
Object-Level Representation Learning for Natural and

Medical Images

Akash Gokul

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-254

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-254.html

December 1, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Object-Level Representation Learning for Natural and Medical Images

by

Akash Gokul

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science, Plan II

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Advisor
Professor Joseph Gonzalez, Second Reader

Spring 2022

'RF� ,'� � �����ID�I�H�����H��F�F���FF�EE����FI�IGE



The thesis of Akash Gokul, titled Object-Level Representation Learning for Natural and
Medical Images, is approved:

Advisor Date

Date

University of California, Berkeley

��������������

��������������

'RF� ,'� � �����ID�I�H�����H��F�F���FF�EE����FI�IGE



Object-Level Representation Learning for Natural and Medical Images

Copyright 2022
by

Akash Gokul

'RF� ,'� � �����ID�I�H�����H��F�F���FF�EE����FI�IGE



1

Abstract

Object-Level Representation Learning for Natural and Medical Images

by

Akash Gokul

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Advisor

Instance discrimination pretraining has become an e�ective means of learning transferable
visual representations. To date, this paradigm has focused on learning image-level repre-
sentations. This is not only suboptimal for downstream tasks such as object detection, but
can also lead to representations which do not capture the object(s) in the scene [61]. In this
thesis, we present two extensions of the instance discrimination paradigm to the object-level.
First, we present a method which finds objects in a scene and enforces representational in-
variance at the object-level (Chapter 2). Next, we apply object-level knowledge to medical
images by incorporating anatomical priors into the pretraining pipeline (Chapter 3). These
methods provide improvements in downstream performance, e⇤ciency, and interpretability
when compared to state-of-the-art instance discrimination pretraining. We conclude with a
broader analysis of object-level representation learning and instance discrimination pretrain-
ing (Chapter 4).
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Chapter 1

Introduction

Object perception and recognition is a fundamental part of visual scene understanding.
Humans, even as young as infants, possess a remarkable ability to perceive and represent
objects solely from visual inputs. Research has shown that infants learn to perceive objects
by matching features across occlusions [51, 39, 40, 41]. This framework, of learning invariant
representations across views, is similar to the instance discrimination paradigm which has led
to state-of-the-art results in self-supervised learning. However, the instance discrimination
paradigm treats self-supervised learning similar to supervised image classification, learning a
single global representation for an image. As a result, instance discrimination based methods
fail to learn object-level representations and instead learn features by matching backgrounds
between views [61]. In this thesis, we extend the instance discrimination paradigm to learn
object-level representations.

Chapter 2 presents a pretraining method which discovers objects and enforces repre-
sentational invariance at the object-level. This algorithm is a simple extension of siamese
representation learning architectures and does not introduce any new architectural compo-
nents. Moreover, this method leads to state-of-the-results in downstream performance and
e⇤ciency.

In chapter 3, we apply object-level knowledge to medical images. Specifically, we in-
corporate spatial and/or anatomical knowledge into the self-supervised pretraining pipeline.
Models trained with our method are able to discover semantically meaningful regions, e.g.
the heart in a chest X-ray, without supervision. Our method also leads to improvements in
chest X-ray classification and interpretability.

Finally, chapter 4 provides an analysis of object-level representation learning and the
instance discrimination paradigm. We conclude with proposals for future research.
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Chapter 2

Refine and Represent: Object-Level
Representation Learning via Mask
Refinement

The rise of self-supervised learning in computer vision has centered around image-level pre-
training on ImageNet [59]. Current methods in the field [32, 31, 27, 8, 9] have demonstrated
remarkable downstream transfer performance with state-of-the-art methods [69] outperform-
ing supervised ImageNet baselines. These pretraining methods primarily use the instance
discrimination paradigm, training a network to have image-level representations which are
invariant to data augmentations.

Image-level representation learning is only the beginning. Tasks such as object detection
and instance segmentation require learning object-level features in order to make pixel-level
predictions. To achieve the goals of self-supervised learning, namely to learn representa-
tions which can e�ectively transfer to downstream tasks, pretraining methods must also
learn object-level feature representations. While image-level pretraining on an object-centric
dataset such as ImageNet should lead to object-level features, recent work [61] has shown
that state-of-the-art models seldom focus on the object(s) in the scene. This has led to
the area of dense self-supervised learning [74]. Methods in this subfield [74, 76, 34, 79,
82, 55] focus on jointly learning local feature representation by extending the image-level
representation objective to the per-pixel or region level.

Learning object-level representations requires more than just enforcing invariance to lo-
cal feature encodings. Objects are more than just pixels or image regions which overlap
between two views. Their semantic value allows us to discriminate a contiguous figure even
amidst visual clutter. Thus, we propose an object-level pretraining method which jointly
discovers objects and learns to represent them given a simple mask prior. Our method
does not rely on performant unsupervised segmentation or detection algorithms [33, 72, 89,
76] Instead, we generate a mask by performing pixel-level clustering on the original image
(see Figure 2.2). From there, we refine these masks into object-level masks and enforce
representation invariance over object-level representations during pretraining (Section 2.2).
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Figure 2.1: An overview of the objects discovered by our method. Using a simple prior mask
(middle), we are able to refine this mask and perceive objects (right) in an image (see Section
2.2).

Our method extends the siamese representation learning paradigm, allowing us to bypass
the need for negative samples during training. Moreover, our method does not introduce
any new architectural components. Our method leads to state-of-the-art results in terms of
downstream performance (+0.47 on PASCAL semantic segmentation and +0.3 on COCO in-
stance segmentation) and e⇤ciency, surpassing existing methods which pretrain which longer
schedules.

2.1 Related Works

Self-supervised learning algorithms aim to learn representations, from unlabelled data, which
can e�ectively transfer to a downstream task [6]. Early works in discriminative representation
learning for visual tasks focused on training encoders to predict the position of an image patch
[17, 54], predict the angle of rotation [25], and predict the colors in an grayscale image [87].
However, current state-of-the-art methods in this area focus less on explicit prediction and,
instead, train an encoder to have representations which are invariant to data augmentations
[32, 11, 27, 12, 8, 52]. Instance discrimination pretraining is currently achieved via one
of two means: (1) contrastive learning [56] and (2) siamese representation learning. The
contrastive objective encourages representations from the same image to be invariant to
data augmentations and dissimilar to representations from other images (commonly referred
to as negatives). Unlike contrastive objectives, siamese representational learning methods
do not rely on negatives and are thus less reliant on batch size [12]. These methods enforce
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representational invariance, similar to contrastive learning, but use an asymmetric network
architecture to prevent representational collapse. In this work, we build upon BYOL [27]
and develop a simple object-level pretraining method which does not rely on negatives.

Recent works [74, 76, 34, 79, 82, 55] have extended the instance discrimination paradigm
to concurrently learn local features. These methods are especially e�ective for downstream
tasks, such as object detection and semantic segmentation, which involve pixel-level pre-
dictions. Concurrent to this line of work are methods [33, 76, 72, 44, 84, 89] which use
object-level priors [21, 70] within the instance discrimination paradigm. The closest related
work is Detcon [33] which uses unsupservised segmentation algorithms [21] to train object-
level representations. In contrast, our method avoids the need for negatives and allows the
encoder to refine these prior masks to better locate objects during training. The goal of
improving local feature representations has also led to works [77, 88, 24] which define new
data augmentation schemes. These augmentation policies copy-and-paste objects from one
image to another to improve object localization within self-supervised and semi-supervised
settings.

Our work uses K-means clustering [46] to refine weak prior masks into object-level masks
during pretraining. While we are the first work to use K-means clustering in this manner,
clustering has been a popular tool in the self-supervised learning toolbox. Clustering has been
used as a form of pretraining [7, 9] which enforces consistent cluster assignments similar to
the representational invariance seen in the contrastive and siamese paradigms. Recently, K-
means clustering has also been used to create semantic segmentation masks from pretrained
self-supervised encoders [86]. K-means clustering has also been used in recent unsupervised
semantic segmentation methods [38, 35].

2.2 Method

Our method consists of two parts: (1) object segmentation and (2) object-level pretraining.
This method can be used in any siamese instance discrmination architectures. For simplicity,
we define our method using the BYOL architecture. An overview of our method can be seen
in Figure 2.2.

Background

Data Given an image x, we create two views x1, x2 � RCxHxW using BYOL’s data augmen-
tation policy. Additionally, we create x0 � R

CxHxW which is the original image x resized to
the resolution of x1 and x2. Finally, we generate a prior mask mslic by clustering x0 using
SLIC [1]. We encode all masks as a multi-channel binary array.

Architecture The BYOL architecture defines two networks– an online network (denoted
by parameters �) and the target network (denoted by parameters ⇥). The target network
shares the same architecture as the online network and uses an exponential moving average
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Figure 2.2: An overview of our method. First, we pass the original image (resized to (224,
224)) through our target encoder and cluster the masked-pool encodings. This step generates
an object mask. Next, we use this object mask to enforce invariance between object-level
representations during pretraining.

of the online network’s parameters. The target network is never trained. Going forward, we
refer to the encoder of the online network as f� and the online network’s projector as g�.
Correspondingly, the target network uses the encoder f⇥ and the projector g⇥. The online
network, unlike the target network, also uses a prediction head denoted q�.

Object Segmentation via Mask Refinement

In order to learn object-level representations, we must first find the objects in a scene.
Our object localization step uses mask-pooling [33] (equation 2.1) and then performs K-
means over the set of mask-pooled encodings. First, we get feature encodings h = f⇥(x0) �
RH

�
xW

�
xD. Next, we downsample the mask mslic to resolution (H �

,W
�) and apply mask-

pooling for each of the M channels in the downsampled mslic (equation 2.1). This results
in M encodings hi representing the target encodings for each part of the image. Finally, we
perform K-means clustering over the mask-pooled vectors hm to get a final superpixel mask
m0. The K-means step allows us to refine weak mask priors, such as spatial masks or simple
spatial and color based clustering, into object-level masks (see Figure 2.2).
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maskpool(h,m) =
1P

i,j
m[i][j]

X

i,j

m[i][j] · h[i][j] (2.1)

Object-Level Representation Learning

To learn object-level representations, we enforce representational invariance at the object-
level. Thus, we replace the commonly used global-pooling operation with the mask-pooling
operation. Given maskm0, we use ROIAlign [30] to createm1, m2 corresponding to views x1,
x2. Next, we compute view encodings h� = f�(x1) and h⇥ = f⇥(x2). We use mask-pooling to
create the vectors hi,� and hi,⇥. We compute the loss as the average BYOL loss (equation 2.4)
over the M

� mask channels which are present in both views (equation 2.5). We symmetrize
this loss, following BYOL, by also computing the loss for h� = f�(x2) and h⇥ = f⇥(x1).

hi,� = maskpool(h�,m) hi,⇥ = maskpool(h⇥,m) (2.2)

zi,� = g�(hi,�) zi,⇥ = g⇥(hi,⇥) (2.3)

LBYOL(z�, z⇥) = 2⇥ 2 · q�(z�) · z⇥
⇤q�(z�⇤2 · ⇤z⇥⇤2

(2.4)

L(z�, z⇥;m) =
1

M �

M
�X

i=1

LBYOL(zi,�, zi,⇥) (2.5)

2.3 Results

Pretraining Settings

Data Following the pretraining protocol of related works [32, 27, 7, 33, 74], we pretrain on
ImageNet. We follow the data augmentation policy of BYOL to generate both views. For
our ablation studies, we pretrain our networks on ImageNet100 [68]. We use [71] to generate
SLIC masks.

Architecture We use a ResNet-50 [29] architecture for all encoders, similar to BYOL.
Our object segmentation step uses the C4 output of the ResNet-50. In our experiments,
we cluster the encodings of the target network to generate object masks. We set K = 64
when performing K-means. We perform K-means over the entire mini-batch on each GPU.
Our object-level representation learning step applies mask-pooling to the C5 output of the
ResNet-50, similar to the existing application of global pooling.
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Method Epochs APbb APmk

Supervised [76] 90 39.6 35.6
MoCo [32] 200 38.5 35.1

MoCo v2 [13] 200 40.4 36.4
BYOL (reproduced) 300 40.6 37.5

VADeR [55] 600 39.2 35.6
DenseCL [74] 200 40.3 36.4
PixPro [82] 400 41.4 -
InfoMin [68] 200 40.6 36.7

DetConB (reproduced) 300 40.5 37.5
Ours 100 40.4 37.3
Ours 300 40.9 37.8

Table 2.1: Performance on COCO object detection and instance segmentation using Mask
R-CNN (R50-FPN) following the 1x schedule.

Optimization We follow the optimization details of BYOL. All of our experiments use a
batch size of 4096 distributed over 128 NVIDIA V100 GPUs.

Downstream Tasks

We evaluate the e⇤cacy of our pretraining method by evaluating the transfer performance on
object detection and instance segmentation on MS COCO [45], and semantic segmentation
on PASCAL VOC [20] and Cityscapes [15].

Object Detection and Instance SegmentationWe finetune our encoder as the backbone
of a Mask-RCNN (R50-FPN) [30] using [78]. We follow the 1x training schedule (12 epochs),
training on MS COCO’s train2017 dataset and evaluating on the val2017 dataset. We report
average precision for bounding box predictions (APbb) and mask predictions (APmk).

Table 2.1 details our performance on COCO object detection and instance segmentation.
Our method outperforms existing baselines in instance segmentation (+0.3) and is compet-
itive with state-of-the-art in object detection (⇥0.5). Moreover, our performance after only
100 epochs of pretraining is competitive with existing methods which use double (or even
6x in the case of [55]) epochs of pretraining. Lastly, our method uses the original BYOL
hyperparameters and improves BYOL on COCO by +0.3 on object detection and +0.3 on
instance segmentation.
Semantic Segmentation We evaluate our semantic segmentation performance by finetun-
ing the encoder as the backbone of a FCN [47] using [14]. For PASCAL VOC, we finetune us-
ing the train aug2012 dataset for 45 epochs. For Cityscapes, we finetune using the train fine
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Method Epochs PASCAL VOC Cityscapes
Supervised [74] 200 67.7 73.7
MoCo v2 [13] 200 67.5 74.5

BYOL (reproduced) 300 73.1 75.2
DenseCL [74] 200 69.4 75.7
PixPro [82] 400 - 77.2
InfoMin [68] 200 - 75.6

DetConB (reproduced) 100 70.7 73.1
DetConB (reproduced) 300 73.8 75.7

Ours 100 72.2 73.9
Ours 300 74.3 75.6

Table 2.2: Performance on PASCAL VOC and Cityscapes semantic segmentation (mIoU).

dataset for 160 epochs. Our evaluation pipeline follows BYOL and Detcon. Performance is
measured by mean intersection over union (mIoU) on val2012 and val fine respectively.

As seen in Table 2.2, when pretraining for less than 200 epochs we are able to outperform
similar methods (+1.47 on PASCAL and +0.83 on Cityscapes compared to Detcon). After
300 epochs of pretraining, we outperform state-of-the-art on PASCAL VOC (+0.47) while
being competitive with existing baselines on Cityscapes. Our method improves BYOL by
+1.19 on PASCAL VOC and +0.33 on Cityscapes while using the same hyperparameters.

Ablations

Through our experiments, we used a fixed K = 64 when generating object masks. Table
2.3 details the e�ect of varying K during pretraining. We have found that a larger value
of K helps downstream PASCAL VOC segmentation performance. This is surprising as
pretraining occurs on ImageNet, an object-centric dataset. Thus, simple masks, i.e. lower
values of K, should be able to e�ectively segment the scene. This leads us to believe that
oversegmentation helps dense or object-level pretraining. Oversegmented object masks en-
forces representational invariance at a finer granularity, e.g. each pixel in the (7, 7, 2048)
output of the ResNet50. This leads to stronger local features. Thus, allowing the model to
demonstrated improved transfer on downstream tasks such as semantic segmentation.

2.4 Conclusion

Here, we have presented a simple means of extending the siamese instance discrimination
paradigm to the object-level. Our method bypasses the need for negative samples and
can be used in existing architectures with minimal changes. Moreover, our method can
actively discover objects by refining a weak prior mask. Overall, this extension leads to the

'RF� ,'� � �����ID�I�H�����H��F�F���FF�EE����FI�IGE



CHAPTER 2. REFINE AND REPRESENT: OBJECT-LEVEL REPRESENTATION
LEARNING VIA MASK REFINEMENT 9

K PASCAL VOC (mIoU)
4 65.49
16 65.27

64 (default) 65.76

Table 2.3: The impact of varying K, the number of segments generated during our clus-
tering step, on PASCAL VOC semantic segmentation performance (mIoU). Encoders were
pretrained on ImageNet100.

state-of-the-art results in terms of downstream performance (+0.47 PASCAL VOC semantic
segmentation and +0.3 COCO instance segmentation) and e⇤ciency.

One shortcoming of our method is the use of prior masks. Thus, removing the use of a
prior mask in our object segmentation step is a promising area of future work. Moreover, we
used K-means across the mini-batch to work to minimize computational overhead. However,
this means that object masks are semantically consistent across samples in the mini-batch.
This allows for extensions of [19] at the object-level.

2.5 Acknowledgements
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Chapter 3

Knowledge-Guided Self-Supervised
Vision Transformers for Medical
Imaging

The previous chapter and prior work in object-level unsupervised representation learning
(2.1) focused on learning objects while pretraining on ImageNet. However, learning seman-
tically meaningful entities is not restricted to natural images. In this chapter, we extend the
object-level goals of chapter 2 and present a self-supervised pretraining method which guides
the attention module of Vision Transformers (ViT) [18] to learn semantically and spatially
meaningful regions within medical images.

Medical data are di⇤cult to acquire and, more importantly, expensive to annotate because
of the need for expert knowledge [42]. Thus, making self-supervised pretraining an important
part of the medical imaging toolbox. Existing work [66, 2, 23, 3] in the area of self-supervised
learning from medical images applies the pretraining methods benchmarked on ImageNet
to medical images. However, treating the problem of learning useful representations for
medical images as merely another application for Imagenet-based pretraining methods is
flawed. Unlike ImageNet, the structures captured in medical images are consistent across
images and well-understood after years of advances in fields such as anatomy. Furthermore,
understanding such structures is crucial to medical imaging-based tasks and this knowledge
may not be correctly learned when following ImageNet based pretraining protocols.

Here, we present a framework called Medical DINO (MeDINO) that is built upon the
DINO self-supervised vision transformer framework [8] and leads to more interpretable atten-
tion heads that perform better on downstream tasks – see Figure 3.1. MeDINO incorporates
prior knowledge into self-supervised training of vision transformers by regularizing a subset
of attention heads in the multi-headed self-attention module so that the attention weights
are constrained to be within boundaries corresponding to objects of interest. In other words,
a subset of the attention heads are regularized to the objects in the image throughout train-
ing. Instead of relying on annotations of these images to determine the boundaries, MeDINO
uses anatomical relationships to define a template of object boundaries (organs), aligns and
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Left Lung Heart Right Lung

DINO

MeDINO
(ours)

Random Image Features

DINO: 84.3

MeDINO: 86.5

Classification Performance
Mean AUC with Linear Probe

Attention Heads 
w/Largest IOU Overlap

MeDINO: 86.5

Figure 3.1: Self-attention from a Vision Transformer on chest X-rays, where the
attentions heads with the largest IOU overlap with the lungs/heart are shown.
Existing self-supervised training methods for Vision Transformers, such as DINO, learn
scattered attention maps that do not necessarily attend to the constituent objects within
the image. MeDINO, on the other hand, uses prior knowledge to guide the attention to
such regions, as shown by the attention weights constrained to the left lung, heart, and
right lung. As indicated in the bar plot on the right, constraining the attention to these
semantic components leads to better performing representations as determined by a linear
probe, multi-label classification experiment on the CheXpert dataset [36] – see Section 3.3
for details.

registers each image to this template, transforms the object boundaries accordingly, and
then uses these object boundaries to regularize the attention heads throughout training –
Figure 3.2 provides an overview of this process which is detailed in Section 3.2.

3.1 Related Works

Self-Supervised Learning The performance of machine learning models is heavily contin-
gent on the choice of features and representations from which they learn. Representation
learning aims to reveal these intrinsic qualities of data such that they are informative and
e�ective for a desired task [6], such as image classification or object detection. Contemporary
methods involve contrastive learning based approaches [32, 11], clustering-based techniques
[9], and self-distillation [27, 8]. DINO [8] is an example of a self-supervised learning frame-
work that uses self-distillation, yielding state-of-the-art downstream performance using the
Vision Transformer (ViT) architecture [18]. We focus on this framework for two reasons: (i)
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the attention modules in ViT allow for greater interpretability than CNN-based approaches
that require external tools such as Grad-CAM [73] to extract pixel-level saliency relation-
ships, (ii) in self-supervised training, the DINO attention maps have a demonstrated ability
to segment salient foreground objects [8], which, as we show, provide a strong mechanism to
regularize salient objects in MeDINO.

Most existing self-supervised algorithms are benchmarked based on their performance
following pretraining on generic, object-centric image datasets, such as ImageNet, which po-
tentially leads to poor results in domains where the data are dissimilar to these datasets [80,
58]. Furthermore, medical applications of machine learning can benefit from self-supervised
pretraining due to the cost and expertise needed to accurately annotate data [66, 23, 3, 2].
Medical data may also be di⇤cult to obtain due to privacy and regulatory issues. For in-
stance, MoCo-CXR [66] adapts MoCo [32] pretraining to chest X-ray data by designing new
data augmentations suitable for recognizing subtle di�erences between X-ray images. We use
MoCo-CXR’s data augmentations as it uses similar X-ray images as our work. IDEAL [49]
focuses on self-supervision and interpretability. However, they use saliency reconstruction
to find informative samples for active learning and do not focus purely on learning discrim-
inative and interpretable representations. Finally, many medical applications have adopted
a ViT-based self-supervised learning approach for their performance and attention modules
with modifications to the attention modules or encoders [60, 75, 67, 26]. MeDINO does not
require any architectural changes to the backbone and o�er a noninvasive method, as we
leverage the attention heads that are inherent to Vision Transformers.

Attention-Guided Learning Attention based approaches have been used to improve
the explainability of computer vision models through visualizations of attention maps to
indicate important regions [83]. Convolutional neural networks use tools such as CAM [90]
and GradCAM [73] to create attention maps by looking at the hidden layer activations.
Another approach is the Attention Branch Network [22] that generates an attention map
based on the extracted features and then uses it to mask out irrelevant features. These
attention maps are evaluated through visual checks or against segmentation datasets which
are limited in the medical domain. As discussed in Section 3.2, our paper instead uses image
registration to align the attention maps with an inductive bias corresponding to a salient
region so only a single representative sample is required.

Image Registration is the task of projecting one image onto the coordinate system
of another image with similar content [28]. This classical challenge is particularly relevant
in medicine as it facilitates the development of atlases, and allows transfer of information
across patients. Here, we are particularly interested in using a specific type of image registra-
tion, deformable image registration. This is useful as di�erences in morphological structure
of organs in di�erent humans can be modeled using deformable transformations [65]. Tra-
ditionally popular techniques to solve this alignment problem involved congealing, optical
flow or b-Spline registration. Least squares congealing focuses on obtaining an alignment
by iteratively minimizing a misalignment loss function using least squares [16]. Optical flow
completes this registration task by looking for possible displacements and solving a minimum
energy functional [43]. b-Spline registration operates by modeling the deformation field as

'RF� ,'� � �����ID�I�H�����H��F�F���FF�EE����FI�IGE



CHAPTER 3. KNOWLEDGE-GUIDED SELF-SUPERVISED VISION
TRANSFORMERS FOR MEDICAL IMAGING 13

Deformable
Transformation

ViT
(DINO)

Registration
Knowledge Guided Attention Regularization

Multiheaded Self Attention

Attention
Heads

R
eg

ul
ar

iz
ed

 H
ea

ds
U

nc
on

st
ra

in
ed

 H
ea

ds

Figure 3.2: The MeDINO framework. MeDINO first registers each image to an exemplar
template with known segmentations, the registration outputs a deformable transformation
that is applied to the template. During self-supervised pretraining with a ViT model, each
component of the template then regularizes an indiviudal attention head in the multiheaded
self-attention modules (Regularized Heads). A subset of the attention heads are also uncon-
strained (Unconstrained Heads).

B-spline curves where each pixel that maps each voxel in the source image to the target
image. [62]. More recently, neural networks have become increasingly popular in perform-
ing image registration in lieu of the traditional methods [4, 53, 64]. While powerful and
increasingly accurate, we opted to use the traditional b-Spline registration over neural-based
methods due to simplicity and e⇤ciency. b-Spline registration does not require more than
one data example nor does it necessitate any training or GPU compute resources. Mansilla
et. al. [50] embeds prior knowledge in the form of anatomical constraints to improve image
registration tasks in the form of global constraints. Our work di�ers as we aim to improve
self-supervised pretraining methods using deformable transformation as a means to create
anatomically plausible representations rather than an end.
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3.2 Method

The goal of MeDINO is to incorporate domain knowledge to improve the performance and
interpretability of self-supervised pretraining for medical images. To do so, MeDINO regu-
larizes transformer attention heads to follow inductive biases on a semantic structure that
is common to most images in the dataset, as seen in Figure 3.2. For example, we can in-
corporate the inductive bias that chest radiographs have expected anatomical relationships
between the relative positions of the lungs and heart. In the following, we detail a means of
e�ectively incorporating semantic knowledge, in the form of simple spatial heuristics or even
a single instance of ground truth knowledge, into the DINO pretraining of Vision Transform-
ers.

Self-Supervised Vision Transformers with Knowledge Distillation

Caron et al. [8] present a transformer-based knowledge distillation technique, DINO, that
we build upon for MeDINO. In DINO, a student model g�s is trained to match the output of
a teacher model g�t (parameterized by �s and �t respectively). This distillation objective is
reframed as a representation learning objective where representations are learned for each of
n di�erent views of original image X, {X1, ..., Xn}, obtained via a set of data augmentations
V . The DINO objective encourages the student model to learn “local-to-global” correspon-
dences. This happens by passing in local and global crops of an image to the student and
tasking the student model to predict the teacher’s representation. The teacher is only given
global crops denoted X

g

1
and X

g

2
. To train the student network, the authors begin by defining

probability distributions Pm for the student and teacher model

Pm(X) = softmax

�
g�m(X)

⇤m

⇥

where ⇤m is the model-specific temperature. The overall DINO objective, given below, is the
cross-entropy loss H(p, q) = ⇥p log q over the probability distributions Ps(X) and Pt(X).

L(X1, X2) = H(Pt(X1), Ps(X2))

�s

X

x⇥{Xg
1 ,X

g
2 }

X

X�⇥V

L(X,X
�)

While the original DINO augmentations can be powerful for learning representations from
a dataset such as ImageNet, they can fail in domains where local structure is critical to scene
understanding. [81] In particular, our preliminary empirical findings (see 4.3 and 4.4) suggest
that local crops harm the performance of self-supervised learning on chest radiographs.
Following this, we instead use a set of domain-specific augmentations which replace DINO’s
local crops with other task-relevant data augmentations [66].
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Attention

Vision Transformers are perform well on a wide variety of vision tasks and allow for pixel-
level relationship introspection due to their built-in attention modules [18]. As input, Vision
Transformers take in a sequence of P image patches with fixed size (p = 16) which is
prepended by a [CLS]-token. The [CLS] token enables a corresponding output that allows
for downstream tasks such as classification.

Self-attention modules are the key component to Transformer networks. Given embed-
dings q, k, v calculated from a sequence of inputs, the attention matrix A measures the
pairwise similarity between qi, query value of patch i, in relationship with kj, key value of
patch j. Formally,

A = softmax

�
qk

�
⌅
Dh

⇥

where Dh is defined as the dimensionality of the heads and A � RP◊P . When probing self-
attention, we extract the attention values of each patch with respect to the [CLS] token
of the last layer of each of nh heads and exclude the attention value for the [CLS] token
with itself. This tensor is then upsampled via nearest-neighbor interpolation into the shape
of the original image resulting in an attention map As � Rw◊h◊nh where w and h are the
dimensions of X.

Knowledge-Guided Regularization

The Vision Transformer’s attention module allows us to guide a model given any arbitrary
knowledge map K by back-propagating through the model. If K � {0, 1}w◊h, where Kij is 1
if the patch at location i, j is considered a useful bias and 0 otherwise, the central idea is to
add a penalty when a model’s self-attention map A

(�t)
s attends outside salient regions and a

negative penalty for attending at the salient regions. This yields the following regularization
terms that are combined with the DINO objective:

• Inclusion Loss: Linclusion(A,K) = ⌅1

P
i

P
j
a
(�t)
ij

kij

• Exclusion Loss: Lexclusion(A,K) = ⇥⌅2

P
i

P
j
a
(�t)
ij

(1⇥ kij)

where hyperparameters ⌅1,⌅2 denote the respective regularization strengths. Experi-
mentally, we find that both regularizers are needed in order to prevent mode collapse in the
attention maps.

Disentanglement

As vision transformers have multiple independent attention heads, we can disentangle them
to attend to di�erent discrete entities in X using di�erent knowledge maps K � {0, 1}w◊h◊n.
This disentanglement allows for task-specificity and functions as a sca�old for interpretability
through which failure cases can be deconstructed into explainable task specific entities.
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Original Spatial Heuristic 
(Triangular)

Predicted Global 
Template

Deformable 
Registration (DR)

Figure 3.3: Example templates for encoding spatial and semantic information.
1st image: a randomly sampled image from the CheXpert dataset. 2nd image: a template
based on spatial heuristics. 3rd image: a global prediction-based template. These masks
are computed by averaging the predictions made from an external segmentation model.
4th image: deformable registration template. Given an exemplar image with ground-truth
segmentation mask, the template is obtained by warping the segmentation using deformable
image registration.

Knowledge maps representing a specific task can be assigned arbitrarily to any attention
head. Unassigned heads become general attention heads and remain unregularized.

Encoding Prior Knowledge

Embedding knowledge within the knowledge-guided regularization module above comes in
many varieties. Our regularization procedure allows for any type of inductive bias that can be
translated into knowledge map K. We identified two useful types of inductive biases that are
useful in guiding medical vision models: (1) spatial and (2) semantic. These categories are
then used to embed prior knowledge, such as anatomical constraints or other assumptions,
into a knowledge map K. Intuitively, the goal is to not only assist a model to look at task-
relevant features but also to specialize the individual heads. To this end, we assign specific
heads n � N to discretely identified entities of interest. The remainder of the attention heads
remain unassigned and hence, are able to attend the whole image X. We use the following
three knowledge encoding procedures for MeDINO which are depicted in Figure 3.3:

Spatial Heuristic

As a baseline, we explore a simple spatial heuristic that approximately segments the con-
stant relative positioning of organs in the thorax into a knowledge map K. We encode our
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knowledge as a tripartite mask with triangular parts corresponding to the left lung, right
lung, and the heart.

Predicted Global Template

Instead of relying on generic spatial regions for attention supervision, we calculate a global
average of the predicted locations of relevant organs from a pretrained model. We trained a
segmentation model (DeepLabv3-ResNet101 [10]) on a held-out subset of the JSRT segmen-
tation data (separate from the interpretability validation data) (n = 200). We average the
model’s inference segmentations over all images in the pretraining image dataset to obtain a
single predicted global template. These knowledge maps provide a more robust spatial bias
signal than the spatial heuristic.

Semantic Deformable Image Registration

To test the impact of increasingly accurate knowledge templates, we use a single ground-
truth segmentation from a di�erent dataset which is adapted to our dataset via deformable
image registration. Given a single annotated exemplar pair of image X

e and its ground-
truth segmentation S

e, canonical deformable image registration [65] is performed to learn
a parameterization ⇧ that deforms exemplar image X

e to training image X
i. This learned

⇧ is then used to create a deformable knowledge map K, as an estimate to true Si, by
applying ⇧ on Se. In our paper, we use SimpleElastix wrappers [48, 85, 5] that are based
on b-Spline deformation models. As seen in Figure 3.3, this procedure results in the most
accurate results due to combining both spatial and semantic information.

3.3 Results

In the following experiments, we compare the qualitative and quantitative performance of
MeDINO with self-supervised vision transformers. The di�erent experiments focus on in-
terpretability and downstream classification performance. The quantitative and qualitative
interpretability analyses reveal that MeDINO leads to more interpretable representations,
and the second set of experiments show the increased downstream classification performance.

Setup

Dataset

We pretrain our models using CheXpert, a medical X-ray dataset with 220k images and 14
disease classes collected from 65,240 unique patients. [36] We exclude the lateral images,
as no high-quality lateral image priors are available. This reduces the dataset to 190k
images. To validate the learned representations, we evaluate them against two ground-truth
segmentation datasets, JSRT [63] and Montgomery [37, 57]. These two datasets are smaller
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in size and contain 247 and 138 images respectively. JSRT provides segmentation masks for
both lungs and the heart. Montgomery only has annotations for the lungs.

Data Augmentations

In our experiments, we di�erentiate between domain-agnostic and domain-specific data aug-
mentations. Domain-agnostic data augmentations are based on the default DINO and BYOL
augmentations. They contain global crops, local crops, color jittering, Gaussian blur and
solarization. These augmentations are solely implemented in baseline runs. MeDINO incor-
porates domain-specific data augmentations, in particular chest X-ray specific data augmen-
tations, are inspired from ChX-MoCo, a framework for Momentum Contrasting in X-rays.
These augmentations only perform global crops in addition to translations, rotations, bright-
ness, contrast and sharpness.

Training and Finetuning

Vision transformer architecture configurations are based on the PyTorch Image Models Li-
brary. ViTs have di�erent pre-set configurations with respect to their hidden size; there exist
‘Large’, ‘Base’ and ‘Small’ vision transformers. In our experiments, we fixed the backbone
of our models to be the small Vision Transformer (ViT-S, 21M parameters) with patch size
16.

Self-supervised pretraining is performed on 8 GPUs (NVIDIA Tesla V100). We train Im-
ageNet pretrained (800 epochs) ViTs using an Adam optimizer, batch size 28, base learning
rate of 10⇤3 for 30 epochs. Other hyperparameters are directly implemented from DINO.
The best attention regularization hyperparameters ⌅1 and ⌅2 are chosen using a sweep for
values between [10⇤2

, 10⇤6]. For downstream classification tasks, we train a linear layer on
top of the frozen learned representations without any sort of data augmentations for 100
epochs.

Attention Head Interpretability

Performance

In Table 1, we compare the di�erent models’ attention maps against the ground truth seg-
mentations for the lungs and heart. The Montgomery dataset does not contain ground
truth segmentation maps for the heart and hence these results have been omitted. The
interpretability results are evaluated using pixel-wise mAP scores that calculate the average
precision at di�erent thresholds. For the MeDINO trained models, we use the attention
maps at the assigned head for evaluation. In DINO tasks where no head was assigned to a
specific part, the score represents the maximum across the di�erent heads.

The interpretability results show higher mAP scores in MeDINO models compared to
DINO pretrained models for all thoracic parts. MeDINO with triangular spatial heuristics
sees a 30 mAP increase in performance over the DINO baseline pretrained using chest specific
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Table 3.1: Interpretability scores of attention heads. The evaluation metrics included
pixel-wise mAP on external validation sets where groundtruth segmentation masks were
available. Due to the lack of heart segmentations in the Montgomery dataset, results of
heart interpretability have not been reported. The results indicate that MeDINO improves
the interpretability over DINO baselines.

Metric Part Regimen JSRT Montgomery

AP Heart DINO 19.1
DINO (Chexpert) 5.7
DINO (Chexpert Augmentations) 26.4
MeDINO (Triangular) 54.5
MeDINO (Global Average) 71.6
MeDINO (Deformable) 89.9

Left Lung DINO 30.1 43.2
DINO (Chexpert) 22.0 16.5
DINO (Chexpert Augmentations) 25.1 40.7
MeDINO (Triangular) 59.2 40.0
MeDINO (Global Average) 71.3 84.1
MeDINO (Deformable) 88.3 90.0

Right Lung DINO 46.3 35.0
DINO (Chexpert) 27.0 15.8
DINO (Chexpert Augmentations) 36.5 27.6
MeDINO (Triangular) 45.6 54.8
MeDINO (Global Average) 82.5 50.3
MeDINO (Deformable) 87.3 88.4

augmentations. This further improves with the templates acquired from global average
masks, specifically in the right lung. As the templates become more specific, the deformable
semantic masks acquired further performance gains yielding 88.5 mAP on average in JSRT.
This is a 58.7 mAP increase over the baseline (DINO with chest augmentations). The
key trend we observe is that the more specific information that is encoded in
masks, the more higher the interpretability scores. The results also corroborate that
semantic and spatial information ultimately attain the highest performance outcomes, as
the deformable parts based mask model gained the highest performance. In general, any
attention based model seems to outperform a non-guided model.

The baseline DINO pretrained with domain-agnostic augmentations on X-ray scans has
the lowest scores across all body parts. Interestingly, a pretrained model that was not pre-
trained on chest images outperforms this setup. This suggests that DINO domain-agnostic
augmentations (such as the global and local crops) have a large negative impact on pretrain-
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Figure 3.4: Visualized attention maps from di⇥erently pretrained models. We ana-
lyze the visualized attention maps by probing the heads of the respective models and choosing
the map with the highest IOU overlap with the ground truth for each model. These maps
show that as the prior for attention becomes more specific, the mAP and specialization of at-
tention heads increases. Additionally, they show the inability of DINO to learn interpretable
representations without chest-specific augmentations.

ing on non-object-centric tasks where semantics and spatial relationships reveal essential
information. This negative performance is restored through the removal of local crops and
the addition of domain-specific augmentations. The same patterns hold for both datasets.

Qualitative Assessment

In Figure 3.4, we visualize the attention maps resulting from the di�erent models. Figure 3.4
shows that DINO pretrained Vision Transformers are unable to learn salient representations
from X-ray images. DINO even leads to collapse with worse representations than a DINO
model not pretrained on chest X-rays at all, though removal of global-local crops and inclu-
sion of medical imaging specific augmentations mitigates this performance drop. Figure 3.4
also shows that MeDINO improves the alignment with the segmented regions and also dis-
entangles the constituent attention maps across the heads.

Downstream Disease Classification

Classification performances are assessed using the mean receiver operating area under the
curve (mAUC) score averaged over the 6 disease classes in the CheXpert classification chal-
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Table 3.2: Linear disease classification trained on frozen pretrained features. The
pretrained models are used as feature extractors in the CheXpert classification task whereby
a linear layer is fine-tuned to predict the presence of six diseases: Atelectasis, Pleural Ef-
fusion, Consolidation, Cardiomegaly, No Finding and Edema. The mAUC over all diseases
are reported. MeDINO outperforms DINO pretraining methods for all di�erent attention
priors. DINO pretraining decreases the accuracy performance, which is then restored with
the addition of chest-specific augmentations.

Regimen mAUC

Random 69.9
DINO 83.8
DINO (Chexpert) 60.4
DINO (Chexpert Augmentations) 84.3

Ours MeDINO (Triangular) 84.8
MeDINO (Global Average) 86.2
MeDINO (Deformable) 86.5

lenge using a hold-out test set of 200 images: Atelectasis, Edema, Pleural E�usion, Car-
diomegaly, Consolidation and No Finding. The linear classifier is trained on top of the
frozen pretrained representations. The results in Table 2 show thatMeDINO has stronger
multi-label classification performance compared to all baseline DINO variants.
Specifically, MeDINO with the deformable image registration templates attains the highest
mAUC score followed by the predicted global templates and the triangular spatial heuristics.
This indicates that the more interpretable representations from MeDINO also lead to higher
downstream performance as well. In comparison, DINO pretrained on ImageNet and CheX-
pert with domain-agnostic representations attains the lowest classification score. DINO only
pretrained on ImageNet performs equally as DINO pretrained on ImageNet and CheXpert
with domain-specific augmentations.

3.4 Conclusion and Future Work

We presented MeDINO: a framework for knowledge-based self-supervised Vision Transform-
ers, which incorporates useful inductive biases into the training processes that learn more
interpretable representations and lead to better performance on downstream classification
tasks Medical DINO (MeDINO), a method that takes advantage of consistent spatial and se-
mantic structure in unlabeled medical imaging datasets to guide vision transformer attention.
Using chest X-ray radiographs as a primary case study, we show that the resulting attention
masks are more interpretable than those resulting from domain-agnostic pretraining, produc-
ing a 58.7 mAP improvement for lung and heart segmentation following the self-supervised
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pretraining. Additionally, MeDINO yields a 2.2 mAUC improvement compared to domain-
agnostic pretraining when transferring the pretrained model to a downstream chest disease
classification task. Our results indicate that the attention heads in self-supervised Vision
Transformer can be specialized to attend to di�erent objects and learn more semantically and
meaning representations underlying the data by embedding prior knowledge using our atten-
tion regularization framework. Follow-up work could focus on generalizing this framework
to expand beyond thoracic X-rays or even the medical domain, and exploring incorporating
di�erent forms of prior knowledge.
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Chapter 4

Conclusion

Object-level representations are a fundamental part of how humans perceive visual scenes.
Although, models pretrained using the instance discrimination paradigm fail to learn object-
level knowledge. This thesis detailed how the simple addition of object-level knowledge,
whether it is through object discovery in natural images or anatomical priors in medical
images, leads to improvements in downstream performance, e⇤ciency, and interpretability.
Object-level representation learning is the next step for instance discrimination pretraining.
However, learning objects is not the only point of improvement. Instance discrimination re-
lies heavily on data augmentation, an implicit form of supervision for unsupervised learning
algorithms. To truly uphold the title of unsupervised representation learning, the instance
discrimination paradigm must avoid the use of data augmentations. We believe that the com-
bination of data-augmentation free instance discrimination [19] and object-level pretraining
provides is an exciting area for future research.
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