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Abstract

Perceiving 3D Humans and Objects in Motion

by

Zhe Cao
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Jitendra Malik, Chair

We exist in a 3D world, where we accomplish everyday tasks by perceiving and in-
teracting with other people and objects in dynamic scenes. Could we develop a
perception system to understand such rich interactions? This is crucial for future
intelligent systems to collaborate with humans and to create immersive AR/VR ex-
periences. While great progress has been achieved in the individual perception tasks
of 3D humans, objects, and scenes, the connections between these components have
not been explored much. In this thesis, we attempt to build the connections between
these three components to understand their rich interactions.

We start by bridging the scene and object component in Chapter 2, where we
present an end-to-end learning system to perceive 3D scene and independent ob-
ject motions. We next show how 3D scenes influence human motion in Chapter 3,
where we design a framework to predict future 3D human motion considering the
scene context. In Chapter 4, we study the interaction between human hands and
objects, where we introduce an optimization-based method to reconstruct the inter-
action in the wild. Finally, we conclude with several interesting future directions.

Professor Jitendra Malik
Dissertation Committee Chair
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Chapter 1

Introduction

We humans exist in a 3D world, where we accomplish everyday tasks by perceiv-
ing and interacting with other moving agents in the 3D dynamic scene. Consider the
outdoor scenario in Figure 1.1, we humans have the remarkable capability to infer the
3D structure of the environmisent, such as the floor plan, the building, and how far
each of these elements in the scene is from us. With temporal frames, we can perceive
the nearby moving object and people in terms of their moving speed and direction in
this environment. Moreover, we can perceive the rich human-object interactions such
as riding a bicycle or pushing a cart. All this perceived 3D information enables us to
predict the environment state in the near future and to plan our next actions.

Could we equip future intelligent agents with similar capabilities to perceive
and meaningfully interact with the 3D world? There are three main components to
consider in such a perception system: perceiving 3D scenes, humans, and objects. In
recent years, we have seen large progress in each of the perception tasks [36, 57, 172].
However, these problems are not isolated in many cases. For example, the 3D scene
layout will constrain the possible human and object motion inside the environment.
By jointly considering multiple components, we can impose additional constraints to
obtain more natural and feasible results. This thesis attempts to bridge those three
perception tasks, as shown in the triangle in Figure 1.1, and demonstrate the benefits
of building the connection in different applications.

We begin in Chapter 2 by briding the scene and object components, we present a
system for learning motion maps of independently moving objects from stereo videos.
The only annotations used in our system are 2D object bounding boxes which in-
troduce the notion of objects in our system. Unlike prior learning-based approaches
which have focused on predicting dense optical flow fields and/or depth maps for
images, we propose to predict instance specific 3D scene flow maps and instance
masks from which we derive a factored 3D motion map for each object instance. Our
network takes the 3D geometry of the problem into account which allows it to cor-
relate the input images and distinguish moving objects from static ones. We present
experiments evaluating the accuracy of our 3D flow vectors, as well as depth maps
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Figure 1.1: Left: an example outdoor scenario where people interacting with the 3D scene and
objects. Right: the overall structure of the thesis.

and projected 2D optical flow where our jointly learned system outperforms earlier
approaches trained for each task independently.

In Chapter 3, we consider the scene and human components jointly, where we
present a framework to predict the future human motion considering the scene con-
text. Human movement is goal-directed and influenced by the spatial layout of the
objects in the scene. To plan future human motion, it is crucial to perceive the en-
vironment – imagine how hard it is to navigate a new room with lights off. Existing
works on predicting human motion do not pay attention to the scene context and thus
struggle in long-term prediction. We instead introduce a novel three-stage framework
that exploits scene context to tackle this task. Given a single scene image and 2D
pose histories, our method first samples multiple human motion goals, then plans
3D human paths towards each goal, and finally predicts 3D human pose sequences
following each path. For stable training and rigorous evaluation, we contribute a di-
verse synthetic dataset with clean annotations. We show our method shows consistent
quantitative and qualitative improvements over existing methods.

In Chapter 4, we study the problem of understanding hand-object interactions
from 2D images in the wild. This task requires reconstructing both the hand and the
object in 3D, which is challenging because of the mutual occlusion between the hand
and the object. We present a novel reconstruction technique that reconstructs 3D
poses of both the hand and the object with the help of 2D image cues and 3D contact
priors. Moreover, we contribute a dataset MOW (Manipulating Objects in the Wild)
of 500 examples of hand-object interaction images that have been “3Dfied” with the
help of the RHO technique together with human intervention. Our dataset contains
121 distinct object categories, with a much greater diversity of manipulation actions,
than in previous 3D hand-object datasets.

We conclude the thesis with a discussion on the limitations of current systems
and promising future directions of perceiving 3D humans and objects in motion.
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Chapter 2

Perceiving 3D Scene and Object
Motion

Consider the crowded road scene in Figure 2.1, what information do we as hu-
mans use to navigate effectively in this environment? We need to have an under-
standing of the structure of the environment, i.e. how far other elements in the scene
(cars, bikes, people, trees) are from us. Moreover, we also require knowledge of the
speed and direction in which other agents in the environment are moving relative to
us. Such a representation, in conjunction with our ego-motion, enables us to produce
a hypothesis of the environment state in the near future and ultimately allows us to
plan our next actions.

In order to gather this information, humans use stereo-motion, i.e. a stream
of images captured with our two eyes as we move through the environment. In
this chapter, we develop a computational system that aims to produce such a fac-
tored scene representation of 3D structure and motion from a binocular video stream.
Specifically, we propose to predict the 3D object motion of each moving object (rep-
resented by 3D scene flow) in addition to a detailed depth map of the scene from
a stereo image sequence. This task and its variants have been tackled in super-
vised settings which require labels such as dense depth maps and motion annotations
that are prohibitively expensive to collect or alternatively obtained from synthetic
datasets [22, 25, 50, 60, 88]. We present a system that learns to predict these quanti-
ties using only unlabelled stereo videos, thus making it applicable at scale. In addition
to producing pixel-wise depth and scene flow maps, our network is aware of the notion
of independent objects. This allows us to produce a rich factored 3D representation of
the environment where we can measure velocities of independent objects in addition
to their 3D positions in the scene. The only labels used by our system are those
introduced by off-the-shelf object detectors which are very cheap to acquire at scale.

Prior work in this domain has focused on certain sub-problems such as learning
depth or optical flow prediction without explicit labels [165, 37, 30]. In Section 2.4,
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Figure 2.1: Object motion predicted by our system. Trained with raw stereo motion sequences in
a self-supervised manner, our model learns to predict object motion together with the scene depth
using sequence of stereo images and object proposals as input. The speed and moving direction of
each moving object is derived from our scene flow prediction.

we demonstrate that by jointly learning the full problem of depth and scene flow
prediction, we outperform these methods for each of these sub-problems as well. The
key contributions of our work are as follows: (1) formulating a learning objective which
works with the limited amount of supervision that can be gathered in a real world
scenario (object bounding box annotations), (2) factoring the scene representation
into independently moving objects for predicting dense depth and 3D scene flow and
(3) designing a network architecture that encodes the underlying 3D structure of the
problem by operating on plane sweep volumes.

The sections in this chapter are organized as follows. Section 2.1 discusses prior
work on inferring scene structure and motion. Section 2.2 presents our technical
approach for inferring scene flow from stereo motion - loss functions, object-centric
prediction and priors. In Section 2.3, we describe our network architecture designed
for geometric matching and 3D reasoning in plane sweep volumes. Section 2.4 details
our experiments on the KITTI dataset [91] with extensive evaluation of our depth
and scene flow prediction.

2.1 Background

In this chapter, we recover scene geometry and object motion jointly while tra-
ditionally these problems have been solved independently. The geometry of a scene
is reconstructed by first recovering the relative camera pose between two or more im-
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ages taken from different viewpoints using Structure-from-Motion (SfM) techniques
[82, 40]. Subsequently, with dense matching and triangulation a dense 3D model of
the scene is recovered [105]. The underlying assumption within the aforementioned
methods is that the scene is static, i.e. does not contain moving objects. The case for
independently moving objects has been studied in a purely geometric setting [19]. The
key difficulties are degenerate configurations and outliers in point correspondences
[98]. Therefore additional priors are used - a common example is objects moving on a
ground plane [167]. Similarly, estimating the shape of non-rigid objects is ambiguous
and hence using additional constraints such as maximizing the rigidity of the shape
[140] or representing the non rigid shape as linear combination of base shapes [11]
have been proposed. When reconstructing videos captured in unconstrained environ-
ments additional difficulties such as incomplete feature tracks and bleeding into the
background have to be handled [27]. Our proposed approach is trained on real world
data which makes it robust to appearance variations and suitable priors are directly
learned from data.

Vedula et al.. [143] introduced the problem of 3D scene flow estimation, where for
each point a 3D motion vector between time t and t+1 is computed. Different variants
are considered depending on the amount of 3D structure that is given as input. A
common variant is to consider a stream of binocular image pairs of a moving camera
as input [49, 156, 147, 91, 131], and give a depth and 3D scene flow as output. This is
often referred to as the stereo scene flow estimation problem. Similarly RGBD scene
flow considers a stream of RGBD (color and depth) images as input [52].

Recently learning-based approaches, especially convolutional neural networks
have been applied for single view depth prediction [70, 22], optical flow [25], stereo
matching and scene flow [88]. These learning systems are trained using ground truth
geometry and/or flow data. In practice such data is only available for synthetic data in
a large scale. A natural way to complement the limited amount of ground truth data is
using weaker supervision. For the aforementioned problems, loss functions which are
purely based on images and rely on photometric consistency as learning objective have
been proposed [30, 172, 37, 137, 144]. They essentially utilize a classical non-learned
system [28] within the loss function. A few recent works [165, 177, 162, 83, 110] use
such a self-supervised approach to predict optical flow and depth. To our knowledge
our work is the first network that learns to directly predict object specific 3D scene
flow without relying on pixel-wise flow or depth annotations.

Another key difference of our work from prior works that predict depth and
optical flow is that they predict depth based on a single image. This limits their
performance as demonstrated in our results. Geometric reasoning can be included
into the network architecture as demonstrated in [60, 58, 54, 163]. We extend these
ideas to full 3D scene flow estimation while also operating at the level of object
instances allowing us to produce rich factored geometry and motion representation of
the scene.
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Figure 2.2: Our pipeline for learning depth and object motion. Using a stereo motion sequence
as input, our system predicts a depth map (c), instance mask (d) and 3D scene flow (e) for each
independent moving object in a single forward pass. Using the instance mask and scene flow, we
compose a full scene flow map (g). For each region of interest (RoI), we synthesize a patch (h) based
on the RoI camera intrinsics, RoI depth (f), 3D scene flow (e) and instance mask (d) as explained
in Section 2.2.2. We use the synthesized patch (h) and original patch (i) from the input image to
enforce consistency losses to supervise the RoI prediction. We use stereo reprojection to supervise
the depth prediction. Finally, we use the full map scene flow and depth to synthesize a image (j) for
computing the consistency loss.

2.2 Scene Flow from Stereo Motion

Figure 2.2 illustrates our system. A stream of calibrated binocular stereo image
pairs I = {I l1, Ir1 , . . . I ln, Irn} captured from times 1 to n is given as input. The most
common case we are investigating is n = 2, i.e. two binocular frames at time t and t+1.
The intrinsic camera calibration K is assumed to be known. The camera poses of the
left camera at each time instant are denoted by T = {T1, . . . , Tn} and are precomputed
using visual SLAM [32]. For any time instant t, we also have a set of j 2D bounding
box detections B = {B1, . . . , Bj} on the left image I lt predicted by an off-the-shelf
object detector. The task is to compute the following quantities for the reference frame
- a dense depth map D, a set of dense 3D flow fields F = {F 1, . . . , F j} that describe
the motion between t and t + 1 and a set of instance masks M = {M1, . . . ,M j} for
each moving object. From these instance-level predictions, we can compose the full
scene flow map F by assigning a 3D scene flow vector to each image pixel in the full
image.

We design our system as a convolutional neural network (CNN) which learns
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to predict all quantities jointly and train the network in a self-supervised manner.
The supervision comes from the consistency between synthesized images and input
images at different time instants and from different camera viewpoints. The basic
principle is that given the predictions of the scene flow F and depth D in a frame Iref ,
we can use the precomputed ego-motion to warp another image I into the reference
view. This process generates a synthesized image which we call Î. We then define
our learning objective as the similarity between the captured images Iref and the
synthesized images Î. The above principle is then applied to each region of interest
(RoI) independently followed by an assembly procedure for full image scene flow.
This allows us to produce a factored representation of the environment into static and
dynamic objects with high-quality estimates of instance masks, depth and motion.

2.2.1 Disentangling Camera and Object Motion

The motion in a dynamic scene captured by a moving camera can be decomposed
into two elements - the motion of static background resulting from the camera motion
and the motion of independently moving objects in the scene. A common way to
represent the scene motion is 2D optical flow. However, this representation confounds
the camera and object motion. We model the motion of the static background using
the 3D structure represented as a depth map and the camera motion. Dynamic
objects are modelled with full 3D scene flow. To this end, we utilize 2D object
detections in the form of bounding boxes and reason about the 3D motion of each
object independently.

2.2.2 Supervising Scene Flow by View Synthesis

The key supervision for the scene flow prediction comes from the photomet-
ric consistency of multiple views of the same scene. The process is illustrated in
Figure 2.3. Our network predicts a depth map D and a scene flow map F for the
reference view Iref . Using a different image I we can use the predictions to warp I
into the reference view and generate a synthesized image Î. We then minimize the
photometric difference between Iref and Î given as

Lphoto = α
1− SSIM(Iref , Î)

2
+ (1−α)‖Iref − Î‖1 (2.1)

where SSIM denotes the structural similarity index [155] and α denotes a weighting
parameter.

We denote the homogeneous coordinates of pixel p as h(p). A pixel p from the
reference frame is transformed to a pixel p̂ within a frame I

h(p̂) = KTrel(D(p)K−1h(p) + F (p)) (2.2)
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Bilinear Sample  
Depth + RGB

Figure 2.3: Illustration of our image reprojection process. A pixel p from image It is unprojected
using its predicted depth and subsequently transformed to the frame of It+1 using the predicted flow
F and the camera transform Trel. The photometric consistency loss is derived from the photometric
difference between It and Ît+1→t where Ît+1→t is created by warping It+1 into It. The geometric
consistency loss is computed by comparing the difference between depth maps warped in the above
manner and having them consistent with the z-dimension of the predicted flow F . Note that using
only photometric consistency would not resolve the ambiguity in the z direction of the flow.

with Trel the relative transformation from reference frame to I. This allows us to do
a reverse warp using bilinear interpolation, keeping the formulation differentiable.

Using the photometric consistency alone is insufficient for supervising the 3D flow
prediction. The reason is that along a viewing ray multiple photo consistent solutions
are possible, as shown in Figure 2.3. Therefore we use an additional geometric loss
leveraging depth consistency which further constrains the flow. The idea is that the
flow in z-direction, sometimes also called disparity difference has to agree with the
depth maps predicted for the two time instants t and t+1. In order to utilize this loss
function a depth map for both time instants needs to be predicted and the warping
is applied to the depth map.

Analogous to the photometric consistency, the geometric consistency is defined
by comparing the predicted depth values of the warped image and reference image,

Lgeo =
∥∥∥Dref − D̂ + Fz

∥∥∥
1

(2.3)

where Dref refers to the predicted depth at time t and D̂ is the predicted depth at
time t+ 1 warped back to time t, Fz is the z-dimension of the predicted sceneflow.
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Full-image Camera RoI Camera

Figure 2.4: Illustration of image rescale and crop process and the change in the camera intrinsics.

2.2.3 Object-centric Scene Flow Prediction

Image based consistency losses are typically applied by warping the whole image
and then computing the consistency over the whole image - examples for optical flow
prediction can be found in [165, 177]. For 3D scene flow this is not an ideal choice due
to the sparsity of non-zero flow vectors. Compared to the static background, moving
objects constitute only a small fraction of the image pixels. This unbalanced mov-
ing/static pixel distribution makes naively learning full image flow hard and ends up
in zero flow predictions even on moving objects. To make the network focus on pre-
dicting the correct flow on moving objects and provide a more balanced supervision,
we therefore use object bounding box detections obtained from a state-of-the-art 2D
object detection system [81]. It is important to note that the object detection does
not actually tell us if the object is moving or not. This information is learned by our
network using our view synthesis based loss functions.

Formally each flow prediction happens in a region of interest (RoI) within the
original image, with size and location B =

[
x, y, w, h

]
. In our system the per-object

flow map is predicted at a fixed size wr × hr using a RCNN based architecture as
detailed in Section 2.3. For our view synthesis based loss functions we need to trans-

form the image intrinsics K =
[
fx 0 cx
0 fy cy
0 0 1

]
into RoI specific versions. The change only

affects the intrinsic camera parameters and hence we need to compute a new intrinsic
matrix Kj for each RoI j. The transformation ends up to be a displacement of the

principal point and scaling of the focal length - Kj =

[
fxwr/w 0 (cx−x)wr/w

0 fyhr/h (cy−y)hr/h
0 0 1

]
.

Note that we do not need bounding box associations between different view-
points or time instants. We only compute detections for frame I lt and use a slightly
expanded area as our RoI in frames that we warp to our reference frame for computing
consistency losses in Eq. 2.1 and 2.3.
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2.2.4 RoI Assembly for Full Frame Scene Flow

We assemble a complete scene flow from the object specific maps F j. However,
overlapping RoIs and certain RoIs may even contain multiple moving objects. There-
fore we predict an object mask M j for each RoI j in addition to F j. The full 3D
scene flow map F is computed as:

F =
∑

j M
j � F j (2.4)

We then use the full image flow map F with Eq. 2.1 and Eq. 2.3 for full image photo-
metric and geometric losses. Note that the assembly procedure is fully differentiable
and we are able to train instance masks M = {M1, . . . ,M j} without any explicit
mask supervision. We later use these instance masks (with flow) to identify moving
objects (cf.Figure 2.6).

2.2.5 Full Learning Objective

We first state our full image synthesis based loss and then explain further priors
we impose in our training loss. Our image synthesis loss function is based on four
images I lt , I

r
t , I lt+1 and Irt+1 and can be split into three parts

Ltot = Llr + LRoI + Lt (2.5)

Where Llr is the loss for left-right consistency, LRoI is the RoI based loss function and
Lt is the full image based loss function on flow and depth over time. To state how
the three parts are defined we introduce the notation s → t to indicate the warping
from source s to target t.

Llr = Lphoto(I
l
t , Î

r→l
t ) + Lphoto(I

l
t+1, Î

r→l
t+1 ) (2.6)

LRoI =
∑
j

Lphoto(I
l,j
t , Î

l,j
t+1→t)+Lgeo(D

l,j
t , D̂

l,j
t+1→t, F

lj
t )

Lt = Lphoto(I
l
t , Î

l
t+1→t) + Lgeo(D

l
t, D̂

l
t+1→t, F

l
t )

Beside the loss detailed above, we use additional priors such as smoothness for
depth and flow while respecting discontinuties at boundaries [37]. Optionally, we use
the classical stereo system ELAS [31] to compute an incomplete disparity map and
use it for weak supervision with an L1 loss.

2.3 Network Architecture

Figure 2.5 illustrates our network for scene flow, mask and depth prediction. We
first talk about the 3D grid representation used to integrate the information from all
images and then describe each component of the network.
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3D Flow

Depth Map

3D View Frustum

Feature Unprojection 3D Grid Reasoning Final Prediction

Object-centric flow prediction

Mask

Figure 2.5: Network architecture. Our system predicts depth and instance-level 3D scene flow in
a single forward pass. With extracted image features, we unproject features into a discretized view
frustum grid, and then use a 3D CNN Φ3D and finally perform prediction using depth ΦD and scene
flow ΦSF decoders.

2.3.1 3D Grid Representation

In order to enable the network to reason about the scene geometry in 3D, we
unproject the 2D features into a 3D grid [58]. A common discretization is to split a 3D

3D grids discretized in the inverted depth (outdoor scene)

Equally discretized 3d grid 3d grid discretized in the inverted depth space 

 
 

 

cuboid volume of interest into equally sized voxels. This
representation is used for 3D object shape reconstruc-
tion [138, 58]. However, it is not suitable for outdoor
scenes with a large depth range, where we want to be more
certain about foreground objects’ geometry and motion,
and allow increasing uncertainty with increasing depth in
the 3D world. This lends to using the well known frustum
shaped grid called matching cost volume or plane sweep
volume in classical (multi-view) stereo. In learning based
stereo it has recently been used in [163]. The grid is discretized in image space plus
an additional inverse depth (”nearness”) coordinate, as shown in above image.

2.3.2 Network Components

Image Encoder. In the first stage the images are processed using a 2D CNN ΦI ,
which outputs for each image a 2D feature map with c feature channels. The weights
for this CNN are shared for all input frames - typically stereo frames at two time
instants {I lt , Irt } and {I lt+1, I

r
t+1}.
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Unprojection. Using the 3D grid defined in Section 2.3.1, we lift the 2D infor-
mation into the 3D space. We use the two left camera images as references images
{I lt , I lt+1} and generate these 3D grids in both their camera coordinates. Each grid is
populated with image features from all 4 images by projecting the grid cell centers
into the respective images using the corresponding projection matrices [58]. We use
the left images as reference frames as we predict disparity maps and scene flow from
I lt to I lt+1.

Grid Pooling. The grids from the previous stage contain image features from all
4 frames. In order to combine the information from multiple frames we use two
strategies. We use element-wise max pooling for features from left and right pairs and
concatenate the features for different time instants in each grid cell. The motivation
is that for stereo frames, there is no object motion and hence the feature should align
well after unprojection. Thus a simple strategy of max pooling works well. Whereas
for frames at different time instants, we expect motion in the scene and thus there
would be misalignment where objects move. The output from this stage are two grids
Gl

t and Gl
t+1.

3D Grid Reasoning. The next module Φ3D processes the above two grids indepen-
dently and generates output grids of the same resolution G̃l

t and G̃l
t+1. This module is

implemented as a 3D encoder-decoder CNN module with skip connections following
the U-Net architecture [115].

Output Modules. The final output is based on two CNN modules - one producing
full frame depth for each reference image and one producing scene flow for each RoI
in frame It. For each image I li , with i ∈ {t, t + 1} we first collapse G̃l

i (a 4D tensor)
into a 3D tensor C l

i by concatenating features in the depth dimension. As the grid
is aligned with the reference image’s camera, this corresponds to accumulating the
features from various disparity planes at every pixel into a single feature. This tensor
is further processed using φD to produce the full frame disparity map. The 3D flow
prediction follows an RCNN [35] based architecture where given RoIs, we crop out
corresponding regions C l

t using an RoI align layer [45] and pass them to φSF which
predict the scene flow and instance mask for each RoI. We also use skip connections
from the image encoder in φD and φSF to produce sharper predictions. The full frame
scene flow map is created from the RoIs by pasting back as described in Section 2.2.4.
The final outputs from our system are disparity maps Dl

t and Dl
t+1 and a forward

scene flow map F l
t .

2.4 Experiments

We evaluate our instance-level 3d object motion and mask prediction on the
KITTI 2015 sceneflow dataset [91]. This is the only available dataset that contains
real images together with ground-truth scene flow annotations. Following existing
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(a) Ground-truth (b) Prediction

Figure 2.6: Qualitative results on our instance-level moving object mask prediction. Instances are
color-encoded.

work [89, 165, 177, 37], we adopt the official 200 training images as test set. The
official testing set is adopted for the final finetuning process. This is possible as we
do not require the ground truth for training. All the related images in the 28 scenes
covered by test data are excluded for training. Figure 2.6 and Figure 2.7 show some
qualitative results.

Training details Our system is implemented using TensorFlow [2]. All models
are optimized end-to-end using Adam [61] with a learning rate of 1 × 10−4, decay
rate of 0.5 and decay steps of 100000. During training, we randomly crop the input
images in the horizontal direction to obtain patches with the size of 384 × 640 as
input to the network. We set the output size of each RoI as 128 × 128, we set the
number of channels in the 3D grid to 64. The batch size is set as 1 to deal with
flexible RoI number for training patch. For the image encoder, we finetune the first
4 convolutional layers from Inception ResNet V2 [127] pretrained on ImageNet. The
rest of network is trained from scratch. We first train the depth prediction for 80K
iterations on the KITTI raw dataset and then jointly train the depth and scene flow
prediction for another 100k iterations. We finetune the model on the official testing
set for another 120k iterations and use official 200 training images for comparison
with other methods. The whole training process takes about 30 hours using a single
NVIDIA Titan-X GPU.
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Figure 2.7: Qualitative results of our method. From left to right, reference image, depth, optical
flow and instance-level moving object mask.

Method AMAD↓ AMAE↓ AE≤15◦↑ AE≤30◦↑ SMAD↓ SMAE↓ SE≤0.15↑ SE≤0.3↑

GeoNet [165] + Godard [37] 6.98◦ 28.82◦ 62.93 77.16 0.256 0.503 0.351 0.554

UnflowC [89] + Godard [37] 5.96◦ 26.94◦ 64.87 77.58 0.240 0.471 36.21 58.62

Ours (no RoI consistency loss) 6.03◦ 29.34◦ 67.59 75.94 0.207 0.358 37.46 58.93

Our 3D scene flow 5.19◦ 22.92◦ 74.78 78.87 0.193 0.334 40.95 62.72

Table 2.1: Comparison of instance-level object motion in terms of motion direction(A) and speed
(S). MAE denotes the mean average error, MAD denotes the median absolute deviation. The lower
the better. We also report the percentage of the angle/speed error below different thresholds, where
AE denotes the absolute angular error, SE denotes the absolute speed error. The higher the better.

2.4.1 Moving Object Speed and Direction Evaluation

Our method predicts 3D sceneflow for each independently moving object. For
each test image pair, ground-truth annotation of the disparity image at time t, the
disparity image at time t+ 1 warped into the first image’s coordinate frame and the
2D optical flow from time t to time t+1 are provided. Using these GT annotations to-
gether with the estimated camera egomotion obtained from Libviso2 [32], we compute
the 3D scene flow in the format of (x, y, z) for each image. To provide an instance-
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Method Image IoU Instance IoU

Zhou et al. [172] 0.380 -

Bounding box detections [81] 0.365 0.655

Our mask prediction 0.624 0.842

Table 2.2: Moving object mask evaluation. We report IoU number in both the full image and the
moving instance bounding box.

level analysis, we use the bbox detections [81], and find the dominant 3d flow for each
object. As a result, we represent the motion direction and speed for each instance
using a single 3d flow vector in the ground truth and all algorithms. We evaluate with
the following metrics: the mean average error of the euclidean length of the 3d flow
(speed), the mean average error of the angle of the 3d flow (motion direction) from the
moving object pixels. For robustness to outliers we report the percentage of the mean
average error below different thresholds. For comparison with other self-supervised
flow and depth learning methods we need to reconstruct scene flow from depth and
optical flow prediction. Geonet provides depthmaps with unknown scale factor and
unflow does not estimate depth, we therefore use the depth results from Godard et
al. [37]. As shown in Table 2.1, the average instance-level motion direction error of
our method is less than 23◦, about 15% smaller than the result obtained from the best
self-supervised optical flow combined with the best self-supervised depth algorithm.
In our prediction, about 75% of moving instances have an angular error below 15◦.

2.4.2 Moving Object Instance Mask Evaluation

Our method can produce instance-level moving object segmentation from ob-
ject bounding boxes and stereo videos. This is achieved without any instance mask
ground truth supervision. We evaluate our predictions on the KITTI sceneflow 2015
training split. The dataset provides an “Object map” which contains the foreground
moving cars in each image. We use this motion mask as ground truth in our seg-
mentation evaluation. Figure 2.6 shows some qualitative result of our moving object
mask prediction. As shown in Table 2.2, we evaluate our mask prediction using the
Intersection Over Union (IoU) metric. Specifically, We compute the mean image-
level IoU which considers both moving object and static background and the mean
instance-level IoU for only moving objects. Our method achieves highest IoU for
mask prediction. As a baseline comparison, we use mask generated from SSD [81]
2D bounding box detections. Those masks contain both moving and static cars, thus
it can only achieve an mean IoU of 0.34 for the full image mask. Even with the GT
object movement information, it does not have tight object boundary and thus can
only achieve a mean IoU of 0.655. This illustrates how our method effectively learns
to determine which object is moving and identify an accurate instance segmentation
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Method Dataset Non-occluded All Regions

EpicFlow [111] - 4.45 9.57

FlowNetS [25] C+ST 8.12 14.19

FlowNet2 [50] C+T 4.93 10.06

GeoNet [165] K 8.05 10.81

DF-Net [177] K+SY - 8.98

UnFlowC [89] K+SY - 8.80

Ranjan et al. [110] K - 7.76

Ours K 4.97 5.39

Ours (refined) K 4.19 5.13

Table 2.3: Results on KITTI 2015 flow training set over non-occluded regions and overall regions.
We use the average end-point error (EPE) metric to do the comparison. The classical method
EpicFlow takes 16s per frame at runtime; The FlowNetS and FlowNet2 are learned with GT flow
supervision. SY denotes SYNTHIA dataset [116], ST denotes Sintel dataset, C denotes FlyingChairs
dataset, T denotes FlyingThings3D dataset. Numbers from other methods are directly taken from
the paper.

for moving cars. We improve the result on both image-level and instance-level IoU.
We also compare with Zhou et al. [172] which generates the foreground mask for all
moving objects and occlusion region in the image. Their methods do not provide
instance-level information, hence we cannot obtain the instance-level IoU numbers.

2.4.3 Optical Flow Evaluation

An additional evaluation is to project our 3D flow predictions back to 2D to
obtain the optical flow. As shown in Table 2.3, our method achieves the lowest EPE
in both non-occluded regions and overall regions compared to other self-supervised
methods. As a baseline comparison, we train a model without RoI consistency loss,
which shows a decrease in performance. Optionally, we add an optical flow refine-
ment sub-network, to further improve our optical flow result. The subnetwork is a
unet which takes the warped image and the raw optical flow, together with original
image frames as input. This enables the network to further improve the optical flow
prediction in a similar way as the architecture proposed in [109].

2.4.4 Depth Evaluation

To evaluate our depth prediction we use the KITTI 2015 stereo training set of
200 disparity images as test data and compare to other self-supervised learning and
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Method Binocular Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [37] no 0.124 1.388 6.125 0.217 0.841 0.936 0.975

libelas [31] yes 0.1862 2.192 6.307 3.528 0.8197 0.8355 0.8414

Godard et al. [37] yes 0.068 0.835 4.392 0.146 0.942 0.978 0.989

Ours yes 0.064 0.699 3.896 0.144 0.945 0.975 0.987

Table 2.4: Results on the KITTI 2015 stereo training set of 200 disparity images. All learning-
based methods are trained on KITTI raw dataset excluding the testing image sequences. The top
half shows method which uses monocular image as input, the bottom half shows methods which use
binocular images as input.

Method D1 D2 FL ALL

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

EPC [162] 23.62 27.38 26.81 18.75 70.89 60.97 25.34 28.00 25.74

EPC++ [83] (mono) 30.67 34.38 32.73 18.36 84.64 65.63 17.57 27.30 19.78 >30.67 >84.64 >65.63

EPC++ [83] (stereo) 22.76 26.63 23.84 16.37 70.39 60.32 17.58 26.89 19.64 >22.76 >70.39 >60.32

Godard et al. [37] 9.43 18.74 10.86 - - - - - - - - -

GeoNet [165] - - - - - - 43.54 48.24 44.26 - - -

Godard [37] + GeoNet flow 9.43 18.74 10.86 9.10 25.95 25.42 43.54 48.24 44.26 48.22 55.75 49.38

Ours 6.27 15.95 7.76 8.46 23.60 10.92 14.36 51.25 20.16 16.58 53.20 22.64

Table 2.5: Results on KITTI 2015 scene flow training split. All number shows the percentage of
correctly predicted pixels. D1 denotes the disparity image at time t, D2 denotes the disparity image
at time t + 1 warped into the first frame, FL denotes the 2D optical flow between the two time
instances, fg denotes the foreground, and bg denotes the background.

classical algorithms in Table. 2.4. We compare to algorithms that take binocular
stereo as input at test time. Our method achieves a higher accuracy as we input two
consecutive binocular frames and our network also manages to match over time.

2.4.5 Scene Flow Evaluation

We compare other unsupervised method in the sceneflow subset by directly us-
ing their released results or running their released code. For this benchmark, a pixel
is considered to be correctly estimated if the disparity or flow end-point error is ≤ 3
pixels or ≤ 5%. For scene flow this criterion needs to be fulfilled for two disparity
maps and the flow map. As shown in Table 2.5, our method has an overall better ac-
curacy than earlier self-supervised methods. Compared to classical approaches which
optimize at test time our accuracy is still lower. However, test time optimization is
in general prohibitively slow for real-time systems.
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2.5 Discussion

We presented a system to predict depth and object scene flow. Our network
is trained using raw stereo sequences with off-the-shelf object detectors using image
consistency as key learning objective. Our formulation is general and can be applied in
any setting where a dynamic scene is imaged by multiple cameras - e.g. a multi-view
capture system [56]. In future work, we would like to extend our system to integrate
longer range temporal information. An emergent notion of objects to remove the
dependence on pretrained object detectors is a further research direction. We also
intend to explore general scenarios such as casual video captures using dual camera
consumer devices and leverage large scale training for a truly general purpose depth
and scene flow prediction system.
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Chapter 3

Predicting Long-term Human
Motion

Figure 3.1 shows the image of a typical indoor scene. Overlaid on this image is
the pose trajectory of a person, depicted here by renderings of her body skeleton over
time instants, where Frames 1-3 are in the past, Frame 4 is the present, and Frames
5-12 are in the future. In this paper, we study the following problem: Given the scene
image and the person’s past pose and location history in 2D, predict her future poses
and locations.

Human movement is goal-directed and influenced by the spatial layout of the
objects in the scene. For example, the person may be heading towards the window,
and will find a path through the space avoiding collisions with various objects that
might be in the way. Or perhaps a person approaches a chair with the intention to sit
on it, and will adopt an appropriate path and pose sequence to achieve such a goal
efficiently. We seek to understand such goal-directed, spatially contextualized human
behavior, which we have formalized as a pose sequence and location prediction task.

With the advent of deep learning, there has been remarkable progress on the
task of predicting human pose sequences [26, 87, 157, 169]. However, these frame-
works do not pay attention to scene context. As a representative example, Zhang et
al. [169] detect the human bounding boxes across multiple time instances and derive
their predictive signal from the evolving appearance of the human figure, but do not
make use of the background image. Given this limitation, the predictions tend to
be short-term (around 1 second), and local in space, e.g., walking in the same spot
without global movement. If we want to make predictions that encompass bigger
spatiotemporal neighborhoods, we need to make predictions conditioned on the scene
context.

We make the following philosophical choices: (1) To understand long term be-
havior, we must reason in terms of goals. In the setting of moving through space, the
goals could be represented by the destination points in the image. We allow multi-
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Figure 3.1: Long-term 3D human motion prediction. Given a single scene image and 2D
pose histories (the 1st row), we aim to predict long-term 3D human motion (projected on the image,
shown in the 2-3rd rows) influenced by scene. The human path is visualized as a yellow line.

modality by generating multiple hypotheses of human movement “goals”, represented
by 2D destinations in the image space. (2) Instead of taking a 3D path planning ap-
proach as in the classical robotics literature [7, 71], we approach the construction of
likely human motions as a learning problem by constructing a convolutional network
to implicitly learn the scene constraints from lots of human-scene interaction videos.
We represent the scene using 2D images.

Specifically, we propose a learning framework that factorizes this task into three
sequential stages as shown in Figure Figure 3.2. Our model sequentially predicts
the motion goals, plans the 3D paths following each goal and finally generates the
3D poses. In Section 3.4, we demonstrate our model not only outperforms existing
methods quantitatively but also generates more visually plausible 3D future motion.

To train such a learning system, we contribute a large-scale synthetic dataset
focusing on human-scene interaction. Existing real datasets on 3D human motion
have either contrived environment [51, 153], relatively noisy 3D annotations [119],
or limited motion range due to the depth sensor [41, 119]. This motivates us to
collect a diverse synthetic dataset with clean 3D annotations. We turn the Grand
Theft Auto (GTA) gaming engine into an automatic data pipeline with control over
different actors, scenes, cameras, lighting conditions, and motions. We collect over
one million HD resolution RGB-D frames with 3D annotations which we discuss in
detail in Section 3.3. Pre-training on our dataset stabilizes training and improves
prediction performance on real dataset [41].

In summary, our key contributions are the following: (1) We formulate a new
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(a) predicted goals (b) planned paths (c) final poses

Figure 3.2: Overall pipeline. Given a single scene image and 2D pose histories, our method
first samples (a) multiple possible future 2D destinations. We then predict the (b) 3D human path
towards each destination. Finally, our model generates (c) 3D human pose sequences following paths,
visualized with the ground-truth scene point cloud.

task of long-term 3D human motion prediction with scene context in terms of 3D poses
and 3D locations. (2) We develop a novel three-stage computational framework that
utilizes scene context for goal-oriented motion prediction, which outperforms existing
methods both quantitatively and qualitatively. (3) We contribute a new synthetic
dataset with diverse recordings of human-scene interaction and clean annotations.

3.1 Background

Predicting future human motion under real-world social context and scene con-
straints is a long-standing problem [5, 38, 46, 64, 117]. Due to its complexity, most
of the current approaches can be classified into global trajectory prediction and lo-
cal pose prediction. We connect these two components in a single framework for
long-term scene-aware future human motion prediction.

Global trajectory prediction: Early approaches in trajectory prediction model
the effect of social-scene interactions using physical forces [46], continuum dynam-
ics [135], Hidden Markov model [64], or game theory [84]. Many of these approaches
achieve competitive results even on modern pedestrian datasets [74, 103]. With the
resurgence of neural nets, data-driven prediction paradigm that captures multi-modal
interaction between the scene and its agents becomes more dominant [5, 6, 15, 38,
85, 117, 130, 166]. Similar to our method, they model the influence of the scene im-
plicitly. However, unlike our formulation that considers images from diverse camera
viewpoints, they make the key assumption of the bird-eye view image or known 3D
information [5, 38, 64, 117].

Local pose prediction: Similar to trajectory prediction, there has been plenty of
interest in predicting future pose from image sequences both in the form of image
generation [145, 171], 2D pose [16, 149], and 3D pose [18, 33, 158, 169]. These
methods exploit the local image context around the human to guide the future pose
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generation but do not pay attention to the background image or the global scene
context. Approaches that focus on predicting 3D pose from 3D pose history also
exist and are heavily used in motion tracking [23, 146]. The goal is to learn 3D pose
prior conditioning on the past motion using techniques such as Graphical Models [10],
linear dynamical systems [102], trajectory basis [3, 4], or Gaussian Process latent
variable models [132, 141, 150, 151], and more recently neural networks such as
recurrent nets [26, 53, 78, 87, 101], temporal convolution nets [47, 48, 75], or graph
convolution net in frequency space [157]. However, since these methods completely
ignore the image context, the predicted human motion may not be consistent with
the scene, i.e, waling through the wall. In contrast, we propose to utilize the scene
context for future human motion prediction. This is similar in spirit to iMapper [93].
However, this approach relies on computationally expensive offline optimization to
jointly reason about the scene and the human motion. Currently, there is no learning-
based method that holistically models the scene context and human pose for more
than a single time instance [17, 73, 77, 152, 154].

3D Human Motion Dataset Training high capacity neural models requires large-
scale and diverse training data. Existing human motion capture datasets either con-
tain no environment [1], contrive environment [51, 153], or in the outdoor setting
without 3D annotation [148]. Human motion datasets with 3D scenes are often much
smaller and have relatively noisy 3D human poses [41, 119] due to the limitations
of the depth sensor. To circumvent such problems, researchers exploit the interface
between the game engine and the graphics rendering system to collect large-scale
synthetic datasets [24, 65]. Our effort on synthetic training data generation is a con-
solidation of such work to the new task of future human motion prediction with scene
context.

3.2 Approach

In this chapter, we focus on long-term 3D human motion prediction that is
goal-directed and is under the influence of scene context. We approach this prob-
lem by constructing a learning framework that factorizes long-term human motions
into modeling their potential goal, planing 3D path and pose sequence, as shown in
Figure Figure 3.3. Concretely, given a N -step 2D human pose history X1:N and an
2D image1 of the scene I (the Nth video frame in our case), we want to predict the
next T -step 3D human poses together with their locations, denoted by a sequence
YN+1:N+T . We assume a known human skeleton consists of J keypoints, such that
X ∈ RJ×2,Y ∈ RJ×3. We also assume a known camera model parameterized by its
intrinsic matrix K ∈ R3. To denote a specific keypoint position, we use the super-

1We choose to represent the scene by RGB images rather than RGBD scans because they are
more readily available in many practical applications.
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Ĥr
N+1:N+T

<latexit sha1_base64="lwFOy66kmjmBJziKyv0LJ/JyKPE="></latexit>

GoalNet PathNet PoseNet

Lpose3D

<latexit sha1_base64="32d+xI+0q153jRT8lBrmI9x+OjY=">AAACenicbVHJahtBEG2NszjKJiXHXBqLQEJAmnEkEnIyxIcccrAhsg0eIXp6SlKj3uiuiS2a+RRf7W/yv/jglqxDJKeg4PFeFbW8wkrhMU1vG8nOk6fPnu++aL589frN21b73Yk3leMw5EYad1YwD1JoGKJACWfWAVOFhNNi/nOpn/4F54XRf3BhYaTYVIuJ4AwjNW61f49DjnCJwRoPXw/retzqpN10FfQxyNagQ9ZxNG43jvPS8EqBRi6Z9+dZanEUmEPBJdTNvPJgGZ+zKZxHqJkCPwqr3Wv6MTIlnRgXUyNdsf92BKa8X6giViqGM7+tLcn/aoXamBysWA6IpXSGaH/0ehyZ7ho37dl5zJXazDVccKMU02XIuWJuXoe8FHoaBlldb8qXG/Kg3joUJ99HQWhbIWj+cOekkhQNXfpAS+GAo1xEwLgT8VWUz5hjHKNbzWhCtv3yx+Bkv5v1u4PjfufAre3YJR/IHvlEMvKNHJBf5IgMCScX5Ipck5vGXbKXfE6+PJQmjXXPe7IRSf8eIIPDdQ==</latexit>

d̂r
1:N+T

<latexit sha1_base64="16l8mKEIIptKWCMZLegX7iQz3hA="></latexit>

Lpath2D + Lpath3D

<latexit sha1_base64="j2ASIfwdKCyZvpVO6hYUaBYeQz4="></latexit>

X1:N

<latexit sha1_base64="8gKob7KDCUtfYbI3WF2Z9pY4uF8="></latexit>

H1:J
1:N

<latexit sha1_base64="leFsdXw912A7mUYc887pHeZx9Kw="></latexit>

I

<latexit sha1_base64="7e8tjlBbC/AKupSkzPopkwC6uMA="></latexit>

F

<latexit sha1_base64="Hn8+lp+wFk6U5mFOk4MpiJ7bW08=">AAACcnicbVHJahtBEG1NNkdZbCc359KOCOQQpJlgkZCTIRB8tCGyDRphanpaUqPe6K6xozTzGbna3+X/8AekR5lDJLug4PFeFbW8wkrhMU1vO8mjx0+ePtt63n3x8tXr7Z3dN6feVI7xETPSuPMCPJdC8xEKlPzcOg6qkPysWHxv9LNL7rww+icuLZ8omGkxFQwwUuNcAc4ZyPCjvtjppf10FfQ+yFrQI20cX+x2TvLSsEpxjUyC9+MstTgJ4FAwyetuXnlugS1gxscRalDcT8Jq55p+iExJp8bF1EhX7P8dAZT3S1XEymZHv6k15INaodYmByuaAbGUzhHtt8GAIei+cbOBXcRcqd1c8ytmlAJdhpwpcIs65KXQszDM6npd/rUmD+uNQ3H6dRKEthVyzf7dOa0kRUOb/9NSOM5QLiMA5kR8FWVzcMAwutSNJmSbL78PTj/3s4P+8OSgd/i7tWOLvCPvyUeSkS/kkByRYzIijBjyh1yTm85dspfsJ613SafteUvWIvn0F6MYwJo=</latexit>

Φ

<latexit sha1_base64="LnctwLQiiUmSADuapH/OgSJ+9oM="></latexit>

Ψ

<latexit sha1_base64="7ExUaTXpKq9EvO9l7lgSGmEa/Kk="></latexit>

Figure 3.3: Network architecture. Our pipeline contains three stages: GoalNet predicts 2D
motion destinations of the human based on the reference image and 2D pose heatmaps (Section 3.2.1);
PathNet plans the 3D global path of the human with the input of 2D heatmaps, 2D destination,
and the image (Section 3.2.2); PoseNet predicts 3D global human motion, i.e., the 3D human pose
sequences, following the predicted path (Section 3.2.3).

script of its index in the skeleton, e.g., Xr refers to the 2D location of the human
center (torso) indexed by r ∈ [1, J ].

We motivate and elaborate our modular design for each stage in the rest of the
section. Specifically, GoalNet learns to predict multiple possible human motion goals,
represented as 2D destinations in the image space, based on a 2D pose history and
the scene image. Next, PathNet learns to plan a 3D path towards each goal – the
3D location sequence of the human center (torso) – in conjunction with the scene
context. Finally, PoseNet predicts 3D human poses at each time step following the
predicted 3D path. In this way, the resulting 3D human motion has global movement
and is more plausible considering the surrounding scene.

Thanks to this modular design, our model can have either deterministic or
stochastic predictions. When deploying GoalNet, our model can sample multiple
destinations, which results in stochastic prediction of future human motion. If not
deploying GoalNet, our model generates single-mode prediction instead. We discuss
them in more detail in the rest of the section and evaluate both predictions in our
experiments.

3.2.1 GoalNet : Predicting 2D Path Destination

To understand long-term human motion, we must reason in terms of goals.
Instead of employing autoregressive models to generate poses step-by-step, we seek
to first directly predict the destination of the motion in the image space. We allow our
model to express uncertainty of human motion by learning a distribution of possible
motion destinations, instead of a single hypothesis. This gives rise to our GoalNet
denoted as F for sampling plausible 2D path destination.



CHAPTER 3. PREDICTING LONG-TERM HUMAN MOTION 24

GoalNet learns a distribution of possible 2D destinations {X̂r
N+T} at the end

of the time horizon conditioned on the 2D pose history X1:N and the scene image I.
We parametrize each human keypoint Xj by a heatmap channel Hj which preserves
spatial correlation with the image context.

We employ GoalNet as a conditional variational auto-encoder [62]. The model
encodes the inputs into a latent z-space, from which we sample a random z vector
for decoding and predicting the target destination positions. Formally, we have

z ∼ Q(z|H1:J
1:N , I) ≡ N (µ,σ), where µ,σ = Fenc(H

1:J
1:N , I). (3.1)

In this way, we estimate a variational posteriorQ by assuming a Gaussian information
bottleneck using the decoder. Next, given a sampled z latent vector, we learn to
predict our target destination heatmap with our GoalNet decoder,

Ĥr
N+T = Fdec(z, I), (3.2)

where we additionally condition the decoding process on the scene image. We use soft-
argmax [125] to extract the 2D human motion destination X̂r

N+T from this heatmap

Ĥr
N+T . We choose to use soft-argmax operation because it is differentiable and can

produce sub-pixel locations. By constructing GoalNet, we have

Ĥr
N+T = F(I,H1:J

1:N). (3.3)

We train GoalNet by minimizing two objectives: (1) the destination prediction error
and (2) the KL-divergence between the estimated variational posteriorQ and a normal
distribution N (0,1):

Ldest2D = ‖Xr
N+T − X̂r

N+T‖1,
LKL = KL

[
Q
(
z|H1:J

1:N , I
)
||N (0, 1)

]
,

(3.4)

where we weigh equally between them. During testing, our GoalNet is able to sample
a set of latent variables {z} from N (0,1) and map them to multiple plausible 2D
destinations {Ĥr

N+T}.

3.2.2 PathNet : Planning 3D Path towards Destination

With predicted destinations in the image space, our method further predicts 3D
paths (human center locations per timestep) towards each destination. The desti-
nation determines where to move while the scene context determines how to move.
We design a network that exploits both the 2D destination and the image for future
3D path planning. A key design choice we make here is that, instead of directly
regressing 3D global coordinate values of human paths, we represent the 3D path as
a combination of 2D path heatmaps and the depth values of the human center over
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time. This 3D path representation facilitates training as validated in our experiments
(Section 3.4.3).

As shown in Figure 3.3, our PathNet Φ takes the scene image I, the 2D pose
history H1:J

1:N , and the 2D destination assignment Ĥr
N+T as inputs, and predicts global

3D path represented as (Ĥr
N+1:N+T , d̂

r
1:N+T ), where d̂rt ∈ R denotes the depth of

human center at time t:

Ĥr
N+1:N+T , d̂

r
1:N+T = Φ(I,X1:J

1:N ,X
r
N+T ). (3.5)

We use soft-argmax to extract the resulting 2D path X̂r
N+1:N+T from predicted heatmaps

Ĥr
N+1:N+T . Finally, we obtain the 3D path Ŷr

1:N+T by back-projecting the 2D path

into the 3D camera coordinate frame using the human center depth d̂r
1:N+T and cam-

era intrinsics K.
We use Hourglass54 [72, 96] as the backbone of PathNet to encode both the

input image and 2D pose heatmaps. The network has two branches where the first
branch predicts 2D path heatmaps and the second branch predicts the depth of the
human torso.

We train our PathNet using two supervisions. We supervise our path predictions
with ground-truth 2D heatmaps:

Lpath2D = ‖Xr
N+1:N+T − X̂r

N+1:N+T‖1. (3.6)

We also supervise path predictions with 3D path coordinates, while encouraging
smooth predictions by penalizing large positional changes between consecutive frames:

Lpath3D = ‖Yr
1:N+T − Ŷr

1:N+T‖1 + ‖Ŷr
1:N+T−1 − Ŷr

2:N+T‖1. (3.7)

These losses are summed together with equal weight as the final training loss. During
training, we use the ground-truth destination to train our PathNet, while during
testing, we can use predictions from the GoalNet.

The GoalNet and PathNet we describe so far enable sampling multiple 3D paths
during inference. We thus refer to it as the stochastic mode of the model. The
modular design of GoalNet and PathNet is flexible. By removing GoalNet and input
Xr

N+T from Equation 3.5, we can directly use PathNet to produce deterministic 3D
path predictions. We study these two modes, deterministic and stochastic mode, in
our experiments.

3.2.3 PoseNet : Generating 3D Pose following Path

With the predicted 3D path Ŷr
1:N+T and 2D pose history X1:N , we use the

transformer network [142] as our PoseNet Ψ to predict 3D poses following such path.
Instead of predicting the 3D poses from scratch, we first lift 2D pose history into 3D
to obtain a noisy 3D human pose sequence Ȳ1:N+T as input, and further use Ψ to
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refine them to obtain the final prediction. Our initial estimation consists of two steps.
We first obtain a noisy 3D poses Ȳ1:N by back-projecting 2D pose history X1:N into
3D using the human torso depth d̂r

1:N and camera intrinsics K. We next replicate the
present 3D pose ȲN to each of the predicted future 3D path location for an initial
estimation of future 3D poses ȲN+1:N+T . We then concatenate both estimations
together to form Ȳ1:N+T as input to our PoseNet:

ŶN+1:N+T = Ψ(Ȳ1:N+T ). (3.8)

The training objective for PoseNet is to minimize the distance between the 3D pose
prediction and the ground-truth defined as:

Lpose3D = ‖YN+1:N+T − ŶN+1:N+T‖1. (3.9)

During training, ground-truth 3D path Yr
1:N+T is used for estimating coarse 3D pose

input. During testing, we use the predicted 3D path Ŷr
1:N+T from PathNet.

3.3 GTA Indoor Motion Dataset

We introduce the GTA Indoor Motion dataset (GTA-IM) that emphasizes human-
scene interactions. Our motivation for this dataset is that existing real datasets on
human-scene interaction [41, 119] have relatively noisy 3D human pose annotations
and limited long-range human motion limited by depth sensors. On the other hand,
existing synthetic human datasets [24, 65] focus on the task of human pose estima-
tion or parts segmentation and sample data in wide-open outdoor scenes with limited
interactable objects.

To overcome the above issues, we spend extensive efforts in collecting a synthetic
dataset by developing an interface with the game engine for controlling characters,
cameras, and action tasks in a fully automatic manner. For each character, we ran-
domize the goal destination inside the 3D scene, the specific task to do, the walking
style, and the movement speed. We control the lighting condition by changing dif-
ferent weather conditions and daytime. We also diversify the camera location and
viewing angle over a sphere around the actor such that it points towards the actor.
We use in-game ray tracing API and synchronized human segmentation map to track
actors. The collected actions include climbing the stairs, lying down, sitting, opening
the door, and etc. – a set of basic activities within indoor scenes. For example,
the character has 22 walking styles including 10 female and 12 male walking styles.
All of these factors enable us to collect a diverse and realistic dataset with accurate
annotations for our challenging task.

In total, we collect one million RGBD frames of 1920 × 1080 resolution with
the ground-truth 3D human pose (98 joints), human segmentation, and camera pose.
Some examples are shown in Figure 3.4. The dataset contains 50 human characters
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Figure 3.4: Sample RGBD images from GTA-IM dataset. Our dataset contains realis-
tic RGB images (visualized with the 2D pose), accurate depth maps, and clean 3D human pose
annotations.

acting inside 10 different large indoor scenes. Each scene has several floors, including
living rooms, bedrooms, kitchens, balconies, and etc., enabling diverse interaction
activities.

3.4 Evaluation

We perform extensive quantitative and qualitative evaluations of our future 3D
human path and motion predictions. The rest of this section is organized as follows:
We first describe the datasets we use in Section 3.4.1. We then elaborate on our quan-
titative evaluation metrics and strong baselines in Section 3.4.2. Further, we show
our quantitative and qualitative improvement over previous methods in Section 3.4.3.
Finally, we evaluate our long-term predictions and show qualitative results of desti-
nation samples and final 3D pose results in Section 3.4.4. We discussed some failure
cases in Section 3.4.5.

3.4.1 Datasets

GTA-IM: We train and test our model on our collected dataset as described in
Section 3.3. We split 8 scenes for training and 2 scenes for evaluation. We choose 21
out of 98 human joints provided from the dataset. We convert both the 3D path and
the 3D pose into the camera coordinate frame for both training and evaluation.

PROX: Proximal Relationships with Object eXclusion (PROX) is a new dataset
captured using the Kinect-One sensor by Hassan et al. [41]. It comprises of 12 different
3D scenes and RGB sequences of 20 subjects moving in and interacting with the
scenes. We split the dataset with 52 training sequences and 8 sequences for testing.
Also, we extract 18 joints from the SMPL-X model [99] from the provided human
pose parameters.
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Figure 3.5: Qualitative results on long-term stochastic prediction. In each example, we
first show the input image with 2D pose histories and then our stochastic predictions. In the first
example (1st and 2nd row), we show five different future human movement predictions by sampling
different human “goals”, e.g., turning left to climb upstairs, or going straight through the hallway.
For the following examples at each row, we only show two stochastic predictions per example due to
space limitation. Our method can generate diverse human motion, e.g., turning left/right, walking
straight, taking a u-turn, standing up from sitting, and laying back on the sofa.
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3.4.2 Evaluation Metric and Baselines

Metrics: We use the Mean Per Joint Position Error (MPJPE) [51] as a metric for
quantitatively evaluating both the 3D path and 3D pose prediction. We report the
performance at different time steps (seconds) in millimeters (mm).

Baselines: To the best of our knowledge, there exists no prior work that predicts
3D human pose with global movement using 2D pose sequence as input. Thus, we
propose three strong baselines for comparison with our method. For the first baseline,
we combine the recent 2D-to-3D human pose estimation method [100] and 3D human
pose prediction method [157]. For the second baseline, we use Transformer [142],
the state-of-the-art sequence-to-sequence model, to perform 3D prediction directly
from 2D inputs treating the entire problem as a single-stage sequence to sequence
task. For the third baseline, we compare with is constructed by first predicting the
future 2D human pose using [142] from inputs and then lifting the predicted pose
into 3D using [100]. Note that none of these baselines consider scene context or deal
with uncertainty in their future predictions. We train all models on both datasets
for two-second-long prediction based on 1-second-long history and report their best
performance for comparison.

3.4.3 Comparison with Baselines

In this section, we perform quantitative evaluations of our method in the two
datasets. We also show some qualitative comparisons in Figure 3.6. We evaluate
the two modes of our model: the stochastic mode that can generate multiple future
predictions by sampling different 2D destinations from the GoalNet; and the deter-
ministic mode that can generate one identical prediction without deploying GoalNet.

GTA-IM: The quantitative evaluation of 3D path and 3D pose prediction in GTA-
IM dataset is shown in Table 3.1. Our deterministic model with image input can
outperform the other methods by a margin, i.e., with an average error of 173 mm vs.
193 mm. When using sampling during inference, the method can generate multiple
hypotheses of the future 3D pose sequence. We evaluate different numbers of samples
and select the predictions among all samples that best matches ground truth to report
the error. We find using four samples during inference can match the performance
of our deterministic model (173 mm error), while using ten samples, we further cut
down the error to 165 mm. These results validate that our stochastic model can help
deal with the uncertainty of future human motion and outperform the deterministic
baselines with few samples.

As an ablation, we directly regress 3D coordinates (“Ours w/ xyz.” in the
Table 3.1) and observe an overall error that is 18 mm higher than the error of our
deterministic model (191 mm vs. 173 mm). This validates that representing the 3D
path as the depth and 2D heatmap of the human center is better due to its strong
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3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓
TR [142] 277 352 457 603 291 374 489 641 406
TR [142] + VP [100] 157 240 358 494 174 267 388 526 211
VP [100] + LTD [157] 124 194 276 367 121 180 249 330 193

Ours (deterministic) 104 163 219 297 91 158 237 328 173

Ours (samples=4) 114 162 227 310 94 161 236 323 173
Ours (samples=10) 110 154 213 289 90 154 224 306 165

Ours w/ xyz. output 122 179 252 336 101 177 262 359 191
Ours w/o image 128 177 242 320 99 179 271 367 196
Ours w/ masked image 120 168 235 314 96 170 265 358 189
Ours w/ RGBD input 100 138 193 262 93 160 235 322 172
Ours w/ GT destination 104 125 146 170 85 133 178 234 137

Table 3.1: Evaluation results in GTA-IM dataset. We compare other baselines in terms of
3D path and pose error. The last column (All) is the mean average error of the entire prediction
over all time steps. VP denotes Pavllo et al. [100], TR denotes transformer [142] and LTD denotes
Wei et al. [157]. GT stands for ground-truth, xyz. stands for directly regressing 3D coordinates of
the path. We report the error of our stochastic predictions with varying number of samples.

correlation to the image appearance. We also ablates different types of input to our
model. Without image input, the average error is 23 mm higher. With only masked
images input, i.e., replacing pixels outside human crop by ImageNet mean pixel values,
the error is 16 mm highe. This validates that using full image to encode scene context
is more helpful than only observing cropped human image, especially for long-term
prediction. Using both color and depth image as input (“Ours w/ RGBD input”),
the average error is 172 mm which is similar to the model with RGB input. This
indicates that our model implicitly learns to reason about depth information from
2D input. If we use ground-truth 2D destinations instead of predicted ones, and the
overall error decreases down to 137 mm. It implies that the uncertainty of the future
destination is the major source of difficulty in this problem.

PROX: The evaluation results in Table 3.2 demonstrate that our method outperforms
the previous state of the art in terms of mean MPJPE of all time steps, 270 mm
vs. 282 mm. Overall, we share the same conclusion as the comparisons in GTA-
IM dataset. When using sampling during inference, three samples during inference
can beat the performance of our deterministic model (264 mm vs. 270 mm), while
using ten samples, the error decreases to 249 mm. Note that these improvements
are more prominent than what we observe on GTA-IM benchmark. This is because
the uncertainty of future motion in the real dataset is larger. Therefore, stochastic
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3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓
TR [142] 487 583 682 783 512 603 698 801 615
TR [142] + VP [100] 262 358 461 548 297 398 502 590 326
VP [100] + LTD [157] 194 263 332 394 216 274 335 394 282

Ours w/o GTA-IM pretrain 192 258 336 419 192 273 352 426 280
Ours (deterministic) 189 245 317 389 190 264 335 406 270

Ours (samples=3) 192 245 311 398 187 258 328 397 264
Ours (samples=6) 185 229 285 368 184 249 312 377 254
Ours (samples=10) 181 222 273 354 182 244 304 367 249

Ours w/ gt destination 193 223 234 237 195 235 276 321 237

Table 3.2: Evaluation results in PROX dataset. We compare other baselines in terms of 3D
future path and pose prediction. VP denotes Pavllo et al. [100], TR denotes transformer [142] and
LTD denotes Wei et al. [157]. GT stands for ground-truth. We rank all methods using mean average
error of the entire prediction (last column).

predictions have more advantage.
Moreover, we find that pre-training in GTA-IM dataset can achieve better per-

formance (270 mm vs. 280 mm). Our method exploits the image context and tends
to overfit in PROX dataset because it is less diverse in terms of camera poses and
background appearance (both are constant per video sequence). Pre-training in our
synthetic dataset with diverse appearance and clean annotations can help prevent
overfitting and boost the final performance.

Qualitative comparison: In Figure 3.6, we show qualitative comparison with the
baseline of VP [100] and LTD [157]. This baseline is quantitatively competitive as
shown in Table 3.1 and 3.2. However, without considering scene context, their pre-
dicted results may not be feasible inside the 3D scene, e.g., the person cannot go
through a table or sofa. In contrast, our model implicitly learns the scene constraints
from the image and can generate more plausible 3D human motion in practice.

3.4.4 Evaluation on Longer-term Predictions

To demonstrate our method can predict future human motion for more than 2
seconds, we train another model to produce the 3-second-long future prediction. In
Figure Figure 3.7, we show the self-comparisons between our stochastic predictions
and deterministic predictions. Our stochastic models can beat their deterministic
counterpart using 5 samples. With increasing number of samples, the testing error
decreases accordingly. The error gap between deterministic results and stochastic
results becomes larger at the later stage of the prediction, i.e., more than 100 mm
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(a) input (b) baseline results (c) our results
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Figure 3.6: Qualitative comparison. We visualize the input (a), the results of VP[100] and
LTD [157] (b) and our results (c) in the ground-truth 3D mesh. The color of pose is changed over
timesteps according to the color bar. The first example includes both top-down and side view. From
the visualization, we can observe some collisions between the baseline results and the 3D scene, while
our predicted motion are more plausible by taking the scene context into consideration.

difference at 3 second time step. This indicates the advantage of the stochastic model
in long-term future motion prediction.

We show qualitative results of our stochastic predictions on movement desti-
nations in Figure 3.8, and long-term future motion in Figure 3.5. Our method can
generate diverse human movement destination, and realistic 3D future human mo-
tion by considering the environment, e.g., turning left/right, walking straight, taking
a U-turn, climbing stairs, standing up from sitting, and laying back on the sofa.



CHAPTER 3. PREDICTING LONG-TERM HUMAN MOTION 33

(a) predicted 3D paths (b) predicted 3D poses

Figure 3.7: Comparison between our stochastic predictions and deterministic predic-
tions. We show error curves of predicted (a) 3D paths and (b) 3D poses with varying numbers of
samples over varying timesteps on GTA-IM dataset. In all plots, we find that our stochastic model
can achieve better results with a small number of samples, especially in the long-term prediction
(within 2-3 second time span).

Figure 3.8: Destination sampling results. In each image, the blue dots denote the path
history, the green dots are ground-truth future destination, red dots are sample destinations from
the GoalNet which we draw 30 times from the standard Gaussian. Our method can generate diverse
plausible motion destination samples which leads to different activities.

3.4.5 Failure cases

Our model implicitly learns scene constraints in a data-driven manner from
large amounts of training data, and can produce consistent 3D human paths without
serious collision comparing to previous methods which do not take scene context into
consideration as shown in Figure 3.6. However, without assuming we have access to
the pre-reconstructed 3D mesh and using expensive offline optimization as [41], the
resulting 3D poses may not strictly meet all physical constraints of the 3D scene ge-
ometry. Some failure cases are shown in Figure 3.9. In the red circled area, we observe
small intersections between the human feet and the 3D scene mesh, e.g., the ground
floor or the bed. This issue could be relieved by integrating multi-view/temporal im-
ages as input to the learning system to recover the 3D scene better. The resulting 3D
scene could be further used to enforce explicit scene geometry constraints for refining
the 3D poses. We leave this to the future work.



CHAPTER 3. PREDICTING LONG-TERM HUMAN MOTION 34

Figure 3.9: Visualization of failure cases. In each red circle area, we observe the intersection
between the human feet and the 3D mesh, e.g., the bed.

3.5 Discussion

In this chapter, we study the challenging task of long-term 3D human motion pre-
diction with only 2D input. This research problem is very relevant to many real-world
applications where understanding and predicting feasible human motion considering
the surrounding space is critical, e.g., a home service robot collaborating with the
moving people, AR glass providing navigation guide to visually impaired people, and
autonomous vehicle planning the action considering the safety of pedestrians. We
present an initial attempt in attacking the problem by contributing a new dataset
with diverse human-scene interactions and clean 3D annotations. We also propose
the first method that can predict long-term stochastic 3D future human motion from
2D inputs, while taking the scene context into consideration. There are still many
aspects in this problem that can be explored in the future, such as how to effectively
evaluate the naturalness and feasibility of the stochastic human motion predictions,
and how to incorporate information of dynamic objects and multiple moving people
inside the scene.
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Chapter 4

Perceiving Hand-Object
Interaction

Our hands are the primary way we interact with objects in the world. In turn,
we designed our world with hands in mind. Therefore, understanding hand-object
interactions is an important ingredient for building agents that perceive and act in
the real world. For example, it can allow them to learn object affordances [34], infer
human intents [90], and learn manipulation skills from humans [104, 107, 86].

What does it mean to understand hand-object interactions? We argue that
fully capturing the richness of hand-object interactions requires 3D understanding.

Figure 4.1: Reconstructions in the wild. For each row, we show the input image (top),
the reconstructed hand and object in two different viewpoints (bottom). Our method can achieve
compelling results for a variety of object categories, grasp types, and interaction scenarios.
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Figure 4.2: Images from existing hand-object dataset. The reality gap between the existing
in-the-lab datasets with 3D annotations (left) and in-the-wild images (right) is large.

In general, recovering 3D from a single RGB image is an under-constrained problem.
In the case of hand-object interactions, the problem is even more challenging due to
heavy occlusions that occur during object manipulation, a wide range of small daily
objects that are not even present in labeled recognition datasets, and fine-grained
interactions with complex contacts that are difficult to model.

Overall, our community has made substantial progress toward this goal. How-
ever, due to the difficulty in obtaining 3D annotations in the wild, the data collection
efforts have focused mainly on in-the-lab setting [39, 176, 29, 9, 129]. As shown in
Figure 4.2, there is a large reality gap between the existing in-the-lab settings and
the richness of environments and interactions found in images in the wild. Indeed,
as shown in Table 4.1, existing datasets have a limited number of participants and
objects.

In this chapter, we make two main contributions: (1) we develop a new technique
for reconstructing 3D hands and objects from single images in-the-wild, called RHO
for Reconstructing Hands and Objects and (2) we use this technique in conjunction
with human intervention to create a new 3D dataset of humans Manipulating Objects
in-the-Wild, that we call MOW.

Specifically, RHOI is a new optimization-based method for reconstructing hand-
object interactions in the wild. The core idea is to leverage 2D image cues and
3D contact priors to provide constraints. RHOI consists of four steps: hand pose
estimation using 2D hand keypoints, object pose estimation using 2D object mask and
depth via differentiable rendering, joint optimization for hand-object configuration in
3D, and pose refinement using 3D contact priors.

A key feature of our method is the ability to deal with a wide variety of objects in
the wild—an order of magnitude more than any previous work in hand-object recon-
struction or general object reconstruction areas. This required several innovations.
First, a new insight that segmentation masks for unknown object categories can be
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HO3D [39] CP [9] GRAB [129] Ours

setting lab lab lab wild

data type video video mocap image

particip. 10 50 10 450

objects 10 25 51 121

Table 4.1: Existing 3D hand-object datasets. Our dataset contains in-the-wild images, as
shown in Figure 4.2 right, and a large number of different participants and objects.

obtained using available recognition models. Second, a scalable data-driven way to
enforce contact priors using a large collection of mocap data recorded in the lab.

We compare RHOI to existing approaches quantitatively in the lab settings
where ground truth annotations are available and qualitatively on in-the-wild images.
We find that RHOI performs better or on par with the state-of-the-art method on
in-the-lab datasets. Moreover, we show that the existing approaches struggle on
challenging in-the-wild images reinforcing the need for the dataset we collect.

We employ our method as part of a semi-automatic data annotation process.
Specifically, we use human intervention for two reasons. First, to find and prepare
the appropriate 3D model for the object being manipulated in the image. Second, to
ensure high quality annotations by verifying and adjusting the results of our method
in an iterative fashion. Using this procedure, we annotate 500 images from the EPIC
Kitchens [21] and the 100 Days of Hands dataset [120]. These depict a rich diversity
of manipulation actions, which we augment with newly collected 3D object models
from 121 object categories, 3D object poses, and 3D hand poses.

Our collected dataset in the wild, MOW, can be useful in many ways. It enables
us to study and understand human manipulation actions using in-the-wild data. In-
deed, the analysis presented in our work already leads to interesting findings that
have not been shown before outside the lab settings. For example, we discover a
low-dimensional embedding whose first dimension corresponds to the closure of the
grasp (Figure 4.8).

In summary, our key contributions are: (1) We present a novel optimization-
based procedure, RHOI, that is able to reconstruct hand-object interactions in the
wild across diverse object categories; (2) We show quantitative and qualitative im-
provements over existing methods, especially on in-the-wild setting; (3) We contribute
a new 3D dataset, MOW, of 500 images in the wild, spanning 121 object categories
with annotation of instance category, 3D object models, 3D hand pose, and object
pose annotation.
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4.1 Background

3D hand pose estimation. Many previous works on hand pose estimation di-
rectly predict 3D joint locations from either depth [121, 124, 128, 139, 164, 168, 94]
or RGB [112, 95, 12, 161, 175] images. Some recent works predict 3D hand joint
rotations and shape parameters of parametric hand models such as MANO [113].
Fitting-based approaches [99, 159, 66] fit such parametric models to 2D keypoint
detections to optimize 3D hand parameters. Learning-based approaches [173, 114]
utilize deep networks to directly predict the hand parameter from RGB image in-
put. Recently, [67, 66] proposes to use mesh convolution to directly predict 3D hand
mesh reconstruction. We use a learning-based method [114] to obtain the initial hand
pose estimation and further improve the result by imposing constraints on 2D hand
keypoints and 3D hand-object contact priors.

3D object pose estimation. There are many existing works on estimating 3D
object pose from a single image. Some approaches [136, 68, 36, 69] utilize neural
network to predict the object shape, translation, and global orientation in the cam-
era coordinate. These methods are trained with limited object categories and have
difficulty generalizing to new objects. On the other hand, some approaches [79, 92,
160, 170, 126, 118] assume known 3D object model and focus on 6DOF object pose
prediction. In this chapter, we take a fitting-based approach similar to [126, 170].
Our main novelty is the usage of a depth loss term which improves the results by
imposing object shape constraints.

3D hand and object pose estimation. Early approaches in modeling hand and
object require the input of multi-view image [97] or RGB-D sequence [139]. Recently,
[44] proposes a deep model trained on synthetic data to reconstruct hand and object
meshes from a monocular RGB image. [133] designs a neural network to jointly
predict 3D hand pose and 3D object bounding boxes with a focus on egocentric
scenarios. [43] proposes to leverage photometric consistency from temporal frames
as additional signal for training the model with sparse set of annotated data. All
these approaches were trained and tested on in-the-lab or synthetic datasets. In this
chapter, we propose an approach without 3D supervision and we are the first to
achieve good hand-object results in the wild from a single image.

3D hand-object datasets. Early datasets in hand grasping scenario requires man-
ual annotations [123] or depth tracking [139] to obtain the ground truth, resulting
in limited dataset size. To avoid the manual efforts, [29] uses motion capture sys-
tem with magnetic sensors to collect annotations. [44] uses simulation to collect a
synthetic hand-object dataset. [176, 39] introduces large-scale dataset with 3D anno-
tation optimized from multi-view setups. Some recent datasets [8, 9, 129] also provide
annotation for hand-object contact area in addition to 3D hand pose and object pose.
The contact area is collected from either thermal sensor [8, 9] or marker-based MoCap
system. All these datasets are of great efforts in modeling 3D hand-object interaction,
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Figure 4.3: Method. In this chapter, we present an optimization-based method, called RHOI,
that leverages 2D image cues and 3D contact priors for reconstructing hand-object interactions in
the wild. It consists of four steps: (a) hand pose estimation by 2D keypoints fitting, (b) object pose
estimation via differentiable rendering, (c) joint optimization for hand-object configuration, and (d)
pose refinement using 3D contact priors learnt from mocap data.

however, they can only be collected in the lab setting due to the specific camera setup.
As a result, limited number of participants and objects are present in them (as in Ta-
ble 4.1). In this chapter, we contribute a dataset with in-the-wild images and diverse
object categories. 3D annotations are obtained by running our optimization-based
method and human intervention to achieve high quality.

Optimizing 3D interactions. Our method is in line with recent optimization-based
approaches for modeling 3D interactions between human and scene [42], human and
objects [170], and among multiple persons [55]. To obtain good 3D reconstructions,
these methods require extra 3D input. For example, [42] requires the input of full 3D
reconstructed scene mesh to impose geometry constraints. [170] requires manually
labeling human-object mesh vertices for fine-grained interaction pairs and is only
applied to 8 object categories in COCO [80]. In this chapter, we focus on modeling
hand-object interactions. Our key advantage is the ability to deal with diverse objects
in the wild without extra input. We propose to model contact priors using a scalable
data-driven approach that levarages the available 3D mocap data. Together with a
new method to obtain object masks, our approach is shown to be able to reconstruct
hand interactions with 121 different object categories.

4.2 Method

We first describe our method for reconstructing hand-object interactions in the
wild, called RHOI. As shown in Figure 4.3, it involves 4 steps: estimating the hand
pose, the object pose, their 3D configuration jointly, and finally refining the pose
using 3D contact priors. Intermediate results from each step are shown in Figure 4.4.
We describe each step next. We note that while RHOI can be applied to multiple
hands and objects, we assume a single pair for brevity. We will then evaluate RHOI,
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then discuss how we curate our new dataset MOW and its analysis in the following
sections.

4.2.1 Hand Pose Estimation

The first step of RHOI involves hand pose estimation (Figure 4.3a). Given an
input image, we aim to reconstruct the full 3D hand mesh. We use a learning-based
method to obtain the initial result and further improve the estimation by fitting it to
2D hand keypoints.

In particular, we represent the hand using a parametric model defined by MANO [113]:
Vh = H(θ,β), where θ ∈ R3×15 and β ∈ R10 are the pose and shape parameters, re-
spectively. Taking a single RGB image as input, we use FrankMocap [114] to estimate
the weak-perspective camera model Πh = (tx, ty, sh), and initial 3D hand parameters
θ and β. We further optimize the hand pose by fitting to 2D hand keypoints obtained
from [14, 122].

The hand pose optimization objective is to minimize the difference between 2D
keypoints detection and 2D projection of 3D hand keypoints:

θ∗,β∗ = arg min
θ,β

Ljoints + Lreg, (4.1)

consisting of a 2D keypoints distance term Ljoints and a regularization term Lreg for
hand shape β.

We convert the weak-perspective to perspective camera by assuming a fixed focal
length f . The depth of the hand is approximated by the focal length divided by the
camera scale sh. We obtain the final hand vertices by:

V ∗h = H(θ∗,β∗) + [tx, ty, f/sh], (4.2)

4.2.2 Object Pose Estimation

In the next step of our method, Figure 4.3b, we recover the object pose using
an analysis-by-synthesis approach. Given an input image and 3D model, we want to
optimize the object scale s ∈ R, 3D rotation R ∈ SO(3), and translation T ∈ R3. We
use a differentiable renderer [59] to render 3D model into 2D mask and depth maps.
By comparing the rendered mask/depth with the targets, we compute the gradients
to update the object parameters.

Object mask estimation. How can we obtain good objects masks for diverse
objects in images in the wild? Modern 2D recognition models trained on large labeled
datasets can provide reasonable predictions on real-world data [106]. However, in our
case, we require instance masks for a range of object categories that are not even
present in the available labeled datasets (e.g., spatula, pliers, mic, etc.). Thus, we
cannot expect the available models to recognize the objects correctly in our setting.
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Figure 4.4: Intermediate results. Top row: input images. 2nd row: results from individually
optimizing hand and object. 3rd row: results from joint optimization (two viewpoints per example).
Bottom row: results after refinement.

Our key insight is that even if the predicted categories are incorrect, the instance
masks are still quite reasonable for a variety of objects. For example, the models do
not know what a spatula is called but are still able to segment it.

With this observation, we use available recognition models to estimate instance
mask ignoring the category information. Specifically, we use PointRend model [63]
trained on COCO [80]. For all object instances predictions in the image, we decide
the instance that the hand is interacting with by running a hand detector [120].
The instance with highest IoU with the detected hand bounding box is selected.
This automatic way allows us obtain instance masks for more than 100 daily object
categories as shown in Section 4.4.3.

Mask loss. Given the estimated object mask, we optimize the object pose via
differentiable rendering. In particular, we define the object mask loss as the L1
difference between the rendered and the estimated object masks:

Lmask = ‖NRm(s,R,T )−M‖, (4.3)

where NR(·) denotes the differentiable rendering operation which renders the 3D mesh
into the 2D mask.

Depth loss. While the 2D mask loss is sufficient in some cases, it does not capture
geometry information and can be ambiguous—multiple object poses can lead to sim-
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ilar 2D masks. To overcome this, we employ a new loss term which fits 3D model to
the depth map D estimated using [108]:

Ldepth = ‖NRd(s,R,T )−D‖, (4.4)

Object pose objective. Combining the mask and depth losses, we obtain the object
pose estimation objective:

s∗,R∗,T ∗ = arg min
s,R,T

Lmask + Ldepth, (4.5)

We perform the optimization in the image region centered on the object. We start
with a number of randomly initialized poses and select the one that leads to the lowest
loss.

4.2.3 Joint Optimization

In this section, we describe how to jointly optimize the 3D hand and object
results from previous sections (Figure 4.3c). Naively putting them together may
result in implausible hand-object reconstructions (Figure 4.4, row 2), i.e., the hand
and object are far away from each other in 3D or having interpenetration. This issue
is caused by the depth and scale ambiguity given only 2D input: a large object distant
from the camera can have the same rendering result in 2D as a smaller object closer
to the camera. To help resolve the ambiguity, we impose additional constraints based
on hand-object distance and collision.

Interaction loss. The reconstructed hand and object could be distant in 3D space.
However, when the hand is interacting with objects, their distance should be small.
To push the interaction pair closer in 3D, we define an interaction loss based on their
chamfer distance:

Ldist =
1

|Vo|
∑
x∈Vo

min
y∈Vh

‖x− y‖2 +
1

|Vh|
∑
y∈Vh

min
x∈Vo

‖x− y‖2. (4.6)

For each vertex in the mesh, chamfer distance function finds the nearest point in the
other point set, and sums up the distances. We find this loss term to be helpful in
correcting the object scale by moving it closer to the hand.

Collision loss. Using the interaction loss alone may result in implausible artifacts,
e.g., hand colliding with the object. To resolve the issue, we add an interpenetration
loss term to penalize the object vertices that are inside the hand mesh. We use the
Signed Distance Field (SDF) from the hand mesh to check if any object vertex is
inside the hand. We first calculate a tight box around the hand and voxelize it as a
3D grid for storing the SDF value. We use a modified SDF function φ for the hand
mesh:

φ(c) = −min(SDF(cx, cy, cz), 0). (4.7)
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Figure 4.5: Qualitative results. Our method produces reconstructions of reasonably high-quality
across a range of viewpoints, activities, and objects (see also the supplement).

For each voxel cell c = (cx, cy, cz) in the 3D grid, if the cell is inside the hand mesh,
φ takes positive values, proportional to the distance from the hand surface, while φ
is 0 outside of the hand mesh. Then, the interpenetration loss can be calculated as:

Lcollision =
∑
v∈V ∗

o

φ(v), (4.8)

where φ(v) samples the SDF value of each object vertex v from the 3D hand grid in
a differentiable way.

Joint objective. By incorporating the loss terms from object pose estimation, we
obtain the overall objective for jointly optimizing the hand and the object:

L = λ1Lmask + λ2Ldepth + λ3Ldist + λ4Lcollision. (4.9)

4.2.4 Pose Refinement

A physically plausible hand-object reconstruction should not only be collision-
free, but also have enough hand-object contact area to support the action. However,
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the interaction loss described in Section 4.2.3 does not take into account the fine-
grained hand-object contact. To further refine the 3D reconstruction, we impose
constraints on the hand-object contact as the final step of RHOI (Figure 4.3d).

Addressing this issue would be easy if we had per-vertex contact area annotation
for both hand and object as we could enforce the contact region to be closer. However,
obtaining such annotations for large collection of in-the-wild images is challenging.
As a more scalable solution, we learn 3D contact priors from a large-scale hand mocap
dataset [129]. The priors include the region of an object that the person is likely to
contact. For example, human is more likely to hold the mug by its handle.

Given the hand mesh and object mesh obtained from the joint optimization, we
want to update the hand pose so that it has more reasonable contact with the object.
We train a small network to perform hand pose refinement.

The input to the network are the initial hand parameters (θ, γ) and the distance
field F from the hand vertices V ∗h to the object vertices V ∗o . For each hand vertex
vh, we compute the distance to its nearest object vertex:

F (vh) = min
vo∈V ∗

o

‖vh − vo‖22 (4.10)

Then, the network refines the hand parameters (θ,β) in an iterative fashion. After
each iteration, the distance field between hand and object is updated so that it can
be used as input to the next step. The training data is obtained by perturbing the
ground-truth hand pose parameters and translation to simulate noisy input estimates.
As shown in Figure 4.4, we can observe that the results after refinement (4th row)
can reconstruct more realistic interaction between hand and object than the previous
step (3rd row).

4.3 Method Evaluation

In this section, we compare our method to existing methings in two settings:
quantitatively in the lab and qualitatively in the wild. We further present ablation
studies of different aspect of our method.

4.3.1 Quantitative Comparison in the Lab

In Table 4.2, we perform quantitative evaluation of our method in the HO3D
dataset [39] and FPH dataset [29]. HO3D [39] dataset contains 3D annotations
for both the hand and object of 68 video sequences, 10 subjects, and 10 objects.
FPHA [29] dataset utilizes a MoCap system to capture hand-object interaction. 3D
object pose annotations are available for 4 objects and subset of videos. We follow
the same testing split as [43] for comparison.

Method for comparison We compare against the state-of-the-art (SOTA) ap-
proach [43] with the same input of monocular RGB image and the known 3D object
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Figure 4.6: Qualitative comparison in the wild. Compared to existing method [43], our
approach produces better hand-object reconstruction across diverse object categories.

model. [43] uses a feed-forward neural network to predict 3D hand pose and object
pose where its single-frame model with full 3D supervision shows SOTA performance.

Evaluation metric. We report the mean average error (MAE) over 21 hand joints.
The error measures the Euclidean distance between predictions and ground truth.
Following [39], we calculate the error after aligning hand root position and global
scale with the ground-truth.

For evaluating object pose, we calculate the Chamfer distance between ground-
truth object vertices and predicted object vertices (obtained by rotating the input
CAD model with the predicted object pose).

Results. Table 4.2 shows our method achieves better accuracy than [43] in 3D hand
and object error. In HO3D dataset (left table), our predictions have smaller hand
joint error of 9.7 mm vs. 14.7 mm and smaller object Chamfer distance of 19.9 vs.
26.8. In FPHA dataset (right table), our method achieves smaller hand joints error
(14.2 mm vs. 18.0 mm). Our object error is slightly larger than [43]. The main
reason is that [43] uses the action split of FPHA, i.e., same objects with different
action labels are used for training and testing. In comparison, our method are tested
directly without 3D supervision in those datasets.

4.3.2 Qualitative Comparison in the Wild

In Figure 4.6, we show side-by-side qualitative comparisons with [43] using
in-the-wild images from [120], which clearly shows the advantage of our method.
Though [43] achieves good performance in the lab, it struggles on in-the-wild images.
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Metrics [43] Ours

Hand MAE ↓ 14.7 9.7

Obj CF dist ↓ 26.8 19.9

Metrics [43] Ours

Hand MAE ↓ 18.0 14.2

Obj MAE ↓ 22.3 23.9

Table 4.2: Quantitative comparison in the lab. Our method achieves results better or on par
with the state of the art on popular in-the-lab datasets: HO3D (left) and FPHA (right).

HO Distance ↓ Collision Score ↓

Individual results 414.8 0

+ Interaction loss 71.5 39.8

+ Depth loss 75.2 17.6

+ Penetration loss 76.4 7.7

+ Refinement 75.8 6.5

Table 4.3: Ablations on loss terms and pose refinement. From top to bottom, we add each
component one by one (cumulative) and evaluate the prediction in terms of the distance between
hand and object, and the collision score.

This was primarily due to the lack of labeled in-the-wild training data with diverse
object categories. As a result, the model trained on limited object categories in the
lab has difficulty in generalizing to new unseen objects.

In Figure 4.9, we show additional qualitative results of our method, called RHOI,
on images from the 100 Days of Hands and the Epic Kitchens datasets. For each
example, we show the 3D reconstructions from two different viewpoints. Overall,
RHOI produces high quality reconstructions across a variety of scenarios and objects,
e.g., holding a pen, grab a spoon/knife, touch a mobile phone, etc.

4.3.3 Ablation Studies

We now present the ablation studies (see also the supplement). We evaluate the
influence of the joint optimization loss terms and the refinement stage on the overall
results. We report the distance between the estimated hand and object centers and
the collision score computed based on SDF. The more the object intersects with
the hand the larger the collision score is. A good reconstruction should have small
collision and small hand-object distance.

In Table 4.3, we observe that the individually reconstructed hand and object
are far from each other, resulting in large distance and no collision. By adding the
interaction loss, the distance decreases quickly to 71.5 mm but also results in a large
collision, i.e, 39.8. Adding the depth and collision losses reduces the collision score to
7.7 while keeping a similar hand-object distance, i.e., 76.4 mm. The refinement stage
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Figure 4.7: Example annotations. We use the techniques proposed in this chapter to annotate
in-the-wild images and obtain 3D meshes, amodal masks, and contact maps.

makes small adjustment to the final result and can slightly reduce both the collision
score (6.5 vs. 7.7) and hand-object distance (75.8 mm vs. 76.4 mm). These findings
are consistent with visualization in Figure 4.4.

4.4 Dataset

We describe our dataset collection procedure and present the analysis that high-
lights the variety our data.

Image collections. As a source of in the wild data we use static frames from the
EPIC Kitchens [21, 20] and the 100 Days of Hands [120] datasets, noting that we do
not exploit any temporal information. These datasets contain a range of interesting
hand-object interaction scenarios with varied objects, people, and viewpoints (both
first- and third-person). To determine candidate images for reconstruction, we use a
hand and object detector [120] and select images that contain a high bounding box
overlap between an object and a hand.

4.4.1 Dataset Construction

Our annotation procedure consists of three steps: selecting a 3D object model,
performing reconstruction using the method proposed in §4.2, and verification of the
results.

Step 1: Model selection. The first step of our annotations requires the annotator



CHAPTER 4. PERCEIVING HAND-OBJECT INTERACTION 48

1 2 3 4 5 6 7

7

6
5

4

32
1

Figure 4.8: Variety of objects and grasps. We present analysis that shows the variety of
objects and grasp types in our data. Top left: Our data contains 121 object categories and a total
of 500 instances. The object distribution has a long tail. Top right: We embed 3D hand poses into
2D space using Isomap [134]. Each point is a hand-object interaction and is color-coded by object
category. We notice that there is a cluster of pens but no other clear clusters. This suggests that
our data contains a variety of grasp types for each object category rather than only iconic grasps.
Indeed, we see examples of different object categories with similar grasp types (pen and spoon) and
same object category with different grasp types (pen). Bottom: We observe that the first embedding
dimension (x axis) corresponds to the closure of the grasp. We show examples for increasing value
of x. From left to right, we see that the grasps gradually transitions from fully closed to fully open.

to choose an appropriate 3D object model for the object being manipulated by the
hand. We maintain a collection of available object models. If the required object
is already present in the collection, the annotator directly selects the model. If not,
the annotator finds an appropriate model online and adds it to the collection. Two
primary sources of 3D object models we use are the YCB dataset [13] and the Free3D
online platform.

Step 2: Reconstruction. Next, we perform the hand-object reconstruction using
our method, called RHOI, proposed in §4.2. This step is semi-automatic and relies on
the annotator to select the appropriate loss weights to obtain a good reconstruction.
In practice, most annotators find that our default loss settings lead to a reasonable
starting point.

Step 3: Verification. In practice, we find that RHOI results in good reconstructions
in many cases. However, there are still cases where the results are imperfect across
different viewpoints due to ambiguity. Thus, to ensure good annotation quality,
we perform an additional step and verify the reconstructions obtained in step 2.
Specifically, we ask the annotator to inspect the result from step 2 and take one of
three possible actions: accept it if good, return it to step 2 if promising, and remove
it from consideration if unlikely to improve. We iterate back and forth with step 2
until we converge to a set of reconstructions of reasonable quality.

Summary. To summarize, the output of our annotation procedure is that for each
image we have: 3D object model, 3D object pose, and 3D hand pose. Moreover,
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Object IoU Hand IoU Quality Match?

Large 0.84 0.67 - -

Medium 0.78 0.69 - -

Small 0.64 0.63 - -

All 0.77 0.68 4.16 92%

Table 4.4: Dataset evaluation. Left: Amodal masks derived from our 3D annotations have a
high overlap with ground truth amodal masks labeled by humans. Right: Users, asked to rate the
quality of our 3D annotations from 1 to 5, find that they are of good quality on average and include
a 3D object model that matches the true object in most cases.

we can easily derive additional annotations, such as amodal masks or contact maps.
Example annotations are shown in Figure 4.7.

4.4.2 Dataset Evaluation

Annotating data in 3D is hard. Evaluating the quality of annotations is harder.
To judge the quality of the collected annotations, we use two types of evaluation. The
evaluation is performed on a sample set of 100 images.

Amodal mask accuracy. To evaluate our annotations, we require a signal that is
predictive of reconstruction quality and can be labeled reliably by humans. Amodal
instance masks, that include both visible and occluded parts of the object [76], are
a good fit. Given only the visible portions of the image, there are many plausi-
ble configurations for the hidden object parts, especially for articulated objects like
hands. Nevertheless, humans are capable of predicting occluded regions with high
consistency [174].

We ask human annotators to label amodal masks for hands and objects, which
serves as ground truth. We then compare amodal masks derived from our reconstruc-
tions to the ground truth. In Table 4.4, we report the mean intersection (IoU) scores
for the hands and the objects. Similar to [80], we show results for different object
sizes. We observe that our amodal masks have a high overlap with the ground truth.
As expected, the overlaps are higher for larger objects.

User study. We also perform a user study. Given the input image and the annotated
hand-object reconstruction, we ask the users to assign a quality score to each example
on a scale of 1 to 5. The users are instructed to assign 1 when the reconstruction is
poor (e.g. heavy collision or hand being far from the object) and 5 when there are
no clear imperfections visible. The users can rotate the result in 3D visualization to
view from different angles. We also ask the users to say if the object in the image
matches the 3D model.

In Table 4.4, we report the results. The average reconstruction quality we obtain
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is 4.16. This suggests that most of our annotations are of good quality. Moreover, we
find that the 3D object model matches the true object in 92% of the cases. Among
the 8%, most are due to imprecise mesh topology, e.g. a cylinder fitted to a mug with
a handle.

4.4.3 Dataset Analysis

We annotated 500 images using the proposed procedure. We now present the
analysis of the collected data.

Object variety. Our dataset contains 121 object categories covering a wide variety
of daily objects. In Figure 4.8, top-left, we show the object distribution for the 50
most frequent objects. There are some categories with many examples and a long tail
of object categories with few examples.

Grasp variety. A unique feature of our data is that it provides a variety of hand-
object interactions in-the-wild. This allow us to study and learn about human grasps
using real-world data. In Figure 4.8, top-right, we embed 3D hand poses into 2D space
using Isomap [134]. Each point corresponds to an interaction and is color-coded by
object category.

We observe that there is a cluster of pens on the left but no other clear clusters.
This suggests that our data contains a variety of grasp types for each object category,
rather than only iconic grasps. Indeed, looking closer we notice that there are many
examples of similar grasps for different object categories (e.g. pen and spoon) as well
as different grasp types for the same object category (e.g. pen).

Grasp structure. We further discover an interesting pattern in the data. In particu-
lar, we find that the first dimension of the hand pose embedding (x axis) corresponds
to the closeness of the hand. In Figure 4.8, bottom, we show example images for
increasing value of x. We see that the grasps gradually transition from fully closed
to fully open.

4.5 Discussion

In this chapter, we propose an optimization-based method that leverages 2D
image cues and 3D contact priors for reconstructing hand-object interactions in the
wild. Using the proposed method for semi-automatic labeling, we construct a new
3D hand-object interaction dataset in the wild. We hope that our effort attracts the
community’s attention to this challenging setting and facilitate our future progress.
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Figure 4.9: Additional qualitative results. Our method, RHOI, produces strong results for a
range of interactions and objects.
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Chapter 5

Conclusion

In this thesis, we have presented a number of advances towards perceiving 3D
humans and objects in motion. In Chapter 2, where we present an end-to-end learning
system to perceive 3D scenes and independent object motions. We next show how 3D
scenes influence human motion in Chapter 3, where we design a framework to predict
future 3D human motion considering the scene context. In Chapter 4, we study the
interaction between human hands and objects, where we introduce an optimization-
based method to reconstruct the interaction in the wild.

While these are encouraging steps towards the goal of understanding rich inter-
actions between humans, objects, and scenes, a number of challenges still remain. We
will conclude the thesis by discussing some interesting future directions below.

Spatial-temporal scene graph: The 3D world is compositional, actionable, and
evolving over time. One way to understand the dynamics in the 3D world is building
a spatial-temporal scene graph to model the relationship between components. In
this representation, we decompose the 3D scene into different modules, the scene
layout/structure, a set of objects and humans represented in terms of their shape
and pose, and motion. Moreover, the state of each object/person is influenced by
other moving agents. A spatial-temporal scene graph can be built to understand the
pattern of the scene dynamics. In this thesis, we have presented attempts in building
pairwise connections between humans, scenes, and objects components. It would be
an interesting direction to develop a joint framework that perceives all components
and their rich interactions in this scene graph representation.

Model 3D human full-body contact: We humans interact with the world and
our bodies often have contact with other people, objects, or even self-contact such
as holding our arms. These contact scenarios result in occlusion and make it hard
for 3D reconstruction. Some recent optimization-based approaches [42, 55] proposed
to enforce geometry constraints to model the contact, however, they either require
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the extra input of 3D reconstructed scene mesh or require manually labeling human-
object mesh vertices. In Chapter 4, we propose to make advantage of 3D hand-object
contact priors learned from available 3D MoCap data. This enables us to deal with
different scenarios in the wild without extra input. It is natural to extend the idea
of learning contact priors to the case of full human body for more fine-grained 3D
reconstruction of humans during interactions.

Learn object functionality through interactions: Understanding objects is
more than estimating their instance segmentation, reconstructing their 3D shape and
texture. There are much richer properties about the object including their struc-
ture, whether they are rigid, deformable, or articulated, and more importantly, their
functionality (affordance as defined by Gibson [34]). These properties are extremely
useful for robotic application such as manipulation. Children learn object functional-
ity by interacting with them and observe the consequence of their action. Could we
develop a pipeline for learning the object functionality using lots of videos of humans
interacting with the scenes and objects? Could we further develop an active learning
system where an actual robot is exploring and interacting with the world? These are
all interesting but unsolved problems that are worth exploring in the future.
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rell, and Neil D Lawrence. Topologically-constrained latent variable models. In
ICML, 2008. 22



BIBLIOGRAPHY 65

[142] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NIPS, 2017. 25, 29, 30, 31

[143] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade.
Three-dimensional scene flow. In ICCV. IEEE, 1999. 5

[144] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Suk-
thankar, and Katerina Fragkiadaki. Sfm-net: Learning of structure and motion
from video. Technical report, arXiv:1704.07804, 2017. 5

[145] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn, Xunyu Lin, and
Honglak Lee. Learning to generate long-term future via hierarchical prediction.
In ICML, 2017. 21

[146] Minh Vo, Srinivasa G Narasimhan, and Yaser Sheikh. Spatiotemporal bundle
adjustment for dynamic 3d reconstruction. In CVPR, 2016. 22

[147] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piecewise rigid scene
flow. In ICCV, 2013. 5

[148] Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and
Gerard Pons-Moll. Recovering accurate 3d human pose in the wild using imus
and a moving camera. In ECCV, 2018. 22

[149] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert. The pose
knows: Video forecasting by generating pose futures. In CVPR, 2017. 21

[150] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynam-
ical models for human motion. TPAMI, 2007. 22

[151] Jack M Wang, David J Fleet, and Aaron Hertzmann. Multifactor gaussian
process models for style-content separation. In ICML, 2007. 22

[152] Xiaolong Wang, Rohit Girdhar, and Abhinav Gupta. Binge watching: Scaling
affordance learning from sitcoms. In CVPR, 2017. 22

[153] Zhe Wang, Liyan Chen, Shaurya Rathore, Daeyun Shin, and Charless Fowlkes.
Geometric pose affordance: 3d human pose with scene constraints. arXiv
preprint arXiv:1905.07718, 2019. 20, 22

[154] Zhe Wang, Daeyun Shin, and Charless C Fowlkes. Predicting camera viewpoint
improves cross-dataset generalization for 3d human pose estimation. arXiv
preprint arXiv:2004.03143, 2020. 22



BIBLIOGRAPHY 66

[155] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image
quality assessment: from error visibility to structural similarity. TIP, 2004. 7

[156] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe Franke, and
Daniel Cremers. Efficient dense scene flow from sparse or dense stereo data. In
ECCV, 2008. 5

[157] Mao Wei, Liu Miaomiao, Salzemann Mathieu, and Li Hongdong. Learning
trajectory dependencies for human motion prediction. In ICCV, 2019. 19, 22,
29, 30, 31, 32

[158] Chung-Yi Weng, Brian Curless, and Ira Kemelmacher-Shlizerman. Photo wake-
up: 3d character animation from a single photo. In CVPR, 2019. 21

[159] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocular total capture: Pos-
ing face, body, and hands in the wild. In CVPR, 2019. 38

[160] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered scenes.
In RSS, 2018. 38

[161] Linlin Yang and Angela Yao. Disentangling latent hands for image synthesis
and pose estimation. In CVPR, 2019. 38

[162] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram Nevatia. Every
pixel counts: Unsupervised geometry learning with holistic 3d motion under-
standing. arXiv preprint arXiv:1806.10556, 2018. 5, 17

[163] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth
inference for unstructured multi-view stereo. In ECCV, 2018. 5, 11

[164] Qi Ye, Shanxin Yuan, and Tae-Kyun Kim. Spatial attention deep net with
partial pso for hierarchical hybrid hand pose estimation. In ECCV, 2016. 38

[165] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learning of dense depth,
optical flow and camera pose. In CVPR, 2018. 3, 5, 9, 13, 14, 16, 17

[166] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter
Abbeel, and Sergey Levine. One-shot imitation from observing humans via
domain-adaptive meta-learning. IROS, 2018. 21

[167] Chang Yuan and Gerard Medioni. 3d reconstruction of background and objects
moving on ground plane viewed from a moving camera. In CVPR, 2006. 5



BIBLIOGRAPHY 67

[168] Shanxin Yuan, Guillermo Garcia-Hernando, Björn Stenger, Gyeongsik Moon,
Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz, Sina Honari,
Liuhao Ge, et al. Depth-based 3d hand pose estimation: From current achieve-
ments to future goals. In CVPR, 2018. 38

[169] Jason Y. Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. Pre-
dicting 3d human dynamics from video. In ICCV, 2019. 19, 21

[170] Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik,
and Angjoo Kanazawa. Perceiving 3d human-object spatial arrangements from
a single image in the wild. In ECCV, 2020. 38, 39

[171] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris Metaxas. Learn-
ing to forecast and refine residual motion for image-to-video generation. In
ECCV, 2018. 21

[172] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsuper-
vised learning of depth and ego-motion from video. In CVPR, 2017. 1, 5, 15,
16

[173] Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul Habibie, Christian
Theobalt, and Feng Xu. Monocular real-time hand shape and motion capture
using multi-modal data. In CVPR, 2020. 38

[174] Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr Dollár. Semantic amodal
segmentation. In CVPR, 2017. 49

[175] Christian Zimmermann and Thomas Brox. Learning to estimate 3d hand pose
from single rgb images. In ICCV, 2017. 38

[176] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus,
and Thomas Brox. Freihand: A dataset for markerless capture of hand pose
and shape from single rgb images. In ICCV, 2019. 36, 38

[177] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. Df-net: Unsupervised joint learn-
ing of depth and flow using cross-task consistency. In ECCV, 2018. 5, 9, 13,
16


