with Intel Lakefield being the first
such product), while Apple application processors refer to this mix as “performance cores”
and “efficiency cores” (P-cores and E-cores). This heterogeneity in processors requires soft-
ware to be aware of the properties of each processor in order to optimally schedule different
threads and processes by the operating system of runtime. Furthermore, SoCs typically also
include a series of controllers and management processors which perform system control tasks
such as power management or serial link management. Each of these management cores can
be specialized for their specific tasks, with different levels of support for arithmetic operation
or virtual memory, generating even further heterogeneity of processors and software within
the SoC.

Specialization of SoCs continues with custom accelerators and co-processors for particular
computation kernels. Common accelerators include multimedia transcoders, cryptography
computations, integrated graphics, image processing, and signal processing. In a complex
SoC, these accelerators can act as independent subsystems using self-contained control pro-
cessors and memory systems, with on-chip integration allowing for efficient offloading from
the CPU while maintaining high performance and energy efficiency.

In this work, since we are interested in numerical data analysis applications, a custom
SoC should enable the execution of high arithmetic-intensity kernels for data analysis with
high-performance through tight on-chip integration. Such SoCs will require numerical lin-
ear algebra acceleration in addition to the standard processor stack, and can include high-
performance multi-processors, data-parallel vector units, matrix multiplication units and
machine learning accelerators, a coherent memory system, and I/O peripherals. However,
as noted in the previous chapter, the exact composition of the SoC depends on the target
platform: low power IoT devices, mobile application processors, discrete accelerator plat-
forms, and server SoCs may all require SoCs for numerical data analysis, but under different
area, throughput, latency, power, and energy constraints. For simplicity, discussion of the
additional levels of complexity added by power management and other control processors
within SoCs is outside the scope of this work.

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 37

4.2 Generator-based Digital Design

Generator-based approaches to hardware system design have been under development in
recent years across several research labs and organizations [198, 22, 170, 234, 126, 48]. In
generator-based approaches, hardware-description languages capture design methodologies
as opposed to specific design instances. The description and encoding of these design method-
ologies requires high degrees of paramaterization and modularity. Generators describe digital
designs at the RTL level in conjunction with additional primitives from functional program-
ming and metaprogramming to encode a high level of parameterization and modularity.
These highly parameterized and modular implementations of digital designs using high-level
programming language abstractions enable generation of a broad range of RTL designs.

A generator-based agile design process for hardware has been proposed and demonstrated
through a series of RISC-V microprocessor chips developed with small teams [170] and made
available as the now widely used open-source Rocket Chip SoC generator codebase [22]. The
proposed process and the Rocket Chip project were both based on the Chisel hardware-
construction language [23], which is a Scala-based collection of hardware-description func-
tions and operators which can be composed together using Scala metaprogramming and
passed through an elaboration program to generate detailed RTL hardware description (in
Verilog or a different format). This ability to use metaprogramming in Scala is the key to
encoding hardware generators in Chisel. Unlike other high-level hardware-description ap-
proaches such as high-level synthesis (HLS), Chisel-based generators do not raise the level of
abstraction of the hardware description. Hardware still needs to be explicitly described using
RTL functions and operators in Chisel. However, the integration with Scala metaprogam-
ming provides an additional framework which enables the high level of parameterization and
modularity which is required of hardware generators.

The Rocket Chip SoC generator includes Rocket, an in-order RISC-V core, and supports
coherent caches and standard interconnects via the TileLink protocol. It also includes a li-
brary of generator functions which provide the infrastructure of multiple levels of parameter-
ization. Through the use of context-dependent environments (CDEs) [60], the Rocket Chip
generator supports a rich parameter system implemented as a key-value dictionary passed
through the hardware module hierarchy, enabling generators to make meta-programming
choices based on the context of the environment. Designs captured as generators enable
reuse through rich parameterization and incremental extension. For example, the param-
eterization of the core can direct whether it includes components for support of virtual
memory, floating-point computation, or other properties which may be considered optional
in some systems. The Rocket Chip generator can be used as a starting point for customized
SoCs. At its core, the Rocket Chip SoC generator can be thought of as a library of SoC-
generator infrastructure that can be used to compose together a system. When additional
components of custom SoCs use generator-based primitives and functions from the Rocket
Chip library, these components can be composed together in a flexible manner, allowing for
increased customizability and a wider range of possible SoCs that can be generated.

The goal of generator-based design is to reduce the development time of custom SoCs from

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 38

idea to production. Customization ideas can manifest across various levels of the design. We
identify five key levels of SoC customization in which generator-based design could provide
significant gains:

• Intra-core customization

• Inter-core customization

• Tightly integrated custom accelerators

• Custom peripheral accelerators

• System peripheral customization

These different levels of customization enable designers to tailor the SoC to the exact
needs of a target application, allowing for energy and efficiency gains through the reduction in
general-purpose support. Through intra-core customization, generators can select the mini-
mal ISA configuration that will support the target application, from the base integer ISA for
simple controllers to general-purpose Linux-supporting extensions with floating-point, atom-
ics, and virtual memory support. Inter-core customization can enable designer to provision
the SoC for a larger variety of applications through a mix of cores tailored for different oper-
ating points from high-efficiency to high-performance (with the different operating point of
each core being configured through intra-core customization). Generators can help configure
such mixes by providing flexible interconnect generation systems and programming collat-
eral. The most common method to specialize SoCs is through accelerators which target a
particular type of domain, with generators having to support their operation through differ-
ent integration level with a host processor – from ISA extensions tightly integrated with the
processor pipeline to peripheral accelerators accessed as devices and shared across multiple
subsystems of the SoC. Finally, while often neglected during the conception of custom SoCs,
there are many potential peripheral and I/O devices an SoC could support, and generators
can help simplify the integration of such devices for each particular SoC use-case through
automated device-tree generation and SoC top-level design support. Due to their ubiqui-
tous use, generator-based peripheral devices provide ample opportunity for generator-based
infrastructure sharing among SoC designers.

4.3 Generator-based Test Chips

The Rocket Chip generator has been used as a baseline for multiple RISC-V microprocessor
test-chips. Customizations to test chips based on the Rocket Chip generator have been
performed by adding multiple generations of vector processors, machine learning accelerators,
and peripheral devices, by replacing the standard in-order core with an out-of-order core, and
by using the Rocket core in various configurations as both an application core and as control
cores. The design process outlined by Lee et al. [170] was gradually enhanced on the physical

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 39

EOS14
(2012)

Raven-2
(2012)

EOS16
(2012)

Raven-3
(2012)

EOS18
(2013)

EOS20
(2013)

EOS22
(2014)

Raven-4
(2014)

Swerve
(2015)

EOS24
(2015)

Hurricane-1
(2016)

CRAFT-0
(2016)

Hurricane-2
(2017)

CRAFT-P1
(2017)

CRAFT-FFT2
(2017)

BROOM
(2018)

EAGLE
(2018)

GPSSOC
(2019)

EAGLE-X
(2019)

Tr
an

si
st

or
s

Test Chip (Chronological)

106

109

108

107

Figure 4.1: Increasing complexity of custom RISC-V SoC test chips built at Berkeley using
the Rocket Chip SoC generator between 2012-2019 [13] (© 2020 IEEE).

design front to support much larger silicon dies and many more placeable instances in the
SoC, resulting in increasingly complex test chips (Figure 4.1). The most recent test chips
in this series are representative of modern SoCs composed of a diverse set of IP blocks and
include multiple cores, accelerators, and complete analog subsystems, including high-speed
serial links (SerDes), analog-to-digital converters (ADCs) and phase-locked loops (PLLs).

Generator-based design enables rapid prototyping using test-chips of different SoC ar-
chitectures. However, while test chips provide the most representative evaluation of an SoC
design, their integration with mixed signal and packaging concerns still incurs non-negligible
costs both in terms of financial resources and engineering resources. Often times, when the
primary areas of customization are within the digital domains of the SoCs, designers would
like to shift larger parts of the evaluation of the customized design to pre-silicon stages of
development. Therefore, extending and expanding pre-silicon evaluation capabilities using
generator-based designs is a highly desired property on the path to reducing the number of
test-chip iterations in a project and lowering the NRE costs of custom SoC development,
while maintaining their complete implementation and fabrication properties. This dual-
headed task (increased flexibility of pre-silicon evaluation while maintaining implementation
of fabrication properties) exposes the main challenges facing generator-based hardware de-
sign.

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 40

4.4 Challenges of Generator-Based Agile Hardware

Design

While generator-based hardware design provides a flexible approach for customization of
SoCs through re-use of generator components and libraries, the practice of this approach
through the aforementioned series of test chips has exposed several challenges which still
need to be addressed.

Generator Versioning and Compatibility

Generators are software libraries. Most software libraries define sets of APIs and versions
for other software packages to depend on. Hardware interfaces are traditionally defined
through standard committees and consortiums with long standardization processes. This is
in contrast to many open-source software libraries, in which APIs organically evolve with
the evolution of the library. This type of organic API evolution for hardware components is
not common in the hardware design ecosystem, and therefore sometimes causes challenges
with the use of hardware generators. While interface definitions are common in hardware
design practices, design versioning and evolving interfaces are not as common, partially due
to the degree of verification required of a hardware block and due to monolithic system
design practices.

Since generators encode interfaces and protocols using higher-level functions, changes in
the internal implementation of the protocols and interfaces may be transparent to hardware
blocks which rely on such interfaces. However, the software functions implementing the
generator would need to adhere to the updated APIs. Generator versioning and version
compatibility are a simple solution to this challenge. Software libraries have long been able
to define version-based dependency chains through package managers.

Verification and Validation

Verification and validation are major components of the SoC design cycle. By relying on
many previously verified open-source generator components such as the Rocket core, and
incrementally extending SoCs based on the Rocket Chip generator, it was often possible to
sidestep rigorous verification and validation steps in the aforementioned series of test chips.
At the same time, the large space of design instances that can be generated by a generator
makes it challenging to perform verification at the generator-level as opposed to a particular
instance, due to the exponentially large space of combinations of system compositions and
parameters. However, once a sufficiently large number of instances of a generator have been
verified, the level of confidence in the generator increases, reducing the verification burden
in certain usage scenarios. For example, in the case of test chips, each test chip has a
focus on testing either a particular design feature of a module or a component of the design

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 41

methodology, and therefore, the verification of a test chip can be respectively limited to a
small set of functionalities.

A reliance on open-source generators shifts the verification challenge from block-level and
unit-level testing to system-integration verification and validation. Rich module-level con-
figurability in the generator-based approach allows for quick, iterative design customization,
enabled by expansive configuration and parameter systems. While these parameter systems
enable quick iterations across many design points, their flexible nature makes them prone
to misconfiguration, underscoring the need for continuous full-system integrated validation
and verification. While this parameterization makes it possible to continuously update the
SoC design in an agile way with late-breaking changes, it does not inherently aid the design
verification of the chip with those changes. Issues relating to on- and off-chip interfaces,
clock domain crossings, third-party IP integration, and power management are all vulnera-
ble to insufficient full-system verification coverage. Some previous test chips designed using
the generator-based approach have encountered both verification and validation gaps of this
type: for example, one chip’s cache capacity was inadvertently reduced to half of its desired
size, when the configuration was changed late in the design process to meet physical design
constraints.

At the same time, generator-based design can also make it difficult to verify blocks
at the unit-levels, due to system-level generator behavior. For example, the Diplomacy
framework within the Rocket Chip generator [62] uses two-stage elaboration for negotiating
parameters across devices on shared buses in order to generate optimal bus instances without
over-provisioning of resources. As such, the generator requires the context of the full SoC in
order to determine the parameters and interfaces of individual hardware blocks. This adds
an additional level of challenges to unit-level testing of individual block generators, since
trustworthy unit-level verification would require the context of the complete SoC [180]. This
further encourages verification of generator-based designs at the system-level as opposed to
the unit-level, in order to verify the true hardware interfaces that will be implemented in
the system by a fully configured generator.

Work Distribution

Although design and verification executed by a small team in an agile manner has a high
appeal for small companies and industrial and academic research labs, our experiences with
test chips developed through an agile process also identify some challenges in execution. The
increasing complexity of chips makes it difficult to parallelize and distribute effort among
the small number of designers with different toolsets and design configurations, as architec-
ture definition, RTL implementation, physical design, verification, and validation all take
varying amounts of time, which is difficult to account for. Furthermore, it is difficult to
maintain institutional memory of good generator-based design practices, especially in aca-
demic environments and when working with complex physical design tool flows in deeply
scaled technologies.

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 42

Process Technology Transition

Transitioning between process technologies is a significant undertaking in both system and
chip design. The aforementioned generator-based test-chips have been designed in several
different process technologies, including IBM 45nm SOI, ST 28nm FD-SOI, TSMC 28nm,
TSMC 16nm FFC, and Intel 22nm FFL. The generator-based approach simplifies process
technology transition, since it allows for adjustment of design parameters through high-level
descriptions. However, this flexibility does not propagate across the abstraction layers to
the physical design process. Each custom test chip requires significant manual effort in
mapping RTL abstractions to process-specific components (such as memory and register-file
macros), as well as meeting the design rules. When generator parameters change between
design iterations, a new rigid physical design script is often created. These constraints
have encouraged early design freezes, sometimes before full-system integrated testing and
validation. Process technology transition is a significant undertaking in chip-design - Intel’s
well-known “tick-tock” approach dedicated an entire chip generation to process technology
transition. As deeply scaled technologies add increased complexity to process design kits
(PDKs) and associated EDA tools, process technology transitions across design are becoming
increasingly lengthy and often require breaking the RTL design abstraction.

4.5 Integrated Generator-Based Design Methodology

The approach proposed by Lee et al. [170] presented important pillars of generator-based
agile hardware design, but requires additional refinement in order to be captured as a robust
methodology. Based on the observations from multiple generator-based test-chip develop-
ment cycles, we identify several steps and principles that can be captured and further distilled
as part of a generator-based design methodology. Principally, inherent dependencies across
agile design iterations require tighter integration of generator-based tooling and the associ-
ated development flows. Reusable hardware generators extend the design space of possible
SoCs that can be tailored to a target application. The broad multi-dimensional design space
shifts the balance of the design cycle, and requires further design-space exploration time as
opposed to instance RTL design time. We elaborate on several core principles of a more
integrated generator-based design methodology.

Component Composition

Modularity and composition are important principles in generator-based design, as well as
in general hardware and software engineering. The meta-programming aspect of generator-
based design raises the question of module composition between generated sub-components.
One possible approach is composition at the generated-RTL level through the definition of
“hard-coded” interfaces for the generated modules. With this approach, modules are gen-
erated individually, and then composed and wired together together as part of a top-level
module using manual integration or a simple automated scheme. An alternative approach

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 43

is composition at the generator-level, similar to the infrastructure provided by the Diplo-
macy [62] framework.

Composition at the generated-RTL level is fairly straightforward, as all it requires are
agreed-upon interfaces between sub-components. This allows for generators of different com-
ponents to be developed individually using their own unique semantics and meta-programm-
ing conventions. As long as the generated RTL adheres to the interface specification, com-
ponents will be able to be composed together into a system. However, composition at the
RTL-level relies on optimizations performed by the underlying synthesis tools to optimize
over-provisioned interface definitions, and may also require manual intervention upon any
architectural or system-level change which impacts the interface on either side of it.

In contrast, composition at the generator-level requires a holistic view of the entire system
in order to enable optimizations and composition by the generator framework. The require-
ment for a holistic view necessitates more advanced techniques such as custom generator-level
interface specification semantics and multi-stage elaboration, as implemented for example
by the Diplomacy [62] framework. As a result, generator components need to adhere to
these custom composition elaboration semantics, and select a single “generator manager” to
perform the system-level composition.

Composition at the generator-level requires a common “standard library” across gener-
ators. This “standard library” goes beyond hardware generation languages such as Chisel,
since it needs to have knowledge about basic semantics of the digital design such as syn-
chronous design, interconnect structure and memory semantics. The Rocket Chip generator
library acts as just such a standard library within the Chisel ecosystem, which can be used
for processor-centric digital designs. With common generator standard libraries, generators
can be designed and developed individually as long as they adhere to the semantics of a
common version of the base library. These standard libraries can be versioned accordingly,
assisting in appropriate versioning and version-dependency management across generators
and generator base libraries. Figure 4.2 compares the role of standard libraries in generator-
based hardware design to software standard libraries and the absence of standard libraries
in traditional hardware design.

Generator/Instance Hybridization

The design of hardware generators requires a thorough understanding of RTL-based digital
design considerations as well as advanced software-engineering concepts such as functional
and object-oriented programming, meta-programming, code generation and code transfor-
mation. This results in a small number of experts being able to design and maintain advanced
and highly parameterized hardware generators. However, the usage of hardware generators
is significantly simplified through modularity and parameter-configuration schemes. These
simpler usage models enable democratization of hardware generators to a broader audience
of hardware developers.

One approach to lower the barrier-of-entry to generator-based custom SoC design is a
hybridization of generators and specialized instances. In this approach, the core components

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 44

Figure 4.2: Standard libraries provide an additional semantic layer between the programming
or description language and domain-specific libraries. Standard libraries provide common
primitives which can help generate interfaces with more complex common semantics, and are
prevalent in software programming languages, such as C++. Traditional hardware descrip-
tion languages such as SystemVerilog typically do not have standard libraries. Generator-
based hardware design methods, which incorporate higher-level semantics than traditional
hardware description languages, benefit from standard libraries such as the Rocket Chip gen-
erator, which provide common primitives that can be used by higher-level generator libraries
to better communicate and compose together.

of the SoC such as CPU, memory system, buses and a subset of peripherals and controllers
on the SoC are generator-based, while specialized custom components such as accelerators
and additional peripherals are instance-based.

An agile generator-based methodology requires the identification of common SoC com-
ponents across multiple generations and variations of the SoC, and the allocation of sparse
generator design expertise to the development of the core generator infrastructure. Alter-
natively, generator design expertise can be extracted from the open-source domain through
re-use of existing open-source generators.

Specialized single-use accelerators and peripherals can be implemented using traditional
Verilog-based instance design patterns and tools, and be integrated within a generator-based
SoC, as illustrated in Figure 4.3. These single-use instances can be designed using the general
digital design skill-set, enabling broader adoption and participation by hardware engineering
professionals. This type of Generator/Instance hybridization requires sufficient support in
generator-based tooling, and sufficient knowledge of generator usage models by specialized
instance designers to enable testing and verification.

Design-Space Exploration

Design-space exploration for custom chips is traditionally performed using high-level archi-
tectural modeling or spreadsheet-based back-of-the-envelope estimations. Such architectural
software models are primarily written in high-level languages (Python, C++) and are in-

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 45

Figure 4.3: Generator/instance hybridization. Specialized single-use accelerators and pe-
ripherals can be implemented using traditional Verilog-based instance design patterns and
tools, and be integrated within a generator-based SoC by using fixed-interface wrappers
integrated with the generator configuration system.

tended to approximately estimate the consequences of various design choices. As a result,
this type of modeling is often coarse-grained, especially with respect to power-performance
tradeoffs and interactions between SoC components. At the same time, this approach to
modeling is also very flexible, as high-level models provide for extensibility and fast modu-
lation without time-costly concerns for implementation details.

In the traditional “waterfall” serial development model, architectural design-space explo-
ration is one of the first stages of development. As such, it is allocated a fairly short amount
of time, since all of the following development stages depends on its results. In particular,
the implementation stage cannot start until the architectural decisions are made. This stage
is especially costly during the first version of a custom SoC, since it requires exploration of
a broad swath of fundamental components including processor architecture and IO choices.
These choices are often made with very little knowledge of fine-grained implementation de-
tails. Consequent iterations of a similar product may build upon the fundamental design
choices made by the first iteration with the additional insight of implementation details from
the already-implemented previous SoC version.

With a generator-based approach, a single generator implementation can provide insights
on a broader set of design points. Furthermore, the availability of open-source hardware
generators enables the initial design-space exploration stage to be based on generator imple-
mentations as opposed to high-level models. This approach can lead to the identification of
fine-grained performance phenomena and pathologies during pre-silicon design-space explo-

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 46

Figure 4.4: Iterative generator-based design space exploration cycle, with respect to the
varying time and resource consumption of different stages of the development cycle

ration, rather than late implementation stages. An example of generator-based identification
of such performance phenomena related to a Linux-based networking stack is demonstrated
in the FirePerf project [151]. As a result, a generator-based methodology allocates a larger
time budget to generator-based design space exploration than a traditional serial “waterfall”
development methodology. This additional time budget allocation comes at the expense of
later-stage implementation time budget allocations, which are reduced thanks to re-use of
configurable generator components.

Pre-Silicon Validation and Verification

Traditional chip-design verification and validation processes rely on a mix of unit-testing,
integration testing, coverage-based and formal verification to provide a sufficient level of
pre-silicon confidence in the functionality and performance of an SoC design.

Since the verification complexity increases as the size of the design grows, end-to-end inte-
gration testing is limited in the scope and time. At the same time, individual IP components
rely on self-contained unit-tests with custom test harnesses (sometimes called “Verification
IP”) which attempt to emulate the potential interface behavior of the surrounding system.

A generator-based approach to verification of custom SoCs advocates for end-to-end test-
ing and evaluation of custom IP components. SoC components are often designed around
a central host processor (the CPU) and typically require interaction with some of the SoC

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 47

I/Os. As a result, design-time end-to-end verification of IP components necessitates a suffi-
cient level of integration with the minimal set of SoC structure blocks such as interconnect
buses, I/O, memory system, and the CPU. A generator-based SoC design methodology
provides this type of system support, enabling end-to-end pre-silicon verification. An SoC
generator can generate a basic and minimalistic CPU and SoC structure which can be used
as a verification test harness while a final CPU design point and SoC architecture have
not been selected and completed. This approach enables verification based on actual target
software execution during early-stage design of custom IP components in contrast to testing
and verification based on artificial and synthetic signal activity. This approach does not
diminish the importance of individual component unit testing and dedicated verification IP,
but rather provides an additional level of verification (and to some extent, can be thought
of as a variant of verification IP) which is more representative of potential software-driven
behaviors of the host system. Recent efforts in co-simulation of generator-based IP pro-
vide a complementary approach to end-to-end verification by helping overcome some of the
challenges of unit-level verification of individual generator-based blocks [180], helping in-
crease the verification coverage of unit-level generator testing. However, a generator-based
approach to verification would still be highlighted by complete end-to-end testing of custom
IP components in order to enable to highest possible fidelity of results and verify potential
system-level generator configuration consequences.

VLSI Mapping

During the era of Moore’s law and Dennard scaling, the choice of selecting a fabrication pro-
cess technology was fairly simple. The cost-per-transistor was constantly decreasing while
each new process technology provided better power and performance profiles. Hence, for a
selected application, the choice of fabrication process technology could be succinctly sum-
marized as a strictly “greater than” relationship between performance improvement and
cost increase. The cost increase of using a newer process technology was almost always
smaller compared to the SoC performance and efficiency improvements that resulted from
that newer process technology. Therefore, the choice of process technology was often deter-
mined by performance/efficiency requirements rather than fabrication cost or total cost of
ownership (TCO) constraints.

However, with the end of Dennard Scaling and Moore’s law, the marginal gains of more
advanced process technologies are decreasing compared to the marginal cost increases. As a
result, composing a system out of multiple chips in an older fabrication process technology
(and perhaps even different process technologies) may turn out to be more cost-effective than
integrating the entire system on a single chip in an advanced scaled process technology. Some
models have already identified the benefits of using older fabrication process technologies for
a category of custom cloud-class ASICs [156].

As generational performance improvement is no longer a proxy metric for the cost of the
process technology, decisions regarding the choice of process technology may change at much
later stages of the SoC development process as the overall costs of development crystallize.

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 48

As such, it is important for generator implementations to not be tied to a specific process
technology, but rather provide the ability to map the generated digital designs to different
process technologies through generalized transformations.

Higher levels of abstraction at the generator and RTL levels are required for this type of
flexible mapping. For example, the Chisel embedded hardware construction language treats
memories as a first-class primitive [23]. As such, mapping on-chip memories to various
SRAM compositions or even flip-flops can become a portable mapping-time decision based
on the process technology, rather than a decision that is encoded in the design RTL. Similarly,
I/O handling often requires technology-specific cells, which can be mapped with a sufficient
level of portability if the generator has a higher-level notion of chip-level I/Os.

Sufficient decoupling between physical design transformations and digital generator de-
sign can also enable more detailed design-space exploration by designers with a lower-level of
VLSI expertise. This can be done by providing automated mapping transformation between
the generated RTL and select process technologies to output area, power and timing reports
with a level of accuracy that is not as high as the one that could be obtained through manual
physical design, but sufficiently detailed compared to estimates from high-level modeling.

Integrated Tooling

By definition, generator-based SoC development methodologies require a greater focus and
time investment in design automation tooling at the RTL abstraction level compared to
traditional development flows. This was also noted in the agile hardware manifesto by Lee et
al. [170]. The “meta-programming” aspects of generator-based design make temporary fixes
or manipulations of a single instance difficult to sustain across multiple development stages
and design iterations. At the same time, the requirement of generator/instance hybridization
at the RTL-level as well as compatibility requirements with legacy EDA tools for synthesis
and physical design require continuous interchange at the Verilog abstraction and language
level.

While the commercial EDA industry consists of many tools used across the VLSI de-
sign process (albeit, from a small number of vendors), an important aspect therein is the
integration of these tools into “flows”. Previous analysis of the evolution of the electronic
design automation industry [164, 225] has identified the fundamental role that complete
design flows play in the evolution of EDA, and specifically that the latest “age” of EDA is
characterized by increased integration between tools. In the EDA industry, this integration
started with the integration of VLSI physical design tools for timing and power analysis
together with routing and placement optimization. It required common data models and
databases, as well message passing protocols between tools. Additional steps of the design
flow such as synthesis, simulation, and verification are integrated, captured and automated
using commercial EDA “flow tools” such as the Lynx Design System from Synopsys [250].
Recent open-source projects in the EDA domain also put an emphasis on providing complete
flows, such as the OpenLane flow [235] using tools from the OpenRoad [4] project.

CHAPTER 4. GENERATOR-BASED SYSTEM-ON-CHIP DESIGN 49

Since digital design flows are composed of a large number of tools, successful integration
of generators and their associated methodologies into digital design flows must be captured
through automation of generator-based flows and tighter integration between generators and
their associated tools. Automation and integration can be performed directly between gen-
erators and generator-based tools, or between generators and traditional tools. The former
allows for transfer of information between the generator and the tool (this information can
be captured in the form of “annotations”), while the latter may require some transformation
of the generator output in order to adhere to requirements of the traditional tool.

Information transfer between generators and tools has many uses in the mapping, analy-
sis and simulation of generator-based designs, therefore, tight integration between generators
and generator-based tools may have multiple benefits for the usage flow of these tools. Tight
integration of automated generator-output transformation between generators and tradi-
tional EDA tools can further enable a broader application of generator-based developments
to a wider spectrum of digital designs. Hence, an integrated generator-based methodology
relies heavily on an integrated tooling environment for both generator-based and traditional
tools.

4.6 Generator-based System-on-Chip Design

Summary

Generator-based hardware development is a paradigm which relies on re-use of libraries and
meta-programming for rapid implementation of a wide range of hardware design configura-
tions. It enables extensive pre-silicon architectural exploration, validation and optimization
based on the complete digital RTL designs and test chips. In this chapter, we discussed the
applicability of generator-based hardware development to SoC design, and the challenges
exposed when applying this approach for the design of a series of generator-based test-chips.
These include the challenges of generator versioning and compatibility across generators, dif-
ficulties in verifying generators vs. verifying instances, complications in the distribution of
work between team members in generator-based design due to the varied lengths of different
stages of the development process, and the overheads of rapid process technology transitions.
We therefore propose methodological steps to address these challenges, which highlight com-
mon standard libraries to support generator composition, the ability to integrate together
generators and instances, integrated tooling to support more efficient work distribution,
utilizing detailed generator-based implementations for design space exploration to reduce
late-stage re-design events, end-to-end verification through complete system support, and
portable VLSI mappings through automation and high-level abstractions. Chapter 5 will
discuss the framework and tools to support the implementation of these methodological
steps.

50

Chapter 5

The Chipyard Integrated SoC
Development Framework

Chipyard is a framework designed to provide SoC designers and architects with a unified
framework and workflow for agile generator-based SoC development. We developed Chip-
yard to capture the principles introduced in Chapter 4 by composing a variety of open-source
tools and generator-based IP into a unified framework through automation and integration.
Multiple separately developed and highly parameterized IP blocks can be configured and in-
terconnected to form a complete SoC design. The SoC design can be verified and validated
through multiple simulation, emulation and prototyping flows, and then pushed through
portable VLSI design flows to obtain tapeout-ready GDSII data for various target technolo-
gies. Chipyard also provides a workload-management system to generate software workloads
to exercise the design.

Chipyard Front-End RTL Generators

The front-end of the Chipyard framework is based on the Rocket Chip SoC generator [170,
22]. Chipyard inherits Rocket Chip’s Chisel-based parameterized hardware-generator method-
ology [22], including a Scala-based parameter-negotiation framework, Diplomacy [62], that
negotiates mutually compatible parameterizations and interconnections across all IP blocks
in a design. A unified top-level SoC generator enables the generation of heterogeneous sys-
tems based on parameterized configurations. Chipyard allows IP blocks written in other
hardware languages, e.g., Verilog, to be included via a Chisel wrapper.

Chipyard adds a large corpus of open-source IP generators to the existing Rocket Chip
base library, allowing for the construction of modern digital SoCs. These include the Berkeley
Out-of-Order Machine (BOOM) generator [47, 288], the CVA6 core (formerly known as
Ariane) [285], the Hwacha vector-unit generator [173, 228], digital signal processing (DSP)
modules, domain-specific accelerators such as the Gemmini deep-learning accelerator [96],
memory systems, and peripherals. The majority of these generators have silicon-proven
instances in a variety of process technologies. While some commercial IP vendors have large

CHAPTER 5. CHIPYARD 51

Figure 5.1: Multiple disparate design flows supported by the Chipyard framework through
generators and transformations. Starting from the same generators and common custom con-
figuration, a series of FIRRTL transformations outputs appropriate Verilog and associated
collateral for different design-stage platforms.

collections of proprietary configurable IP for certain portions of an SoC, Chipyard provides a
publicly extensible open-source alternative for complete SoCs to support continuing research
and development of specialized state-of-the-art SoCs.

Other open-source SoC design frameworks focus on tile-granularity customization in
many-core architectures [26, 186], or rely on rigid subsystems and proprietary IP [275]. The
generator approach used in Chipyard does not rely solely on static interfaces for integration
of IP blocks, but allows for dynamic customization of encodings, memory maps, and buses
during the hardware generation stage, enabling custom components to be created and inte-
grated at various levels, including in the MMIO periphery, as tightly integrated accelerators,
and as heterogeneous cores and controllers. For example, through its fine-grained intra-core
parameter system, the Rocket core can be used for different purposes in an SoC. Specifi-
cally, in several of our recent test chips, the application cores consist of fully Linux-capable

CHAPTER 5. CHIPYARD 52

Rocket cores supporting RV64GC with floating-point units and virtual-memory support,
while the controller cores (e.g. a power-management unit) are a Rocket core supporting
only RV64IMAC, with significantly smaller branch-prediction and cache resources and no
virtual memory. In essence, a significant portion of the microcontrollers running firmware
on the SoC can be implemented using variants of Rocket or BOOM cores. This common
core configuration interface for all software-managed controllers within the system improves
designer productivity, compared to alternative SoC development frameworks that enable
drop-in replacement core options or only coarse-grained sizing. Similarly, machine-learning
accelerators have been integrated with Rocket and other core generators as tightly integrated
accelerators [95], as well as in the form of MMIO periphery accelerators [86], demonstrating
the various levels of possible customization in the Chipyard framework.

FIRRTL Intermediate Representation

The Chipyard framework currently integrates tools to address the three main activities within
the custom SoC design cycle: front-end RTL design, system validation/verification, and
back-end chip physical design. These different activities require different levels of design
description. For example, while front-end RTL descriptions usually use abstract notions of
memory and I/O, back-end RTL requires more precise descriptions mapped to the underlying
process technology. Similarly, FPGA emulation or prototyping requires the digital design to
interact with FPGA-specific interfaces, periphery, and internal components. Co-simulation
also requires additional hardware clock gating to control simulation progress.

Chipyard elaborates the front-end RTL design into a FIRRTL [143] intermediate repre-
sentation. Custom FIRRTL transformations convert the generated FIRRTL design to drive
the different flows used at different stages of the design cycle. Using FIRRTL transforma-
tions to enable multiple disparate design flows from the same shared code repository and
source RTL helps to reduce and amortize the environment setup costs incurred with frequent
iterations between development stages, as is needed for an agile methodology. This approach
is demonstrated in Figure 5.1.

While Chisel is the primary language for design entry in Chipyard using the FIRRTL com-
piler, a FIRRTL-based flow can integrate Verilog IP through either “Blackbox” IP integra-
tion or Verilog-to-FIRRTL support by certain Verilog elaboration tools [278]. Furthermore,
while the Verilog outputs of various stages of a FIRRTL-based flow can be integrated into
standard dynamic verification environments or compared using logical equivalence checking,
tools for both simulation and temporal property checking of “FIRRTL-native” circuits are
openly available [183].

Verilog or SystemVerilog-based design frameworks [275, 26] must rely on design-specific
custom scripts or interface adjustments when transitioning between emulation, simulation
and physical design. In contrast to alternative hardware package-management systems [158]
or integration standards like IP-XACT, which focus on metadata associated with partic-
ular IP components to target different EDA flows, FIRRTL transformations can perform
wholescale manipulation of complete RTL designs in Chipyard.

CHAPTER 5. CHIPYARD 53

Software RTL Simulation

Software-based RTL simulators are a critical tool in most phases of the design process. Com-
piling a software simulator of a top-level design, including various IP components, peripheral
and memory models, and an external test harness can be a time-consuming engineering task.
Chipyard provides build flows for both the open-source Verilator simulator and proprietary
commercial simulators. Open-source RTL simulators such as Verilator are also used in indus-
try [70] to provide efficient and cost-effective digital-design verification. Chipyard provides
Makefile wrappers for direct generation of a simulation executable which simulates tethered
designs with emulated peripherals. The Makefile wrappers generate the top-level design and
matching test harnesses based on the SoC configuration. Tethered designs use a host to
send transactions that bring up the simulated SoC and load programs. These software RTL
simulation wrappers enable quick design cycles and execution of RISC-V binaries in simu-
lation. While tethered designs are the default form to generate software RTL simulations
in Chipyard, Chipyard also supports un-tethered SoC configurations in which the SoC can
boot standalone using a specialized boot ROM.

FPGA-Prototyping

FPGA prototyping is an important tool in software development for SoCs. FPGAs can be
used to prototype the functionality of the digital design and the interaction of software with
a variety of I/Os and system peripherals.

While the Verilog RTL generated by Chipyard could be manually mapped to an FPGA
for prototyping purposes, Chipyard also provides integrated support for FPGA prototyping
through FPGA shells. FPGA-shells is an open-source project by SiFive which provides
a Chisel-based layer of abstraction between specific FPGA devices and Rocket-Chip-based
generators [136]. The FPGA shell defines the top-level interfaces that are common in FPGA
devices. Users can create Overlays within a shell, which connect top-level SoC interfaces
generated by the Rocket Chip generator to FPGA-device-specific pins through FPGA IP
blocks. The FPGA-shells project includes several default overlays for common interfaces
such as UART or SPI. Chipyard adds additional example overlays for FPGA interfaces that
are typically project-customized, such as an FPGA Mezzanine Card (FMC) interface or
GPIO interfaces. These Overlays are placed with a new Chipyard test harness, which allows
seamless switching between different FPGA platforms using the same SoC configuration.

FPGA prototyping can be used to prototype the integration of a Chipyard SoC with
additional system-level components such as network and connectivity interfaces or multi-
media inputs and outputs, or as flexible testing platforms for experimental test-chips and
boards. For example, the Chipyard FPGA-prototyping support is frequently used as a host
processor for bring-up of tethered RISC-V test-chips. The host system is implemented as
an FPGA prototype of a BOOM processor on the FPGA, and drives the system under test
using the FPGA board’s FMC interface which connects to the test-board and test-chip I/O.
The FPGA prototype loads the program into the test chip’s memory through a serial or

CHAPTER 5. CHIPYARD 54

JTAG interface, which can be controlled through software executing on the prototype’s pro-
cessor running on the FPGA. While FPGA-prototyping has many uses, we note that FPGA
prototyping is not an accurate method for evaluating the performance of a simulated custom
SoC. FPGA-accelerated emulation or simulation would be a better choice for such tasks.

FPGA-Accelerated Simulation with FireSim

For full-system validation and evaluation, the Chipyard framework harnesses the FireSim [152]
open-source FPGA-accelerated simulation platform using the AWS EC2 public cloud. In
contrast with FPGA prototyping, FPGA-accelerated simulation correctly models timing be-
havior of not only the design under test, but also the I/Os and peripherals of the SoC. Fur-
thermore, FPGA-accelerated simulation in FireSim enables deterministic and reproducible
evaluation within a realistic system environment, as opposed to FPGA prototyping where
each execution is sensitive to the FPGA environment and timing depends on the performance
of peripherals attached to the FPGA (e.g. DRAM performance). FireSim also provides
FirePerf [151], a set of powerful on-FPGA out-of-band performance profiling tools that en-
able high-fidelity cycle-by-cycle introspection into software running on the simulated system,
without perturbing the target system.

Originally developed as a platform to enable scale-out simulation for datacenter architec-
ture research on hundreds of cloud FPGAs, FireSim automates the infrastructure manage-
ment and simulation mapping necessary to automatically run high-performance simulations.
As part of the agile chip-design stack, this automation and integration reduces the level of
expertise required to harness cloud FPGAs for emulation purposes and thus increases the
accessibility of high performance full-system simulation to a broad spectrum of designers.
FireSim has been useful in pre-silicon verification, validation, and software development.
From the perspective of small agile teams with limited resources, FireSim provides many
of the features available in costly commercial emulation platforms. In contrast with prior
FPGA-accelerated simulation tools, the accessibility of FireSim through FPGA instances on
the AWS public cloud, as well as the automation of host-target interfaces with the FPGA,
have made FireSim a popular tool within Berkeley and other academic hardware-development
users, as well as emerging startup companies.

FireSim enables co-development of software and hardware simultaneously, allowing for
quick software adjustment turnarounds based on hardware modifications. Furthermore,
FireSim plays a major role in the performance and functional validation of processors, since
it enables the identification of bugs deep into simulation execution time thanks to FPGA-
acceleration with appropriate peripheral modeling. Unlike many other open-source hardware
development platforms with FPGA support, FireSim’s focus on simulation and emulation as
opposed to prototyping enables true pre-silicon performance evaluation and validation in a
full-system context within the Chipyard framework. While maintaining its stand-alone op-
eration as an architectural research platform, FireSim was transformed into a library which
is integrated into the broader Chipyard framework. As such, FireSim can now consume
design configurations composed within the Chipyard framework and transform them into

CHAPTER 5. CHIPYARD 55

FPGA-accelerated simulations. Furthermore, the FireSim Golden Gate compiler has been
integrated into the Chipyard framework, so it can now consume arbitrary FIRRTL as its
input, as well as external Verilog components necessary for broader system integration.

Back-End Physical Design with Hammer

For back-end physical design, Chipyard includes a modular VLSI flow named Hammer [269].
The Hammer VLSI flow provides an abstraction layer above process-technology- and EDA-
tool-specific concerns, with the goal of increasing re-use and modularity of vendor-specific
components of the physical design flow. To this end, the Hammer VLSI flow utilizes separate
vendor-specific process technology plug-ins and EDA-tool-specific plug-ins, which implement
abstracted software APIs to generate design-flow collateral like Tcl scripts, clock constraints,
and power specifications based on higher-level design inputs. For example, Hammer will
emit process- and vendor-specific macro placement, obstruction, and power-strap placement
commands from a high-level process- and vendor-agnostic description of the design. This
separation of abstraction layers between design, process technology, and EDA tool vendor
enables faster adoption of open-source components.

The Hammer flow aspires to support open-source tools in conjunction with commer-
cial and proprietary tools by using common levels of abstraction. As such, while the first
Hammer-based designs were implemented using proprietary process technologies, a plug-in
for the ASAP7 [57] open-source predictive PDK was created in only a few weeks and is now
included in the core Hammer repository. Similarly, a plug-in for the Skywater-130 (SKY130)
process technology has been development in order to support open-source SoC development,
in conjunction with driving designs through bleeding edge process technologies. With this,
small teams and academic users can prototype design flows and experiment with RTL designs
using predictive or simple physical design kits, while being able to reuse similar Hammer
descriptions for chip fabrication using advanced process nodes.

Hammer was designed to support hierarchical physical design flows. Hierarchical physical
design flows are of particular importance in highly complex custom SoCs, composed of
multiple specialized blocks with a variety of physical design constraints. Decomposing a
design into these smaller hierarchical components not only improves the quality of results
emitted by EDA tools, but it also allows the distribution of physical design tasks among
multiple hardware developers, which is important for agile design. FIRRTL-based grouping
and flattening transformations in Chipyard further assist the hierarchical physical design
flow in Hammer by enabling users to specify one logical hierarchy in the source RTL, while
choosing a different hierarchy for physical boundaries through automated transformations.

Input/Output Management

The various implementation and simulation flows in the SoC design process will typically
treat the digital I/Os on a system in different ways. For example, a software RTL simulation
would typically connect digital I/Os directly to software models in the TestHarness. However,

CHAPTER 5. CHIPYARD 56

Figure 5.2: Chipyard I/O and harness management using configurations with IOBinders and
HarnessBinders. Different design flows require different I/Os and harnesses, with potential
overlaps across platforms. Decoupling I/O and harnesses from the core digital design allows
for portability across design flows, together with re-use of I/O and harness components across
platforms.

on an FPGA prototype or FPGA-accelerated simulator, these I/Os would require some
synthesizable “bridge” which can map the I/Os to the interfaces of the FPGA. For physical
design, I/O cells must be inserted into the module hierarchy.

In order to handle the various methods of providing input and output to the SoC across
different simulation and implementation flows, the Chipyard framework uses IOBinders and
HarnessBinders. IOBinders define the attachment behavior of I/O ports to the digital sys-
tem being developed. An IOBinder specifies a behavior for driving or interpreting an I/O
port of the digital system. Thus, each simulation or implementation flow specifies its own set
of IOBinders to control how the digital I/Os will be interpreted in that flow. This abstracts
I/O management from the actual implementation of the digital system. HarnessBinders
perform a similar task from the perspective of the test harness driving the generated SoC.
HarnessBinders control the generation of hardware in the TestHarness. For example, soft-

CHAPTER 5. CHIPYARD 57

ware RTL simulation requires generated hardware to drive the I/Os of the SoC under test.
In contrast, FPGA prototyping or test-chip bring-up drives these I/Os using different gener-
ated hardware which interfaces with the FPGA-shell, FPGA IP and FPGA I/Os. Therefore,
HarnessBinders assist in the seemless transition between simulation, evaluation and imple-
mentation platforms. Figure 5.2 illustrates the use of different combinations of IOBinders
and HarnessBinders within Chipyard configurations for use across different design flows and
platforms while maintaining the same digital SoC design.

Software Management

In order to enable complete SoC design and customization, software testing is treated as a
first-class component within the Chipyard framework. As such, Chipyard provides a com-
patible set of software tools for development and testing. Chipyard provides a versioned set
of standard RISC-V software development tools (e.g. GNU toolchain, QEMU, Spike ISA
Simulator), as well as a set of equivalent non-standard RISC-V development tools for non-
standard extensions of custom IP blocks. The two software development tool sets can be
used interchangeably in the framework. Chipyard provides additional support for bare-metal
software testing by using a minimalistic port of libgloss [178] for RISC-V Machine-mode.
This port enables testing of bare-metal systems by implementing system calls through a
Chipyard-compatible Host-Target interface for tethered systems.

Chipyard enables shared software development and management of complex software
workloads through the FireMarshal software workload-generation tool [211]. FireMarshal
provides a standard version-controlled format for software workload descriptions and auto-
mates the generation of these workloads for various simulation targets (e.g. Spike, QEMU,
FireSim). FireMarshal is especially beneficial for Linux-based software workloads, where it
makes the complex task of software development and porting easily reproducible and reusable
by anyone on the design team without requiring special expertise.

Using FireMarshal, software developers can begin work as soon as a functional model is
available (e.g. in the Spike RISC-V ISA simulator or the QEMU emulator). Those workloads
can then be used without modification in RTL simulations and FireSim simulations. In this
way, the complex task of software development and porting (particularly for Linux-based
workloads) can be managed through re-use and portability by anyone on the design team
without requiring special expertise. FireMarshal includes several examples and templates for
Linux-based workloads, enabling fast ramp-up of software development across the various
simulation and emulation targets using preset Linux kernel configurations and base distri-
bution images with matching drivers. The software development structure in Chipyard is
illustrated in Figure 5.3.

CHAPTER 5. CHIPYARD 58

Figure 5.3: Shared software development in Chipyard using FireMarshal. Designers can
use the standard RISC-V software toolchains, or custom software toolchains. While the core
application logic and libraries are consistent with the SoC design, kernel and driver configura-
tion may change based on the target platforms or tethered systems. FireMarshal automates
workload generation to enable targeting multiple platforms using a single description.

5.1 SoC Customization in Chipyard

Inter-core Configurability and Composition

Chipyard provides extensive inter-core configurability and composition capabilities. Through
the Rocket Chip generator processor tile interface, Chipyard can enable composition of mul-
tiple processor core options. These include various configurations of the Rocket in-order
core, various configurations of the BOOM out-of-order core, the CVA6 in-order core, the
Sodor educational cores, and any other core implementation that can integrate with the
Rocket Chip processor tile interface. As such, a Chipyard SoC can include multiple cores
for different purposes, for example containing a powerful application core together with an
efficient specialized core or a collection of small low-power control cores.

All processor cores communicate with the memory system, platform, and peripherals
through TileLink buses. The default SoC configuration uses a crossbar for communication
between the processor tiles and the coherent memory system. Chipyard includes additional
interconnect and bus structure options such as a bi-directional ring and other custom topolo-

CHAPTER 5. CHIPYARD 59

gies. Chipyard SoCs are designed to support coherent Tilelink-based memory systems. A
typical Chipyard system will use the shared L2 cache as the coherence management level.
However, systems which do not wish to have such a cache can use a Tilelink broadcast hub
as a coherence agent between the system bus and the memory bus. The broadcast hub will
generate coherence probes for every memory request.

The diversity of Chipyard inter-core configuration has been demonstrated through highly
heterogeneous test-chips [100], large homogeneous multi-core architectures [34], and as
embedded controller systems for large accelerators [98].

Intra-core Configuration

Chipyard inherits the intra-core customizability of both the Rocket in-order core and the
BOOM out-of-order core. As such, it can be configured to various subsets of the RISC-V
ISA. These include both RV32 and RV64, as well as the M, A, C, F, D extensions individually.
Further, both the Rocket and BOOM cores enable tight control over the parameters of micro-
architectural structures such as the branch target buffer and branch predictor components,
the organization of the L1 data and instruction caches, the depth of various queues and
scheduling trackers, and the inclusion of various functional units.

For example, the BOOM core defines several default intra-core configurations named
“SmallBoom”, “MediumBoom”, “LargeBoom”, “MegaBoom”, “GigaBoom”, etc. for 1-, 2-
, 3-, 4-, and 5-wide configurations respectively. While these configurations are generally
defined by their superscalar instruction issue width, they also differ in the types of branch
predictors they include, their ROB sizes, number of physical registers, the number of entries
in various issue queues and load/store queues, their L1 caches organization, system bus
widths. and many other parameters. These parameters can all be used to generate additional
configurations of out-of-order cores based on application requirements (very wide issue width,
small branch predictors, large speculation windows, etc.).

Similarly, the Rocket Chip generator also defines several default intra-core configurations
(with a similar “tiny”, “small”, “medium”, “big” naming scheme). While these configura-
tions primarily differ in the organization and size of the L1 data and instructions caches, the
largest configuration spatially unrolls the multiplication functional unit, while the smaller
configurations omit the floating-point unit and branch target buffer. As the configurations
get smaller, support for virtual memory is also removed, and the tiniest configuration sup-
ports only 32-bit ISA rather than 64-bit. While these default configurations provide coarse
grained examples of the range of intra-core configurations within the Rocket-core, each can
be further tuned based on the role of the specific core within the SoC as an application core,
control core, support core, efficiency core, or any other role.

Previous Rocket-chip-based test-chips [229, 230], have included both application-core
configurations of the Rocket core as well as control-core (no floating-point support, not
virtual memory) configurations of the Rocket core.

CHAPTER 5. CHIPYARD 60

Accelerators

Specialized hardware accelerators are a common building block of custom SoCs. Hardware
accelerators are designed to execute a particular function or set of functions more efficiently
than a general-purpose processor through specialized datapaths, specialized memory system,
and reduced control-flow.

Specialized hardware accelerators can communicate with host processors in various meth-
ods, which can be analogized to “distance” - i.e. “far” peripheral accelerators and “close”
co-processors. The term accelerator is often used as an umbrella term for a broad set of cus-
tom processors and digital blocks. These can be integrated with a micro-processor system as
peripheral subsystems or as co-processors. While the terms “accelerator” and “co-processor”
may often be used interchangeably (including in this dissertation), they generally differ in
their degree of independent operation and their methods of communication with the host
processor.

A co-processor is typically dispatched instructions by the host processor and may be
connected to and use some of the internal resources of the host processor (for example,
caches, virtual memory system, floating-point unit, etc.). In contrast, an accelerator will
typically be viewed as a more independent subsystem that communicates with the host
processor as a memory mapped I/O device and that has its own control logic.

Accelerators will typically be designed only for long latency operations due to the over-
heads of independent control logic and memory mapped I/O. The host processor will typically
transfer data to the accelerator, issue a single execution command through memory mapped
I/O, and then collect the results after an interrupt or polling loop indicates the accelerator
is done. Co-processors can interact with the host processor in a variety of ways: they can
be designed to act as an additional functional unit which communicates through registers,
completes in a small number of cycles and stalls the host processor pipeline, or they can be
designed to run in parallel with the host processor, taking a longer number of cycles and
accessing data independently from the host processor.

Historically, the most well-known example of a co-processor was the floating-point unit
(also known as “math co-processor”). A floating-point unit is typically dispatched instruc-
tions by the host-processor, can take several cycles to execute, and may operate in parallel
to the host processor or stall the host processor pipeline. The Intel 8087 math co-processor
was directly connected to the address and data buses, acting on instructions with specific
prefix encoding. More recent examples of accelerators and co-processors which appear to in-
clude similar functional units include the Apple Neural Engine (ANE) and the Apple Matrix
co-processor (AMX). Both are reported to perform matrix operations, but the Apple Neural
Engine is reported to be an independent subsystem within the SoC with its own control
cores and multiple execution cores capable of executing complete DNN matrix operations.
At the same time, the Apple Matrix co-processor is reported to be programmed by custom
instructions on the application processor, executing smaller matrix operations [82, 200].

The majority of accelerators included within Chipyard SoCs are actually co-processors
rather than accelerators. The extensibility of RISC-V, through reserved major opcode en-

CHAPTER 5. CHIPYARD 61

Figure 5.4: Memory-mapped peripheral accelerators and co-processor accelerators in a Chip-
yard SoC. Co-processors are integrated “close” to the core, using the Rocket custom co-
processor interface (RoCC). Memory-mapped peripheral accelerators are integrated through
the system bus and can be shared across multiple tiles in the SoC.

coding space for custom instructions, lends itself nicely to co-processor-based acceleration
in custom SoCs. Co-processors are easy to program and can perform a wide range of accel-
eration operations due to their low latency and integration with the resources of the host
CPU. Nevertheless, this integration with the host CPU may not fit all types of acceleration
applications. Therefore, Chipyard supports both methods of hardware acceleration integra-
tion. Figure 5.4 illustrates the integration of co-processors and memory-mapped peripheral
accelerators in a Chipyard SoC. Co-processors use the Rocket custom co-processor interface
(RoCC), while larger accelerators are integrated farther from the core, on the periphery bus,
using memory-mapped I/O.

CHAPTER 5. CHIPYARD 62

Memory-Mapped Peripheral Accelerators

Memory-mapped peripherals are a common method for custom accelerator integration in
SoCs. In a memory-mapped peripheral, the processor communicates with the accelerator
through memory-mapped registers using the TileLink bus protocol. In Chipyard, periph-
eral accelerators are connected to the SoC through a periphery bus and programmed using
memory mapped I/O (MMIO).

Memory-mapped accelerators are relatively generally accessible from an SoC perspective
in the sense they do not require particular support or interface implementation from the
application processor cores. This level of decoupling allows for the flexibility of integrating
and sharing these accelerators under a variety of multi-core SoC configurations, but incurs
software access costs of interrupts and memory operations when using them. Since mem-
ory mapped peripherals require fewer assumptions about the CPU than RoCC accelerators,
MMIO is the preferred method of integration for third-party accelerators and larger inde-
pendent subsystems in Chipyard. For example, the NVIDIA Deep Learning Accelerator
(NVDLA) [241] is a third-party accelerator (written in Verilog) that is integrated within
the Chipyard framework using a wrapper connecting it to the configuration system, memory
map, and device tree generation mechanism. The NVDLA has been used with the Rocket
Chip generator in several projects [86] and is also integrated as part of the Chipyard frame-
work.

The integration of MMIO accelerators requires a modification of the SoC memory map.
Different combinations of peripheral accelerators can result in different SoC memory maps,
and therefore the generator system is very helpful in managing these varying memory maps.
The Rocket Chip generator outputs a memory map based on the specific generated config-
uration in the form of a json file. Each entry in the memory map includes the name, base
address, size of the segment, and permissions. This json file can then be processed into
relevant header files for various device drivers. The Rocket Chip generator also outputs a
device tree file which can be consumed by firmware and OS kernels to explore the devices
generated in the SoC. The generated header files, memory maps and device trees help ease
the software burden through automation of software header files for drivers and other low-
level software elements which implement the communication between the processor and the
accelerator.

Memory-mapped peripheral accelerators are a shared resource which is shared by all the
processor cores in the system. As such, they are often managed by an operating system
or similar resource-management runtime. They require software components in the form of
device drivers and are located further down the memory hierarchy from the processor core.
For efficient operation, a single command to the accelerator needs to amortize the cost of
the device drivers and system calls required in order to access the accelerator.

CHAPTER 5. CHIPYARD 63

Rocket Co-Processor (RoCC) Interface

The Rocket Co-Processor interface is a protocol definition and implementation that was
created together with the Rocket chip generator and the Rocket in-order core [22]. It has since
also been implemented with the BOOM out-of-order core. We describe the RoCC interface as
background to help explain its role as part of the customization process of accelerators within
Chipyard-based SoCs, and specifically the Hwacha and Gemmini accelerators that will be
used for numerical data analysis SoCs in Chapters 6, 7, and 8. The RoCC protocol enables
tighter integration of accelerator with the processor core compared to peripheral MMIO
accelerators. Cores that support the RoCC interface communicate with the co-processor
through a custom protocol and custom non-standard RISC-V instructions reserved in the
RISC-V ISA encoding space. The RoCC protocol enables RoCC accelerators to access the
L1 data caches, stall the processor pipeline, and pass values through registers. Each core can
have up to four RoCC accelerators controlled by custom instructions and sharing resources
with the CPU. RoCC has been used to implement research accelerators such as a Java
garbage collection accelerator [182] and a memcpy accelerator [187], as well as accelerators
which are included within the Chipyard framework such as the Hwacha vector accelerator
and the Gemmini deep-learning accelerator.

RoCC defines a simple interface between a CPU core and a co-processor to support
memory system access, pipeline stalls and communication of register values, as illustrated in
Figure 5.5. The interface from the CPU core to the co-processors includes:

• command (cmd) - includes the instruction value, two operand-register content values
from the CPU register file, and mstatus control register value from the CPU.

• exception signal (boolean)

The interface from the co-processor to the CPU includes:

• response (resp) - includes destination register identifier, and destination register con-
tent value to be written back to the CPU register file.

• busy signal (boolean)

• interrupt signal (boolean)

The RoCC implementation includes several generator ports to the CPU memory system.
In particular, a port to the CPU L1 cache, a port to the CPU page table walker (PTW), and a
port to CPU floating-point unit (FPU). RoCC accelerator implementations can also be wired
to other levels of the memory hierarchy through TileLink buses. For example, the Hwacha
vector accelerator and the Gemmini accelerator are connected to the L2 caches through the
Tilelink system bus, as opposed to the L1 cache. This is since both these accelerators have
large vector register files or scratchpad memories which are bigger than the L1 cache. Direct
interfaces to the SoC’s L2 cache enable shared communication with the memory system and
other tiles in the system without polluting the core’s L1 cache.

CHAPTER 5. CHIPYARD 64

Figure 5.5: The RoCC interface. Signals communicating custom instructions and results
between the core and accelerator, as well as additional interface signals to the core’s L1
data cache, page table walker, and floating-point unit. Alternatively, the accelerator can
communicate with the rest of the SoC memory system through the SoC TileLink system
bus.

CHAPTER 5. CHIPYARD 65

There are several considerations when choosing RoCC as an accelerator interface as
opposed to a peripheral alternative. In some sense, a RoCC accelerator can be thought
of almost like an additional functional unit within the CPU, albeit with several significant
limitations. RoCC accelerators are programmed using custom instructions which are part of
the user-space instruction stream. This makes RoCC accelerators very easy to program for
simple single-threaded programs, as there is no requirement for device drivers or interaction
with different protection rings. RoCC accelerators are associated with a single core (or
single hardware thread), and therefore resource sharing consideration must be handled by
the accelerator itself rather than the operating system. These include isolation in multi-
processing systems, state save/restore upon context switches, and adherence with memory
system coherence. Due to its “close” integration with the CPU, RoCC can provide a higher
level of support for virtual memory than can peripheral accelerators. Nevertheless, this
support for virtual memory has its limitations due to the simplistic definition of the RoCC
interface. The single exception signal means that RoCC does not provide an exception vector
with additional information about the type of exceptions generated by the co-processor. For
example, while both the NVDLA and Gemmini are designed to accelerate deep learning
workloads, Gemmini, unlike the NVDLA, has DMA access to the SoC’s shared L2 cache,
can stall the host processor pipeline, and can be programmed directly from user-space with
custom assembly instructions.

The RoCC interface can be considered a specific example of intra-core customizability
in the Chipyard framework. In fact, each processor tile can be attached to different RoCC
units.

Peripherals

Chipyard SoCs can includes a variety of standard peripheral blocks integrated through imple-
mentations from open-source repositories. These include complete peripheral devices such as
JTAG, UART, GPIO SPI, I2C, PWM and so on which have been used in multiple fabricated
test-chips, as well as simulated stubs for more complex peripheral devices such as network
interface controllers (NIC) device and block devices which enable system simulation. As is
the case with peripheral accelerators, these traditional peripheral blocks also contribute to
generated header files, memory maps and device trees.

For example, IceNIC is a peripheral network interface subsystem which implements the
digital components of an Ethernet NIC. The automatically generated device tree allows
simple integration with the Linux device driver across a variety of SoC configurations with
different memory maps.

5.2 SoC Design Frameworks

SoC development has been a cornerstone of the mobile computing industry for more than
a decade. With the demise of Dennard scaling and the rise of dark silicon, integration at

CHAPTER 5. CHIPYARD 66

the SoC level is one of the primary vehicles for continuing to improve system performance
while maintaining low power and energy budgets. Custom SoCs are increasingly adopted in
a wider variety of computing platforms from general purpose personal computing [132] to
custom data-centers [262]. However, their design comes with challenges across all stages of
the chip design process.

In recent years, several SoC design frameworks for agile hardware development have been
developed in the academic community and the open-source hardware community. These
include the OpenPiton platform [26, 25], the ESP framework [186, 43], the ChipKit plat-
form [275], the BlackParrot [212] and HammerBlade projects, and the Efabless open-source
fabrication shuttles [63]. While at first glance these SoC frameworks may seem as simple
repositories of digital IP blocks, their primary value lays in their development and implemen-
tation flows with respect to their IP, as opposed to the simply providing the source code for
the IP. SoC design requires development of complete verification, validation, implementation
and software flows in order to be useful for custom SoC applications.

Due to the immense scope of expertise and design flows involved in SoC development,
the different SoC design frameworks tend to focus on different approaches to achieving SoC
customizability. Some frameworks, such as OpenPiton and ESP, focus on the scalability of
the SoC into many-core architectures using tile-based SoC templates and mesh NoCs. Other
frameworks such as ChipKit and Efabless assume integration of custom IP through standard
bus interfaces and therefore focus on the VLSI implementation aspects of the SoC, under
the assumption that the core digital system IP for the SoC will be provided by commercial
vendors (ARM, in the case of ChipKit) or other projects in the open-source community (in
the case of Efabless).

The frameworks also differ in their approaches to software development and verification.
FPGA prototyping is integrated as a native method for software development in frameworks
such as ESP, BlackParrot, OpenPiton. While Chipyard provides support for FPGA proto-
typing, its design flow directs software development to use FPGA-based emulation rather
than prototyping in order to provide debuggable deterministic designs and timing accurate
memory behavior. Support also varies in terms of simulation vs. VLSI implementation flows.
While the Efabless Caravel SoC harness provides a relatively detailed VLSI flow based on the
OpenRoad open-source toolset, other frameworks may integrate with commercial reference
flows through patches or automated script generation. Some frameworks which primarily
target simulation and prototyping may not have VLSI flow integration at all.

In comparison to alternative academic and open-source SoC design frameworks, Chipyard
provides a comprehensive solution in terms of support for IP extensibility and customiza-
tion, software development, and VLSI implementation. Through the generator-based IP
and automated multi-flow transformations, Chipyard can match the abilities of similar SoC
design frameworks, and exceed them in certain cases. While there are cases in which other
frameworks provide better solutions in terms of scalability, readability, documentation, and
integration with standard industry tools, Chipyard’s high degree of automation and con-
figurability often provides a more productive and agile environment for a wider range of
use-cases. The diversity of RISC-V cores integrated with the Chipyard framework in com-

CHAPTER 5. CHIPYARD 67

parison to other SoC frameworks, together with its automation and documentation, make
it a prime platform of choice for comparisons between RISC-V application cores [80]. A
summary of the Chipyard framework in comparison to alternative SoC design platforms (as
of the time of writing) is presented in Table 5.1

5.3 Agile Hardware Development Using Chipyard

To demonstrate the agile framework in action, we take an example baseline Chipyard SoC
configuration and iteratively apply changes throughout the development and customization
process. We will further examine and validate various properties relevant to those changes
across the customization process. The example baseline Chipyard SoC includes a single
BOOM out-of-order application-class processor, a shared L2 cache, and mix of UART, TSI
and GPIO peripheral interfaces. This example baseline SoC and its associated Chipyard
configuration is shown in Figure 5.6. The BOOM L1 Data and Instruction caches commu-
nicate with the rest of the SoC memory system and periphery through a TileLink crossbar
(typically called the “system bus”). The system bus communicates with the L2 cache, which
then communicates with the backing memory system (not drawn for simplification). Pe-
ripheral devices such as UART and GPIO communicate with the system bus through an
additional bus level called the “periphery bus” (not drawn for simplification). This separa-
tion of buses allows the periphery bus to run at different frequency and in different power
domains compared to the rest of the system. The boot ROM and other components of
the core complex such as the platform local interrupt controller (PLIC) and core local in-
terrupt controller (CLINT) communicate with the system bus through an additional bus
level called the “control bus” (not drawn for simplification). The SoC configuration is a
composition of several other configuration fragments of system sub-components. For exam-
ple, a BOOM WithMegaBooms configuration fragment specifies a BOOM configuration with
a decode pipeline width of 4 instructions, 3-wide integer issue, 2-wide floating-point issue,
2-wide memory issue, 128 ROB entries and 128 physical registers, and many other additional
configuration parameters.

Adding an Accelerator

With the slowdown of Moore’s law, many research endeavours begin with implementing a
specialized compute accelerator for particular applications. Chipyard offers multiple methods
of accelerator integration through the Rocket Chip generator with varying degrees of coupling
to the host processor. As noted in Section 5.1, these methods include memory-mapped
peripheral accelerators and Rocket Custom Co-processors (RoCC).

All accelerator integration methods within Chipyard fit within the Chipyard configura-
tion system and allow for easy addition and removal from the SoC. As a result, the Chipyard
generator repository includes multiple open-source accelerator IPs that can be added to the
SoC using a single line of code within the SoC configuration. For example, Figure 5.7 demon-

CHAPTER 5. CHIPYARD 68
P

ro
p

er
ty

C
h

ip
ya

rd
[1

3,
12

]
O

p
en

P
it

o
n

[2
6
,

2
5
]

E
S

P
[1

8
6
,

4
3
]

C
h

ip
K

it
[2

7
5
]

B
la

ck
-

P
a
rr

o
t

[2
1
2
]

E
fa

b
le

ss
[6

3
]

D
es

ig
n

C
or

es

R
o
ck

et
[2

2]
,

B
o
om

[2
88

]
,

C
V

A
6

[2
85

],
S

o
d

or

O
p

en
-

S
P

A
R

C
T

1
,

C
V

A
6

[2
8
5
],

P
ic

o
R

V
3
2
,

a
o
4
8
6

(x
8
6
)

C
V

A
6

[2
8
5
],

Ib
ex

,
L

eo
n

3
(S

P
A

R
C

)

A
R

M
A

5
3

B
la

ck
-

P
a
rr

o
t

P
ic

o
R

V
3
2

C
ac

h
e

C
oh

er
en

ce
T

il
eL

in
k

T
R

I
7

A
M

B
A

B
ed

R
o
ck

7

In
te

rc
on

n
ec

t
T

op
ol

og
y

X
b

ar
,

R
in

g
N

oC
,

C
u

st
om

N
oC

M
es

h
N

o
C

M
es

h
N

o
C

X
b

a
r

M
es

h
N

o
C

S
h

a
re

d
B

u
s

H
D

L
C

h
is

el
,

S
y
st

em
-

V
er

il
og

S
y
st

em
-

V
er

il
o
g

S
y
st

em
-

V
er

il
o
g

S
y
st

em
-

V
er

il
o
g

S
y
st

em
-

V
er

il
o
g

S
y
st

em
-

V
er

il
o
g

O
p

en
S

ou
rc

e
3

3
3

7
3

3

C
u

st
om

iz
at

io
n

In
tr

a-
C

or
e

G
en

er
at

or
7

7
7

T
il

e
M

o
d

u
la

ri
ty

7

In
te

r-
C

or
e

G
en

er
at

or
T

il
e

M
o
d

u
la

ri
ty

T
il

e
M

o
d

u
la

ri
ty

M
o
n

o
li

th
ic

T
il

e
M

o
d

u
la

ri
ty

M
o
n

o
li

th
ic

A
cc

el
er

at
or

In
te

gr
at

io
n

R
oC

C
,

M
M

IO
T

il
e

In
te

rf
a
ce

T
il

e
In

te
rf

a
ce

A
H

B
B

u
s

T
il

e
In

te
rf

a
ce

W
is

h
b

o
n

e
B

u
s

D
ev

el
op

m
en

t

S
W

R
T

L
S

im
u

la
ti

on

V
C

S
,

V
er

il
at

or

V
C

S
,

M
o
d

el
S

im
,

V
er

il
a
to

r

N
C

S
im

,
M

o
d

el
S

im
7

V
C

S
,

V
er

il
a
to

r
7

F
P

G
A

E
m

u
la

ti
on

F
ir

eS
im

[3
4]

7
7

7
7

7

F
P

G
A

P
ro

to
ty

p
in

g
3

3
3

7
3

7

A
rt

if
ac

t
V

L
S

I
F

lo
w

H
am

m
er

[2
69

]
3

7
3

7
O

p
en

L
a
n

e
[2

3
5
]

O
S

S
u

p
p

or
t

3
3

3
3

3
7

T
ab

le
5.

1:
C

om
p
ar

is
on

of
n
on

-c
om

m
er

ci
al

S
oC

d
es

ig
n

fr
am

ew
or

k
s.

CHAPTER 5. CHIPYARD 69

Figure 5.6: An example baseline SoC configuration consisting of a single 4-wide BOOM out-
of-order application-class processor, a shared L2 cache, and mix of UART, TSI and GPIO
peripheral interfaces. [12] (© 2020 IEEE).

Figure 5.7: An SoC configuration adding a Gemmini machine learning accelerator to the
baseline SoC config using a single configuration line (highlighted). [12] (© 2020 IEEE).

strates adding the Gemmini accelerator (which uses the RoCC interface) to the baseline SoC.
This is done by adding the DefaultGemminiConfig fragment to the SoC configuration. the
DefaultGemminiConfig fragment class is defined within the Gemmini project repository, and
sets the various accelerator parameters such as the systolic array size (16x16), scratchpad
size (512 KiB), accumulator sizes (64 KiB), datatypes (Int8), dataflows (WS), etc.

CHAPTER 5. CHIPYARD 70

Accelerator Software Validation

Pre-silicon validation of software which uses the custom accelerator helps shorten the overall
system development cycle and identify functional bugs and performance pathologies when
changes can still be made.

For the SoC configuration from the previous section, we want to evaluate the execution
of DNN inference using the accelerator within the SoC. Executing the inference of a batch
of 4 images using the standard ResNet-50 DNN model takes 4 billion cycles. Running such
a software RTL simulation would take several days. The relevant testing and validation flow
within the Chipyard framework uses the Spike functional ISA simulator and the FireSim
FPGA-accelerated simulation platform. A functional model of the Gemmini accelerator is
integrated into a non-standard Spike functional simulator, which enables initial software
development with the Gemmini custom instruction extensions. Once functional results are
satisfactory, further performance tuning is performed using the FireSim FPGA-accelerated
simulation platform. Executing the 4 billion cycles of ResNet-50 on Gemmini with FireSim
takes a mere few seconds of wall-clock time. While initial FPGA simulation synthesis and
build time is longer than standard RTL software simulation compilation time, the combined
synthesis and build time is significantly shorter than software simulation time. The one-off
build synthesis time overhead is further amortized over a large number of simulation runs
when used for pre-silicon software performance optimization on the simulated custom SoC.

In fact, this flow of complete validation of software using custom accelerators on the
Chipyard framework has become sufficiently easy-to-use that it can also be used for acceler-
ator evaluation under educational settings. The aforementioned flow for hardware-software
performance optimization of a Gemmini accelerator was used in a class-wide lab in a recent
course offered at UC Berkeley [10].

Core Power-Performance-Area Tradeoffs

SoC designers can choose amongst a variety of application cores to anchor an SoC. A common
power-performance-area (PPA) consideration when designing a custom SoC is whether to
use smaller and more energy efficient parallel cores vs. larger and more power-consuming
high-performance single-thread cores. While a particular application amenable to parallel
processing might benefit from a multi-core configuration, Amdahl’s law reminds us that
single-threaded performance limits the potential overall performance gains from parallelism.

Thus, determining the right core configuration requires careful consideration of the ex-
pected software workload of the device. A SoC designer might choose to explore multiple core
configurations before picking a design point. The Chipyard framework does not “lock-in”
any particular core configuration or core count, as the framework can generate reasonable
single-core and multi-core designs, with core configurations ranging from small embedded-
class in-order cores to large application-class out-of-order cores.

For example, after careful analysis of the software workloads meant to run on the target
SoC in Figure 5.7, the designer may want to explore the PPA tradeoff of a more parallel

CHAPTER 5. CHIPYARD 71

Figure 5.8: An SoC configuration replacing the single BOOM out-of-order core with 4 smaller
Rocket in-order cores and smaller Gemmini accelerators to evaluate PPA tradeoffs. The
highlighted lines represent the configuration lines that were replaced. [12] (© 2020 IEEE).

design-point which trades off the powerful single-thread performance of the BOOM out-
of-order core for multiple smaller, but more efficient Rocket in-order cores with smaller
Gemmini accelerators. With just a two-line change, the designer can reconfigure Chipyard
to generate this vastly different SoC architecture (illustrated in Figure 5.8) with four smaller
in-order cores each driving a smaller 8x8 Gemmini accelerator. The designer can then take
advantage of Chipyard simulation and VLSI flows to quickly measure the power-performance
tradeoffs of either design. Figure 5.9 demonstrates such an area tradeoff comparison using a
commercial FinFET process and the Hammer flow as part of the SoC design process. Similar
estimations can be performed using open-source PDKs.

Non-invasive Physical Design Optimization

Throughout the implementation process, constraints imposed by the physical and computa-
tional realities of VLSI processes many times result in divergences from the original architec-
tural design. Chipyard attempts to address the design divergences that appear between dig-
ital/architectural simulation and silicon implementation, through a “source-of-truth” RTL
generator with re-usable and customizable RTL passes that transform the RTL for VLSI
flows. It is important that the source hardware description simulated during architectural
exploration is as close as possible to the hardware description that goes through physical
design and implementation.

Instead of performing a flat layout in which the entire SoC design is ran through the VLSI
EDA tools at once, many SoCs instead use a hierarchical flow. In a hierarchical physical
design flow, the SoC is split into smaller subcomponents which are later assembled together,

CHAPTER 5. CHIPYARD 72

Figure 5.9: Post-synthesis area estimates using a commercial FinFET process comparing a
powerful single-core system with an alternative equivalent parallel multi-core system. [12]
(© 2020 IEEE).

so VLSI EDA tools can better optimize the smaller sub-blocks instead of attempting to find a
global layout optimum across the entire SoC. When combined with floorplanning to get better
timing and reduce wire congestion, the physical module hierarchy can differ significantly from
the logical hierarchy described in the source RTL. However, directly modifying the source
RTL to move and group modules to fit the new hierarchy is both time-intensive and error-
prone. Leveraging the power of FIRRTL, a set of FIRRTL passes can be applied to the
design to quickly make large-scale hierarchy changes while maintaining correct functionality.
This is illustrated in Figure 5.10, in which the prior design in Figure 5.8 was transformed
into four module regions: two clusters that both include two Rocket cores and two Gemmini
accelerators, an I/O region that contains UART, TSI, and GPIO interfaces, and an uncore
region that contains items like the L2 cache and bus subsystems. This is done with a native
FIRRTL transformation called GroupAndDedup which groups modules together, followed by
the InlineInstances FIRRTL transformation to split up a module into its submodules.
This new hierarchy is used within a hierarchical physical design flow which synthesizes,
places and routes each of the components individually and then assembles them together.
As a result, the overall time of a placement and routing iteration is reduced from hundreds
of hours to tens of hours.

By using these mainstream FIRRTL passes, the main Chisel RTL design is unchanged
from the one that was originally tested and verified, but the design can now continue iter-
ating through more efficient VLSI flow quality-of-results (QoR) optimizations. This enables
shortening of design-cycle iterations through overlapping simulation, testing and physical

CHAPTER 5. CHIPYARD 73

Figure 5.10: Physical-design friendly hierarchy generated after FIRRTL transformations,
using the same SoC configuration from Figure 5.8. [12] (© 2020 IEEE).

design.

5.4 Accessibility and Education

Open Source SoC Development

The RISC-V ISA is a free and open ISA specification originally designed at UC Berkeley
for research and education purposes. It has garnered industrial and academic momentum
in helping lead the open-source hardware movement. The rapid adoption of RISC-V in the
open-source community is evolving with a strong open-source software ecosystem, as well
as accessible open-source processor implementations. The emergence of both open-source
hardware and software ecosystems makes RISC-V an excellent tool for research [94, 93,
104], education [1, 268, 141], and commercial purposes [168, 139, 135].

The RISC-V ISA specification has enabled the emergence of many open-source processor
implementations that conform to various subsets of the ISA specification - from simple
microcontrollers [94, 226] to complete application-class processors with Linux support [22,
47, 285, 29]. These open-source processor implementations provide students, researchers, and

CHAPTER 5. CHIPYARD 74

developers unprecedented access and visibility to the nuances behind practical processor
implementations. Chipyard is part of this open-source ecosystem which increases access
to digital implementation and modeling of complex SoCs. The Chipyard mailing list [53]
provides a window into an open-source community of users from across the world representing
both academia and emerging start-ups.

Chipyard aims to be a fully open-source SoC development framework. However, while
open-source tools and projects within the digital-logic abstraction layer of the hardware de-
sign stack have been gaining traction and trust in research and industrial communities, the
manufacturing and circuit-level aspects of hardware development are still struggling to iden-
tify appropriate open-source development and integration models. This struggle encompasses
both the digital and analog realms of circuit development.

In the analog domain, new generator-based approaches such as the Berkeley Analog
Generator (BAG) [48] are envisioning a portable and process-technology agnostic generator-
based approach to analog design. However, this approach cannot stand alone without proper
integration with digital SoC components. The analog-digital divide is perpetuated by dis-
tinct tools and methodologies, despite the common goal of silicon development. Ongoing
integration efforts of analog generators such as BAG into the Chipyard framework will help
support common interfaces and integration between analog and digital components, through
integrated tools and automation of design collateral such as appropriate generated behav-
ioral models of analog blocks, as well as matching physical design constraints. We believe
that integration of tools is the best way to break the rigid silo barriers that currently exist.

In the digital domain, the manufacturing and circuit-level aspects of hardware design
are still tightly entangled with various legal agreements and property disputes. These issues
are exacerbated by the tight integration of modern process technologies’ process design kits
(PDKs) with the standard commercial EDA tool stack due to the complexities of sub-micron
process technologies. In our view, this problem, which has been identified in the past [106],
is the elephant in the room of open-source and agile hardware development. Major academic
open-source hardware projects choose to address this challenge in various ways: some publish
“patches” to the common flow scripts provided by EDA vendors [26], or partially associate
hardware design template implementations with particular process technologies [254], but
the vast majority of projects simply choose to avoid publishing physical design collateral
within the open-source ecosystem. The approach used in the Hammer VLSI flow within
Chipyard is a “plug-in” model. These plug-ins provide a mapping between the Hammer
vendor-agnostic level of abstraction, to the proprietary vendor specific APIs. Nevertheless,
these mappings cannot be open-sourced due to some of the aforementioned agreements and
property disputes. In-fact, these are the only components of the Chipyard framework which
are not open-source.

Chiplet-based designs have been proposed as a potential solution to the challenges of
open-source mixed-signal IP [255]. Open-source initiatives such as the OpenROAD project
[4] are encouraging in their goal to address this problem in the EDA stack. Commercial
support for fabrication-ready open source PDKs such as Skywater 130nm [101, 256] provide
additional avenues for development. However, as process technologies continue to increase

CHAPTER 5. CHIPYARD 75

in complexity, we feel this is a challenge that requires collaboration between vendors and
the open-source community to enable the use of new abstractions. These new abstractions
should not impose on intellectual property rights, but enable the open source community to
develop tools and methodologies which can co-exist aside the leading commercial solutions
to provide viable pathways to modern silicon fabrication.

Methodology Automation

Methodologies provide important guidance in the development of SoCs. Methodologies in-
clude coding patterns and conventions, interfaces, best practices, tool flows, and much more.
However, in absence of automation, methodologies may be left as high-level ideas and docu-
ments rather than the directions and conventions they were intended to implement. Automa-
tion can increase the adoption of methodologies by simplifying their practice and lowering
the barrier of expertise to their implementation. Within the software development commu-
nity, integrated development environments (IDEs), linters and text editor extensions have
helped automate and enforce many of the methodologies, coding conventions and build flows
prevalent in software engineering.

The integrated nature of the Chipyard framework provides a backbone for such au-
tomation within the context of hardware methodologies. The Chipyard framework enables
automatic collateral sharing between IP generators, different tools, and different platforms
across the development flow. While agile and generator-based approaches for design of SoCs
based on the Rocket Chip generator have been presented in the past [170], multiple dis-
parate tools and obfuscated development environments made it challenging to execute [3,
7]. Some proposed methodological ideas did not yet even have the tools required to support
them. In other cases, ideas borrowed from software engineering were difficult to adopt in
hardware engineering environments. And in some cases, the simple mismatches of tool ver-
sions or lack of documentation posed a hurdle in the implementation of these methodologies.
Through automation and unification of RTL generation flows across multiple generators,
and the integration of RTL generation flows with the system simulation and implementation
flows, Chipyard not only builds upon previously proposed methodologies, but also auto-
mates them. The integration of the software workload-management system further helps
maintain complete automation and compatibility which enables automated implementation
of generator-based methodologies.

Automation enables the Chipyard framework to act as a gateway to multiple other tools
and generators, that would otherwise be difficult to use as independent steps within a
methodology. As such Chipyard provides a single introduction to a complete set of tools
required for the execution of a generator-based SoC design methodology. This single gate
helps streamline the execution of the methodology and lower the expertise barrier required
to adopt it and execute it successfully.

CHAPTER 5. CHIPYARD 76

Cloud-hosted Platforms

Hardware design has been traditionally performed by using on-premise compute resources
and proprietary licensed EDA environments. As noted earlier, open-source software is help-
ing in leading a shift in this traditional usage model. An additional aspect of usage that
has emerged in recent years is the usage of public cloud resources as opposed to on-premise
compute for compute-intensive hardware design workloads [232]. Major EDA vendors al-
ready offer cloud-based solutions for their major software products [133, 137], with some also
offering cloud-based access to more complex emulation platforms [138, 134].

The traditional advantages of a public cloud over local compute resources include scal-
ability, elasticity (flexibility), cost model and maintenance. The public cloud enables users
to scale compute resource immediately, without the need to over-provision local resources
or wait for a backlog of local compute acquisition. The public cloud provides users with the
ability to pick compute resources that match a particular workload out of a wide variety
of offerings (compute-optimized, memory-optimized, network-optimized, accelerators, etc.).
The public cloud takes over the burden of local server farm and licensing maintenance. And
finally, the public cloud’s cost model trades off capital expenditures with operating costs,
providing finer-grained control over spending on compute resources.

Within the context of hardware development, these properties are especially important
for compute-intensive workloads such as verification and physical layout. Traditional ASIC
verification flows require nightly regressions across a broad test suite. While this type of
nightly regression often uses multiple compute resources across a server farm, individual
developers may want to evaluate a single feature across a subset of tests. The elasticity of
the public cloud can enable this by instantaneously allocating a large number of resources for
a short amount of time to run a large set of tests in parallel immediately, without contention
for local resources. Similarly, when a design decision needs to be made close to a tape-out
deadline, multiple place-and-route jobs can be initiated concurrently using the elasticity of
the public cloud in order to obtain the best result in a short amount of time, meeting the
tapeout deadline, at the cost of a short burst of higher than usual spending.

From an academic and open-source hardware perspective, the public cloud provides even
more advantages beyond scalability and flexibility. The use of local EDA tools and compute
farms has often generated silo environments that hampered collaboration across academic
and open-source hardware organization. The public cloud enables improved sharing and
collaboration through common tools, compute resources (including accelerators), licenses,
and environment setups. As an example of the benefits of sharing FPGA images in the public
cloud, by sharing cloud FPGA images (AFIs) of a Rocket core with the RISC-V hypervisor
extension on FireSim, open-source developers were able to bring-up multiple hypervisors in
the RISC-V environment, including the Linux KVM [224, 208]. This common and publicly
accessible infrastructure also enables better reproducability of academic work. Researchers
can provide images or containers of their experimental setup in the public cloud to enable
others to reproduce experiments without the typical experimental environment mismatches.

Within the Chipyard framework, the FireSim components take a “cloud-first” approach to

CHAPTER 5. CHIPYARD 77

FPGA-accelerated simulation and emulation. In fact, while Chipyard supports prototyping
and emulation using local FPGAs, it initially supported only cloud-based emulation. For
other parts of the flow which require licensed tools, Chipyard attempts to provide both a
commercial locally-licensed option as well as an open-source alternative that can be used in
the public cloud (as is the case with software RTL simulation with Synposys VCS and open-
source Verilator). While some components of Chipyard are still tied to local EDA licensing
tools, it aims to eventually identify and provide complete open-source alternatives integrated
within the framework (in additional to the traditional flows) in order to streamline adoption
and execution using the public cloud.

Education

The study of computer architecture traditionally traverses the hardware-software interface:
first, it informs programmers about the logical structure of the computing hardware executing
their software, so as to explain its performance characteristics and guide the optimization
of software; and second, it educates hardware engineers about the principles, techniques,
and trade-offs that permeate the design and implementation of computer systems. However,
the development of domain-specific computing systems in recent years requires a change
in exploration of vertically integrated computing architectures and software/hardware co-
design. This emphasis is reflected in explicit hardware and programming models for parallel
computing through differentiated hardware architectures such as FPGAs, GPUs, and other
accelerators in both edge and cloud computing platforms. While traditional computer archi-
tecture education has been able to develop analytical models and rules-of-thumb for processor
performance based on the simple single-thread software model, modern computer architec-
ture education requires a much more empirical approach and relies upon a higher degree of
empirical experience and simulation.

Approaches to computer architecture education can be paralleled to the Iron Law of Pro-
cessor Performance [81, 122], which factors processor performance into three components:
the number of instructions executed, cycles per instruction, and cycle time. These succinctly
capture the contributions from various layers of the computing stack, spanning from algo-
rithms to circuits. While all computer architecture curricula broadly cover fundamentals of
the Iron Law, individual courses tend to emphasize either a software-centric or hardware-
centric perspective. A software-centric approach focuses on the interaction between the
programming model and microarchitecture, associated with the first two components of the
Iron Law: the number of instructions executed and the cycles per instruction. Experiments
typically rely on abstract functional simulators or cycle-approximate simulators. Knowl-
edge of RTL description languages is generally not required for most computer architecture
courses. A hardware-centric approach focuses on the physical implications of computer archi-
tecture, represented by the latter two factors of the Iron Law: the cycles per instruction and
the cycle time. Usually tightly entwined with the digital design curricula, this highlights the
influence of technological constraints: for example, the relationship between pipelining and
flip-flop setup and hold times; the considerations of SRAM organization in cache and regis-

CHAPTER 5. CHIPYARD 78

ter file design; and the limits on microarchitectural complexity due to wire congestion and
power consumption. Lab assignments often involve the manipulation of RTL and associated
methodologies [159, 196].

Hardware-centric approaches to computer architecture education primarily use HDL logic
simulators, similar to the ones used in digital design courses. Through the use of such
HDL-based simulators (e.g. ModelSim or VCS) and graphical-gate-based simulators (e.g.
Logisim [41]) students will often design a basic processor pipeline with a minimal set of
features. This approach does not enable students to observe phenomena that are the result
of large hardware structures or long-running software workload behaviors such as branch
predictions and caching policies. These hardware-centric simulators provide a high level of
implementation detail and simulation granularity at the cost of system-wide view and execu-
tion time. Hardware-centric approaches may go beyond simulator usage, and choose to use
FPGAs and FPGA-based soft cores to facilitate additional practical computer architecture
experience [115, 166, 216]. FPGA usage may mitigate some of the execution time costs of
hardware-centric simulators, but involve additional engineering effort by students, as well as
resource accessibility and class scalability considerations.

Software-centric approaches often rely on performance simulators, which trade off imple-
mentation details for a simplified model of the problem domain. Simulators that are used
both by the research community and for instructional purposes include complete processor
models such as GEM5 [36] or component-specific trace-based models for cache behavior or
branch prediction behavior such as ChampSim. However, in many cases instructors will
choose to develop a home-grown simulation model designed for a particular assignment.
High-level simulator usage in classes cannot be disentangled from a long-running debate in
the computer architecture research community around over-reliance on quantitative evalua-
tions from model-based performance simulators [202].

The Chipyard framework’s generator-based integrated nature enables a multi-faceted ap-
proach that traverses the software-hardware interface, enabling a complete system view of
processor performance and efficiency through practical exercises. In contrast to high-level
synthesis (HLS) approaches, hardware generators do not raise the level of abstraction above
the RTL level. The design of hardware generators still requires a thorough understanding of
RTL-based digital design considerations. However, the usage of hardware generators is sig-
nificantly simplified through modularity and parameter configuration schemes. Within the
research and development community, these usage models enable additional re-use of build-
ing blocks towards specialized computing systems. Within the education community, these
simpler usage models open up new educational opportunities for demonstrating complex sys-
tem interactions through modular and parameter-based lab exercises. Similar approaches for
computer architecture education have been proposed in the realm of embedded systems [245,
244] where, instead of RTL generators, Architecture Description Languages (ADLs) can be
used to compose and configure processor structures at a higher level of abstraction. Unfor-
tunately, unlike RTL, ADLs do not have tooling support to be synthesized into gate-level
digital integrated circuits, and therefore their usage is still restricted to only modeling rather
than implementation.

CHAPTER 5. CHIPYARD 79

In a joint generator-based exercises approach using the Chipyard framework, students
modify the configuration of an RTL hardware generator and execute RTL-level simulation
or implementation flows through Chipyard’s automated build process. Figure 5.11 demon-
strates example configurations used in a lab exercise on the topics of memory hierarchies and
caches. In this lab, students change cache parameters and memory hierarchy compositions
and observe their interaction with cache-tiling of matrix operations in RTL-level simulation.
The configuration interface is similar to dedicated caching simulators, but the generator
emits complete SoC RTL which is compiled into a cycle-accurate simulation executing the
software workload as it would be executed on actual silicon.

Prior work has surveyed many existing simulators [5, 6], with classifications based on
traditional usage within the computer architecture research community as well as through
an educational and pedagogical point of view [199, 116, 215], with some surveys proposing
criteria for the evaluation of their suitability for teaching courses in computer architecture.
Within the criteria proposed in [199], the proposed generator-based approach using Chip-
yard would be considered under the “Advanced Architecture (AA)” category with “Design
Support.” This joint model balances the trade-offs between simulation granularity and the
level of implementation detail using a finer scale than those used in prior simulator surveys
for education.

Vertical Curricula Span Using Chipyard

The use of the Chipyard environment has in fact allowed us to create an interconnecting
thread between electrical engineering classes and computer science classes. Using this envi-
ronment, students who choose to take classes across both fields are able to break through
the levels of abstraction and see how different components of the hardware-software stack
relate to each other by using the same environment for labs and assignments across vari-
ous classes. Figure 5.12 illustrates the multi-class flow enabled by a unified generator-based
system framework. Computer-science-oriented students do not need to interact with RTL,
as they only change configuration files and associated software. Digital integrated circuits
students get a baseline design to explore VLSI optimizations. In the overlap section between
standard classes, special topics classes such as “hardware for machine learning” or “hard-
ware for digital signal processing” can utilize the unified framework to integrate between the
unique software algorithms mapping onto custom hardware architectures to demonstrate the
interactions between the two with complete system design flows.

During the Spring semester of 2020, the Chipyard framework was used in three concurrent
classes at UC Berkeley, as demonstrated in Figure 5.12: A computer architecture class, a
digital integrated circuits design class, and a special topics class about hardware for machine
learning. Approximately 15% of students in the special topics class were also enrolled in the
computer architecture class in the same semester, while 10% of students in the special topics
class were also enrolled in the digital integrated circuit design class in the same semester.
The unified assignments framework reduced the ramp-up time for students. Those who
took two classes concurrently were able to amortize their infrastructure setup learning curve

CHAPTER 5. CHIPYARD 80

Figure 5.11: Example Chipyard generator configurations used in a memory hierarchy lab
exercise. Using a simple configuration-based user interface, the students are instructed to
change the internal parameters of the caches such as associativity and cache size (middle
example), as well as adding and removing components from the memory hierarchy (bottom
example). The generator emits synthesizable Verilog which is then automatically compiled
and simulated using a software RTL simulator or an FPGA-accelerated simulator for the
students to characterize program execution behaviors across the different memory hierar-
chies. [16] (© 2021 IEEE).

CHAPTER 5. CHIPYARD 81

Figure 5.12: Multi-class flow using unified generator-based system framework. [16] (© 2021
IEEE).

across classes. As all three are advanced classes, they also include a project component.
The unified infrastructure enabled students to complete more comprehensive class projects,
focusing on different components of the framework based on the topic of the class. Students
who utilized the framework for class projects in multiple classes demonstrated class project
results that included both architectural innovations and characterizations with complete
software evaluation, as well as integrated-circuits analysis with accurate VLSI power and
area comparisons. These integrated projects effectively increase the capacity of a program
to teach required system skills beyond the scope of a single class. In the subsequent year
(Spring 2021), the Chipyard framework was again used in the same three classes, with its
use expanding to an additional class dedicated to the fabrication of a complete SoC by
students in a single semester [83], providing early evidence for the success of this approach
and the Chipyard framework in training students for hardware/software co-design skills
with full-system contexts. We believe that this approach has the potential to be further
expanded to advanced systems-related classes in both electrical engineering and computer
science - specifically in areas relating to embedded systems, networking, communications
and operating systems.

CHAPTER 5. CHIPYARD 82

Figure 5.13: Lab flows across multiple courses teaching both hardware and software consid-
erations

Single-class Hardware/Software Curricula

Even within a single class, the generator-based interfaces and FPGA-accelerated simulation
within the Chipyard framework enable a lab exercises curriculum that spans both hardware
and software. We follow three primary pillars of this broad curricula span for the design of
lab exercises within a single class: functionality and algorithmic analysis, microarchitecture-
aware software execution, and system-integrated hardware design. Figure 5.13 demonstrates
how these pillars map the various lab exercises in two classes that have used this framework.

In the first pillar, Functionality and Algorithmic Analysis, students observe and ana-
lyze the impact of hardware considerations on the functionality of an algorithm. These
labs demonstrate to students the preliminary stages of hardware design, as they do not
consider performance evaluation yet, but rather just the functional behavior of certain hard-
ware properties. These labs therefore use functional models based on the properties of the
generators within the lab infrastructure, rather than the fully detailed implementations, in
order to enable a wider space of exploration through faster development cycles. Example
lab assignments that exercise these concepts include DNN inference accuracy analysis and
vector-programming algorithm re-design. In the case of DNNs, the functionality of the al-
gorithm to be analyzed is the inference accuracy, while example hardware properties such

CHAPTER 5. CHIPYARD 83

as quantization, pruning and accumulation precision could impact that functionality and re-
quire students to make adjustments in the algorithm. Similarly, translation of an algorithm
to use lock-step SIMD and vector processing capabilities requires a functionality analysis of
appropriate usage of vector-lengths, predication, and program ordering assumptions.

The second pillar, System-Integrated Hardware Design, attempts to help students experi-
ence the nuances of the interaction of different hardware components within a system. Often
times in computer architecture education, micro-architectural features within a processor
are designed in isolation and evaluated using closed-loop testing. While these approaches
indeed help students learn about the micro-architectural properties of the specific hardware
component under development, students often end up minimizing the impact of broader sys-
tem considerations such as interaction with Inputs/Outputs, interaction with system buses
and pipelines, and even simple rules-of-thumb such as Amdahl’s law. As such, example as-
signments that exercise the concepts of this pillar include the design and implementation of
an accelerator integrated within an existing SoC that includes control processors, a memory
system, and support software. Co-simulation helps make hardware design exercises more
accessible to students with a predominantly software development background. As an al-
ternative to writing RTL, some lab assignments permit students to integrate C++ models
into the Rocket Chip ecosystem. SystemVerilog DPI is leveraged to call C++ functions
from a Verilog wrapper module, which in turn is instantiated as a Chisel blackbox within
the SoC. This feature has proven particularly useful for implementing branch predictors and
prefetchers, whose functional behavior is considered the main educational value, and where
the design objective is purely a matter of performance, not correctness. C++ offers the fa-
miliarity of a procedural programming paradigm. Such an arrangement combines the “best
of both worlds”: A simplified C++ interface abstracts unnecessary details about pipeline
signals and timing (to a certain extent), easing design space exploration, yet the surrounding
out-of-order processor and system being simulated are still real artifacts, enabling realistic
performance evaluation.

The third pillar, Microarchitecture-Aware Software Execution, addresses how the ex-
ecution of software depends on its awareness of the underlying hardware microarchitec-
ture. This includes topics such as the optimization space for high-performance computing,
microarchitecture-dependent resource contention in parallel programming, and additional
emerging areas of concern such as security. Software is traditionally written obliviously to
hardware microarchitecture. However, traditional software often yields low utilization of
existing computing hardware, and high performance computing work continuously demon-
strates that correct and careful tuning of software scheduling to the properties of the microar-
chitecture is the primary method for obtaining performant software. This approach is further
necessary with the presence of DSAs, which are designed to break the software-hardware ab-
straction barrier. As such, example assignments that exercise the concepts of this pillar
include software tiling and scheduling to optimize software performance execution on an
accelerator based on the properties of the accelerator (scratchpad memory size, accumulator
size, array size, L2 cache size), as well as more traditional exercises such as multi-threaded
programming in multi-core architectures with attention to synchronization primitives and

CHAPTER 5. CHIPYARD 84

resource contention within the microarchitecture. Recently, security topics have also entered
this area of the curricula, with microarchitecture-aware side-channel attacks. As such, we
were also able to provide hands-on experience for students with exercises to demonstrate
such attacks using the out-of-order core implementation, with complete visibility into the
speculation structures within the core microarchitecture.

Accessible FPGA Emulation for Education

The Chipyard framework also simplifies the usage of FPGAs for modeling and emulation
in computer architecture classes. While the majority of FPGA usage in computer archi-
tecture classes focuses on FPGA prototyping in hardware-centric versions of the curricula,
FireSim implements FPGA-accelerated simulation. In contrast with FPGA prototyping,
FPGA-accelerated simulation correctly models timing behavior of not only the design under
test but also the I/Os and peripherals of the SoC. FPGA-accelerated simulation enables
deterministic and reproducible evaluation with a realistic system environment, as opposed
to FPGA prototyping where each execution is sensitive to the FPGA environment, and
timing depends on FPGA peripheral device performance (e.g. DRAM performance). This
determinism is important in order to obtain reproducible class results and automated grad-
ing mechanisms. Furthermore, the construction of deterministic simulation also requires
FireSim to automate the interaction between the host machine and the FPGA, which means
that FireSim users do not need to directly interact with the FPGA toolchain and the FPGA-
specific configurations.

Since FireSim is principally designed to work with cloud-hosted FPGAs, students do not
interact with the complexities of any physical FPGAs. Furthermore, class size is not limited
by the availability of physical FPGAs for hands-on lab exercises. AWS F1 instances enable
scaling of FPGA-based lab exercises to large class sizes, since FPGA access is not limited by
the number of physical FPGAs in the lab. FireSim further automates the interaction with
the FPGA, so that users (and in particular, students) do not interact with any of the FPGA
infrastructure at all.

As an example, in the architectural component of a Hardware for Machine Learning
class, students were instructed to complete an RTL implementation of a machine learn-
ing accelerator with a software-managed scratchpad memory, and then study the effects
of tiling and scheduling of DNN models using that implementation. The study of end-to-
end performance of domain specific accelerators requires application-level evaluation using
non-standard hardware implementations. The implementation stages were performed using
the Chipyard framework and the base SoC and accelerator components it provides. Since
DNN models would take many hours to run in software RTL simulation, FPGA-accelerated
simulation was crucial for studying the tiling and scheduling components of the system.
FireSim allowed students to perform fast experimental iterations with accurate performance
evaluations.

During the first usage of FireSim within an advanced computer architecture class in
Spring 2019 [261], a memory hierarchy analysis lab used similar configurations to the ones

CHAPTER 5. CHIPYARD 85

in Figure 5.11 to run tests out of two benchmark suites used for evaluation of commercial
processors: SPEC CPU2017 intspeed [65] and GAPBS [31]. Although FPGA-accelerated
simulation is orders of magnitude faster than software RTL simulation, the programs in the
SPEC CPU2017 intspeed and GAPBS still take considerable time to run (50-80 minutes
each on FPGA-accelerated simulation), while the relevant memory hierarchy effects could
be demonstrated using shorter and more succinct programs. A retrospective comparison
between these two example usages of FireSim in classes illustrates the trade-off in educational
usage of this type of tool: simulation time must be appropriate to the level of the phenomena
to be demonstrated in the exercise.

Remote Instruction

The Chipyard framework, in particular when using FireSim FPGA-accelerated simulation,
enables a high level of accessibility and scalability of classes, as there is no physical in-
frastructure requirement. Class size is essentially limited by the cost of AWS credits (for
cloud-hosted FPGA-accelerated simulation) and commercial EDA license usage for the VLSI
flow. The lack of physical infrastructure requirements, and in particular the usage of cloud-
hosted FPGAs, also presented an additional instructional benefit that was previously not
as consequential. While the COVID-19 pandemic disrupted the Spring 2020 semester, the
lab assignments in all three classes which used the joint framework were not disrupted de-
spite the transition to remote instruction. However, while the theoretical possibility of large
remote class exercises using these tools is within reach and attractive, hardware generator-
based tools and cloud-hosted FPGA tools are still under research and development, and the
usage experience of these tools is not yet entirely smooth. Large-scale class deployment of
these tools would require more robust testing and infrastructure enhancements.

Usage of cloud-hosted FPGA instances presents additional educational considerations
that are fundamental to the general usage of public cloud resources in classes. Using cloud-
hosted FPGA instances teaches students to interact with the public cloud, which is an
increasingly desirable skill in the current professional computing world. Just as how in many
cases university assignments are the first time students interact with Linux command line
interfaces which they later use for a significant part of their professional career, we believe
that teaching students to interact with the public cloud has general benefits that extend
beyond the basic assignment objectives of learning computer architecture concepts. Nev-
ertheless, cloud FPGAs also come with challenges of managing variable spending among
students in the class due to the dynamic nature of billing and usage. In traditional physical
lab-based FPGAs and university instructional machines, students are only limited by their
own time or availability of resources that have already been purchased. In contrast, when
using cloud-based resources, there is virtually no availability constraints, rather only cost
constraints, where cost is directly tied to usage. This raises interesting questions of respon-
sibility and incentive models: Should resources be managed centrally for the entire class, or
should students be allocated fixed amounts to “fund” their lab assignment? Should grades
be associated with resource usage? What is the trade-off between students spending more

CHAPTER 5. CHIPYARD 86

time to further improve and perfect their assignment, while at the same time spending more
resources in order to do so? While these questions are not unique to cloud-hosted FPGAs,
we believe they take on new meaning due to the traditional usage model of FPGAs in classes.

87

Chapter 6

Generator-based SoC
Hardware/Software Co-Design

Hardware/Software co-design methodologies have long been used for embedded systems de-
sign, in which hardware and software are closely co-designed for specialized applications
[24]. Embedded systems have historically been domain-specialized, emphasizing safety, pre-
dictability and latency guarantees. These characteristics enable the software aspects in such
systems to be confined to light-weight software stacks which can be evaluated relatively
quickly on the relevant hardware. However, due to differing application requirements, the
software stack of general-purpose systems is necessarily more complex, incorporating multi-
processing, resource-sharing, file systems, virtual memory, and interactions with additional
system components. Many of these system components are provided by fully-fledged oper-
ating systems such as Linux.

As an example, data-science-oriented applications often contain abundant data-level par-
allelism and are likely to benefit from multiple types of parallelism within the SoC, including
multi-threaded or multi-core parallelism. A GNU/Linux-based environment helps provide
simple programming interfaces for multi-threading such a POSIX threads [42] or OpenMP
[68] libraries. At the application-level, more complex applications such as modern machine-
learning and graph-analytics frameworks are built upon a large number of library compo-
nents, many of which can be provided by common Linux distributions such as Fedora. These
applications, which contain a high degree of parallelism, may require an additional degree
of parallel processing, i.e. multi-node and distributed processing over a network. These
settings commonly require full operating system support to manage the relevant devices and
protocols associated with multi-node communication.

Providing a sufficient level of hardware/software co-design in such systems requires ex-
ecuting the complete software stack with sufficient visibility and performance to provide
relevant insights. Often times, basic software samples are developed using architectural or
functional models of a design, while the bulk of the relevant software is developed based
on functioning silicon after the system (or a test system) has been fabricated. This process
distorts a large part of the development flow, since hardware often times cannot be adjusted

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 88

or optimized based on the final software version that was developed post-silicon. While
functional properties can often be sufficiently verified pre-silicon, pre-silicon performance
validation without sufficient software is a much more challenging task. FPGA-emulation as
well as more complex commercial emulation platforms have been used for these purposes, and
provide prime opportunities for the evolution of hardware/software co-design methodologies.

Since FireSim provides many of the features available in costly commercial emulation
platforms, together with the accessibility of cloud-FPGA and integration with the generator-
based development flow, it acts as a useful tool in advancing rapid pre-silicon software
development. This in turns enables new degrees of generator-based hardware/software co-
design and optimization.

6.1 Generator-Based SoC Design Space Analysis

We demonstrate two examples of generator-based pre-silicon design space exploration and
analysis using two different accelerator generators for data-parallel computation integrated
within multi-processor SoCs: the Hwacha vector accelerator generator, and the Gemmini
deep learning accelerator generator. Generator-based design space analysis facilitates a holis-
tic view of the system-level behavior of the accelerators under evaluation, and can be used to
highlight the behaviors of parallel multi-processor systems with shared memory hierarchies.
This is due to the intricate interactions of the system-level protocols and components that
are implemented at an RTL-level rather than a modeling level.

In particular, FPGA-accelerated simulation using the FireSim platform enables applicati-
on-level performance characterization for pre-silicon design space exploration. The FireSim
environment constructs an FPGA-based simulator from the source RTL of the simulated
design, making it a single-source-of-truth for both simulation and chip designs. FireSim en-
ables integration of the simulated SoC with various peripheral and system-level models such
as DDR3 memory [35], Ethernet NICs, and UART interfaces. FireSim has also been used to
evaluate the performance of commercial SoCs [168]. Unlike conventional FPGA prototyping
approaches, FireSim and its underlying compiler transform the target RTL description into
a simulator rather than synthesize the target RTL onto the FPGA. This transformation
enables decoupling between the simulated target design and the host FPGA platform, which
allows for deterministic timing-accurate modeling of memory and I/O interfaces.

Hwacha Application-Level Design Space Exploration

The Hwacha vector accelerator was designed to execute data-parallel workloads in Linux-
based data-intensive applications. As a general-purpose vector accelerator, it can be utilized
by a large spectrum of software workloads - from high-level scientific computing matrix op-
erations down to low-level operating-system kernel functions such as memory-to-memory
copy [188], thanks to its design as a cache-coherent general-purpose accelerator with full
virtual memory support. While preliminary evaluation of the Hwacha vector accelerator by

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 89

using micro-benchmarks is informative [172], the desired level of evaluation for agile SoC
design is application-level evaluation. Micro-benchmarks may demonstrate impressive per-
formance in isolation, but when integrated into full systems and workloads, Amdahl’s law
and other effects have demonstrated the need for more comprehensive test suites in the past
[218, 32]. Furthermore, since the Hwacha accelerator is a cache-coherent co-processor with
virtual memory support, the memory system significantly impacts its application-level per-
formance. Previous work using high-level models has demonstrated the impact of coherence
and data-movement on accelerator integration in a system context [237].

Exploring the performance profile of different generator-based SoC configurations on their
target applications can provide valuable pre-silicon design information, and well as comple-
mentary information to measurements from test chips which have already been fabricated
with reduced feature sets [230]. Therefore, we perform application-level design space analysis
for the Hwacha vector accelerator in a chip-multiprocessor setting for machine learning and
data analytics applications.

Twelve SoC configurations (listed in Table 6.1) with vector accelerators were generated
by using the Rocket Chip and Hwacha generators and evaluated on the FireSim platform.
A scalar Rocket in-order application processor and a Hwacha vector accelerator are grouped
together as a processor tile. A tile also consists of L1 data and instruction caches connected
to the Rocket scalar core, as well as a floating-point unit. The SoC consists of an L2 cache
which is shared between tiles using a cache-coherent TileLink [61] crossbar. The Hwacha
vector accelerator memory interface is connected directly to the shared L2 cache through
the TileLink crossbar. Additional peripheral interfaces such as the UART, block device
interface and network interface controller (NIC) are added to the SoC for the purposes
of full-system simulation. Each SoC instance was simulated with a DDR3 memory model
with a 14-14-14 speed-grade. The varied design space exploration parameters include the
number of processor tiles, the number of vector lanes per processor tile, and the sizes of
L2 caches. Figure 6.1 illustrates the components of a FireSim FPGA-accelerated simulation
and the evaluated SoC configurations. The largest configuration evaluated was a dual-tile
chip multi-processor (CMP) with a dual-lane vector accelerator in each tile and a 2048 KiB
L2 cache. The smallest configuration evaluated is a single-tile processor with a single-lane
vector accelerator and a 512 KiB L2 cache. Note that this small configuration is also used
as the baseline reference for speedup measurement (using only the scalar core). The SoCs
are simulated to run at a frequency of 1033 MHz. This frequency is selected since test
chips generated using these RTL generators have been previously signed-off to reach such
frequencies. Furthermore, SoCs running at 1033 MHz demonstrate the distinction between
FPGA prototyping to FPGA-accelerated simulation.

Of particular interest is a comparison between the architectures of two previously fab-
ricated test chips: Hurricane-1 [279] and Hurricane-2 [230], both fabricated in the 28nm
UTBB FD-SOI process technology. The Hurricane-1 test chip implements an architecture
that contains dual Rocket application cores, each with a single-lane Hwacha vector acceler-
ator. The Hurricane-2 test chip implements an architecture that contains a single Rocket
application core with a dual-lane Hwacha vector accelerator. The Hurricane-1 configuration

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 90

Figure 6.1: FPGA-accelerated simulation of Hwacha-accelerated SoCs with DDR3, block
device, network, and other peripheral models, using various configurations of generated target
SoC RTL. The generated configurations are varied across the numbers of tiles (marked in
red), numbers of vector lanes per tile (marked in blue) and the L2 cache size (marked in
yellow). [230] (© 2020 IEEE).

Config Name Cores
Vector Lanes

Per Core
(Total Vector Lanes)

L2 Cache Size

1T 1L 512C 1 1 (1) 512 KiB
1T 1L 1024C 1 1 (1) 1024 KiB
1T 1L 2048C 1 1 (1) 2048 KiB
1T 2L 512C 1 2 (2) 512 KiB
1T 2L 1024C 1 2 (2) 1024 KiB
1T 2L 2048C 1 2 (2) 2048 KiB
2T 1L 512C 2 1 (2) 512 KiB
2T 1L 1024C 2 1 (2) 1024 KiB
2T 1L 2048C 2 1 (2) 2048 KiB
2T 2L 512C 2 2 (4) 512 KiB
2T 2L 1024C 2 2 (4) 1024 KiB
2T 2L 2048C 2 2 (4) 2048 KiB

Table 6.1: Hwacha-based SoC configurations

enables additional task-level parallelism, in contrast to Hurricane-2’s single-core, dual-lane
configuration which exploits more data-level parallelism.

Machine learning and deep learning in particular are arguably the fastest-evolving work-
loads in recent years. These workloads exhibit specific computation patterns, which are
mostly centered around dense linear algebra kernels. Specifically, convolutional neural net-

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 91

works make up a significant portion of modern computer vision applications. SqueezeNext
[97] is one such DNN that was specifically designed with hardware considerations in mind,
with the goal of improving efficiency while maintaining high accuracy. In order to evalu-
ate both the inference phase behavior and the training phase behavior of the deep neural
networks at an application-level, we use the Caffe [146] framework, which provides useful
abstractions for machine learning researchers. The Caffe framework also enables evaluation
of arbitrary neural networks which were trained using this framework (unlike an evaluation
of a specific instance of an efficient neural network software implementation mapped to a
particular hardware instance).

A common problem in application-level evaluation regards the method of mapping a
workload to a particular accelerator. The most comprehensive approach is compiler-based,
in which a compiler is modified in order to account for the unique characteristic of the accel-
erator. With correct compiler optimizations applied, this code-generation approach enables
the evaluation of a wide range of workloads on the accelerator. However, a compiler-based
approach requires extensive engineering effort, and depends on many components of the
software stack. Furthermore, compiler-based approaches for general-purpose vector acceler-
ators are limited by the architecture-specific auto-vectorization capabilities of the respective
compiler. The Hwacha vector accelerator ecosystem has an existing OpenCL-based compiler
solution [172], however, this solution did not fit our deep learning workload programming
model which heavily relies on popular machine learning frameworks with limited (and some-
times non-existent) OpenCL support. An alternative, library-based approach was used,
where several computational kernels are hand-written and optimized. These kernels are
then packaged in the form of a library with a common interface and linked to the target
workloads as a replacement to an existing library implementation. We identified that the
BLAS [165, 76] interface exposed the most significant dense computation operations that
Hwacha was designed to support. Furthermore, we identified that the Caffe framework uses
the BLAS interface for efficient mapping of neural networks to basic computational routines.
We implemented multiple BLAS subprograms using custom written Hwacha kernels (nick-
named Hwacha-BLAS). Since these subprograms implemented the standard reference BLAS
interface, they were able to be linked transparently to the Caffe framework without any mod-
ification to the larger framework code-base. Hwacha-BLAS provides a level of abstraction,
allowing us to optimize basic dense linear algebra routines such as General Matrix Multipli-
cation (GEMM) and vector dot products. This level of abstraction also allows us to attempt
various parallelism techniques within the Hwacha-BLAS implementation. In particular, we
use OpenMP [68] to parallelize GEMM implementations across multiple hardware threads.
Figure 6.2 presents the software stack used for a full-system evaluation of SqueezeNext DNN
inference and training using the Hwacha vector accelerator.

The results of the evaluation, illustrated in Figure 6.3, confirm that application param-
eters, such as the batch size in each iteration of deep learning inference or training passes,
have an effect on the possible speedup obtained from an SoC configuration. Increased batch
sizes group several independent input feature maps into a single iteration, hence allowing
for more data-level parallelism as well as re-use of weights. For DNN inference, additional

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 92

Figure 6.2: Dense DNN inference/training software stack

vector lanes do not provide additional speedup for batch size 16, as opposed to a batch
size of 1. This is not an obvious result, as batched applications are known to expose more
data-level parallelism than unbatched applications. We postulate that this result is due to
non-vectorized processing that is required of the additional data in the batched workload.
This non-vectorized processing is parallelized across the two scalar cores in the multi-tile
architectures (such as Hurricane-1), but cannot be parallelized using the single scalar core
in single-tile architectures (such as Hurricane-2), despite having multiple vector lanes.

We conclude that for infrequent inference applications, a dual-lane/single-tile SoC con-
figuration such as Hurricane-2 is advantageous, while for batch-oriented applications, a dual-
tile/single-lane configuration such as Hurricane-1 performs better. Furthermore, we observe
that the speedup obtained for a Backward Pass (the training stage) is significantly less than
the speedup obtained for the Forward Pass (the inference stage). This is since the inference
stage is relatively homogeneous and consists mostly of a GEMM kernel. At the same time,
the backward pass has a larger variety of computational kernels (some of which are more
difficult to vectorize) and therefore, as expected from Amdahl’s law, we see a smaller speedup
for the backward pass. We also notice that additional vector lanes do not provide additional
speedup (as opposed to additional tiles). This can be an indication of a possible limited level
of data-level parallelism that can utilize multiple lanes. It can alternatively be an indication
of poor performance scalability of the vector accelerator multi-lane design, requiring further
micro-architectural optimization.

Another popular and quickly evolving workload in recent years involves data analytics.
While data processing and databases are a wider topic that should be evaluated separately,
graph analytics in particular has been explored as an emerging domain of data analytics
since graphs provide a useful abstraction to describe relationships between objects. How-
ever, unlike deep learning, the computational primitives of graph analytics are not as clear.
This is partially due to the fact that graph analytics are characterized mostly by the data-
representation (a graph), rather than by a computational kernel. Nevertheless, some common
graph processing kernels exhibit data-parallel properties, which are fertile ground for vec-
tor acceleration. In particular, we evaluate the performance of PageRank [205] - a graph
algorithm designed to measure the importance of vertices in a graph.

Similarly to the DNN case, we use a domain-specific framework, in this case, Graph-

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 93

1T 1L 512C 1T 1L 1024C 1T 1L 2048C 1T 2L 512C 1T 2L 1024C 1T 2L 2048C 2T 1L 512C 2T 1L 1024C 2T 1L 2048C 2T 2L 512C 2T 2L 1024C 2T 2L 2048C
SoC Configuration

0
1
2
3
4
5
6
7
8
9

No
rm

al
ize

d
Sp

ee
du

p 1 Tile, 1 Lane/Tile 1 Tile, 2 Lanes/Tile
 (Hurricane 2)

2 Tiles, 1 Lane/Tile
 (Hurricane 1)

Forward Pass Batch-Size 1
Forward Pass Batch-Size 16
Backward Pass Batch-Size 16

Figure 6.3: Design space evaluation of the speedup of inference and training of the
SqueezeNext DNN model on the vector accelerator across tiles (T), lanes (L) and L2 cache
sizes (C, KiB) compared to a minimal reference scalar implementation (1T 512C). Larger
batch sizes expose more parallelism, which enables improved performance using multiple tiles
and multiple vector lanes. Note that L2 cache size does not have a consistent effect. [230]
(© 2020 IEEE).

Mat [249]. GraphMat is a parallel high-performance graph processing framework which
uses a double compressed sparse column/row (DCSC/R) data structure [40] for the rep-
resentation of the graphs in our analysis. In the case of the graph-processing domain, a
framework is especially useful for the ingestion and pre-processing of a graph dataset, and
the construction of an efficient graph representation data structure. Contrary to the DNN
example, since graph computation functions are not as well-defined, we did not identify
a basic set of primitives in order to provide a common interface equivalent to the BLAS
library which was implemented for the dense linear-algebra case. While there are efforts
in the research community to identify such basic sets of kernels for graph processing, for
example GraphBLAS [154], those efforts often involve operator-overloading, which provide
useful software abstractions but are challenging for direct and efficient mapping to hard-
ware. Unlike the dense linear algebra kernels which were used in the deep learning case
study, sparse linear algebra kernels are notoriously difficult to parallelize efficiently due to
their irregular structure. This irregular structure exposes different implementation trade-
offs between data-locality and load-balancing based on the data structure representation.
In the DCSR representation, we use custom implementations which utilize the two levels of
indirection of the DCSR data structure to apply a coarse-grained level of parallelism using
OpenMP pragmas, and a finer-grained level of data-level parallelism using Hwacha assembly
vector instructions. Figure 6.4 presents the software stack used for a full-system evaluation
of parallel PageRank graph processing kernels using the Hwacha vector accelerator.

The implementations were evaluated on 3 graph datasets from the Stanford Network
Analysis Project [176]. The inner-most kernel implementation uses a “Loop Raking” vector-
ization technique, which was previously found to be the most performant technique on the
Hwacha accelerator compared to alternative kernel implementations [15, 9]. Loop raking is
a vectorization pattern which was originally proposed for sorting algorithms [283], and has
since been commonly used for two-dimensional data structures [20].

The results of the evaluation, illustrated in Figure 6.5, confirm that application pa-
rameters such as the graph properties affect the possible speedup obtained from an SoC

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 94

Figure 6.4: Sparse graph processing workload software stack.

configuration. The most significant speedup (25x) is obtained for a small graph (wikiVote,
∼400 KiB) that fits in L2 cache and utilizes the additional computational resources of the
vector accelerator. Notably, variations in L2 cache size have minimal effects on all workload
types, indicating little temporal locality within the applications. The only significant effect
of cache size on speedup relates to the PageRank execution on the wikiVote graph which
fits entirely within even the smallest evaluated cache size. If a graph does not fully fit in
the L2 cache, then additional cache size does not provide a benefit. It is further evident
that additional computational resources provide added benefits in all graphs. Hence, we can
conclude that in a scenario with a fixed area budget for an SoC destined to run these types
of graph applications, we would rather use the provided area for additional vector units or
tiles rather than for additional cache.

1T 1L 512C 1T 1L 1024C 1T 1L 2048C 1T 2L 512C 1T 2L 1024C 1T 2L 2048C 2T 1L 512C 2T 1L 1024C 2T 1L 2048C 2T 2L 512C 2T 2L 1024C 2T 2L 2048C
SoC Configuration

0

5

10

15

20

25

No
rm

al
ize

d
Sp

ee
du

p 1 Tile, 1 Lane/Tile 1 Tile, 2 Lanes/Tile
 (Hurricane 2)

2 Tiles, 1 Lane/Tile
 (Hurricane 1)

wikiVote
RoadNet-CA
amazon0302

Figure 6.5: Design space evaluation of vectorized PageRank on different graphs using Graph-
Mat infrastructure and the vector accelerator across tiles (T), lanes (L) and L2 cache sizes
(C, KiB) compared to a minimal reference scalar implementation (1T 512C). The dual-
tile/single-lane configuration provides greater speedup than the single-tile/dual-lane config-
uration (with similar area overheads). L2 cache size is not a factor for speedups on large
graphs. [230] (© 2020 IEEE).

A common perception regarding graph workloads and sparse data structures regards the
benefits of task-level parallelism vs. data-level parallelism. We evaluate the relative speedup
of the vectorized PageRank implementations compared to the coarse-grained parallelism
provided only by OpenMP pragmas and the scalar cores. We observe that for a single
vector lane per tile, a dual-tile design will provide a higher relative speedup than the single-
tile design, which demonstrates that the combination of data-parallel vector accelerators
in conjunction with multi-processors provides a performance advantage compared to each
of them individually. Between the Hurricane-1 and Hurricane-2 configurations, the dual-

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 95

tile/single-lane design achieves the greatest PageRank speedup, because fine-grained load
balancing across the decoupled cores targets the irregular structure of graph representations
better. It is worth noting that since PageRank is in-fact implemented as an iterative process
of sparse matrix-vector multiplication operations (SpMV), the conclusions regarding this
parallel PageRank implementation can be applied to other applications which use SpMV
primitives.

In summary, the application-level design space analysis of SoCs with the Hwacha vector
accelerator demonstrates application-dependent performance of a range of SoC configura-
tions. Specifically, it provides critical information about the performance benefits of multi-
tile architectures compared to multi-lane architectures on full-system workloads with irreg-
ular structures or insufficient data-parallelism. This information complements additional
power, energy and area data collected using generator-based test chips such as Hurricane-1
and Hurricane-2.

Gemmini System-level Analysis

A generator-based design space exploration was performed during the early development
stage of the Gemmini accelerator, exploring the composition of a single Gemmini accelerator
[95]. Building upon that preliminary design space exploration for the structure of a single
accelerator, we demonstrate the additional benefits of generator-based design space analysis
for system-level insights about accelerators at a multi-processor level. In particular, we
demonstrate an analysis of the resource contention aspects of a shared-memory hierarchy
using generator-based application-level analysis [96]. Recent work observed how limited host
memory bandwidth contention affects cloud-based machine learning accelerators (specifically,
the Google TPU) in which the CPU is shared by multiple applications [289]. In such
cases, the host CPU memory bandwidth is the resource under contention, since multiple
CPU applications require access to memory, as well as the single application running on
the accelerator. We use Gemmini and FireSim FPGA-accelerated simulation to study a
resource-contention scenario which is more representative of tightly-integrated edge devices
with shared on-chip memory hierarchies. The SoC architecture under evaluation is composed
of a dual-core application processor, in which each core has a dedicated Gemmini accelerator
tightly integrated with it. The system has a total of two host processors and two Gemmini
accelerators. In this SoC architecture, a shared last-level cache (L2) is shared by both the
host CPU cores and the accelerators, as shown in Figure 6.6.

When both application cores are running workloads concurrently, we would expect con-
tention over the shared L2 cache to impact the execution time of each workload, compared to
running the same workload on an isolated single core. We would also expect this phenomenon
to repeat itself when running applications which utilize the Gemmini accelerators, since the
accelerators’ memory interface is also connected to the shared L2 resource. We indeed con-
firm this expectation by measuring the performance of a ResNet-50 inference application
[118] on a single core using Gemmini, and measuring the performance of two cores, each
executing separate ResNet-50 inference applications using separate Gemmini accelerators.

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 96

Figure 6.6: Dual-core system-on-chip with Rocket Linux-capable RISC-V application cores,
a Gemmini accelerator attached to each Rocket core, a shared L2 cache, and standard
peripherals. [96] (© 2021 IEEE).

The applications are run within an SMP Linux environment and pinned to their respective
cores. The contention over the L2 cache results in a 13% slowdown in the execution cycles
of each ResNet-50 inference application over running only a single core.

However, it turns out that the reasons for this performance profile are somewhat more
nuanced, and present a design space tradeoff. Real-world DNN applications, such as CNN
inference, have diverse layer types which have different computational requirements, and
which contend for resources on an SoC in different ways. For example, ResNet-50 includes
convolutions, matrix multiplications, and residual additions, which all exhibit quite different
computational patterns. Convolutions have high arithmetic intensity; matrix multiplications
have less; and residual additions have almost no data re-use at all. Additionally, unlike the
other two types of layers, residual additions benefit most if layer outputs can be stored inside
the cache hierarchy for a long time, rather than being evicted by intermediate layers, before
finally being consumed several layers later. These different layer characteristics suggest
different ideal SoC configurations.

Within the context of design space exploration, the design space of on-chip memory
usage presents an interesting tradeoff. We are interested in the tradeoff between a larger
L2 cache and a larger private scratchpad for two reasons: First, while a larger L2 should
provide a benefit to all components of the target application (both those which utilize the
accelerator, and those that run only on the host CPU and do not use the accelerator),
greater re-use within a larger scratchpad may alleviate some of the load of requests to the L2
cache which generate the resource contention. Second, the benefits of a manually-managed

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 97

Config Name Cores
Scratchpad Size

(per core)
Accumulator Size

(per core)
L2 Cache Size

Base-Single 1 256 KiB 256 KiB 1024 KiB
Base-Dual 2 256 KiB 256 KiB 1024 KiB
BigSP-Single 1 512 KiB 512 KiB 1024 KiB
BigSP-Dual 2 512 KiB 512 KiB 1024 KiB
BigL2-Single 1 256 KiB 256 KiB 2048 KiB
BigL2-Dual 2 256 KiB 256 KiB 2048 KiB

Table 6.2: Resource contention SoC configurations

or controller-managed scratchpad are only as effective as the software which manages it, in
contrast to a locality-based cache which may provide benefits for a wider range of software
implementations. Since the software scheme generated by Gemmini uses only a single level
of loop tiling (based on the size of the Gemmini scratchpad and accumulators), changing the
size of the scratchpad inherently changes the L2 access pattern of an application which uses
the Gemmini accelerator.

We explore methods to mitigate the performance impact of shared memory resource
contention by adding additional memory resources to the system. The Generator-based
approach enables us to study two additional SoC configurations with added memory. We
explore the design space of an allocation of an additional on-chip SRAM memory budget
of 1 MiB between the accelerator’s private memories and shared L2 cache. In the first
configuration (which we call BigL2), we add on-chip memory to the shared L2 cache (making
it 2048 KiB rather than 1024 KiB) but leave the size of the Gemmini scratchpads identical
to the base configurations (256 KiB each). In the second configuration, we leave the size
of the L2 cache identical to the base configuration (1024 KiB) but increase the size of the
Gemmini private memories (scratchpad and accumulators, 512 KiB each rather than 256
KiB each). Table 6.2 lists the different SoC configurations and their respective parameters.

As shown in Figures 6.7a and 6.7b, convolution layers benefit from a larger, explicitly
managed scratchpad, due to their very high arithmetic intensity. Convolution kernels exhibit
a 10% speedup with one core, and an 8% speedup in the dual-core case, when the scratch-
pad and accumulator memory sizes are doubled by the addition of a total of 1 MiB worth
of SRAMs. The matrix multiplication layers, on the other hand, achieve only a 1% and 3%
speedup when the scratchpad and accumulator memories are enlarged (in the single-core and
dual-core cases respectively), due to their lower arithmetic intensity compared to convolution
layers. Residual additions, which have virtually no data re-use and are memory-bound oper-
ations, exhibit no speedup when increasing the private scratchpad and accumulator memory
sizes. Instead, they exhibit a minor 1%-4% slowdown, due to increased cache thrashing.
In the single-core case, the increased convolution and matrix multiplication performance is
enough to make the design point with increased scratchpad memory, rather than increased
L2 memory, the most performant design point.

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 98

(a) Single core SoC configurations.

(b) Dual core SoC configurations.

Figure 6.7: ResNet-50 performance (by operation type), normalized to the performance of
the Base configuration.

However, in the dual-core case, the convolution and matrix multiplication speedup cannot
overcome the contention effects driven by the memory-bound residual addition operation.
Figure 6.7b demonstrates that in the dual-core case in which applications compete for the
same shared L2 cache, allocating the extra 1 MiB of memory to the shared L2 cache improves
overall performance more than adding that memory to the accelerators’ scratchpad and
accumulator memories. Increasing the scratchpad size still improves convolution performance
more than increasing the L2 cache size, but this improvement in performance is more than
negated by the 22% speedup of residual additions that the dual-core BigL2 design point
enjoys. This is because each core’s residual addition evicts the input layer that the other
one is expecting from the shared L2 cache, increasing the latency of memory-bound residual
addition layers. The dual-core BigL2 configuration, which increases the shared cache sizes,
alleviates this contention, reducing the L2 miss rate by 7.1% throughout the entire ResNet-
50 run, and increasing overall performance by 8.0%. The BigSP configuration, on the other
hand, improves overall performance by only 4.2% in the dual-core case.

To summarize, this design space exploration demonstrates that for SoCs which target
DNNs dominated by convolution and matrix multiplication, contention can be mitigated
by adding additional private scratchpad memory to the accelerators as opposed to adding

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 99

shared memory resources. The low-latency data re-use within the scratchpad sufficiently
compensates the additional L2 cache miss penalty which results from allocating memory
resources to the scratchpads rather than to the shared resource. However, for SoCs which
target DNNs that include memory-bound operations such as residual-additions, allocating
additional memory to a shared resource such as the last-level cache would provide the best
mitigation for L2 cache contention between the two cores, since these long-latency memory
operations with no data re-use are extremely costly and can dominate execution time.

6.2 Generator-based Software Debugging and

Optimization

After the initial performance measurements of a system are obtained using FPGA-accelerated
simulation, the next step in the HW/SW co-design process is fine-grained characterization
of this performance profile in order to optimize it. FPGA-accelerated simulation can provide
valuable pre-silicon insights at this stage of the development process as well. However, a
frequent challenge with FPGA emulation is the reduced level of visibility into the hardware
aspects of the design when compared to the visibility of software RTL simulation. At the
same time, traditional software profiling tools are often micro-architecture agnostic, which
limits visibility from the software side as well. In order to enable HW/SW co-design in this
pre-silicon performance optimization process, the pre-silicon simulation and emulation plat-
form must enable debugging features which appeal to both hardware developers and software
developers. The FireSim platform provides support for several FPGA-based debugging and
profiling techniques, including co-simulation, synthesizable printf statements and synthesiz-
able assertions [157]. In this section, we highlight several FireSim features which address
hardware/software characterization of generated hardware designs executing system-level
software. Specifically, we will demonstrate a hardware-centric debugging-assistance feature,
a software-centric profiling feature, and an additional middle ground characterization fea-
ture to demonstrate the spectrum of hardware/software co-design tools in the profiling and
debugging process.

Automatic ILA Generation

Hardware developers often use signal waveforms to debug and characterize digital hardware
designs. As such, integrated logic analyzers (ILAs) are a common debugging method when
using FPGAs. ILAs are digital FPGA IP blocks which probe signals on the FPGA and
continuously sample the probes into an on-chip memory. When a trigger signal is observed
on one of the probed signals, the content of the sampled memory is offloaded to the host
FPGA management application, providing the designer a waveform of the probed signals of
a time window around the event of interest.

The traditional flow for using an ILA typically requires manually generating the ILA
hardware IP block in the FPGA vendor toolchains, instantiating the block in the top-level

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 100

Figure 6.8: AutoILA generator-based integrated logic analyzer (ILA) integration flow.

RTL design, and wiring the relevant probe signals into the ILA IP block. Alternative vendor-
specific flows enable annotating the probe signals directly in the Verilog source-code with
vendor-specific annotations. Generator-based designs written using Chisel enable further
automation of the ILA debugging flow through generated collateral during the elaboration
process, annotation of signal groups, and conditional annotation using meta-programming
schemes.

AutoILA is a FireSim feature designed to simplify debugging Chisel-based generators in
FireSim using ILAs. This hardware-centric feature is designed to provide hardware designers
with a familiar waveform-based debugging environment. Signals or bundles of interest are
annotated in the Chisel generator source code with an FpgaDebug annotation. A custom
FIRRTL transformation processes the annotated signals and bundles, and wires them out
to the top level of the design. As is the case in any Chisel-based generator, annotations
can be applied conditionally using meta-programming in Scala. The FIRRTL transform also
outputs a custom Tcl script which executes on the FPGA vendor toolchain (Xilinx Vivado)
to generate the appropriate ILA IP. The FIRRTL transform then modifies the generated
Verilog to instantiate the ILA IP block and wire together the low-level signals and the ILA.
The probed signals are automatically wired out to the top level of the DUT so they can be
connected to the ILA at the top level of the FPGA design harness. This automatic wiring
can help generalize the AutoILA flow to additional debugging IP blocks which require wiring
of a custom digital block to probe signals deep in the design. In contrast to the traditional
Verilog-based ILA annotation flows, AutoILA enables signals and bundles to be annotated
at the generator level, before they are expanded to low-level signals based on the generator
program. Figure 6.8 illustrates the implementation of the AutoILA feature using the FIRRTL
transformation and wiring of the IP blocks and software drivers on the FPGA.

AutoILA has been used to uncover bugs and inefficiencies in Linux-based workloads
that a bare-metal RTL software simulation environment was not able bring to the sur-
face. For example, our experience of running Linux while offloading DNN kernels to a

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 101

Gemmini-generated accelerator uncovered a non-deterministic deadlock that would only oc-
cur if context switches happened at very particular, inopportune times. Deadlocks would
occur because certain Gemmini instructions would assert the RoCC interface “busy” signal
until they had finished receiving configuration instructions from the host CPU. However, if
the host CPU were to context switch to another thread before sending all the configuration
instructions, and that new thread were to fence, then the accelerator and the CPU would
freeze forever waiting for each other to advance. Running on a full software stack with an OS
also uncovered certain bugs where Gemmini had accessed regions of physical memory with-
out the proper permissions. On a bare-metal simulation environment, these violations were
simply silently ignored. These bugs were not exposed using simple bare-metal benchmarks
on software RTL simulation, but were exposed using FireSim and identified using AutoILA.
This demonstrates the importance of verifying hardware designs with complete system soft-
ware and having the ability to debug the hardware using such full-system software stacks
during pre-silicon development stages.

Segmented Cycle-level Execution Tracing

Software-centric profiling and debugging is often performed at the level of abstraction of
instructions and functions, rather than individual micro-architectural components. As such,
software developers are often only exposed to the semantics of the program and the pro-
gramming language, rather than the digital signals and micro-architectural structures which
implement the processor and the custom accelerators associated with it. Common software
profiling and debugging tools typically utilize information sampled from the software-visible
architectural state of the design. Specifically, instruction execution trace samples are use-
ful for these software profiling tools, since they provide information about the progress of
the program, which can then be associated with symbol tables and other ELF information
to construct stack traces and program timing estimates, resulting in additional higher-level
profiling insights.

FireSim provides a mechanism for extracting cycle-accurate instruction execution traces
for analysis. This mechanism, called TraceRV, connects to the trace port of the simulated
processor, and is able to backpressure the FPGA simulation when the instruction trace is
not being copied to the host machine quickly enough. In essence, when the trace transport
is backed-up, simulated time stops advancing, and resumes only when earlier trace entries
have been drained from the FPGA, maintaining the cycle-accuracy of the simulation.

Directly capturing and logging any type of trace at a cycle-level granularity, and particu-
larity committed instruction traces, has two significant drawbacks: Firstly, with high-speed
FPGA-simulators like FireSim, it is easy to generate hundreds of gigabytes to terabytes of
traces even for small simulations, which become expensive to store and bottleneck simulation
rate due to the performance overhead of transferring trace data over PCIe and writing the
trace data to disk. Second, both software and hardware developers are usually interested in
segmented traces for a particular benchmark or application segment run, rather than profiling
the entire simulation run. A full simulation run frequently involves booting an OS, running

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 102

code to prepare data for a benchmark, running the benchmark, post-processing data, and
powering off cleanly - all of which is information that is not relevant to the problem of in-
terest. To address this problem, a trigger functionality was added to the FireSim debugging
and profiling features, including the TraceRV feature, which allows trace logging to begin
and end when certain user-defined external or internal conditions are satisfied. When trigger
conditions are not satisfied, the various instrumentation mechanisms, including the TraceRV
bridge, allow the simulation to advance freely without the performance overhead of copying
data from the FPGA to the host over PCIe and avoiding writing to disk.

These trigger conditions can be set entirely at runtime (without re-building FPGA im-
ages) and include cycle-count-based triggers for time-based logging control, program-counter -
based triggers, and instruction-value-based triggers. When instruction addresses are known,
program-counter based triggers can be used to start and stop commit trace logging without
any target-level software overhead. When instruction addresses are not known, instruction-
value-based triggers are particularly useful, as some RISC-V instructions do not have side
effects when the write destination is the x0 register, and can essentially be used as hints to in-
sert triggers at specific points in the target software with single-instruction overhead. In this
particular example using the RISC-V ISA, the 12-bit immediate field in the addi instruction
can be used to signal 4096 different events to TraceRV or to scripts that are processing the
trace data. By compiling simple one-line programs which consist of these instructions, the
user can even manually trigger trace recording interactively from within the console of the
simulated system. For example, Chipyard and FireMarshal software workloads now provide
by default two software commands, firesim-start-trigger and firesim-end-trigger,
which issue an addi x0, x1, 0 and addi x0, x2, 0 instruction respectively, to enable
such user-defined triggering from within the simulation console. These commands have been
used to profile networking benchmarks [151], as well as for targeted performance counter
profiling across specific regions of software executing DNN workloads [96].

Figure 6.9 illustrates the support of the FireSim trigger mechanism for both target-level
triggers (program counter, instruction value) and environment-level triggers (cycle count).
This support for a diverse spectrum of possible triggers enables focus and visibility into
regions of interest for a range of different usage scenarios, from targeted software profiling
to debugging of timing-related software misbehavior. The trigger conditions demonstrate a
HW/SW co-design advantage of FireSim-based FPGA-accelerated simulation. The FireSim
triggers enable segmentation both based on software-level information such as instruction
value that can be set by a software developer, as well as hardware-level information such as
cycle-count which is typically more relevant to the hardware developer.

Out-of-Band Performance Counters

Performance counters are a common profiling tool embedded in designs for post-silicon per-
formance introspection [194]. However, since these counters are included as part of the final
silicon design’s area, power, and other budgets, they are generally limited in number and
frequently shared amongst many events, complicating the process of extracting meaningful

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 103

Figure 6.9: Debugging information segmentation triggering based on software-level informa-
tion within the simulated world as well as hardware-level global information in FireSim.

information from them [181]. Pre-silicon use of performance counters in FPGA-simulation
is not limited in this way. These counters do not need to be present in the final production
silicon, and an unlimited number of counters can be read every cycle without perturbing
the results of the simulated system (with the only trade-off being reduced simulation speed).
AutoCounter, part of the FirePerf [151] collection of FireSim features, enables automatic
hardware performance counter insertion for productive hardware-level performance profiling.
These counters can be accessed out-of-band, meaning that reading the counters does not af-
fect the state or timing of the simulated system—counters can be added easily and read as
often as necessary.

The counters can be inserted ad-hoc by a designer using a simple FireSim PerfCounter

API, or via more traditional verification cover points. Within the context of Chipyard
and the Rocket Chip generator ecosystem, cover points are existing boolean signals found
throughout the Rocket Chip SoC generator RTL that mark particular hardware conditions
intended to be of interest for a verification flow. Unlike assertions, which only trigger when
something has gone wrong in the design, cover points are used to mark signals that may be
high under normal operation like cache hits/misses, coherency protocol events, and decoupled
interface handshakes. By default, Rocket Chip does not mandate an implementation of cover

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 104

Figure 6.10: AutoCounter generator-based out-of-band counter insertion flow.

points; the particular flow being used on the RTL can decide what to “plug-in” behind a
cover point. Unlike printfs, which print by default in most simulators, cover points can
be inserted into designs without affecting other users of the same RTL codebase. This is
especially important in open-source projects such as the Rocket Chip ecosystem. The cover
API can also be expanded to allow the designer to provide more context for particular covers.

To enable adding out-of-band performance counters to a design in an agile manner,
AutoCounter interprets signals fed to cover points as events of interest to which performance
counters are automatically attached. AutoCounter also supports an extended cover point
API that allows the user to supply multiple signals as well as a function that injects logic
to decide when to increment the performance counter based on some combination of those
signals. This allows for a clean separation between the design and instrumentation logic.

AutoCounter’s automatic insertion of the performance counters is implemented by per-
forming a transform over the FIRRTL [143] intermediate representation of the target SoC
design. With a supplied configuration that indicates which cover points the user wishes
to convert into performance counters, AutoCounter finds the desired covered signals in the
intermediate representation of the generated design and generates 64-bit counters that are
incremented by the covered signals. The counters are then automatically wired to simulation
host memory mapped registers or annotated with synthesizable printf statements [157] that
export the value of the counters, the simulation execution cycle, and the counter label to the
simulation host. Figure 6.10 illustrates the AutoCounter out-of-band performance counter
generator flow and interface with the simulation host.

By reducing the process of instrumenting signals to passing them to a function and
automating the rest of the wiring necessary to pipe them off of the FPGA cycle-exactly,
AutoCounter and FirePerf reduce the potential for time-consuming mistakes that can hap-
pen when manually wiring performance counters. Unlike cases where mistakes manifest as
functional incorrectness, improperly wired performance counters can simply give confusingly

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 105

erroneous results, hampering the profiling process and worsening design iteration time. This
is compounded by the fact that marking new counters to profile requires re-generating an
FPGA bitstream.

AutoCounter provides users with additional control over simulation performance and vis-
ibility. The rate at which counter values are read and exported by the simulation host can
be configured during simulation runtime. As exporting counter values requires communica-
tion between the FPGA and the simulation host, this runtime configuration enables users to
trade off frequency of counter readings for simulation performance.

Also at runtime, collection of the performance counter data can be enabled and disabled
outright by the TraceRV-based trigger functionality. This enables designs to overcome the
latency of re-building FPGA bitstreams to switch between different counters—many counters
can be wired up at synthesis time, restricted only by FPGA routing resources, and can be
enabled/disabled at runtime. Altogether, triggers eliminate extraneous data and enable
higher simulation speeds during less relevant parts of the simulation, while enabling detailed
collection during regions of interest in the simulation. The FirePerf AutoCounter flow enables
a more holistic view of execution, as opposed to the limited capture window provided by other
hardware-centric features such as ILAs. At the same time, the AutoCounter-injected counters
still enable flexibility, determinism, and reproducibility (unlike post-silicon counters), while
maintaining the fidelity of cycle-exact simulation (unlike software architectural simulators).

AutoCounter has been used in several SoC design-optimization studies. The first one,
presented in a FirePerf case study, used AutoCounter to characterize and optimize the per-
formance of the Linux networking stack on an SoC configuration supported by an integrated
NIC [151]. In this study, out-of-band counters were added to several key points in the NIC
micro-architecture to identify whether any of them were acting as hardware performance
bottlenecks within the NIC. Specifically, counters were added to track send request and
completion queue entry counts, receive request and completion queue entry counts, reader
and writer in-flight memory transaction counts, hardware packet drops, availability of re-
ceive frames, and the fullness of the send buffer. Figure 6.11 illustrates how the performance
counters are automatically generated and wired in the digital design of the NIC and con-
nected to the simulation host manager. The request and completion queues in the controller
are the principal way the device driver interacts with the NIC. To initiate the transmission
or receipt of a packet, a driver writes a request to the send or receive request queues. When
a packet has been sent or received, a completion entry is placed on the completion queue
and an interrupt is sent to the CPU. The reader module reads packet data from memory
in response to send requests. It stores the data into the send buffer, from which the data
is then forwarded to the Ethernet network. Packets coming from the Ethernet network are
first stored in the receive buffer. The writer module pulls data from the receive buffer in
response to receive requests and writes the data to memory. If the receive buffer is full when
a new packet arrives, the new packet will be dropped. By using AutoCounter, developers
were able to constantly track whether the current level of performance was limited by a soft-
ware bottleneck or hardware bottleneck, by identifying levels of queue and buffer occupancy
through the automated counters. Using an iterative process and utilizing features such as

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 106

Figure 6.11: AutoCounter performance counters automatically inserted to an example NIC
design and connected out-of-band to the simulation manager.

AutoCounter and TraceRV, developers are able to incrementally resolve both hardware and
software bottlenecks.

AutoCounter has also been used in deeper analysis of the Gemmini resource contention
case study presented in Section 6.1. By adding out-of-band performance counters throughout
the memory system, researchers are able to confirm and validate the observations regard-
ing the impact of each computational kernel on data re-use and the utilization of shared
memory resources under contention. Similarly, AutoCounter has been used to identify per-
formance bottlenecks throughout the development of the Gemmini accelerator by adding
counters across buffers and queues within the Gemmini micro-architecture, using a similar
methodology to the one used in the FirePerf NIC case study.

An additional usage example of AutoCounter is the characterization of program phases
for power management algorithm analysis. An example presented in a paper by Schmidt et
al. [279] demonstrates workload phases of a Linux boot process using cache miss counters
and instruction retirement counters collected using AutoCounter (Figure 5 of Schmidt et al.
[279]). This temporal characterization using out-of-band counters can then be used to set
thresholds and analyze power management algorithms which utilize dynamic voltage and
frequency scaling (DVFS).

6.3 Generator-based Performance Tuning

A major benefit of generator-based SoC design is the ability to generate additional collaterals
together with RTL descriptions. Some of this collateral includes memory maps and device
trees which can be used for boot code, operating system kernels and device drivers. An
additional aspect of the generated collateral can include software header files (in particular,

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 107

C header files) which can be included in the the SoC’s software development kit (SDK) to
help tune software based on the SoC’s micro-architectural properties. As an added bonus,
the same generated header files can be integrated into functional software simulators of the
SoC (including accelerators) for correctness validation of target software. In contrast to
functional simulation of general-purpose processors, the functional correctness of software
targeting accelerator platforms often depends on the micro-architecture of the accelerator.
For example, in accelerators with limited software-managed scratchpad memories or spatial
computation arrays (e.g. Gemmini), software writing data to addresses exceeding the size of
the scratchpad array would be functionally incorrect. By integrating the generated header
file into a functional software simulator, the simulator can error on such events, providing
faster debug mechanisms compared to full hardware RTL simulation.

Parameter-based performance tuning is a well-known technique in performance-sensitive
software. Tuning-parameter values are typically set based on empirical experimentation dur-
ing the design of the software library, or auto-tuning library components which evaluate the
optimal tuning-parameter values by running tuning experiments directly on the target plat-
form [274]. Template-based software design is a form of software meta-programming which
enables the generation of a diversity of software implementations from a single-source soft-
ware template. These implementations can be tuned during compilation time to a diversity
of datatypes or tuning-parameters based on a centralized configuration. Generator-based
hardware designs and their generated collateral can help simplify the tuning of performance-
sensitive software for custom SoCs and integrate directly with template-based software de-
sign. By encoding first-hand knowledge of the custom microarchitecture in standard gener-
ated software header files, a template-based SoC SDK can be quickly tailored and tuned to
the performance and capability profile of specialized hardware.

As an example, the Gemmini deep learning accelerator generator generates a header file
which includes parameters describing the dimensions of the spatial computation array, the
sizes of memory system components, the datatypes handled by the accelerator, and the
existence of various optional functional units within the accelerator. An example of such a
C header file is presented in Listing 6.1. Relevant segments from the equivalent hardware
generator configuration which generated this header file are presented in Listing 6.2. The
Gemmini parameters header file is then included in the software templates which form the
basis for the low-level SDK used to run programs on the accelerator. These parameters help
determine loop tiling factors, whether certain kernels or other code segments such as scaling
can be executed on the accelerator or need to run on the host CPU, and whether datatype
conversion or quantization are required in order to run on the accelerator.

The use of generated header files facilitates accurate pre-silicon design space exploration,
as it enables comparison between well-tuned pairs of hardware microarchitectures and soft-
ware benchmarks. This is in contrast to a common pitfall of design space exploration in
which a variety of hardware configurations are explored with a set of software benchmarks
that are tuned for a single microarchitecture configuration. This approach to hardware-
software co-design enables data-driven analysis of the design space and opens up opportuni-
ties for automated optimization of hardware design points based on joint hardware-software

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 108

design point evaluation. In fact, since hardware generators can be thought of as the hard-
ware equivalent of software meta-programming, it is only natural that these two approaches
integrate together to deliver an efficient hardware-software co-design cycle for a diversity of
target applications.

Generated software header files further provide software flexibility in terms of accelerator
integration in custom SoCs. RISC-V has several major opcodes reserved in its encoding
space for user-defined custom instructions [272]. Composition of accelerators with custom
instructions carries the risk of opcode collisions. While hardware generators can avoid this
with a relatively simple configuration option which allows the SoC designer to choose a ma-
jor opcode out of the available selection, such flexibility carries implications up the software
stack, impacting compilers, assemblers and software development kits. The generated header
files can provide solutions here as well, with templated implementations using the custom
opcode indicated in the header file to provide correct instruction encodings across the soft-
ware stack for a particular SoC configuration and accelerator composition. For example,
the generated header file in Listing 6.1 includes the XCUSTOM ACC parameter with the value
3, indicating to the software stack that out of four available major opcode encodings, the
Gemmini accelerator in this SoC is using the major opcode encoded as 11 for the Gemmini
custom instructions. This major opcode will be used as part of the assembler or custom
instruction pre-processor macros to assemble the Gemmini custom instructions within the
custom software development kit.

#ifndef GEMMINI_PARAMS_H
#define GEMMINI_PARAMS_H

#include <stdint.h>
#include <limits.h>

#define XCUSTOM_ACC 3
#define DIM 8
#define ADDR_LEN 32
#define BANK_NUM 4
#define BANK_ROWS 4096
#define ACC_ROWS 2048
#define MAX_BYTES 64
#define MAX_BLOCK_LEN (MAX_BYTES /(DIM*2))
#define MAX_BLOCK_LEN_ACC (MAX_BYTES /(DIM*4))

typedef uint16_t elem_t;
#define ELEM_T_IS_LOWPREC_FLOAT
static const float elem_t_max = 3.3895313892515355 E38;
static const float elem_t_min = -3.3895313892515355 E38;
typedef float acc_t;
typedef double full_t;

#define ELEM_T_IS_FLOAT
#define ELEM_T_EXP_BITS 8
#define ELEM_T_SIG_BITS 8
#define ACC_T_EXP_BITS 8
#define ACC_T_SIG_BITS 24
typedef uint16_t elem_t_bits;
typedef uint32_t acc_t_bits;

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 109

#define HAS_MVIN_SCALE
typedef float scale_t;
typedef uint32_t scale_t_bits;

#define HAS_MVIN_ACC_SCALE
typedef float scale_acc_t;
typedef uint32_t scale_acc_t_bits;

typedef float acc_scale_t;
typedef uint32_t acc_scale_t_bits;

#define row_align(blocks) __attribute__ ((aligned(blocks*DIM*sizeof(elem_t))))
#define row_align_acc(blocks) __attribute__ ((aligned(blocks*DIM*sizeof(acc_t))))

#define MVIN_SCALE_IDENTITY 1.0

#define ACC_SCALE_IDENTITY 1.0

#define ACC_SCALE_T_IS_FLOAT
#define ACC_SCALE_EXP_BITS 8
#define ACC_SCALE_SIG_BITS 24

#define ACC_READ_SMALL_WIDTH
#define ACC_READ_FULL_WIDTH

#endif // GEMMINI_PARAMS_H

Listing 6.1: Gemmini Generated Header File Example

val defaultFPConfig = GemminiArrayConfig[Float , Float , Float](
opcodes = OpcodeSet.custom3 ,

// datatypes
inputType = Float(8, 8),
outputType = Float(8, 8),
accType = Float(8, 24),

// spatial compute array
tileRows = 1,
tileColumns = 1,
meshRows = 8,
meshColumns = 8,
dataflow = Dataflow.BOTH ,

//SRAMs
sp_banks = 4,
sp_singleported = true ,
acc_banks = 1,
acc_singleported = false ,
num_acc_sub_banks = -1,
sp_capacity = CapacityInKilobytes (256) ,
acc_capacity = CapacityInKilobytes (64),

//DMA
dma_maxbytes = 64,
dma_buswidth = 128,
aligned_to = 1,
tlb_size = 4,

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 110

use_tlb_register_filter = true ,
max_in_flight_reqs = 64,
use_dedicated_tl_port = false ,
acc_read_full_width = true ,
acc_read_small_width = true ,
mvin_scale_args = Some(ScaleArguments ((t: Float , u: Float) => t * u, 4, Float
(8, 24), -1, identity = "1.0", c_str="((x) * (scale))")),
mvin_scale_acc_args = Some(ScaleArguments ((t: Float , u: Float) => t * u, 4,
Float(8, 24), -1, identity = "1.0", c_str="((x) * (scale))")),
mvin_scale_shared = false ,
acc_scale_args = ScaleArguments ((t: Float , u: Float) => t * u, 4, Float(8, 24)
, -1, identity = "1.0",

c_str = "((x) * (scale))"
),

// additional hardware parameters such as pipeline depths , wiring paths , queue
depths , etc., which do not affect software , ommited for brevity

)

Listing 6.2: Gemmini Generator Hardware Configuration Example

Integration with the Deep Learning Software Stack

Recent industry analysis has observed that despite the emergence of many AI accelerator
startups, the depth and maturity of their software stacks is a major Achilles’ heel on the path
to market success [109]. Frequent changes in state-of-the-art models and the subsequent
requirements from custom hardware often conflict with the tedious process of extracting
high-performance from specialized hardware through hand-tuned software which can utilize
it to the fullest extent. Using automatically-generated header files, Gemmini is easily inte-
grated with the deep learning software stack. Specifically, Gemmini integrates with the deep
learning stack using the ONNX (Open Neural Network Exchange) interchange format and
the ONNX-runtime environment [214, 64]. Notably, custom execution providers in ONNX-
runtime call into functions defined in the automatically-generated Gemmini header files,
thus being able to immediately tailor the execution of the DNN to the micro-architectural
parameters of Gemmini.

ONNX is an open interchange format that was created by a consortium of companies
with the goal of providing interoperability across machine learning software frameworks. It
encodes neural networks as directed acyclic graphs of operators operating on tensors. The
operators have input and output tensors, as well as a set of attributes describing them. The
ONNX specification consists of a set of standard operators which are required in order to
maintain interoperability across frameworks. While ONNX-formatted files can be extended
with custom operators, these can limit interoperability across frameworks and hardware
platforms. Operators can then be processed by software frameworks and graph compilers in
order to be mapped efficiently to hardware platforms.

The automated header files produced by the Gemmini generator integrate into tem-
plated ONNX operator implementations. We use the open-source ONNX-runtime software

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 111

framework, which provides the notion of execution providers, to decouple between provider-
dependent and provider-independent modules. While providers can generally be thought of
as unique hardware architectures, they can also translate to different software library im-
plementations. The execution providers register “kernels” for supported operators. These
kernels are decoupled from the execution graph which can be processed and optimized in-
dependently based on the availability of kernels and operators. ONNX-runtime greedily
assigns operator sub-graphs to execution providers based on their order of registration, with
CPU-based execution providers having the lower priority as a fallback for all operators not
supported by other execution providers.

The Gemmini execution provider uses templated implementations of matrix multiplica-
tions, convolutions, and fused operation including scaling, saturation, non-linear functions
and pooling, based on indications found in the generated header files regarding their exis-
tence in the generated configuration of the accelerator. As an example, Listing 6.1 includes
definitions such has HAS MVIN SCALE and ELEM T IS LOWPREC FLOAT. The former provides
the software stack with an indication regarding the existence of a fused scaling operation as
part of DMA transactions, while the latter indicates to the software stack that the compu-
tation datatype is a low-precision floating-point datatype that does not have native CPU
support and would require conversion or quantization. The lack of fused operations would
require falling back on CPU execution providers which requires data movement between the
accelerator and the CPU.

Furthermore, operators such as matrix multiplication or convolutions, that require soft-
ware management of accelerator resources for high performance (for example, efficient man-
agement of private scratchpad memories), can use the parameters in the generated header
file to safely perform this management and compute tiling and loop unrolling factors. For
example, the BANK ROWS and ACC ROWS parameters in Listing 6.1 are used to compute loop
tiling factors, while the DIM parameter is used to compute a loop unrolling factor in the
Gemmini execution provider templated implementations.

Using this templated approach, Gemmini is able to execute with high performance ar-
bitrary ONNX models downloaded from online resources, including ResNet-50, BERT, and
MASK-RCNN. Detailed analysis of the execution of such models using the ONNX-runtime
framework and the Gemmini accelerator can be found in an associated technical report [214].

6.4 Generator-based SoC Hardware/Software

Co-Design Summary

Hardware/software co-design of application-class SoCs requires executing complete and highly-
tuned software stacks with sufficient hardware visibility and performance to provide relevant
insights. In this chapter, we demonstrated several capabilities facilitating such co-design,
enabled by generator-based SoC development, the Chipyard framework, and FireSim FPGA-
accelerated emulation. Specifically, we discussed full-system design space analysis of acceler-

CHAPTER 6. GEN.-BASED SOC HW/SW CO-DESIGN 112

ator generators for numerical data analysis – the Hwacha vector accelerator and the Gemmini
deep learning accelerator. We highlight this design space exploration using complete system
software stacks and SoC configurations which exercise tradeoffs in SoC resources such as
private and shared memories, and SoC-level parallelism vs. accelerator-level parallelism. We
discussed the tools and features enabled by generators and FPGA-accelerated emulation,
which facilitate appropriate levels of visibility into digital signals while running full-system
application-class software. These enable tighter loops of pre-silicon debugging and optimiza-
tion of true target workloads, which are fundamental steps required for application-class
hardware/software co-design. Finally, we discussed the ability to facilitate performance
tuning of software for custom hardware through microarchitecture-aware template-based
software design and generator-based software collateral generation. This integration and
co-design of hardware and software parameterization enables rapid performance tuning of
software for a variety of SoC and accelerator configurations based on the micro-architectural
parameters of generated hardware blocks. We demonstrated this ability using the Gemmini
deep learning accelerator generator, and the mapping of hardware generator parameters into
software header files which get integrated into templated software libraries. Together, these
represent new capabilities in application-class hardware/software co-design, all enabled by
generator-based SoC development and the tools associated with it.

113

Chapter 7

Software Customization for Numerical
Data Analysis

Recent analysis of modern processor architectures has identified that while the marginal per-
formance and efficiency improvements of new chips is decreasing with the sunset of Moore’s
law, there are still significant potential gains through optimization of the software stack
[175]. This idea, which was nicknamed ”there is plenty of room at the top” (a contrast to the
idea of ”there is plenty of room at the bottom” from Richard Feynman’s famed lecture [88],
an idea which was popular during the era of Dennard scaling), observes that the modern
software stack has relied on exponential improvement in single-thread performance over the
era of Moore’s law, and as a result developed many inefficiencies across the levels of software
abstraction and reduction. At the same time, additional analysis observes that the increased
specialization of custom silicon chips is likely to cause a “virtuous cycle” of fragmentation in
computing, in which some applications would get massive investments and become orders of
magnitude more efficient than they would on traditional general-purpose processors, while
other applications will get much worst since they will no longer benefit from the performance
improvement of general-purpose processors [257]. This analysis observes that collections of
potential applications which lack sufficient coordination in terms of software development in
order to justify specialized silicon are partially at fault for the “fragmentation cycle” caused
by specialized processors. Hence, efficient mapping of software to custom SoCs is paramount
in obtaining the customization targets of the SoC. This efficiency is measured both in terms
of software performance and hardware utilization, as well as software developer time invested
in optimizing the target software applications.

7.1 Software Mapping to Specialized Accelerators

The utility of specialized accelerators often depends on the quality of software mappings
which enable applications to use these accelerators. The majority of programmers typically
interface with hardware through high-level, general-purpose programming languages, as op-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 114

posed to direct interfaces such as low-level assembly, machine language, and memory mapped
I/O. A typical general and comprehensive approach to transforming a program written in
a high-level general-purpose programming language and efficiently mapping it to a custom
accelerator is through a compiler-based approach, in which a compiler is modified (or cre-
ated from scratch) in order to account for the unique characteristics of the accelerator. With
application of correct compiler optimizations, end-to-end code-generation by a compiler can
theoretically enable high productivity of software developers as well as good code quality and
performance on a wide range of workloads. However, writing a new compiler or modifying
an existing compiler to account for accelerator mappings is a non-trivial endeavour due to
nuanced trade-offs between accelerator semantics and programming language semantics, as
well as the large number of dependencies of various programming languages on additional
platform native components of the software stack.

Auto-vectorization in general-purpose compilers has been researched for many years as
a solution for mapping general-purpose code to data-parallel hardware such as SIMD and
vector processing units [203, 260, 195]. However, general-purpose auto-vectorization has seen
limited adoption in mainstream compilers. Loop vectorizers in popular compilers such as
LLVM and GCC primarily focus on analysis of an innermost loop body, but are challenged
when faced with nested-loop structures. While advanced compilation techniques such as
polyhedral analysis can assist in affine loops transformations and validation of more complex
loop mappings, their computational complexity limits their use in mapping general-purpose
code to accelerators. As a result, high-performance parallel software implementations typ-
ically rely on compiler intrinsics to explicitly call vectorized operations when optimizing
complex multi-dimensional algorithms.

Programming languages with more explicit parallelism semantics such as OpenCL and
NVIDIA CUDA assist with compilation to SIMD and vector acceleration hardware, but incur
non-negligible integration costs with additional system components written in other general-
purpose languages and software frameworks. Compatibility with additional languages and
libraries may require transitions through scalar code in order to maintain program semantics,
as well as matching of linker flags and function qualifiers for application binary interface
(ABI) compatibility. For example, the Hwacha vector accelerator ecosystem has an OpenCL-
based compiler solution [172]. However, deep learning and data science workloads rely heavily
on popular machine learning and analytics frameworks, which are not well integrated with
OpenCL.

The popularization of 2D spatial accelerators adds an additional facet to the problem
of identifying and optimizing tensor operations in loop-structured code. Several recent ap-
proaches attempt to generalize compilation solutions to target 2D accelerators or dot product
instructions. Some works propose hybrid compilation schemes in which the inner-loop ten-
sor operations are encoded as hand-optimized minimal kernels, while the compiler provides
additional compilation optimizations for outer-level loops and additional code [253]. Other
works use domain specific languages (DSLs) for tensor operations to enable better-informed
lowering transformations of code with high level abstractions down to tensorized instructions
and accelerators [49, 273]. DSLs enable programming languages to further raise the level of

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 115

programming abstraction, which provides compilers with additional information for mapping
to complex accelerators and improved code generation. By encapsulating tensor operations
using dedicated DSL constructs rather than general-purpose program semantics, a compiler
can use higher-level program semantics to side-step the challenge of identifying and isolat-
ing tensor operations in general-purpose loop structures. Nevertheless, this approach does
not resolve end-to-end optimization when integrating these objects with general-purpose
programs.

Library-based approaches to accelerator software mappings are more targeted solutions as
compared to compiler-based approaches. In contrast to compiler-based approaches, library-
based approaches for high-performance execution rely on integration of hand-optimized com-
putational kernels through common APIs and ABI compatibility rather than end-to-end op-
timization. In library-based approaches, common APIs and ABI compatibility enable cap-
turing a sufficient level of abstraction required for accelerator mapping. Libraries with ABI
compatibility can be interchanged at runtime without source-code re-compilation through
dynamic linking, enabling flexibility when using accelerators and diverse system components.

Accelerator-based libraries are generally comprised of a select number of high-utility
kernels that are hand-tuned by performance engineering (often by hardware vendors) to
obtain maximal utilization of the underlying hardware. These kernels are then packaged
in the form of a library with a common interface and linked to the target workloads as
a replacement to an existing library implementation. These computational kernels can be
additionally integrated into higher-level code generation frameworks. Nevertheless, libraries
do not enable cross-kernel optimization across function boundaries. I.e, higher level programs
which use a number of library routines will not be optimized end-to-end. Libraries can be
optimized for performance only within their pre-determined API.

There is a strong relationship between libraries and DSLs. Both libraries and DSLs
add new semantics and abstractions to a specific domain of interest by encapsulating and
isolating lower-level concerns. However, DSLs often do so through the introduction of syntax
and grammar, while libraries do so through the introduction of functions. The author is of
the opinion that a proliferation of independents DSLs is not constructive from a user adoption
and barrier-of-entry perspective, and that DSLs should be designed as extensions of existing
core languages (sometimes referred to as “Internal/embedded” DSLs) similar to libraries,
rather than new languages with their own syntax and semantics [11].

Notably, popular high-level languages such as Python, R, and Julia are heavily reliant on
software library packages and package managers. These programming languages likely owe
their popularity to their large selection of library and package repositories. In particular, the
majority of data analysis code written in these high-level languages relies on a small number
of software library packages such as NumPy, SciPy, Scikit-Learn and Pandas (Python),
Caret, Flux and Tidyverse (R), and JuMP (Julia).

Library-based abstractions in software engineering thread a fine needle between enabling
performance optimization and generating software bloat. Libraries are often optimized for
a certain level of abstraction, and then later wrapped with additional packages and abstrac-
tions to generate higher level constructs. The previously mentioned “Plenty of Room at the

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 116

Top” article [175] identified this challenge of “reductionist software design”, since software
problems are reduced to related problems in order to eliminate software development time
and decrease code replication. For example, BLAS libraries [165] are often extremely opti-
mized for matrix multiplication. Deep learning frameworks utilize BLAS libraries in order to
enable high performance DNN model execution. A software developer who needs to execute
a matrix multiplication could potentially “reduce” their problem to a batched, single-layer,
multi-level perceptron neural network which will execute the matrix multiplication within
the deep learning framework, but that would be accompanied with additional software bloat
generated by the deep learning framework. Hence, a more performant solution would be to
use a library which was optimized for a more appropriate level of abstraction, which in this
case would be a BLAS library.

With respect to domain specific accelerators, in the absence of general-purpose com-
pilation frameworks with the ability to map code efficiently to an accelerator, identifying
appropriate levels of library abstraction is paramount for maximizing the utility of an accel-
erator.

Supplemental Use of Domain Specific Accelerators

Supplemental-use of accelerators is a paradigm in which software developers can use the
computational capabilities of domain-specific accelerators for applications which are not nec-
essarily part of the original intended application domain of the accelerator. This paradigm
of supplemental-use of domain-specific accelerator relies on several core principles and as-
sumptions:

• Performance gains from supplemental-use on the accelerator will likely be limited and
inferior compared to primary-use applications on the accelerator that the accelerator
has been optimized for.

• Efficiency gains from supplemental-use on the accelerator may not be strictly positive.
Efficiency gains depend on the utilization of the computation resources of the accel-
erator by the supplemental application in comparison to alternative resources on the
SoC.

• Software development investment in supplemental-use applications must be cost-effect-
ive in relation to the potential performance gains.

The idea of supplemental-use of domain-specific accelerators is relatively prevalent in
the high-performance computing (HPC) research community. Widely popularized with the
adoption of graphics hardware for scientific computing in the early 2000s, including dense
linear algebra [163], partial differential equations (PDEs) [222], fast Fourier transforms
(FFTs) [192], physics simulations [114] and genome sequencing [185], researchers were
able to identify the parallel nature of graphics hardware and map parallel computing prim-
itives onto graphics-centric hardware and programming interfaces. Nevertheless, this effort

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 117

by HPC researchers often requires non-trivial software development in identifying appro-
priate software hooks given preset domain-specific APIs and programming interfaces for
accelerators. However, the performance benefits demonstrated by researchers generate a
feedback loop between supplemental-use users and accelerator developers which feeds im-
provements into the accelerator programming environment, helping support supplemental
uses while prioritizing the primary-use. This has been demonstrated with the development
of a general-purpose GPU computing ecosystem through programming frameworks such as
CUDA and OpenCL together with domain libraries such as cuBLAS and cuDNN, while not
neglecting the primary graphics APIs: OpenGL, DirectX, Metal, and Vulkan.

Supplemental Use of DNN Accelerators

DNN accelerators (sometimes called Neural Engines, Neural Processing Units, Tensor Pro-
cessing Units, etc.) are a recent class of domain-specific accelerators used for the acceleration
of DNN applications. As noted in Chapter 3, DNN accelerators have experienced a prolifera-
tion throughout the spectrum of computing hardware, including full-system supercomputing
solutions, discrete PCIe accelerators, integrated SoC accelerators, and processor ISA exten-
sions.

DNN accelerators include all the necessary components required to implement deep learn-
ing pipelines, including non-linearity functional units such as ReLU and sigmoid, pooling en-
gines for reduction operations, and dedicated local memory systems to increase data re-use.
However, at their core, DNN accelerators are centered around matrix engines which perform
matrix-matrix computations such as matrix multiplication and 2D convolution. Since DNNs
are not the only application which utilizes matrix-matrix computations, DNN accelerators
are an attractive compute platform for supplemental-use applications. In fact, the scientific
computing research community has been able to harness many of these matrix engines, that
were designed to accelerate DNN workloads in GPUs and TPUs, for use in more traditional
scientific computing application settings [110, 282, 69, 286, 287]. These efforts often involve
end-to-end optimization of a single target application with dedicated manual tuning and
explicit calls to the accelerator within the target application source code.

Prior work in the literature has surveyed the potential of tensor accelerators and matrix
engines to act as an effective platform for accelerating HPC and supercomputing applica-
tions [75], with the goal of calibrating the level of investment the HPC community should
invest in this type of hardware architecture. An analysis of the execution logs of a selected
supercomputers found that approximately 53% of execution time was spent on GEMM op-
erations. Additional analysis of software library dependencies within the Spack package
manager (a package manager which targets supercomputers) found that approximately 50%
of Spack packages depend on BLAS libraries (directly or indirectly). Finally, the analysis
consisted of measuring the execution time of GEMM, BLAS and LAPACK operations within
the SPEC benchmark suite [65] for general-purpose computing, and the Riken, TOP500,
and Exascale Computing Project benchmark suites for high-performance computing. This
part of the analysis identified that only 9 out of 77 benchmarks that were evaluated utilized a

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 118

GEMM or library-based dense linear algebra computation The analysis concludes that there
is little reason for the HPC community to invest resources in embracing matrix engines due
to diminishing returns and insufficient utilization of GEMM, but at the same time acknowl-
edges that market forces may drive their proliferation and that the small fraction of overall
improvement enabled by matrix engines is better than nothing for the right cost. While
this analysis focused on HPC workloads and only focused on GEMM rather than additional
use-cases of tensor and matrix engines, this conclusion aligns with the supplemental-use phi-
losophy which takes into account economic considerations - “if it’s there, we might as well
use it”.

Supplemental Use of DNN Accelerators on Edge SoCs

As mobile SoC architectures are adopted and integrated in larger compute systems with a
broader set of workloads (for example, the Apple M1 SoC for laptops and desktop comput-
ers), the various accelerators on the SoC have the potential to be used by a broader set of
applications. Laptops may run Matlab, R, Python, and other applications which are usually
not found on smartphones and other mobile devices. In addition, increasing attention to
data privacy concerns provides an incentive for applications to process data directly on edge
devices as opposed to sending data to the cloud for compute-intensive processing.

The properties of accelerators on integrated edge device SoCs are vastly different than
accelerator characteristics and behaviors in HPC environments. For example, while the
majority of server-class GPUs can have a theoretical peak performance of 3×-4× than their
host server-class CPUs [149], only 11% of smartphones have a GPU that is 3 times more
performant than its CPU (based on theoretical peak) [281]. On the other hand, application-
specific embedded SoCs may have this same ratio skewed in the opposite direction, with
embedded GPUs capable of 100× the theoretical peak performance compared to the host
CPU on the SoC [112]. This wide range of accelerator/CPU performance ratios possible
within SoCs, and its impact on high-performance software implementations, demonstrates
the need for hybrid software/hardware exploration of this design space in edge SoCs.

Furthermore, energy efficiency takes priority over performance in most edge SoCs. There-
fore, while HPC applications may perform futile work (multiply by 0 or 1) on some of the
internal compute elements within matrix engines as part of an implementation achieving
greater total utilization of the entire machine (i.e., using both GPU streaming multipro-
cessors and tensor cores to achieve faster total performance), edge devices may not be as
tolerant to a large number of compute elements performing wasteful work while consuming
energy and memory bandwidth. Hence, while HPC application implementations of non-
GEMM-based algorithms can be inefficiently executed using subsets of compute elements
within spatial matrix multiplication units and achieve greater performance than if they were
run only using smaller vector/SIMD units [69], these use-cases may not be an appropriate
choice from an energy-efficiency perspective on similar spatial matrix multiplication units
on edge devices.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 119

As a result, DNN accelerators on edge devices exhibit several fundamental architectural
and micro-architectural characteristics which differentiate them from HPC DNN accelerators.
These aspects need to be properly addressed by custom supplemental-use software. DNN
accelerators on edge SoCs differ from their counterparts in the HPC setting in the following
ways:

• Shared cache and memory hierarchy with other subsystems in the SoC;

• Dedicated controllers for increased energy efficiency;

• Numeric precision which meets application requirements while maintaining power effi-
ciency;

• The size of the accelerator subsystem (in terms of number of arithmetic units and
dedicated memory resources);

• Software ecosystem

These architectural and micro-architectural characteristics, together with the prolifera-
tion trends of integrated SoCs across more diverse platform classes, add an interesting aspect
to analyzing the utility of domain specific accelerators on SoCs. DNN accelerators on SoCs
were originally integrated with the primary intention of camera and image-processing related
applications. These image processing applications, which experience tight latency and power
constraints benefit for a dedicated accelerator which can perform compute-intensive DNN
operations. However, like many other accelerators on mobile SoCs (multimedia encoders,
encryption, etc.), these accelerators remain idle for a significant portion of the SoC operating
time. Therefore, we would like to explore supplemental-use DNN accelerators in edge device
SoC for the broader class of numerical data analysis applications in order to increase their
utility on the SoC and provide a more efficient execution path for this emerging class of
applications on mobile SoCs. This requires the exploration and customization of the rele-
vant software stack to to the aforementioned unique properties of DNN accelerators on edge
SoCs.

7.2 Software for Supplemental Use of DNN

Accelerators for Numerical Data Analysis

DNN accelerators are associated with a complex software stack that has been designed to
accommodate machine learning researchers using machine learning frameworks such as Ten-
sorflow and PyTorch embedded in high-level programming environments such as Python.
Deep learning models are implemented within such frameworks, which are built on top of
a deep ecosystem of software components including graph interchange formats, graph com-
pilers, optimized libraries, language runtimes, operating system platforms, and accelerators
drivers, as illustrated in Figure 7.1.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 120

Figure 7.1: Deep learning software ecosystem.

This diverse software ecosystem provides many opportunities for hardware accelerators,
but may also generate a swath of challenges. From an opportunity perspective, hardware
accelerators have integration opportunities into different levels of the software stack. Some
accelerators may choose to support only optimized libraries for subsets of kernels, other
accelerators may prefer an end-to-end approach to code-optimization through integration
with graph compilers, or a direct programming approach through intrinsic integration with
the high-level machine learning framework.

Nevertheless, the challenges generated by this deep and diverse software ecosystem in-
clude mounting development resources required for the introduction of specialized compo-
nents into the ecosystem both in hardware and software, as well as portability of applications
and benchmarks across platforms. The creators of the MLPerf inference benchmark identify
and analyze the challenges of benchmarking DNN accelerators through such a diverse soft-
ware ecosystem [217]. Specifically, the challenge of providing a portable benchmark that
can work across multiple accelerators and a cross-product of software ecosystem, while being
able to attribute performance benefits to specific components through an “apples-to-apples”
comparison. Similarly, recent work from Facebook observes that the high diversity of mo-
bile SoCs results a large crossproduct of accelerator and processing units, which make it
impossible for the software stack to be optimized for each particular SoC, often resulting in
a preference for simple CPU-based application implementations [281].

An important building block in the development of the software industry has been the
distinction between interfaces and implementations. While implementations of operating
systems, networking, and hardware may change across vendors, interfaces such as system
calls, networking protocols and instruction set architectures remain relatively stable. This
enables decoupling of engineering efforts across organizations and projects, allowing for faster

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 121

developments of individual implementations1. The deep learning ecosystem is relatively
young, and as a result, there is no consensus yet regarding stable interfaces across layers
of the deep learning software stack. At the same time, supplemental-use of accelerators
must rely on standard interfaces, since the potential performance gains from supplemental-
use acceleration are limited compared to primary-use acceleration, hence reducing the cost-
effectiveness of extensive software development for supplemental-use.

In this chapter, we are interested in exploring the customization of the software stack
for SoCs with DNN accelerators for numerical data analysis applications. As noted ear-
lier, initial experiences in the HPC research community indicate that numerical computing
and numerical data analysis are attractive supplemental-use applications for deep-learning
accelerators. In contrast to the deep learning software stack, the numerical computing soft-
ware stack is more mature, and relies on several decades of research and development in
algorithms, programming languages, libraries and hardware. Numerical computing software
can be used in a variety of computing environments, from supercomputers to client laptops
and edge devices. Figure 7.2 illustrates important layers within the numerical computing
software ecosystem. Notably, both the deep learning software stack and the numerical com-
puting software stack have a diversity of optimized libraries from a variety of commercial and
open-source software vendors. However, the deep learning stack does not present a unified
interface to optimized deep learning libraries such as cuDNN and MKL-DNN (in addition
to BLAS operations), while the numerical computing stack primarily converges to two in-
terfaces derived from open-source projects: the BLAS interface and the LAPACK interface.
As such, an implementation of these interfaces for accelerators can provide cost-effective
supplemental-use, since a single implementation can be applied to a broad set of numerical
computing applications which depend on this low-level interface implementation.

7.3 BLAS and LAPACK

While the matrix decompositions and numerical linear algebra algorithms which enable nu-
merical data analysis can be implemented from scratch by high-level data analysis applica-
tions, numerical computing applications tend to rely on a set of core library implementations
due to the nuances of floating-point computation and numerical analysis. Numerical stability,
problem conditioning, and rounding behaviors are of vast importance in numerical comput-
ing, and often the algorithms that are taught in introductory linear algebra classes are not
the algorithms that would be numerically stable for computation with finite floating-point
precision. For example, while the normal equations are the most commonly taught solution
for a least-squares problem, numerical computing libraries typically implement alternative
solutions which rely on more stable matrix decomposition. Similarly, matrix inversions are
often performed using LU decompositions rather than direct methods. Upon the selection
of the appropriate numerical methods, additional algorithmic techniques such as blocking or

1This observation was recently repeated in a brief amici curiae by prominent computer scientist filed in
the Supreme Court of the United States in the case of Google LLC. vs. Oracle America Inc. [184]

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 122

Figure 7.2: Numerical computing software ecosystem. (Note that numerical computing
applications have traditionally not used FPGA or DSP hardware since those were often
thought of as primarily fixed-point computing platforms.

recursive algorithms can be used to improve performance by reducing communication costs
across the processor memory hierarchy.

The numerical computing software stack relies on standards and interface definitions such
as BLAS and LAPACK which were set in the 1970s and 1980s [165, 17]. These interfaces
are defined for single and double precision floating-point (IEEE-754) and real and complex
datatypes. They have not been defined for low-precision and low-mixed-precision operations
(there is a mixed-precision definition for double and quad precisions, which does not have
many implementations [177]), which are now common in DNN accelerator matrix engines
[148, 87]. While there are ongoing discussions and proposals for the extension of these
standards and interfaces to low-precision and mixed precision, the current software stack
will require deep modifications in order to support these behaviors.

The BLAS functions (Basic Linear Algebra Subroutines) were originally defined in the
early 1970s with the goal of defining a set of basic functions which would enable “portability
with efficiency” [165] when performing vector operations. The criteria for inclusion in
the original BLAS package was that an operation should involve only one level of looping
and occur in the usual numerical linear algebra algorithms such as Gaussian elimination
or orthogonal transformations. They were later extended with BLAS-2 for matrix-vector
operations [77] and BLAS-3 for matrix-matrix operations [76], with BLAS-3 holding the
key property of a higher arithmetic intensity value than BLAS-1 and BLAS-2. As such,
much focus has been dedicated over the years to the optimization of BLAS-3 operations
through “blocking”, and the improvement of algorithms to further use BLAS-3 operations
rather than BLAS-2 or BLAS-1 operations in order to increase their arithmetic intensity. As

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 123

noted, part of the original principles of the BLAS package definition were “portability with
efficiency” [165]. It is not surprising that the original BLAS package was developed in the
same years as the adoption of the “information hiding” concept in software engineering [207]
and as the term Application Programming Interface (API) was coined in other computing
fields such as graphics and databases, which also advocated for software library portability
that can be used across applications [66, 71]

LAPACK is an open-source software library implementation for solving linear algebra
problems such as exact and least square solutions for linear systems of equations, eigen-
value problems, and singular value problems [17]. LAPACK supersedes similar packages
such as LINPACK and EISPACK which were used in supercomputers during the 1970s and
1980s. LAPACK improved performance and utilization of linear algebra operations by tak-
ing advantage of the hierarchical nature of memory systems on modern multiprocessors and
reorganizing algorithms to use block matrix operations to better utilize those memory hierar-
chies. More importantly, the LAPACK routine nomenclature and ABI has been adopted as a
de-facto standard for such optimized operations, and are being used by commercial vendors
providing optimized numerical computing library implementations such as Intel MKL and
Apple Accelerate. As a result, higher levels of the numerical computing software stack often
rely on the open-source LAPACK ABI, hence enabling compatibility across multiple micro-
architecture-specific optimized commercial vendor libraries. LAPACK has historically been
designed with single-thread scalar CPUs in mind. Additional open-source implementations
such as ScaLAPACK for distributed memory computers [54], Plasma for shared-memory
multi-processors [78], and MAGMA for heterogeneous CPU/GPU systems [259], provide
additional variants for more complex system architectures. Nevertheless, there variants often
implement only a subset of the complete LAPACK collection of routines. LAPACK assumes
the existence of an efficient BLAS implementation in the system in order to obtain high
performance for blocked operations.

7.4 BLAS Implementations

As noted in Figures 7.1 and 7.2, there are multiple widely used implementations of the BLAS
interface. In some cases, the BLAS implementation is packaged together with an implemen-
tation of the LAPACK interface (or a subset thereof). Implementations can generally be
categorized as vendor-provided, closed-source, optimized implementations vs. open-source
implementations targeting multiple platforms.

Prominent vendor-provided implementations include Intel MKL, Apple Accelerate and
NVIDIA cuBLAS/NVBLAS. Commercial vendors invest significant software engineering re-
sources in optimizing these implementations for each product generation and micro-architect-
ural variant of their products. Since these optimizations often rely on intricate knowledge
of product micro-architectures, these library implementations are closed-source, and cannot
be modified to be used by alternative implementations.

Open-source implementations of the BLAS interface have been developed and maintained

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 124

by the academic high-performance computing community since its origin. The Netlib BLAS
reference implementation is an open-source reference implementation of the functions which
compose the BLAS interface. This is a non-optimized Fortran implementation, in which all
the operations are implemented in their trivial nested-loop form. Since it is written in Fortan,
it can be compiled to any target architecture which has a supporting Fortran compiler. Using
the Netlib reference BLAS implementation as a BLAS library will be functionally correct,
but generally exhibit the lowest possible performance for target applications.

ATLAS (Automatically Tuned Linear Algebra Software) is an open-source implemen-
tation based on auto-tuning principles [274]. ATLAS relies on empirical experimentation
during library build time in order to generate tuned implementations through a combina-
tion of code generation, parameter tuning, and composition of optimized kernels. ATLAS
explores the search space of various tuning parameters and kernel routine compositions by
measuring the empirical performance of a large number of potential implementations during
library generation time. This provides ATLAS with a high degree of portability for a va-
riety of CPU micro-architectures. In practice, ATLAS relies on architecture-specific kernel
routines in order to make use of SIMD extensions and other architecture-specific properties.

OpenBLAS is an actively developed fork of the GotoBLAS project since GotoBLAS
ceased development. It is based on the Goto algorithm, which uses a decomposition of
operations into “inner kernel” routines in a block-panel (GEBP) structure, and emphasizes
streaming data from the L2 cache rather than L1 caches [102, 103]. Kernel routines are
manually developed and optimized for specific micro-architectures using software pipelining,
loop unrolling, and SIMD extensions, and are often written using native assembly language.

BLIS (BLAS-like Library Instantiation Software) is another open-source implementation
which is based on the principles of GotoBLAS. It is also based on the Goto algorithm, but
uses a layered approach in order to increase code organization and re-usability. BLIS further
re-factors the “inner kernel” of the Goto algorithm in terms of a smaller micro-kernel that
requires less code to be optimized. We expand on BLIS later in this section.

In adherence with the principles of software customization for supplemental-use appli-
cations on accelerators, we would like to enable the broadest set of applications through a
minimal but cost-effective software engineering investment. Table 7.1 compares BLAS library
implementations with respect to properties of interest for our usage scenario of numerical
data analysis workloads as supplemental-use applications. In particular, we focus on perfor-
mance optimization, source-code organization and documentation, and the requirements for
adding support for a new architecture and micro-architecture.

The Netlib reference library is the most flexible option, since it allows fine-grained re-
placement of individual functions and end-to-end optimization of each of those functions.
However, this comes at a significant cost in terms of complete library performance or software
development resources. Using the Netlib reference library as the base for library modifica-
tion means that every function that will not be optimized and replaced will be as slow as
the original non-optimized reference implementation. Hence, if we optimize only the SGEMM

function, the DGEMM function will be as slow as the Netlib reference implementation. Sim-
ilarly, the STRSM functions will also be as slow as the Netlib reference implementation. In

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 125

Property BLIS ATLAS OpenBLAS MKL
Netlib
BLAS

Accelerate NVBLAS

Open-Source 3 3 3 7 3 7 7

Blocking-
Optimized

3 3 3 3 7 3 3

RISC-V Support 7 7 Partial 7 3 7 7

Source Code
Documentation

3 3 7 7 3 7 7

Organization
Arch-

Isolated
Mono-
lithic

Arch-
Isolated

N/A
Mono-
lithic

N/A N/A

New Arch.
Portability

3 3 7 7 3 7 7

New Arch.
Modification

Micro-
kernels

kernels kernels N/A None N/A N/A

Table 7.1: Comparison of BLAS library implementations.

fact, this was the approach that was used in the DNN case-study evaluation in Section 6.1,
where we noted this same challenge when analyzing the results for batched DNN inference
vs. non-batched DNN inference.

In contrast, modifying one of the open-source optimized libraries enables sufficiently
good performance on kernels that are not specifically targeted by the accelerator. While
open-source portable implementations such as ATLAS are able to generate a functional and
relatively optimized CPU-based implementations for RISC-V architectures, these implemen-
tations will not be able to utilize custom instruction extensions or SoC accelerators without
specialized kernel routines. Such routines are not trivial to add in ATLAS, since the frame-
work is organized in a monolithic fashion and does not include source code documentation
for adding a new architecture implementation. Furthermore, the ATLAS usage model is
based on recursive algorithms for BLAS-3 kernels, which would require adding or modifying
a variety of kernel routines in order to be able to efficiently utilize a throughput-oriented
matrix-engine architecture.

Similarly, OpenBLAS would require the development of multiple BLAS-3 “inner kernels”
for functions such as GEMM, TRSM, TRMM, SYRK, SYR2K, HERK, HER2K to use the accelerator. Op-
timizing each individual BLAS-3 kernel is a time-consuming task that may not be worth the
cost for supplemental-use applications. However, a micro-kernel-based approach to BLAS-3
may be sufficient. Therefore, BLIS’s use of the micro-kernel formulation was found to be a
good fit with our target for customization for supplemental-use applications. BLIS addition-
ally provides a high degree of source-code documentation and organization that is noticeably
superior compared to alternative open-source BLAS implementations. These include detailed
configuration files, templates, and guides on the topics of adding and optimizing new target
architectures. Hence, we find that the BLIS library is the best apparent fit for generating an

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 126

optimized BLAS library based on an SoC accelerator for numerical data analysis workloads
as supplemental-use applications.

BLIS

BLIS is a portable template framework for generating high-performance BLAS-like dense
linear algebra libraries [264, 265]. Originally developed at the University of Texas at Austin,
it is based on the Goto algorithm [102] which is also the basis for additional popular BLAS
implementations such as OpenBLAS and GotoBLAS.

A BLAS-3 implementation in BLIS relies on three microarchitecture-specific micro-kernel
implementations: GEMM, TRMS, GEMMTRSM. Micro-kernels are designed to process the inner
most loop of a blocked matrix multiplication using the Goto Algorithm, with micro-kernel
sizes typically being determined by the size of the register file, factoring the number of
registers and the size of the registers (especially when using wide SIMD registers). These
micro-kernels should be optimized to obtain close to 100% utilization of the target micro-
architecture on data resident in cache. Under this assumption, BLIS can generate the full set
of BLAS-3 function implementations that are tiled based on the Goto algorithm, generally
obtaining over 90% utilization on popular commercial CPUs.

Since supplemental-use applications target cost-effectiveness benefits, the ability to get a
full API implementation which utilizes an accelerator is an attractive prospect. Together with
the approach described in Section 6.3, we can use BLIS to generate highly tuned performance
libraries for various accelerator configuration with a relatively small investment in software
engineering resources. Nevertheless, we must also keep in mind that BLIS was designed for
the CPU rather than SoC accelerators, and includes internal design choices which reflect
that underlying assumption. We elaborate on these considerations in Section 7.5.

BLAS on SoCs

BLAS implementations have developed together with the evolution of computer processors,
primarily targeting CPUs. However, as computer architectures are evolving with the end of
Moore’s law, we observe a progression of BLAS implementations for non-traditional computer
architectures, albeit with various limitations and changes.

The cuBLAS library for NVIDIA GPUs supports the BLAS operations but assumes
that data is already on the GPU device memory, which requires additional processing in the
application code using additional custom CUDA code. Therefore, cuBLAS is does not in fact
implement the BLAS ABI and cannot be used as a “drop-in” replacement in applications
which use the BLAS interface. However, The NVBLAS library is such a library which
implements the BLAS-3 ABI for NVIDIA GPUs. It performs tiled data transfers between
the CPU and the GPU device, allowing it to be used transparently with applications using
the legacy BLAS API. Similarly, the MAGMA project is an open-source project which targets
BLAS implementations for heterogeneous CPU/GPU systems [259].

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 127

In edge devices, vendor-provided BLAS implementations have mostly focused on efficient
utilization of SIMD and vector extensions within high-performance mobile CPUs. To our
knowledge, mobile device BLAS implementations generally do not utilize the various acceler-
ators found on the SoC, but rather focus on vector ISA extensions that are tightly integrated
with the CPU [276, 131]. Similarly, BLAS implementations for embedded processors are
also primarily CPU-centric [91, 252], with additional recent efforts towards CUDA-based
implementations for embedded GPUs [112].

Edge device SoCs provide an interesting platform for BLAS implementations due to their
heterogeneity of compute units, complex memory system composed of many subsystems
with private and shared memories, the limited size of computational units compared to
dedicated accelerators such as GPUs, and a software ecosystem that is typically distinct to
each individual device platform.

In order to evaluate the software customization required to use BLAS for numerical data
analysis applications using DNN accelerators in a general-purpose SoC environment, we use
Gemmini and Hwacha within a Chipyard-based SoC. Unlike a large part of SoC-integrated
accelerators, the co-processors studied in this work are tightly integrated with the core, and
do not require system calls or other long-latency drivers in order to execute their custom
instructions. In this sense, they exhibit similarities to the Intel AMX ISA extensions and the
Apple AMX CPU extensions, as reported by the Linley Group and additional researchers
[144, 82, 200].

7.5 BLAS/BLIS for Gemmini and Hwacha

We implement and customize a new micro-architecture target within the BLIS library2 de-
signed to use a mixed-precision floating-point configuration of the Gemmini DNN accelerator,
together with the Hwacha vector unit. Hwacha, as a general-purpose data-parallel vector
unit, is used to implement BLAS-1 and BLAS-2 operations which are primarily element-wise
operations and do not exhibit data re-use. Gemmini, as a matrix accelerator, would be the
key for the implementation of BLAS-3 operations. BLAS-3 operations in BLIS are based
on the implementation of two micro-kernels: GEMM and either TRSM (triangular matrix solve)
or GEMMTRSM (GEMMTRSM is a micro-kernel which fuses the GEMM and TRSM micro-kernels).
These micro-kernels implement the inner-most loop of the Goto/BLIS algorithm and are
used to compose higher-level tiled BLAS-3 operations. In addition, a custom GEMM kernel
implementation that does not utilize the Goto/BLIS algorithm can be used in the form of
a “sandbox”. However, this “sandbox” cannot be used for the other BLAS-3 kernels such
as TRMM, TRSM, etc. We use the reference SoC configuration illustrated in Figure 7.3, which
uses a high-performance BOOM 3-wide out-of-order host CPU with both Hwacha and Gem-
mini as RoCC accelerators. The particular configurations of the accelerators will be varied

2This new micro-architecture target is maintained in a fork of the BLIS code repository, since it is not
a commercial silicon product that can be used by additional BLIS users.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 128

Figure 7.3: Reference SoC configuration for custom BLAS/BLIS implementation using Gem-
mini and Hwacha.

throughout this chapter for exploration of various hardware design points and software design
choices.

There are several implementation considerations when implementing a BLIS micro-archit-
ecture to use a custom SoC with Hwacha and Gemmini, which are generally applicable to
supplemental-use of other DNN accelerators. Figure 7.4 illustrates these primary areas
within the illustration of the BLIS algorithm. The following sections elaborate on these
considerations and trade-offs.

Numerical Precision

The BLAS and LAPACK interfaces are defined for single- and double-precision floating-
point and real and complex datatypes. They have not been defined for low-precision and
low-mixed-precision operations, which are now common in DNN accelerator matrix engines
(as noted in Section 7.3, there is a mixed-precision BLAS definition for double and quad
precisions, which does not have many implementations [177]). While there are ongoing
discussions and proposals for the extensions of these standards and interfaces to low-precision
and mixed precision, the current software stack will require deep modifications in order to
support these behaviors.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 129

Figure 7.4: Areas of special attention within the BLIS algorithm for the target micro-
architecture using Gemmini and Hwacha (Base BLIS algorithm illustration reproduced with
permission from [263]).

Full-precision (IEEE-754 single-precision, double-precision) hardware floating-point op-
erations are long-latency and energy-consuming in comparison to fixed-point integer or low-
precision arithmetic operations. In-fact, in our experience with the implementation of the
Hwacha vector unit, the critical paths of a design often pass through the logic of the floating-
point unit [173]. Recent deep learning hardware accelerators have focused on reduced pre-
cision thanks to the high tolerance of deep neural networks to computation precision errors.
This tolerance to low precision has been utilized in hardware accelerators in both fixed-point
and floating-point forms. While the Gemmini generator can generate accelerators for any
types of fixed-point or floating-point representation, a single-precision floating-point matrix
unit consumes significant area and power due to the large number of wide multipliers and
adders. This overhead was evaluated in a Gemmini accelerator with an 8 × 8 spatial array
using an educational predictive process technology for 8-bit fixed point integer, 16-bit low
precision floating-point, and 32-bit single-precision floating-point. It was observed that the

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 130

area of the spatial compute array for 16-bit low-precision floating-point is 8 × −9.2× (for
IEEE-754 FP16 and bfloat16 respectively) larger than an 8-bit integer spatial array, and that
the full single-precision spatial array is 2.6×−3× larger that the low-precision floating-point
spatial array. These results are supplemented by data from Google which observes a 1.5×
energy advantage of bfloat16 over IEEE-754 FP16 [201].

Similar considerations in the choice of arithmetic numerical precision are evident in
commercial deep learning accelerators, of which only a minority implement single-precision
floating-point matrix multiplication in hardware. Table 7.2 lists the numerical precision sup-
port of a sample of commercial DNN accelerators. As can be seen in Table 7.2, many of
the recent inference deep learning accelerators on the market for edge devices utilize 8-bit
fixed-point integer precision. Deep learning accelerators which support training also support
various floating-point precisions, with a particular focus on 16-bit floating-point formats such
as bfloat16 (BF16) or IEEE 754 half-precision floating-point (FP16).

Matrix Multiplication Accelerator Numerics

Int4 Int8 Int16 fp16 bf16 fp32 tf323

NVIDIA Volta TensorCore 3 3 3

NVIDIA Ampere TensorCore 3 3 3 3 3 3 3

Google TPUv1 3

Google TPUv2 3

Google TPUv3 3

Intel AMX 3 3

AWS Inferentia 3 3 3

Qualcomm Hexagon 4 3

Huawei Da Vinci 5 3 3

MediaTek APU 3.0 3 3 3

NVIDIA DLA 6 3 3 3

Samsung NPU 7 3

Tesla NPU 3

Table 7.2: Numerical precision support in commercial matrix multiplication accelerators.
Information based on [129, 140, 149, 148]

As of the time of writing, only a subset of edge devices support floating-point precisions in
their DNN accelerators. However, the onset of data privacy concerns and a desire to support
a broader diversity of DNN models are driving additional accelerators on edge device SoCs
to implement low precision floating-point representations which allow greater support for
local tuning and model execution while maintaining manageable area and power budgets. In
conjunction with the use of mobile SoCs in laptops, desktops, and other personal computing
devices (for example, the Apple M1 SoC), an increase in adoption of low-precision floating-
point matrix multiplication acceleration in edge devices can be expected.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 131

Unlike 32-bit and 64-bit floating-point formats which are standardized across a wide
range of applications through the IEEE-754 standard, 16-bit floating-point formats are often
defined based on the needs of particular applications due to tradeoffs between precision and
range within their limited encoding space. The origin of the IEEE-754 FP16 is in graphics
rendering, where a ratio of 10 mantissa bits and 5 exponent bits was found to be sufficient
for most shaders [210, 2] (while being insufficient for computing derivatives and difference-
based algorithms). In contrast, the recent adoption of bfloat16 (“Brain float”) for machine
learning applications was due to the insufficient range of IEEE-754 FP16 causing frequent
overflows [148]. In order to increase range, the bfloat16 format maintains the same number
of exponent bits as the FP32 format. This means that the number of mantissa (precision)
bits is reduced, but this also has the advantage of simplifying the conversion between FP32
and bfloat16 representations (since only a simple truncation or rounding of the mantissa bits
is required) [150, 148, 33]. For these reasons, and based on the analysis in Table 7.2, the
reference Gemmini evaluation platform that will be used in this chapter will use a mixed-
precision Gemmini configuration with bfloat16 operands and single-precision accumulation,
as is the case for many deep learning accelerators which support low-precision floating-point
[148, 204, 87, 140].

From numerical analysis, we know that the numerical error E of a floating-point matrix
multiplication A ·B is bounded by |E| ≤ n · ε · |A| · |B|, where ε is the machine error of the
floating-point format, and n is the dimension of the matrix. For a block matrix multiplication
with mixed precision accumulation, such as the one used in DNN accelerators with bfloat16
operands and FP32 accumulation, this error bound changes depending on the internal round-
ing implementation of the blocked matrix multiplication. Blanchard et al. [37] show that
this can range from |E| ≤ (n+ 2)εbf16 · |A||B| in cases where rounding is based on the lower
precision after each fused multiply-add (FMA) operation, to |E| ≤ 2εbf16 + n · εfp32 · |A||B|
in cases where rounding is based on the higher precision after each individual FMA. While
many DNN accelerators use partial floating-point computation implementations which do
not fully conform to any particular floating-point computation standard (with respect to
rounding modes and overflow/underflow behavior), Gemmini uses the Berkeley Hardfloat
generator for hardware floating-point computation, which is a parameterized implementa-
tion of floating-point computation based on the IEEE-754 standard [117]. This imple-
mentation includes IEEE-754 compliant rounding procedures and provides a selection of
rounding modes supported by the IEEE-754 standard. As such, Gemmini demonstrates
similar numerical properties to those observed in NVIDIA tensor-cores [87]. We note that
the machine roundoff error of bfloat16 is εbf16 = 3.91× 10−3, while for comparison purposes
single-precision floating-point machine unit roundoff is εfp32 = 5.96 × 10−8 and IEEE-754
half precision is εbf16 = 4.88× 10−4. Hence, for datasets in which normalized data precision
can be differentiated by less than 2-3 decimal digits, simple-to-use low precision computation
can be utilized to increase performance.

For the vast majority of numerical applications, which are not as precision-tolerant as
deep neural networks, 16-bit floating-point computation in itself does not provide sufficient
accuracy of results. Mixed precision computation, which combines 16-bit, 32-bit, and 64-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 132

bit floating-point formats at different parts of an algorithm, have been shown to provide
proper mitigation techniques to obtain a desired computation accuracy for a core number
of application kernels, including linear system solutions and least squares solutions [110,
124, 111, 44, 45, 123]. These mitigation techniques have been mostly experimented with and
utilized in the realm of high-performance scientific computing, since programmable reduced-
precision floating-point hardware with explicit programming models is found mostly in cloud
and high-performance computing processors such as TPUs, GPUs, and the A64FX ARM
processor.

Numerical modeling and simulation applications, which are prevalent in scientific and
high-performance computing, indeed have stringent precision and accuracy requirements for
their numerical methods. At the same time, data analysis applications may often be limited
by input data precision rather than numerical and computational precision. We observe
that some data analysis applications and frameworks use high-precision floating-point rep-
resentations due to default configurations or legacy libraries, rather than explicit numerical
analysis reasons. For example, the R statistical analysis framework uses only double-precision
floating-point to represent its numeric floating-point datatype. There is no single-precision
floating-point datatype in the base R implementation. This design choice does not have
much noticeable consequences on CPU-based execution which uses a single hardware FPU
to process both single-precision and double-precision floating-point arithmetic. However, in
parallel computing platforms with many floating-point execution units such as GPUs, vector
units, or tensor engines, lower precision floating-point implementations can have significant
throughput and energy implications.

In data analysis cases where accuracy is dominated by data precision rather than the
numerical backwards error of the computation, it is clear that high absolute computation
precision is an over-provisioning of resources. Further, backwards stable algorithms pro-
vide strong confidence that a small error in the input data generates a small error in the
output results. Hence, if the backwards error is smaller than the uncertainty in the data
(due to sensor precision, sampling noise, etc.), then relaxed computational precision can
be accommodated by data scientists. Since the error bounds for traditional linear algebra
operations are relatively well established, data scientists can use their domain knowledge
about their datasets to make this determination. A recent analysis of LAPACK, the widely
used numerical linear algebra library which forms the basis for a major portion of the nu-
merical computing software stack, observed that the vast majority of LAPACK routines are
numerically backwards stable with a bfloat16 BLAS implementation.

The traditional approach for using low-precision floating-point hardware within the high-
performance computing community has primarily relied on explicitly replacing single-precision
floating-point operations with low-precision floating-point operations only in appropriate
places within the application codebase after a careful analysis, in order to maintain tight
control over the numerical properties of the application [221, 39]. Similarly, use of mixed-
precision floating-point computation has also been based on explicit function calls which
precisely define the precision of each operand and the precision of the results. This approach
can result in an explosion of function variants within the definition of mixed-precision BLAS

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 133

(e.g. sssdgemm, sdsdgemm, ssddgemm, dssdgemm, sdssgemm, etc.) [177]. However, under
an assumption of well-conditioned problems and numerical backwards stability of the core
linear algebra algorithms using accelerators, we hypothesize that coarser-grained approaches
may provide similar benefits of accurately using low-precision hardware, while providing a
simpler programming model.

We postulate that a non-negligible number of applications which use single-precision
floating-point do so because it is the default precision (or the minimal standard precision
under IEEE-754), rather than because those applications have specific accuracy require-
ments that necessitate single-precision accuracy. The alternative approach we use in our
implementation of the BLIS library is a coarser-grained solution which uses a system envi-
ronment variable to enable relaxed numerics. By enabling this POSIX system-wide environ-
ment variable, we allow data scientists to indicate to the system that they are working with
a low-precision and well-conditioned dataset that is tolerant of low precision computation.
This information enables the underlying library implementations to transparently cast single-
precision floating-point operations to low-precision floating-point operations when it may be
advantageous for performance. By transparently casting single-precision floating-point level-
3 BLAS operations to low-precision floating-point operations, it may be possible to improve
the performance of a class of applications which use traditional numerical computing libraries
primarily for their performance advantage properties rather than their numerical accuracy
properties. In contrast to the mixed-precision algorithms which use single- and double- pre-
cision iterative refinement to compensate for a low-precision compute-intensive kernel, the
approach presented here places a larger burden on the data scientist to be familiar enough
with their dataset to allow for computation with relaxed numerical precision.

In practice, when the data scientist is confident their dataset is tolerant of low-precision
computation, they will enable a POSIX environment variable named RELAXED NUMERICS,
which enables a codepath within our BLIS implementation which registers Gemmini-based
functions as the implementation of BLAS-3 “single-precision” kernels. If the RELAXED

NUMERICS environment variable is not enabled, our BLIS implementation will register single-
precision Hwacha-based implementations as the default BLAS-3 single-precision kernels. The
relaxed numerics environment variable allows us to maintain the single-precision floating-
point BLAS-3 API (i.e., sgemm , strsm , strmm , ssyrk , ssymm , etc.) in order to match
the large corpus of applications which expect ABI compatibility to this API. Figure 7.5 the
usage flow of the custom BLIS implementation using the RELAXED NUMERICS environment
variable. Since the interface expects single-precision operand matrices A and B, this requires
converting the operand to bfloat16 precision before performing a computation using Gem-
mini. The result matrix C does not require any conversion, since accumulation is performed
in single-precision in Gemmini. This is a coarser-grained approach compared to traditional
HPC low-precision methods, since it dictates that all single-precision BLAS-3 operations
within the application will be performed in low-precision when the relaxed numerics flag
is enabled. We hypothesize that this coarser-grained approach is advantageous in terms of
usability, and in terms of the opportunity for data scientist to apply their domain knowledge
of the dataset without needs to explicitly analyze each arithmetic operation in the under-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 134

Figure 7.5: Usage flow diagram of the RELAXED NUMERICS POSIX environment variable as
coarse-grained control over low-mixed-precision computation within the legacy BLAS inter-
face. When the RELAXED NUMERICS environment variable is enabled by the data scientist,
Gemmini-based BLAS-3 functions will be registered by the BLIS runtime, and legacy single-
precision BLAS-3 API calls will be transparently converted to low-mixed-precision. BLAS-1
and BLAS-2 function will continue to run in full single-precision on the Hwacha vector unit.
When the RELAXED NUMERICS environment variable is disabled, all single-precision BLAS
functions will run on the Hwacha vector unit.

lying codebase. As user interface studies have shown in the past, streamlining the usage
of a feature can increase its usage, and we hypothesize that by streamlining low-precision
capabilities into only a single switch required to enable this property, we are increasing the
chance it will be used in practice.

Micro-kernels vs. Kernels

BLIS (and several other BLAS implementations) are designed around optimized kernels
and micro-kernels. By optimizing small micro-kernels and scheduling those micro-kernels
using empirical tuning or algorithms such as the BLIS/Goto algorithms, such BLAS imple-
mentations enable simple re-targeting of the implementation to different micro-architectures
through template-based programming and software scheduling while maintaining high per-
formance. Nevertheless, this software organization design choice is generally made under

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 135

Figure 7.6: BLIS kernels vs. microkernels and their projection on Gemmini. Kernels operate
on complete matrices, enabling the underlying accelerator to utilize throughput-oriented
optimization (the GEMM kernel can be exposed using a BLIS sandbox). Microkernels operate
on packed register- and cache-blocked panels, and can be utilized for a wider variety of
kernels. (Base BLIS algorithm illustration reproduced with permission from [263]).

the assumption that implementations would primarily target CPUs, which are based on
scalar units or packed SIMD units optimized for low-latency operations. Processors which
take advantage of data-parallelism to provide high throughput and hardware utilization, at
the cost of latency, may exhibit only partial benefits from the micro-kernel-based software
architecture.

Micro-kernels are used for BLAS-2 and BLAS-3 operations, and require a fixed size for
at least one of the dimensions of each matrix operand (which we refer to as the “size” of the
micro-kernel). Both Hwacha and Gemmini rely on latency-hiding through internal re-use
and hardware sequencing in order to achieve high throughput and high utilization of their
respective arithmetic and memory resources. By having multiple operations in-flight at the
same time, the Hwacha and Gemmini sequencers use data parallel abstractions to implement
latency-hiding techniques such as systolic execution, double buffering, and decoupled access-
execute to maintain their execution pipelines highly utilized. Hwacha is a temporal vector

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 136

machine, which achieves high utilization by hiding the latency of memory accesses using a
deep pipeline and long vector lengths. As a temporal vector machine, in order to achieve
high utilization it requires high re-use of data in vector registers, or vectors long enough to
hide memory access latency from the SoC L2 cache or DRAM. This would typically require
vectors of lengths greater than 16 or 32 elements. The Gemmini accelerator similarly relies
on data re-use within the private scratchpad memory in order achieve high utilization of the
compute array. The Gemmini hardware controller in-fact uses the private scratchpad as a
register file when it schedules DMA transactions and compute operations using its hardware
schedulers. However, if there is insufficient data-reuse due to the size or shape of the matrix
operands, the Gemmini hardware scheduler will not be able to hide the latency of memory
accesses.

The throughput-oriented latency-hiding approaches implemented in Hwacha and Gem-
mini do not perfectly align with the micro-kernel software principles used in BLIS and
the Goto algorithm, since micro-kernels are intended to be limited in size, hence conflicting
with the fundamental assumptions of throughout-oriented hardware which requires sufficient
data-parallelism to enable latency-hiding. The micro-kernel approach relies on small matrix
operations that can be composed into larger matrix operations using software algorithms.
As such, they are a good fit for low-latency spatial packed-SIMD vector ISA implementa-
tions as opposed to temporal vector machine implementations. Similarly, while fine-grained
Gemmini instructions which directly perform Gemmini micro-operations could be a better
fit for programming a micro-kernel compared to Gemmini’s coarse-grained instructions, the
instruction issue bandwidth of the host CPU is often insufficient for the accelerator to achieve
peak utilization using only fine-grained instructions. The micro-kernel’s fixed size exposes a
tradeoff with latency-hiding hardware, since large micro-kernel sizes which benefit Hwacha
and Gemmini’s latency-hiding requirements can create overheads for small matrices, while
small micro-kernel sizes could result in lower utilization of Hwacha and Gemmini.

We demonstrate and evaluate this tradeoff (also illustrated in Figure 7.6) using the “sand-
box” feature in BLIS. The “sandbox” bypasses the BLIS micro-kernels and allows developers
to directly implement the GEMM kernel rather than implementing a micro-kernel and relying
on the BLIS algorithm. This feature is intended to allow developer to explore optimal
GEMM software algorithms for different target hardware architectures. The Gemmini matrix
multiplication operation can be used both as part of a BLIS micro-kernel, as well as an inde-
pendent BLIS GEMM kernel operation through the aforementioned “sandbox”. We restrict the
discussion regarding kernels vs. micro-kernels to the GEMM kernel, since the developer pro-
ductivity benefits of micro-kernel-based templates for the remaining BLAS-3 kernels (TRSM,
TRMM,SYMM, SYRK, etc.) outweigh the potential utilization penalty of the micro-kernel-based
approach within the context of high-diversity SoC micro-architectures and supplemental-use
applications.

Figure 7.7 illustrates the performance of a BLIS-based GEMM operation across various
square matrix sizes using a 1 GHz SoC (single clock domain) with a DDR3 backing memory.
It evaluates different SoC hardware configurations as well as software implemented using the
BLIS GEMM micro-kernel vs. “sandbox”. Notably, the “Sandbox loops” variants, which use

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 137

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Dimension (m)

0

20

40

60

80

100

120

GF
LO

PS

8x8 Gemmini Peak

4x4 Gemmini Peak

Hwacha Peak
Rocket/BOOM Peak

sgemm

BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion, BLIS loops)
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion, Sandbox loops)
BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion, BLIS loops)

BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion, BLIS loops)
BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion, Sandbox loops)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion, BLIS loops)

Figure 7.7: SGEMM kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory.

Gemmini’s native SDK to implement the BLIS kernel, bypassing the BLIS micro-kernel-based
implementation, outperform the micro-kernel-based implementations and attain significantly
higher utilization of compute resources on the SoC. This holds true across both 4x4 and 8x8
configurations of Gemmini. Nevertheless, the “sandbox” kernel-centric approach comes with
several caveats since Gemmini is primarily designed as a deep learning accelerator rather than
a general-purpose BLAS accelerator. Gemmini’s native SDK is able to support the GEMM op-
eration natively since it is also used extensively used in DNNs, and therefore supported and
optimized by the accelerator. However, other BLAS-3 kernels (TRMM, SYRK, TRSM, SYMM, etc.)
are not used by DNNs, and therefore do not have such native support in Gemmini. There-
fore, other BLAS-3 operations continue to be implemented using BLIS micro-kernels since
they will not benefit as much from a direct kernel “sandbox” implementation as they are
not able to utilize such native Gemmini features including hardware scheduling and hard-
ware zero-padding. Additionally, the use-case evaluated in Figure 7.7 used a matrix layout

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 138

which uses unit column stride. Use-cases with more complex data layouts (non-unit stride,
mixes of column-major and row-major) could pose a challenge the Gemmini’s native SDK.
Furthermore, the usage of Gemmini’s native SDK in the BLIS sandbox assumes that data
is converted from single-precision to bfloat16 representations in hardware by the accelerator
DMA. This assumption has implications on the micro-kernel-based implementation of the
remaining BLAS-3 kernels. We therefore further elaborate on both these topics (with the
latter one specifically discussed within the context of micro-kernels).

Data precision conversion

An important principle of our approach to numerical precision is maintaining the legacy
single-precision BLAS interface in order to transparently enable the legacy software stack.
As a result, this requires converting the operand matrices A and B from single-precision
to bfloat16 precision before performing a computation using Gemmini, since we are using
the single-precision BLAS interface which expects single-precision operand matrices A and
B. The result matrix, C, does not require any conversion, since accumulation is performed
in single-precision in our Gemmini configuration (similar to other low-precision deep learn-
ing accelerators). Conversion between single-precision floating-point operands to bfloat16
operands can be performed either in Gemmini hardware or in “software” (using Hwacha or
BOOM), as also illustrated in Figure 7.8:

1. “On-the-fly” as part of the accelerator DMA transaction: Reading 32-bit single pre-
cision values from shared main memory, and writing bfloat16 values to the Gemmini
private scratchpad

2. “Software conversion” using the CPU vector unit: The vector unit will read 32-bit
values into the vector register file, perform a conversion operation, and then write
bfloat16 values back to shared (cached) memory. The accelerator DMA will then read
bfloat16 values from shared (cached) memory and write them to the private scratchpad.

Both approaches present trade-offs: The “on-the-fly” approach is “wasting” shared-cache
capacity and memory bandwidth between shared memory and the accelerator private scratch-
pad. This is because the accelerator DMA accesses 32-bit values from shared memory, but
uses only 16-bits of them, essentially halving the effective bandwidth of the accelerator DMA.
Nevertheless, if the arithmetic intensity of the operation is high enough, then this loss of
effective bandwidth will not be felt by the accelerator since it will be hidden by data re-use
within the private scratchpad.

In contrast, software conversion using the vector-unit carries the cost of additional com-
munication (and additional memory) through shared memory between the vector unit and
the Gemmini accelerator, and therefore necessitates cache blocking. Furthermore, while
the vector unit and the matrix engine can run independently, potentially overlapping their
operation, they still require a synchronization mechanism in order to maintain sequential
consistency due to a lack of unified memory management unit. Therefore, in this approach,

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 139

a fence needs to be used after the conversion of each BLIS packed-panel, which adds a
burden of synchronization and prevents full-throughput overlap between the vector unit and
matrix engine.

A survey of commercial matrix engines which utilize the bfloat16 format confirms that
the choice of conversion approach between single-precision floats and bfloat16 differs across
systems. The Google TPUv2 and TPUv3 support hardware conversion within the MXU
(matrix multiplication systolic array) [201, 270]. As such, it appears that values can be
stored as single-precision floats within the on-chip memory and be converted “on-the-fly”
when entering the MXU systolic array. In contrast, the “on-the-fly” hardware conversion
supported by Gemmini converts the values when performing DMA transactions between
shared memory and private memory rather than between the private memory and the systolic
array. This effectively doubles the capacity of the private memory compared to the hardware-
supported conversion in the TPU. We note that the TPU also supports software conversion
and direct storage of bfloat16 values in the private memory, providing it with the same
effective capacity improvement, at the cost of performing the conversion in software on the
host processor (potentially during offline pre-processing) [270]. A different matrix engine,
the Intel AMX extension, does not support bfloat16 conversion within the matrix extension
[140]. Nevertheless, the AVX vector extensions do support such conversion, which leads to
the conclusion that the intended conversion usage model is to use the AVX vector unit for
such conversions, under the assumption the communication through the L1 cache is likely of
low overhead.

Software datatype conversion can be performed efficiently by integrating it with the
panel-packing stages of the BLIS algorithm. The BLIS algorithm packs operand matrix
elements into panels organized in contiguous memory in order to improve memory bandwidth
utilization, and TLB and cache locality. This packing is performed only on micro-kernel
operands, while the micro-kernel result matrix is assumed to be laid-out in memory in its
original format. Hence, the packing functions are a prime opportunity for performing the
conversion from single-precision floats to bfloat16. Having the panel be packed with 16-bit
elements as opposed to 32-bit elements improves cache performance and memory bandwidth
utilization between the CPU memory system and Gemmini DMA transactions, as intended
with the software conversion approach. Nevertheless, this conversion in software doubles the
number of operations the CPU performs during the packing routine - instead of just simple
data movement, an additional conversion needs to be performed for every element. While
“on-the-fly” conversion in the DMA can be performed in conjunction with panel-packing,
this approach reduces the arithmetic intensity and matrix sizes the accelerator would operate
on, while not helping improve the effective bandwidth of the DMA.

Figure 7.7, which illustrates the performance of square matrix multiplication using kernels
and micro-kernels as well as the two approaches to conversion, exhibits an interesting phe-
nomenon. It is clear that the native Gemmini SDK and hardware scheduler (using “Sandbox
loops”), which implicitly uses on-the-fly hardware conversion in the DMA, outperform the
micro-kernel-based BLIS algorithm loops. This confirms that for high-arithmetic-intensity
matrix multiplications, the reduction in effective memory-bandwidth due to conversion in

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 140

(a) Conversion of single-precision floating-point to bfloat16 using the “on-the-fly” method in the
Gemmini DMA. Communication bandwidth between the shared L2 cache and the Gemmini accel-
erator is 32-bits-per-element.

(b) Conversion of single-precision floating-point to bfloat16 using the software panel packing in the
Hwacha vector unit. Communication bandwidth between the shared L2 cache and the Gemmini
accelerator is 16-bits-per-element, while communication bandwidth between the shared L2 cache
and the Hwacha vector unit is 32-bits-per-element for loads (non-unit stride) and 16-bits-per-
element for stores (unit stride)

Figure 7.8: Datatype conversion approaches from 32-bit single-precision floating-point to
16-bit bfloat16 on the target SoC.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 141

the DMA is not a limiting factor since it is hidden by data re-use within the accelerator with
a large enough private scratchpad memory. However, when using the BLIS algorithm loops,
which split the matrices into panels with lower arithmetic intensity that fit in the different
levels of the memory hierarchy, we observe that software conversion using the vector units
outperforms on-the-fly conversion in hardware using the Gemmini DMA. This is since in this
case, the matrix multiplication performed by Gemmini has lower arithmetic intensity due to
the shape of the panel generated by the BLIS loops, which means that there is insufficient
data re-use within Gemmini, making the problem memory-bound and therefore sensitive to
the reduction in effective memory bandwidth.

Nevertheless, when using the sandbox and the native Gemmini SDK, “on-the-fly” con-
version is superior to vector-unit-based software conversion in all scenarios, including both
high-arithmetic-intensity and low-arithmetic-intensity matrix shapes. In high-arithmetic-
intensity regimes, cache blocking does not benefit Gemmini, since the Gemmini controller
is able the hide the L2 miss penalty latency. In low-arithmetic-intensity regimes, Gemmini
utilization is bound by L2-DRAM memory bandwidth, which similarly affects both Gem-
mini and the vector unit. At the same time, cache blocking limits the degrees of freedom
afforded to the Gemmini controller scheduler in high-arithmetic-intensity regimes, since it
breaks double buffering and hardware zero padding sequences in the controller.

We note that both the vector unit load/store unit and the accelerator DMA access shared
memory through the SoC system bus, which has a width of 128-bits in our experimental
setup. The cost of on-the-fly hardware conversion in the Gemmini DMA is relatively inex-
pensive – since the system bus width is 128-bits, only four 32-bit single-precision conversion
units are required in order to utilize and maintain maximal effective bandwidth. Further-
more, conversion for single-precision float to bfloat16 requires a very simple unit, since the
only action required is truncation and rounding of the significand/mantissa bits (the expo-
nent and sign bits remain exactly the same, so they can just be “passed through”).

Data Layout

The Gemmini accelerator DMA is implemented under the assumption of row-major matrix
representations. This design choice was made since the accelerator was designed for deep
learning workloads, with the primary programming interface of the accelerator being C and
C++ arrays. Matrices in DNN inference can be expected to be processed in contiguous
memory, and not require data layout transformations at runtime. In contrast, the BLAS
interface is tolerant of a wider variety of data layouts, supporting both column major and
row major representations. More precisely, the BLAS interface assumes a column-major
layout (due to its reference Fortran implementation), while the CBLAS interface (the C
language binding for the BLAS interface) assumes a row-major layout. However, since the
BLAS interface also supports a “transpose” indicator argument for each matrix operand, it
de-facto defines support for both column-major and row-major layouts on both BLAS and
CBLAS, as illustrated in Figure 7.9.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 142

Figure 7.9: Row-major and column-major matrix data layouts in contiguous memory for
matrices and their transpose.

In addition, regardless of the data layout of the full operand matrices called using the
BLAS function interface, BLIS micro-kernel operand matrix panels are organized using both
row-major and column-major representations: the packed operand panel of the A matrix
is arranged in column-major representation, while the packed operand panel of the B ma-
trix is arranged in row-major representation. This is done in order to arrange data in an
optimal contiguous layout for outer-product computation on scalar processors or packed-
SIMD extensions. The results of the micro-kernel (C) can be output in either row-major
or column-major representations (depending on row-stride and column-stride parameters to
the micro-kernel).

Thankfully, Gemmini has a built-in hardware transposer between the scratchpad memory
and the spatial compute array, which can used to transpose one of the operands at the entry
to the spatial compute array. The transposer was originally added to Gemmini in order to
support the output-stationary (OS) dataflow of the systolic array, under the row-major data

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 143

layout assumption. By adding a software interface to enable and disable this transposer
for a selected operand, we enable our implementation to support almost all data layout
combinations enabled by the BLAS interface. Together with the algebraic properties of
transposed matrices (ATBT = (BA)T , (AT)T = A), we can enable and disable transpose
operands in Gemmini and re-arrange the the order of operands (for example, use BT as the
first operand and AT as the second operand) in order to obtain our desired data layout.

In the case of BLIS micro-kernels, we allow the Gemmini DMA to move data from both
operand panels as if they were in a row-major organization, while performing a computation
of AT ·B instead of A ·B. While at first glance this approach may seem redundant since it
transposes the A matrix twice, it does not have a noticeable cost, since there is no additional
data-movement when transposing A during packing, and since using AT within Gemmini
is zero-overhead in terms of performance due to overlap of compute operations (but indeed
wasteful in terms of energy).

The transposer is implemented as a systolic array where each element of the array in-
cludes a simple pipeline register and two multiplexers, as illustrated in Figure 7.10. The
multiplexers alternate direction every DIM cycles (where DIM is the dimension of the array).
The alternating direction performs the transposition between rows and columns, while en-
abling the array to maintain full throughput by alternating the input and output directions.
Figure 7.10 illustrates the flow of data within the hardware transposer array. The cost of
the transposer is relatively small, as the area it consumes is only 1% compared to the size
of the spatial compute array. Exposing the transposer to software is also beneficial for other
workloads, as matrix transposition is used in a large number of linear algebra operations, as
well as in DNN training.

The BLIS framework additionally provides an even more flexible function interface than
the legacy BLAS API. In the BLIS framework, matrix operands (and results) can specify
a stride across both dimensions of the matrix (rather than only the leading dimension in
the legacy BLAS interface), allowing for potentially non-contiguous data layouts in memory.
The Gemmini DMA is not robust enough to tolerate such cases, even with the help of the
hardware transposer. In such cases, we must fallback to micro-kernel-based implementations
(for both GEMM and the rest of the BLAS-3 operations) in which operand panels are packed
contiguously, and the micro-kernel result matrix is small enough to have its data layout
re-arranged by the host CPU and the vector unit. Tighter integration between Gemmini
and a general-purpose vector unit with support for arbitrarily strided and segmented load
and store memory operations would help Gemmini support this broader set of use-cases and
make the Gemmini DMA redundant. Alternatively, the Gemmini DMA could add support
for such strided operations across both the row and column dimensions, as opposed to the
current support of only a single strided dimension.

TRSM

The TRSM (triangular matrix solve) is the only BLAS-3 kernel that cannot be composed
completely out of smaller GEMM micro-kernels. A TRSM kernel is of the form C = A−1·B, where

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 144

Figure 7.10: Gemmini Hardware Transposer

A is either a lower or upper triangular matrix. This is in-effect backwards substitution, which
is an iterative process. The TRMS kernel in BLAS-3 can be efficiently implemented using a
fused sequence of small TRSM micro-kernels and large updates to a trailing matrix using GEMM

operations. As such, the GEMMTRSM micro-kernel in BLIS is a fused micro-kernel in which TRSM

and GEMM subproblems are fused together in a single routine. An efficient implementation
of a GEMMTRSM micro-kernel is intended to help avoid redundant memory operations that
would be incurred if the TRSM and GEMM micro-kernels were executed separately. In the case
of a vectorized implementation, the fused micro-kernel enables keeping data in the vector
register file between the TRSM and GEMM operations, as opposed to communicating it through
memory.

Within the context of Gemmini, the GEMMTRSM micro-kernel does not allow a simple
Gemmini mapping since Gemmini does not have native support for a TRSM operation. As a
result, we implement the TRSM component of the fused GEMMTRSM micro-kernel on the CPU
or Hwacha vector unit. This brings about several challenges that are a result of the structure
and implementation assumptions of the GEMMTRSM micro-kernel. The GEMMTRSM for a lower

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 145

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Dimension (m)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

GF
LO

PS

Hwacha Peak

Rocket/BOOM Peak

strsm

BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion)

BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion)

Figure 7.11: STRSM kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory.

triangular matrix performs the following operation:

B11 := αB11 + A10B01

B11 := A−1
11 B11

C11 := B11

Without loss of generality, a similar set of operations applies to GEMMTRSM for an upper
triangular matrix as well. As the equation shows, the GEMMTRSM assumes that the iterative
backwards substitution is performed in-place by updating the B11 sub-matrix, in addition
to assigning it to the output C11. These are part of the implementation assumptions for tiled
implementations of the full TRSM kernel which utilize the GEMMTRSM micro-kernel.

The first implication of this implementation assumption is that the mixed-precision as-
pects of the Gemmini computation is exposed with the GEMMTRSM micro-kernel. A con-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 146

ventional GEMM computation in Gemmini operates on bfloat16 operands, but results in a
single-precision floating-point output (thanks to single-precision accumulation).

Nevertheless, since BLIS micro-kernel operands are packed into panels as part of the
BLIS algorithm, and since in this micro-kernel B01 and B11 are considered operands that are
part of the same panel, they will both pass through the packing routine, which will convert
them from single-precision to bfloat16. However, B11 is also considered to be an accumula-
tion operand, which is performed in single-precision in Gemmini. This brings about again
the question of datatype conversion in hardware as part of the DMA transaction vs. in
software within the micro-kernel packing function. Figure 7.11 illustrates the performance
of the STRSM kernel when using different SoC configurations with Hwacha and Gemmini and
using the different conversion options. Unlike in the case of the GEMM kernel when using BLIS
micro-kernels (rather than the “sandbox” native implementation with the hardware sched-
uler and zero padding), in which the software conversion in the packing function resulted
in higher performance due to better utilization of DMA memory bandwidth, in the case of
the TRSM kernel, using on-the-fly hardware datatype conversion in the DMA provides a per-
formance advantage compared to performing the conversion in software within the packing
function despite the reduction in the effective memory bandwidth of the DMA. The reason
for this goes back to the in-place update of the B11 matrix result of the GEMM component
within the GEMMTRSM micro-kernel. While Gemmini is able to return the result in the form
of bfloat16 representation which can fit in-place, the host scalar processor which needs to
execute the A−1

11 B11 operation does not support bfloat16, and therefore needs to convert the
data into a single-precision floating-point representation. This additional conversion over-
head incurs a performance penalty, which outweighs the benefit in maintaining high effective
DMA bandwidth. When we use the on-the-fly hardware conversion support, Gemmini can
output the results in full 32-bit single-precision representation into the packed panel, and
the host processor can act directly on the single-precision float data.

The second implication of in-place updates of the backwards substitution component
within the implementation of GEMMTRSM regards the overlap of CPU and Gemmini operations.
Since the CPU must operate on, and modify, the same memory addresses which are written
by the result of the GEMM performed by Gemmini, we must use a fence between the Gemmini
GEMM operation and the backwards substitution performed by the CPU, in order to make sure
that Gemmini has completed its operation and written the results before starting the CPU
updates. This means that the CPU is sitting idle throughout most of the operation time of
Gemmini, instead of overlapping operations through double-buffering or similar techniques.
The fence instruction also prevents additional double-buffering within Gemmini itself, since
the finite-state-machine which controls the internals of Gemmini data-movement halts and
resets upon a fence instruction in order to allow for data to be transferred completely back
to the main memory system.

As a result, the performance of the GEMMTRSM micro-kernel and the TRSM kernel are limited
by the CPU, and therefore the kernel does not fully utilize all of the compute resource
available to it. We can see this in the performance profile observed in Figure 7.11, which
follows Amdahl’s law. The number of operations in the GEMM component increases with the

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 147

dimension of the BLIS packed panel (k), while number of operations in the TRSM component
on the CPU remains fixed with the blocking factor (the size of the micro-kernel). Hence,
the speedup Gemmini can contribute to a GEMMTRSM micro-kernel (and the resulting TRSM

kernel) depends on the panel dimension k. In particular, when plugging into Amdahl’s law
(where s is the speedup Gemmini provides for GEMM operations, and C is the constant factor
representing the number of operations in the TRSM component), we see that the performance
of the GEMMTRSM micro-kernel is a function of k:

f(k) =
1

1− p+ p
s

=
1

1− k
k+C

+
k

k+C

s

=
s(k + C)

sC + k
(7.1)

Tighter integration between the Gemmini private memory and the vector unit register
file could help reduce communication costs between the two computation units to alleviate
this bottleneck. This tighter integration can be in the form of dedicated data communication
pipelines or through shared register files which would alleviate the need to communicate data
through the shared L2 cache.

Minimal Matrix Dimensions

Accelerators cannot attain high utilization without a minimal amount of data which enables
the amortization of the overheads of using the accelerator rather than the host processor.
Furthermore, accelerators might actually cause a performance degradation in comparison to
simply using the host processor if the overheads of calling the accelerator are higher than the
speedup the accelerator provides on the computation. These overheads can materialize both
in hardware, as can be the case for multiplication of very small matrices using throughput-
oriented accelerators such as Hwacha and Gemmini, as well as in software, in which panel-
packing and conversion or other special codepaths can represent a non-negligible overhead
for a small matrix multiplication operation.

Figure 7.12 illustrates this tradeoff point with a BOOM host processor, Hwacha, 4 × 4
Gemmini, and 8 × 8 Gemmini. Notably, when using Gemmini’s native SDK and special
hardware features such as hardware zero padding and on-the-fly DMA datatype conversion
(noted in the figure as “Sandbox loops”), Gemmini outperforms the alternative options even
for small matrices with no performance degradation. However, when using the BLIS micro-
kernels and software datatype conversion, we observe a crossover point with BOOM at a
matrix dimension of 25-30 elements. We observe a similar crossover point for Hwacha at a
smaller matrix dimension of 16-20 elements. We note that the jagged pattern of Gemmini
performance for small matrices is due to the alignment of matrices to 4 bytes.

We further characterize this behavior by analyzing additional BLAS-3 kernels for which
Gemmini does not have native support. Figure 7.13 illustrates the performance of the TRSM

kernel for small matrices across BOOM, Hwacha, 4×4 Gemmini and 8×8 Gemmini. Notably,
in this case, the crossover point between Gemmini outperforming simple CPU execution
occurs at a much larger matrix size, with a matrix dimension over 100 elements. We also

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 148

0 5 10 15 20 25 30
Matrix Dimension (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GF
LO

PS

sgemm

BOOM
BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion, Sandbox loops)

BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion, BLIS loops)
BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion, Sandbox loops)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion, BLIS loops)

Figure 7.12: SGEMM kernel performance on small square matrices using a 1 GHz SoC with
DDR3 backing memory.

observe a crossover point with respect to execution on Hwacha, this time for a square matrix
dimension of over 20 elements. Since execution on Hwacha is finer grained than execution
on Gemmini, and also requires less data movement for the TRSM kernel thanks to data re-use
within the vector register file, it is not surprising that the crossover point is at a smaller
matrix dimension than with Gemmini.

The BLIS framework provide a configuration option which allows developers to set a
special handling of matrices with dimensions under a certain threshold. When using Gem-
mini’s native SDK and hardware conversion, there is no need to set such a threshold for
GEMMs since Figure 7.12 illustrates the Gemmini’s large number of spatial arithmetic units
and native support for zero padding result in very low overheads for direct execution of
small matrices. However, for the remaining BLAS-3 kernels, we indeed use this BLIS con-
figuration option and execute smaller matrices directly on the BOOM host processor due
to the overheads of panel-packing. While it is possible to implement a finer-grained option

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 149

0 20 40 60 80 100 120
Matrix Dimension (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GF
LO

PS

strsm

BOOM
BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion)

BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion)
BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion)

Figure 7.13: STRSM kernel performance on small square matrices using a 1 GHz SoC with
DDR3 backing memory.

which includes using Hwacha for a subset of matrix sizes between the two crossover points,
which would provide the highest performance across all cases, we choose to maintain a single
threshold for simplicity of use.

The question of minimal matrix dimensions has importance with respect to micro-kernel
implementations since it has a direct impact on the size of the micro-kernels within BLIS. We
observe in Figure 7.13 a slight drop in performance for the Gemmini-based configurations
at a matrix dimension of 65 elements. This is due to the fact that the configured BLIS
panel dimension for this experiment was 64, and therefore matrix dimensions with 65, 66, 67
elements experience high overheads for handling their boundaries. We now further elaborate
on how register-blocking techniques and the micro-architecture of the accelerator relate to
the size of the micro-kernel and its impact on performance across different matrix sizes.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 150

Accumulator-based Register Blocking

High performance matrix multiplication and BLAS-3 algorithms, including the BLIS algo-
rithm, rely on multiple levels of loop tiling/blocking based on the target processor’s memory
hierarchy. In this hierarchy, the loops are tiled based on cache sizes down to the inner most
loops which are typically tiled based on the processor’s register file [102].

Similarly, BLIS micro-kernels are intended to be designed based on register-blocked tile
sizes, mr and nr. In a standard CPU implementation, the BLIS mr parameter is typically set
based on the number of registers, and the nr parameter is set based on the width of SIMD
registers. This type of register blocking is designed under the assumption of conventional
single-element registers or spatial packed-SIMD registers (such as Intel AVX/AVX2/AVX512
or ARM Neon), with typical possible widths of 1-16 elements and up to 32 registers. In fact,
the largest possible micro-kernel tile size allowed in the baseline BLIS implementation was
limited to 31 elements, based on this type of assumption for register-blocking.

Since Gemmini does not use the explicit concept of a register abstraction, we observe
two options for register-blocking equivalences in Gemmini: (1) In output-stationary (OS)
dataflow mode, the inner-most loop stores the accumulated computation output in accumu-
lation registers within the PEs of the spatial compute array. In such a case, the register-block
size is directly tied to the size of the spatial array, since each PE effectively has only one
accumulation register (there are in-fact two physical accumulation registers to support com-
pute overlap, but the programmer sees only a single register). This leads to a small block
size which is beneficial for fine-grained micro-kernels. However, this blocking scheme does
not fully utilize the Gemmini private scratchpad since there is very little data re-use within
the private scratchpad. (2) In weight-stationary (WS) mode, the register-block size is di-
rectly tied to the size of the Gemmini SRAM accumulators. A typical size for the SRAM
accumulators ranges from tens to hundreds of kilobytes, with the default size in the de-
fault Gemmini configuration set as 64 KiB. Assuming double buffering within the SRAM
accumulators (i.e., an effective tile of 32 KiB), this leads to potential block sizes of up to
88 × 88 single-precision floating-point elements, which are significantly larger than typical
register-block sizes in BLIS.

A large register-block size for micro-kernels has a negative effect on the efficiency of
the BLAS-3 library for matrices which are not close to multiples of the register-block size
or on small matrices or, since the micro-kernel is the finest-grained matrix multiplication
enabled by the library. As a result, any matrix smaller than the register-block dimension (for
example, 88× 88), or any matrix which is not aligned with the block size therefore requiring
handling of edges and boundary cases, will perform a non-negligible number of non-useful
multiplications by zero within the micro-kernel. This is one of the reasons that CPU micro-
kernel implementations often have multiple implementations of finer-grained tile sizes to
enable fine-grained handling of non-aligned matrix edges and small matrices. While Gemmini
has hardware-support for zero-padding, this support cannot be utilized within a micro-kernel
since a micro-kernel is assumed to be of fixed dimensions based on the register-blocked size.
We indeed utilize the hardware support for zero-padding in the native GEMM implementation

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 151

with on-the-fly hardware datatype conversion in the DMA (“Sandbox loops”), however, we
still use panel-packed BLIS implementations, which cannot use hardware zero-padding, for
the remaining BLAS-3 kernels. We choose to use a larger micro-kernel which utilizes a
large part of the accelerator SRAM accumulator resources under the assumption that the
the primary use-case of the BLAS library would be for computations on relatively large
matrices, in which the benefits of high accelerator utilization will outweigh the overhead of
lower utilization on non-aligned matrices.

7.6 BLAS-3 Performance Evaluation

We present the performance of our custom BLIS implementation using the reference SoC
configuration illustrated in Figure 7.3 and the FireSim FPGA-accelerated simulation frame-
work within Chipyard. The SoCs were configured with a single clock domain running at 1
GHz, resulting in BOOM theoretical peak performance of 2 FLOPS (using a single floating-
point unit with one double- or single-precision fused multiply-add per cycle), a Hwacha
theoretical peak performance of 8 FLOPS (with four fused multiply-adds per cycle), 4 × 4
Gemmini theoretical peak performance of 32 FLOPS (with 16 PEs each performing a single
multiply-accumulate each cycle), and 8 × 8 Gemmini theoretical peak performance of 128
FLOPS (with 64 PEs each performing a single mixed-precision multiply-accumulate each
cycle). Performance evaluation was performed using the BLIS test suite.

Figures 7.7 and 7.11 demonstrate the performance of the GEMM and TRSM kernels on square
matrices. We conclude that using the native Gemmini SDK in a BLIS “sandbox”, we are able
to reach over 90% utilization on GEMM using both 4 × 4 and 8 × 8 Gemmini configurations
for square matrices with dimensions greater than 1000 elements. We also conclude that
using a Gemmini-based TRSM is beneficial for square matrices with a dimension greater than
1500. While Gemmini exhibits low utilization (under 50%) for all the matrix dimensions that
were evaluated, it is still beneficial in terms of absolute performance compared to using the
Hwacha vector unit, exhibiting more than double the performance of Hwacha for matrices
larger than 4000× 4000.

We characterize the performance of additional BLAS-3 kernels such as TRMM (triangular
matrix multiplication) and SYRK (symmetric rank-k update) on square matrices in Fig-
ures 7.14 and 7.15 respectively. We observe that they can achieve 60%-70% utilization on
8 × 8 Gemmini and 80%-90% utilization on 4 × 4 Gemmini. We note that both TRMM and
SYRK benefit from software datatype conversion within the BLIS packing routines rather
than on-the-fly DMA conversion due to their micro-kernel-based implementations. We also
note that the 8× 8 Gemmini spatial array exhibits lower utilization compared to the 4× 4
variant, with an approximate drop of 20%. This is partially due to the challenge of sustaining
latency-hiding when using small fixed-size micro-kernels as the number of arithmetic units
increases.

In term of numerical accuracy, we observe that our kernels implemented using mixed-
precision Gemmini with bfloat16 operands and single-precision accumulation generally ex-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 152

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Dimension (m)

0

20

40

60

80

100

120

GF
LO

PS

8x8 Gemmini Peak

4x4 Gemmini Peak

Hwacha Peak
Rocket/BOOM Peak

strmm

BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion)

BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion)

Figure 7.14: STRMM kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory.

hibit a residual norm 10−6 − 10−7, compared to a residual norm of 10−8 observed when
using full single-precision arithmetic on BOOM or Hwacha. This provides data scientists
with an estimate of the potential loss of accuracy when using Gemmini mixed-low-precision
computation, and demonstrates that in-practice it is within 1-2 orders of magnitude com-
pared to traditional single-precision computation on the evaluated matrices. Due to the use
of single-precision accumulation, we did not observe any cases of result overflow.

7.7 Application-Level Performance

As noted earlier in this chapter and in Figure 7.2, data scientists primarily use libraries and
packages embedded in high level languages such as Python, R, Julia, and Matlab. These
packages then bind their functions to high performance numerical computing libraries which
implement the BLAS and LAPACK interfaces. Therefore, we choose to perform application-

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 153

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Dimension (m)

0

20

40

60

80

100

120

GF
LO

PS

8x8 Gemmini Peak

4x4 Gemmini Peak

Hwacha Peak
Rocket/BOOM Peak

ssyrk

BOOM+Hwacha
BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion)

BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion)
BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion)

Figure 7.15: SSYRK kernel performance on square matrices using a 1 GHz SoC with DDR3
backing memory.

level performance evaluation of our SoC configurations with Gemmini and Hwacha accel-
erators together with our custom BLAS implementation from the perspective of the data
scientists, using the Python SciPy and Scikit-Learn libraries [267, 209]. SciPy and Scikit-
Learn are two of the most popular scientific computing, data analysis, and machine learning
libraries within the Python ecosystem. We use the custom BLAS implementation described
in the previous sections, together with the open-source LAPACK library (version 3.9) as
dynamically linked system libraries within a Linux system based on a Fedora-32 Linux distri-
bution. The Fedora-32 distribution provides a complete Linux package management system,
together with Python and its associated ecosystem. We run this Fedora distribution on top
of our SoC configuration implementation using the FireSim FPGA-accelerated evaluation
platform.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 154

LAPACK Challenges

Since LAPACK is an open-source project which is not optimized for a particular target
hardware architecture, it uses algorithms and blocking parameters which have been found to
provide good, yet potentially non-optimal, performance on a diversity of target platforms.
LAPACK assumes that a target-optimized BLAS library implementation is found in the
system, and that this optimized BLAS library is linked to LAPACK either statically or
dynamically.

We observe that the open-source LAPACK project introduces several challenges to per-
formance tuning of our high-performance software stack based on Gemmini and Hwacha.
We elaborate on four of these challenges:

• Recursive algorithms

• Blocking factors

• BLAS decoupling

• Implementation diversity (and mapping to higher levels of the software stack)

Recursive Algorithms

Recursive matrix algorithms have been proposed as a “cache-oblivious” solution to the prob-
lem of taking advantage of a processor’s memory hierarchy without having the size of the
cache act as an explicit parameter. Thus, cache-oblivious algorithms should be able to
achieve high performance on a diversity of machines without explicit tuning or modification.
This is in contrast to blocked/tiled algorithms which break the problem into blocks based on
explicit block-size parameters derived from the sizes of memories in the memory hierarchy.
Since the open-source LAPACK project does not target an explicit micro-architecture, cache-
oblivious recursive algorithms are a reasonable approach for it to achieve high performance
on a broad spectrum of machines. Thus, multiple core LAPACK kernels are implemented us-
ing recursive or divide-and-conquer algorithms. For example, the xGETRF LAPACK function
for LU decomposition implements a recursive algorithm by Sivan Toledo [258]. Similarly,
the Cholesky decomposition function (xPOTRF) is also implemented as a recursive algorithm.

While recursive algorithms may indeed be beneficial for a simple CPU with a simple
memory hierarchy, they actually present some challenging use-cases for modern architectures
with wide SIMD or vector registers and dedicated accelerators. Most notably, recursive
algorithms continuously decrease the size of the matrices being operated on, often down to a
base case of a 1× 1 matrix. This approach is problematic for hardware units which extract
performance from internal data re-use within the smallest level of the memory hierarchy.
For example, machines with wide SIMD or vector registers assume data re-use within such
registers. Similarly, machines with wide datapaths and arithmetic units assume that data
can fill that datapath in order to obtain full utilization.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 155

Both Gemmini and Hwacha are throughput processors which rely on latency-hiding and
start-up cost amortization. Small operations are very costly using such architectures, and
would likely cause a performance degradation compared to execution on a simple scalar
processor. In the case of Gemmini this disadvantage is amplified even further, since in order
to obtain high utilization from the spatial compute array, Gemmini must reach a minimal
level of data re-use within its private scratchpad and accumulators, which are not exposed
to the recursive algorithm. Hence, when a recursive algorithm calls a large number of small
matrix operations of sizes 1 × 1, 2 × 2, and 4 × 4 towards the base of the recursion, it is
effectively repeatedly thrashing the accelerator.

One potential solution for such a problem would be to choose a larger dimension for the
base case of the recursion – rather than continuing the recursion all the way down to the
base case of size 1, the recursion could stop at a larger matrix size. However, while this will
reduce the level of thrashing of the accelerator, it is still not optimal since the accelerators
are at their peak utilization when the startup cost is incurred a minimal number of times.
Furthermore, choosing a recursion base greater than 1 means that these algorithms would
not be oblivious anymore to tuning parameters, taking away one of their main advantages.

Blocking Factors

The open-source LAPACK project provides the ability to tune the implementation through
tuning parameters collected within a function called ilaenv. These tuning parameters in-
clude the minimal and optimal block size for the target platform, the crossover point between
blocked and unblocked implementations, and the maximum problem size at the base of some
divide-and-conquer computation trees.

At first glance, we might assume that given the latency-hiding properties of both Hwacha
and Gemmini, we would like to increase the blocking parameters to make better use of their
increased computational resources. However, this is not always the case – while some block-
ing algorithms only re-arrange computation, other in-fact require an additional number of
operations in order to re-arrange the computation, hence generating a tuning parameter
tradeoff between floating-point operations and communication. This means that while cer-
tain kernels will benefit from increased block sizes, other will see a performance degradation
due to an increased number of operations. We elaborate on this topic in Chapter 8.

BLAS Decoupling

LAPACK was designed under an assumption of decoupling between the implementation of
the BLAS functions and the implementation of LAPACK functions. However, this decoupling
may obscure some of the underlying assumptions hidden underneath the BLAS layer of
abstraction. For example, in certain cases, a BLAS implementation may set a minimal
matrix size threshold for matrices to be packed in memory or executed on an accelerator,
while allowing smaller matrix sizes to be executed directly on the host scalar processor with

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 156

lower overheads. Knowledge of these thresholds may assist the LAPACK implementation in
setting its tuning parameters, or even making different algorithmic choices.

Conversely, LAPACK function implementations sometimes reduce BLAS-3 operations to
BLAS-2 or BLAS-1 operations but continue using the BLAS-3 API. For example, scalar
multiplication and matrix-vector multiplications can be represented as matrix-matrix mul-
tiplications with one or both dimensions being of size 1. While mathematically equivalent,
their underlying implementations may be very different and incur unnecessary overheads.

While open-source BLAS libraries such as OpenBLAS and ATLAS provide integrated and
better optimized implementations of several LAPACK functions, it is unrealistic for these
libraries to provide an implementation of the entire LAPACK API optimized for a particular
BLAS implementation, due to the sheer number of routines in LAPACK and the algorithmic
complexity of their operations. Commercial numerical libraries such as Intel MKL and Apple
Accelerate provide a larger number of integrated LAPACK routines but may still make use
of some general-purpose routines originating from the open-source LAPACK implementation
which do not require tight integration. A common choice made by several libraries is to only
jointly optimize the implementations of several core matrix decomposition routines such as
LU, QR, and Cholesky deocompositions together with a specific BLAS implementation, since
a large number of LAPACK routines rely on these core decomposition functions, resulting
in a high marginal gain from optimizing these few functions.

Implementation Diversity

LAPACK has a high diversity of implementations for multiple classes of problems. For exam-
ple, the default LU deocomposition implementation uses a recursive algorithm, but there is
also an alternative implementation based on traditional blocking found within the codebase.
Similarly, there are two SVD implementations, and four linear least squares problem imple-
mentations. Implementations may trade off accuracy robustness for performance efficiency,
or simply use different algorithmic techniques which may perform differently on different
hardware architectures (which is especially important when considering reduced-precision
hardware). This diversity of implementations puts an onus both on the end user (the data
scientist) as well as other layers of the software stack, which often set a default implemen-
tation to use. For the majority of end users which are not numerical analysis experts and
are not familiar with the nuances of LAPACK routines, the default driver binding within a
high-level framework such as Matlab, Julia, R or SciPy will be their only interface with the
LAPACK implementation of this routine. As such, implementations which use accelerators
should attempt to optimize for the default implementations used in high-level frameworks.

Matrix Decompositions

Matrix decompositions form the core of many applications in numerical analysis. Linear least
squares problems can be solved by using the QR decomposition, principal component anal-
ysis and low rank approximation are based on the singular value decomposition, and linear

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 157

systems of equations and matrix inversions are typically solved using the LU decomposition.
We focus our analysis on four primary matrix decompositions:

• LU decomposition (A = LU) - factors a matrix A into a product of a lower triangular
matrix L and an upper triangular matrix U .

• QR decomposition (A = QR) - factors a matrix A into a product of an orthogonal
matrix Q and an upper traingular matrix R.

• Singluar value decomposition (SVD, A = UΣV T) - factors a matrix A into a product
of a unitary matrix U , a rectangular diagonal matrix Σ, and a unitary matrix V ∗ (or
V T for real matrices).

• Cholesky decomposition (A = LΣLT) - factors a Hermitian positive definite matrix A
into a product of a lower triangular matrix L and its conjugate transpose L∗ (or LT

for real matrices).

As noted at the beginning of Section 7.7, we evaluate matrix decompositions by using
the SciPy Python package in order to maintain the perspective of the data scientists end-
users. SciPy is a popular scientific computing package within Python, which uses many
LAPACK functions. In many cases, the SciPy library simply acts as a Python binding to
the LAPACK shared library found in the system. Specifically, the SciPy LU decomposition
calls the xGETRF LAPACK function, the SciPy QR decomposition function calls the xGETQRF
LAPACK function, the SciPy Cholesky decomposition function calls the xPOTRF LAPACK
function, and the SciPy SVD function calls the xGESDD LAPACK function.

We note that in some cases, such as SVD, LAPACK provides additional function variants
which can be more accurate or more efficient under certain assumptions. For example. the
xGESVD function is slower than xGESDD but can provide more accurate results than xGESDD

for ill-conditioned matrices. Runtime can also be impacted by the choice between computing
only the singular values vs. also computing the singular vectors. If computing the singular
vectors, xGESDD will compute both the left and right singular vectors, while xGESVD may let
the user choose whether to compute only one side. The SciPy (and NumPy) implementations
of SVD default to using xGESDD due to its faster performance, while other numerical platforms
such as Matlab, Octave, and Julia default to xGESVD. For advanced users, SciPy provides an
optional function argument to explicitly call an alternative LAPACK driver routine.

Figure 7.16 illustrates the performance of several matrix decompositions run in SciPy
on a 1600× 1600 matrix using SoC configurations consisting of the BOOM core, a Hwacha
vector unit, a 4×4 Gemmini accelerator and an 8×8 Gemmini accelerator. As expected, we
observe that the Hwacha and Gemmini accelerators provide noticeable speedups on matrix
decomposition which rely heavily on BLAS functions, and specifically level 3 BLAS functions.
The Hwacha vector unit yields a 3.5×−3.8× speedup over BOOM for LU, QR and Cholesky
decompositions, while Gemmini provides a 4.6×−5× speedup for a 4× 4 configuration and
5.3×−5.9× speedup for an 8× 8 configuration.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 158

Cholesky LU QR SVD
0

20

40

60

80

100

120
Se

co
nd

s

5.0
10.4

42.1

132.2

1.4 2.8

11.0

70.5

5.5
2.3

8.4

65.8

5.4
1.9

7.2

62.6

BOOM
BOOM + Hwacha

BOOM + Hwacha + 4x4 BF16 Gemmini
BOOM + Hwacha + 8x8 BF16 Gemmini

(a) Execution time of 1600 × 1600 matrix decompositions from the SciPy package using custom
BLAS implementations utilizing SoC configurations of the Hwacha and Gemmini accelerators.

Cholesky LU QR SVD
0

1

2

3

4

5

6

Sp
ee

du
p

1.0 1.0 1.0 1.0

3.5
3.7

3.8

1.9

0.9

4.6

5.0

2.0

0.9

5.3

5.9

2.1

BOOM
BOOM + Hwacha

BOOM + Hwacha + 4x4 BF16 Gemmini
BOOM + Hwacha + 8x8 BF16 Gemmini

(b) Speedup (compared to BOOM baseline) of 1600× 1600 matrix decompositions from the SciPy
package using custom BLAS implementations utilizing SoC configurations of the Hwacha and Gem-
mini accelerators.

Figure 7.16: Matrix decomposition performance using custom accelerator BLAS.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 159

Notably, we observe that the SoC configuration with the Gemmini accelerator results
in a slowdown of the Cholesky decomposition as opposed to the expected speedup (and
the speedup observed when using the Hwacha accelerator). This is an example that com-
bines multiple challenges of mapping LAPACK and BLIS to accelerators on custom SoCs.
Specifically, the recursive nature of the Cholesky decomposition in the default open-source
LAPACK implementation generates significant overheads to the micro-kernel-based BLIS im-
plementation of the symmetric rank-k update function (SYRK) due to the small sizes of the
recursive base calls compared to the size of the minimal micro-kernel operands. In contrast
to the LU decomposition (GETRF which is also implemented as a recursive algorithm), the
Cholesky decomposition relies heavily on the SYRK function rather than the GEMM function,
as it takes advantage of the symmetry of the matrix. While SYRK is generally considered to
be more efficient than GEMM, and consumes less operations, it is not implemented natively by
our accelerator and not supported directly by the accelerator controller. Therefore, the SYRK

BLAS function is implemented based on the BLIS loops and the GEMM micro-kernel within
BLIS. However, since the minimal size of this micro-kernel is on the order of the Gemmini
accumulator SRAMs, the recursive algorithm thrashes the micro-kernel by calling it with
fixed-size operands with a large number of unused zeros. In contrast, the LU decomposition
implementation uses a direct implementation of the GEMM kernel and is able to utilize Gem-
mini’s native hardware zero-padding, therefore not generating any micro-kernel overheads.
Similarly, the Hwacha-based implementation performs better than the Gemmini-based im-
plementations since Hwacha micro-kernel dimensions are smaller than Gemmini’s. In this
evaluation, the Hwacha micro-kernel dimensions are 16 × 32 while Gemmini micro-kernel
dimensions are 64× 64. While both accelerators require data re-use in order to sustain their
arithmetic units, Gemmini’s larger number of arithmetic units requires larger micro-kernel
dimensions in order to sustain utilization higher than 90%. One possible avenue to improve
the performance of our Gemmini-based micro-kernels would be to reduce the micro-kernel
dimensions, motivating better support in Gemmini for smaller matrices. We further discuss
these topics in Chapter 8. Nevertheless, we conclude that a micro-kernel-based approach to
BLAS does not present performant results when used together with throughput accelerators
and recursive algorithms resulting in small matrix operands, to the extent that in certain
cases it presents a significant slowdown compared to usage of only the CPU.

We also observe that the speedup obtained for SVD is generally lower than the speedup
obtained for other decompositions, ranging between 1.9×−2.1× for all three evaluated con-
figurations, compared to 3.5 × −5.9× for Cholesky, LU, and QR decompositions. This is
since only 50% of operations in SVD can be expressed as BLAS-3 operations, as bidiagno-
lization can be expressed only as BLAS-2 operations rather than BLAS-3 [79]. This is in
contrast to LU, QR, and Cholesky decompositions in which the majority of operations can
be expressed as BLAS-3 operations.

We confirm this conclusion by analyzing the observed performance results with respect
to Amdahl’s law. When we analyze the results in relation to Amdahl’s law, we observe that
the accelerators achieve 80%-100% of the maximal theoretical speedup available through
acceleration of BLAS-3 operations. Table 7.3 presents an analysis of the speedup limit

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 160

Kernel p* sH*
Hwacha
Speedup

Limit
sG4*

4× 4 Gemmini
Speedup

Limit
sG8*

8× 8 Gemmini
Speedup

Limit
LU Decomp. 0.86 7× 3.8× 25× 5.73× 120x 6.8×
QR Decomp. 0.87 7× 3.93× 25× 6.07× 120x 7.291×
SVD 0.54 7× 1.9× 25× 2.03× 120× 2.13×

Table 7.3: Speedup limits based on Amdahl’s Law for 1600x1600 matrix factorizations.

*Both the s and the p parameters are based on empirical measurements. The speedup com-
pared to BOOM is based on empirical measurement of the BLAS GEMM implementations,
and is therefore greater than the number of additional arithmetic units since the BOOM
baseline BLAS implementation achieves 1 GFLOPS on GEMMs, representing only 50%
utilization of its single FPU at 1 GHz.

based on Amdahl’s law. The proportion of computation being sped-up (the p parameter)
has been obtained through empirical profiling of the kernel on the BOOM processor. The
theoretical speedup is computed based on Amdahl’s law: 1

1−p+ p
s
. Unsurprisingly, we observe

the diminishing returns of using the more powerful matrix accelerators as speedup is bounded
by the fraction of matrix multiplications within the end-to-end workloads (which in this case,
are the matrix decompositions).

SciPy and Scikit-Learn Applications

We continue evaluating the performance of the accelerated data analysis applications from
the perspective of the end-users, the data scientists, using the SciPy Python package, and
further add the Scikit-Learn Python package. Scikit-Learn is a popular machine learning and
data analysis package within the Python ecosystem [209]. It is built on top of the SciPy and
NumPy libraries and provides implementations of fundamental data analysis and machine
learning operations such as clustering algorithms, linear models, dimensionality reduction
and matrix decompositions, random projections, support vector machines, mixture models,
and others.

Figure 7.17 illustrates the performance of several data analysis and modeling work-
loads running on the UCI Human Activity Recognition dataset [18]. This dataset in-
cludes numerical measurements of smartphone embedded inertial sensors from 30 subjects
performing human activities (walking, sitting, standing, etc.). The dataset is split into
a training partition and a test partition, with the test partition being composed of 561
features (columns) and 2948 samples (rows). Specifically, we evaluate the linear system
solve (scipy.linalg.solve, based on LAPACK xGESV) and linear least squares (based on
LAPACK xGELS) functions from the SciPy package, and the linear regression, Ridge regres-
sion, PCA, and K-means clustering functions (sklearn.linear model.LinearRegression,

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 161

Linear
Least

Squares
(GELS)

Linear
Regression

Linear
System
Solve

(GESV)

PCA Ridge
Regression

K-means
Clustering

0

10

20

30

40

50

Se
co

nd
s

21.1

12.2 11.1

3.8 3.8

52.5

5.5
6.8

3.4
2.0 1.0

32.8

4.2
6.4

2.8
1.3

8.5

29.1

3.6
6.4

2.5
1.1

7.6

27.2

BOOM
BOOM + Hwacha

BOOM + Hwacha + 4x4 BF16 Gemmini
BOOM + Hwacha + 8x8 BF16 Gemmini

(a) Execution time of data analysis functions from the SciPy and Scikit-learn packages, analyzing
the UCI human activity recognition dataset, using custom BLAS implementations with the Hwacha
and Gemmini accelerators.

Linear
Least

Squares
(GELS)

Linear
Regression

Linear
System
Solve

(GESV)

PCA Ridge
Regression

K-means
Clustering

0

1

2

3

4

5

6

Sp
ee

du
p

1.0 1.0 1.0 1.0 1.0 1.0

3.8

1.8

3.3

1.9

3.6

1.6

5.0

1.9

3.9

3.0

0.4

1.8

5.9

1.9

4.4

3.4

0.5

1.9

BOOM
BOOM + Hwacha

BOOM + Hwacha + 4x4 BF16 Gemmini
BOOM + Hwacha + 8x8 BF16 Gemmini

(b) Speedup (compared to BOOM baseline) of of data analysis functions from the SciPy and
Scikit-learn packages, analyzing the UCI human activity recognition dataset, using custom BLAS
implementations with the Hwacha and Gemmini accelerators.

Figure 7.17: Application-level performance using custom accelerator BLAS.

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 162

sklearn.linear model.Ridge, sklearn.decomposition.PCA, sklearn.cluster.KMeans,
respectively) from the Scikit-Learn package.

We observe a difference between the speedup of the linear least squares function based
on GELS, and the linear regression function in Scikit-Learn, despite the fact that a linear
regression is an ordinary least squares problem. While the linear least squares function in
SciPy using the xGELS driver exhibits a 3.8 × −5.9× speedup with the accelerators, the
linear regression function in Scikit-learn is limited to a speedup of only 1.8 × −1.9×. The
Scikit-Learn linear regression function internally calls the SciPy linear least squares function
(scipy.linag.lstsq). The default LAPACK driver for this function is xGELSD, which in
fact uses the more robust SVD to compute the solution to the linear least squares problem,
as opposed to a more efficient QR decomposition which is used in the LAPACK xGELS

driver function. Specifically, while SciPy provides an option to use alternative LAPACK
drivers such as xGELSY (uses complete orthogonal factorization) or xGELSS (non-divide-and-
conquer SVD), it does not expose the option to use the xGELS LAPACK driver as part of
the scipy.linag.lstsq function (the xGELS function is exposed independently in SciPy,
as part of the LAPACK drivers module in SciPy, which was also used in our evaluation
for comparison). This is since xGELS can be used only for full-rank matrices, while the
scipy.linag.lstsq targets a more general case, which may include rank-deficient matrices.
Hence, the linear regression function is limited to the speedup enabled by SVD (which was
up to 2×), while the xGELS-based least squares function exhibits speedups similar to the QR
decomposition (3.8×−5.9×). This example demonstrates the importance of understanding
the complete software stack from the perspective of the data scientists, and how domain
knowledge can be lost across the software stack which can result in performance implications.

Furthermore, we observe how problems relating to kernel size and recursive algorithms
propagate through the software stack. For example, the Ridge regression function in Scikit-
Learn uses by default the Cholesky decomposition as a closed-form solution to the regularized
least squares problem (since for the Ridge Regression, regularized form of normal equations
(ATA+λI)x = ATY is used, with (ATA+λI) being positive definite). While it is possible to
use alternative solvers within the Ridge regression function (such as SVD or dedicated sparse
solvers), making this selection requires an understanding of the source of the performance
anomaly, which traces back to the micro-kernels of the BLIS implementation using custom
accelerators.

Interestingly, the PCA in Scikit-learn exhibits significantly greater speedups when using
the accelerators, compared to the speedups of the SVD in SciPy. Specifically, the SciPy
SVD demonstrates a speedup of 1.9 × −2.1×, which was limited by Amdahl’s law due to
bidiagnolization, while the Scikit-learn PCA demonstrates a 1.9 × −3.4× speedup when
using the accelerators. At first impression, this should be a surprising result, since a PCA
performs the exact same operations as an SVD (together with some additinal data centering).
However, for certain scenarios, Scikit-learn uses a randomized SVD rather than a full SVD,
when the number of desired principal components is small and the data matrix is large
enough. This was indeed the case for our example workloads, since we extracted only five
principal components from a relatively large data matrix. In a randomized SVD, the data

CHAPTER 7. SW CUSTOMIZATION FOR NUM. DATA ANALYSIS 163

matrix is projected to a smaller space by multiplying it with a smaller random projection
matrix (based on probabilistic guarantees of random linear algebra), and then the SVD is
performed only on the much smaller projected matrix. Therefore, the speedup we observe is
a mix of the limited speedup obtained from the small SVD, together with the greater speedup
obtain from the matrix multiplication during the random projection. This is an example of
how integration of accelerators within low levels of the general-purpose numerical computing
software stack can present speedups through a variety of channels, rather than only through
dedicated functions with customized implementations optimized for the accelerator.

Finally, within the context of K-means clustering, we have found datatype precision to
be a contributing factor to limited speedup. The Lloyd algorithm for K-means clustering
uses matrix multiplications to compute the pairwise distances between the samples and the
centroids during each iteration of the algorithm. As such, the higher the number of clusters,
the higher the arithmetic intensity would be. However, empirical profiling indicates that
within the internal implementation of the algorithm there is use of both single-precision of
double-precision matrix multiplications, likely due to datatype inference within the Python
implementation. Since the BLAS implementation for our custom SoC configuration was
designed to accelerated only single-precision floating-points, the obtained speedup does not
apply to the full matrix-multiplication potential within the algorithm.

In conclusion, we observe that our custom BLAS implementation utilizing SoC accel-
erators is able to relay the accelerator capabilities up the numerical computing software
stack, providing application-level speedup to user without a need to change application
code. However, we also conclude that many potential speedup gains are lost while propagat-
ing up the software stack, due to conservative default choices of function implementations
and datatype precisions. Finally, we note that from the perspective of supplemental-use
applications, the use of template-based and micro-kernel-based BLAS implementations is
beneficial, but exposes the intricacies of integration between layers across the software stack,
such as the problematic interaction with recursive algorithms. This motivates more robust
support within accelerators for smaller micro-kernels, which will be discussed in the next
chapter.

164

Chapter 8

Hardware/Software Co-Design for
Numerical Data Analysis

Numerical data analysis has been an important workload in scientific computing for many
years but was not of enough economic importance to justify custom acceleration in mod-
ern computing platforms. However, with the emergence of ubiquitous deep learning on all
new compute platforms, customizing deep learning accelerators to meet the requirements of
numerical data analysis applications could prove beneficial. Therefore, we explore HW/SW
co-design of numerical data analysis workloads with deep learning accelerators to identify
customization opportunities to better support numerical data analysis applications on this
class of accelerators.

8.1 Hardware/Software Co-Design for

Supplemental-Use

The number of dedicated accelerators on SoCs has steadily increased in the past decade.
Specialized accelerators comprise a major part in SoC architectures, accounting for over 60%
of the area in recent SoC designs [236]. A primary reason for the continuously increasing
number of accelerators on SoCs is their energy and power efficiency, used as a countermeasure
against the limits of dark silicon [84]. At the same time, these accelerators experience
extremely low utilization profiles (with respect to absolute time), often characterized by
bursts of usage, due to their single-function/few-function design points limiting their usage
to a handful of applications. Since accelerators are often the most energy efficient computing
unit to perform their particular type of computation on the SoC, we would like to increase
the utilization of such accelerators if possible by expanding their domain. Together with a
predicted ceiling (or wall) in further accelerator specialization [92], it becomes necessary to
explore HW/SW co-design methods for increasing the utility of SoC accelerators through
supplemental-use applications. We would therefore like to explore whether there are certain
hardware or software features that could be customized in existing SoC accelerators to make

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 165

them better suited for supplemental use. Specifically, we would like to evaluate potential
modifications or customizations to DNN accelerators in SoCs to improve their performance
for numerical data analysis workloads.

8.2 Matrix Engines for Numerical Data Analysis vs.

DNNs

Numerical data analysis methods and tools typically rely on several core numerical linear
algebra problems such as exact or least-squares solutions of linear systems, together with
basic matrix operations such as matrix multiplications and matrix factorizations. At first
glance, this makes them appear quite amenable for execution using deep learning acceler-
ators. However, while both DNNs and the linear algebra kernels at the basis of numerical
data analysis workloads are dominated by matrix-matrix operations, these differ in several
key characteristics which impact the efficient use of matrix engines within DNN accelerators
for such a mix of workloads.

Matrix Shapes

The first difference between DNNs and the broader category of numerical data analysis
workloads is in the diversity of matrix shapes and sizes that need to be processed by the
accelerator. In order to obtain high-performance in processors with a memory hierarchy,
optimized linear algebra library implementations use blocking techniques or recursive imple-
mentations to reduce communication across the memory hierarchy. The most well-known
example of a blocking technique is the use of cache blocking through outer-products in
matrix multiplication. However, as seen in Chapter 7, blocking techniques and recursive
implementations are also used in more complex matrix decompositions such as Cholesky,
LU, and QR factorizations. In LAPACK, the goal of blocking techniques is generally to
convert a series of BLAS-2 operations (matrix-vector operations) into BLAS-3 operations
(matrix-matrix operations) by delaying and grouping certain steps of the algorithm. BLAS-
3 operations generally have a higher arithmetic intensity than BLAS-2 operations, which
enables higher data re-use and reduced communication within the algorithm. However, the
matrix operations that result from these communication-reduction techniques can differ in
their shapes and sizes compared to matrices found in typical DNN models. In most blocked
algorithms, matrix sizes and shapes can be partially controlled through tuning parameters.
DNN models and matrix factorizations both have tuning parameters and hyperparameters
which can impact data re-use, communication, and the arithmetic intensity of matrix-matrix
operations – in DNN models, the batch size (batching together several input feature-vectors)
acts as a tuning parameter that can be used to increase arithmetic intensity, while in ma-
trix factorizations the block size is the typical tuning parameter used to control arithmetic
intensity and data re-use.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 166

To demonstrate the difference in matrix shapes and arithmetic intensity between DNNs
and numerical data analysis methods, we study the distribution of arithmetic intensity of ma-
trix multiplication operations in a typical benchmark computer vision DNN such a ResNet-50
[118] compared to common matrix decompositions used in data analysis applications, per-
formed on a data matrix from the UCI Human Activity Recognition dataset [18]. The
ResNet-50 DNN model consists of 53 convolution layers and one fully connected layer, op-
erating on images from the ImageNet dataset. The Human Activity Recognition dataset
consists of 561 numerical attributes (columns) for over 10000 samples (rows). Data matrices
often have a “tall-and-skinny” shape due to having large amounts of observations (rows)
but a small number of attributes as a result of limited sensor capabilities or other feature
measurement facilities. Figure 8.1 illustrates the normalized distribution of arithmetic in-
tensity (as defined in Section 2.4) of matrix-matrix operations (BLAS-3) for ResNet-50 with
a default batch size of 1, and the default LAPACK implementations of SVD and QR de-
composition (based on blocked Householder transformations) with a default block-size of
32.

We observe that despite matrix-matrix operations being the dominant compute kernel
within all the workloads, the shapes and sizes of the matrices represented in the workloads
result in very different arithmetic intensities. The arithmetic intensities of matrix multipli-
cation operations within the matrix decomposition workloads are noticeably lower compared
to the arithmetic intensities of matrix multiplication within the DNN inference workload.
A deeper analysis into the shapes of the matrices within each of the workloads (using a
notation of M ×K times K × N matrix operations) reveals a high diversity of shapes and
sizes within the matrix decompositions, compared to a more limited variety within the DNN
model. For example, in the QR decomposition we observe many operations with small values
of M and N but large values of K, as well as operations with a large value of M but with
small values of K and N . The triangular matrix multiplication (TRMM) operations in the
matrix decompositions particularly represent a series of smaller operations, with the trian-
gular matrix dimensions being equal to the block size (32) and multiplied by relatively small
matrices. In contrast, for the ResNet-50 Inference workload we observe that the dimensions
of the majority of layers are of the same order of magnitude, with exceptions being the first
few layers exhibiting large values of M with small values of K and N , and the last few layers
exhibiting small values of M with larger values of K and N .

Increasing the batch-size and block-size tuning parameters can increase the respective
arithmetic intensities of both workload types. Nevertheless, tuning parameters comes with
trade-offs than can impact different aspects of execution. In the case of DNN models,
increasing the batch size improves data-reuse, which can increase inference throughput, but
at the same time batching may impact inference latency of a single image due to the increased
number of operations, and in cases with small numbers of inputs (for example, classification
of a single image) due to the need to wait for a full batch of inputs. In some deployment
scenarios, there might not be sufficient input data for a batch size greater than one (for
example, low power sensor deployments with occasional wake-up events). This tradeoff in
DNN input batching can be considered a system-level tradeoff that depends only on the

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 167

0 20 40 60 80 100
Arithmetic Intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Workload
ResNet-50
QR Decomp.
SVD

Figure 8.1: Arithmetic intensity histogram of BLAS-3 operations (GEMM, TRMM) within
a batch-1 ResNet-50 DNN forward pass, and a blocked-Householder QR decomposition and
SVD of the UCI Human Activity Recognition training dataset with block-size 32 (the LA-
PACK default). Operands are 16-bit floating-point datatypes, and results are 32-bit floating-
point datatypes. Density (or “frequency density”) is defined as the frequency per unit for
a particular range of arithmetic intensities (frequency/width), providing for normalized
histograms across different workloads.

deployment environment, since the total number of compute operations grows in proportion
to the batch-size tuning parameter. Hence, server environments can provide large batches
without a significant impact on quality of service, while certain edge deployment scenarios
are more limited, as also noted by the MLPerf benchmark [217].

In contrast, in matrix factorizations the block-size tuning parameter may impact the total
floating-point operation count that the blocked algorithm performs on the exact same input.
As such, it is no longer simply a system-level tradeoff, but rather has a direct impact on the
efficiency of an algorithm (in terms of run-time and number of operations) for a particular

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 168

input matrix. This generates a tradeoff between the desire to increase the block size in order
to achieve higher utilization of the matrix engine in the DNN accelerator through higher
arithmetic intensity vs. potentially increasing the operation count so much that it outweighs
the benefits of faster and more efficient execution on the accelerator. We demonstrate this
tradeoff by using the blocked-Householder QR decomposition algorithm. The majority of
operation count (FLOP count) analysis of blocked Householder QR decomposition assume
that the block size b is significantly smaller than the matrix dimensions m and n, and
therefore focus on the highest order operation count, leading to the well-known expression
of 2mn2 − 2n3/3 FLOPs. A more detailed analysis of the expression for operation count
in a blocked Householder QR decomposition, which takes into account the low-order terms,
reveals the dependency on the block size parameter b when it is not orders of magnitude
smaller than the matrix dimensions.

We follow the blocked Householder QR algorithm, which uses the Q = I − Y TY T rep-
resentation to represent the orthogonal matrix Q [231]. A blocked Householder QR de-
composition with a block size of b requires approximately n/b steps (for a sufficiently large
m), with each step performing a QR panel factorization and a trailing matrix update. The
jth blocked Householder QR step with a block size of b requires a panel factorization cost-
ing 3b2(m − jb) − 2b3/3 FLOPs [28]. Then, in order to perform a trailing matrix update
I−Y TY T (where T is a triangular matrix), the LAPACK function xLARFB uses two GEMMs
and three TRMMs. The first GEMM multiplies a b×(m−jb) matrix by a (m−jb)×(n−jb)
matrix, resulting in a b × (n − jb) matrix. The second GEMM multiplies a (m − jb) × b
matrix by the previous b× (n− jb) result matrix, resulting in a (m− jb)× (n− jb) matrix.
Therefore, in total, GEMMs contribute 4b(m−jb)(n−jb) FLOPs to the total FLOP count of
the jth step. The TRMMs contribute another 2b2(n− jb)/2 each, resulting in an additional
3b2(n− jb) FLOPs in the jth step. Since a blocked Householder QR decomposition requires
n/b steps, an approximate expression for the total number of FLOPs is:

SHouseQR(b) =

n
b∑

j=0

[
3b2(m− jb)− 2

3
b3 + 4b(m− jb)(n− jb) + 3b2(n− jb)

]
(8.1)

= 2mn2 − 2

3
n3 + 5bmn+

3

2
bn2 +

3

2
nb2 + 3b2m− 2

3
b3 (8.2)

Under an assumption that m,n >> b, we observe that this expression indeed matches
the high-order result of 2mn2−2n3/3 FLOPs. In the open-source LAPACK implementation,
the default block size parameter for QR decomposition and SVD is 32. This default block
size has been empirically found to work well for a large number of processors, but can also be
tuned for other processors if needed using the LAPACK ilaenv parameter tuning function.
If we plug the block size value of 32 to the expression in Equation 8.2, we see that a block size
of 32 contributes approximately an additional (160mn+48n2 +1.5 ·103 ·n+3 ·103 ·m−2 ·104)
FLOPs (in addition to the 2mn2−2n3/3 high-order operations), which for matrix dimensions

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 169

greater than 1000 are indeed low-order terms, making this a worthy overhead for the potential
benefit of reduced communication and greater data re-use.

However, the benefit of using matrix engines in DNN accelerators for such workloads
depends on the utilization that can be extracted from the accelerators, and in-turn, this
utilization depends on the arithmetic intensity of each of the matrix operations which get
executed on the accelerator. Since the dimensions of the GEMM operations in the blocked
Householder QR decomposition are b× (m− jb) times (m− jb)× (n− jb) and (m− jb)× b
times b × (n − jb), a small b dimension limits the arithmetic intensity and data re-use
within a dedicated matrix multiplication accelerator, particularly within the first GEMM in
each Householder step. A simple way to increase the utilization of the accelerator would
be to increase the arithmetic intensity of the factorization by using a larger block size.
However, as noted by this analysis and the expression in Equation 8.2, this would also
increase the number of operations that need to be performed, potentially negating any gains
from increased arithmetic intensity. Specifically, if b is not at least an order of magnitude
smaller than m and n, all the terms involving b become high-order cubic terms. For example,
if we increase the block size to 128 and plug it into the equation, we see that the blocking
overhead grows to an additional (640mn+192n2 +2.5 ·104 ·n+5 ·104 ·m−2 ·106) operations,
which means that now the matrix dimensions need to be at least of order 104 to overcome
the additional FLOPs incurred by a block size of 128. In Chapter 7, we observed that the
custom BLAS implementation using 8× 8 Gemmini requires matrix dimensions of over 1000
to reach its peak utilization, demonstrating the challenge of picking a block size that would
be able to efficiently utilize the matrix accelerator while maintaining low blocking overheads
to achieve optimal performance. Zhang et al. [286] make a similar observation within the
context of NVIDIA GPU tensor cores, and demonstrate the decrease in performance beyond
a certain optimal block size tuned for NVIDIA GPUs.

The difference in the arithmetic intensity distribution profiles of matrix decomposition
workloads vs. DNN inference workloads exposes nuances in the co-design and implemen-
tation of high-performance numerical data analysis algorithms and hardware matrix en-
gines. Figure 8.2 illustrates the roofline model [277] of an 8×8 matrix engine (with bfloat16
operands and single-precision accumulators), compared to reference vector units (128-bit
datapath, and 256-bit datapath) and a scalar CPU. The arithmetic intensity of matrix mul-
tiplication for several matrix shapes is noted on the diagram for reference, with the shared
dimension remaining constant (1000), while increasing the product dimensions (emulating
increasing the block size tuning parameter). As Figure 8.2 indicates, while blocking factors
of 32 may well be within the realm of compute-bound problems for traditional CPUs and
vector units, modern matrix engines which were designed for deep learning models require a
higher level of arithmetic intensity to enable peak utilization. As such, blocking factors of 32
can be on the boundary of the bandwidth-bound regime for certain problem sizes, making
them sensitive to scheduling decisions and memory system dynamics.

Heterogeneous matrix shapes and sizes come into play not only within matrix decompo-
sition algorithms, but also within higher-level layers of the data analysis software stack. For
example, even in cases which require performing simple matrix multiplication of a full data

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 170

2 2 20 22 24 26 28

Arithmetic Intensity [FLOP/byte]

101

102

Pe
rfo

rm
an

ce
 [F

LO
P/

cy
cle

]

16
x1

00
0

X
10

00
x1

6
GE

M
M

32
x1

00
0

X
10

00
x3

2
GE

M
M

64
x1

00
0

X
10

00
x6

4
GE

M
M

12
8x

10
00

 X
 1

00
0x

12
8

GE
M

M

25
6x

10
00

 X
 1

00
0x

25
6

GE
M

M

51
2x

10
00

 X
 1

00
0x

51
2

GE
M

M
10

24
x1

00
0

X
10

00
x1

02
4

GE
M

M

8x8 BF16 Array, 8 Bytes/cycle BW
Scalar CPU reference
4-wide vector unit reference
8-wide vector unit reference

Figure 8.2: Theoretical peak performance roofline model for a Gemmini matrix engine, in
comparison to reference CPU and vector units.

matrix, such as in the case of k-means clustering, “tall-and-skinny” data matrices can lead to
low accelerator utilization due to lower arithmetic intensity of the multiplication operation
when compared to square matrices.

Matrix Sizes

Besides cache-blocking, alternative communication-reduction techniques often used for ma-
trix decompositions are recursive algorithms. For example, the LAPACK implementation
of LU decomposition uses Sivan Toledo’s recursive algorithm [258]. A technique proposed
for QR decomposition by Zhang et al. to address the problem of limited block sizes on
GPU Tensor Cores is also recursive in nature [286]. Recursive algorithms, while providing
some sense of spatial and temporal locality, expose a different set of challenges. Recursive
algorithms can result in a large number of small matrix-matrix operations, especially when

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 171

they get close to the base of the recursion stopping condition. Small matrix-matrix opera-
tions result in low arithmetic intensity since the surface-to-volume data re-use ratio decreases
significantly in small matrix dimensions. Moreover, small matrix-matrix operations add an
additional challenging aspect beyond arithmetic intensity, as the size of the matrix opera-
tion may be smaller than the size of the compute array within the DNN accelerator matrix
engine. In fact, a quick analysis of the default LU decomposition implementation within
LAPACK on a 1600 × 1600 matrix observed 1500 GEMM calls where at least one of the
operand matrices was smaller than 16 × 16, while having only 100 GEMM operation calls
where both operand matrices are larger than 16× 16. When one of the operand matrices is
smaller than the size of the compute array, the accelerator is fundamentally under-utilized,
making memory operations and arithmetic intensity a second-order consideration when ad-
dressing accelerator utilization. This type of utilization deficiency is simple to resolve by not
running these GEMM operations on an accelerator, but rather running them on the CPU.
However, the decision regarding which hardware type to run a GEMM operation on must
be considered within the relevant software stack.

Small matrices are not only the domain of recursive algorithms. Even within blocked
matrix decomposition algorithms, the sizes of the matrix-matrix operations often get smaller
as the algorithm progresses and the trailing matrix gets smaller. Even in cases where the
small matrices are larger than the size of the compute array, small matrices can be especially
challenging for accelerators which use latency-hiding techniques to support high-throughput.
This is since the start-up latency cost of moving operand data from main memory into the
accelerator cannot get amortized across large matrix sizes and cannot be hidden using double
buffering techniques, making such latency-hiding methods ineffective.

Small matrices have been an area of research within the high-performance computing
research community, with libraries such as LIBXSMM [119] and BLASFEO [91] highlighting
high-performance BLAS operations on small matrices, generally defined as matrices with
dimensions M,N,K where (MNK)1/3 < 128. Such libraries are often meticulously hand-
scheduled for various matrix dimensions, with a mix of code generation and manually unrolled
loops. LIBXSMM also includes support for the Intel AMX matrix extensions.

In order to obtain maximal utilization using matrix engines within both compute-bound
and memory-bound regimes across a diversity of matrix shapes and sizes, the scheduling
of compute and memory operations on these accelerators may need to change or be better
customized to meet the requirement of this range of workloads. In Section 8.4 we discuss
how the scheduling of these operations within a DNN accelerator controller can impact the
utilization of the accelerator across different matrix shapes and sizes.

Transposition and Data Layout

Numerical linear algebra operations often require matrix transpositions. For example, the
singular value decomposition factorizes a matrix to UΣV T , which means that extracting the
right-side singular vectors may require transposition. Similarly, the blocked Householder
QR decomposition, which uses the I − Y TY T representation of a product of Householder

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 172

transformations, requires a transposition of the triangular matrix T . In fact, as noted in
Chapter 7, the matrix operand arguments in the BLAS interface definitions are accompanied
with flags indicating whether they should be transposed or not, in order to accommodate
such scenarios.

The vast majority of deep learning inference workloads do not require any support for
transposition. Weight matrices are often efficiently laid-out in memory since they are known
during compilation time, and activation matrices propagate through the network in their
native layout. As a result, many deep learning accelerators do not need and do not have
custom hardware support for matrix transposition. Nevertheless, training of deep neural
networks typically does require matrix transpositions as part of the backwards pass of back-
propagation, since the computation of partial derivatives for gradient descent may require
such transpositions. Hence, accelerators which target DNN training such as the TPUv2 and
TPUv3 have added zero-overhead hardware support for matrix transposition [148].

Transposition is also necessary when using software libraries which assume different data
layout formats. For example, while the C/C++ language assumes data is stored in row-
major layout, the Fortran BLAS API assumes data is stored in a column-major layout.
Such discrepancies can often be resolved through appropriate usage of transposition flags.

Transposition is a memory-intensive operation, since it consists only of data movement
with no actual arithmetic computation. However, through efficient use of the accelerator
memory hierarchy, zero-overhead hardware transposition can become a simple and efficient
operation, as demonstrated with Gemmini in Chapter 7. Figure 7.10 illustrates that a
simple hardware transposer unit can provide complete overlap of operations to match the
throughput of the arithmetic systolic array. By toggling the direction of dataflow within the
transposer array (using the dir direction-selection signal), the transposer can select whether
data flows from top-to-bottom or from left-to-right. The transposer switches the direction
of dataflow every DIM cycles, with this switch of direction acting as the transposition opera-
tion. The use of a 2-D transposer array enables complete overlap between two transposition
operations since the input of the second transposition is being fed into the array while the
transposed result of the first transposition is fed out of the array. This simple yet effective
hardware unit allows the Gemmini DNN matrix engine to handle a wide variety of matrix
layouts and transposition combinations, supporting the diverse requirements of numerical
data analysis applications as well as deep learning inference and training.

8.3 Matrix Engine Controllers

DNN accelerators typically need to utilize a controller in order to manage memory trans-
actions and compute resources within the accelerator. These controllers can span the spec-
trum between full programmable processors to fixed hardware finite state machines (FSM),
including potential hierarchies of controllers within an accelerator, enabling different levels
of programmability [51, 50, 238, 149, 241].

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 173

These controllers typically divide large, arbitrarily-sized matrix operations into a series of
smaller operations which can be scheduled onto small fixed-size compute arrays. For example,
the Gemmini accelerator is equipped with a FSM which divides a large matrix multiplication
problem (defined as C = AB+D), into a sequence of smaller matrix multiplications executed
on a spatial array (of dimension DIM ×DIM). Each of the smaller operations, which we
refer to as individual “Gemmini commands”, can be at most DIM × DIM large, and is
issued to either an execution queue, which performs these small matrix multiplications, or a
load or store queue, which performs DMA transactions.

Instead of a FSM, a small fully-programmable processor can be used to schedule matrix
multiplication and memory operations with software flexibility, but the software running
on such processors typically lacks the dynamic runtime information that is easily available
to hardware-managed controllers. For example, a hardware-managed controller can easily
schedule matrix multiplication operations to avoid dependencies on memory operations which
are currently stalling, while software-schedules will require more complex techniques to react
to such stalls. Furthermore, programmable software schedules can often face bottlenecks due
to limited instruction issue bandwidth by the control processor and software overheads of
address calculation and command configuration.

The Gemmini accelerator can be programmed by both using fine-grained instructions sent
by a software-programmable control processor, as well as by using coarse-grained instructions
which use the FSM-based controller. The key difference between the Gemmini fine-grained
instructions and Gemmini coarse-grained instructions is the size of the matrices they operate
on: Gemmini fine-grained instructions operate on matrices of the size of the spatial compute
array (DIM×DIM , the granularity of Gemmini commands), while Gemmini coarse-grained
instructions can operate on variable-size matrices up to the size of the accelerator private
scratchpad memory. As such, the coarse-grained instructions require the issue and scheduling
of a series of fine-grained commands. The hardware controller is responsible for issuing and
scheduling fine-grained compute and memory micro-operations (commands), maintaining
dependency ordering and coherency, and ensuring forward progress of the program.

The software overheads of address computation, custom instruction configuration and
encoding, and control flow, often require high instruction-issue bandwidth by a software-
programmable control processor. In contrast, a hardware FSM can compute multiple ad-
dresses and make multiple scheduling decisions in parallel in hardware, as well as efficiently
encode and configure custom operations with zero-overhead. Furthermore, even with suffi-
cient instruction-issue bandwidth, control software needs to include careful software pipelin-
ing, loop unrolling, and instruction interleaving in order to overcome the software overheads
of the control processor, in contrast to hardware-based control. In our experience, we were
not able to match the throughput of the Gemmini hardware-based controller by using a
software-based schedule running on a Rocket in-order control processor, primarily due to the
limited instruction issue bandwidth of the Rocket core.

Figure 8.3 illustrates the high-level structure of the Gemmini matrix multiplication hard-
ware controller. The controller issues loop iterators based on a tiling schedule encoded in
the loop unroller FSM. The loop iterators are fed into address generation units, which gen-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 174

Arbiter

k
Ld AGen

Reservation
StationLd/Ex/St

Utilization

Loop Unroller FSM

j i k
Ex AGen

j i
St AGen

j i

LdQ ExQ StQ

Legend
Loop iterator
Memory address
Gemmini command

Figure 8.3: Gemmini matrix multiplication hardware finite state machine controller.

erate DMA commands that move operands from main memory to the accelerator private
scratchpad, execution commands based on addresses within the private scratchpad, and
DMA commands which move the results from the private accumulators back to main mem-
ory. Commands are arbitrated based on feedback from the controller reservation station in
order to ensure a balanced mix of commands within the decoupled access-execute architec-
ture. The reservation station then dispatches commands to the execution queue and the
DMA load and store queues.

For matrix multiplication operations, the FSM implements the following loop ordering:

f o r (k = 0 ; k < K; k += DIM)
f o r (j = 0 ; j < N; j += DIM)

f o r (i = 0 ; i < M; i += DIM)

In this loop ordering, the dimensions of the first operand matrix (A) are M × K, and
the dimensions of the second operand matrix (B) are K ×N . In this notation, M,N,K are
the dimensions of the operand matrices, while i, j, k are the loop iterators generated by the
FSM. It is important to note that the controller FSM uses the shared dimension iterator k as
the outermost loop iterator in order to maximize data re-use within the accelerator SRAM
accumulators. Gemmini also includes an additional FSM which generates loop iterators for
convolution operations using a similar mechanism.

8.4 Matrix Engine Controller Scheduling

The scheduling of memory and compute operations on accelerator resources has a direct
impact on the overall utilization of the accelerator. The scheduling of matrix multiplications

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 175

operations on CPUs has been extensively researched, with analysis evaluating choices and
placements of stationary data and streaming data across the memory hierarchy [102]. The
scheduling of matrix multiplication on DNN accelerators exhibits similar characteristics, with
the addition of constraints set by the accelerator’s spatial resources and fixed interconnects,
as well as the private accelerator memory management policy [128].

Recent work by Jeong et al. [145] has identified some of the under-utilization challenges of
systolic array accelerators that are tightly integrated with CPUs. Specifically, they identify
under-utilization as a result of the dimensions of the matrix multiplication problem (mapping
inefficiency), memory latency, and pipeline fill/drain delays. These are challenges that are
amplified in the context of matrix engines that are tightly integrated with CPUs and CPU
memory systems due to smaller private memories (register files or scratchpads) and smaller
spatial array sizes associated with them. Both the Gemmini matrix engine controller as
well as the techniques proposed by Jeong et al. help address many of the causes of systolic
array pipeline fill/drain under-utilization through overlapping and bypassing of operations.
However, the diversity of matrix shapes and sizes exhibited by numerical data analysis
workloads highlights under-utilization dominated by the other two factors - memory latency
and mapping inefficiency due to problem dimensions.

Unlike DNN models, where tensor shapes and weight values are known at compilation
time and can therefore be optimized and scheduled based on static analysis, LAPACK and
BLAS are traditionally used as dynamically linked libraries which can take arbitrary ma-
trix shapes as inputs during runtime. This runtime flexibility requirement entails that the
DNN accelerator matrix engine controller needs to be able to make independent matrix com-
pute and memory operations scheduling decisions, without relying on an optimal statically
analyzed software schedule.

We assume that the systolic array is of size DIM ×DIM . In order to perform a matrix
multiplication operation, C = AB+D, in which the operand matrix dimensions are M ×K
and K×N and the output matrix dimensions are M ×N , the matrix engine controller must
schedule a series of DIM×DIM computes operations and DMA transactions. This schedule
is constrained by the size of the accelerator’s private memory, the memory bandwidth of the
DMA, and the throughput of the compute array. With an ideal schedule, the accelerator
throughput should reach the performance bounds set by the roofline model in Figure 8.2.

The Gemmini controller uses hardware-managed double buffering as a latency-hiding
technique. As such, the private scratchpad memory and accumulators are split by the con-
troller into two partitions, where the data in one partition gets used for computations while
the data in the other partition gets used by the DMA for moving data to and from main
memory. This approach can sustain full utilization of the accelerator as long as the number
of cycles it takes to perform computation on the data in a partition is longer than the number
of cycles it takes to move data from main memory into the second partition. However, this
technique is not able to hide latency in cases where the operand matrices are smaller than
the size of the accelerator private scratchpad memory. In such cases, there is not enough
data to overlap the compute of one partition with the memory movement of the other parti-
tion. In those scenarios, the utilization of the accelerator becomes sensitive to the scheduling

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 176

decisions made by the controller.
While Gemmini is capable of supporting both output-stationary (OS) and weight-statio-

nary (WS) systolic array dataflows, we note that the majority of commercial systolic-array-
based accelerators support only weight-stationary dataflow, so we will focus primarily on this
dataflow configuration. In a WS dataflow, DIM×DIM data elements of the second operand
matrix (the B matrix, also referred to as a “weights” matrix in deep learning workloads)
are resident within the systolic array processing units (PEs), while data elements of the first
operand matrix (the A matrix, or “activations” matrix in deep learning workloads) stream
into the array from the private scratchpad memory. The output data elements (matrix C)
propagate through the systolic array and accumulate into a wide accumulator SRAM within
the accelerator 1.

As such, when the target matrix operation is of high arithmetic intensity, given this
streaming schedule the controller should schedule more memory operations for the A ma-
trix rather than the B matrix in order to minimize latency, since a single DIM × DIM
segment of the B matrix will get re-used across multiple segments of the A matrix while
that DIM × DIM segment of the B matrix is resident in the compute array. This is a
similar streaming pattern to the one used in the Goto Algorithm for high-performance CPU
software BLAS implementations [102]. However, when the matrix operation is of low arith-
metic intensity, there is less data re-use within the accelerator memory hierarchy. In fact,
as the roofline model dictates, the operation may be bound by memory bandwidth. Hence,
while the dimensions of a matrix might be large enough to fully utilize the compute array
(M,N,K >= DIM), if the operand matrix shapes are not conducive to data re-use within
the accelerator memory hierarchy (and specifically, the accelerator private memory), it may
be more beneficial to schedule them differently. For example, for the case where K >> N , it
would be more beneficial to schedule A and B memory operations at a “symmetric” rate, as
opposed to the method of choice for high arithmetic intensity operations of an “asymmetric”
rate with more A memory operations due to the streaming nature of A in a WS dataflow
systolic array.

We demonstrate this idea by co-designing the Gemmini hardware controller with a pro-
grammable arbitration parameter for setting the ratio of DMA transactions between the
A matrix and the B matrix. Figure 8.4 illustrates a more detailed schematic of the load
address generator listed in Figure 8.3. An arbiter, controlled by an arbitration parameter
listed as WeightA, regulates a weighted arbitration scheme for DMA transactions generated
by two address generators for each of the operand matrices in the matrix multiplication: the
A matrix address generator (LdA AGen) and the B matrix address generator (LdB AGen).
For example, if the value of the WeightA parameter is 3, then for every one DMA trans-
action dispatched to the reservation station by the B matrix address generator, there will
be three DMA transactions dispatched to the reservation station by the A matrix address

1We note that if we were to use an OS dataflow, data re-use is limited to the size of the compute array
rather than an accumulator SRAM. As a result the data re-use of both the A and B matrices is significantly
lower.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 177

Ld Address
Generator

Loop Unroller FSM

k
LdA AGen

i k
LdB AGen

j

Ld ArbiterweightA

Legend
Memory address
Loop iterator

Figure 8.4: Arbitration mechanism between A matrix and B matrix loads in Gemmini’s load-
address generator (which is part of the matrix multiplication FSM illustrated in Figure 8.3).

generator. This parameter is software-programmable, enabling co-design between software
and hardware when exploring the utilization of Gemmini for different matrix shapes and
sizes.

Figure 8.5 characterizes the utilization of an 8× 8 Gemmini compute array across differ-
ent matrix shapes, including shapes extracted directly from the ResNet-50 DNN model or
from matrix decomposition algorithms, using different values of the programmable WeightA

parameter. Tall-and-skinny matrix shapes which fit into the private accelerator scratchpad
memory exhibit the highest variability from this programmable static scheduling parameter,
with up to 20% difference in utilization. Large matrices do not exhibit any sensitivity to this
scheduling parameter, as their performance is completely dominated by double-buffering.
Other matrix shapes present variable degrees of sensitivity to this scheduling parameter,
with few percent differences in utilization.

An additional observation from Figure 8.5 is that there is no single value of WeightA that
can provide top performance across a diversity of matrix shapes. We observe that within
the matrix shapes presented in Figure 8.5, each of the five evaluated values of WeightA was
found to demonstrate the highest utilization for at least one matrix shape. This leads to
the understanding that more adaptive support for such a static scheduling parameter could
provide measurable benefits when processing the variety of matrix shapes and sizes found in
numerical data analysis applications.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 178

32x1000
1000x32

128x1000
1000x128

128x64
64x1024

64x512
512x32

128x64
64x1024

256x32
32x1024

512x512
512x512

196x1024
1024x256

3136x64
64x64

Operand Matrix Shapes

0

20

40

60

80

Co
m

pu
te

 A
rra

y
Ut

iliz
at

io
n

(%
)

87

95

66

80

66

44

92 93

58

74

95

68

85

68

45

92
94

58

70

94

69

79

69

46

92 93

56

68

94

69
72

69

46

92 93

56

67

93

68 69 68

46

92 93

56

AWEIGHT=1 AWEIGHT=2 AWEIGHT=3 AWEIGHT=4 AWEIGHT=5

Figure 8.5: Gemmini utilization under different hardware controller operand matrix com-
mand arbitration parameter values

8.5 Memory Access Tail Latency

While the Gemmini hardware controller FSM can potentially improve utilization by address-
ing static scheduling decisions based on the shapes of the matrices, utilization can also be
impacted by dynamic properties of shared resources within the SoC.

In our Chipyard SoC evaluation system, the main shared resource used by Gemmini is
the SoC memory system. The Gemmini DMA can generate many load and store requests to
the TileLink SoC memory system, and the responses to these requests can return in variable
latency and out-of-order. The Gemmini DMA keeps track of these memory transactions and
handles their ordering upon their return. Unlike the DMA, the Gemmini execution command
queue was designed only for in-order execution. This is an efficient design point under the
assumption of double-buffering and high data re-use within the scratchpad, which together
mean that data should be readily available within the private scratchpad when commands
are dispatched to the execution command queue. However, when the operand matrices are
smaller than the size of the accelerator private memory and do not enable double-buffering,
the variable latency of the shared memory system can impact the utilization of the compute
array due to front-of-line blocking of the execution command queue.

As an example, Figure 8.6 illustrates the results of an experiment with two different SoC

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 179

21 23 25 27 29 211 213

Dirty LLC Cache Lines (Uniformly Distributed)

30

40

50

60

70

80

90
Co

m
pu

te
 A

rra
y

Ut
iliz

at
io

n
(%

)

1000

2000

3000

4000

5000

6000

7000

8000

DM
A

Tr
an

sa
ct

io
n

Ta
il

La
te

nc
y

(C
yc

le
s)

FR-FCFS FCFS

Figure 8.6: Gemmini utilization and observed DMA tail latency across different shared SoC
memory system scenarios: different number of dirty cache lines within the L2 cache, and
different memory system schedulers for a 32× 1000 times 1000× 32 matrix multiplication.

shared memory systems, with different internal scheduling policies. In this experiment, we
vary the number of dirty cache lines within the shared L2 cache, which acts as a shared
resource within the SoC, in order to generate different eviction scenarios which could poten-
tially impact latency within the shared memory system. Each repetition of the experiment
executed a 32×1000 times 1000×32 matrix multiplication. As expected, the different num-
ber of dirty cache lines indeed generate different tail latencies, as observed by the Gemmini
DMA (illustrated by the red lines in Figure 8.6). As a result, Gemmini experiences head-
of-line blocking within the in-order execution command queue, which degrades Gemmini
utilization (illustrated by the blue lines in Figure 8.6). Figure 8.6 also shows how this type
of variability in tail latency can be a result of different memory scheduling policies by the
SoC DRAM controller, for example First-Come-First-Serve (FCFS) or First-Ready-First-
Come-First-Serve (FR-FCFS), and the way they interact with the rest of the SoC memory
system. The FCFS is a fair scheduling policy with predictable patterns, and therefore results
in relatively consistent tail latencies compared to the FR-FCFS scheduling policy which ex-
hibits higher variability due to the policy’s attempt to optimize for open DRAM row-buffers.
The regions highlighted in grey and purple in Figure 8.6 demonstrate different tail latency
patterns as a result of the underlying memory systems (with the grey region being more

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 180

predictable than the purple region). The grey region has a higher effect on utilization since
the number of long-latency transaction occurrences is higher.

While in the example in this experiment the variable DMA transaction tail latency (as
observed by Gemmini) is generated by L2 cache evictions and various SoC memory access
scheduling policies, this type of variable DMA transaction tail latency can occur for a variety
of reasons, including quality of service (QoS) policies across SoC buses and fabrics, as well
as interrupts and other asynchronous events within the system.

When the operand matrices are big enough to be double-buffered, this type of tail latency
can be hidden. For example, when using a 256 KiB scratchpad memory, operands with the
sizes 128 × 1000 and 1000 × 128 in a bfloat16 representation (which total approximately
512 KiB) would be too big to fit in the private scratchpad, and will therefore be double-
buffered, with each double-buffering partition being 128 KiB. If we assume the partition is
divided equally between both operands, this means that each operand could fit a 128× 256
or 256×128 tile, allowing for sufficient data re-use to drive almost 4 million MAC operations,
which on an 8× 8 systolic array could hide a DMA tail latency of over 65,000 cycles. This
simple calculation demonstrates why an in-order execution command queue is generally a
sufficient and efficient choice for DNN accelerators. Nevertheless, when considering the
diversity of matrix shapes and sizes that would need to be supported for supplemental-use
of such matrix engines for numerical data analysis workloads, we conclude that out-of-order
execution command issue should be considered.

8.6 Co-Design of Matrix Engine Controller

We demonstrate how a HW/SW co-design analysis of numerical analysis workloads on DNN
matrix engines, and specifically, the observation regarding more relaxed matrix shape and
size ranges, can lead to simple and inexpensive customizations and improvements within
such DNN matrix controllers, which make them more amenable to use for this class of
applications. Such changes can be integrated into generators, allowing for customization of
SoCs for multiple classes of application while re-using common core accelerator components.

Software-Configurable and Hardware-Managed Static Scheduling

Accelerator controllers with full processor-based software capabilities are flexible enough to
enable any combination of static compute and memory scheduling decisions. However, per-
forming scheduling operations by using processor-based accelerator controllers comes with
software overheads of computing addresses, strides, pointers, bound-checking and control
flow, which can often be limited by instruction-issue bandwidth and the throughput of the
control processor itself. Even in a control processor which is theoretically capable of support-
ing full-throughput scheduling, implementing such a software schedule requires significant
high-performance software expertise in order to correctly perform software pipelining, loop
unrolling, and control flow minimization in order to overcome software overheads. In con-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 181

32x512
512x32

32x32
32x512

512x32
32x32

64x32
32x128

64x256
256x32

64x512
512x32

256x64
64x128

512x128
128x128

512x128
128x256

Operand Matrix Shapes

0

20

40

60

80
Co

m
pu

te
 A

rra
y

Ut
iliz

at
io

n
(%

)
76

50

46 45

76

86

65

80

83

76

49

45

41

71

80

63

78

82

65

49

45 44

75

86

63

80
82

63

44 45 45

72

79

64

80
82

61

43
45

41

68

73

64

80
82

60

44 45

41

65

70

64

79

82

HW-Managed Policy
AWEIGHT=1

AWEIGHT=2
AWEIGHT=3

AWEIGHT=4
AWEIGHT=5

Figure 8.7: Gemmini (8× 8) utilization using a hardware-managed static scheduling policy
in comparison to different hardware controller operand matrix arbitration parameter values.

trast, fixed hardware controllers, such as the one implemented in Gemmini in the form of
an FSM for coarse-grained instructions, perform address calculations, bound-checking, and
control flow, all in parallel to issuing operations, resulting in zero-overhead scheduling de-
cisions. Zero-overhead hardware control can also better utilize feedback from the execution
pipeline in order to assist in schedule decisions.

In most cases, such fixed hardware controllers in-fact have sufficient information to per-
form low-cost hardware-managed static scheduling decisions based on the shapes and sizes
of the operand matrices. Specifically, we focus on the WeightA arbitration parameter high-
lighted in Section 8.4. While this arbitration parameter could be hard-coded in the hard-
ware FSM, which would result in sufficiently high utilization for most large matrices that are
double-buffered, it could also be a programmable parameter that is configured in software
by the programmer for a particular matrix size and shape. Alternatively, this arbitration
decision can also be set by the hardware controller finite state machine, based on the loop
iterators generated by the FSM for a particular matrix shape. This approach, which we
refer to as “hardware-managed static scheduling”, due to the fact that a hardware-only con-
trol loop sets the arbitration decision based on the software-controlled shape of the matrix,
would potentially make the DNN accelerator more robust to handling a diversity of small
and rectangular-shaped matrices.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 182

We set a relatively simple hardware-managed static scheduling policy within the Gemmini
hardware controller. In this policy, the arbiter starts by issuing a load command for the first
block of the second operand matrix (B). This is since the systolic array is a weight-stationary
systolic array, in which the second operand matrix is the “static” (stationary) operand within
the array. The controller policy will then continue to dispatch load commands based on the
values of the k iterators within the address generator for the A matrix and the address
generator of the B matrix.

The loop unroller FSM maintain independent copies of the loop iterators for the A ad-
dress generator and B address generator, allowing each address generator to progress au-
tonomously based on the independent iterator values issued to them by the FSM. As such,
based on the iterator loop ordering listed in Section 8.4, when the k iterator associated with
the B address generator is greater than the value of the k iterator associated with the A
address generator, this is an indication that the DMA transactions being issued are related
to the inner most loop in the nested loops. Similarly, when the k iterator of the A address
generator is greater than the value of the k iterator of the B address generator, this is an
indication of a value increment in the middle loop of the nested loops. Therefore, in this
hardware-managed static scheduling policy, the transaction arbiter will issue DMA transac-
tions from the B address generator as long as the value of the k iterator associated with the
A address generator is greater than the value of the k iterator of the B address generator.

The hardware cost of this adaptive hardware-managed policy is relatively inexpensive,
and is primarily reflected in wiring (since the iterator values need to be wired to the arbiter),
and a pair of multiplexers and comparators used to implement the adaptive policy decision.

Figure 8.7 presents a comparison of the utilization of the 8 × 8 Gemmini accelerator
when using the hardware-managed static scheduling policy vs. using software programmable
values of the WeightA parameter. Notably, the hardware-managed static scheduling policy
demonstrates equal or better utilization compared to the best software programmable value
in each of the evaluated cases. More importantly, the hardware-managed adaptive static
scheduling policy achieves this utilization without additional programmer intervention or
domain knowledge about the shape of the operand matrices.

Dynamic Scheduling in Matrix Engines

In order to improve dynamic scheduling and alleviate variable-latency head-of-line block-
ing experienced by small matrix operations in Gemmini due to its integration with shared
resources in the SoC, we would like to add out-of-order execution support within Gem-
mini. Out-of-order execution is a common technique for exploiting ILP in CPUs which face
variable-latency pipeline environments. Out-of-order execution helps unblock the execution
pipeline when processing a long-latency operation by parallel scheduling of additional inde-
pendent instructions on other available execution units. Execution of the instructions may
be out-of-order, but the instructions commit and update the architectural state in-order.
This type of ILP-extraction can be very beneficial in superscalar CPUs which have high
diversity of instructions with variable latencies (integer arithmetics, integer multiplication

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 183

and division, floating-point arithmetics, memory operations, etc.). In contrast, Gemmini has
a very small instruction set, consisting primarily of two types of operations: fixed-latency
execution operations, and variable latency DMA operations. DMA operations are variable
latency due to Gemmini’s integration with the coherent SoC memory system which includes
a cache hierarchy and coherence protocols.

As such, out-of-order execution within Gemmini does not need to encompass the entire
pipeline and all instruction types, but rather only those that may experience head-of-line
blocking due to a variable-latency instruction and a data dependency. Specifically, we identify
two operation types which would benefit from out-of-order execution within the Gemmini
controller:

• Compute (matmul) - Reordering of independent or commutative matrix multiplication
and accumulation operations, as a result of variable-latency operand load latency

• Store (mvout) - Reordering of DMA transactions from the Gemmini accumulator to
main memory as a result of a reordering of compute operations.

Most importantly, unlike CPUs, the Gemmini matrix engine would not benefit from
out-of-order execution of memory load commands, since the Gemmini hardware controller
dictates a static schedule. The static schedule means that there are no dynamic address
computations, which means there are no load-after-load dependencies within the instruction
stream. Gemmini’s decoupled access-execute design further supports this scheme of inde-
pendent execution orders of memory and compute operations. Similar patterns have been
identified in other data-parallel processors with statically predictable memory addresses.
As an example, the Hwacha vector accelerator also implements out-of-order execution of
compute operations, while maintaining in-order memory operations.

We implement out-of-order execution in Gemmini for the execution and store command
queues. Out-of-order execution is implemented as a generator parameter within Gemmini,
enabling designers to choose whether this feature should be included within a particular in-
stance for use for a specific application domain. Since Gemmini currently does not support
precise exceptions, the cost of adding support for out-of-order execution of the compute com-
mands consists of simply modifying the in-order execution constraint for compute commands
in the reservation station, costing only a couple of logic gates. We evaluate our implementa-
tion by running a series of experiments on a 32× 1000 by 1000× 32 matrix multiplication,
in order to evaluate its benefit for small matrices which cannot be double-buffered by the
controller. We use a similar methodology as was used in Section 8.5, of using dirty cache lines
as a method of inducing variable tail latencies while maintaining complete system integrity
(as opposed to isolated trace-driven testing of the accelerator). We center our experiments
on small numbers of dirty cache lines (1-10), in order to focus on our variable-latency regime
of interest, which was highlighted in purple in Figure 8.6. We generate dirty cache lines in
random, uniformly distributed addresses across the memory space, and run 10 experiments
with different random seeds for each number of dirty cache lines. Figure 8.8 compares Gem-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 184

1 2 3 4 5 6 7 8 9
Dirty Cache Lines

0

10

20

30

40

50

60

70

80
Ut

iliz
at

io
n

(%
)

85.4

77.2
80.0

76.4

71.7

75.2

70.7

74.7
73.0

85.3

77.9
80.1

75.0

69.4

77.1

66.7

77.0

72.8

In-order Out-of-Order

Figure 8.8: Gemmini (8 × 8) in-order vs. out-of-order execution average utilization across
different numbers of shared L2 cache dirty cache lines for a 32×1000 times 1000×32 matrix
multiplication.

mini in-order execution vs. out-of-order execution and illustrates the average utilization of
each set of experiments for a given number of dirty cache lines.

Notably, our out-of-order execution implementation in Gemmini appears to provide no
consistent benefit, and in some scenarios may even degrade average utilization compared to
in-order execution. As to the reason for the performance degradation, while out-of-order
execution does not change the order and memory access pattern of Gemmini memory load
operations, it does change their timing, since Gemmini reservation station slots can become
available at different times as execution operations progress. This can result in different be-
haviors across the SoC memory system and interconnect fabric which can sometimes lead to
longer tail latencies than if Gemmini would have executed in-order. Similarly, out-of-order
memory store operations actually can change the memory access patterns (since some accu-
mulations can complete before others, enabling their store operations to be issued earlier),
which can also lead to different behaviors across the SoC memory system and interconnect
fabric (due to more dirty lines and potential evictions in the caches caused by the store
operations), which can also sometimes lead to longer tail latencies for subsequent load oper-
ations.

More interestingly, we investigate the reason for the absence of the expected utilization

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 185

improvement with out-of-order dynamic scheduling. We find that the reason for lack of
improvement is due to the static schedule of commands issued by the controller. The nested
loop schedule ordering used by the controller is intended to maintain locality across the
loops. Since the i and j dimensions of the operand matrices generate the highest level of
data reuse, they act as the internal levels of the loop, as also noted in the previous section.
However, this choice of loop ordering also means that a sequence of operations which all
depend on the same long-latency memory transaction can once again quickly cause head-of-
line blocking if the out-of-order issue window is not large enough. This intersection between
static scheduling and dynamic scheduling in matrix engine controllers means that additional
micro-architectural adjustments are required in order to support efficient static and dynamic
scheduling of small matrix operations in DNN accelerators, techniques which may not be
necessary in traditional scalar processor out-of-order execution.

Intersection Between Static and Dynamic Scheduling in Matrix
Engine Controllers

The Gemmini co-design process for small and diversely-shaped matrices has exposed key
design decisions at the intersection of static and dynamic scheduling within the matrix
engine controller in the context of a cache-based SoC memory system. If we assume that
the size of a shared cache line (CL) is greater than the dimension of the spatial array (and
hence, the dimension of compute operations), a static schedule for matrix multiplication
should be able to take advantage of spatial locality within the cache line for at least one of
the two operand matrices. Nevertheless, this advantage of spatial locality can also become
a detriment when tail latencies are caused by the shared cache memory system.

If we assume the granularity of each controller command is a block of DIM × DIM
elements, while a cache line contains CL elements, we can see that if an operand matrix is
represented in a row-major layout, a long-latency arrival of data from single cache line could
delay the arrival of approximately CL

DIM
blocks from that operand matrix. Specifically, if we

assume that both operand matrices are represented in a row-major layout, we observe that a
long-latency arrival of data from a single cache line would delay the arrival of approximately
CL

DIM
blocks from the second operand matrix (B), depending on data alignment, since they

are all resident in the same cache line (as illustrated in Figure 8.9). As a result, assuming a
static schedule based on the loop ordering listed in Section 8.3, we see that a long-latency
arrival of a single cache line would delay at least CL

DIM
× CL

DIM
compute operation, since outer

products expect to re-use the same blocks.
Figure 8.9 illustrates an example in which CL

DIM
= 4. The single long-latency cache line

(highlighted with the label CL) impacts the memory load of four blocks of the B operand
matrix, each of which would be multiplied with four blocks of the A operand matrix. As a
result, sixteen compute operations would be delayed due to a dependency on a single cache
line. These sixteen operations would consume precious slots within the out-of-order execution
reservation station, effectively requiring very large reservation stations in order for out-of-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 186

Figure 8.9: Example matrix operation blocks depending on a single cache line.

order execution to be effective in hiding long-latency memory accesses through dynamic
scheduling. A typical Gemmini configuration uses reservation stations with approximately
10 slots for the execution queue. As such if 16 slots can be blocked due to a single long-latency
memory load, Gemmini can only rarely take advantage of the out-order-order execution, as
was indeed observed in in the results in Figure 8.8.

One potential solution to this problem is to increase the size of the execution queue
reservation station. However, the all-to-all dynamic dependency tracking within the reser-
vation station makes this an expensive choice in terms of area and energy costs. Another
potential solution to this problem would be to change the static schedule such that there is
interleaving between operations that depend on different cache lines. However, this static
schedule would eliminate the benefits of spatial locality within a cache-based memory system.
An alternative solution takes advantage of the observation that a large batch of compute
operations all depend on a single group of memory load operations, and therefore it is possi-
ble to compress both the load operation commands and compute operation commands into
coarser grained commands that would consume less slots in the reservation station structure.
This is since the costly wiring and logic used for dynamic dependency tracking within the
reservation station structure do not get utilized within this batch of commands since the
commands all effectively depend on the same single memory access. This solution could
also be described as hierarchical or independent reservation stations for each operation type
(load, store, compute), since dependencies can be managed internally within each reservation
station as opposed to an all-to-all dependency relationship between all possible commands.

We initially chose to compress matrix operation commands across a single dimension
- the i dimension (the number of rows in the output matrix). While matrix operation

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 187

commands can be compressed across all three dimensions (i, j, k), this would require more
intricate static dependency management. Since in a weight-stationary dataflow only one
DIM ×DIM block of the second operand matrix (B) is resident in the compute array at a
time, the priority is to compress commands across the dimensions of the first operand matrix
(A). Since the i dimension is the inner most iterator in the nested loop which pertains to the
dimensions of the first operand matrix, we expect that performing command compression
across this dimension alone would suffice in providing the required flexibility within the
reservation stations, while maintaining an inexpensive implementation.

After implementing command compression, we do not observe a significant change in
utilization, and we notice that the majority of commands that fill the execution reservation
station are still commands that depend on the j dimension. However, adding this dimension
as well to the compression scheme will either remove the B matrix from its stationary position
within the systolic array, or require more complex compression and dependency logic (akin
to the “larger reservation station” solution). We therefore re-visit the idea of manipulating
the static schedule in order to generate some dynamic interleaving of memory and compute
operations across different cache lines.

Commutative Hardware-Managed Micro-Threads

After observing that command-compression alone is not able to relieve the excessive pressure
on the execution queue reservation station caused by long-latency load operations, we re-visit
the idea of interleaving commands which operate on different cache lines. However, we would
like to do that while maintaining the weight-stationary dataflow (hence, maintaining the
same loop ordering and static schedule), and utilizing as much data locality as possible. We
observe that we can take advantage of the commutative nature of accumulation, and the fact
that accumulation in matrix multiplication is always performed across the shared dimension
(the k dimension), which is the most external loop in our static schedule. We further note
that by keeping the static schedule and load operations in their original order, we are able
to maintain maximal use of data locality. Therefore, if we take advantage of commutative
interleaving across the k dimension of operations which do not depend on the same cache
lines only within the execution queue, we can maintain both the WS dataflow and maximal
data re-use, while providing a different mix of commands within the execution queue issue
window. This can be incorporate into the accelerator in the form of hardware-controlled
commutative micro-threading of the execution queue within the accelerator controller.

This idea is similar to an observation suggested by Shomron & Weiser [239] in the context
of simultaneous multi-threading (SMT) processing on systolic arrays, in which they note that
the SMT threads could be part of the same DNN execution flow, as opposed to independent
threads of independent execution flows. Since our hardware accelerator controller manages
a single execution flow of matrix multiplication, the controller is able to split this execu-
tion flow into multiple hardware-managed micro-threads in an attempt to hide the latency
generated by a sequence of data-dependent commands. Notably, these are not full-fledged
threads, since memory load and store operations are still performed according to the original

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 188

Legend
Loop iterators

k

Ld
Iterators

ij

St
Iterators

ij
Ex

Iterators
(μ-thread 1)

Ex
Iterators
(μ-thread 2)

Ex Arbiterμ-thread
utilization

k ij k ij

Loop Unroller FSM

Figure 8.10: Commutative micro-threads within the loop unroller FSM (illustrated in Fig-
ure 8.3). “µ-thread utilization” is a feedback channel from the reservation station, and
describes the number of instructions from each micro-thread which are stored within the
reservation station but which have not yet been issued to the Execution Queue (ExQ).

static schedule. Only compute execution commands can be interleaved using these micro-
threads, therefore making them both opportunistic and inexpensive in term of additional
required state. The controller generates hardware-managed micro-threads by splitting the
nested loops across the most external loop-level (the k dimension). The controller maintains
the loop iterator indices for each of the micro-threads, and can feed them into the execu-
tion address generator, as illustrated in Figure 8.10. Slots are allocated in the execution
queue reservation station only for micro-threads for which the relevant memory load com-
mands have already been issued. As such, micro-threads are opportunistic, and do not hurt
data locality. These hardware-managed micro-threads are effectively independent within the
execution flow, since accumulation within the SRAM accumulators is commutative. Equa-
tions 8.4 and 8.5 demonstrate the independence of the hardware-managed micro-threads (for
the cases of 2 and T threads, respectively) from the perspective of the execution flow within
a single controller-managed matrix multiplication instruction.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 189

cij =
K∑
k=0

M∑
i=0

N∑
j=0

aikbkj (8.3)

=

(K/2)−1∑
k=0

M∑
i=0

N∑
j=0

aikbkj +
K∑

k=K/2

M∑
i=0

N∑
j=0

aikbkj (8.4)

=
T∑
t=0

(t+1)K
T
−1∑

k=tK
T

M∑
i=0

N∑
j=0

aikbkj (8.5)

The controller simply manages multiple individual matrix multiplication execution sub-
flows that accumulate into the same accumulator SRAM. By performing this hardware
threading only for the execution queues rather than the memory queues, the controller
does not need to maintain any additional state other than the indices tracking the state of
the FSM generating addresses for execution commands on the systolic array, making this a
relatively inexpensive feature.

The commutative property of the micro-threads also enables us to evaluate different
thread interleaving schemes. Figure 8.11 illustrates two such schemes: fine-grained micro-
thread interleaving, and coarse-grained micro-thread interleaving. In coarse-grained micro-
thread interleaving, the k dimension is partitioned into a number of partitions equal to
the number of threads (T), with each thread responsible for processing K/T consecutive
commands, as illustrated in Figure 8.11b. This is the simplest possible thread partitioning
scheme since it is based on a static number of partitions, but it can result in a potential
bottleneck since it depends on the progression of memory load command issue within the
controller. If memory loads haven’t yet been issued for the blocks needed by a thread assigned
to the “high indices” of the k dimension, that thread will remain idle and will not be able to
overcome head-of-line blocking in other threads. In fine-grained micro-thread interleaving,
the k dimension is partitioned into (K ·DIM)/CL partitions, where each partition consists of
CL/DIM blocks of size DIM×DIM . Each partition is assigned to a different micro-thread
in a periodic pattern, as illustrated in Figure 8.11a. Each thread is responsible for processing
CL/DIM consecutive commands before switching to the next partition it is assigned to. This
partitioning scheme is slightly more complex than the coarse-grained partitioning scheme
since it requires tracking a variable and larger number of partitions. However, it provides for
a more balanced distribution of partitions across the micro-threads, which can potentially
help overcome the problem of reservation-station blocking by dependencies on a single cache
line. We note that in this scheme, each micro-thread is responsible for handling CL/DIM
commands, since we know all of those commands will depend on the same cache line, and
therefore will not benefit from further internal micro-threading.

We evaluate the two micro-thread interleaving schemes, with the results illustrated in
Figure 8.12. Figure 8.12 once again demonstrates the average results of a series of exper-
iments on a 32 × 1000 by 1000 × 32 matrix multiplication. We observe that fine-grained

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 190

(a) Gemmini micro-threads fine-grained interleaving. Each thread processes CL/DIM consecutive
commands, with thread assignment repeating in a periodic pattern.

(b) Gemmini micro-threads coarse-grained interleaving. The k dimension is partitioned into T
(number of threads) contiguous blocks of consecutive operations, each assigned to a micro-thread.

Figure 8.11: Gemmini micro-threads interleaving schemes1

1 Arrows represent the progression of each micro-thread according to the static schedule nested loop ordering.

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 191

1 2 3 4 5 6 7 8 9
Dirty Cache Lines

0

20

40

60

80

Ut
iliz

at
io

n
(%

)

86.1

77.0

79.7

75.8
73.8

76.8

68.7

77.4

74.3

84.2

78.8
80.5 80.3

72.0

77.7

71.2
73.2

71.6

86.2

78.7
81.0

78.9

74.7

77.7

71.9

78.2

73.9

86.4

78.4

84.6
82.3

80.0 79.6

73.4

77.5
76.4

86.1

81.6 82.5

79.3

74.4

77.4

70.8

75.9 76.0

87.1

83.7
85.9

84.3
82.4

80.7 79.9

83.8

81.4

86.6

82.4 83.2
81.4

78.8 78.2

74.9

79.6
78.5

87.1

84.0

86.4
84.6

82.7
81.7 80.8

84.8
83.2

Out-of-order, Threads=2, Coarse-grained interleaving
Out-of-order, Threads=2, Fine-grained interleaving
Out-of-order, Threads=4, Coarse-grained interleaving
Out-of-order, Threads=4, Fine-grained interleaving

Out-of-order, Threads=8, Coarse-grained interleaving
Out-of-order, Threads=8, Fine-grained interleaving
Out-of-order, Threads=16, Coarse-grained interleaving
Out-of-order, Threads=16, Fine-grained interleaving

Figure 8.12: Average utilization across different numbers of shared L2 cache dirty cache lines
for a 32 × 1000 times 1000 × 32 matrix multiplication, comparing fine-grained interleaving
and coarse-grained interleaving of micro-threads in Gemmini (8× 8).

micro-thread interleaving demonstrates more consistent benefits compared to coarse-grained
interleaving. When the micro-thread-count is low (2 or 4 micro-threads), there is no clear
choice between the two micro-threading schemes. However, as the thread-count increases,
fine-grained interleaving becomes a clear winner, achieving up to 10% higher utilization
than coarse-grained interleaving. In-fact, in some cases increasing the thread count does not
provide any benefit with coarse-grained interleaving. This is since the fine-grained scheme in-
deed enables effective load balancing across the micro-threads, with the higher thread-count
providing a substrate for load-balancing.

We therefore choose to proceed with fine-grained micro-thread interleaving, and we eval-
uate our micro-threading implementation by comparing the utilization of the series of exper-
iments on a 32× 1000 by 1000× 32 matrix multiplication, in order to evaluate its benefit for
small matrices which cannot be double-buffered by the controller. We vary the number of
micro-threads and compare the utilization results to in-order and out-of-order execution in
Gemmini, as illustrated in Figure 8.13, and we observe that for micro-thread counts greater
than 4 we see consistent benefits in accelerator utilization when using the out-of-order exe-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 192

1 2 3 4 5 6 7 8 9
Dirty Cache Lines

0

20

40

60

80

Ut
iliz

at
io

n
(%

)

85.4

77.2
80.0

76.4

71.7

75.2

70.7

74.7
73.0

85.3

77.9
80.1

75.0

69.4

77.1

66.7

77.0

72.8

84.2

78.8
80.5 80.3

72.0

77.7

71.2
73.2

71.6

86.4

78.4

84.6
82.3

80.0 79.6

73.4

77.5 76.4

87.1

83.7
85.9

84.3
82.4

80.7 79.9

83.8
81.4

87.1

84.0
86.4

84.6
82.7 81.7 80.8

84.8
83.2

In-order
Out-of-order
Out-of-order, Threads=2

Out-of-order, Threads=4
Out-of-order, Threads=8
Out-of-order, Threads=16

Figure 8.13: Average utilization across different numbers of shared L2 cache dirty cache lines
for a 32 × 1000 times 1000 × 32 matrix multiplication, comparing fine-grained interleaved
commutative micro-threads vs. simple out-of-order and in-order execution in Gemmini (8×
8).

cution together with commutative hardware-managed micro-threading. Eight micro-threads
appear to provide the optimal increase in utilization, with sixteen threads exhibiting di-
minishing returns with respect to the number of threads. Using eight micro-threads, we
observe up to a 15% improvement in utilization compared to only in-order execution in
Gemmini. We conclude that this approach to dynamic scheduling is a worthy customization
of the DNN accelerator to better support numerical data analysis workloads which require
repeated handling of such small matrices.

We evaluate this technique on a wider spectrum of matrix shapes and sizes, derived from
the collection of matrix shapes identified in Figure 8.1. We repeat the series of experiments
using dirty cache lines as a method of inducing variable tail latencies while maintaining
complete system integrity, this time expanding our range of dirty cache lines to 1-100. Fig-
ure 8.14 illustrates the speedup distributions observed for each matrix shapes across the
series of experiments using 8 commutative micro-threads, compared to the baseline in-order
configuration. In order to evaluate the cost-effectiveness of this methods, we synthesize both
configurations using Global Foundries 12nm FinFET process technology. We observe that
the total Gemmini area for the baseline in-order configuration is 682,938 (µm)2, while the
total area for the configuration with our controller improvements is 685,555 (µm)2, demon-

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 193

(16,
16,

2000)

(16,
32,

1000)

(16,
64,

2000)

(32,
32,

1000)

(32,
64,

1000)

(58,
96,
58)

(64,
32,

1000)

(113,
32,

2499)

(117,
189,
117)

(128,
128,

1000)

(189,
117,
118)

(196,
256,

1024)

(401,
401,
32)

(561,
32,

401)

(561,
32,

529)
Matrix Dimensions (M,N,K)

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

Sp
ee

du
p

Figure 8.14: Speedup distributions (box plot) of an out-of-order 8×8 Gemmini controller with
8 commutative micro-threads compared to a baseline in-order controller across a collection
of matrix shapes with different arithmetic intensities sampled from matrix decomposition
workloads.

strating an area addition of only 0.38%. We therefore conclude that compared to the net
speedup of these techniques, which is on the order of 1%-25%, their area cost is very low,
making these an effective choice for matrix engine controllers.

8.7 Hardware/Software Co-Design for Numerical

Data Analysis Summary

In this chapter, we characterized several key differences in the utilization of matrix engines
for DNN inference vs. the broader numerical data analysis workloads category. We observed
increased importance for processing of matrices with a higher variety of shapes and sizes,

CHAPTER 8. HW/SW CO-DESIGN FOR NUM. DATA ANALYSIS 194

including small matrices. This property provides an opportunity for customization and co-
design of matrix engines controllers in DNN accelerators, which are generally designed to
support high-throughput of processing of large matrices through temporal latency-hiding
techniques. We demonstrated how accelerator utilization can be impacted by static schedul-
ing within the matrix engines controller, as well as system-level effects generating variable
memory-latency behavior observed by the accelerator at small matrix size regimes. Finally,
we propose several customizations to the matrix engine controller within the DNN acceler-
ator to better support both static scheduling and dynamic scheduling of operations within
the accelerator. We demonstrate up to a 1.25× improvement in utilization of the Gem-
mini matrix engine on small matrices through hardware-managed static scheduling, and up
to a 1.15× improvement in utilization on small matrices through dynamic scheduling and
hardware-managed commutative micro-threading. These improvements require only minor
modifications to the current Gemmini micro-architecture, enabling them to be controlled
through generator parameters and supporting generator-based hardware/software co-design
of SoCs for numerical data analysis workloads.

195

Chapter 9

Conclusion

9.1 Summary and Contributions

The challenges brought on by the end of the traditional scaling of general-purpose compu-
tation have inevitably led to the pursuit of specialized and custom integrated systems-on-
a-chip. In recent years, numerical data analysis and machine learning have been driving
applications in the proliferation of custom hardware systems for efficient high-performance
computing across a diversity of compute platforms. In this thesis, we demonstrated methods
of lowering the burden and cost of development of custom SoCs, with a particular interest
in numerical data analysis applications. Specifically, this work makes the following contri-
butions:

• Overview and analysis of hardware architectures and design patterns for high perfor-
mance numerical data analysis applications through data-parallel and spatial acceler-
ation.

• Methodological improvements to generator-based processor design, and particular meth-
odological flows for integrated generator-based SoC development.

• The Chipyard framework as a development and collection of tools guiding, implement-
ing, validating, and automating generator-based SoC design flows.

• Demonstrations of lowering the expertise barrier required for full system SoC design
through educational and accessibility features of the Chipyard framework.

• Generator-based hardware/software co-design methods and tools, including generator-
based full-system design space exploration using FPGA-accelerated emulation, FPGA-
accelerated emulation system profiling tools such as out-of-band performance counters
and segmented execution tracing, and generator-based hardware/software performance
tuning.

CHAPTER 9. CONCLUSION 196

• Software customization methods enabling components of the numerical data analysis
software stack to use a DNN accelerator matrix engine as a secondary-use application.

• Contrast the execution of numerical data analysis applications with DNNs on hardware
matrix engines, and demonstrate an evaluation of micro-architectural customization of
DNN accelerators to enhance their performance on such applications.

9.2 Future Work

Integrated generator-based development methodologies and tools still have a long way to go
before they can reach wide adoption in order to meet their goal of lowering NRE for custom
SoC design. While the Chipyard integrated SoC development framework has helped tighten
the loop between architecture, design, verification and implementation, generated design
collateral still transitions between multiple intermediate representations and formats, with
each transition causing some loss of information that could have been used for optimization
and automation of design decisions.

Additionally, while not academic in its nature, open-source hardware design is a key
ingredient on the path towards reducing custom SoC development NRE costs, through shar-
ing of non-competitive design collateral and distribution of verification and low-expertise
development resources. However, the structure of the electronic design automation and fab-
rication tool ecosystems still leads to both organizational and technical hurdles which impact
both open-source hardware development and integrated tooling.

Future work into the formalization of more open specifications and intermediate represen-
tations across the EDA stack can enable higher levels of abstraction which can in turn lower
the expertise barrier required for hardware development. For example, the Chipyard frame-
work currently uses Verilog as the interchange representation between hardware generators
and physical design tools. New intermediate representations which can capture physical de-
sign abstractions as part of the generator can enable generators which can generalize across a
wider range of fabrication technologies. Common intermediate representation could also help
with ECOs (engineering change orders, late changes into the netlist), which are currently
challenging in a generator-based environment. Similarly, the Chipyard framework currently
integrates several third-party designs into the framework, but these often need to be accom-
panied with pre- and post- processing scripts due to some design assumptions. Higher-level
intermediate representation can enable formalized and automated transformation of such
third-party blocks, rather than ad-hoc script-based solutions.

The FIRRTL intermediate representation currently provides a substrate for many auto-
mated transformations of designs within the Chipyard framework. The uses of these trans-
formations currently include hierarchy changes, debug and visibility wiring, and emulation
modeling. Future work would focus on the application of such automated transformations
to SoC design for test (DFT) features, such as automatically adding scan chains, bypass
networks and redundancy arrays to the design based on the design flow being pursued.

CHAPTER 9. CONCLUSION 197

Additional future research directions involve methods and specifications for custom ac-
celerators and functional units. While many specifications with similar goals have been
proposed in recent years (OpenCAPI, CXL, etc.), a particularly important direction of re-
search would study interfaces which enable different levels of integration of custom accel-
eration units with the main CPU. While the RoCC-based accelerators investigated in this
work are relatively tightly-coupled to the CPU using virtual memory and a partially shared
memory system, coherency and memory management between the accelerators and the main
CPU pipeline are still decoupled, involving explicit fence instructions by the software. Fur-
ther research into additional accelerator and specialized functional unit integration methods
within generator-based designs would focus on providing variable levels of memory system
integration and coherency.

An additional area of future work with respect to the memory systems of custom accel-
erators would focus on software abstractions rather than hardware interfaces. Within the
context of SoCs for numerical data analysis, we observed that the Gemmini matrix engine
and the Hwacha vector unit used different memory systems and could communicate only
through the shared last level cache, which incurred a communication cost. The RISC-V
vector extension, while much constrained compared to its original polymorphic proposals,
still provides a prime platform for customization of SoCs for numerical data analysis. The
64-bit extension could be extended with new datatype representations such as matrices and
tensors which could provide a substrate of a unified register-file-based memory system across
multiple custom accelerators with custom instructions.

With respect to software, future research directions involve investigating more time-
efficient optimization methods for accelerator-based high-performance library generation.
While the custom BLIS-based BLAS implementation analyzed in this work was sufficiently
high performance, and mostly contained to micro-kernels or native calls to the Gemmini
SDK, we have noted that there is still room for end-to-end optimization of BLAS and LA-
PACK kernels for matrix-engine accelerators. Recent work into user-scheduled domain spe-
cific languages (such as Halide or TVM) provides avenues for reducing the development
costs of custom high-performance software in conjunction with hardware generator-based
parameterization. Future work would attempt to generate high-performance software-based
accelerator schedules and evaluate their efficiency in relation to native hardware FSM-based
control schemes.

Finally, there are additional examples of dense linear algebra supplemental-use applica-
tions that can utilize customized matrix engines on edge SoCs. One attractive such example
involves optimization, control and robotics applications. Early work on the characterization
of this class of applications has identified that they perform many relatively small iterations
of matrix multiplication, making them prime candidates to benefit from matrix engine cus-
tomization tailored to accelerate small matrices. Future work would evaluate this class of
applications both in terms of performance requirements for such real-time applications, as
well as the numerical properties required to safely support them using the numerical precision
of DNN matrix accelerators.

198

Bibliography

[1] Rashmi Agrawal et al. “The BRISC-V Platform: A Practical Teaching Approach for
Computer Architecture”. In: Proceedings of the Workshop on Computer Architecture
Education. WCAE’19. Phoenix, AZ, USA: Association for Computing Machinery,
2019. isbn: 9781450368421. doi: 10.1145/3338698.3338891.

[2] John M. Airey et al. Display System Having Floating Point Rasterization and Floating
Point Framebuffering. US Patent 6,650,327. Nov. 2003.

[3] Tutu Ajayi et al. “Experiences Using The RISC-V Ecosystem to Design an Accelerator-
Centric SoC in TSMC 16nm”. In: First Workshop on Computer Architecture Research
with RISC-V (CARRV). 2017.

[4] Tutu Ajayi et al. “Toward an Open-Source Digital Flow: First Learnings from the
OpenROAD Project”. In: Proceedings of the 56th Annual Design Automation Con-
ference 2019. DAC ’19. Las Vegas, NV, USA: ACM, 2019, 76:1–76:4. isbn: 978-1-
4503-6725-7. doi: 10.1145/3316781.3326334. url: http://doi.acm.org/10.1145
/3316781.3326334.

[5] Ayaz Akram and Lina Sawalha. “A Survey of Computer Architecture Simulation
Techniques and Tools”. In: IEEE Access 7 (2019), pp. 78120–78145. doi: 10.1109
/ACCESS.2019.2917698. url: https://doi.org/10.1109/ACCESS.2019.2917698.

[6] Ayaz Akram and Lina Sawalha. “x86 Computer Architecture Simulators: A Com-
parative Study”. In: 2016 IEEE 34th International Conference on Computer Design
(ICCD). 2016, pp. 638–645.

[7] Elad Alon et al. “Open-Source EDA Tools and IP, A View from the Trenches”. In:
Proceedings of the 56th Annual Design Automation Conference 2019. DAC ’19. Las
Vegas, NV, USA: Association for Computing Machinery, 2019. isbn: 9781450367257.
doi: 10.1145/3316781.3323481. url: https://doi.org/10.1145/3316781.33234
81.

[8] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: Association for
Computing Machinery, 1967, pp. 483–485. isbn: 9781450378956. doi: 10.1145/1465
482.1465560. url: https://doi.org/10.1145/1465482.1465560.

http://dx.doi.org/10.1145/3338698.3338891
http://dx.doi.org/10.1145/3316781.3326334
http://doi.acm.org/10.1145/3316781.3326334
http://doi.acm.org/10.1145/3316781.3326334
http://dx.doi.org/10.1109/ACCESS.2019.2917698
http://dx.doi.org/10.1109/ACCESS.2019.2917698
https://doi.org/10.1109/ACCESS.2019.2917698
http://dx.doi.org/10.1145/3316781.3323481
https://doi.org/10.1145/3316781.3323481
https://doi.org/10.1145/3316781.3323481
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560

BIBLIOGRAPHY 199

[9] Alon Amid. “Nested-Parallelism PageRank on RISC-V Vector Multi-Processors”. MA
thesis. University of California, Berkeley, 2019.

[10] Alon Amid, Hasan Genc, and Sophia Yakun Shao. EE290-2 Hardware for Machine
Learning. Lab 3: Tiling and Optimization for Accelerators. 2020. url: http://www
-inst.eecs.berkeley.edu/~ee290-2/sp20/assets/labs/lab3.pdf (visited on
04/09/2020).

[11] Alon Amid and Borivoje Nikolić. “Preventing Babel: Rectifying the Trend of Pro-
gramming Language Divergence”. In: The 8th Workshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU) at SPLASH 2017. PLATEAU ’17.
Vancouver, BC, Canada, 2019.

[12] Alon Amid et al. “Chipyard - An Integrated SoC Research and Implementation Envi-
ronment: Invited”. In: Proceedings of the 57th ACM/EDAC/IEEE Design Automation
Conference. DAC ’20. Virtual Event, USA: IEEE Press, 2020. isbn: 9781450367257.

[13] Alon Amid et al. “Chipyard: Integrated Design, Simulation, and Implementation
Framework for Custom SoCs”. In: IEEE Micro 40.4 (2020), pp. 10–21. issn: 1937-
4143. doi: 10.1109/MM.2020.2996616.

[14] Alon Amid et al. “Co-Design of Deep Neural Nets and Neural Net Accelerators for
Embedded Vision Applications”. In: IBM J. Res. Dev. 63.6 (2019), 6:1–6:14. doi:
10.1147/JRD.2019.2942284. url: https://doi.org/10.1147/JRD.2019.2942284.

[15] Alon Amid et al. “Nested-Parallelism PageRank on RISC-V Vector Multi-Processors”.
In: Third Workshop on Computer Architecture Research with RISC-V (CARRV).
2019.

[16] Alon Amid et al. “Vertically Integrated Computing Labs Using Open-Source Hard-
ware Generators and Cloud-Hosted FPGAs”. In: Proceedings of the 2021 Interna-
tional Symposium on Circuits and Systems (ISCAS). Daegu, Korea (South), 2021.
isbn: 9781728192017. doi: 10.1109/ISCAS51556.2021.9401515.

[17] Ed Anderson et al. “LAPACK: A Portable Linear Algebra Library for High-Perform-
ance Computers”. In: Proceedings Supercomputing ’90, New York, NY, USA, Novem-
ber 12-16, 1990. Ed. by Joanne L. Martin, Daniel V. Pryor, and Gary Montry. IEEE
Computer Society, 1990, pp. 2–11. doi: 10.1109/SUPERC.1990.129995. url: https
://doi.org/10.1109/SUPERC.1990.129995.

[18] Davide Anguita et al. “A Public Domain Dataset for Human Activity Recognition
using Smartphones”. In: 21st European Symposium on Artificial Neural Networks,
ESANN 2013, Bruges, Belgium, April 24-26, 2013. 2013. url: http://www.elen.u
cl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf.

[19] Krste Asanović. “Vector Extension Proposal v0.2”. 5th RISC-V Workshop. 2016. url:
https://riscv.org/wp-content/uploads/2016/12/Wed0930-RISC-V-Vectors-

Asanovic-UC-Berkeley-SiFive.pdf.

http://www-inst.eecs.berkeley.edu/~ee290-2/sp20/assets/labs/lab3.pdf
http://www-inst.eecs.berkeley.edu/~ee290-2/sp20/assets/labs/lab3.pdf
http://dx.doi.org/10.1109/MM.2020.2996616
http://dx.doi.org/10.1147/JRD.2019.2942284
https://doi.org/10.1147/JRD.2019.2942284
http://dx.doi.org/10.1109/ISCAS51556.2021.9401515
http://dx.doi.org/10.1109/SUPERC.1990.129995
https://doi.org/10.1109/SUPERC.1990.129995
https://doi.org/10.1109/SUPERC.1990.129995
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
https://riscv.org/wp-content/uploads/2016/12/Wed0930-RISC-V-Vectors-Asanovic-UC-Berkeley-SiFive.pdf
https://riscv.org/wp-content/uploads/2016/12/Wed0930-RISC-V-Vectors-Asanovic-UC-Berkeley-SiFive.pdf

BIBLIOGRAPHY 200

[20] Krste Asanović. “Vector Microprocessors”. PhD thesis. University of California, Berke-
ley, 1998.

[21] Krste Asanović et al. The Landscape of Parallel Computing Research: A View from
Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of Califor-
nia, Berkeley, Dec. 2006. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts
/2006/EECS-2006-183.html.

[22] Krste Asanović et al. The Rocket Chip Generator. Tech. rep. UCB/EECS-2016-17.
EECS Department, University of California, Berkeley, Apr. 2016.

[23] Jonathan Bachrach et al. “Chisel: Constructing Hardware in a Scala Embedded Lan-
guage”. In: Design Automation Conference (DAC-2012), San Francisco. June 2012.

[24] Felice Balarin et al., eds. Hardware-software Co-design of Embedded Systems: The
POLIS Approach. Norwell, MA, USA: Kluwer Academic Publishers, 1997. isbn: 0-
7923-9936-6.

[25] Jonathan Balkind et al. “BYOC: A “Bring Your Own Core” Framework for Heterogen-
eous-ISA Research”. In: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’20. Lausanne, Switzerland: Association for Computing Machinery, 2020, pp. 699–714.
isbn: 9781450371025. doi: 10.1145/3373376.3378479. url: https://doi.org/10
.1145/3373376.3378479.

[26] Jonathan Balkind et al. “OpenPiton: An Open Source Manycore Research Frame-
work”. In: Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS ’16. Atlanta,
Georgia, USA: ACM, 2016, pp. 217–232. isbn: 978-1-4503-4091-5.

[27] Grey Ballard et al. “Minimizing Communication in Numerical Linear Algebra”. In:
SIAM Journal on Matrix Analysis and Applications 32.3 (2011), pp. 866–901.

[28] Grey Ballard et al. “Reconstructing Householder vectors from Tall-Skinny QR”. In:
Journal of Parallel and Distributed Computing 85 (2015). IPDPS 2014 Selected Papers
on Numerical and Combinatorial Algorithms, pp. 3–31. issn: 0743-7315. doi: 10.10
16/j.jpdc.2015.06.003. url: https://doi.org/10.1016/j.jpdc.2015.06.003.

[29] Zvonimir Bandic and Robert Golla. “SweRV Cores Roadmap”. In: Proceeding of the
RISC-V Summit 2019. 2019.

[30] Christopher Batten et al. “Cache Refill/Access Decoupling for Vector Machines”. In:
Proceedings of the 37th Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO 37. Portland, OR, USA: IEEE Computer Society, 2004, pp. 331–
342.

[31] Scott Beamer, Krste Asanović, and David Patterson. The GAP Benchmark Suite.
2015. arXiv: 1508.03619 [cs.DC].

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dx.doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/3373376.3378479
http://dx.doi.org/10.1016/j.jpdc.2015.06.003
http://dx.doi.org/10.1016/j.jpdc.2015.06.003
https://doi.org/10.1016/j.jpdc.2015.06.003
http://arxiv.org/abs/1508.03619

BIBLIOGRAPHY 201

[32] BK Bershad, Richard P. Draves, and Alessandro Forin. “Using Microbenchmarks to
Evaluate System Performance”. In: [1992] Proceedings Third Workshop on Worksta-
tion Operating Systems. Apr. 1992, pp. 148–153. doi: 10.1109/WWOS.1992.275671.

[33] BFLOAT16 – Hardware Numerics Definition. Tech. rep. 338302-001US. Intel Corp.,
Nov. 2018.

[34] David Biancolin et al. “Accessible, FPGA Resource-Optimized Simulation of Multi-
Clock Systems in FireSim”. In: IEEE Micro 41.4 (2021), pp. 58–66. issn: 0272-1732.
doi: 10.1109/MM.2021.3085537.

[35] David Biancolin et al. “FASED: FPGA-Accelerated Simulation and Evaluation of
DRAM”. In: The 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA’19). FPGA ’19. Seaside, CA, USA: ACM, 2019. isbn: 9781450361
378.

[36] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Comput. Archit. News
39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/2024716.2024718.

[37] Pierre Blanchard et al. “Mixed Precision Block Fused Multiply-Add: Error Analy-
sis and Application to GPU Tensor Cores”. In: SIAM J. Sci. Comput. 42.3 (2020),
pp. C124–C141. doi: 10.1137/19M1289546. url: https://doi.org/10.1137/19M1
289546.

[38] David Blythe. “The Xe GPU Architecture”. In: Hot Chips 32: August 16–18, 2020.
2020. url: https://hc32.hotchips.org/assets/program/conference/day1/Hot
Chips2020_GPU_Intel_Xe_David_Blythe.pdf.

[39] Hugo Brunie et al. “Tuning Floating-Point Precision Using Dynamic Program Infor-
mation and Temporal Locality”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual
Event / Atlanta, Georgia, USA, November 9-19, 2020. Ed. by Christine Cuicchi, Irene
Qualters, and William T. Kramer. IEEE/ACM, 2020, p. 50. doi: 10.1109/SC41405
.2020.00054. url: https://doi.org/10.1109/SC41405.2020.00054.

[40] Aydin Buluç and John R. Gilbert. “On The Representation and Multiplication of Hy-
persparse Matrices”. In: 22nd IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18, 2008. IEEE,
2008, pp. 1–11. doi: 10.1109/IPDPS.2008.4536313. url: https://doi.org/10.11
09/IPDPS.2008.4536313.

[41] Carl Burch. “Logisim: A Graphical System for Logic Circuit Design and Simulation”.
In: J. Educ. Resour. Comput. 2.1 (Mar. 2002), pp. 5–16. issn: 1531-4278. doi: 10.1
145/545197.545199.

[42] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley Professional,
1997.

http://dx.doi.org/10.1109/WWOS.1992.275671
http://dx.doi.org/10.1109/MM.2021.3085537
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_GPU_Intel_Xe_David_Blythe.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_GPU_Intel_Xe_David_Blythe.pdf
http://dx.doi.org/10.1109/SC41405.2020.00054
http://dx.doi.org/10.1109/SC41405.2020.00054
https://doi.org/10.1109/SC41405.2020.00054
http://dx.doi.org/10.1109/IPDPS.2008.4536313
https://doi.org/10.1109/IPDPS.2008.4536313
https://doi.org/10.1109/IPDPS.2008.4536313
http://dx.doi.org/10.1145/545197.545199
http://dx.doi.org/10.1145/545197.545199

BIBLIOGRAPHY 202

[43] Luca P. Carloni. “Invited - The Case for Embedded Scalable Platforms”. In: Pro-
ceedings of the 53rd Annual Design Automation Conference. DAC ’16. Austin, Texas:
ACM, 2016, 17:1–17:6. isbn: 978-1-4503-4236-0. doi: 10.1145/2897937.2905018.

[44] Erin Carson and Nicholas J. Higham. “Accelerating the Solution of Linear Systems by
Iterative Refinement in Three Precisions”. In: SIAM Journal on Scientific Computing
40.2 (2018), A817–A847. doi: 10.1137/17M1140819. eprint: https://doi.org/10.1
137/17M1140819. url: https://doi.org/10.1137/17M1140819.

[45] Erin Carson, Nicholas J Higham, and Srikara Pranesh. “Three-Precision GMRES-
Based Iterative Refinement for Least Squares Problems”. In: (2020).

[46] Matheus Cavalcante et al. “Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V
Vector Processor with Multiprecision Floating-Point Support in 22-nm FD-SOI”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28.2 (2020),
pp. 530–543. doi: 10.1109/TVLSI.2019.2950087.

[47] Christopher Celio, David A. Patterson, and Krste Asanović. “The Berkeley Out-
of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor”. In: EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2015-167 (2015).

[48] Eric Chang et al. “BAG2: A Process-Portable Framework for Generator-Based AMS
Circuit Design”. In: 2018 IEEE Custom Integrated Circuits Conference, CICC 2018,
San Diego, CA, USA, April 8-11, 2018. IEEE, 2018, pp. 1–8. doi: 10.1109/CICC.2
018.8357061. url: https://doi.org/10.1109/CICC.2018.8357061.

[49] Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning”. In: 13th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. Ed. by Andrea C.
Arpaci-Dusseau and Geoff Voelker. USENIX Association, 2018, pp. 578–594. url:
https://www.usenix.org/conference/osdi18/presentation/chen.

[50] Tianshi Chen et al. “DianNao: A Small-Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning”. In: Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems. ASP-
LOS ’14. Salt Lake City, Utah, USA: Association for Computing Machinery, 2014,
pp. 269–284. isbn: 9781450323055. doi: 10.1145/2541940.2541967. url: https:
//doi.org/10.1145/2541940.2541967.

[51] Yu-Hsin Chen et al. “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for
Deep Convolutional Neural Networks”. In: IEEE Journal of Solid-State Circuits 52.1
(2017), pp. 127–138. doi: 10.1109/JSSC.2016.2616357. url: https://doi.org/10
.1109/JSSC.2016.2616357.

[52] Yunji Chen et al. “DianNao Family: Energy-Efficient Hardware Accelerators for Ma-
chine Learning”. In: Commun. ACM 59.11 (Oct. 2016), pp. 105–112. issn: 0001-0782.
doi: 10.1145/2996864. url: https://doi.org/10.1145/2996864.

http://dx.doi.org/10.1145/2897937.2905018
http://dx.doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
http://dx.doi.org/10.1109/TVLSI.2019.2950087
http://dx.doi.org/10.1109/CICC.2018.8357061
http://dx.doi.org/10.1109/CICC.2018.8357061
https://doi.org/10.1109/CICC.2018.8357061
https://www.usenix.org/conference/osdi18/presentation/chen
http://dx.doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
http://dx.doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1145/2996864
https://doi.org/10.1145/2996864

BIBLIOGRAPHY 203

[53] Chipyard. Chipyard Mailing List. https://groups.google.com/g/chipyard. Ac-
cessed: 2021-04-29. 2019.

[54] Jaeyoung Choi et al. “ScaLAPACK: A Scalable Linear Algebra Library for Distributed
Memory Concurrent Computers”. In: The Fourth Symposium on the Frontiers of
Massively Parallel Computation. Los Alamitos, CA, USA: IEEE Computer Society,
Oct. 1992, pp. 120–127. doi: 10.1109/FMPC.1992.234898. url: https://doi.ieee
computersociety.org/10.1109/FMPC.1992.234898.

[55] Jack Choquette. “NVIDIA’s Volta GPU: Programmability and Performance for GPU
Computing”. In: Hot Chips 29: August 20–22, 2017. 2017. url: https://old.hotch
ips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21

.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf.

[56] Jack Choquette and Wishwesh Gandhi. “NVIDIA’s A100 GPU: Performance and
Innovation for GPU Computing”. In: Hot Chips 32: August 16–18, 2020. 2020. url:
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020

_GPU_NVIDIA_Choquette_v01.pdf.

[57] Lawrence T Clark et al. “ASAP7: A 7-nm FinFET Predictive Process Design Kit”.
In: Microelectronics Journal 53 (2016), pp. 105–115.

[58] Phillip Colella. Defining Software Requirements for Scientific Computing. 2004.

[59] Jason Cong et al. “High-Level Synthesis for FPGAs: From Prototyping to Deploy-
ment”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30.4 (2011), pp. 473–
491. doi: 10.1109/TCAD.2011.2110592. url: https://doi.org/10.1109/TCAD.20
11.2110592.

[60] Henry Cook. “Productive Design of Extensible On-Chip Memory Hierarchies”. PhD
thesis. EECS Department, University of California, Berkeley, May 2016. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-89.html.

[61] Henry M. Cook, Andrew S. Waterman, and Yunsup Lee. TileLink Cache Coherence
Protocol Implementation. Tech. rep. 2015.

[62] Henry Cook, Wesley Terpstra, and Yunsup Lee. “Diplomatic Design Patterns: A
TileLink Case Study”. In: First Workshop on Computer Architecture Research with
RISC-V (CARRV). 2017.

[63] Efabless Corp. Caravel: A Template SoC for Google SKY130 Free Shuttles. https:
//github.com/efabless/caravel. Accessed: 2020-11-30. 2020.

[64] Microsoft Corp. ONNX Runtime. 2019. url: http://www.onnxruntime.ai/ (visited
on 05/21/2020).

[65] Standard Performance Evaluation Corporation. SPEC CPU 2017. https://www.sp
ec.org/cpu2017/. Accessed: 2020-05-06. 2017.

https://groups.google.com/g/chipyard
http://dx.doi.org/10.1109/FMPC.1992.234898
https://doi.ieeecomputersociety.org/10.1109/FMPC.1992.234898
https://doi.ieeecomputersociety.org/10.1109/FMPC.1992.234898
https://old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_GPU_NVIDIA_Choquette_v01.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_GPU_NVIDIA_Choquette_v01.pdf
http://dx.doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/TCAD.2011.2110592
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-89.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-89.html
https://github.com/efabless/caravel
https://github.com/efabless/caravel
http://www.onnxruntime.ai/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/

BIBLIOGRAPHY 204

[66] Ira W. Cotton and Frank S. Greatorex. “Data Structures and Techniques for Re-
mote Computer Graphics”. In: Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I. AFIPS ’68 (Fall, part I). San Francisco, California:
Association for Computing Machinery, 1968, pp. 533–544. isbn: 9781450378994. doi:
10.1145/1476589.1476661. url: https://doi.org/10.1145/1476589.1476661.

[67] National Research Council et al. Frontiers in Massive Data Analysis. National Acade-
mies Press, 2013.

[68] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-Standard API for
Shared-Memory Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–
55. issn: 1070-9924. doi: 10.1109/99.660313. url: https://doi.org/10.1109/99
.660313.

[69] Abdul Dakkak et al. “Accelerating Reduction and Scan Using Tensor Core Units”.
In: Proceedings of the ACM International Conference on Supercomputing. ICS ’19.
Phoenix, Arizona: Association for Computing Machinery, 2019, pp. 46–57. isbn:
9781450360791. doi: 10.1145/3330345.3331057. url: https://doi.org/10.1
145/3330345.3331057.

[70] Debjit Das Sarma and Ganesh Venkataramanan. “Compute and Redundancy Solu-
tion for Tesla’s Full Self Driving Computer”. In: Hot Chips 31: Stanford Memorial
Auditorium, Stanford, California, August 18–20, 2019. 2019. url: https://www.ho
tchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf.

[71] C. J. Date and E. F. Codd. “The Relational and Network Approaches: Comparison
of the Application Programming Interfaces”. In: Proceedings of the 1974 ACM SIG-
FIDET (Now SIGMOD) Workshop on Data Description, Access and Control: Data
Models: Data-Structure-Set versus Relational. SIGFIDET ’74. Ann Arbor, Michigan:
Association for Computing Machinery, 1975, pp. 83–113. isbn: 9781450374187. doi:
10.1145/800297.811532. url: https://doi.org/10.1145/800297.811532.

[72] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113. doi: 10.1145/13274
52.1327492. url: http://doi.acm.org/10.1145/1327452.1327492.

[73] Robert H. Dennard et al. “Design of Ion-Implanted MOSFET’s With Very Small
Physical Dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–
268. doi: 10.1109/JSSC.1974.1050511.

[74] Keith Diefendorff et al. “AltiVec Extension to PowerPC Accelerates Media Process-
ing”. In: IEEE Micro 20.2 (2000), pp. 85–95. doi: 10.1109/40.848475. url: https
://doi.org/10.1109/40.848475.

[75] Jens Domke et al. Matrix Engines for High Performance Computing:A Paragon of
Performance or Grasping at Straws? 2020. arXiv: 2010.14373 [cs.DC].

http://dx.doi.org/10.1145/1476589.1476661
https://doi.org/10.1145/1476589.1476661
http://dx.doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/3330345.3331057
https://doi.org/10.1145/3330345.3331057
https://doi.org/10.1145/3330345.3331057
https://www.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf
https://www.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf
http://dx.doi.org/10.1145/800297.811532
https://doi.org/10.1145/800297.811532
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1109/40.848475
https://doi.org/10.1109/40.848475
https://doi.org/10.1109/40.848475
http://arxiv.org/abs/2010.14373

BIBLIOGRAPHY 205

[76] Jack J. Dongarra et al. “A Set of Level 3 Basic Linear Algebra Subprograms”. In:
ACM Trans. Math. Softw. 16.1 (Mar. 1990), pp. 1–17. issn: 0098-3500. doi: 10.114
5/77626.79170. url: https://doi.org/10.1145/77626.79170.

[77] Jack J. Dongarra et al. “An Extended Set of FORTRAN Basic Linear Algebra Sub-
programs”. In: ACM Trans. Math. Softw. 14.1 (1988), pp. 1–17. doi: 10.1145/4228
8.42291. url: https://doi.org/10.1145/42288.42291.

[78] Jack J. Dongarra et al. “PLASMA: Parallel Linear Algebra Software for Multicore
Using OpenMP”. In: ACM Trans. Math. Softw. 45.2 (2019), 16:1–16:35. doi: 10.11
45/3264491. url: https://doi.org/10.1145/3264491.

[79] Jack J. Dongarra et al. “The Singular Value Decomposition: Anatomy of Optimizing
an Algorithm for Extreme Scale”. In: SIAM Rev. 60.4 (2018), pp. 808–865. doi:
10.1137/17M1117732. url: https://doi.org/10.1137/17M1117732.

[80] Alexander Dörflinger et al. “A Comparative Survey of Open-Source Application-Class
RISC-V Processor Implementations”. In: Proceedings of the 18th ACM International
Conference on Computing Frontiers. CF ’21. Virtual Event, Italy: Association for
Computing Machinery, 2021, pp. 12–20. isbn: 9781450384049. doi: 10.1145/34573
88.3458657. url: https://doi.org/10.1145/3457388.3458657.

[81] Joel S. Emer and Douglas W. Clark. “A Characterization of Processor Performance
in the Vax-11/780”. In: Proceedings of the 11th Annual International Symposium on
Computer Architecture. ISCA ’84. New York, NY, USA: Association for Computing
Machinery, 1984, pp. 301–310. isbn: 0818605383. doi: 10.1145/800015.808199.

[82] Erik Engheim. The Secret Apple M1 Coprocessor. https://medium.com/swlh/appl
es-m1-secret-coprocessor-6599492fc1e1. Accessed: 2021-07-08. 2021.

[83] Berkeley College of Engineering. Berkeley engineering students pull off novel chip
design in a single semester. https://engineering.berkeley.edu/news/2021/06/b
erkeley-engineering-students-design-novel-chip-in-semester-long-cours

e/. Accessed: 2021-06-20. 2021.

[84] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In: Proceed-
ings of the 38th Annual International Symposium on Computer Architecture. ISCA
’11. San Jose, California, USA: Association for Computing Machinery, 2011, pp. 365–
376. isbn: 9781450304726. doi: 10.1145/2000064.2000108. url: https://doi.org
/10.1145/2000064.2000108.

[85] Roger Espasa and Mateo Valero. “Decoupled Vector Architectures”. In: Proceedings
of the Second International Symposium on High-Performance Computer Architecture.
HPCA ’96. San Jose, CA, USA: IEEE Computer Society, 1996, pp. 281–290.

[86] Farzad Farshchi, Qijing Huang, and Heechul Yun. “Integrating NVIDIA Deep Learn-
ing Accelerator (NVDLA) with RISC-V SoC on FireSim”. In: Proccedings of the 2nd
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Em-
bedded Applications, at HPCA 2019. Washington D.C., USA, 2019.

http://dx.doi.org/10.1145/77626.79170
http://dx.doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
http://dx.doi.org/10.1145/42288.42291
http://dx.doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
http://dx.doi.org/10.1145/3264491
http://dx.doi.org/10.1145/3264491
https://doi.org/10.1145/3264491
http://dx.doi.org/10.1137/17M1117732
https://doi.org/10.1137/17M1117732
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1145/800015.808199
https://medium.com/swlh/apples-m1-secret-coprocessor-6599492fc1e1
https://medium.com/swlh/apples-m1-secret-coprocessor-6599492fc1e1
https://engineering.berkeley.edu/news/2021/06/berkeley-engineering-students-design-novel-chip-in-semester-long-course/
https://engineering.berkeley.edu/news/2021/06/berkeley-engineering-students-design-novel-chip-in-semester-long-course/
https://engineering.berkeley.edu/news/2021/06/berkeley-engineering-students-design-novel-chip-in-semester-long-course/
http://dx.doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108

BIBLIOGRAPHY 206

[87] Massimiliano Fasi et al. “Numerical Behavior of NVIDIA Tensor Cores”. In: PeerJ
Comput. Sci. 7 (2021), e330. doi: 10.7717/peerj-cs.330. url: https://doi.org
/10.7717/peerj-cs.330.

[88] Richard P. Feynman. “There’s Plenty of Room at the Bottom”. In: Feynman and
Computation: Exploring the Limits of Computers. USA: Perseus Books, 1999, pp. 63–
76. isbn: 0738200573.

[89] Robert W. Floyd. “Permuting Information in Idealized Two-Level Storage”. In: Com-
plexity of Computer Computations. Springer, 1972, pp. 105–109.

[90] Linux Foundation. Open Neural Network Exchange (ONNX). 2019. url: https://o
nnx.ai/ (visited on 05/21/2020).

[91] Gianluca Frison et al. “BLASFEO: Basic Linear Algebra Subroutines for Embedded
Optimization”. In: ACM Trans. Math. Softw. 44.4 (July 2018). issn: 0098-3500. doi:
10.1145/3210754. url: https://doi.org/10.1145/3210754.

[92] Adi Fuchs and David Wentzlaff. “The Accelerator Wall: Limits of Chip Specializa-
tion”. In: 25th IEEE International Symposium on High Performance Computer Ar-
chitecture, HPCA 2019, Washington, DC, USA, February 16-20, 2019. IEEE, 2019,
pp. 1–14. doi: 10.1109/HPCA.2019.00023. url: https://doi.org/10.1109/HPCA.2
019.00023.

[93] Mark Gallagher et al. “Morpheus: A Vulnerability-Tolerant Secure Architecture Based
on Ensembles of Moving Target Defenses with Churn”. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. Ed.
by Iris Bahar et al. ACM, 2019, pp. 469–484. doi: 10.1145/3297858.3304037. url:
https://doi.org/10.1145/3297858.3304037.

[94] Michael Gautschi et al. “Near-Threshold RISC-V Core with DSP Extensions for Scal-
able IoT Endpoint Devices”. In: IEEE Trans. Very Large Scale Integr. Syst. 25.10
(2017), pp. 2700–2713. doi: 10.1109/TVLSI.2017.2654506. url: https://doi.org
/10.1109/TVLSI.2017.2654506.

[95] Hasan Genc et al. “Gemmini: An Agile Systolic Array Generator Enabling Systematic
Evaluations of Deep-Learning Architectures”. In: arXiv:1911.09925 [cs.DC] (2019).
arXiv: 1911.09925 [cs.DC].

[96] Hasan Genc et al. “Gemmini: Enabling Systematic Deep-Learning Architecture Eval-
uation via Full-Stack Integration”. In: Proceedings of the 58th ACM/EDAC/IEEE
Design Automation Conference. DAC ’21. San Francisco, CA, USA: IEEE Press,
2021.

[97] Amir Gholami et al. “SqueezeNext: Hardware-Aware Neural Network Design”. In:
arXiv preprint arXiv:1803.10615 (2018).

http://dx.doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330
https://onnx.ai/
https://onnx.ai/
http://dx.doi.org/10.1145/3210754
https://doi.org/10.1145/3210754
http://dx.doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/HPCA.2019.00023
http://dx.doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
http://dx.doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
http://arxiv.org/abs/1911.09925

BIBLIOGRAPHY 207

[98] Massimo Giordano et al. “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accel-
erator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training and In-
ference”. In: IEEE Symposium on VLSI Circuits, VLSI Circuits 2021, Kyoto, Japan,
June 13-19, 2021. IEEE, 2021.

[99] Gene H. Golub and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press,
2013.

[100] Abraham Gonzalez et al. “A 16mm2 106.1 GOPS/W Heterogeneous RISC-V Multi-
Core Multi-Accelerator SoC in Low-Power 22nm FinFET”. In: 47th IEEE European
Solid State Circuits Conference, ESSCIRC 2021, Grenoble, France, September 6-9,
2021. Grenoble, France: IEEE, 2021.

[101] Google. SkyWater Open Source PDK. https://github.com/google/skywater-pdk.
Accessed: 2021-07-08. 2020.

[102] Kazushige Goto and Robert A. van de Geijn. “Anatomy of High-Performance Matrix
Multiplication”. In: ACM Trans. Math. Softw. 34.3 (May 2008). issn: 0098-3500. doi:
10.1145/1356052.1356053. url: https://doi.org/10.1145/1356052.1356053.

[103] Kazushige Goto and Robert Van De Geijn. “High-Performance Implementation of the
Level-3 BLAS”. In: ACM Trans. Math. Softw. 35.1 (July 2008). issn: 0098-3500. doi:
10.1145/1377603.1377607. url: https://doi.org/10.1145/1377603.1377607.

[104] Samuel Greengard. “Will RISC-V Revolutionize Computing?” In: Commun. ACM
63.5 (2020), pp. 30–32. doi: 10.1145/3386377. url: https://doi.org/10.1145/3
386377.

[105] Michael Gschwind. “Workload Acceleration with The IBM POWER Vector-Scalar
Architecture”. In: IBM J. Res. Dev. 60.2-3 (2016). url: https://doi.org/10.1147
/JRD.2016.2527418.

[106] Gagan Gupta et al. “Kickstarting Semiconductor Innovation with Open Source Hard-
ware”. In: Computer 50.6 (2017), pp. 50–59.

[107] Suyog Gupta and Berkin Akin. Accelerator-aware Neural Network Design using Au-
toML. 2020. arXiv: 2003.02838 [eess.SP].

[108] John Gustafson and Isaac Yonemoto. “Beating Floating Point at its Own Game:
Posit Arithmetic”. In: Supercomputing Frontiers and Innovations 4.2 (2017). issn:
2313-8734. url: https://www.superfri.org/superfri/article/view/137.

[109] Linley Gwennap. “Application-Specific Accelerators Extend Moore’s Law”. In: Linley
Fall Processor Conference 2020, October 20-29, 2020. 2020. url: http://www.linl
eygroup.com/cms_builder/uploads/FPC20_October20_Session_Slides.

[110] Azzam Haidar et al. “Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to
Speed Up Mixed-Precision Iterative Refinement Solvers”. In: SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE. 2018, pp. 603–613.

https://github.com/google/skywater-pdk
http://dx.doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053
http://dx.doi.org/10.1145/1377603.1377607
https://doi.org/10.1145/1377603.1377607
http://dx.doi.org/10.1145/3386377
https://doi.org/10.1145/3386377
https://doi.org/10.1145/3386377
https://doi.org/10.1147/JRD.2016.2527418
https://doi.org/10.1147/JRD.2016.2527418
http://arxiv.org/abs/2003.02838
https://www.superfri.org/superfri/article/view/137
http://www.linleygroup.com/cms_builder/uploads/FPC20_October20_Session_Slides
http://www.linleygroup.com/cms_builder/uploads/FPC20_October20_Session_Slides

BIBLIOGRAPHY 208

[111] Azzam Haidar et al. “Investigating Half Precision Arithmetic to Accelerate Dense
Linear System Solvers”. In: Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems. ScalA ’17. Denver, Colorado: Association
for Computing Machinery, 2017. isbn: 9781450351256. doi: 10.1145/3148226.3148
237. url: https://doi.org/10.1145/3148226.3148237.

[112] Azzam Haidar et al. “MAGMA Embedded: Towards a Dense Linear Algebra Library
for Energy Efficient Extreme Computing”. In: 2015 IEEE High Performance Extreme
Computing Conference, HPEC 2015, Waltham, MA, USA, September 15-17, 2015.
IEEE, 2015, pp. 1–6. doi: 10.1109/HPEC.2015.7322444. url: https://doi.org/1
0.1109/HPEC.2015.7322444.

[113] James Hamilton. AWS Inferentia Machine Learning Processor. https://perspect
ives.mvdirona.com/2018/11/aws-inferentia-machine-learning-processor/.
Accessed: 2021-05-08. 2018.

[114] Mark J. Harris et al. “Physically-Based Visual Simulation on Graphics Hardware”.
In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05. Los Angeles, California: Asso-
ciation for Computing Machinery, 2005, 221–es. isbn: 9781450378338. doi: 10.1145
/1198555.1198791. url: https://doi.org/10.1145/1198555.1198791.

[115] Sarah L. Harris et al. “MIPSfpga: Using a Commercial MIPS Soft-Core in Com-
puter Architecture Education”. In: IET Circuits, Devices & Systems 11.4 (July 2017),
pp. 283–291. issn: 1751-858X. doi: 10.1049/iet-cds.2016.0383. url: https://d
oi.org/10.1049/iet-cds.2016.0383.

[116] Raza Hasan and Salman Mahmood. “Survey and Evaluation of Simulators Suitable
for Teaching for Computer Architecture and Organization Supporting Undergraduate
Students at Sir Syed University of Engineering Technology”. In: Proceedings of 2012
UKACC International Conference on Control. 2012, pp. 1043–1045.

[117] John Hauser. Berkeley HardFloat. https://github.com/ucb-bar/berkeley-hardf
loat. Accessed: 2021-05-21. 2019.

[118] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June
2016.

[119] Alexander Heinecke et al. “LIBXSMM: Accelerating Small Matrix Multiplications by
Runtime Code Generation”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City,
UT, USA, November 13-18, 2016. Ed. by John West and Cherri M. Pancake. IEEE
Computer Society, 2016, pp. 981–991. doi: 10.1109/SC.2016.83. url: https://do
i.org/10.1109/SC.2016.83.

http://dx.doi.org/10.1145/3148226.3148237
http://dx.doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
http://dx.doi.org/10.1109/HPEC.2015.7322444
https://doi.org/10.1109/HPEC.2015.7322444
https://doi.org/10.1109/HPEC.2015.7322444
https://perspectives.mvdirona.com/2018/11/aws-inferentia-machine-learning-processor/
https://perspectives.mvdirona.com/2018/11/aws-inferentia-machine-learning-processor/
http://dx.doi.org/10.1145/1198555.1198791
http://dx.doi.org/10.1145/1198555.1198791
https://doi.org/10.1145/1198555.1198791
http://dx.doi.org/10.1049/iet-cds.2016.0383
https://doi.org/10.1049/iet-cds.2016.0383
https://doi.org/10.1049/iet-cds.2016.0383
https://github.com/ucb-bar/berkeley-hardfloat
https://github.com/ucb-bar/berkeley-hardfloat
http://dx.doi.org/10.1109/SC.2016.83
https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1109/SC.2016.83

BIBLIOGRAPHY 209

[120] Liao Heng. “A Scalable Unified Architecture for Neural Network Computing from
Nano-Level to High Performance Computing”. In: Hot Chips 31: Stanford Memorial
Auditorium, Stanford, California, August 18–20, 2019. 2019. url: https://www.ho
tchips.org/hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf.

[121] John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Ar-
chitecture”. In: Commun. ACM 62.2 (Jan. 2019), pp. 48–60. issn: 0001-0782. doi:
10.1145/3282307.

[122] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Elsevier, 2011.

[123] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. “Squeezing a Matrix into
Half Precision, with an Application to Solving Linear Systems”. In: SIAM Journal on
Scientific Computing 41.4 (2019), A2536–A2551. doi: 10.1137/18M1229511. eprint:
https://doi.org/10.1137/18M1229511. url: https://doi.org/10.1137/18M122
9511.

[124] Nicholas Higham and Srikara Pranesh. “Exploiting Lower Precision Arithmetic in
Solving Symmetric Positive Definite Linear Systems and Least Squares Problems”.
In: (2019).

[125] R. G. Hintz and Tate D. P. “Control Data STAR-100 Processor Design”. In: COM-
PCON. IEEE. 1972, pp. 1–4.

[126] Mark Horowitz. “Computing’s Energy Problem (And What We Can Do About It)”.
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Pa-
pers (ISSCC). 2014, pp. 10–14.

[127] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[128] Qijing Huang et al. “CoSA: Scheduling by Constrained Optimization for Spatial Ac-
celerators”. In: Proceedings of the 48th Annual International Symposium on Computer
Architecture. ISCA ’21. Valencia, Spain: Association for Computing Machinery, 2021.

[129] Andrey Ignatov et al. “AI Benchmark: All About Deep Learning on Smartphones
in 2019”. In: 2019 IEEE/CVF International Conference on Computer Vision Work-
shops, ICCV Workshops 2019, Seoul, Korea (South), October 27-28, 2019. IEEE,
2019, pp. 3617–3635. doi: 10.1109/ICCVW.2019.00447. url: https://doi.org/10
.1109/ICCVW.2019.00447.

[130] Gabriel Ilharco et al. High Performance Natural Language Processing (EMNLP 2020).
http://gabrielilharco.com/publications/EMNLP_2020_Tutorial__High_Perfo

rmance_NLP.pdf. Accessed: 2021-05-24. 2020.

[131] Apple Inc. Apple Accelerate. https://developer.apple.com/accelerate/. Ac-
cessed: 2021-01-25. 2020.

https://www.hotchips.org/hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf
https://www.hotchips.org/hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf
http://dx.doi.org/10.1145/3282307
http://dx.doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1109/ICCVW.2019.00447
https://doi.org/10.1109/ICCVW.2019.00447
https://doi.org/10.1109/ICCVW.2019.00447
http://gabrielilharco.com/publications/EMNLP_2020_Tutorial__High_Performance_NLP.pdf
http://gabrielilharco.com/publications/EMNLP_2020_Tutorial__High_Performance_NLP.pdf
https://developer.apple.com/accelerate/

BIBLIOGRAPHY 210

[132] Apple Inc. Apple unleashes M1. https://www.apple.com/newsroom/2020/11/appl
e-unleashes-m1/. Accessed: 2021-01-25. 2020.

[133] Cadence Design Systems Inc. Cadence Cloud Portfolio. https://www.cadence.com
/en_US/home/solutions/cadence-cloud.html. Accessed: 2021-05-08. 2021.

[134] Cadence Design Systems Inc. Palladium Cloud. https://www.cadence.com/en

_US/home/solutions/cadence-cloud/palladium-cloud.html. Accessed: 2021-05-
08. 2021.

[135] Microchip Technology Inc. PolarFire SoC. https://www.microsemi.com/product-
directory/soc-fpgas/5498-polarfire-soc-fpga. Accessed: 2021-07-08. 2021.

[136] SiFive Inc. fpga-shells. https://github.com/sifive/fpga-shells. Accessed: 2020-
11-30. 2019.

[137] Synopsys Inc. Synopsys Cloud Solutions. https://www.synopsys.com/cloud.html.
Accessed: 2021-05-08. 2021.

[138] Synopsys Inc. ZeBu Cloud. https://www.synopsys.com/verification/solutions
/zebu-cloud-solution.html. Accessed: 2021-05-08. 2021.

[139] Western Digital Inc. RISC-V and Open Source Hardware Address New Compute Re-
quirements. https://documents.westerndigital.com/content/dam/doc-library
/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief

-western-digital-risc-v.pdf. Accessed: 2021-07-08. 2021.

[140] Intel Architecture Instruction Set Extensions and Future Features Programming Ref-
erence. Tech. rep. 319433-040. Intel Corp., June 2020.

[141] RISC-V International. RISC-V Educational Materials. https://riscv.org/educat
ional-materials/. Accessed: 2020-05-06. 2020.

[142] Dror Irony, Sivan Toledo, and Alexander Tiskin. “Communication Lower Bounds for
Distributed-Memory Matrix Multiplication”. In: Journal of Parallel and Distributed
Computing 64.9 (2004), pp. 1017–1026.

[143] Adam Izraelevitz et al. “Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations”. In: Proceedings of the 36th In-
ternational Conference on Computer-Aided Design. ICCAD ’17. Irvine, California:
IEEE Press, 2017, pp. 209–216.

[144] Aakash Jani. “Apple Ships Its First PC Processor”. In: Microprocessor Report 35.1
(2021), pp. 1–2.

[145] Geonhwa Jeong et al. “RASA: Efficient Register-Aware Systolic Array Matrix Engine
for CPU”. In: Proceedings of the 58th Annual Design Automation Conference, DAC
2021. ACM, 2021.

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.cadence.com/en_US/home/solutions/cadence-cloud.html
https://www.cadence.com/en_US/home/solutions/cadence-cloud.html
https://www.cadence.com/en_US/home/solutions/cadence-cloud/palladium-cloud.html
https://www.cadence.com/en_US/home/solutions/cadence-cloud/palladium-cloud.html
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://github.com/sifive/fpga-shells
https://www.synopsys.com/cloud.html
https://www.synopsys.com/verification/solutions/zebu-cloud-solution.html
https://www.synopsys.com/verification/solutions/zebu-cloud-solution.html
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/tech-brief/tech-brief-western-digital-risc-v.pdf
https://riscv.org/educational-materials/
https://riscv.org/educational-materials/

BIBLIOGRAPHY 211

[146] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: Proceedings of the 22Nd ACM International Conference on Multimedia. MM ’14.
Orlando, Florida, USA: ACM, 2014, pp. 675–678. isbn: 978-1-4503-3063-3. doi: 10
.1145/2647868.2654889. url: http://doi.acm.org/10.1145/2647868.2654889.

[147] Hong Jia-Wei and H. T. Kung. “I/O Complexity: The Red-Blue Pebble Game”. In:
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing.
STOC ’81. Milwaukee, Wisconsin, USA: Association for Computing Machinery, 1981,
pp. 326–333. isbn: 9781450373920. doi: 10.1145/800076.802486.

[148] Norman P. Jouppi et al. “A Domain-Specific Supercomputer for Training Deep Neural
Networks”. In: Commun. ACM 63.7 (June 2020), pp. 67–78. issn: 0001-0782. doi:
10.1145/3360307. url: https://doi.org/10.1145/3360307.

[149] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing
Unit”. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture. ISCA ’17. Toronto, ON, Canada: ACM, 2017, pp. 1–12. isbn: 978-1-
4503-4892-8. doi: 10.1145/3079856.3080246. url: http://doi.acm.org/10.1145
/3079856.3080246.

[150] Dhiraj Kalamkar et al. A Study of BFLOAT16 for Deep Learning Training. 2019.
arXiv: 1905.12322 [cs.LG].

[151] Sagar Karandikar et al. “FirePerf: FPGA-Accelerated Full-System Hardware/Soft-
ware Performance Profiling and Co-Design”. In: Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS ’20. Lausanne, Switzerland: Association for Computing
Machinery, 2020, pp. 715–731. isbn: 9781450371025.

[152] Sagar Karandikar et al. “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud”. In: 45th ACM/IEEE Annual International Sympo-
sium on Computer Architecture, ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018.
Ed. by Murali Annavaram, Timothy Mark Pinkston, and Babak Falsafi. IEEE Com-
puter Society, 2018, pp. 29–42. doi: 10.1109/ISCA.2018.00014. url: https://doi
.org/10.1109/ISCA.2018.00014.

[153] Ben Keller et al. “A RISC-V Processor SoC with Integrated Power Management
at Submicrosecond Timescales in 28 nm FD-SOI”. In: IEEE Journal of Solid-State
Circuits 52.7 (2017), pp. 1863–1875. doi: 10.1109/JSSC.2017.2690859.

[154] Jeremy Kepner et al. “Mathematical Foundations of The GraphBLAS”. In: 2016
IEEE High Performance Extreme Computing Conference, HPEC 2016, Waltham,
MA, USA, September 13-15, 2016. IEEE, 2016, pp. 1–9. doi: 10.1109/HPEC.201
6.7761646. url: https://doi.org/10.1109/HPEC.2016.7761646.

[155] Brian W Kernighan and Shen Lin. “An Efficient Heuristic Procedure for Partitioning
Graphs”. In: The Bell system technical journal 49.2 (1970), pp. 291–307.

http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/800076.802486
http://dx.doi.org/10.1145/3360307
https://doi.org/10.1145/3360307
http://dx.doi.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://arxiv.org/abs/1905.12322
http://dx.doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
http://dx.doi.org/10.1109/JSSC.2017.2690859
http://dx.doi.org/10.1109/HPEC.2016.7761646
http://dx.doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/HPEC.2016.7761646

BIBLIOGRAPHY 212

[156] Moein Khazraee et al. “Moonwalk: NRE Optimization in ASIC Clouds”. In: Pro-
ceedings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’17. Xi’an, China: Associ-
ation for Computing Machinery, 2017, pp. 511–526. isbn: 9781450344654. doi: 10.1
145/3037697.3037749. url: https://doi.org/10.1145/3037697.3037749.

[157] Donggyu Kim et al. “DESSERT: Debugging RTL Effectively with State Snapshotting
for Error Replays across Trillions of Cycles”. In: 28th International Conference on
Field Programmable Logic and Applications, FPL 2018, Dublin, Ireland, August 27-
31, 2018. IEEE Computer Society, 2018, pp. 76–80. doi: 10.1109/FPL.2018.00021.
url: https://doi.org/10.1109/FPL.2018.00021.

[158] Olof Kindgren. “Invited Paper: A Scalable Approach to IP Management with Fus-
eSoC”. In: Workshop on Open Source Design Automation. 2019.

[159] Deborah L. Knox. “Integrating Design and Simulation into a Computer Architecture
Course”. In: Proceedings of the 2nd Conference on Integrating Technology into Com-
puter Science Education. ITiCSE ’97. Uppsala, Sweden: Association for Computing
Machinery, 1997, pp. 42–44. isbn: 0897919238. doi: 10.1145/268819.268834.

[160] H. T. Kung and Charles E Leiserson. “Systolic arrays (for VLSI)”. In: Sparse Ma-
trix Proceedings 1978. Vol. 1. Society for Industrial and Applied Mathematics. 1979,
pp. 256–282.

[161] Hsiang-Tsung Kung. “Why Systolic Architectures?” In: IEEE computer 15.1 (1982),
pp. 37–46.

[162] Kiseok Kwon et al. “Co-Design of Deep Neural Nets and Neural Net Accelerators
for Embedded Vision Applications”. In: Proceedings of the 55th Annual Design Au-
tomation Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. ACM,
2018, 148:1–148:6. doi: 10.1145/3195970.3199849. url: https://doi.org/10.11
45/3195970.3199849.

[163] E. Scott Larsen and David McAllister. “Fast Matrix Multiplies Using Graphics Hard-
ware”. In: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing. SC
’01. Denver, Colorado: Association for Computing Machinery, 2001, p. 55. isbn:
158113293X. doi: 10.1145/582034.582089. url: https://doi.org/10.1145

/582034.582089.

[164] Luciano Lavagno, Louis Scheffer, and Grant Martin. EDA for IC Implementation,
Circuit Design, and Process Technology. CRC press, 2006.

[165] Charles L. Lawson et al. “Basic Linear Algebra Subprograms for Fortran Usage”. In:
ACM Trans. Math. Softw. 5.3 (1979), pp. 308–323. issn: 0098-3500. doi: 10.1145/3
55841.355847. url: https://doi.org/10.1145/355841.355847.

[166] Jong-Hyuk Lee et al. “Pipelined CPU Design with FPGA in Teaching Computer
Architecture”. In: IEEE Transactions on Education 55.3 (2012), pp. 341–348. doi:
10.1109/TE.2011.2175227. url: https://doi.org/10.1109/TE.2011.2175227.

http://dx.doi.org/10.1145/3037697.3037749
http://dx.doi.org/10.1145/3037697.3037749
https://doi.org/10.1145/3037697.3037749
http://dx.doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/FPL.2018.00021
http://dx.doi.org/10.1145/268819.268834
http://dx.doi.org/10.1145/3195970.3199849
https://doi.org/10.1145/3195970.3199849
https://doi.org/10.1145/3195970.3199849
http://dx.doi.org/10.1145/582034.582089
https://doi.org/10.1145/582034.582089
https://doi.org/10.1145/582034.582089
http://dx.doi.org/10.1145/355841.355847
http://dx.doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
http://dx.doi.org/10.1109/TE.2011.2175227
https://doi.org/10.1109/TE.2011.2175227

BIBLIOGRAPHY 213

[167] Yunsup Lee. “Decoupled Vector-Fetch Architecture with a Scalarizing Compiler”.
PhD thesis. EECS Department, University of California, Berkeley, May 2016. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-117.html.

[168] Yunsup Lee and Andrew Waterman. “Managing Chip Design Complexity in the
Domain-Specific SoC Era”. In: IEEE Symposium on VLSI Circuits, VLSI Circuits
2020, Honolulu, HI, USA, June 16-19, 2020. IEEE, 2020, pp. 1–2. doi: 10.1109

/VLSICircuits18222.2020.9162812.

[169] Yunsup Lee et al. “A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V pro-
cessor with vector accelerators”. In: ESSCIRC 2014 - 40th European Solid State Cir-
cuits Conference (ESSCIRC). 2014, pp. 199–202. doi: 10.1109/ESSCIRC.2014.694
2056.

[170] Yunsup Lee et al. “An Agile Approach to Building RISC-V Microprocessors”. In:
IEEE Micro 36.2 (2016), pp. 8–20. issn: 0272-1732. doi: 10.1109/MM.2016.11. url:
https://doi.org/10.1109/MM.2016.11.

[171] Yunsup Lee et al. “Exploring the Design Space of SPMD Divergence Management on
Data-Parallel Architectures”. In: Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. MICRO-47. Cambridge, UK: IEEE Computer
Society, 2014, pp. 101–113.

[172] Yunsup Lee et al. “Hwacha Preliminary Evaluation Results, Version 3.8.” In: EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-264
(2015).

[173] Yunsup Lee et al. “The Hwacha Microarchitecture Manual, Version 3.8.” In: EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-263
(2015).

[174] Yunsup Lee et al. “The Hwacha Vector-Fetch Architecture Manual, Version 3.8”. In:
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-
262 (2015).

[175] Charles E. Leiserson et al. “There’s Plenty of Room At The Top: What Will Drive
Computer Performance After Moore’s law?” In: Science 368.6495 (2020). issn: 0036-
8075. doi: 10.1126/science.aam9744. eprint: https://science.sciencemag.org
/content/368/6495/eaam9744.full.pdf. url: https://science.sciencemag.or
g/content/368/6495/eaam9744.

[176] Jure Leskovec et al. “Stanford Network Analysis Project”. In: ht tp://snap. stanford.
edu (2010).

[177] Xiaoye S. Li et al. “Design, Implementation and Testing of Extended and Mixed
Precision BLAS”. In: ACM Trans. Math. Softw. 28.2 (2002), pp. 152–205. doi: 10.1
145/567806.567808. url: https://doi.org/10.1145/567806.567808.

[178] Libgloss, a free board support package (BSP). url: https://www.gnu.org/softwar
e/dejagnu/manual/Libgloss.html (visited on 04/09/2020).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-117.html
http://dx.doi.org/10.1109/VLSICircuits18222.2020.9162812
http://dx.doi.org/10.1109/VLSICircuits18222.2020.9162812
http://dx.doi.org/10.1109/ESSCIRC.2014.6942056
http://dx.doi.org/10.1109/ESSCIRC.2014.6942056
http://dx.doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/MM.2016.11
http://dx.doi.org/10.1126/science.aam9744
https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf
https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744
http://dx.doi.org/10.1145/567806.567808
http://dx.doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://www.gnu.org/software/dejagnu/manual/Libgloss.html
https://www.gnu.org/software/dejagnu/manual/Libgloss.html

BIBLIOGRAPHY 214

[179] Chris Lomont. “Introduction to Intel Advanced Vector Extensions”. In: Intel white
paper 23 (2011).

[180] Ryan Lund. “Design and Application of a Co-Simulation Framework for Chisel”.
MA thesis. EECS Department, University of California, Berkeley, May 2021. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-133.html.

[181] Yirong Lv et al. “CounterMiner: Mining Big Performance Data from Hardware Coun-
ters”. In: 51st Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society, 2018,
pp. 613–626. doi: 10.1109/MICRO.2018.00056. url: https://doi.org/10.1109
/MICRO.2018.00056.

[182] Martin Maas, Krste Asanović, and John Kubiatowicz. “A Hardware Accelerator for
Tracing Garbage Collection”. In: Proceedings of the 45th Annual International Sym-
posium on Computer Architecture. ISCA ’18. Los Angeles, California: IEEE Press,
2018, pp. 138–151. isbn: 9781538659847. doi: 10.1109/ISCA.2018.00022. url:
https://doi.org/10.1109/ISCA.2018.00022.

[183] Albert Magyar et al. “Golden Gate: Bridging The Resource-Efficiency Gap Between
ASICs and FPGA Prototypes”. In: Proceedings of the International Conference on
Computer-Aided Design, ICCAD 2019, Westminster, CO, USA, November 4-7, 2019.
Ed. by David Z. Pan. ACM, 2019, pp. 1–8. doi: 10.1109/ICCAD45719.2019.8942087.
url: https://doi.org/10.1109/ICCAD45719.2019.8942087.

[184] Phillip R. Malone. GOOGLE LLC. vs. ORACLE AMERICA INC. BRIEF AMICI
CURIAE OF 83 COMPUTER SCIENTISTS IN SUPPORT OF PETITIONER. ht
tps://www.supremecourt.gov/DocketPDF/18/18-956/128391/2020011314502766

4_18-956%20Google%20v%20Oracle%20Computer%20Scientists%20Merits%20Amic

us%20FOR%20FILING.pdf. Number 18-956. Accessed: 2021-01-25. 2020.

[185] Svetlin A. Manavski and Giorgio Valle. “CUDA Compatible GPU Cards as Efficient
Hardware Accelerators for Smith-Waterman Sequence Alignment”. In: BMC bioin-
formatics 9.2 (2008), pp. 1–9.

[186] Paolo Mantovani et al. “Agile SoC Development with Open ESP : Invited Paper”.
In: IEEE/ACM International Conference On Computer Aided Design, ICCAD 2020,
San Diego, CA, USA, November 2-5, 2020. IEEE, 2020, 96:1–96:9. doi: 10.1145/34
00302.3415753. url: https://doi.org/10.1145/3400302.3415753.

[187] Howard Mao. “Hardware Acceleration for Memory to Memory Copies”. MA thesis.
EECS Department, University of California, Berkeley, Jan. 2017. url: http://www2
.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-2.html.

[188] Howard Mao, Randy H. Katz, and Krste Asanović. Hardware Acceleration for Memory
to Memory Copies. Tech. rep. Technical Report UCB/EECS-2017-2, EECS Depart-
ment, University of California, Berkeley, 2017.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-133.html
http://dx.doi.org/10.1109/MICRO.2018.00056
https://doi.org/10.1109/MICRO.2018.00056
https://doi.org/10.1109/MICRO.2018.00056
http://dx.doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1109/ISCA.2018.00022
http://dx.doi.org/10.1109/ICCAD45719.2019.8942087
https://doi.org/10.1109/ICCAD45719.2019.8942087
https://www.supremecourt.gov/DocketPDF/18/18-956/128391/20200113145027664_18-956%20Google%20v%20Oracle%20Computer%20Scientists%20Merits%20Amicus%20FOR%20FILING.pdf
https://www.supremecourt.gov/DocketPDF/18/18-956/128391/20200113145027664_18-956%20Google%20v%20Oracle%20Computer%20Scientists%20Merits%20Amicus%20FOR%20FILING.pdf
https://www.supremecourt.gov/DocketPDF/18/18-956/128391/20200113145027664_18-956%20Google%20v%20Oracle%20Computer%20Scientists%20Merits%20Amicus%20FOR%20FILING.pdf
https://www.supremecourt.gov/DocketPDF/18/18-956/128391/20200113145027664_18-956%20Google%20v%20Oracle%20Computer%20Scientists%20Merits%20Amicus%20FOR%20FILING.pdf
http://dx.doi.org/10.1145/3400302.3415753
http://dx.doi.org/10.1145/3400302.3415753
https://doi.org/10.1145/3400302.3415753
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-2.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-2.html

BIBLIOGRAPHY 215

[189] Eitan Medina. “Habana Labs Approach to Scaling AI Training”. In: Hot Chips 31:
Stanford Memorial Auditorium, Stanford, California, August 18–20, 2019. 2019. url:
https://www.hotchips.org/hc31/HC31_1.14_HabanaLabs.Eitan_Medina.v9.pdf

.

[190] Mahim Mishra et al. “Tartan: Evaluating Spatial Computation for Whole Program
Execution”. In: Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XII. San Jose,
California, USA: Association for Computing Machinery, 2006, pp. 163–174. isbn:
1595934510. doi: 10.1145/1168857.1168878. url: https://doi.org/10.1145/11
68857.1168878.

[191] Gaurav Mitra et al. “Use of SIMD Vector Operations to Accelerate Application Code
Performance on Low-Powered ARM and Intel Platforms”. In: 2013 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,
Cambridge, MA, USA, May 20-24, 2013. IEEE, 2013, pp. 1107–1116. doi: 10.1109
/IPDPSW.2013.207. url: https://doi.org/10.1109/IPDPSW.2013.207.

[192] Kenneth Moreland and Edward Angel. “The FFT on a GPU”. In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. HWWS
’03. San Diego, California: Eurographics Association, 2003, pp. 112–119. isbn: 158113
7397.

[193] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applications”.
In: 13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. Ed. by Andrea C. Arpaci-
Dusseau and Geoff Voelker. USENIX Association, 2018, pp. 561–577. url: https:
//www.usenix.org/conference/osdi18/presentation/nishihara.

[194] Tipp Moseley, Neil Vachharajani, and William Jalby. “Hardware Performance Moni-
toring for the Rest of Us: A Position and Survey”. In: Network and Parallel Computing
- 8th IFIP International Conference, NPC 2011, Changsha, China, October 21-23,
2011. Proceedings. Ed. by Erik R. Altman and Weisong Shi. Vol. 6985. Lecture Notes
in Computer Science. Springer, 2011, pp. 293–312. doi: 10.1007/978-3-642-24403
-2_23. url: https://doi.org/10.1007/978-3-642-24403-2%5C_23.

[195] Dorit Naishlos. “Autovectorization in GCC”. In: Proceedings of the 2004 GCC De-
velopers Summit. 2004, pp. 105–118.

[196] John A. Nestor. “Teaching Computer Organization with HDLs: An Incremental Ap-
proach”. In: 2005 International Conference on Microelectronics Systems Education,
MSE 2005, Anaheim, CA, USA, June 12-13, 2005. IEEE Computer Society, 2005,
pp. 77–78. doi: 10.1109/MSE.2005.51. url: https://doi.org/10.1109/MSE.2005
.51.

https://www.hotchips.org/hc31/HC31_1.14_HabanaLabs.Eitan_Medina.v9.pdf
https://www.hotchips.org/hc31/HC31_1.14_HabanaLabs.Eitan_Medina.v9.pdf
http://dx.doi.org/10.1145/1168857.1168878
https://doi.org/10.1145/1168857.1168878
https://doi.org/10.1145/1168857.1168878
http://dx.doi.org/10.1109/IPDPSW.2013.207
http://dx.doi.org/10.1109/IPDPSW.2013.207
https://doi.org/10.1109/IPDPSW.2013.207
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://www.usenix.org/conference/osdi18/presentation/nishihara
http://dx.doi.org/10.1007/978-3-642-24403-2_23
http://dx.doi.org/10.1007/978-3-642-24403-2_23
https://doi.org/10.1007/978-3-642-24403-2%5C_23
http://dx.doi.org/10.1109/MSE.2005.51
https://doi.org/10.1109/MSE.2005.51
https://doi.org/10.1109/MSE.2005.51

BIBLIOGRAPHY 216

[197] Rishiyur S. Nikhil. “Bluespec System Verilog: Efficient, Correct RTL From High Level
Specifications”. In: 2nd ACM & IEEE International Conference on Formal Methods
and Models for Co-Design (MEMOCODE 2004), 23-25 June 2004, San Diego, Cal-
ifornia, USA, Proceedings. IEEE Computer Society, 2004, pp. 69–70. doi: 10.1109
/MEMCOD.2004.1459818. url: https://doi.org/10.1109/MEMCOD.2004.1459818.

[198] Borivoje Nikolic, Elad Alon, and Krste Asanovic. “Generating the Next Wave of
Custom Silicon”. In: 44th IEEE European Solid State Circuits Conference, ESSCIRC
2018, Dresden, Germany, September 3-6, 2018. IEEE, 2018, pp. 6–11. doi: 10.1109
/ESSCIRC.2018.8494310. url: https://doi.org/10.1109/ESSCIRC.2018.849431
0.

[199] Bosko Nikolić et al. “A Survey and Evaluation of Simulators Suitable for Teaching
Courses in Computer Architecture and Organization”. In: IEEE Transactions on Ed-
ucation 52.4 (Nov. 2009), pp. 449–458. issn: 0018-9359. doi: 10.1109/TE.2008.930
097.

[200] Nod.ai. Comparing Apple’s M1 matmul performance – AMX2 vs NEON. https://n
od.ai/comparing-apple-m1-with-amx2-m1-with-neon/. Accessed: 2021-07-08.
2021.

[201] Thomas Norrie et al. “The Design Process for Google’s Training Chips: TPUv2 and
TPUv3”. In: IEEE Micro 41.2 (2021), pp. 56–63. doi: 10.1109/MM.2021.3058217.
url: https://doi.org/10.1109/MM.2021.3058217.

[202] Tony Nowatzki et al. “Architectural Simulators Considered Harmful”. In: IEEE Micro
35.6 (2015), pp. 4–12. doi: 10.1109/MM.2015.74. url: https://doi.org/10.1109
/MM.2015.74.

[203] Dorit Nuzman, Ira Rosen, and Ayal Zaks. “Auto-Vectorization of Interleaved Data
for SIMD”. In: Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006.
Ed. by Michael I. Schwartzbach and Thomas Ball. ACM, 2006, pp. 132–143. doi:
10.1145/1133981.1133997. url: https://doi.org/10.1145/1133981.1133997.

[204] NVIDIA. White paper: NVIDIA TESLA V100 GPU ARCHITECTURE. Aug. 2017.
url: https://images.nvidia.com/content/volta-architecture/pdf/volta-ar
chitecture-whitepaper.pdf.

[205] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to The Web.
Tech. rep. Stanford InfoLab, 1999.

[206] David Parkins. “The World’s Most Valuable Resource Is No Longer Oil, But Data”.
In: The economist 6 (2017).

[207] David Lorge Parnas. “On the Criteria To Be Used in Decomposing Systems into
Modules”. In: Commun. ACM 15.12 (1972), pp. 1053–1058. issn: 0001-0782. doi:
10.1145/361598.361623. url: https://doi.org/10.1145/361598.361623.

http://dx.doi.org/10.1109/MEMCOD.2004.1459818
http://dx.doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
http://dx.doi.org/10.1109/ESSCIRC.2018.8494310
http://dx.doi.org/10.1109/ESSCIRC.2018.8494310
https://doi.org/10.1109/ESSCIRC.2018.8494310
https://doi.org/10.1109/ESSCIRC.2018.8494310
http://dx.doi.org/10.1109/TE.2008.930097
http://dx.doi.org/10.1109/TE.2008.930097
https://nod.ai/comparing-apple-m1-with-amx2-m1-with-neon/
https://nod.ai/comparing-apple-m1-with-amx2-m1-with-neon/
http://dx.doi.org/10.1109/MM.2021.3058217
https://doi.org/10.1109/MM.2021.3058217
http://dx.doi.org/10.1109/MM.2015.74
https://doi.org/10.1109/MM.2015.74
https://doi.org/10.1109/MM.2015.74
http://dx.doi.org/10.1145/1133981.1133997
https://doi.org/10.1145/1133981.1133997
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://dx.doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623

BIBLIOGRAPHY 217

[208] Atish Patra. Successful KVM RISC-V bring up on FPGA (Rocket core with H ex-
tension). https://lore.kernel.org/linux-riscv/CAOnJCULY7PTcyZ4d0MiC6YBW3
_ZdN3tVC4jg_wAJdJs_YeCnMQ@mail.gmail.com/. Accessed: 2021-05-08. 2021.

[209] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Mach.
Learn. Res. 12 (2011), pp. 2825–2830. url: http://dl.acm.org/citation.cfm?id
=2078195.

[210] Mark S. Peercy et al. “Interactive Multi-Pass Programmable Shading”. In: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 425–
432. isbn: 1581132085. doi: 10.1145/344779.344976. url: https://doi.org/10.1
145/344779.344976.

[211] Nathan Pemberton and Alon Amid. “FireMarshal: Making HW/SW Co-Design Re-
producible and Reliable”. In: Proceedings of the 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). ISPASS ’21. Stony
Brook, NY, USA: IEEE, 2021, pp. 299–309. isbn: 9781728186436. doi: 10.1109

/ISPASS51385.2021.00052.

[212] Daniel Petrisko et al. “BlackParrot: An Agile Open-Source RISC-V Multicore for
Accelerator SoCs”. In: IEEE Micro 40.4 (2020), pp. 93–102. doi: 10.1109/MM.2020
.2996145. url: https://doi.org/10.1109/MM.2020.2996145.

[213] Raghu Prabhakar et al. “Plasticine: A Reconfigurable Architecture For Parallel Pat-
terns”. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture. ISCA ’17. Toronto, ON, Canada: Association for Computing Machin-
ery, 2017, pp. 389–402. isbn: 9781450348928. doi: 10.1145/3079856.3080256. url:
https://doi.org/10.1145/3079856.3080256.

[214] Pranav Prakash. “End-to-end Model Inference and Training on Gemmini”. MA thesis.
EECS Department, University of California, Berkeley, May 2021. url: http://www2
.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-37.html.

[215] P. W. C. Prasad et al. “Using Simulators for Teaching Computer Organization and Ar-
chitecture”. In: Computer Applications in Engineering Education 24.2 (2016), pp. 215–
224. doi: 10.1002/cae.21699. eprint: https://onlinelibrary.wiley.com/doi/p
df/10.1002/cae.21699.

[216] Guofeng Qin et al. “Design and Performance Analysis on Static and Dynamic Pipelined
CPU in Course Experiment of Computer Architecture”. In: 2018 13th International
Conference on Computer Science Education (ICCSE). 2018, pp. 1–6.

[217] Vijay Janapa Reddi et al. “MLPerf Inference Benchmark”. In: 47th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. IEEE, 2020, pp. 446–459. doi: 10.1109/ISCA45697
.2020.00045. url: https://doi.org/10.1109/ISCA45697.2020.00045.

https://lore.kernel.org/linux-riscv/CAOnJCULY7PTcyZ4d0MiC6YBW3_ZdN3tVC4jg_wAJdJs_YeCnMQ@mail.gmail.com/
https://lore.kernel.org/linux-riscv/CAOnJCULY7PTcyZ4d0MiC6YBW3_ZdN3tVC4jg_wAJdJs_YeCnMQ@mail.gmail.com/
http://dl.acm.org/citation.cfm?id=2078195
http://dl.acm.org/citation.cfm?id=2078195
http://dx.doi.org/10.1145/344779.344976
https://doi.org/10.1145/344779.344976
https://doi.org/10.1145/344779.344976
http://dx.doi.org/10.1109/ISPASS51385.2021.00052
http://dx.doi.org/10.1109/ISPASS51385.2021.00052
http://dx.doi.org/10.1109/MM.2020.2996145
http://dx.doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/MM.2020.2996145
http://dx.doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/3079856.3080256
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-37.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-37.html
http://dx.doi.org/10.1002/cae.21699
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699
http://dx.doi.org/10.1109/ISCA45697.2020.00045
http://dx.doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.1109/ISCA45697.2020.00045

BIBLIOGRAPHY 218

[218] Daniel Richins et al. “Amdahl’s Law in Big Data Analytics: Alive and Kicking in
TPCx-BB (BigBench)”. In: IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE
Computer Society, 2018, pp. 630–642. doi: 10.1109/HPCA.2018.00060. url: https
://doi.org/10.1109/HPCA.2018.00060.

[219] Matthew Rocklin. “Dask: Parallel Computation with Blocked Algorithms and Task
Scheduling”. In: Proceedings of the 14th python in science conference. Citeseer. 2015,
pp. 130–136.

[220] Bita Rouhani et al. “Pushing the Limits of Narrow Precision Inferencing at Cloud
Scale with Microsoft Floating Point”. In: NeurIPS 2020. ACM. Nov. 2020. url: htt
ps://www.microsoft.com/en-us/research/publication/pushing-the-limits-

of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floatin

g-point/.

[221] Cindy Rubio-González et al. “Precimonious: Tuning Assistant for Floating-Point Pre-
cision”. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013. Ed. by
William Gropp and Satoshi Matsuoka. ACM, 2013, 27:1–27:12. doi: 10.1145/25032
10.2503296. url: https://doi.org/10.1145/2503210.2503296.

[222] Martin Rumpf and Robert Strzodka. “Nonlinear Diffusion in Graphics Hardware”.
In: 3rd Joint Eurographics - IEEE TCVG Symposium on Visualization, VisSym 2001,
Ascona, Switzerland, May 28-30, 2001. Ed. by David S. Ebert, Jean M. Favre, and
Ronald Peikert. EGVISSYM’01. Eurographics Association, 2001, pp. 75–84. doi: 10
.1007/978-3-7091-6215-6_9. url: https://doi.org/10.1007/978-3-7091-621
5-6%5C_9.

[223] Richard M. Russell. “The CRAY-1 Computer System”. In: Commun. ACM 21.1 (Jan.
1978), pp. 63–72. issn: 0001-0782. doi: 10.1145/359327.359336. url: https://do
i.org/10.1145/359327.359336.

[224] Bruno Sá, José Martins, and Sandro Pinto. “A First Look at RISC-V Virtualization
from an Embedded Systems Perspective”. In: CoRR abs/2103.14951 (2021). arXiv:
2103.14951. url: https://arxiv.org/abs/2103.14951.

[225] Alberto L. Sangiovanni-Vincentelli. “The Tides of EDA”. In: IEEE Design Test of
Computers 20.6 (2003), pp. 59–75. doi: 10.1109/MDT.2003.1246165. url: https:
//doi.org/10.1109/MDT.2003.1246165.

[226] Pasquale Davide Schiavone et al. “Slow and Steady Wins The Race? A Comparison of
Ultra-Low-Power RISC-V Cores for Internet-of-Things Applications”. In: 27th Inter-
national Symposium on Power and Timing Modeling, Optimization and Simulation,
PATMOS 2017, Thessaloniki, Greece, September 25-27, 2017. IEEE, 2017, pp. 1–8.
doi: 10.1109/PATMOS.2017.8106976. url: https://doi.org/10.1109/PATMOS.20
17.8106976.

http://dx.doi.org/10.1109/HPCA.2018.00060
https://doi.org/10.1109/HPCA.2018.00060
https://doi.org/10.1109/HPCA.2018.00060
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1007/978-3-7091-6215-6_9
http://dx.doi.org/10.1007/978-3-7091-6215-6_9
https://doi.org/10.1007/978-3-7091-6215-6%5C_9
https://doi.org/10.1007/978-3-7091-6215-6%5C_9
http://dx.doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336
http://arxiv.org/abs/2103.14951
https://arxiv.org/abs/2103.14951
http://dx.doi.org/10.1109/MDT.2003.1246165
https://doi.org/10.1109/MDT.2003.1246165
https://doi.org/10.1109/MDT.2003.1246165
http://dx.doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976

BIBLIOGRAPHY 219

[227] Colin Schmidt. “Extending Temporal-Vector Microarchitectures for Two-Dimensional
Computations”. PhD thesis. EECS Department, University of California, Berkeley,
2021.

[228] Colin Schmidt and Albert Ou. “Hwacha: A Data-Parallel RISC-V Extension and Im-
plementation”. In: Proceedings of the Inaugural RISC-V Summit. RISC-V Foundation.
2018.

[229] Colin Schmidt et al. “4.3 An Eight-Core 1.44GHz RISC-V Vector Machine in 16nm
FinFET”. In: 2021 IEEE International Solid- State Circuits Conference (ISSCC).
Vol. 64. 2021, pp. 58–60. doi: 10.1109/ISSCC42613.2021.9365789.

[230] Colin Schmidt et al. “Programmable Fine-Grained Power Management and System
Analysis of RISC-V Vector Processors in 28nm FD-SOI”. In: IEEE Solid-State Cir-
cuits Letters 3 (2020), pp. 210–213. issn: 2573-9603. doi: 10.1109/LSSC.2020.3010
295.

[231] Robert Schreiber and Charles Van Loan. “A Storage-Efficient WY Representation
for Products of Householder Transformations”. In: SIAM Journal on Scientific and
Statistical Computing 10.1 (1989), pp. 53–57. doi: 10.1137/0910005. eprint: https
://doi.org/10.1137/0910005. url: https://doi.org/10.1137/0910005.

[232] Naresh Sehgal, John M. Acken, and Sohum Sohoni. “Is the EDA Industry Ready
for Cloud Computing?” In: IETE Technical Review 33.4 (2016), pp. 345–356. doi:
10.1080/02564602.2015.1099056.

[233] Amazon Web Services. AWS Inferentia. https://aws.amazon.com/machine-learn
ing/inferentia/. Accessed: 2021-05-08. 2021.

[234] Ofer Shacham et al. “Rethinking Digital Design: Why Design Must Change”. In:
IEEE Micro 30.6 (2010), pp. 9–24. doi: 10.1109/MM.2010.81. url: https://doi.o
rg/10.1109/MM.2010.81.

[235] Mohamed Shalan and Tim Edwards. “Building OpenLANE: A 130nm Openroad-
Based Tapeout-Proven Flow”. In: Proceedings of the 39th International Conference on
Computer-Aided Design. ICCAD ’20. Virtual Event, USA: Association for Computing
Machinery, 2020. isbn: 9781450380263. doi: 10.1145/3400302.3415735. url: http
s://doi.org/10.1145/3400302.3415735.

[236] Yakun Sophia Shao. “Design and Modeling of Specialized Architectures”. PhD thesis.
Harvard University, 2016.

[237] Yakun Sophia Shao et al. “Co-designing Accelerators and SoC Interfaces Using GEM5-
Aladdin”. In: 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE. 2016, pp. 1–12.

[238] Dongjoo Shin et al. “DNPU: An 8.1TOPS/W reconfigurable CNN-RNN processor
for general-purpose deep neural networks”. In: 2017 IEEE International Solid-State
Circuits Conference (ISSCC). 2017, pp. 240–241. doi: 10.1109/ISSCC.2017.78703
50.

http://dx.doi.org/10.1109/ISSCC42613.2021.9365789
http://dx.doi.org/10.1109/LSSC.2020.3010295
http://dx.doi.org/10.1109/LSSC.2020.3010295
http://dx.doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
http://dx.doi.org/10.1080/02564602.2015.1099056
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
http://dx.doi.org/10.1109/MM.2010.81
https://doi.org/10.1109/MM.2010.81
https://doi.org/10.1109/MM.2010.81
http://dx.doi.org/10.1145/3400302.3415735
https://doi.org/10.1145/3400302.3415735
https://doi.org/10.1145/3400302.3415735
http://dx.doi.org/10.1109/ISSCC.2017.7870350
http://dx.doi.org/10.1109/ISSCC.2017.7870350

BIBLIOGRAPHY 220

[239] Gil Shomron and Uri C. Weiser. “Non-Blocking Simultaneous Multithreading: Em-
bracing the Resiliency of Deep Neural Networks”. In: 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 2020, Athens, Greece, October
17-21, 2020. IEEE, 2020, pp. 256–269. doi: 10.1109/MICRO50266.2020.00032. url:
https://doi.org/10.1109/MICRO50266.2020.00032.

[240] Siemens. Catapult High-Level Synthesis and Verification. https://eda.sw.siemens
.com/en-US/ic/catapult-high-level-synthesis. Accessed: 2021-07-08. 2021.

[241] Frans Sijstermans. “The NVIDIA Deep Learning Accelerator”. In: Hot Chips 30: The
Flint Center for the Performing Arts, Cupertino, California, August 19–21, 2018.
2018. url: https://www.hotchips.org/hc30/2conf/2.08_NVidia_DLA_Nvidia
_DLA_HotChips_10Aug18.pdf.

[242] James E. Smith. “Decoupled Access/Execute Computer Architectures”. In: Proceed-
ings of the 9th Annual Symposium on Computer Architecture. ISCA ’82. Austin, TX,
USA: IEEE Computer Society Press, 1982, pp. 112–119.

[243] Marc Snir et al. MPI–the Complete Reference: the MPI core. Vol. 1. MIT press, 1998.

[244] Sandro Neves Soares and Flávio Rech Wagner. “Design Space Exploration of Embed-
ded Processors in Computer Architecture Education using T D-Bench”. In: Proceed-
ings. Frontiers in Education. 36th Annual Conference. 2006, pp. 19–24.

[245] Sandro Neves Soares and Flávio Rech Wagner. “T D-Bench—Innovative Combined
Support for Education and Research in Computer Architecture and Embedded Sys-
tems”. In: IEEE Transactions on Education 54.4 (2011), pp. 675–682.

[246] Jinook Song et al. “An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core
Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile SoC”. In: 2019 IEEE
International Solid- State Circuits Conference - (ISSCC). 2019, pp. 130–132. doi:
10.1109/ISSCC.2019.8662476.

[247] William Starke and Brian Thompto. “IBM’s POWER10 Processor”. In: Hot Chips
32: August 16–18, 2020. 2020. url: https://hc32.hotchips.org/assets/program
/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33

.pdf.

[248] Nigel Stephens et al. “The ARM Scalable Vector Extension”. In: IEEE Micro 37.2
(2017), pp. 26–39. doi: 10.1109/MM.2017.35. url: https://doi.org/10.1109
/MM.2017.35.

[249] Narayanan Sundaram et al. “GraphMat: High Performance Graph Analytics Made
Productive”. In: Proc. VLDB Endow. 8.11 (July 2015), pp. 1214–1225. issn: 2150-
8097. doi: 10.14778/2809974.2809983. url: https://doi.org/10.14778/280997
4.2809983.

[250] Synopsys. Lynx Design System - A Comprehensive Design Automation Environment.
https://www.synopsys.com/implementation-and-signoff/lynx-design-syste

m.html. Accessed: 2021-01-10. 2021.

http://dx.doi.org/10.1109/MICRO50266.2020.00032
https://doi.org/10.1109/MICRO50266.2020.00032
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis
https://www.hotchips.org/hc30/2conf/2.08_NVidia_DLA_Nvidia_DLA_HotChips_10Aug18.pdf
https://www.hotchips.org/hc30/2conf/2.08_NVidia_DLA_Nvidia_DLA_HotChips_10Aug18.pdf
http://dx.doi.org/10.1109/ISSCC.2019.8662476
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33.pdf
http://dx.doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
http://dx.doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://www.synopsys.com/implementation-and-signoff/lynx-design-system.html
https://www.synopsys.com/implementation-and-signoff/lynx-design-system.html

BIBLIOGRAPHY 221

[251] Thierry Tambe et al. “AdaptivFloat: A Floating-point based Data Type for Resilient
Deep Learning Inference”. In: CoRR abs/1909.13271 (2019). arXiv: 1909.13271. url:
http://arxiv.org/abs/1909.13271.

[252] TASKING Lapack Performance Libraries For Infineon AURIX MCUs. Tech. rep.
Altium LLC (TASKING Brand), July 2018.

[253] Sanket Tavarageri et al. “PolyDL: Polyhedral Optimizations for Creation of High-
Performance DL Primitives”. In: ACM Trans. Archit. Code Optim. 18.1 (Jan. 2021).
issn: 1544-3566. doi: 10.1145/3433103. url: https://doi.org/10.1145/3433103.

[254] Michael Bedford Taylor. “Basejump STL: Systemverilog Needs a Standard Template
Library for Hardware Design”. In: Proceedings of the 55th Annual Design Automation
Conference. DAC ’18. San Francisco, California: ACM, 2018, 73:1–73:6. isbn: 978-1-
4503-5700-5. doi: 10.1145/3195970.3199848. url: http://doi.acm.org/10.1145
/3195970.3199848.

[255] Michael Bedford Taylor. “Your Agile Open Source HW Stinks (Because It Is Not a
System)”. In: 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). 2020, pp. 1–6.

[256] SkyWater Technology. First Google-Sponsored MPW Shuttle Launched at SkyWater
with 40 Open Source Community Submitted Designs.
https://www.skywatertechnology.com/press-releases/first-google-spon

sored-mpw-shuttle-launched-at-skywater-with-40-open-source-community-

submitted-designs/. Accessed: 2021-07-08. 2021.

[257] Neil Thompson and Svenja Spanuth. “The Decline of Computers As A General Pur-
pose Technology: Why Deep Learning And The End of Moore’s Law Are Fragmenting
Computing”. In: Available at SSRN 3287769 (2018).

[258] Sivan Toledo. “Locality of Reference in LU Decomposition with Partial Pivoting”. In:
SIAM Journal on Matrix Analysis and Applications 18.4 (1997), pp. 1065–1081.

[259] Stanimire Tomov et al. “MAGMA Users’ Guide”. In: ICL, UTK (November 2009)
(2011).

[260] Konrad Trifunovic et al. “Polyhedral-Model Guided Loop-Nest Auto-Vectorization”.
In: PACT 2009, Proceedings of the 18th International Conference on Parallel Archi-
tectures and Compilation Techniques, 12-16 September 2009, Raleigh, North Carolina,
USA. IEEE Computer Society, 2009, pp. 327–337. doi: 10.1109/PACT.2009.18. url:
https://doi.org/10.1109/PACT.2009.18.

[261] University of California, Berkeley uses AWS Educate and Amazon FPGA Instances
in Undergraduate Computer Architecture Course. https://aws.amazon.com/blo
gs/publicsector/university-of-berkeley-uses-aws-educate-for-amazon

-fpga-accelerator-development-and-deployment-in-the-cloud/. Accessed:
2020-05-06.

http://arxiv.org/abs/1909.13271
http://arxiv.org/abs/1909.13271
http://dx.doi.org/10.1145/3433103
https://doi.org/10.1145/3433103
http://dx.doi.org/10.1145/3195970.3199848
http://doi.acm.org/10.1145/3195970.3199848
http://doi.acm.org/10.1145/3195970.3199848
https://www.skywatertechnology.com/press-releases/first-google- sponsored-mpw-shuttle-launched-at-skywater-with-40-open-source-community-submitted-designs/
https://www.skywatertechnology.com/press-releases/first-google- sponsored-mpw-shuttle-launched-at-skywater-with-40-open-source-community-submitted-designs/
https://www.skywatertechnology.com/press-releases/first-google- sponsored-mpw-shuttle-launched-at-skywater-with-40-open-source-community-submitted-designs/
http://dx.doi.org/10.1109/PACT.2009.18
https://doi.org/10.1109/PACT.2009.18
https://aws.amazon.com/blogs/publicsector/university-of-berkeley-uses-aws-educate-for-amazon-fpga-accelerator-development-and-deployment-in-the-cloud/
https://aws.amazon.com/blogs/publicsector/university-of-berkeley-uses-aws-educate-for-amazon-fpga-accelerator-development-and-deployment-in-the-cloud/
https://aws.amazon.com/blogs/publicsector/university-of-berkeley-uses-aws-educate-for-amazon-fpga-accelerator-development-and-deployment-in-the-cloud/

BIBLIOGRAPHY 222

[262] Amin Vahdat. The past, present and future of custom compute at Google. https://c
loud.google.com/blog/topics/systems/the-past-present-and-future-of-cu

stom-compute-at-google. Accessed: 2021-04-29. 2021.

[263] Field G. Van Zee and Tyler M. Smith. “Implementing High-Performance Complex
Matrix Multiplication via the 3m and 4m Methods”. In: ACM Trans. Math. Softw.
44.1 (July 2017). issn: 0098-3500. doi: 10.1145/3086466. url: https://doi.org/1
0.1145/3086466.

[264] Field G. Van Zee and Robert A. van de Geijn. “BLIS: A Framework for Rapidly
Instantiating BLAS Functionality”. In: ACM Transactions on Mathematical Software
41.3 (June 2015), 14:1–14:33. url: http://doi.acm.org/10.1145/2764454.

[265] Field G. Van Zee et al. “The BLIS Framework: Experiments in Portability”. In: ACM
Transactions on Mathematical Software 42.2 (June 2016), 12:1–12:19. url: http://d
oi.acm.org/10.1145/2755561.

[266] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et al. 2017,
pp. 5998–6008. url: https://proceedings.neurips.cc/paper/2017/hash/3f5ee
243547dee91fbd053c1c4a845aa-Abstract.html.

[267] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019
-0686-2.

[268] Stefan Wallentowitz. “RISC-V in Practical Education of Computer Architecture”. In:
Proceeding of the RISC-V Summit 2019. 2019.

[269] Edward Wang et al. “A Methodology for Reusable Physical Design”. In: Twenty First
International Symposium on Quality Electronic Design, 2020. Proceedings. Mar. 2020.

[270] Shibo Wang and Pankaj Kanwar. BFloat16: The Secret to High Performance on Cloud
TPUs. https://cloud.google.com/blog/products/ai-machine-learning/bflo
at16-the-secret-to-high-performance-on-cloud-tpus. Accessed: 2021-05-24.
2019.

[271] Yu Wang, Gu-Yeon Wei, and David Brooks. “A Systematic Methodology for Analysis
of Deep Learning Hardware and Software Platforms”. In: Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. Ed.
by Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze. mlsys.org, 2020.
url: https://proceedings.mlsys.org/book/289.pdf.

[272] Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual, Volume
I: User-Level ISA, Document Version 20191213. Tech. rep. RISC-V Foundation, Dec.
2019.

[273] Jian Weng et al. “UNIT: Unifying Tensorized Instruction Compilation”. In: CGO ’08
(2021).

https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
http://dx.doi.org/10.1145/3086466
https://doi.org/10.1145/3086466
https://doi.org/10.1145/3086466
http://doi.acm.org/10.1145/2764454
http://doi.acm.org/10.1145/2755561
http://doi.acm.org/10.1145/2755561
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://proceedings.mlsys.org/book/289.pdf

BIBLIOGRAPHY 223

[274] R. Clinton Whaley and Jack J. Dongarra. “Automatically Tuned Linear Algebra
Software”. In: Proceedings of the ACM/IEEE Conference on Supercomputing, SC
1998, November 7-13, 1998, Orlando, FL, USA. IEEE Computer Society, 1998, p. 38.
doi: 10.1109/SC.1998.10004. url: https://doi.org/10.1109/SC.1998.10004.

[275] Paul N. Whatmough et al. “CHIPKIT: An Agile, Reusable Open-Source Framework
for Rapid Test Chip Development”. In: IEEE Micro 40.4 (2020), pp. 32–40. doi:
10.1109/MM.2020.2995809. url: https://doi.org/10.1109/MM.2020.2995809.

[276] Nathan Whitehead. Whitepaper: Linear Algebra Package for Qualcomm Snapdragon
Math Libraries. Tech. rep. Qualcomm Technologies, Inc., Apr. 2017.

[277] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful
Visual Performance Model for Multicore Architectures”. In: Communications of the
ACM 52.4 (2009), pp. 65–76.

[278] C. Wolf. Yosys Open SYnthesis Suite - write firrtl - write design to a FIRRTL file.
2018. url: http://www.clifford.at/yosys/cmd_write_firrtl.html (visited on
04/14/2020).

[279] John Charles Wright et al. “A Dual-Core RISC-V Vector Processor with On-Chip
Fine-Grain Power Management in 28-nm FD-SOI”. In: IEEE Trans. Very Large Scale
Integr. Syst. 28.12 (2020), pp. 2721–2725. doi: 10.1109/TVLSI.2020.3030243. url:
https://doi.org/10.1109/TVLSI.2020.3030243.

[280] Bichen Wu. “Efficient Deep Neural Networks”. PhD thesis. EECS Department, Uni-
versity of California, Berkeley, Aug. 2019. url: http://www2.eecs.berkeley.edu
/Pubs/TechRpts/2019/EECS-2019-120.html.

[281] Carole-Jean Wu et al. “Machine Learning at Facebook: Understanding Inference at
the Edge”. In: 25th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2019, Washington, DC, USA, February 16-20, 2019. IEEE, 2019,
pp. 331–344. doi: 10.1109/HPCA.2019.00048. url: https://doi.org/10.1109
/HPCA.2019.00048.

[282] Kun Yang et al. “High Performance Monte Carlo Simulation of Ising Model on TPU
Clusters”. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. SC ’19. Denver, Colorado: Association for
Computing Machinery, 2019. isbn: 9781450362290. doi: 10.1145/3295500.3356149.
url: https://doi.org/10.1145/3295500.3356149.

[283] Marco Zagha and Guy E. Blelloch. “Radix Sort for Vector Multiprocessors”. In: Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing. Supercomputing ’91.
Albuquerque, New Mexico, USA: ACM, 1991, pp. 712–721. isbn: 0-89791-459-7. doi:
10.1145/125826.126164. url: http://doi.acm.org/10.1145/125826.126164.

[284] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Processing”. In:
Commun. ACM 59.11 (2016), pp. 56–65. doi: 10.1145/2934664. url: http://doi
.acm.org/10.1145/2934664.

http://dx.doi.org/10.1109/SC.1998.10004
https://doi.org/10.1109/SC.1998.10004
http://dx.doi.org/10.1109/MM.2020.2995809
https://doi.org/10.1109/MM.2020.2995809
http://www.clifford.at/yosys/cmd_write_firrtl.html
http://dx.doi.org/10.1109/TVLSI.2020.3030243
https://doi.org/10.1109/TVLSI.2020.3030243
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-120.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-120.html
http://dx.doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
http://dx.doi.org/10.1145/3295500.3356149
https://doi.org/10.1145/3295500.3356149
http://dx.doi.org/10.1145/125826.126164
http://doi.acm.org/10.1145/125826.126164
http://dx.doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664

BIBLIOGRAPHY 224

[285] Florian Zaruba and Luca Benini. “The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm
FDSOI Technology”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27.11 (2019), pp. 2629–2640. issn: 1557-9999. doi: 10.1109/TVLSI.2019.2
926114. url: https://doi.org/10.1109/TVLSI.2019.2926114.

[286] Shaoshuai Zhang, Elaheh Baharlouei, and Panruo Wu. “High Accuracy Matrix Com-
putations on Neural Engines: A Study of QR Factorization and Its Applications”. In:
Proceedings of the 29th International Symposium on High-Performance Parallel and
Distributed Computing. HPDC ’20. Stockholm, Sweden: Association for Computing
Machinery, 2020, pp. 17–28. isbn: 9781450370523. doi: 10.1145/3369583.3392685.
url: https://doi.org/10.1145/3369583.3392685.

[287] Shaoshuai Zhang, Ruchi Shah, and Panruo Wu. “TensorSVM: Accelerating Kernel
Machines with Tensor Engine”. In: Proceedings of the 34th ACM International Con-
ference on Supercomputing. ICS ’20. Barcelona, Spain: Association for Computing
Machinery, 2020. isbn: 9781450379830. doi: 10.1145/3392717.3392770. url: http
s://doi.org/10.1145/3392717.3392770.

[288] Jerry Zhao et al. “Sonicboom: The 3rd Generation Berkeley Out-Of-Order Machine”.
In: Fourth Workshop on Computer Architecture Research with RISC-V (CARRV).
2020.

[289] Haishan Zhu et al. “Kelp: QoS for Accelerated Machine Learning Systems”. In: 25th
IEEE International Symposium on High Performance Computer Architecture, HPCA
2019, Washington, DC, USA, February 16-20, 2019. IEEE, 2019, pp. 172–184. doi:
10.1109/HPCA.2019.00036. url: https://doi.org/10.1109/HPCA.2019.00036.

[290] Brian Zimmer et al. “A RISC-V Vector Processor with Simultaneous-Switching Switch-
ed-Capacitor DC–DC Converters in 28 nm FDSOI”. In: IEEE Journal of Solid-State
Circuits 51.4 (2016), pp. 930–942. doi: 10.1109/JSSC.2016.2519386.

http://dx.doi.org/10.1109/TVLSI.2019.2926114
http://dx.doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
http://dx.doi.org/10.1145/3369583.3392685
https://doi.org/10.1145/3369583.3392685
http://dx.doi.org/10.1145/3392717.3392770
https://doi.org/10.1145/3392717.3392770
https://doi.org/10.1145/3392717.3392770
http://dx.doi.org/10.1109/HPCA.2019.00036
https://doi.org/10.1109/HPCA.2019.00036
http://dx.doi.org/10.1109/JSSC.2016.2519386

225

Appendix A

Observations on the RISC-V Vector
Standards Process

The RISC-V standard vector extension proposal has been under development by the RISC-
V Foundation Vector Extension Task Group since 2016 [19]. Its protracted gestation has
involved at least two complete rewrites of the specification, during which a radically “cleaner”
design (in terms of ISA intuitiveness, extensibility, and generalizability), initially attractive
from a research perspective, transitioned into a more outwardly complex architecture to
adapt to implementation realities.

Initial proposals for the RISC-V standard vector extension were closely influenced by past
vector processor designs at UC Berkeley, including the Hwacha vector accelerator, and espe-
cially the concept of reconfigurable vector register files. An important feature is the ability
to aggregate vector registers to extend the hardware vector length. These previous vector
processor designs considered primarily temporal vector implementations, with small-scale
multi-lane spatial implementations as experimental enhancements composing together mul-
tiple temporal lane implementations. While the vector ISA which were developed together
with these vector processor implementations were intended to support flexibility across both
temporal and spatial implementations, their primary evaluation (including in the case of
Hwacha) used single-lane or dual-lane implementations.

The first widely available version of the RISC-V vector specification, v0.4, was designed
to be fully polymorphic. Statically encoded parameters such as datatypes and data layout
are instead converted into dynamic state in the form of control registers (named vtypes),
effectively generalizing the concept of vector length indirection into a more reconfigurable
vector unit. Polymorphic instructions occupy minimal encoding space since each fundamen-
tal operation requires only a single instruction, in contrast to non-polymorphic instruction
encodings which require unique opcodes for each combination of source and destination data
types. Furthermore, polymorphic designs are extremely amenable to flexible customization
and extension, since data properties are not encoded in instructions, but rather in control
state, which can be more easily customized and extended for individual implementations.

The flexibility and aestheticism associated with a fully polymorphic design come at a

APPENDIX A. RISC-V VECTOR STANDARDS PROCESS 226

cost. First, a polymorphic design is not formally well-defined. This ambiguity may be ben-
eficial under relaxed constraints, but challenging under compliance constraints. In order for
a polymorphic-design to be well-defined for compliance purposes, an elaborate and complex
cross-product of state-spaces must be defined, which impacts the complexity of underlying
implementations. This was further complicated by the desire for mixed data type compu-
tations, meaning each instruction could have up to 4 different data types as inputs and
outputs. Some of these combinations were illegal or undesired and so this complexity would
have to be represented in hardware. Second, the additional control registers required to
store configuration information increase the state of the vector ISA well beyond the vector
register file and vector length register. At instruction decode, an implementation would have
to read the configuration state of all registers involved and determine whether this operation
is legal, as well as which functional unit would be required for the computation. In addition,
the minimum required configuration state is extremely prohibitive for the simplest designs
implementing the vector extension.

This configuration state overhead was a major concern, and therefore a major re-write of
the vector extension proposal focused on two primary simplifications: reducing the amount
of configuration state, and restricting the space of register layouts. This was done by con-
verting some of the configuration state into encoded instructions, and making the vtypes

state optional. Version 0.5 of the vector extension proposal proposed a series of pre-set
configurations for “fast configuration” which could be encoded in a single control register.
By providing a subset of “likely” configurations, this version of the specification allowed
implementations to support only a pruned configuration state space that would be most
frequently used. While complex implementations could opt to provide additional support
for the complete configuration state space using the optional vtypes control registers, simple
designs could limit the optimization of their design to the much smaller pre-set configura-
tions with significantly smaller control state. This revision kept much of the flexibility of the
polymorphic model such that complex and custom implementations would have the option
for extensibility, while optimizing for the “most likely” configurations in order to simplify
the design and enable low-overhead support for simple implementations.

The next major revision of the RISC-V vector extension proposal (v0.7) was primarily
a result of a point of contention regarding compatibility with software and hardware im-
plementations that are currently optimized for packed-SIMD vectorization. Notably, the
polymorphic proposal did not expose spatial register width, and abstracted wide vector
computations in terms of vector elements rather than bits. Specifically, mixed-precision
computation under several different implementation design points became a topic of con-
cern, as the vector element abstraction was preventing mixed-precision computation using
packed-SIMD techniques which bit-pack wide physical registers with multiple lower-precision
vectors. While this implementation style may not be characteristic of deeply-pipelined vector
processors for high performance computing, as a rule of thumb RISC-V traditionally tries to
enable/optimize for the simplest possible design, and therefore there was a high desire to ac-
commodate this requirement. Hence, this version of the vector extension proposal abandoned
the layout-agnostic element abstractions, and exposed the bit layout of the vector registers.

APPENDIX A. RISC-V VECTOR STANDARDS PROCESS 227

This change had rippling implications on all parts of the vector extension proposal. Once
the bit layout has been exposed, support for variable length vectors and reconfigurability of
the vector register file had to be exposed to software as well. As such, long vector register
groups were now composed of groups of smaller physical vector registers, associated with
specific register identifiers. A single instruction can operate on a full vector register group,
as if it were a single vector register. While the sizes of the physical vector registers could
change across implementations (setting the VLEN machine parameter), software portability
would be guaranteed only for cases in which the value of the vector register grouping pa-
rameter (LMUL) times the standard element width (SEW) divided by the physical register size
(VLEN) remained the same ratio (LMUL*SEW / VLEN). Version 0.7 was the last fundamental
re-design of the vector extension proposal. Subsequent versions added additional refinements
and enhancements based an implementation and software development experimentation.

Table A.1 summarizes the main differences between the major three generations of the
RISC-V standard vector extension proposals. The RISC-V vector extension proposal was
not used for the work in this dissertation due to its volatility throughout its development
process, but demonstrates a small sample of the wide ranging concerns required to address
the spectrum of implementation and application design points for data-parallel processors,
and the need to support customizability within this space.

Table A.1: RISC-V vector extension proposal draft version comparison table.

v0.1-v0.4 v0.5 v0.6-1.0

Reconfiguration
granularity
(individual

vector widths)

Each vector register has
different element width

Groups of vector registers
have different element
widths (limited to 4x

range)

All vector registers have
the same width

Scalar handling
Scalar “shape”

configuration for each
vector register

First element of each
vector register can be

treated as a scalar. Scalar
bit in instruction

encoding.

Use the standard x, f
scalar registers, with

additional vector-scalar
operation encodings.

Minimum
architectural

state

vtypes (5 bits * 32 reg.) +
vstart (XLEN bits) +

vxsat (1 bit) +
vxrm (2 bits) +
vfflags (5 bits) +
vfrm (3 bits) +

vl (XLEN bits) +
VS in Mstatus (2 bits)

vcfg (12 bits) +
SEW (3 bits) +

vstart (XLEN bits) +
vxsat (1 bits) +
vxrm (2 bits) +
vfflags (5 bits) +
vfrm (3 bits) +

vl (XLEN bits) +
VS in Mstatus(2 bits)

LMUL (2 bits) +
SEW (3 bits) +
vtype (6 bits) +

vstart (XLEN bits) +
vxsat (1 bit) +
vxrm (2 bits) +
vfflags (5 bits) +
vfrm (3 bits) +

vl (XLEN bits) +
VS in Mstatus (2 bits)

APPENDIX A. RISC-V VECTOR STANDARDS PROCESS 228

Mixed-precision
computation

Supported using
polymorphic instructions

based on register type
(vtype)

Supported using
polymorphic instructions

based on register type
(vtype) + fixed-type

mixed precision
instructions

Explicit widening and/or
narrowing instructions

(limited to 2x
widening/narrowing in

each direction)

Instruction
polymorphism
(without vector
unit reconfig.)

Full Partial Minimal

Predication

Two explicit predicate
mask registers (vp0, vp1).

Predication can be
disabled in the vtype

register. 1-bit vp field in
the instruction encoding

(enabling the possibility of
negated/inverse mask

interpretation)

LSBs of v1 elements are
interpreted as a predicate
bit mask. 2-bit vm field in
the instruction encoding

(enabling the possibility of
negated/inverse mask

interpretation)

LSBs of v0 elements are
interpreted as a predicate
bit mask. 1-bit vm filed in
the instruction encoding

(no possibility of
negated/inverse mask

interpretation)

Reductions
Reductions supported via

vslide instructions

Explicit reduction
instructions (vredop).

Write results to vector reg.

Explicit reduction
instructions (vredop).

Write results to vector reg.

Handling illegal
configs

Illegal instruction trap
upon bad configuration

instruction.

WARL (machine had to
check that configs were

legal). Take trap on first
non-config vector

instruction.

vill CSR bit is set when
there is an illegal

configuration. Execution
attempt will result in an

illegal instruction
exception

Encoding Space
Less than 1 major opcode

space
1 major opcode space

Between 1-2 major opcode
spaces

Extensibility
(non-standard
types/opera-

tions)

• 32-bit encoding:

– Shape extensions

– Representation exten-
sions

– Polymorphic instruction
overloading.

• 64-bit extension with
additional encoding.

• 32-bit encoding:

– Shape extensions

– Representation exten-
sions

– Limited polymorphic in-
struction overloads.

• 64-bit extension with
additional encoding.

64-bit extension with
additional encoding

Portability
(correctness,

exposed
machine

parameters)

Minimal VLEN of 4
elements

N/A

VLEN, ELEN, SLEN
exposed. SEW / LMUL

ratio must be maintained
to ensure software

portability.

APPENDIX A. RISC-V VECTOR STANDARDS PROCESS 229

Portability
(platform-level

constraints)

Vector unit supports only
the platform-level

extensions that are defined
on the scalar ISA version

(e.g., floating point).

Vector unit supports only
the platform-level

extensions that are defined
on the scalar ISA version

(e.g., floating point).

Vector unit can support
platform-level extensions
that are not defined on
the scalar ISA version
(e.g., floating point).
Broader selection of

platform-level extensions.
Tail zeroing Undisturbed tail Zero tail Undisturbed tail

Reconfiguration
zeroing

Upon the configuration of
an individual register, zero
all registers with a higher
index identifier (i.e., if v5
was reconfigured, v5-v31
would be zeroed, while

v0-v4 would be
undisturbed)

Zero all vector registers
upon any reconfiguration

Undisturbed vector
register state upon any

reconfiguration

	Contents
	List of Figures
	List of Tables
	Introduction
	Hardware Specialization
	Numerical Data Analysis
	Dissertation Scope and Outline

	Algorithms for Numerical Data Analysis
	Machine Learning and Numerical Data Analysis
	Data Analysis Algorithms and Dense Linear Algebra
	High-Performance Numerical Data Analysis
	Arithmetic Intensity of Numerical Data Modeling Kernels
	Computational Motifs for Accelerated Computing

	Hardware for Numerical Data Analysis
	Data Parallel Architectures
	1-D Data-Parallel Accelerators
	Hwacha Decoupled Vector Accelerator
	2-D Data-Parallel Accelerators
	Gemmini Spatial-Array Accelerator
	Hwacha vs. Gemmini

	Generator-based System-on-Chip Design
	System-on-a-Chip
	Generator-based Digital Design
	Generator-based Test Chips
	Challenges of Generator-Based Agile Hardware Design
	Integrated Generator-Based Design Methodology
	Generator-based System-on-Chip Design Summary

	The Chipyard Integrated SoC Development Framework
	SoC Customization in Chipyard
	SoC Design Frameworks
	Agile Hardware Development Using Chipyard
	Accessibility and Education

	Generator-based SoC Hardware/Software Co-Design
	Generator-Based SoC Design Space Analysis
	Generator-based Software Debugging and Optimization
	Generator-based Performance Tuning
	Generator-based SoC Hardware/Software Co-Design Summary

	Software Customization for Numerical Data Analysis
	Software Mapping to Specialized Accelerators
	Software for Supplemental Use of DNN Accelerators for Numerical Data Analysis
	BLAS and LAPACK
	BLAS Implementations
	BLAS/BLIS for Gemmini and Hwacha
	BLAS-3 Performance Evaluation
	Application-Level Performance

	Hardware/Software Co-Design for Numerical Data Analysis
	Hardware/Software Co-Design for Supplemental-Use
	Matrix Engines for Numerical Data Analysis vs. DNNs
	Matrix Engine Controllers
	Matrix Engine Controller Scheduling
	Memory Access Tail Latency
	Co-Design of Matrix Engine Controller
	Hardware/Software Co-Design for Numerical Data Analysis Summary

	Conclusion
	Summary and Contributions
	Future Work

	Bibliography
	Observations on the RISC-V Vector Standards Process

