
Contributions to Rust and C++ Cryptographic

Libraries for zkSNARKS

Solomon Joseph

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-252

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-252.html

December 1, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to oer my sincerest gratitude and thanks to Alessandro Chiesa,
Dev Ojha, and Pratyush Mishra for their guiding efforts and assistance in
my pursuit of research.



Contributions to Rust and C++ Cryptographic Libraries for zkSNARKS

by

Solomon Joseph

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alessandro Chiesa, Chair
Dawn Song

Spring 2022

DocuSign Envelope ID: 16C1AC93-81C6-4C44-8984-BE94CF97495F



The thesis of Solomon Joseph, titled Contributions to Rust and C++ Cryptographic Li-
braries for zkSNARKS, is approved:

Chair Date

Date

Date

University of California, Berkeley

2022.05.09Alessandro Chiesa

DocuSign Envelope ID: 16C1AC93-81C6-4C44-8984-BE94CF97495F

Dawn Song
5/11/2022



Contributions to Rust and C++ Cryptographic Libraries for zkSNARKS

Copyright 2022
by

Solomon Joseph

DocuSign Envelope ID: 16C1AC93-81C6-4C44-8984-BE94CF97495F



1

Abstract

Contributions to Rust and C++ Cryptographic Libraries for zkSNARKS

by

Solomon Joseph

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Alessandro Chiesa, Chair

Zero-knowledge proofs [5] are a class of probabilistic proof systems that involve a powerful
prover proving a theorem to a probabilistic polynomial-time verifier without revealing any
information beyond the validity of the theorem to the verifier. In addition, zk-SNARKS are
a class of cryptographic protocols through which a prover can e�ciently prove possession of
something to a verifier in a non-interactive manner. The exponential adoption of blockchain
technology, among other things, has influenced a demand for high-performance cryptographic
libraries providing support for zero knowledge. Chiesa’s SCIPR lab provides a suite of open-
source libraries, written in Rust and C++, that maintain and optimize popular cryptographic
and zero knowledge implementations. In this report, I will provide an description of the
libraries with which I interacted with, followed by a comprehensive review of my contributions
to these libraries, namely library maintenance and algorithmic improvements.
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Chapter 1

Overview of Libraries

1.1 lib↵

lib↵ is a C++ library for various finite fields and elliptic curve constructions. It provides
optimized computation over prime p, as well as even and odd field extensions (eg. p2 ,

p3). The fields are used in various elliptic curves with fixed parameters, including Edwards,
Barreto-Naehrig, and a Barreto-Naehrig implementation without dynamic code generation.
My contributions to this library include migration of CI to Github Actions, adding linting
support, and optimizing big-integer modular multiplication using Montgomery reduction.

1.2 arkworks-rs/algebra

Arkworks is a suite of libraries in Rust that provide a comprehensive Rust ecosystem for pro-
gramming with zkSNARKS. Arkworks provides several libraries for implementing zkSNARK
applications, from curves, to finite fields, to R1CS constraints.

In particular, the algebra library provides implementations of several key algebraic com-
ponents that form the basis of zkSNARKS: finite fields, elliptic curves, and polynomials.
The algebra library provides the following Rust crates:

1. ark-ff provides generic implementations of various finite fields.

2. ark-ec provides generic implementations for various elliptic curves, together with as-
sociated pairings.

3. ark-poly implements univariate, multivariate, and multilinear polynomials, as well as
FFT’s over finite fields.

4. ark-serialize provides e�cient serialization and point compression for both finite
fields and elliptic curves.
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Chapter 2

Optimizations to C++ Libraries
(lib↵)

2.1 Linear-Time Prover for Sumcheck Protocol

Introduction

The sumcheck protocol, originally proposed by Lund et al. [6] is an extremely powerful
construction for an e�cient interactive proof system. From a motivation standpoint, one
can consider the delegation of computation from a computationally-weak verifier V to an
untrusted and computationally-unbounded prover P. We would like to construct an e�cient
proof system such that:

• V does not do much more work than simply reading the input, which is linear to the
input size.

• P does not do much more work than simply computing the result of the problem itself.

In 2013, Justin Thaler [7] proposed a modification to the Sumcheck Protocol to achieve a
linear Prover runtime. This algorithm, which only works for multilinear functions, utilizes a
bookkeeping table and multilinear extensions to provide a nontrivial prover speedup to the
original sumcheck protocol, at the cost of increased space complexity.

The prototyping and benchmarking of the modified sumcheck protocol laid the ground-
work for implementation in the arkworks suite of libraries.

Sumcheck Protocol

Before discussing Thaler’s modification to the sumcheck protocol, we will begin by laying
out the sumcheck protocol. We can define the sumcheck protocol as follows:
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Definition

Let be a field, H a subset of , n be the number of variables, and µ 2 be a claimed sum.
The sumcheck protocol is an interactive proof that, given oracle access to a polynomial p,
determine whether

P
Hn p = µ.

Protocol

The sumcheck protocol consists of n rounds. At each round, the prover sends a univariate
polynomial which includes a partial sum of the polynomials that have not yet been fixed by
verifier randomness. Meanwhile, the verifier sends a random element at each round, implying
that the sumcheck protocol is public coin. At the end of the protocol, the verifier queries
the original polynomial p over the randomness it has chosen and checks that the polynomial
is consistent with the one given by the prover. The scheme is detailed below.

• In the i -th round, the prover sends a univariate polynomial pi 2 , which in the case
of the honest prover equals the partial sum

�i(X) =
X

bi+1,...,bn

p(r1, ..., ri�1, X, bi+1, ..., bn)

• In the i -th round, the Verifier sends random element ri 2 . The Verifier also checks
to see that

P
x2H �i(X) = �i�1(ri�1)

• In the final round, the verifier uses its query access to query p(r1, . . . , rn) and checks
that p(r1, . . . , rn) = �n(rn). The Verifier accepts if this is the case, and rejects other-
wise.

Cost Analysis

• The total communication cost of the sumcheck protocol is O(n · ideg(p)) field elements

Proof: In the sumcheck protocol, the prover sends n polynomials, each of degree ideg(p)
field elements. Each of these polynomials can be specified by ideg(p) + 1 evaluations
of the polynomial p. Meanwhile the verifier sends n field elements.

• The Verifier performs O(n · |H| · ideg(p)) field operations.

Proof: The verifier sums pi over H in each of the n rounds, to ensure that the prover
is being honest. Thus, this amounts to O(n · |H| · ideg(p)) field operations.

• The Prover performs O(|H|n · ideg(p) · |p|), where |p| is the cost of evaluating the mul-
tivariate polynomial p at any single location.
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Proof: At the i -th round, the Prover must evaluate |H|n�i terms, each of which takes
|p| time. The Prover must also send ideg(p)+ 1 evaluations of the polynomial p to the
Verifier.

Linear-Time Sumcheck

Now that we have laid the groundwork for the sumcheck protocol, we will now visit Thaler’s
linear sumcheck protocol.

Multilinear Extension Lemma

Lemma: Let f : 0, 1n ! . Then there is a unique multilinear polynomial f̃ over such
that f̃(x) = f(x) 8x 2 0, 1n. f̃ is the so-called multilinear extension of f . In addition,
given as input a list of all 2n evaluations of f , there is an algorithm to evaluate f(r) in O(2n)
time.

The Multilinear Extension Lemma is used by the modification to the sumcheck protocol
to provide evaluations of f over H, given the evaluations of f over the binary field {0, 1}.

High-Level Overview

Now that we have provided the requisite knowledge, we can now discuss the key points of
the algorithm and their rationale, before diving deeper into the specifics and pseudocode.

First of all, since the function is multilinear, ideg(p) = O(1), and each polynomial can
be represented by two points. Thus, the prover sends both evaluations at each round, and
the verifier is able to sum over |H| by reconstructing the polynomial from the two points.

In addition, the prover is provided with a bookkeeping table, which, at rounds i, has
2l�i+1 entries storing the values

f(r1, . . . , ri�1, bi, bi+1, . . . , bl) 8bi, . . . , bl 2 0, 1

The bookkeeping table allows for a beautiful recurrence relation in the algorithm, as, in
each round, A[b] = A[b] · (1� ri) + A[b+ 2l�i] · ri
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Linear-Time Sumcheck Algorithm

Algorithm 1 FunctionEvaluations(f,A, r1, . . . , rl)
Input: Multilinear f on l variables, initial bookkeeping table A, random r1, . . . , rl;
Output: All function evaluations f(r1, . . . , ri�1, bi+1, . . . , bl)

1: for i = 1, 2, . . . do
2: for b 2 0, 1l�i do
3: for t 2 H do
4: Let f(r1, . . . , ri�1, b) = A[b] · (1� t) + A[b+ 2l�i] · t
5: end for
6: A[b] = A[b] · (1� ri) + A[b+ 2l�i] · ri
7: end for
8: Let F contain all function evaluations f(.) computed in line 4
9: end for

This algorithm is used to frontload all function evaluations of the algorithm and avoid
recomputation. These evaluations are then passed into the original sumcheck protocol algo-
rithm.

Note that since b can be used as both a number and its binary representation, we can use
b elegantly as an index to the bookkeeping table. In addition, we utilize Lagrange polynomial
interpolation to arrive at the multilinear extension f̃ , which allows us to evaluate the function
over H when only given evaluations over all possible bitstrings in the bookkeeping table.

Cost Analysis

Note that the communication complexity and verifier runtime of the linear-time sumcheck
protocol is the same as that of the original sumcheck protocol. However, we can claim the
following about the prover runtime:

• The prover runtime for the linear sumcheck protocol is O(|H|n).

Proof: The prover now frontloads the computation of polynomial evaluations, and
the above algorithm takes O(2n) time. The runtime of the prover is now dominated
by the summation of the evaluations of f over b, which, in round i, is the summation
of |H|n�i terms.

When analyzing cost, one must also acknowledge the associated space complexity that the
linear sumcheck protocol adds in order to achieve a linear prover runtime. In particular,
the space complexity of the algorithm is O(2n), since the prover must store the bookkeeping
table. In some use cases, this space complexity will not work; thus, we must consider these
tradeo↵s when discussing such interactive proof schemes.
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Linear Sumcheck for Products of Multilinear Functions

The linear-time sumcheck, enumerated in the previous subsections, also can be extended to
a product of two multilinear functions. Though the proudct two functions f and g, defined
in n variables, is not multilinear, the prover sends in each round:

X

bi+1,...,bl20,1

f(r1, . . . , ri�1, bi+1, . . . , bl) · g(r1, . . . , ri�1, t, bi�1, . . . , bl)

We can compute this by computing evaluations for f and g separately using the FunctionEvaluations
algorithm and multiplying these evaluations in the original sumcheck algorithm.

Benchmarking Speedup of Linear Time Sumcheck

Using Thaler’s algorithm and the original sumcheck protocol, I wrote a Python script to
simulate a sumcheck protocol interactive proof and benchmarked the runtimes of both the
verifier and prover in each version of the protocol. The results can be examined and extrap-
olated from the graph below:
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As you can see qualitatively from the graph, the prover runtime graph is quasilinear in
the case of the original sumcheck, and the prover runtime is linear in the linear sumcheck
case.

2.2 Faster big-integer modular multiplication using
Montgomery Multiplication

A core underpinning of the libff library in constructing various fields and curves is the
implementation of big integers and their arithmetic functions. In fact, big-integer modu-
lar multiplication is pervasive in elliptic curve cryptography, RSA cryptography, and Zero
Knowledge Proofs, often invoked billions of times within a single execution of one of these
protocols. As a result, micro-optimizations to the runtime of big-integer modular multipli-
cation can provide significant overall speedups.
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In particular, the developers at Consensys made available their faster big-integer modular
multiplication algorithm, as implemented in their gnark library [4]. This algorithm presents
a 10-15% speed improvement over existing libraries and became a suitable candidate for
implementation in libff.

Montgomery multiplication

The modular multiplication problem involves computing the result of a ⇤ b mod q, where a,
b, q are all big integers. The naive solution would be to simply multiply the two numbers
and then divide the modulo, but division is extremely costly.

The way to avoid the costly division in modular multiplication is to use Montgomery
Multiplication [3], in which one computes a ⇤ b ⇤R�1 mod q in lieu of a ⇤ b mod q, where R
is called the Montgomery radix. Then, integers a and b are converted to ā = aR mod q and
b̄ = bR mod q, such that ā ⇤ b̄ = abR, preserving Montgomery form.

Gnark’s optimization

Gnark’s optimization to the CIOS Montgomery multiplication [1] saves 5N + 2 additions,
where N is the number of machine words needed to store the modulus q, and can be used
whenever the highest bit of q is 0 and not all the remaining bits are set.

The final (optimized CIOS Montgomery Multiplication) algorithm is as follows:

Optimized CIOS Montgomery Multiplication

Algorithm 2 MontgomeryMultiplication(N,D, a, b, q)

Input: N : Number of machine words needed to store the modulus q, D : Word size (eg.
264 on 64-bit architecture, integers a, b, and q.
Output: a ⇤ b mod q

1: for i = 1, 2, . . . , N � 1 do
2: (A, t[0]) := t[0] + a[0]*b[i]
3: m = t[0]*q’[0] mod W
4: C, = t[0] + m*q[0]
5: for j = 1, 2, . . . , N � 1 do
6: (A,t[j]) = t[j] + a[j]*b[j] + A
7: (C, t[j-1]) = t[j] + m*q[j] + C
8: end for
9: t[N-1] = C + A
10: end for

A couple notes on notation:
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1. a[i], b[i], c[i] represents the i’th word of the numbers a, b, and q.

2. q0[0] is the lowest word of the number �q�1 mod R. This number can be precomputed.

3. t is a temporary array of size N + 2

4. (C, S) refers to the (hi-bits, low-bits) of a two-word number.

This optimization was implemented in the libff library for more e�cient big integer
multiplication.

2.3 Linting with Clang Tidy and Github Actions

An extremely critical aspect of properly maintaining open-source libraries is the implemen-
tation of proper sca↵olding and DevOps tools to ensure proper and consistent code quality.
One of my tasks was incorporating a proper linting check for the libff library as part of
the CI/CD pipeline.

The linter I incorporated was clang-tidy, a C++ linting tool that flags stylistic and
logical errors in code using static analysis. After implementing the linting tool, I wrote a
Github Actions script to be run on commit, ensuring proper code quality of the code commit.
Finally, I retroactively fixed any linting errors in code that had been added to the library.
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Chapter 3

Optimizations to Rust Libraries
(arkworks/algebra)

3.1 More e�cient square roots in extension fields

Taking square roots over finite fields is pervasive in elliptic-curve based cryptosystems: hash-
ing a message to a point on an elliptic curve, point compression, and point counting over
elliptic curves. In particular, the arkworks/algebra library provides computation for square
roots of field elements over finite fields. Prior to this task, all square root computations de-
faulted to a Tonelli-Shanks algorithm. However, Adj et al. [2] proposed two novel algorithms
for even field extensions of the form q2 , with q = pn, p is an odd prime and n � 1. I im-
plemented three e�cient square root algorithms over extension fields: Kong, Atkin’s, and
Shanks’.

Here is an overview of the various e�cient algorithms for square root, based on the nature
of p:
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Shanks’ algorithm

Shanks’ algorithm can be applied when computing the square root of an arbitrary quadratic
residue a 2 q. Its computational cost is a single exponentiation and two multiplications.

Algorithm 3 Shanks’s algorithm for q ⌘ 3 (mod 4)
Require: a 2 ⇤

q
.

Ensure: If it exists, x satisfying x2 = a, false otherwise

1: a1 = a
q�3
4

2: a0 = a1(a1a)
3: if a0 = �1 then
4: return false
5: end if
6: x = a1a
7: return x
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Atkin’s algorithm

Atkin’s algorithm can be applied when q ⌘ 5 (mod 8). Its computational cost is one
exponentiation, four multiplications, and two squarings.

Algorithm 4 Atkin algorithm for q ⌘ 5 (mod 8)
Require: a 2 F

q
.

Ensure: If it exists, x satisfying x2 = a, false otherwise

1: t = 2
q�5
8

2: a1 = a
q�5
8

3: a0 = a21(a1a)
2

4: if a0 = �1 then
5: return false
6: end if
7: b = ta1
8: i = 2(ab)b
9: x = (ab)(i� 1)
10: return x

Kong’s algorithm

Algorithm 5 Kong et al. algorithm for q ⌘ 9 (mod 16)
Require: a 2

q
.

Ensure: If it exists, x satisfying x2 = a, false otherwise

1: c0 = 1
2: while c0 = 1 do
3: Select randomly c 2

q

4: c0 = Xq(c)

5: d = c
q�9
8

6: e = c2, t = 2
q�9
16

7: a1 = a
q�9
16

8: a0 = (a21a)
4

9: if a0 = �1 then
10: return false
11: end if

12: b = ta1
13: i = 2(ab)b
14: r = i2

15: if r = �1 then
16: x = (ab)(i� 1)
17: else
18: u = bd
19: i = 2u2ea
20: x = uca(i� 1)
21: end if
22: return x

Kong’s algorithm can be applied when q ⌘ 9 (mod 16), and is a generalized version of the
Atkin’s method. Kong’s algorithm can perform the square root at a cost of one exponentia-
tion.
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3.2 Unified Documentation for BigInteger struct and
traits

A major pain point of research-driven code and open source libraries is surrounding sca↵old-
ing and documentation for provided libraries. In particular, The BigInteger crate in the
arkworks/algebra library had minimal supporting documentation for developers. Thus, I
implemented the following improvements to the Rust library documentation:

1. Added relevant descriptors to crate roots to avoid linting errors

2. Added unit tests, doc-tests, and examples for each BigInteger method

3. Added per-crate READMEs

4. Resolved inconsistencies in APIs among various BigInteger implementations.
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