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Abstract

Generative Modelling of Quantum Processes via Quantum-Probabilistic Information
Geometry

by

Sahil Patel

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Umesh Vazirani, Chair

Generatively modelling properties of a single quantum system can already be computa-
tionally expensive, and often, one wishes to model several different scenarios to see how
the dynamical or equilibrium properties of a quantum system evolve as certain parameters,
such as time, temperature, or the Hamiltonian, are continuously modified. For such para-
metric families of tasks, there is often an inherent information geometry for this space of
tasks and within each task; one would ideally leverage awareness of such a geometry to
guide the optimization of generative models from task to task. Here we explore the use of
quantum-probabilistic hybrid representations that combine probabilistic generative models
with quantum neural networks, paired with optimization strategies which convert between
the geometry of the task space and that of the parameter space of our models, in order to
achieve an optimization advantage. We specifically study Riemannian metrics defined on the
space of density operators, in particular the Bogoliubov-Kubo-Mori (BKM) metric, which
can be well-estimated in an unbiased fashion for our class of quantum-probabilistic mod-
els, namely quantum Hamiltonian-based models (QHBMs). We show that natural gradient
descent with respect to this construction attains quantum Fisher efficiency of parameter
estimation. We further present an alternative first-order formulation of mirror descent that
is conducive to improvements in quantum sample complexity. We also derive conditional
initialization strategies for simulating time evolution processes and equilibrium states for
various values of the problem space parameters. We demonstrate both theoretically and nu-
merically that such techniques may enable accelerated convergence to more optimal solutions
of quantum generative modelling tasks.
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Chapter 1

Introduction

Understanding of quantum mechanical systems depends on the interaction between theory
and experiment. With the rise of computers in the late 20th century, theory has come to
include numerical simulation of physical systems beyond the reach of analytic techniques.

While current state-of-the-art simulations are run on classical computers, quantum com-
puters have been proposed to more efficiently simulate quantum systems [8]. Recently,
quantum computers have experimentally surpassed the performance of classical computers
on the specialized task of simulating the output of random quantum dynamics [3]. In the
coming years it is expected that quantum computers will surpass classical computers on
increasingly practical tasks.

Many algorithms have been proposed for the task of quantum simulation. A universal
algorithm for quantum simulation on quantum computers was developed as early as 1996
[17], where techniques for both closed and open quantum systems were proposed. However,
these proposals often require quantum circuits with depths far beyond the reach of today’s
Noisy Intermediate-Scale Quantum (NISQ) processors [23]. Variational algorithms offer
an alternative approach which can reduce the circuit depth requirements for simulation
tasks, making them more amenable to near-term hardware at the cost of requiring classical
parameter optimization. In particular, these algorithms take the heuristic perspective that
has served machine learning well in recent years by defining a loss function on the samples
from a quantum computer, and optimizing the parameters of a quantum circuit to minimize
that loss [20, 19].

Early efforts on variational quantum algorithms largely focused on pure state simulation,
but many physical systems cannot be described by pure states. Instead, most systems exist
at non-zero temperature, or are entangled with systems not accessible to the experimentalist
[13]. These systems are described by classical probability distributions over pure quantum
states and the required combination of classical and quantum information is typically sum-
marized using a density operator. Recently, quantum Hamiltonian-based models (QHBMs)
[29] were introduced as a new variational architecture for simulating density operators by
combining probabilistic generative models with quantum neural networks. Specific tasks
for these class of models include generating the thermal state for a given Hamiltonian and
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inverse temperature as well as learning the modular Hamiltonian of an unknown density
operator state through query access to the state.

In this work, we extend the theory of QHBMs by exploring the information geometry
of these quantum-probabilistic models. We specifically study the Bogoliubov-Kubo-Mori
(BKM) metric defined over the space of density operators and leverage the information
geometric structure it induces to construct more sophisticated optimization methods for
effectively learning parameterizations of QHBMs. First, we derive metric-aware descent al-
gorithms for QHBMs, including in particular the traditional second-order method of natural
gradient descent as well as an equivalent first-order formulation of mirror descent, that yield
steepest descent updates towards the minimum of a loss function while maintaining a fixed
step size in density operator space. Furthermore, we define priors for learning sequences
of quantum states with QHBMs, for instance to simulate equilibrium and time evolution
processes, which exploit the geometric locality between adjacent states in the sequence. We
demonstrate that such techniques informed by the information geometry of QHBMs can
enable accelerated convergence to more optimal solutions of variational learning tasks in
quantum simulation.



3

Chapter 2

Background

2.1 Quantum Hamiltonian-Based Models

Quantum Hamiltonian-based models (QHBMs) were originally proposed in [29] as a new
class of quantum machine learning models for generative modelling of density operators. We
formally define our density operator spaceM(N) to be set of all N ×N density matrices ρ̂,
where the dimension of the corresponding Hilbert space H is dimH = N = 2n, and that of
M(N) itself is dimM(N) = N2 − 1. As density operators describe a classical probabilistic
mixture over pure quantum states, QHBMs accordingly parameterize this space through a
hybridized representation featuring both quantum and classical correlations. In particular,
we may view the quantum-probabilistic structure of QHBMs in terms of two equivalent
formulations as follows. Under the mixture representation, a density operator ρ̂Ω ∈M(N) is
parameterized as

ρ̂Ω =
∑
x

pθ(x)Ûϕ |x⟩ ⟨x| Û †
ϕ. (2.1)

Here, x ∈ {0, 1}n denotes an arbitrary element in the set of all bitstrings of length n cor-
responding to the computational basis states |x⟩ of H. The parameters Ω = (θ,ϕ) ∈ Rd

specify the classical probability distribution pθ(x), which captures classical correlations, and
the unitary quantum neural network (QNN) [5] Uϕ, which adds quantum correlations to our
representation. We specifically consider pθ(x) to be given by a classical energy-based model
(EBM) [12, 7],

pθ(x) =
1

Zθ

e−Eθ(x), Zθ =
∑
x

e−Eθ(x), (2.2)

where the probability of a given sample x is proportional to the exponential of the energy
function Eθ(x), with the normalization factor being the partition function Zθ. This definition
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gives rise to the equivalent exponential representation,

ρ̂Ω =
1

Zθ

e−K̂Ω , K̂Ω = ÛϕK̂θÛ
†
ϕ, K̂θ =

∑
x

Eθ(x) |x⟩ ⟨x| , (2.3)

in which ρ̂Ω is expressed as the thermal state of a parameterized modular Hamiltonian K̂Ω.
Quantum-Hamiltonian-based models (QHBMs) can therefore be seen a a direct quantum
generalization of classical energy-based models (EBMs).

The exponential structure of QHBMs further makes these class of models particularly
conducive to tasks that involve optimizing the quantum relative entropy [30], which, for a
given pair of density operators ρ̂, σ̂ ∈M(N), is defined as

D(ρ̂∥σ̂) = tr[ρ̂(log ρ̂− log σ̂)] = −S(ρ̂)− tr[ρ̂ log σ̂], (2.4)

in terms of the von Neumann entropy S(ρ̂) = − tr[ρ̂ log ρ̂]. The quantum relative entropy
is a non-commutative generalization [28] of the Kullback-Leibler divergence [15] which is
commonly used as a loss function in classical probabilistic machine learning [9]. We highlight
two important properties of the quantum relative entropy. First, D(ρ̂∥σ̂) ≥ 0, which is
satisfied with equality if and only if ρ̂ = σ̂. Consequently, we can construct a variational
principle where we define the quantum relative entropy between our QHBM representation
ρ̂Ω and some desired target state σ̂ as our loss function, which we then minimize to find
optimal parameters Ω∗ such that ρ̂Ω∗ ≈ σ̂. Furthermore, D(ρ̂∥σ̂) is asymmetric with respect
to its arguments ρ̂ and σ̂. By considering both possible orderings of ρ̂Ω and σ̂, we obtain two
distinct sets of applications for QHBMs, namely variational quantum thermalization (VQT)
and quantum modular Hamiltonian learning (QMHL).

2.2 Variational Quantum Thermalization

Suppose we are given a Hamiltonian H and a inverse temperature β and the task is to
simulate the associated thermal state

σ̂β =
1

Zβ

e−βĤ , Zβ = tr
[
e−βĤ

]
. (2.5)

We may formulate this quantum simulation task as a specific quantum-probabilistic opti-
mization problem, which we term quantum variational thermalization (VQT), by minimizing
the forward quantum relative entropy between our QHBM and the target thermal state,

min
Ω

D(ρ̂Ω∥σ̂β) = min
Ω

[
β tr

[
ρ̂ΩĤ

]
− S(ρ̂Ω) + logZβ

]
= min

Ω

[
β tr

[
ρ̂ΩĤ

]
− S(pθ)

]
= min

Ω
LVQT(Ω).

(2.6)
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In the first line we have substituted the form of σ̂β (2.5) into the definition of the quantum
relative entropy (2.4), while in second line we have recognized that the von Neumann entropy
of ρ̂Ω is simply the classical entropy of pθ and further that logZβ is independent of Ω. We
see that the VQT loss LVQT(Ω) is directly proportional to the free energy of the state ρ̂Ω

with respect to the system H, F (ρ̂Ω) = tr
[
ρ̂ΩĤ

]
− 1

β
S(pθ). To optimize the objective

(2.6), we may utilize gradient-based methods, such as gradient descent, which are generally
preferred over gradient-free optimization. In particular, we find that QHBMs naturally
lend themselves to analytical expressions for the gradient of quantum relative entropies
that involve both classical and quantum expectations and can therefore be conveniently
approximated through sample-based estimates. In the specific case of the VQT loss (2.6),
it can be shown that the gradient with respect to the classical probabilistic parameters θ is
[29]

∇θLVQT(Ω) = β∇θ tr
[
ρ̂ΩĤ

]
−∇θS (pθ)

= Ex∼pθ(x)

[
β⟨Ĥ⟩Ûϕ|x⟩ − Eθ(x)

]
Ex∼pθ(x) [∇θEθ(x)]

− Ex∼pθ(x)

[(
β⟨Ĥ⟩Ûϕ|x⟩ − Eθ(x)

)
∇θEθ(x)

] (2.7)

where ⟨Ĥ⟩Ûϕ|x⟩ = ⟨x|U
†
ϕĤUϕ |x⟩ is the expectation of Ĥ in the state Ûϕ |x⟩. Morever, the

gradient with respect to the QNN parameters ϕ is given by

∇ϕLVQT(Ω) = β∇ϕ tr
[
ρ̂ΩĤ

]
−∇ϕS (pθ)

= βEx∼pθ(x)

[
∇ϕ⟨Ĥ⟩Ûϕ|x⟩

]
.

(2.8)

We recognize that ∇ϕ⟨Ĥ⟩Ûϕ|x⟩ is the gradient of the expectation of a quantum observ-
able with respect to a parameterized state, a typical scenario encountered in training QNNs
through gradient-based optimization. There exist various methods to obtains such gradients,
however, the standard approach is to leverage parameter-shift rules [5], which analytically ex-
press each partial derivative as a linear combination of parameter-shifted expectation values.
For instance, in the case where the QNN component of our QHBM is given by the hardware-
efficient ansatz (i.e. a QNN whose parameterized operations are independently parameterized

and are of the form of simple exponentials of single Pauli operators, e.g. Uϕ =
∏

j e
iϕj P̂j),

we have the following formula for each element of the gradient ∇ϕLVQT(Ω):

∂ϕj
LVQT(Ω) =βEx∼pθ(x)

[
∂ϕj
⟨Ĥ⟩Ûϕ|x⟩

]
=
β

2
Ex∼pθ(x)

[
⟨Ĥ⟩Û

ϕ+∆j |x⟩ − ⟨Ĥ⟩Ûϕ−∆j |x⟩

] (2.9)

with ∆j being a π/2 magnitude shift in the jth parameter ϕj such that ∆j
k =

π
2
δjk.
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2.3 Quantum Modular Hamiltonian Learning

Dual to VQT, suppose we are given query access to an otherwise unknown target state σ̂
for which seek to learn a representation of in the form of a QHBM. Now taking the reverse
direction of the quantum relative entropy as our objective, we obtain quantum modular
Hamiltonian learning (QMHL),

min
Ω

D(σ̂∥ρ̂Ω) = min
Ω

[
tr
[
σ̂K̂Ω

]
− S(σ̂) + logZθ

]
= min

Ω

[
tr
[
σ̂K̂Ω

]
+ logZθ

]
= min

Ω
LQMHL(Ω),

(2.10)

where we have applied the exponential QHBM representation (2.3) in the first step and
identified the independence of S(σ̂) with respect to Ω in the second step. The resulting
QMHL loss is equivalent to the quantum cross entropy between the target state and the
QHBM, S(σ̂, ρ̂Ω) = − tr[σ̂ log ρ̂Ω]. We find that the gradient of the loss with respect to θ is

∇θLQMHL(Ω) = ∇θ tr
[
σ̂K̂Ω

]
+∇θ logZθ

= Ex∼σϕ(x) [∇θEθ(x)]− Ex∼pθ(x) [∇θEθ(x)]
(2.11)

where σϕ(x) = ⟨x| Û †
ϕσ̂Ûϕ |x⟩ is the distribution induced by sampling the state σ̂ϕ = Û †

ϕσ̂Ûϕ

in the computational basis. The gradient with respect to ϕ is shown to be

∇ϕLQMHL(Ω) = ∇ϕ tr
[
σ̂K̂Ω

]
+∇ϕ logZθ

= ∇ϕ⟨K̂θ⟩σ̂ϕ

(2.12)

where ⟨K̂θ⟩σ̂ϕ
= tr

[
σ̂ϕK̂θ

]
is the expectation of K̂θ in the state σ̂ϕ. Assuming the hardware-

efficient ansatz and applying the corresponding parameter-shift rule, we can write this gra-
dient element-wise as

∂ϕj
LQMHL(Ω) = ∂ϕj

tr
[
σ̂ϕK̂θ

]
(2.13)

=
1

2

(
⟨K̂θ⟩σ̂

ϕ+∆j
− ⟨K̂θ⟩σ̂

ϕ−∆j

)
. (2.14)
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Chapter 3

Theory

3.1 Quantum-Probabilistic Natural Gradient Descent

We motivate the utility of leveraging the information geometry of density operators for vari-
ational optimization of QHBMs by first recognizing the standard method of vanilla gradient
descent, which is the main optimization algorithm used in the prior work [29], as the direc-
tion of steepest descent with respect to the Euclidean geometry of the classical parameter
space. Formally, we have

δj+1 = argmin
1
2
∥δ∥22≤ε2

L(Ωj + δ). (3.1)

Here, the loss L(Ωj) is taken to be the quantum relative entropy between the current QHBM
representation ρ̂Ωj

and the target state σ̂ in either the forward direction D(ρ̂Ωj
∥σ̂), which

corresponds to the VQT loss LVQT(Ωj) (2.6), or the reverse direction D(σ̂∥ρ̂Ωj
), which

corresponds to the QMHL loss LQMHL(Ωj) (2.10). Furthermore, δj+1 = Ωj+1 − Ωj is the
update to the parameters Ω of the QHBM at iteration j + 1, and ε is a constant defining
the effective step size of our update. We construct the relaxed Lagrangian corresponding
to this constrained optimization problem, expand the value of L to first order in δ, and
remove constants that do not depend on δ to obtain the following unconstrained optimization
problem:

δj+1 = argmin
δ

[〈
∇Ωj
L(ρ̂Ωj

), δ
〉
+

λ

2
∥δ∥22

]
. (3.2)

Applying the first order optimality condition and rearranging terms produces the familiar
update rule of vanilla gradient descent,

Ωj+1 = Ωj −
1

λ
∇Ωj
L(ρ̂Ωj

), (3.3)

where we identify 1/λ as the learning rate. This interpretation highlights the strong depen-
dence of vanilla gradient descent on the Euclidean geometry of parameter space, which is
tied to the specific parameterization of our model.
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It is instead more natural to perform steepest descent in the distribution space of density
operators by using a more appropriate distinguisability measure, which we shall take to be
the quantum relative entropy,

δj+1 = argmin
δ: D(ρ̂Ωj

∥ρ̂Ωj+δ)≤ε2
L(Ωj + δ). (3.4)

There are two basic conceptual reasons why this formulation of natural gradient or metric-
aware descent may be particularly advantageous as compared to vanilla gradient descent:

Idea 1 By taking constant steps over our intended search space of density operators as
opposed to the classically parameterizing space, we can diminish [16], and, in some
cases, eliminate [1], dependencies on the choice of parameterization.

Idea 2 As the quantum relative entropy is directly used as the variational loss function for
QHBMs, these constant steps in quantum relative entropy respect the fundamental
distinguishibility of density operators associated with the loss.

To derive the corresponding update rule, we recognize the second-order Taylor series approx-
imation of D(ρ̂Ωj

∥ρ̂Ωj+δ) to be given by

D(ρ̂Ωj
∥ρ̂Ωj+δ) ≈

1

2
⟨δ, I(Ωj)δ⟩ . (3.5)

We note that the first two orders of expansion vanish since D(ρ̂Ωj
∥ρ̂Ωj+δ) is at a minimum

of zero when δ = 0. Here, we also leverage the fact that the Hessian of the quantum relative
entropy is given by the Bogoliubov-Kubo-Mori (BKM) information matrix, which resolves
the BKM metric tensor defined on the manifold of density operatorsM(N) to the coordinate
basis of the classical parameters Ω. We provide analytical expressions for the elements of
the BKM information matrix conducive to sample-based approximation in Appendix A.1.
Intuitively, we may interpret I as providing a notion of how changes in parameter space
induce corresponding changes in state space. We further remark that the quantum relative
entropy is symmetric up to second-order in δ such that we could have equivalently employed
the opposite direction D(ρ̂Ωj+δ∥ρ̂Ωj

) in our construction and still obtain the same result.
Proceeding in an analogous manner as before and expanding all terms to first non-vanishing
order in δ, we arrive at

δj+1 = argmin
δ

[〈
∇Ωj
L(ρ̂Ωj

), δ
〉
+

1

2
⟨δ, I(Ωj)δ⟩

]
. (3.6)

The solution to the above optimization problem yields the quantum-probabilistic natural
gradient descent (QPNGD) update rule,

Ωj+1 = Ωj −
1

λ
I−1(Ωj)∇Ωj

L(Ωj). (3.7)
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Algorithm 1 Quantum-Probabilistic Natural Gradient Descent (QPNGD)

1: for j = 1, 2, . . . do
2: select λj

3: evaluate ∇Ωj
L(Ωj)

4: construct I(Ωj) via (15), (18), and (19)
5: compute I−1(Ωj)
6: update Ωj+1 ← Ωj − 1

λj
I−1(Ωj)∇L(Ωj)

We present the full procedure in Algorithm 1. Indeed, this aesthetically matches the classical
natural gradient update rule [2] and existing quantum generalizations [25, 14, 26]. In the
classical case, the distribution space is that of categorical probability distributions and the
distinguishability measure is the classical relative entropy, which gives rise to the Fisher-
Rao metric and the classical Fisher information matrix. In the quantum case, however,
we note that there exists a degeneracy in the choice of metric over the space of density
operators, and existing works have thus far considered the Bures-Helstrom metric and the
corresponding quantum Fisher information matrix. We alternatively choose to utilize the
Bogoliubov-Kubo-Mori (BKM) information geometry for the following reasons that are both
first-known for quantum metric-aware descent rules:

Contribution 1 The QPNGD update rule (3.44) admits a provable optimality guarantee
in terms of the variance of the estimated parameters.

Contribution 2 The QPNGD update rule (3.44) admits a tractable dual form conducive
to sample-efficiency improvements.

3.2 Quantum Fisher Efficiency

We describe a notion of optimality which we may seek to satisfy for a general optimization
algorithm. In particular, we consider the idea of Fisher efficiency, and describe its quantum
analogue, quantum Fisher efficiency, both of which take the perspective of viewing iterative
update rules as parameter estimation strategies. In the classical case, attaining Fisher ef-
ficiency means that the asymptotic accuracy of an unbiased estimator, as measured by its
error covariance matrix, attains the well-known classical Cramér-Rao bound to first-order in
the number of data samples used. We may think of an online optimization rule as a statis-
tical estimator by saying that the latest parameters at step j is the estimator given O (j)
data samples. Fisher efficiency is achieved for classical online natural gradient descent with
a particular choice of learning rate, assuming that the optimal parameters are eventually
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reached [1]. This therefore implies that, to first-order, such an update rule can achieve the
best-case asymptotic scaling that is usually associated with maximum likelihood estimation.

Analogously, an unbiased estimator is said to achieve quantum Fisher efficiency if it
saturates the generalized quantum Cramér-Rao bound, which, in specific case of the BKM
geometry, takes the form

Cov(Âj;Ω
∗) ⪰ 1

j
I−1(Ωj). (3.8)

Here, Âj = {Âk
0}dk=1 is a collection of quantum observables that satisfy tr

[
ρ̂Ω∗Âk

j

]
= Ωk

j ,

where Ωk
j denotes the kth element of Ωj, so that Âj is an unbiased estimator of Ωj, and

Cov(Âj;Ω
∗) is the error covariance matrix of Âj relative to the optimal parameters Ω∗. No

known such result has been shown for prior constructions of quantum metric-aware descent
rules [25, 14, 26]. The intuitive reason is due the fundamental discrepancy between the
chosen metric, which captures the curvature of the state space, and the curvature of the
objective function. We demonstrate that our particular quantum metric-aware descent rule
is the first known to provide such a guarantee. This is because we are able to take advantage
of the fact that the variational loss for the QHBM class of models is precisely given by
our selected distinguishability measure of the quantum relative entropy so that the BKM
information matrix is the Hessian of the loss.

We specifically consider an online version of the QPNGD update rule with a particular
choice of learning rate,

Ωj+1 = Ωj −
1

j
I−1(Ωj)∇̃Ωj

L(Ωj). (3.9)

Here, our target state is taken to be the QHBM representation generated by the optimal
parameters ρ̂Ω∗ , which implies that the loss is accordingly L(Ωj) = D(ρ̂Ωj

∥ρ̂Ω∗) or L(Ωj) =

D(ρ̂Ω∗∥ρ̂Ωj
). Morever, ∇̃Ωj

L(Ωj) is an online unbiased estimator of the gradient of the loss

obtained by drawing a single pure state Ûϕ∗ |x⟩ from the eigenstates of ρ̂Ω∗ (with probability
of the corresponding eigenvalue pθ∗(x)) at each optimization step such that

Ex[∇̃Ωj
L(Ωj)] = ∇Ωj

L(Ωj). (3.10)

We claim this learning rule is optimal in the sense of quantum Fisher efficiency, as stated in
the following theorem:

Theorem 3.2.1. Suppose that I(Ω) is non-singular for all Ω. Suppose further that Ωj

converges to the optimal parameters Ω∗ in expectation, i.e., Ex[Ωj]→ Ω∗ as j →∞. In such
a case, the online quantum-probabilistic natural gradient descent (QPNGD) update rule (3.9)
is quantum Fisher efficient, attaining the quantum Cramér-Rao bound (3.8) asymptotically.

Proof. We prove the result of Theorem 3.2.1 by mapping the online QPNGD update rule
(3.9) in parameter space to a latent dynamical equation in quantum observables so that
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we may be able to utilize the parameter estimatation language of the generalized quantum
Cramér-Rao bound (3.8). To be explicit, we take our particular loss function to be the reverse
quantum relative entropy L(Ωj) = D(ρ̂Ω∗∥ρ̂Ωj

), however, we note that the same result will
still hold if instead we have the forward direction, as both directions are symmetric up to
second-order. Using the collection of quantum observables Âj previously defined in the
context of (3.8), we rewrite (3.9) element-wise in expectation as

tr
[
ρ̂Ω∗Âk

j+1

]
= tr

[
ρ̂Ω∗Âk

j

]
− 1

j

∑
l

[I−1(Ωj)]k,l∂Ωl
j
D(ρ̂Ω∗∥ρ̂Ωj

). (3.11)

We note that for the BKM geometry, we can relate the Hessian of the quantum relative
entropy to the definition of the information matrix,

−∂2
Ω′

l,Ωm
D(ρ̂Ω′∥ρ̂Ω) |Ω′=Ω= [I(Ω)]l,m = tr[(∂Ωl

ρ̂Ω)LΩ(∂Ωm ρ̂Ω)]. (3.12)

Here, we define the raising operator RΩ as playing the role of the metric with raised indices,
which in the case of the BKM metric is given by

RΩ(Â) =

∫ 1

0

ρ̂sΩÂρ̂
1−s
Ω ds, (3.13)

whereas the corresponding lowering operator LΩ = R−1
Ω acts as the metric with lowered

indices and satisfies

LΩ(Â) =

∫ ∞

0

(ρ̂Ω + s1)−1Â(ρ̂Ω + s1)−1ds. (3.14)

It follows from (3.12) that the first derivative of the quantum relative entropy can be ex-
pressed as

−∂Ωl
D(ρ̂Ω′∥ρ̂Ω) = tr[ρ̂Ω′LΩ(∂Ωl

ρ̂Ω)]. (3.15)

Given (3.15), we obtain

tr
[
ρ̂Ω∗Âk

j+1

]
= tr

[
ρ̂Ω∗Âk

j

]
+

1

j

∑
l

[I−1(Ωj)]k,l tr
[
ρ̂Ω∗LΩj

(∂Ωl
j
ρ̂Ωj

)
]
. (3.16)

We see that this is simply the quantum expectation of the latent dynamical equation

Âk
j+1 = Âk

j +
1

j

∑
l

[I−1(Ωj)]k,lLΩj
(∂Ωl

j
ρ̂Ωj

), (3.17)

which describes how our collection of quantum observables, acting as estimators of the clas-
sical parameters, updates at each descent step. Without loss of generality, we assume that
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Ω∗ = 0 and define the associated error covariance matrix at iteration j as given element-wise
by

[Vj]k,l = [Cov(Âj;Ω
∗)]k,l = tr

[
RΩ∗

(
Âk

j

)
Âl

j

]
. (3.18)

We recognize that Vj is indeed symmetric by the property tr
[
RΩ(Â)B̂

]
= tr

[
RΩ(B̂

†)Â†
]

[22]. Direction substitution of (3.17) induces a corresponding dynamical equation on the
elements of the error covariance matrices,

[Vj+1]k,l = [Vj]k,l +
2

j

∑
l′

[I−1(Ωj)]l,l′ tr
[
RΩ∗(Âk

j )LΩj

(
∂Ωl′

j
ρ̂Ωj

)]
+

1

j2
[I−1(Ωj)]k,l +O

(
1

j3

)
,

(3.19)

where we have used

RΩ∗(Â) = RΩj
(Â) +O

(
1

j

)
, (3.20)

since Ωj converges to Ω∗, along with (3.12) and the fact that LΩ = R−1
Ω . Taking the

gradient of the second-order Taylor series approximation of D(ρ̂Ω∗∥ρ̂Ωj
),

D(ρ̂Ω∗∥ρ̂Ωj
) ≈ 1

2
⟨Ωj −Ω∗, I(Ω∗)(Ωj −Ω∗)⟩ , (3.21)

we obtain

∇Ωj
D(ρ̂Ω∗∥ρ̂Ωj

) ≈ ⟨I(Ω∗),Ωj −Ω∗⟩ . (3.22)

We then apply this result in conjunction with and (3.15) to yield

tr
[
RΩ∗(Âk

j )LΩj

(
∂Ωl′

j
ρ̂Ωj

)]
= −

∑
m

[I(Ω∗)]l′,m tr
[
RΩ∗(Âk

j )Â
m
j

]
+O

(
1

j2

)
(3.23)

= −[I(Ω∗)Vj]l′,k +O

(
1

j2

)
(3.24)

Substituting (3.23) into (3.19) and expressing the result in matrix form gives

Vj+1 = Vj −
2

j
I−1(Ωj)I(Ω∗)Vj +

1

j2
I−1(Ωj) +O

(
1

j3

)
. (3.25)

Noting that

I−1(Ωj) = I−1(Ω∗) +O

(
1

j

)
, (3.26)
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we finally arrive at

Vj+1 = Vj −
2

j
Vj +

1

j2
(IΩ∗)−1 +O

(
1

j3

)
. (3.27)

The solution to (3.27) is asymptotically

Vj =
1

j
I−1(Ωj), (3.28)

which satisfies (3.8) with equality.

Since the online update rule achieves quantum Fisher efficiency, it is straightforward
to see that using more data samples at each optimization step, as would be typical for
a standard batch learning rule, can only improve convergence and therefore also achieves
quantum Fisher efficiency.

3.3 Quantum-Probabilistic Mirror Descent

Estimating the BKM information matrix, as per (15), (18), and (19), for each application
of the QPNGD update rule is clearly a challenging task in terms of both memory and
algorithmic complexity given that the number of unique elements, d(d + 1)/2, is quadratic
in the dimensionality of the parameter space d = |Ω|. In particular, if the QNN component
of the QHBM is amenable to parameter shift rules and q = |ϕ| is specifically the number
of parameters of the QNN, then 2q(q + 2) quantum expectation evaluations are required,
which constitutes the dominant factor of computation. Finding tractable approximations for
the various metric-aware descent constructions has been recognized as critical for practical
application in both quantum [25] and classical [18, 24] works. In the quantum case, block
approximations [25] have been considered as mechanisms to limit the computation of cross
terms to pairs of parameters which are expected to be significantly correlated. Related types
of inductive biases have been successful classically, for example assuming that the information
matrix has a Kronecker product factorization [18]. In the classical literature, a separate result
is known which translates the second-order method of natural gradient descent to the first-
order method of mirror descent [24]. The result follows from the fundamental concept of
duality by which two coordinate systems can be considered dual to each other in the sense
of being related by the Legendre transform. We now seek to apply this notion to our current
construction of QPNGD in order to achieve improvements in quantum sample-efficiency.

There exist two natural choices of coordinate systems on the space of density operators
M(N) [11]. Specifically, mixture or Bloch coordinates {ηj}N

2−1
j=1 refer to the decomposition

of density matrices in a basis identifiable with SU(N) as

ρ̂η =
1

N
1+

N2−1∑
j=1

ηjσ̂j, (3.29)
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where σ̂j are traceless, Hermitian matrices and ηj =
1
2
tr[σ̂j ρ̂Ω]. The positivity of density ma-

trices implies that the mixture coordinates must be constrained such that
√∑N2−1

j=1 η2j ≤ 1.

We recognize that the mixture representation of QHBMs {pθ,ϕ} (2.1) are directly related

to the mixture coordinates {ηj}N
2−1

j=1 , with pθ likewise being constrained over the reals. Al-

ternatively, exponential coordinates {φj}N
2−1

j=1 refer to the SU(N)-identifiable decomposition
given by

ρ̂φ =
e−K̂φ

Zφ

, K̂φ =
N2−1∑
j=1

φjσ̂j, Zφ = tr
[
e−K̂φ

]
, (3.30)

where we have σj as before and φj ∈ R now unconstrained. There analogously exists a rela-
tion between the exponential representation {Eθ,ϕ} (2.3) and the exponential coordinates

{φj}N
2−1

j=1 , with Eθ similarly unconstrained over the reals.
It is known that the BKM metric is the unique monotone metric for which the mix-

ture and exponential coordinate systems (η,φ) are mutually dual [11, 10]. Leveraging
this property, we now present the following theorem, which posits the equivalence of our
quantum-probabilistic formulations of mirror descent and natural gradient descent:

Theorem 3.3.1. The quantum-probabilistic mirror descent (QPMD) rule in mixture coor-
dinates η, with the Bregman divergence given by the quantum relative entropy,

ηj+1 = argmin
η

[
⟨∇ηj

L(ηj),η⟩+ λD(ρ̂η∥ρ̂ηj
)
]
, (3.31)

is equivalent to the quantum-probabilistic natural gradient descent (QPNGD) rule in expo-
nential coordinates φ,

φj+1 = φj −
1

λ
I−1(φj)∇φj

L(φj). (3.32)

A parallel argument holds if the QPMD update rule is expressed in terms of exponential
coordinates and the QPNGD update rule in terms of mixture coordinates.

Proof. The duality of the mixture and exponential coordinate systems (η,φ) under the BKM
metric implies the existence of a corresponding pair of potential functions Φ(η),Ψ(φ) that
are dual to each other via the Legendre transform,

φ = ∇ηΦ(η), η = ∇φΨ(φ), (3.33)

and further whose Hessians are related to the BKM information matrix [10],

∇2
ηΦ(η) = I(η), ∇2

φΨ(φ) = I(φ), (3.34)



CHAPTER 3. THEORY 15

parameterized with respect to the appropriate coordinate system. It can be shown that these
functions are the negative von Neumann entropy,

Φ(η) = −S(ρ̂η) = tr[ρ̂η log ρ̂η], (3.35)

and the log partition function [11],

Ψ(φ) = logZφ = log tr
[
e−K̂φ

]
, (3.36)

where ρη and K̂φ are as given in (3.29) and (3.30), respectively. A unique property of
the negative von Neumann entropy in particular is that the induced Bregman divergence is
precisely the quantum relative entropy [21],

DΦ(η,η
′) = Φ(η)− Φ(η′)− ⟨∇η′Φ(η′),η − η′⟩ = D(ρ̂η∥ρ̂η′). (3.37)

Therefore, applying the first-order optimalilty condition to the minimization problem in
(3.31) and using the above fact (3.37), we have

∇ηj+1
Φ(ηj+1) = ∇ηj

Φ(ηj)−
1

λ
∇ηj
L(ηj). (3.38)

We can rewrite (3.38) in terms of exponential coordinates via the Legendre transform (3.33)
to yield

φj+1 = φj −
1

λ
∇ηj
L(∇φj

Ψ(φj)). (3.39)

Recognizing that

∇φj
L(∇φj

Ψ(φj)) = ∇2
φj
Ψ(φj)∇ηj

L(∇φj
Ψ(φj)), (3.40)

we obtain

∇ηj
L(∇φj

Ψ(φj)) = I−1(φj)∇φj
L(∇φj

Ψ(φj)), (3.41)

where we have used the relation ∇2
φΨ(φ) = I(φ) from (3.34). Direction substitution of

(3.41) into (3.39) gives the desired result (3.32).

One consequence of this equivalence is that the optimality guarantee of QPNGD also
extends to QPMD such that with the particular choice of regularization λ = j and under the
same convergence assumptions, the update rule (3.31) is quantum Fisher efficient. In terms
of the QHBM parameterization, we may express the QPMD update rule (3.31) as

Ωj+1 = argmin
Ω

[
⟨∇Ωj

L(Ωj),Ω⟩+ λD(ρ̂Ω∥ρ̂Ωj
)
]
. (3.42)
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Algorithm 2 Quantum-Probabilistic Mirror Descent (QPMD)

1: for j = 1, 2, . . . do
2: select λj

3: evaluate ∇Ωj
L(Ωj)

4: for k = 1, 2, . . . , K do
5: select ηk
6: evaluate ∇Ωk

j
D(ρ̂Ωk

j
∥ρ̂Ωj

)

7: update Ωk+1
j ← Ωk

j − ηk
(
∇Ωj
L(Ωj) + λj∇Ωk

j
D(ρ̂Ωk

j
∥ρ̂Ωj

)
)

8: update Ωj+1 ← ΩK+1
j

By further treating the minimization in (3.42) as a sub-problem that we choose solve with
an inner-loop of gradient descent, we obtain Algorithm 2. Though quantum Fisher efficiency
is no longer guaranteed to hold under such reparameterization and approximation, in com-
parison with Algorithm 1, no inversion is required and we have transformed a second-order
method to be entirely first-order, implying a potential reduction in quantum sample complex-
ity. Assuming that we perform k steps of gradient descent in the inner-loop to sufficiently
converge to the minimum, the number of quantum evaluations at each step is k(2q + 1).
If k is such that k(2q + 1) < 2q(q + 2), then QPMD can be utilized as a sample-efficient
alternative to QPNGD.

3.4 Learning Sequences of Quantum States

Suppose that instead of a single target state, we now have a sequence of such states {σ̂(Λ(τk))}Mk=1

where Λ : R → Rd defines a path in the parameterizing space of target density operators,
which for instance may include parameters of time, temperature, or couplings of a given
Hamiltonian. Our objective is then to learn a sequence of optimal parameters of a QHBM
{Ω∗(τk)}Mk=1 such that the corresponding sequence of generated quantum state representa-
tions well approximates each target state, ρ̂Ω∗(τk) ≈ σ̂(Λ(τk)). To do so, we can define a loss
function for each step in the sequence as the quantum relative entropy, in either direction,
between our QHBM and the corresponding target state, and collectively minimize the sum
of all losses along the sequence,

{Ω∗(τk)}Mk=1 = argmin
{Ω(τk)}Mk=1

M∑
k=1

L(Ω(τk)) (3.43)

where L(Ω(τk)) = D(ρ̂Ω(τk)∥σ̂(Λ(τk))) or L(Ω(τk)) = D(σ̂(Λ(τk))∥ρ̂Ω(τk)). We may naively
optimize the objective (3.43) by independently minimizing each loss term in the summation.
However, we are then not exploiting our prior knowledge of the information geometry that
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adjacent states in the sequence should be close to one another in quantum relative entropy.
In particular, if σ̂(Λ(τ)) is continuous in trace distance with respect to the parameter τ ,
then the quantum relative entropy between will likewise be continuous with respect to τ
since we are considering a finite-dimensional space of density operatorsM(N) [4]. Therefore,
if our discretization {τk}Mk=1 is sufficiently fine, we should expect some notion of locality with
respect to the quantum relative entropy to hold. We accordingly describe a natural extension
of metric-aware optimization from single states to sequences of states that effectively encodes
this prior.

Without loss of generality, we consider the first two states in a given sequence {σ̂(Λ(τ1)), σ̂(Λ(τ2))}
for which we seek to learn a corresponding pair of optimal QHBM parameters {Ω∗(τ1),Ω

∗(τ2)}.
We may obtain the first set of optimal parameters Ω∗(τ1) by starting from some random
initialization Ω0(τ1) and iteratively applying either the QPNGD update rule (3.44) or the
QPMD update rule (3.42) on the loss L(Ω(τ1)) until convergence. Now, if σ̂(Λ(τ1)) is geo-
metrically local to σ̂(Λ(τ2)) in the sense that D(σ̂(Λ(τ1))∥σ̂(Λ(τ2))) ≤ ε2 for some small ε,
then we reason that the previous optimal parameters may serve as a good initialization for
optimizing the next set of parameters with respect to its corresponding loss L(Ω(τ2)) such
that Ω0(τ2) = Ω∗(τ1). Generalizing to any arbitrary step in the sequence, we may link our
methods of metric-aware descent as

Ωj+1(τk) = Ωj(τk)−
1

λ
I−1(Ωj(τk))∇Ωj(τk)L(Ωj(τk)) (3.44)

for the QPNGD update rule (3.44), and

Ωj+1(τk) = argmin
Ω

[
⟨Ω,∇L (Ωj(τk))⟩+ λD

(
ρ̂Ω∥ρ̂Ωj(τk)

) ]
(3.45)

for the QPMD update rule (3.42), with the initialization Ω0(τk) = Ω∗(τk−1).

Meta-Variational Quantum Thermalization

We can extend VQT to a sequence learning scenario by considering that we are now given a
sequence of parameterized Hamiltonians and inverse temperatures {ĤΛ(τk), βk}Mk=1 so that our

sequence of target states are then the corresponding thermal states σ̂(Λ(τk)) = e−βkĤΛ(τk)/ZΛ(τk).
Using the forward direction of the quantum relative entropy as the loss, we arrive at the fol-
lowing sequence learning problem, which we term meta-variational quantum thermalization
(meta-VQT):

{Ω∗(τk)}Mk=1 = argmin
{Ω(τk)}

M∑
k=1

D(ρ̂Ω(τk)∥σ̂(Λ(τk))) (3.46)

Meta-Quantum Modular Hamiltonian Learning

Proceeding in an analogous manner for the case of QMHL, assume that we have direct query
access to a given sequence of arbitrary target states {σ̂(Λ(τk))}Mk=1. If we accordingly take
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the loss to be the reverse direction of the quantum relative entropy, we obtain meta-quantum
modular Hamiltonian learning (meta-QMHL),

{Ω∗(τk)}Mk=1 = argmin
{Ω(τk)}

M∑
k=1

D(σ̂(Λ(τk))∥ρ̂Ω(τk)). (3.47)

Quantum Variational Recursive Time Evolution Ansatz

Suppose we are alternatively given query access to an initial quantum state σ̂0 and the ability
to apply a completely-positive trace preserving (CPTP) dynamical map Φ to an arbitrary
density operator. Such a map may encode unitary (Schrodinger), Markovian (Lindbladian),
or non-Markovian (Nakajima-Zwanzig) dynamics. Our goal is then to simulate the evolution
of the initial quantum state under the action of the dynamical map over some time interval
[0, T ]. In particular, we assume that we can discretize the dynamical map over the time
interval with the aim of simulation such that we can apply Φtk+1,tk for {tk}Mk=1, where, for
simplicity, we have tk+1 = tk + ∆t, with ∆t = T/M . The corresponding sequence of states
we seek to learn are the evolved quantum states at each time step,

σ̂(tk) = Φtk,0(σ̂0) = Φtk,tk−1
◦ Φtk−1,tk−2

◦ . . . ◦ Φt1,0(σ̂0). (3.48)

The naive approach would be to simply identify each target state as σ̂(Λ(τk)) = σ̂(tk) and
formulate the problem as a specific instantiation of meta-QMHL (3.47). However, we note
that to construct each σ̂(tk), the quantum circuit depth grows linearly with k. The quantum
variational recursive time evolution ansatz (QVARTZ) aims to circumvent this scaling by
recursively learning our QHBM representations. Given the optimal QHBM at the previous
time step ρ̂Ω∗(tk−1), we apply the single channel for the current time step Φtk,tk−1

and learn
the current model ρ̂Ω(tk) against the resulting evolved state, which serves as approximation
of the true evolved state,

σ̂(tk) ≈ Φtk,tk−1
(ρ̂Ω∗(tk−1)). (3.49)

Formally, we set σ̂(Λ(τk)) = Φtk,tk−1
(ρ̂Ω∗(τk−1)) in the meta-QMHL objective (3.47). We may

intuitively view this approach as checkpointing the quantum dynamics of a system in the
classical parameters of a QHBM. As a result, our quantum circuit depth requirements are
now constant with respect k for we no longer need to repeatedly propagate our initial state
through a series of channels at each step and can instead initialize the evolution from our
latest QHBM representation.
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Chapter 4

Experiments

4.1 Transverse-Field Ising Model

For our experiments, we choose to study the transverse-field Ising model (TFIM), which
describes a quantum system of spins on a lattice featuring nearest neighbor ferromagnetic
interactions along the z axis in addition to an external magnetic field directed along the
transverse x axis. The Hamiltonian for this system is given by

ĤTFIM = −
∑
<i,j>

ẐiẐj − h
∑
i

X̂i, (4.1)

where the first summation is performed over pairs of nearest neighboring lattice sites and
h denotes the relative strength of the transverse field as compared to the nearest neighbor
interaction.

4.2 Model Architecture

We utilize a particular QHBM architecture that in principle can universally approximate any
density operator in the limit of many variational parameters, which we accordingly refer to
as the basic universal density operator ansatz (BUDA). For the choice of energy function of
the classical energy-based model, we consider a Kth-order binary energy function (KOBE)
of the form

Eθ(x) =
∑
b∈BK

θb(−1)∥b·x∥ (4.2)

with a corresponding latent modular Hamiltonian given by

K̂θ =
∑
b∈BK

θbẐ
b, (4.3)

where ∥b∥ ≡
∑n

j=1 |bj| is the Hamming norm, BK = {b ∈ Zn
2 |∥b∥ ≤ K} is a Hamming ball

centered at the origin of radius K, and Ẑb ≡
⊗n

j=1 Ẑ
bj
j is a convenient notation for Pauli
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operators. As for the unitary quantum circuit, we employ the standard hardware-efficient
ansatz, which can generally be expressed as a product of layers of unitaries,

Ûϕ =
L∏

ℓ=1

V̂ ℓÛ ℓ
ϕℓ , (4.4)

where each layer consists of a nonparametric unitary of two-qubits entangling gates V̂ ℓ in
addition to a parameterized unitary of single-qubit Pauli rotations,

Û ℓ
ϕℓ =

n⊗
j=1

e−iϕℓ
j P̂

ℓ
j . (4.5)

4.3 Quantum Metric-Aware Descent

We evaluate the proposed metric-aware gradient descent algorithms and compare their per-
formance to other standard optimization techniques on the particular task of simulating the
thermal state of the transverse-field Ising model Hamiltonian ĤTFIM 4.1 via VQT. For pur-
poses of simplicity, we consider a one-dimensional chain of 4 qubits with a transverse field
strength of h = 1 and an inverse temperature of β = 1. We variationally optimize the pa-
rameters Ω of a QHBM to minimize the VQT loss 2.6 using vanilla gradient descent, Adam,
and quantum-probabilistic natural gradient descent (QPNGD). In practical consideration of
the trainability of our model, we avoid utilizing an overly parameterized BUDA architecture,
electing instead to use a second-order KOBE function (4.2), which is equivalent to a Boltz-
mann machine, and a hardware-efficient ansatz (4.4), (4.5) with 2 layers, each consisting
of Pauli X and Z rotations on every qubit and controlled-Z gates between pairs of nearest
neighboring qubits. All optimization algorithms are run for a total of 10 different random
intializations of the variational parameters over 1000 training iterations with a learning rate
of 0.01. Any classical or quantum expectation values are estimated using 105 samples. In
the particular case of QPNGD, we employ a regularization of ϵ = 0.01 to ensure that the
transformed sample-based approximation of the information matrix I(Ωj) + ϵ1 is positive
definite. We further choose to directly solve the corresponding linear system rather than
explicitly computing the inverse in the interest of numerical stability and efficiency.

The results of our experiments are show in Figure 4.1. Vanilla gradient descent converges
on the highest value of the loss function out of all methods as it has a static learning rate and
thus no mechanism by which to overcome so-called barren plateaus, characteristic regions in
the loss landspaces of variational quantum algorithms with vanishingly small gradients. In
comparison, Adam, which is a first-order adaptive method that utilizes an running average of
the gradients normalized by a running average of their corresponding magnitudes, eventually
reaches a lower value of the loss function, though it appears to struggle on multiple barren
plateaus encountered in its optimization path. QPNGD attains a slightly lower value of the
loss function, however, it manages to do so in a significantly fewer number of iterations,
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given its ability to dynamically tune the step size in accordance with the particular local
curvature of the loss landscape.

Figure 4.1: Top: the value of the VQT loss as a function of the number of training iterations
for the different optimization methods of stochastic gradient descent (SGD), Adam, and
natural gradient descent (NGD) compared against the optimum of the loss. Bottom: the
logarithm of the residual of the loss for each of the optimization methods.
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Appendix

A.1 Bogoliubov-Kubo-Mori Information Matrix

We cover how to obtain the Bogoliubov-Kubo-Mori (BKM) metric tensor of the parameters
in terms of the QHBM parameterization. Specifically, we provide analytical expressions for
sampling-based techniques to obtain unbiased estimates of the matrix elements. We split
up our calculation into three types of blocks of this matrix; the cases where the derivatives
are both of θ parameters, the cases where they are both ϕ parameters, and the cases where
they are a mixture of both types of parameters. The fact that we can computed analytic
expressions for the metric tensor for which we can sample the values using a mixture of the
quantum and classical computers is unique to the QHBM class of models.

In particular, when resolving the metric to a basis we may use that of the Ωj tangent vec-
tors so as to assume the parameter space dynamics induced by the QHBM parameterization
[27],

[IBKM(Ω)]j,k =

∫ ∞

0

tr
[
(∂Ωj

ρ̂Ω)(ρ̂Ω + s1)−1(∂Ωk
ρ̂Ω)(ρ̂Ω + s1)−1

]
ds (6)

= tr
[
(∂Ωj

ρ̂Ω)(∂Ωk
log ρΩ)

]
. (7)

We have termed this the Bogolubov-Kubo-Mori (BKM) information matrix.

Probabilistic Block

We first compute the BKM logarithmic derivative,

∂θk log ρΩ = −∂θk(K̂Ω + 1 logZθ) (8)

= −Uϕ(∂θkKθ)U
†
ϕ +

1

Zθ

tr
[
(∂θkKθ)e

−Kθ
]

(9)

and tangent vector,
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∂θkρΩ = Uϕ

(
∂θk

e−Kθ

Zθ

)
U †
ϕ (10)

= Uϕ

−Zθ(∂θkKθ)e
−Kθ + e−Kθ tr

[
(∂θkKθ)e

−Kθ
]

Z2
θ

U †
ϕ (11)

= Uϕ (−(∂θkKθ)ρθ + ρθ tr[(∂θkKθ)ρθ])U
†
ϕ (12)

Therefore,

[IBKM(Ω)]θj ,θk = tr

[
(∂θjKθ)(∂θkKθ)e

−Kθ

Zθ

]
−

tr
[
(∂θjKθ)e

−Kθ
]
tr
[
(∂θkKθ)e

−Kθ
]

Z2
θ

(13)

=
∑
x

pθ(x)∂θjEθ(x)∂θkEθ(x)−
∑
x

pθ(x)∂θjEθ(x)
∑
y

pθ(y)∂θkEθ(y) (14)

= Ex∼pθ(x)

[
∂θjEθ(x)∂θkEθ(x)

]
− Ex∼pθ(x)

[
∂θjEθ(x)

]
Ey∼pθ(y) [∂θkEθ(y)]

(15)

The result reads as the covariance matrix of the gradient vector of the energy function
subject to the sampled EBM distribution. Note that this quantity does not require a quantum
computer to be evaluated.

Quantum Block

For the BKM metric tensor elements which only depend on the gradients with respect to the
QNN parameters, we can use an intuitive double parameter shift rule. A gradient technique
for QNNs was recently pointed out in [6]; here we can apply it to the gradients of the QHBM
QNN parameters. For a hardware efficient ansatz, we have the parameter shift rules,

∂ϕk
K̂θϕ = K̂θ(ϕ+∆k) − K̂θ(ϕ−∆k) (16)

∂ϕk
ρ̂θϕ = ρ̂θ(ϕ+∆k) − ρ̂θ(ϕ−∆k) (17)

[IBKM(Ω)]ϕj ,ϕk
= tr

[
ρ̂θ(ϕ+∆j)K̂θ(ϕ+∆k)

]
+ tr

[
ρ̂θ(ϕ−∆j)K̂θ(ϕ−∆k)

]
− tr

[
ρ̂θ(ϕ+∆j)K̂θ(ϕ−∆k)

]
− tr

[
ρ̂θ(ϕ−∆j)K̂θ(ϕ+∆k)

] (18)

with ∆j = π
4
êj where standard basis vector has entries (êj)k = δj,k.

Cross Block

Finally, let us compute the terms of the BKM metric tensor which include the coupling of
QNN and EBM parameters,
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[IBKM(Ω)]ϕj ,θk = − tr
[
(∂θkKθ)U

†
ϕUϕ+∆j ρ̂θU

†
ϕ+∆jUϕ

]
+ tr

[
(∂θkKθ)U

†
ϕUϕ−∆j ρ̂θU

†
ϕ−∆jUϕ

]
,

(19)

where we have essentially combined eqs. (8) and (16).
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