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Abstract

Efficient Optimization Algorithms for Machine Learning

by

Armin Askari

Doctor of Philosophy in Engineering- Electrical Engineering & Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Behind all supervised learning problems is an optimization problem. Solving these problems
reliably and efficiently is a key step in any machine learning pipeline. This thesis looks at
efficient optimization algorithms for a variety of machine learning problems (in particular,
sparse learning problems). We first begin by looking at a new class of algorithms for training
feedforward neural networks. We then look at an efficient algorithm for constructing knockoff
features for statistical inference. Finally, we look at ℓ0-penalized and constrained optimiza-
tion problems and a class of efficient algorithms for training these non-convex problems while
providing guarantees on the quality of the solution.
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Chapter 1

Overview

Machine learning models are the cornerstone of any system that uses data to make decisions
and predictions. Behind these models lie optimization algorithms. After taking a real world
problem, collecting data and mathematically formulating the problem, the final step between
the researcher and their machine learning model is an optimization problem. In this sense,
optimization algorithms are the back-bone of training almost all machine learning models.

Despite there being many early results related to optimization, the field itself emerged in
the early 1900s and for the past century has seen innumerable innovations and contributions.
In the past decade, recent efforts in optimization and how it pertains to machine learning
have been in two main areas: non-convex optimization and optimization algorithms.

Non-convex optimization has made significant advances particularly due to the rise in
deep learning and the non-convexity of those models [24, 49]. There have been countless
papers on different approaches for training deep neural networks (a non-exetensive list in-
cludes [39, 56, 77, 89, 67, 69]) and different ways of “convexify-ing” these networks [113, 30,
62]. While there has been amazing success in deep neural networks in medicine, computer
vision, language and robotics, the theory unfortunately has not kept pace.

The design and implementation of optimization algorithms has also made significant ad-
vances because of big data and the necessity to be able to train models reliably and efficiently
[78, 43]. This has also led to considerable efforts in the field of sparse optimization, where
there has been a renewed interest in algorithms that are scalable, easy to implement and are
computationally inexpensive [48, 11, 60]. There has also been a renewed interest in sparse
optimization with the rise of big data because sparse models are more directly interpretable
than their non-sparse counterparts [73]. Some of the most advanced and theoretically rich
optimization algorithms the community has developed (such as the interior point method)
cannot be used in traditional machine learning settings because their complexity scales poorly
with the number of data points and the dimension of the dataset. As a result, there is a
need for fast, yet efficient algorithms with provable guarantees on the quality of solutions.

There are two central themes in this thesis: sparse optimization and designing problem-
specific algorithms. The work relating to sparse optimization pertains to non-convex ℓ0
constrained/penalized problems for generic supervised learning problems, constructs an al-
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gorithm for approximately solving these problems, and derives theoretical bounds on the
quality of the solution. The work relating to designing problem-specific algorithms takes
specific instances of supervised learning problems and proposes new, hand-crafted optimiza-
tion algorithms for solving them much more efficiently than using generic solvers. Each
chapter is self-contained and can be read independently of the other chapters.

Lifted and Fenchel Neural Networks (Chapters 2 & 3)

In these chapters, we focus on two new ways of training feedforward neural networks. In
chapter 2, we introduce lifted neural networks where the main insight is that the feedforward
linking constraints in the neural network problem can be reformulated as the argmin of an
optimization problem. We then use this reformulation to “lift” the dimension of the problem
by relaxing the constraints and training the model using block coordinate descent. We then
improve on the performance of the previous model in chapter 3 by introducing fenchel neural
networks. These models relax the linking constraints via the fenchel-young inequality and
can be trained as before but with an additional batching procedure.

Fast Knockoffs (Chapter 4)

In this chapter, we visit the knockoff framework for feature selection [34]. We take the
semidefinite program used to construct knockoffs and create a custom optimization algorithm
to solve the problem efficiently and at scale. First, we introduce a barrier formulation of the
problem to handle generic covariance matrices with complexity scaling as O(p3) where p is
the ambient dimension. We then assume a rank-k factor model on the covariance matrix to
reduce this complexity bound to O(pk2). We review an efficient procedure to estimate factor
models and show that under a factor model assumption, we can sample knockoff covariates
with complexity linear in the dimension. We test our methods on problems with as large as
500 000 (code published at https://github.com/qrebjock/fanok).

Sparse non-convex programs with guarantees (Chapters 5 & 6)

In chapter 5, we take the classical naive bayes algorithm and add an ℓ0 sparsity constraint to
the learning problem. his leads to a combinatorial maximum-likelihood problem, for which
we provide an exact solution in the case of binary data, or a bound in the multinomial case.
We prove that our bound becomes tight as the marginal contribution of additional features
decreases. Both binary and multinomial sparse models are solvable in time almost linear in
problem size, representing a very small extra relative cost compared to the classical naive
Bayes. Numerical experiments on text data show that the naive Bayes feature selection
method is as statistically effective as state-of-the-art feature selection methods such as re-
cursive feature elimination, l1-penalized logistic regression and LASSO, while being orders
of magnitude faster. For a large data set, having more than with 1.6 million training points

https://github.com/qrebjock/fanok
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and about 12 million features, and with a non-optimized CPU implementation, our sparse
naive Bayes model can be trained in less than 15 seconds.

We then extend the theory developed to analyze the non-convex, sparse naive bayes prob-
lem in chapter 6. In this chapter, we show that sparsity-constrained optimization problems
over low-dimensional spaces tend to have a small duality gap. We use the Shapley–Folkman
theorem to derive both data-driven bounds on the duality gap and an efficient primalization
procedure to recover feasible points satisfying these bounds. These error bounds are pro-
portional to the rate of growth of the objective with the target cardinality, which means in
particular that the relaxation is nearly tight as soon as the target cardinality is large enough
so that only uninformative features are added.
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Chapter 2

Lifted Neural Networks

2.1 Introduction

Given current advances in computing power, dataset sizes and the availability of specialized
hardware/ software packages, the popularity of neural networks continue to grow. The model
has become standard in a large number of tasks, such as image recognition, image captioning
and machine translation. Current state of the art is to train this model by variations of
stochastic gradient descent (SGD), although these methods have several caveats. Most
problems with SGD are discussed in [96].

Optimization methods for neural networks has been an active research topic in the last
decade. Specialized gradient-based algorithms such as Adam and Adagrad [58, 28] are
often used but were shown to generalize less than their non adaptive counterparts by [107].
Our work is related to two main currents of research aimed at improving neural network
optimization: using non gradient-based approaches and initializing weights to accelerate
convergence of gradient-based algorithms. To our knowledge this paper is the first to combine
the two. In addition our novel formalism allow for interesting extensions towards handling
constraints, robustness, optimizing network topology, etc.

[96] and [18] propose an approach similar to ours, adding variables in the training problem
and using an l2-norm penalization of equality constraints. They both break down the network
training problem into easier sub-problems and use alternate minimization; however they do
not exploit structure in the activation functions. For Convolutional Neural Networks (CNN),
[9] model the network training problem as a difference of convex functions optimization,
where each subproblem is a Support Vector Machine (SVM).

On the initialization side, [64, 40] recommend sampling from a well-chosen uniform dis-
tribution to initialize weights and biases while others either use random initialization or
weights learned in other networks (transfer learning) on different tasks. [94] indicate that
initialization is crucial during training and that poorly initialized networks cannot be trained
with momentum. Other methods to initialize neural networks have been proposed, such as
using competitive learning [70] and principal component analysis (PCA) [87]. Although



CHAPTER 2. LIFTED NEURAL NETWORKS 5

PCA produces state of the art results, it is limited to auto-encoders while our framework
allows for more general learning problems. Similarly, the competitive learning approach is
limited to the classification problem and works only for one layer networks while our model
can easily be adapted to a broader range of network architectures. Our approach focuses on
transforming the non-smooth optimization problem encountered when fitting neural network
models into a smooth problem in an enlarged space; this ties to a well developed branch of
optimization literature (see e.g. section 5.2 of [15] and references therein). Our approach
can also be seen as a generalization of the parameterized rectified linear unit (PReLU) pro-
posed by [44]. Our work can be compared to the standard practice of initializing Gaussian
Mixture Models using K-Means clustering; our model uses a simpler but similar algorithm
for initialization.

Chapter outline. In Section 2.2, we begin by describing the mathematical setting
of neural networks and our proposed optimization problem to train the model. Section 2.3
provides an example illustrating the basic idea. Section 2.4 outlines how to encode activation
functions as argmins of convex or bi-convex optimization problems. Section 2.5 then expands
the approach of Section 2.3 to cover a number of useful activation functions, as well as
classification tasks. Section 2.6 describes a block-coordinate descent method to solve the
training problem. Section 2.7 describes numerical experiments that support a finding that
the models can be used as a fast weight initialization scheme.

2.2 Background and Notation

Feedforward neural networks. We begin by establishing notation. We are given an
input data matrix X = [x1, . . . , xm] ∈ Rn×m and response matrix Y ∈ Rp×m and consider a
supervised problem involving a neural network having L ≥ 1 hidden layers. At test time, the
network processes an input vector x ∈ Rn to produce a predicted value ŷ(x) ∈ Rp according
to the prediction rule ŷ(x) = xL+1 where xL+1 is defined via the recursion

xl+1 = ϕl(Wlxl + bl), l = 0, . . . , L, (2.1)

with initial value x0 = x ∈ Rn and xl ∈ Rpl , l = 0, . . . , L. Here, ϕl, l = 1, . . . , L are given
activation functions, acting on a vector; the matrices Wl ∈ Rpl+1×pl and vectors bl ∈ Rpl+1 ,
l = 0, . . . , L are parameters of the network. In our setup, the sizes (pl)

L+1
l=0 are given with

p0 = n (the dimension of the input) and pL+1 = p (the dimension of the output).
We can express the predicted outputs for a given set of m data points contained in the

n×m matrix X as the p×m matrix Ŷ (X) = XL+1, as defined by the matrix recursion

Xl+1 = ϕl(WlXl + bl1
T ), l = 0, . . . , L, (2.2)

with initial value X0 = X and Xl ∈ Rpl×m, l = 0, . . . , L. Here, 1 stands for the vector of
ones in Rm, and we use the convention that the activation functions act column-wise on a
matrix input.
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In a standard neural network, the matrix parameters of the network are fitted via an
optimization problem, typically of the form

min(Wl,bl)
L
0 ,(Xl)

L
1
L(Y,XL+1) +

∑L
l=0 ρlπl(Wl)

s.t. Xl+1 = ϕl(WlXl + bl1
T
m), l = 0, . . . , L

X0 = X

(2.3)

where L is a loss function, ρ ∈ RL+1
+ is a hyper-parameter vector, and πl’s are penalty

functions which can be used to encode convex constraints, network structure, etc. We refer
to the collections (Wl, bl)

L
l=0 and (Xl)

L
l=1 as the (W, b)- and X-variables, respectively.

To solve the training problem (2.3), the X-variables are usually eliminated via the recur-
sion (2.2), and the resulting objective function of the (W, b)-variables is minimized without
constraints, via stochastic gradients. While this appears to be a natural approach, it does
make the objective function of the problem very complicated and difficult to minimize.

Lifted models. In this paper, we develop a family of models where the X-variables
are kept, and the recursion constraints (2.1) are approximated instead, via penalties. We
refer to these models as “lifted” because we lift the search space of (W, b)-variables to a
higher-dimensional space of (W, b,X)-variables. The training problem is cast in the form of
a matrix factorization problem with constraints on the variables encoding network structure
and activation functions.

Lifted models have many more variables but a much more explicit structure than the
original, allowing for training algorithms that can use efficient standard machine learning
libraries in key steps. The block-coordinate descent algorithm described here involves steps
that are parallelizable across either data points and/or layers; each step is a simple structured
convex problem.

The family of alternate models proposed here have the potential to become competitive
in their own right in learning tasks, both in terms of speed and performance. In addition,
such models are versatile enough to tackle problems deemed difficult in a standard setting,
including robustness to noisy inputs, adaptation of activation functions to data, or including
constraints on the weight matrices. Our preliminary experiments are limited to the case
where the lifted model’s variables are used as initialization of traditional feedforward network.
However, we discuss and layout the framework for how these models can be used to tackle
other issues concerning traditional networks such as robustness and optimizing how to choose
activation functions at each layer.

2.3 Basic Idea

To describe the basic idea, we consider a specific example, in which all the activation functions
are the ReLUs, except for the last layer. There ϕL is the identity for regression tasks or a
softmax for classification tasks. In addition, we assume in this section that the penalty
functions are of the form πl(W ) = ∥W∥2F , l = 0, . . . , L.
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We observe that the ReLU map, acting componentwise on a vector input u, can be
represented as the “argmin” of an optimization problem involving a jointly convex function:

ϕ(u) = max(0, u) = argmin
v≥0
∥v − u∥2. (2.4)

As seen later, many activation functions can be represented as the “argmin” of an optimiza-
tion problem, involving a jointly convex or bi-convex function.

Extending the above to a matrix case yields that the condition Xl+1 = ϕ(WlXl + bl1
T )

for given l can be expressed via an “argmin”:

Xl+1 ∈ argmin
Z≥0
∥Z −WlXl − bl1T∥2F .

This representation suggests a heuristic to solve (2.3), replacing the training problem by

min(Wl,bl),(Xl) L(Y,WLXL + bL1
T ) +

∑L
l=0 ρl∥Wl∥2F

+
∑L−1

l=0

(
λl+1∥Xl+1 −WlXl − bl1T∥2F

)
s.t. Xl ≥ 0, l = 1, . . . , L− 1, X0 = X.

(2.5)

where λl+1 > 0 are hyperparameters, ρl are regularization parameters as in (2.3) and L is
a loss describing the learning task. In the above model, the activation function is not used
in a pre-defined manner; rather, it is adapted to data, via the non-negativity constraints on
the “state” matrices (Xl)

L+1
l=1 . We refer to the above as a “lifted neural network” problem.

Thanks to re-scaling the variables with Xl →
√
λlXl, Wl →

√
λl+1/λlWl, and modifying

ρl’s accordingly, we can always assume that all entries in λ are equal, which means that our
model introduces just one extra scalar hyper-parameter over the standard network (2.3).

The above optimization problem is, of course, challenging, mainly due to the number
of variables. However, for that price we gain a lot of insight on the training problem. In
particular, the new model has the following useful characteristics:

• For fixed (W, b)-variables, the problem is convex in the X-variables Xl, l = 1, . . . , L;
more precisely it is a (matrix) non-negative least-squares problem. The problem is
fully parallelizable across the data points.

• Likewise, for fixed X-variables, the problem is convex in the (W, b)-variables and par-
allelizable across layers and data points. In fact, the (W, b)-step is a set of parallel
(matrix) ridge regression problems.

These characteristics allow for efficient block-coordinate descent methods to be applied to
our learning problem. Each step reduces to a basic supervised learning problem, such as
ridge regression or non-negative least-squares. We describe one algorithm in more detail in
section 2.6.

The reader may wonder at this point what is the prediction rule associated with our
model. For now, we focus on extending the approach to broader classes of activations and
loss functions used in the last layer; we return to the prediction rule issue in our more general
setting in section 2.5.
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2.4 Activations as argmin Maps

In this section, we outline theory on how to convert a class of functions as the “argmin” of
a certain optimization problem, which we then encode as a penalty in the training problem.
We make the following assumption on a generic activation function ϕ.

BCR Condition. The activation function ϕ : Rk → Rj satisfies the
bi-convex representation (BCR) condition if it can be represented as
follows:

∀x ∈ Rk, ϕ(x) = argmin
z∈Rj

Dϕ(x, z),

where Dϕ : Rk ×Rj → R is a bi-convex function (convex in x for fixed
z and vice-versa), which is referred to as a BC-divergence associated
with the activation function.

We next examine a few examples, all based on divergences of the form

Dϕ(x, z) = Φ(z)− xT z,

where Φ is a convex function. This form implies that, when Φ is differentiable, ϕ is the
gradient map of a convex function; thus, it is monotone.

Strictly monotone activation functions. We assume that ϕ is strictly monotone, say
without loss of generality, strictly increasing. Then, it is invertible, and there exists a
function, denoted ϕ−1, such that the condition x = ϕ−1(z) for z ∈ range(ϕ) implies z = ϕ(x).
Note that ϕ−1 is strictly increasing on its domain, which is range(ϕ).

Define the function Φ : R→ R, with values

Φ(z) =

∫ z

0

ϕ−1(u) du if z ∈ range(ϕ), (2.6)

and +∞ otherwise.
The function Φ is convex, since ϕ−1 is increasing. We then consider the problem

min{ Φ(z)− xz : z ∈ range(ϕ)}. (2.7)

Note that the value of the problem is nothing else than Φ∗(x), where Φ∗ is the Fenchel
conjugate of Φ.

By construction, the problem (2.7) is convex. At optimum, we have x = ϕ−1(z), hence
z = ϕ(x). We have obtained

ϕ(x) = argmin
z

Φ(z)− xz : z ∈ range(ϕ).
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Examples. As an example, consider the sigmöıd function:

ϕ(x) =
1

1 + e−x
,

with inverse
ϕ−1(z) = log

z

1− z , 0 < z < 1,

and +∞ otherwise.
Via the representation result (2.6), we obtain

ϕ(x) = arg min
0≤z≤1

z log z + (1− z) log(1− z)− xz

Next consider the “leaky ReLU” function

ϕ(x) =

{
αx if x < 0,
x if x ≥ 0,

where 0 < α < 1. We have

ϕ−1(z) =

{
(1/α)z if z < 0,
z if z ≥ 0,

with domain the full real line; thus

Φ(z) =

∫ z

0

ϕ−1(u) du

=
1

2
max

(
1

α
max(0,−z)2,max(0, z)2

)
(2.8)

As another example, consider the case with ϕ(x) = arctanh(x). The inverse function is

ϕ−1(z) =
1

2
log

1 + z

1− z , |z| ≤ 1

For any z ∈ [−1, 1], Φ(z) takes the form

Φ(z) =
1

2

∫ z

0

(log(1 + u)− log(1− u)) du

=
1

2
((1− z) log(1− z) + (1 + z) log(1 + z)) + cst.

Sometimes there are no closed-form expressions. For example, for the so-called “softplus”
function ϕ(x) = log(1 + ex), the function Φ cannot be expressed in closed form:

Φ(z) =

∫ z

0

log(eu − 1) du, domΦ = R+.

This lack of a closed-form expression does not preclude algorithms from work with these
types of activation functions. The same is true of the sigmoid function.
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Non-strictly monotone examples: ReLU and piece-wise sigmoid. The above ex-
pression (2.7) works in the ReLU case; we simply restrict the inverse function to the domain
R+; specifically, we define

ϕ−1(z) =

{
+∞ if z < 0,
z if z ≥ 0,

We then have domΦ = R+, and for z ≥ 0:

Φ(z) =

∫ z

0

u du =
1

2
z2.

We have obtained
ϕ(x) = argmin

z≥0
Φ(z)− xz.

The result is consistent with the “leaky” ReLU case in the limit when α→ 0. Indeed, in
that case with Φ given as in (2.8), we observe that when α → 0 the domain of Φ collapses
from the whole real line to R+, and the result follows.

In a similar vein, consider the “piecewise” sigmoid function,

ϕ(x) = min(1,max(−1, x)),

This function can be represented as

ϕ(x) = argmin
z

z2 − 2xz : |z| ≤ 1.

Finally the sign function is represented as

sign(x) = argmin −zx : |z| ≤ 1.

Non-monotone examples. The approach can be sometimes extended to non-monotonic
activation functions. As an example, the activation function ϕ(x) = sinx has been proposed
in the context of time-series. Here, we will work with

Φ(z) =

∫ z

0

arcsin(u) du = z arcsin z +
√
1− z2 + cst.,

with domain [−1, 1]. The function is convex, and we can check that

ϕ(x) = arg min
z : |z|≤1

Φ(x)− xz

Jointly convex representations. Some activation functions enjoy a stronger condition,
which in turn leads to improved properties of the corresponding lifted model.

JCR Condition. The activation function ϕ : Rk → Rj satisfies the jointly
convex representation (JCR) condition if it satisfies the CR condition with a
jointly convex function Dϕ(x, z).
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Note that, for the JCR condition to hold, the activation function needs to be monotone.
Because of non-uniqueness, we may add a term that is not a function of the variable being
optimized (i.e. in the condition above, an arbitrary function of u) to the JC-divergence
in order to improve the overall structure of the problem. This is highlighted below and
discussed in Section 2.6.

The JCR condition applies to several important activation functions, beyond the ReLU,
for which

max(x, 0) = argmin
z
Dϕ(x, z) =

{
∥x− z∥22 if z ≥ 0,
+∞ otherwise.

Note that the JC-divergence for the ReLU is not unique; for example, we can replace the
l2-norm by the l1-norm.

The “leaky” ReLU with parameter α ∈ (0, 1), defined by ϕ(x) = max(x/α, x), can be
written in a similar way:

max(x/α, x) = argmin
z
∥x− z∥22 : z ≥ (1/α)x.

The piece-wise sigmöıd, as defined below, has a similar variational representation: with 1
the vector of ones,

min(1,max(0, x)) = argmin
z
∥x− z∥22 : 0 ≤ z ≤ 1.

In order to address multi-class classification problems, it is useful to consider a last layer
with an activation function that produces a probability distribution output. To this end, we
may consider an activation function which projects, with respect to some metric, a vector
onto the probability simplex. The simplest example is the Euclidean projection of a real
vector u ∈ Rk onto the probability simplex in Rk:

ϕ(x) = argmin
z
∥x− z∥22 : z ≥ 0, zT1 = 1.

Max-pooling operators are often used in the context of image classification. A simple ex-
ample of a max-pooling operator involves a p-vector input x with two blocks, x = (x(1), x(2)),
with x(i) ∈ Rpi , i = 1, 2, with p = p1 + p2. We define ϕ : Rp → R2 by

ϕ(x) = ( max
1≤i≤p1

x
(1)
i , max

1≤i≤p2
x
(2)
i ) ∈ R2. (2.9)

Max-pooling operators can also be expressed in terms of a jointly convex divergence. In the
above case, we have

ϕ(x) = argmin
z

1T z + 1T (x−Dz)+,

where D is an appropriate block-diagonal matrix of size p × 2 that encodes the specifics of
the max-pooling, namely in our case D = diag(1p1 ,1p2).
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Extension to matrix inputs. Equipped with a divergence function that works on vector
inputs, we can readily extend it to matrix inputs with the convention that the divergence is
summed across columns (data points). Specifically, if X = [x1, . . . , xm] ∈ Rk×m, we define ϕ
by Z = ϕ(X) = [z1, . . . , zm] ∈ Rh×m as acting column-wise. We have

ϕ(X) := [ϕ(x1), . . . , ϕ(xm)] = argmin
Z
Dϕ(X,Z),

where, with some minor abuse of notation, we define a matrix version of the divergence, as
follows:

Dϕ([x1, . . . , xm], [z1, . . . , zm]) =
m∑
i=1

Dϕ(xi, zi).

2.5 Lifted Framework

Lifted neural networks

Assume that the BCR or JCR condition is satisfied for each layer of our network and use
the short-hand notation Dl = Dϕl

for the corresponding divergences. Condition (2.2) is then
written as

Xl+1 ∈ arg min
X∈X

Dl(X,WlXl + bl1
T ), l = 0, . . . , L.

The lifted model consists in replacing the constraints (2.2) with penalties in the training
problem. Specifically, the lifted network training problem takes the form

min
(Wl,bl),(Xl)

L(Y,WLXL + bL1
T ) +

L∑
l=0

πl(Wl) (2.10)

+
L−1∑
l=0

λl+1Dl(WlXl + bl1
T , Xl+1)

s.t. X0 = X, Xl ≥ 0, l = 1, . . . , L− 1

with λ1, . . . , λL+1 given positive hyper-parameters. As with the model introduced in sec-
tion 2.3, the lifted model enjoys the same parallel and convex structure outlined earlier. In
particular, it is convex in X-variables for fixed W -variables. If we use a weaker bi-convex
representation (using a bi-convex divergence instead of a jointly convex one), then convexity
with respect to X-variables is lost. However, the model is still convex in Xl for a given l
when all the other variables are fixed; this still allows for block-coordinate descent algorithms
to be used.

As a specific example, consider a multi-class classification problem where all the layers
involve ReLUs except for the last. The last layer aims at producing a probability distribution
to be compared against training labels via a cross entropy loss function. The training problem
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writes

min
(Wl,bl),(Xl)

−TrY T log s(WLXL + bL1
T ) +

L∑
l=0

ρl∥Wl∥2F

+
L−1∑
l=0

λl+1∥Xl+1 −WlXl − bl1T∥2F

s.t. X0 = X, Xl ≥ 0, l = 1, . . . , L− 1 (2.11)

where the equality constraint on XL+1 enforces that its columns are probability distributions.
Here, s(·) : Rn 7→ Rn is the softmax function. We can always rescale the variables so that in
fact the number of additional hyper-parameters λl, l = 1, . . . , L− 1, is reduced to just one.

Lifted prediction rule

In our model, the prediction rule will be different from that of a standard neural network,
but it is based on the same principle. In a standard network, the prediction rule can be
obtained by solving the problem

ŷ(x) = min
y
L(y, xL+1) : (2.2), x0 = x,

where the weights are now fixed, and y ∈ Rp is a variable. Of course, provided the loss is zero
whenever its two arguments coincide, the above trivially reduces to the standard prediction
rule: ŷ(x) = xL+1, where xL+1 is obtained via the recursion (2.2).

In a lifted framework, we use the same principle: solve the training problem (in our case,
(2.10)), using the test point as input, fixing the weights, and letting the predicted output
values be variables. In other words, the prediction rule for a given test point x in lifted
networks is based on solving the problem

ŷ = arg min
y,(xl)

L(y,WLxL + bL)

+
L−1∑
l=0

λl+1Dl(Wlxl + bl, xl+1)

s.t. x0 = x. (2.12)

The above prediction rule is a simple convex problem in the variables y and xl, l = 1, . . . , L.
In our experiments, we have found that applying the standard feedforward rule of traditional
networks is often enough.

2.6 Block-Coordinate Descent Algorithm

In this section, we outline a block-coordinate descent approach to solve the training prob-
lem (2.10).
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Updating (W, b)-variables

For fixed X-variables, the problem of updating the W -variables, i.e. the weighting matrices
(Wl, bl)

L
l=0, is parallelizable across both data points and layers. The sub-problem involving

updating the weights at a given layer l = 0, . . . , L takes the form

(W+
l , b

+
l ) = argmin

W,b
λl+1Dl(WXl + b1T , Xl+1) + πl(W ).

The above is a convex problem, which can be solved via standard machine learning libraries.
Since the divergences are sums across columns (data points), the above problem is indeed
parallelizable across data points.

For example, when the activation function at layer l is a ReLU, and the penalty πl is a
squared Frobenius norm, the above problem reads

(W+
l , b

+
l ) = argmin

W,b
λl+1∥WXl + b1T −Xl+1∥2F + ρl∥W∥2F

which is a standard (matrix) ridge regression problem. Modern sketching techniques for
high-dimensional least-squares can be employed, see for example [108, 84].

Updating X-variables

In this step we minimize over the matrices (Xl)
L+1
l=1 . The sub-problem reads exactly as (2.10),

with now the (W, b)-variables fixed. By construction of divergences, the problem is decompos-
able across data points. When JCR conditions hold, the joint convexity of each JC-divergence
function allows us update all the X-variables at once, by solving a convex problem. Other-
wise, the update must be done cyclically over each layer, in a block-coordinate fashion.

For l = 1, . . . , L, the sub-problem involving Xl, with all the other X-variables Xj, j ̸= l
fixed, takes the form

X+
l = argmin

Z
λl+1Dl(WlZ + bl1

T , Xl+1)

+λlDl−1(Z,X
0
l−1) (2.13)

where X0
l−1 := Wl−1Xl−1 + bl−11

T . By construction, the above is a convex problem, and is
again parallelizable across data points.

Let us detail this approach in the case when the layers l, l + 1 are both activated by
ReLUs. The sub-problem above becomes

X+
l = argmin

Z≥0
λl+1∥Xl+1 −WlZ − bl1T∥2F+

λl∥Z −Wl−1Xl−1 − bl−11
T∥2F

The above is a (matrix) non-negative least-squares, for which many modern methods are
available, see [53, 54] and references therein. As before, the problem above is fully paralleliz-
able across data points (columns), where each data point gives rise to a standard (vector)
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non-linear least-squares. Note that the cost of updating all columns can be reduced by taking
into account that all column’s updates share the same coefficient matrix Wl.

The case of updating the last matrix XL+1 is different, as it involves the output and the
loss function L. The update rule for XL+1 is indeed

X+
L+1 = argmin

Z
L(Y, Z) + λL+1DL(X

0
L, Z), (2.14)

where X0
L := WLXL + bL1

T . Again the above is parallelizable across data points.
In the case when the loss function L is a squared Frobenius norm, and with a ReLU

activation, the update rule (2.14) takes the form

XL+1 = argmin
Z≥0
∥Z − Y ∥2F + λL∥Z −X0

L∥2F ,

which can be solved analytically:

X+
L+1 = max

(
0,

1

1 + λL+1

Y +
λL+1

1 + λL+1

X0
L

)
.

In the case when the loss function is cross-entropy, and the last layer generates a probability
distribution via the probability simplex projection, the above takes the form

XL+1 = argmin
Z
−TrY T logZ + λL+1∥Z −X0

L∥2F
Z ≥ 0, ZT1 = 1 (2.15)

where we use the notation log in a component-wise fashion. The above can be solved as a
set of parallel bisection problems. See Appendix A.

2.7 Numerical Experiments

Although lifted models in their own right can be used for supervised learning tasks, their
main success so far has been using them to initialize traditional networks. In this section,
we examine this and see if the lifted models can generate good initial guesses for standard
networks.

MNIST

The model described in this paper was compared against a traditional neural network with
equivalent architectures on the MNIST dataset [63]. For the classification problem, the
dataset was split into 60,000 training samples and 10,000 test samples with a softmax cross
entropy loss. This is a similar model to the one specified in (2.5), with the only difference
that the last layer loss is changed from an ℓ2 loss to a softmax cross entropy loss as seen in
(2.11). In addition to comparing the models, the weights and biases learned in the augmented
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Learning rate η = 1e–5
Architecture Our Model NN[Normal] NN[Xavier] NN [σ-scale] NN [Lifted]
300 0.90± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.00 0.96± 0.00
300/100 0.88± 0.01 0.92± 0.00 0.93± 0.00 0.93± 0.00 0.97± 0.00
500/150 0.87± 0.01 0.93± 0.00 0.94± 0.00 0.94± 0.01 0.97± 0.01
500/200/100 0.85± 0.00 0.93± 0.00 0.94± 0.01 0.94± 0.00 0.96± 0.01
400/200/100/50 0.77± 0.02 0.92± 0.01 0.94± 0.00 0.94± 0.01 0.92± 0.03

Learning rate η =1e–6
Architecture Our Model NN[Normal] NN[Xavier] NN [σ2-scale] NN [Lifted]
300 0.90± 0.01 0.80± 0.01 0.84± 0.01 0.84± 0.01 0.88± 0.02
300/100 0.88± 0.01 0.79± 0.01 0.84± 0.01 0.84± 0.01 0.90± 0.02
500/150 0.87± 0.01 0.82± 0.01 0.85± 0.00 0.86± 0.00 0.89± 0.02
500/200/100 0.85± 0.00 0.82± 0.02 0.86± 0.01 0.85± 0.01 0.93± 0.05
400/200/100/50 0.77± 0.02 0.75± 0.05 0.84± 0.02 0.82± 0.02 0.96± 0.00

Table 2.1: Accuracy rate on the test set using different networks with the best result in
boldface. The architectures indicate the number of hidden layers and the number of hidden
units per layer. NN[x] indicates a standard neural network initialized with method x: Normal
for normally distributed intialization of all weight variables with µ = 0 and σ2 = 0.1, Xavier
for initialization highlighted in [40], σ2-scale for variance scaling initialization and Lifted for
initializing with the weights and biases learned from a lifted NN. All bias variables were
initialized to 0.1 except for the Lifted case in which the bias vectors are optimized during
pretraining. The neural networks were trained for 17 epochs using mini-batch gradient
descent in Tensorflow [71]. The lifted model achieves test accuracy as high as 90 % on
MNIST.

neural network were used as initialization parameters for training a standard neural net of
the same architecture to compare their performance, both in classification and convergence
during training. For all models, ReLU activations were used. ℓ2 regularization was used
for all layers and the regularization parameters ρ = 10−3 were held constant throughout all
training procedures. The λ parameters for the lifted model were selected using Bayesian
Optimization. The lifted model was trained using the block-coordinate descent scheme
outlined in Section 2.6. The standard feedforward networks were trained in Tensorflow
using a constant learning rate; reasons for this are highlighted in [107]. Table 1 summarizes
the accuracy rates for the different architectures for 2 different learning rates. Figure 2.1
illustrates the test set accuracy versus number of epochs for two different architectures.

Remark 1. Although our model does not perform as well as the other models on this task,
using it as initialization results in increased accuracy for almost all network architectures.

In particular, in Figure 2.1 we see that with our initialization, the test accuracy both
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Figure 2.1: Plot of test accuracy vs number of training epochs on a held-out validation
set during training for two different architectures. The shaded area on the plots indicated
uncertainty to 2 standard deviations across 5 different experiments. The batch size was fixed
at 100 and the learning rate was η = 1e–5. Top: One layer neural network with 300 hidden
units and ReLU activation. Bottom: Neural network composed of 3 ReLU layers with 500,
200, and 100 hidden units respectively.

converges more quickly and to higher values compared with the other initializations: in fact,
across all experiments the lifted initlization starts within 90% of its final accuracy. This
seems to indicate that the lifted model we train on is a close approximation to a standard
feedforward network and our weights learned are already near optimal for these networks.
Although after a few passes of the dataset the other models converge, we usually observed a
constant gap between the test set accuracy using our initialization versus the others.
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2.8 Solving for the last layer with cross entropy loss

In this section, we consider problem (15), which is of the form

min
Z
−TrY T logZ + λ∥Z −X0∥2F : ZT1 = 1, Z ≥ 0, (2.16)

where we use the notation log in a component-wise fashion, and X0 ∈ Rp×m and Y ∈
{0, 1}p×m, Y T1 = 1, λ > 0 are given. The above can be easily solved by dual matrix
bisection. Indeed, the problem can be decomposed across columns of Y (that is, across data
points). The problem for a single column has the following form:

p∗ := min
z
−

p∑
i=1

yi log zi + λ∥z − x0∥22 : z ≥ 0, zT1 = 1,

where vectors y ∈ {0, 1}p, yT1 = 1 and x0 ∈ Rp are given. Dualizing the equality constraint,
we obtain a Lagrangian of the form

L(z, ν) = 2ν +

p∑
i=1

(
z2i −

yi
λ
log zi − 2zi(ν + x0i )

)
,

where ν is a (scalar) dual variable. At the optimum z∗, we have

∀ i : 0 =
1

2

∂L(z, ν)
∂zi

(z∗, ν) = z∗i −
yi

2λz∗i
− (ν + x0i ),

leading to the unique non-negative solution

z∗i =
x0i + ν

2
+

√(
x0i + ν

2

)2

+
yi
2λ
, i = 1, . . . , p,

where the dual variable ν is such that 1T z∗ = 1. We can locate such a value ν by simple
bisection.

The bisection scheme requires initial bounds on ν. For the upper bound, we note that
the property z∗ ≤ 1, together with the above optimality condition, implies

ν ≤ 1− max
1≤i≤p

(
x0i +

yi
2λ

)
.

For the lower bound, let us first define I := {i : yi ̸= 0}, k = |I| ≤ p. At optimum, we have

∀ i ∈ I : − log z∗i ≤ −
∑
j∈I

yj log z
∗
j ≤ p∗ ≤ θ,

θ := −
∑
i∈I

yi log z
0
i + λ∥z0 − x0∥22
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where z0 ∈ Rp is any primal feasible point, for example z0i = 1/k if i ∈ I, 0 otherwise. We
obtain

∀ i ∈ I : z∗i ≥ zmin := e−θ.

The optimality conditions imply

0 =
1

2

∑
i

∂L(z∗, ν)
∂zi

= − 1

2λ

∑
i∈I

yi
z∗i

+ 1− 1Tx0 − pν

and therefore:

pν = 1− 1Tx0 − 1

2λ

∑
i∈I

yi
z∗i
≥ 1− 1Tx0 − 1Ty

2λ
eθ.

To conclude, we have

1

p

(
1− 1Tx0 − 1Ty

2λ
eθ
)

=: ν ≤ ν ≤ ν := 1− max
1≤i≤p

(
x0i +

yi
2λ

)
.

To solve the original (matrix) problem (2.16), we can process all the columns in parallel
(matrix) fashion, updating a vector ν ∈ Rm.
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Chapter 3

Fenchel Neural Networks

3.1 Introduction

Deep neural networks (DNNs) have become the preferred model for supervised learning tasks
after their success in various fields of research. However, due to their highly non-convex
nature, DNNs pose a difficult problem during training time; the optimization landscape
consists of many saddle points and local minima which make the trained model generalize
poorly [21, 23]. This has motivated regularization schemes such as weight decay [59], batch
normalization [47], and dropout [92] so that the solutions generalize better to the test data.

In spite of this, backprop used along with stochastic gradient descent (SGD) or similar
variants like Adam [57] suffer from a variety of problems. One of the most notable problems
is the vanishing gradient problem which slows down gradient-based methods during training
time. Several approaches have been proposed to deal with the problem; for example, the
introduction of rectified linear units (ReLU). However, the problem persists. For a discussion
on the limitations of backprop and SGD, we direct the reader to Section 2.1 of [97].

One approach to deal with this problem is to introduce auxiliary variables that increase
the dimension of the problem. In doing so, the training problem decomposes into multiple,
local sub-problems which can be solved efficiently without using SGD or Adam; in particular,
the methods of choice have been block coordinate descent (BCD) [3, 61, 114, 19] and the
alternating direction method of multipliers (ADMM) [97, 115]. By lifting the dimension of
the problem, these models avoid many of the problems DNNs face during training time.
They also offer new avenues towards interpretability and robustness of networks by allowing
for the penalization of the additional variables.

While these methods, which we refer to as “lifted” models for the remainder of the
paper, offer an alternative to the original problem with some added benefits, they have their
limitations. Most notably, traditional DNNs are still able to outperform these methods in
spite of the difficult optimization landscape. As well, most of the methods are unable to
operate in an online manner or adapt to continually changing data sets which is prevalent
in most reinforcement learning settings [95]. Finally, by introducing auxiliary variables, the
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dimensionality of the problem greatly increases, making these methods very difficult to train
with limited computational resources.

To address the problems listed above, we propose Fenchel lifted networks, a biconvex
formulation for deep learning based on Fenchel’s duality theorem that can be optimized
using BCD. We show that our method is a rigorous lower bound for the learning problem
and admits a natural batching scheme to adapt to changing data sets and settings with
limited computational power. We compare our method against other lifted models and
against traditional fully connected and convolutional neural networks. We show that we are
able to outperform the former and that we can compete with or even outperform the latter.

Chapter outline. In Section 3.2, we give a brief overview of related works on lifted models.
In Section 3.3 we introduce the notation for the remainder of the paper. Section 3.4 intro-
duces Fenchel lifted networks, their variants and discusses how to train these models using
BCD. Section 3.5 compares the proposed method against fully connected and convolutional
networks on MNIST and CIFAR-10.

3.2 Related Work

Lifted methods Related works that lift the dimension of the training problem are primar-
ily optimized using BCD or ADMM. These methods have experienced recent success due to
their ability to exploit the structure of the problem by first converting the constrained opti-
mization problem into an unconstrained one and then solving the resulting sub-problems in
parallel. They do this by relaxing the network constraints and introducing penalties into the
objective function. The two main ways of introducing penalties into the objective function
are either using quadratic penalties [94, 97, 61] or using equivalent representations of the
activation functions [3, 114].

As a result, these formulations have many advantages over the traditional training prob-
lem, giving superior performance in some specific network structures [19, 114]. These meth-
ods also enjoy great potential for parallelization as shown by [97]; the authors parallelize
training over different cores and show a linear scaling between reduction in training time
and the number of cores used. However, there has been little evidence showing that these
methods can compete with traditional DNNs which shadows the nice structure these formu-
lations bring about.

An early example of auxiliary variables being introduced into the training problem is the
method of auxiliary coordinates (MAC) by [19] which uses quadratic penalties to enforce
network constraints. They test their method on auto encoders and show that their method
is able to outperform SGD. Followup work by [20, 97] demonstrate the huge potential for
parallelizing these methods. [61] gives some convergence guarantee on a modified problem.

Another class of models that lift the dimension of the problem do so by representing
activation functions in equivalent formulations. [75, 3, 114, 68] explore the structure of
activation functions and use argmin maps to represent activation functions. In particular,
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[3] show how a strictly monotone activation function can be seen as the argmin of a specific
optimization problem. Just as with quadratic penalties, this formulation of the problem still
performs poorly compared to traditional neural networks. In an independent and concurrent
work by [68], the authors arrive at a lifted formulation of the training problem via the use
of proximal operators. While the approach in aforementioned work appears unrelated to the
work presented here, they are in fact deeply related (for a more complete discussion, see 3.9).

3.3 Background and Notation

Feedforward neural networks. We are given an input data matrix of m data points
X = [x1, x2, ..., xm] ∈ Rn×m and a response matrix Y ∈ Rp×m. We consider the supervised
learning problem involving a neural network with L ≥ 1 hidden layers. The neural network
produces a prediction Ŷ ∈ Rp×m with the feed forward recursion Ŷ = WLXL + bL1

⊤ given
below

Xl+1 = ϕl(WlXl + bl1
⊤), l = 0, . . . , L− 1. (3.1)

where ϕl, l = 0, . . . , L are the activation functions that act column-wise on a matrix
input, 1 ∈ Rm is a vector of ones, and Wl ∈ Rpl+1×pl and bl ∈ Rpl+1 are the weight matrices
and bias vectors respectively. Here pl is the number of output values for a single data point
(i.e., hidden nodes) at layer l with p0 = n and pL+1 = p. Without loss of generality, we can
remove bl1

⊤ by adding an extra column to Wl and a row of ones to Xl. Then (3.1) simplifies
to

Xl+1 = ϕl(WlXl), l = 0, . . . , L− 1. (3.2)

In the case of fully connected networks, ϕl is typically sigmoidal activation functions or
ReLUs. In the case of Convolutional Neural Networks (CNNs), the recursion can accommo-
date convolutions and pooling operations in conjunction with an activation. For classification
tasks, we typically apply a softmax function after applying an affine transformation to XL.

The initial value for the recursion is X0 = X and Xl ∈ Rpl×m, l = 0, . . . , L. We refer to
the collections (Wl)

L
l=0 and (Xl)

L
l=1 as the W and X-variables respectively.

The weights are obtained by solving the following constrained optimization problem

min
(Wl)

L
l=0,(Xl)

L
l=1

L(Y,WLXL) +
L∑
l=0

ρlπl(Wl)

s.t. Xl+1 = ϕl(WlXl), l = 0, . . . , L− 1

X0 = X (3.3)

Here, L is a loss function, ρ ∈ RL+1
+ is a hyper-parameter vector, and πl’s are penalty

functions used for regularizing weights, controlling network structures, etc. In (3.3), optimiz-
ing over the X-variables is trivial; we simply apply the recursion (3.2) and solve the resulting
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unconstrained problem using SGD or Adam. After optimizing over the weights and biases,
we obtain a prediction Ŷ for the test data X by passing X through the recursion (3.2) one
layer at a time.

Our model. We develop a family of models where we approximate the recursion con-
straints (3.2) via penalties. We use the argmin maps from [3] to create a biconvex for-
mulation that can be trained efficiently using BCD and show that our model is a lower
bound of (3.3). Furthermore, we show how our method can naturally be batched to ease
computational requirements and improve the performance.

3.4 Fenchel lifted networks

In this section, we introduce Fenchel lifted networks. We begin by showing that for a certain
class of activation functions, we can equivalently represent them as biconvex constraints. We
then dualize these constraints and construct a lower bound for the original training problem.
We show how our lower bound can naturally be batched and how it can be trained efficiently
using BCD.

Activations as bi-convex constraints

In this section, we show how to convert the equality constraints of (3.3) into inequalities
which we dualize to arrive at a relaxation (lower bound) of the problem. In particular,
this lower bound is biconvex in the W -variables and X-variables. We make the following
assumption on the activation functions ϕl.

BC Condition The activation function ϕ : Rp → Rq satisfies the BC condition
if there exists a biconvex function Bϕ : Rp × Rp → R+, such that

v = ϕ(u)⇐⇒ Bϕ(v, u) ≤ 0.

We now state and prove a result that is at the crux of Fenchel lifted networks.

Theorem 2. Assume ϕ : R→ R is continuous, strictly monotone and that 0 ∈ range(ϕ) or
0 ∈ domain(ϕ). Then ϕ satisfies the BC condition.

Proof. Without loss of generality, ϕ is strictly increasing. Thus it is invertible and there
exists ϕ−1 such that u = ϕ−1(v) for v ∈ range(ϕ) which implies v = ϕ(u). Now, define
F : Rp → R as

F (v) :=

∫ v

z

ϕ−1(ξ) dξ
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where z ∈ range(ϕ) and is either 0 or satisfies ϕ−1(z) = 0. Then we have

F ∗(u) =

∫ u

ϕ−1(z)

ϕ(η) dη

B(v, u) = F (v) + F ∗(u)− uv (3.4)

where F ∗ is the Fenchel conjugate of F . By the Fenchel-Young inequality, B(v, u) ≥ 0
with equality if and only if

v∗ = argmax
v

uv − F (v) : v ∈ range(ϕ)

By construction, v∗ = ϕ(u). Note furthermore since ϕ is continuous and strictly increas-
ing, so is ϕ−1 on its domain, and thus F, F ∗ are convex. It follows that B(v, u) is a biconvex
function of (u, v).

We simply need to prove that F ∗(u) above is indeed the Fenchel conjugate of F . By
definition of the Fenchel conjugate we have that

F ∗(u) = max
v

uv − F (v) : v ∈ range(ϕ)

It is easy to see that v∗ = ϕ(u). Thus

F ∗(u) = uϕ(u)− F (ϕ(u))

= uϕ(u)−
∫ ϕ(u)

z

ϕ−1(ξ) dξ

=

∫ ϕ(u)

z

ξ
d

dξ
ϕ−1(ξ) dξ

=

∫ u

ϕ−1(z)

ϕ(η) dη

where the third equality is a consequence of integration by parts, and the fourth equality we
make the subsitution η = ϕ−1(ξ)

Note that Theorem 2 implies that activation functions such as sigmoid and tanh can be
equivalently written as a biconvex constraint. Although the ReLU is not strictly monotone,
we can simply restrict the inverse to the domain R+; specifically, for ϕ(x) = max(0, x) define

ϕ−1(z) =

{
+∞ if z < 0,
z if z ≥ 0,

Then, we can rewrite the ReLU function as the equivalent set of biconvex constraint

v = max(0, u)⇐⇒
{ 1

2
v2 +

1

2
u2+ − uv ≤ 0

v ≥ 0
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where u+ = max(0, u). This implies

Bϕ(v, u) =

{ 1

2
v2 +

1

2
u2+ − uv if v ≥ 0

+∞ otherwise
(3.5)

Despite the non-smoothness of u+, for fixed u or fixed v, (3.5) belongs in C1 – that is,
it has continuous first derivative and can be optimized using first order methods. We can
trivially extend the result of Theorem 2 for matrix inputs: for matrices U, V ∈ Rp×q, we have

Bϕ(V, U) =
∑
i,j

Bϕ(Vij, Uij).

Lifted Fenchel model

Assuming the activation functions of (3.3) satisfy the hypothesis of Theorem 2, we can
reformulate the learning problem equivalently as

min
(Wl)

L
l=0,(Xl)

L
l=1

L(Y,WLXL) +
L∑
l=0

ρlπl(Wl)

s.t. Bl(Xl+1,WlXl) ≤ 0, l = 0, . . . , L− 1

X0 = X, (3.6)

where Bl is the short-hand notation of Bϕl
. We now dualize the inequality constraints and

obtain the lower bound of the standard problem (3.3) via Lagrange relaxation

G(λ) := min
(Wl)

L
l=0,(Xl)

L
l=1

L(Y,WLXL) +
L∑
l=0

ρlπl(Wl)

+
L−1∑
l=0

λlBl(Xl+1,WlXl)

s.t.X0 = X, (3.7)

where λl ≥ 0 are the Lagrange multipliers. The maximum lower bound can be achieved by
solving the dual problem

p∗ ≥ d∗ = max
λ≥0

G(λ) (3.8)

where p∗ is the optimal value of (3.3). Note if all our activation functions are ReLUs, we
must also include the constraint Xl ≥ 0 in the training problem as a consequence of (3.5).
Although the new model introduces L new parameters (the Lagrange multipliers), we can
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show that using variable scaling we can reduce this to only one hyperparameter (for details,
see 3.6). The learning problem then becomes

G(λ) := min
(Wl)

L
l=0,(Xl)

L
l=1

L(Y,WLXL) +
L∑
l=0

ρlπl(Wl)

+ λ

L−1∑
l=0

Bl(Xl+1,WlXl)

s.t.X0 = X. (3.9)

In a regression setting where the data is generated by a one layer network, we are able
to provide global convergence guarantees of the above model (for details, see 3.7).

Comparison with other methods. For ReLU activations, B(v, u) as in (3.5) differs from
the penalty terms introduced in previous works. In [3, 114] they set B(v, u) = ∥v− u∥22 and
in [97, 19] they set B(v, u) = ∥v − u+∥22. Note that B(v, u) in the latter is not biconvex.
While the B(v, u) in the former is biconvex, it does not perform well at test time. [68] set
B(v, u) based on a proximal operator that is similar to the BC condition.

Convolutional model. Our model can naturally accommodate average pooling and con-
volution operations found in CNNs, since they are linear operations. We can rewrite WlXl

as Wl ∗ Xl where ∗ denotes the convolution operator and write Pool(X) to denote the av-
erage pooling operator on X. Then, for example, the sequence Conv → Activation can be
represented via the constraint

Bl(Xl+1,Wl ∗Xl) ≤ 0, (3.10)

while the sequence Pool → Conv → Activation can be represented as

Bl(Xl+1,Wl ∗ Pool(Xl)) ≤ 0. (3.11)

Note that the pooling operation changes the dimension of the matrix.

Prediction rule.

In previous works that reinterpret activation functions as argmin maps [3, 114], the predic-
tion at test time is defined as the solution to the optimization problem below

ŷ = arg min
y,(xl)

L(y,WLxL) + λ

L−1∑
l=0

Bl(xl+1,Wlxl)

s.t. x0 = x, (3.12)
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where x0 is test data point, ŷ is the predicted value, and xl, l = 1, . . . , L are the intermediate
representations we optimize over. Note if L is a mean squared error, applying the traditional
feed-forward rule gives an optimal solution to (3.12). We find empirically that applying the
standard feed-forward rule works well, even with a cross-entropy loss.

Batched model

The models discussed in the introduction usually require the entire data set to be loaded into
memory which may be infeasible for very large data sets or for data sets that are continually
changing. We can circumvent this issue by batching the model. By sequentially loading a
part of the data set into memory and optimizing the network parameters, we are able to
train the network with limited computational resources. Formally, the batched model is

min
(Wl)

L
l=0,(Xl)

L
l=1

L(Y,WLXL) +
L∑
l=0

ρlπl(Wl)

+λ
L−1∑
l=0

Bl(WlXl, Xl+1) +
L∑
l=0

γl∥Wl −W 0
l ∥2F

s.t. X0 = X, (3.13)

where X0 contains only a batch of data points instead of the complete data set. The
additional term in the objective γl∥Wl −W 0

l ∥2F , l = 0, . . . , L is introduced to moderate the
change of the W -variables between subsequent batches; here W 0

l represents the optimal W
variables from the previous batch and γ ∈ RL+1

+ is a hyperparameter vector. The X-variables
are reinitialized each batch by feeding the new batch forward through the equivalent standard
neural network.

Block-coordinate descent algorithm

The model (3.9) satisfies the following properties:

• For fixed W -variables, and fixed variables (Xj)j ̸=l, the problem is convex in Xl, and is
decomposable across data points.

• For fixed X-variables, the problem is convex in the W -variables, and is decomposable
across layers.

The non-batched and batched Fenchel lifted network are trained using block coordinate
descent algorithms highlighted in Algorithms 1 and 2. By exploiting the biconvexity of
the problem, we can alternate over updating the X-variables and W -variables to train the
network.

Note Algorithm 2 is different from Algorithm 1 in three ways. First, re-initialization
is required for the X-variables each time a new batch of data points are loaded. Second,
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Algorithm 1 Non-batched BCD Algorithm

1: Initialize (Wl)
L
l=0.

2: Initialize X0 with input matrix X.
3: Initialize X1, . . . , XL with neural network feed forward rule.
4: repeat
5: XL ← argminZ L(Y,WLZ) + λBL−1(Z,X

0
L−1)

6: for l = L− 1, . . . , 1 do
7: Xl ← argminZ Bl(Xl+1,WlZ) +Bl−1(Z,X

0
l−1)

8: end for
9: WL ← argminW L(Y,WXL) + ρlπl(W )
10: for l = L− 1, . . . , 0 do
11: Wl ← argminW λBl(Xl+1,WXl) + ρlπl(W )
12: end for
13: until convergence

Algorithm 2 Batched BCD Algorithm

1: Initialize (Wl)
L
l=0.

2: repeat
3: (W 0

l )
L
l=0 ← (Wl)

L
l=0

4: Re-initialize X0 with a batch sampled from input matrix X.
5: Re-initialize X1, . . . , XL with neural network feed forward rule.
6: for alternation= 1, . . . , K do
7: XL ← argminZ L(Y,WLZ) + λBL−1(Z,X

0
L−1)

8: for l = L− 1, . . . , 1 do
9: Xl ← argminZ λBl(Xl+1,WlZ) + λBl−1(Z,X

0
l−1)

10: end for
11: WL ← argminW L(Y,WXL) + ρLπL(W ) + γl∥W −W 0

L∥2F
12: for l = L− 1, . . . , 0 do
13: Wl ← argminW λBl(Xl+1,WXl) + ρlπl(W ) + γl∥W −W 0

l ∥2F
14: end for
15: end for
16: until convergence

the sub-problems for updating W -variables are different as shown in Section 3.4. Lastly, an
additional parameter K is introduced to specify the number of training alternations for each
batch. Typically, we set K = 1.
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Updating X-variables

For fixed W -variables, the problem of updating X-variables can be solved by cyclically
optimizing Xl, l = 1, . . . , L, with (Xj)j ̸=l fixed. We initialize our X-variables by feeding
forward through the equivalent neural network and update the Xl’s backward from XL to
X1 in the spirit of backpropagation.

We can derive the sub-problem for Xl, l = 1, . . . , L − 1 with (Xj)j ̸=l fixed from (3.6).
The sub-problem writes

X+
l = argmin

Z
Bl(Xl+1,WlZ) +Bl−1(Z,X

0
l−1) (3.14)

where X0
l−1 := Wl−1Xl−1. By construction, the sub-problem (3.14) is convex and paral-

lelizable across data points. Note in particular when our activation is a ReLU, the objective
function in (3.14) is in fact strongly convex and has a continuous first derivative.

For the last layer (i.e., l = L), the sub-problem derived from (3.6) writes differently

X+
L = argmin

Z
L(Y,WLZ) + λBL−1(Z,X

0
L−1) (3.15)

where X0
L−1 := WL−1XL−1. For common losses such as mean square error (MSE) and

cross-entropy, the subproblem is convex and parallelizable across data points. Specifically,
when the loss is MSE and we use a ReLU activation at the layer before the output layer,
(3.15) becomes

X+
L = argmin

Z≥0
||Y −WLZ||2F +

λ

2
||Z −X0

L−1||2F

where X0
L−1 := WL−1XL−1 and we use the fact that X0

L−1 is a constant to equivalently
replace BL−1 as in (3.5) by a squared Frobenius term. The sub-problem is a non-negative
least squares for which specialized methods exist [54].

For a cross-entropy loss and when the second-to-last layer is a ReLU activation, the
sub-problem for the last layer takes the convex form

X+
L =argmin

Z≥0
−TrY ⊤ log s(WLZ)+

λ

2
||Z −X0

L−1||2F , (3.16)

where s(·) : Rn → Rn is the softmax function and log is the element-wise logarithm. [3]
show how to solve the above problem using bisection.

Updating W -variables

With fixed X-variables, the problem of updating the W -variables can be solved in parallel
across layers.
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Sub-problems for non-batched model. The problem of updating Wl at intermediate
layers becomes

Wl = argmin
W

λBl(Xl+1,WXl) + ρlπl(W ). (3.17)

Again, by construction, the sub-problem (3.17) is convex and parallelizable across data
points. Also, since there is no coupling in the W -variables between layers, the sub-problem
(3.17) is parallelizable across layers.

For the last layer, the sub-problem becomes

WL = argmin
W
L(Y,WXL) + ρLπL(W ). (3.18)

Sub-problems for batched model. As shown in Section 3.4, the introduction of regular-
ization terms between W and values from a previous batch require the sub-problems (3.17,
3.18) be modified. (3.17) now becomes

Wl = argmin
W

λBl(Xl+1,WXl) + ρlπl(W )

+γl∥W −W 0
l ∥2F , (3.19)

while (3.18) becomes

WL = argmin
W
L(Y,WXL) + ρLπL(W )

+γL∥W −W 0
L∥2F . (3.20)

Note that these sub-problems in the case of a ReLU activation are strongly convex and
parallelizable across layers.

3.5 Numerical Experiments

In this section, we compare Fenchel lifted networks against other lifted models discussed
in the introduction and against traditional neural networks. In particular, we compare
our model against the models proposed by [97], [61] and [3] on MNIST. Then we compare
Fenchel lifted networks against a fully connected neural network and LeNet-5 [65] on MNIST.
Finally, we compare Fenchel lifted networks against LeNet-5 on CIFAR-10. For a discussion
on hyperparameters and how model paramters were selected, see Appendix 3.8.

Fenchel lifted networks vs. lifted models

Here, we compare the non-batched Fenchel lifted network against the models proposed by
[97]1, [61]2 and [3]. The former model is trained using ADMM and the latter ones using

1Code available in https://github.com/PotatoThanh/ADMM-NeuralNetworks
2Code available in https://github.com/deeplearning-math/bcd_dnn

https://github.com/PotatoThanh/ADMM-NeuralNetworks
https://github.com/deeplearning-math/bcd_dnn
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the BCD algorithms proposed in the respective papers. In Figure 3.1, we compare these
models on MNIST with a 784-300-10 architecture (inspired by [65]) using a mean square
error (MSE) loss.
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Figure 3.1: Test set performance of different lifted methods with a 784-300-10 network
architecture on MNIST with a MSE loss. Final test set performances: Taylor et al. 0.834,
Lau et al. 0.914, Askari et al. 0.863, Neural Network 0.957, This work 0.961.

After multiple iterations of hyperparameter search with little improvement over the base
model, we chose to keep the hyperparameters for [97] and [61] as given in the code. The
hyperparameters for [3] were tuned using cross validation on a hold-out set during training.
Our model used these same parameters and cross validated the remaining hyperparameters.
The neural network model was trained using SGD. The resulting curve of the neural network
is smoothed in Figure 3.1 for visual clarity. From Figure 3.1 it is clear that Fenchel lifted
networks vastly outperform other lifted models and achieve a test set accuracy on par with
traditional networks.
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Fenchel lifted networks vs. neural networks on MNIST

For the same 784-300-10 architecture as the previous section, we compare the batched Fenchel
lifted networks against traditional neural networks trained using first order methods. We use
a cross entropy loss in the final layer for both models. The hyperparameters for our model
are tuned using cross validation. Figure 3.2 shows the results.
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Figure 3.2: Test set performance of Fenchel lifted networks and fully connected networks
trained using Adam and SGD on a 784-300-10 network architecture on MNIST with cross
entropy loss. Total training time was 10 epochs. Final test set performances: SGD 0.943,
Adam 0.976, This work 0.976.

As shown in Figure 3.2, Fenchel lifted networks learn faster than traditional networks as
shown by the red curve being consistently above the blue and green curve. Although not
shown, between batch 600 and 1000, the accuracy on a training batch would consistently hit
100% accuracy. The advantage of the Fenchel lifted networks is clear in the early stages of
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training, while towards the end the test set accuracy and the accuracy of an Adam-trained
network converge to the same values.

We also compare Fenchel lifted networks against a LeNet-5 convolutional neural network
on MNIST. The network architecture is 2 convolutional layers followed by 3 fully-connected
layers and a cross entropy loss on the last layer. We use ReLU activations and average pooling
in our implementation. Figure 3.3 plots the test set accuracy for the different models.
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Figure 3.3: Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on MNIST with a cross entropy loss. Total training time was 20 epochs. Final
test set performances: SGD 0.986, Adam 0.989, This work 0.990.

In Figure 3.3, our method is able to nearly converge to its final test set accuracy after
only 2 epochs while Adam and SGD need the full 20 epochs to converge. Furthermore, after
the first few batches, our model is attaining over 90% accuracy on the test set while the
other methods are only at 80%, indicating that our model is doing something different (in
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a positive way) compared to traditional networks, giving them a clear advantage in test set
accuracy.

Fenchel lifted networks vs CNN on CIFAR-10

In this section, we compare the LeNet-5 architechture and with Fenchel lifted networks on
CIFAR-10. Figure 3.4 compares the accuracies of the different models.
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Figure 3.4: Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on CIFAR-10 with a cross entropy loss. Total training time was 80 epochs. Final
test set performance: SGD 0.565, Adam 0.625, This work 0.606

In this case, the Fenchel lifted network still outperforms the SGD trained network and
only slightly under performs compared to the Adam trained network. The larger variability in
the accuracy per batch for our model can be attributed to the fact that in this experiment,
when updating the W -variables, we would only take one gradient step instead of solving
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(3.19) and (3.20) to completion. We did this because we found empirically solving those
respective sub-problems to completion would lead to poor performance at test time.

3.6 Variable Scaling

Note that the new model (3.9) has introduced L + 1 more hyperparameters. We can use
variable scaling and the dual formulation to show how to effectively reduce this to only one
hyperparameter. Consider the model with ReLU activations, that is, the biconvex function
as in (3.5) and regularization functions πl(Wl) = ∥Wl∥2F for l = 0, . . . , L. Note that Bϕ is
homogeneous of degree 2, that is for any U, V and γ we have

γBϕ(V, U) = Bϕ(
√
γV,
√
γU)

Define λ−1 = 1 and the scalings

X̄l :=
√
λl−1Xl, W̄l :=

√
λl
λl−1

Wl,

Then (3.9) becomes

G(λ) := min
(W̄l)

L
l=0,(X̄l)

L+1
1

L(Y,
√
λL(W̄LX̄L))

+
L∑
l=0

ρlπl(

√
λl−1

λl
Wl) +

L−1∑
l=0

Bl(X̄l+1, W̄lX̄l)

s.t. X̄0 = X, X̄l ≥ 0, l = 0, . . . , L (3.21)

Using the fact πl(Wl) = ∥Wl∥2F and defining ρ̄l = ρl
λl−1

λl
we have

G(λ) := min
(W̄l)

L
l=0,(X̄l)

L+1
1

L(Y,
√
λL(W̄LX̄L))

+
L∑
l=0

ρ̄l∥W̄l∥2F +
L−1∑
l=0

Bl(X̄l+1, W̄lX̄l)

s.t. X̄0 = X, X̄l ≥ 0, l = 0, . . . , L (3.22)

where G(λ) is now only a function of one variable λL as opposed to L variables. Note
that this argument for variable scaling still works when we use average pooling or convo-
lution operations in conjunction with a ReLU activation since they are linear operations.
Note furthermore that the same scaling argument works in place of any norm due to the
homogeneity of norms – the only thing that would change is how ρ̄ is scaled by λl−1 and λl.
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Another way to show that we only require one hyperparameter λ is to note the equivalence

Bl(v, u) ≤ 0 ∀l⇐⇒
∑
l

Bl(v, u) ≤ 0

Then we may replace the L biconvex constraints in (3.6) by the equivalent constraint∑
lBl(v, u) ≤ 0. Since this is only one constraint, when we dualize we only introduce

one Lagrange multiplier λ.

3.7 One-layer Regression Setting

In this section, we show that for a one layer network we are able to convert a non-convex
optimization problem into a convex one by using the BC condition described in the main text.

Consider a regression setting where Y = ϕ(W ∗X) for some fixed W ∗ ∈ Rp×n and a given
data matrix X ∈ Rn×m. Given a training set (X, Y ) we can solve for W by solving the
following non-convex problem

min
W
∥Y − ϕ(WX)∥2F . (3.23)

We could also solve the following relaxation of (3.23) based on the BC condition

min
W

Bϕ(Y,WX) (3.24)

Note (3.24) is trivially convex inW by definition of Bϕ(·, ·). Furthermore, by construction
Bϕ(Y,WX) ≥ 0 and Bϕ(Y,WX) = 0 if and only if Y = ϕ(WX). Since Y = ϕ(W ∗X), it
follows W ∗ (which is the minimizer of (3.23)) is a global minimizer of the convex program
(3.24). Therefore, we can solve the original non-convex problem (3.23) to global optimality
by instead solving the convex problem presented in (3.24).

3.8 Hyperparameters for Experiments

For all experiments that used batching, the batch size was fixed at 500 and K = 1. We ob-
served empirically that larger batch sizes improved the performance of the lifted models. To
speed up computations, we set K = 1 and empirically find this does not affect final test set
performance. For batched models, we do not use πl(·) since we explicitly regularize through
batching (see (3.13)) while for the non-batched models we set πl(Wl) = ∥Wl∥2F for all l. For
models trained using Adam, the learning rate was set to η = 10−3 and for models trained
using SGD, the learning rate was set to η = 10−2. The learning rates were a hyperparamter
that we picked from {10−1, 10−2, 10−3, 10−4} to give the best final test performance for both
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Adam and SGD.

For the network architechtures described in the experimental results, we used the follow-
ing hyperparamters:

• Fenchel Lifted Network for LeNet-5 architecture

1. ρ1 = 1e− 4, λ1 = 5

2. ρ2 = 1e− 2, λ2 = 5

3. ρ3 = 1, λ3 = 1

4. ρ4 = 1, λ4 = 1

5. ρ5 = 1

• Fenchel Lifted Network for 784-300-10 architecture (batched)

1. ρ1 = 1, λ1 = 0.1

2. ρ2 = 100

• Fenchel Lifted Network for 784-300-10 architecture (non-batched)

1. ρ1 = 1e− 2, λ1 = 0.1

2. ρ2 = 10

For all weights the initialization is done through Xavier initialization implemented in
TensorFlow. The ρ variables are chosen to balance the change of variables across layers in
iterations. Although the theory in Appendix A states we can collapse all λ hyperparameters
into a single hyperparameter, due to time constraints, we were unable to implement this
change upon submission. We also stress that the hyperparamter search over the ρ’s were
very coarse and a variety of ρ values worked well in practice; for simplicity we only present
the ones we used to produce the plots in the experimental results.

3.9 Fenchel Conjugates and Proximal Operators

Here we discuss the similarities between [68] and the approach of this paper (for simplicity,
we only concern ourselves with the ReLU activation since it is convex). In what follows,
when we refer to equation numbers, they are the equation numbers in [68]. First we derive
an elementary result relating conjugate functions and proximal operators.

Lemma 1. Let λ > 0 and let f(x) be a closed, convex and proper function. Define f̃(x) =
λf(x) + 1

2
∥x∥22 and let f ∗(y) be the fenchel conjugate of f(x). Furthermore, define the

proximal operator as proxλf (x) = argminy f(y) +
1
2λ
∥x− y∥22 and for a given x, let y∗(x) =

argmaxy x
⊤y − f̃(y). Then proxλf (x) = y∗(x).
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Proof.

argmin
y
f(y) +

1

2λ
∥y − x∥22 = argmin

y
f(y) +

1

2λ
∥x∥22 −

1

λ
x⊤y +

1

2λ
∥y∥22

= argmin
y

(
λf(y) +

1

2
∥y∥22

)
− x⊤y

= argmax
y
x⊤y − f̃(y)

The left hand side is exactly proxλf (x) and the right hand side is exactly y∗(x). Note
furthermore that the problem defining proxλf (x) is strongly convex and hence there is only
one unique global optima and similarly for the problem defining y∗(x).

The above lemma shows the natural connection between proximal operators and fenchel
conjugates. We now highlight this in the case of the ReLU function ϕ(x) = max(0, x) and
make the connection explicit. Below we consider the scalar case, and the multivariate case
is a simple generalization of the argument below.

As in [68], if we set f(x) =
∫ x

0
ϕ−1(z) − z dz as defined below (11) and set g(x) =∫ x

0
ϕ(z)− z dz as defined below (18) in the aforementioned reference and, we then have

f(x) =

∫ x

0

ϕ−1(z)− z = 0

g(x) =

∫ x

0

ϕ(z)− z dz = 1

2
max(x, 0)2 − 1

2
x2

where we use the fact that ϕ−1(z) = z for z ∈ [0,∞) and set ϕ−1(z) = +∞ otherwise.
Modulo hyperparameters in their objective function, the term inside the summand in (18)
(in the scalar case), reduces to

f(xi) +
1

2
(xi − wi−1xi−1)2 + g(wi−1xi−1)

=0 +
1

2
(xi − wi−1xi−1)2 +

1

2
(wi−1xi−1)2+ −

1

2
(wi−1xi−1)2

=
1

2
(xi)2 − ⟨wi−1xi−1, xi⟩+ 1

2
(wi−1xi−1)2+

=Bϕ(x
i, wi−1xi−1)

Hence

Bϕ(v, u) = f(v) +
1

2
∥v − u∥22 + g(u)

As a result, the term in the summand the authors use in (18) is equivalent to the fenchel
lifted formulation.
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Chapter 4

Fast Knockoffs

4.1 Introduction

Feature selection is a key preprocessing step in prediction tasks. Pruning out irrelevant
variables both improves test performance by reducing noise and helps interpretation by
focusing the prediction task on a short list of important variables. In many cases, the variable
selection step is in fact more important than the prediction itself. The tradeoff between
prediction performance and model size is typically very favorable. However, feature selection
needs to select among an exponential number of hypotheses (the subset of selected variables)
using a limited number of samples, and is thus naturally exposed to false discoveries. A lot
of effort has been focused on controlling the false discovery rate (FDR) in feature selection,
with notably [Benj95] controlling FDR using p-values. These results work well in settings
where p-values are readily available and has been extended, in part, to more sophisticated
feature selection procedures in what is known as post selection inference (see e.g. [Berk13,
Lee16]). This requires computing p-values after complex prediction tasks, which is far from
trivial.

A more flexible alternative is provided by the knockoff framework developed in [Barb15,
Cand18, Barb19]. In this setting, we first generate knockoff covariates whose distribu-
tion roughly matches that of the true covariates, except that knockoffs are designed to be
conditionally independent of the response, and hence should never be selected by a feature
selection procedure. This last fact helps in controlling the false discovery rate. The proce-
dure in [Cand18] shows how to design knockoffs in the Gaussian case and requires solving
a semidefinite program (SDP) of dimension p equal to the ambient dimension. While the
knockoff framework does not explicitly control power, the SDP optimally decorrelates true
covariates and their knockoff, which empirically improves power. The current package pro-
vided by the authors of [Cand18] uses generic interior point methods (IPM), which scale
roughly as O(p4.5), which can be reduced to O(p3.5) using problem structure [13]. Feature
selection is naturally a high dimensional problem, making generic IPM solvers ill suited for
the task. Simple tricks produce simple feasible solutions to the knockoff SDP, but at the
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expense of a loss in power. Clustering the covariance matrix also allows [Cand18] to solve
much larger problems, but the limitations on maximum block size remains.

In this chapter we propose Fast Knockoffs (FANOK) where we use problem structure
to derive a block coordinate descent method and solve a barrier formulation as in, e.g. [22,
105]. Iterations require low rank Cholesky updates which can be handled efficiently. This
allows us to produce a first algorithm which handles generic covariance matrices, and has
a complexity scaling as O(p3) where p is the ambient dimension. We then derive another
method which assumes a rank k factor (low rank) model on the covariance matrix to reduce
this complexity bound to O(pk2). The low rank algorithm is potentially unstable in very
particular scenarios, but we do not observe instabilities in practice. We also derive efficient
procedures to both estimate factor models and sample knockoff covariates with complexity
linear in the dimension. We test our methods on problems with p as large as 500 000.

Notation

Let [p] = {1, . . . , p}. Given M ∈ Rp×p and two sets of indices I, J ⊆ [p], MI,J denotes
the |I| × |J | matrix obtained by keeping the |I| rows and |J | columns indexed by I and J
respectively. For simplicity, an integer j denotes the set {j}, jc denotes the set [p] \ {j} and
“:” denotes either all rows or columns in the matrix subscript context. For example,

M =

1 2 3
4 5 6
7 8 9

 =⇒ M1c,1c =

[
5 6
8 9

]
, M1c,1 =

[
4
7

]
, M1c,: =

[
4 5 6
7 8 9

]
, M1,1 = 1 .

For s ∈ Rp, D = diag(s) denotes a p × p diagonal matrix with Dii = si. For M ∈ Rp×p,
m = diag(M) denotes a vector in Rp with mi = Mii. Unless otherwise stated, xj and x′j
denote the jth column and row of a matrix X respectively. Sp denotes the set of p × p
symmetric matrices.

Primer on Knockoffs

Given random covariates and a random response (x, y) ∈ Rp × R, the knockoff framework
of [Barb15, Cand18, Barb19] seeks to control the false discovery rate in feature selection
by constructing a new family of random variables x̃ ∈ Rp called knockoffs which have a joint
distribution comparable to their counterparts x but are independent of the response y. As
a result, these knockoff variables should not be selected by any reasonable feature selection
procedure. The knockoff framework controls the FDR by keeping the features which are
more strongly selected than their knockoff counterpart (which usually requires solving a
LASSO-type problem; see Section 3.2 of [Cand18]).

More specifically, themodel-X knockoff framework of [Cand18] formally defines knockoffs
as a new family of random variables x̃ ∈ Rp such that x̃ ⊥⊥ y | x, and for any S ⊂ [p], we
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have [
x
x̃

]
swap(S)

d
=

[
x
x̃

]
,

where [x⊤, x̃⊤]⊤swap(S) is obtained from [x⊤, x̃⊤]⊤ by swapping the jth entries of x and x̃

for all j ∈ S. In the Gaussian case where x ∼ N (µpop,Σpop) this invariance property means
that [x⊤, x̃⊤]⊤ is also Gaussian with covariance matrix given by[

Σpop Σpop − diag(s)
Σpop − diag(s) Σpop

]
⪰ 0

for some s ∈ Rp such that the matrix is positive semidefinite (PSD), i.e., such that 0 ⪯
diag(s) ⪯ 2Σpop.

Without loss of generality, we assume that µpop = 0. Since the population covariance
matrix Σpop is never observed in practice, we instead use an estimate Σ from the observed
samples. By rescaling the data, without loss of generality we assume Σ is a correlation
matrix. Given an observation x, Gaussian knockoffs are then sampled from the conditional
distribution x̃ | x ∼ N (µ, Ω) such that

µ = x− diag(s)Σ−1x ,

Ω = diag(s)
(
2Ip − Σ−1 diag(s)

)
.

(4.1)

For the remainder of the paper, let X ∈ Rp×n denote the scaled data matrix for the response
vector y ∈ Rn. After we sample all the knockoffs and aggregate them into the knockoff
matrix X̃ ∈ Rp×n, we compute a feature statistic in order to do feature selection. Intuitively,
we want to construct knockoffs that are not “too similar” to the original features ( i.e., with
low E ⟨x′i, x̃′i⟩ = 1− si). To do so, we maximize the entries of s, solving the following SDP

maximize 1⊤s
subject to diag(s) ⪯ 2Σ

0 ≤ s ≤ 1
(4.2)

In this paper, we are concerned with solving (4.2) as efficiently as possible.

4.2 Solving for Second Order Knockoffs

Solving the semidefinite program in (4.2) using generic interior point methods [76, 45, 13]
has complexity O(p4.5) or O(p3.5) exploiting structure, which precludes their use on large-
scale examples. In what follows, we will describe a coordinate ascent method that better
exploits the structure of the problem. Each barrier problem has complexity O(p3), but when
the covariance matrix Σ is assumed to have a diagonal plus low-rank (aka factor model)
structure, this complexity can be reduced to O(pk2) where k ≪ p. Most of the results
in this section require the estimated covariance Σ to be positive definite (we require all its



CHAPTER 4. FAST KNOCKOFFS 42

principal submatrices to be invertible). Hence, we will assume in this section that Σ ≻ 0.
This is the case almost surely when n ≥ p, but Σ is not invertible when p > n. In this later
scenario, we use the Ledoit-Wolf estimator which is always positive definite (see Section 4.2
for more details).

A Basic Coordinate Ascent Algorithm

Here, as in [8, 106], we exploit the fact that the feasible set of program (4.2) has a product
structure amenable to block coordinate ascent to derive an efficient algorithm for maximizing
a barrier formulation of (4.2) written

maximize 1⊤s+ λ log det
(
2Σ− diag(s)

)
subject to 0 ≤ s ≤ 1

(4.3)

in the variable s ∈ Rp, where λ > 0 is a barrier parameter. Note that the dual of (4.2) writes

minimize 2Tr(ΛΣ) + 1⊤η
subject to diag(Λ) + η ≥ 1

Λ ⪰ 0, η ≥ 0

and could be solved by adapting the block-coordinate method as in [106]. Here however, we
solve the primal problem (4.2) for two reasons. First, in the barrier formulation, the primal
is a lower dimensional convex problem than the dual (p versus O(p2)) with non-coupling
constraints. Second, we are focused on getting solutions of the primal variables, not the dual
variables. Hence we focus on a block coordinate algorithm for solving (4.3). We first recall
the following key fact.

Lemma 2. For any symmetric, invertible matrix M ∈ Sp and any j ∈ [p],

det (M) =
(
Mj, j −M⊤

jc, jM
−1
jc, jcMjc, j

)
· det (Mjc, jc) .

On the barrier problem (4.3), Lemma 2 yields

log det
(
2Σ− diag(s)

)
= log

(
2Σj, j − sj − 4Σ⊤

jc, jQ
−1
j Σjc, j

)
+ log det (Qj) ,

where Qj = 2Σjc, jc−diag(sjc) does not depend on sj. Using this decomposition, maximizing
over sj in (4.3) and leaving all other entries fixed, the first order optimality condition gives

s⋆j := min
(
1,max

(
2Σj, j − 4Σ⊤

jc,jQ
−1
j Σjc,j − λ, 0

))
. (4.4)

Applying this result iteratively yields the block coordinate ascent method detailed in Algo-
rithm 3.
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Algorithm 3 Coordinate ascent with log-barrier

1: Input: A covariance matrix Σ ∈ Sp, barrier coefficient λ > 0, decay µ < 1, s(0) = 0 ∈ Rp.

2: Set s = s(0).
3: repeat
4: for j = 1, . . . , p do
5: Form Qj = 2Σjc, jc − diag sjc
6: Compute sj = min

(
1,max

(
2Σj, j − 4Σ⊤

jc, jQ
−1
j Σjc, j − λ, 0

))
7: end for
8: λ = µλ
9: until stopping criteria
10: Output: A solution s.

Iteration Complexity

In Algorithm 3, the bottleneck is the inversion of the matrix Qj ∈ S+
p−1 in line 6 which is

O(p3), making the total complexity of Algorithm 3 O(nitersp
4). We can however reduce the

cost of Algorithm 3 to O(nitersp
3) by carefully updating Q−1

j between subsequent coordinates.

Lemma 3. Let s ≥ 0 and A = 2Σ − diag(s). Then, for any j ∈ [p], Q−1
j can be computed

as the inverse of a rank-3 update on A.

Proof. Up to a permutation, we can assume without loss of generality that j = 1. We can
write [

1 0
0 Q−1

j

]
=
(
A+ eje

⊤
j (1 + sj + 2Σjj)− 2ejΣ

⊤
j − 2Σje

⊤
j

)−1
,

where ej and Σj is the j
th Euclidean basis vector and column of Σ respectively.

Using the Sherman-Woodbury-Morrisson (SWM) formula [41]

(A+ UV T )−1 = A−1 − A−1U(I+ V TA−1U)−1V TA−1 , (4.5)

updating Q−1
j has complexity O(p2). Note that A enjoys a rank-1 modification when a

coordinate of s is updated. After the initial inversion of Σ, each update of Qj thus becomes
an O(p2) operation and looping over all coordinates gives us a time complexity of O(nitersp

3).

Stable Updates

Despite this improvement in complexity, the biggest practical problem with the aforemen-
tioned scheme is the numerical instabilities present using the SWM formula [110]. In order
to circumvent this issue, we propose Algorithm 4 which is a modification of Algorithm 3 that
uses Cholesky decompositions instead of matrix inversions. The key idea in Algorithm 4 is
to keep a Cholesky factorization of A ≡ 2Σ − diag(s) at any time, performing stable rank
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one update on A in O(p2) after updating a coordinate of s. Hence, given A = LL⊤, we can
solve a triangular system directly instead of inverting a matrix, as stated in the following
lemma.

Lemma 4. For a given index j ∈ [p], note ỹ ∈ Rp the jth column of 2Σ with the jth entry
set to zero, that is,

ỹi =

{
2Σi,j if i ̸= j ,

0 otherwise .

We claim that s⋆j can be computed in the optimality condition (4.4) from ỹ, with

4Σ⊤
jc,jQ

−1
j Σjc,j =

ζỹ⊤A−1ỹ

ζ + ỹ⊤A−1ỹ
(4.6)

where ζ = 2Σj,j − sj.
Proof. To prove (4.6), we can assume, up to a permutation and without loss of generality,
that j = p, so that

ỹ⊤A−1ỹ =

[
2Σjc,j

0

]⊤
A−1

[
2Σjc,j

0

]
, (4.7)

where

A =

[
Qj 2Σjc,j

2Σ⊤
jc,j ζ

]
, A−1 =

[
B ∗
∗ ∗

]
,

and inverse of A has the block structure given above where B = Q−1
j + 4

β
Q−1

j (Σjc,jΣ
⊤
jc,j)Q

−1
j

and β = ζ − 4Σ⊤
jc,jQ

−1
j Σjc,j. Plugging this into (4.7) and simplifying, we arrive at

ỹ⊤A−1ỹ = 4Σ⊤
jc,jQ

−1
j Σjc,j +

4(2Σ⊤
jc,jQ

−1
j Σjc,j)

2

ζ − 4Σ⊤
jc,jQ

−1
j Σjc,j

,

which yields (4.6).

Let x be the solution of the system Lx = ỹ, whose computation amounts to forward
substitution and requires only O (p2) steps given L. Then ∥x∥22 = ỹ⊤(LL⊤)−1ỹ, which means
that the update can easily be computed using

4Σ⊤
jc,jQ

−1
j Σjc,j =

ζ∥x∥22
ζ + ∥x∥22

according to Lemma 4. After computing s⋆j and updating s, we perform a rank one Cholesky
update of L to maintain the equality LL⊤ = 2Σ− diag s.

Hence, Algorithm 4 has the same worst-case complexity as the scheme proposed in Sec-
tion 4.2, but is both faster and more stable in practice. Despite this computational improve-
ment, the complexity O(nitersp

3) is still prohibitive for large p. To make coordinate ascent
scale, we assume in what follows that Σ has a low-rank factor model structure and adapt
the method.
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Algorithm 4 Stable coordinate ascent

1: Input: Σ, barrier coefficient λ > 0, decay µ < 1, s(0) = 0p

2: s = s(0)

3: L = Cholesky2Σ− diag s
4: repeat
5: for j = 1, . . . , p do
6: Construct ỹ with ỹj = 0 and ỹjc = 2Σjc,j

7: Solve Lx = ỹ
8: ζ = 2Σj,j − sj
9: c =

ζ∥x∥22
ζ+∥x∥22

10: sj = min
(
1,max

(
2Σj, j − c− λ, 0

))
11: CholeskyUpdateL {Maintain equality LL⊤ = 2Σ− diag s}
12: end for
13: λ = µλ
14: until stopping criteria

Coordinate Ascent under Factor Model

The complexity of Algorithm 4 can be drastically reduced, from O(nitersp
3) to O (niterspk

2)
assuming the low-rank factor model

Σ = D + UU⊤ , (4.8)

where D ⪰ 0 is a diagonal matrix, and U ∈ Rp×k where k ≪ p (see Section 4.2 for details on
how efficiently estimate such a model). Under this assumption, for a given j ∈ [p], noting
again A = 2Σ− diag(s), we have via SWM (4.5),

A−1 = D̃−1 − 2D̃−1U
(
Ik + 2U⊤D̃−1U

)−1

U⊤D̃−1 , (4.9)

where D̃ = 2D−diag(s). The computational gain comes from solving a k× k linear system
as opposed to a p × p one. Recall that at each iteration j, only the jth coordinate of s is
updated using

sj ← min(1,max(α⋆, 0)) where α⋆ = 2Σj, j −
ζκ

ζ + κ
− λ ,

as shown in Lemma 4, where κ = ỹ⊤A−1ỹ. The following lemma helps computing the
coefficient κ.

Lemma 5. For a given index j ∈ [p], let ỹ ∈ Rp be the jth column of 2Σ with the jth entry
set to zero. Then,

ỹ⊤A−1ỹ = sj − 2Σj,j + (sj − 2Σj,j)
2e⊤j A

−1ej .
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Proof. The identity AA−1 = I yields that A−1(ỹ + (2Σj,j − sj)ej) = ej, or equivalently,
A−1ỹ = ej + (sj − 2Σj,j)A

−1ej. Hence,

ỹ⊤A−1ỹ = (sj − 2Σj,j)ỹ
⊤A−1ej

= (sj − 2Σj,j)e
⊤
j

[
ej + (sj − 2Σj,j)A

−1ej
]

= sj − 2Σj,j + (sj − 2Σj,j)
2e⊤j A

−1ej ,

where the second equality comes from the fact that A is symmetric.

Combining Lemma 5 with equation (4.9) gives

κ = ỹ⊤A−1ỹ

= sj − 2Σj,j + (sj − 2Σj,j)
2e⊤j A

−1ej

= −ζ + ζ2

2Dj,j − sj
− 2

ζ2

(2Dj,j − sj)2
Uj,:M

−1U⊤
j,: ,

where ζ = sj − 2Σj,j and M = Ik + 2U⊤D̃−1U . Finally noting ξ = 2Dj,j − sj we obtain the
update rule

α⋆ = 2Σj,j −
ζκ

ζ + κ
− λ

= 2Σj,j −
−ζ2 + ζ3

ξ
− 2 ζ3

ξ2
Uj,:M

−1U⊤
j,:

ζ2

ξ
− 2 ζ2

ξ2
Uj,:M−1U⊤

j,:

− λ

= 2Σj,j −
−ξ2 + ζξ − 2ζUj,:M

−1U⊤
j,:

ξ − 2Uj,:M−1U⊤
j,:

− λ

= 2Σj,j + 2
(2Dj,j − sj)(Dj,j − Σj,j)− (sj − 2Σj,j)Uj,:M

−1U⊤
j,:

2Dj,j − sj − 2Uj,:M−1U⊤
j,:

− λ .

QR updates The bottleneck in the computation of the update coefficient is the inversion
of the k × k matrix M = Ik + 2U⊤D̃−1U . To this end, we notice that an update of the jth
coordinate of s leads to a rank one update ofM . This means that we can efficiently compute
α⋆ by performing successive rank one updates on k × k matrices at each iteration. Indeed,
forming M and computing a QR decomposition costs O(pk2) operations.1 From this, the
term Uj,:(QR)

−1U⊤
j,: can efficiently be computed using the fact that Q is orthogonal and R

triangular. Finally, after sj has been updated, we perform a rank one update on the QR
decomposition of Ik + 2M .

The algorithm taking advantage of the factor model structure is summarized in Algo-
rithm 5. One nuance to using the SWM formula in Equation (4.9) is the fact that D̃j can
be nearly singular. In theory, this would preclude solving the SDP to arbitrary accuracy.
In practice, this does not seem to be problem as numerical instabilities rarely occur (see
Section 4.4).

1The matrix M is not necessarily psd, hence Cholesky decompositon is not possible.
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Algorithm 5 Coordinate Ascent using Factor Model

1: Input: approximation Σ = D + UU⊤, barrier coefficient λ > 0, decay µ < 1, s(0) = 0p
2: s = s(0)

3: M = U⊤ (2D − diag s)−1 U
4: Q,R← DecomposeQRIk + 2M
5: repeat
6: for j = 1, . . . , p do
7: z ← jth column of U⊤

8: Solve Rx = z
9: a← x⊤Q⊤z
10: α⋆ ← 2Σj,j + 2

(2dj−sj)(dj−Σj,j)−(sj−2Σj,j)a

2dj−sj−2a
− λ

11: sj ← min(1,max(α⋆, 0))
12: UpdateQRQ,R {Maintain QR = Ik + 2M}
13: end for
14: λ = µλ
15: until stopping criteria

Estimating Factor Models

In this section, we review how to efficiently compute a factor model for the correlation
matrix written Σ = D + UU⊤ [7]. The factor model assumption is somewhat natural for
two reasons. First, many natural data sets have correlation matrices that are numerically
low rank [Udel19] which can be well approximated by factor models. Second, classical
regularized estimators of the correlation matrix such as the Ledoit-Wolfe estimator [Ledo04]
are directly written as factor models.

The factor model is estimated by solving the following non-convex optimization problem

(D∗, U∗) = arg min
D,U∈Rp×k

{
∥Σ−D − UU⊤∥2F : D ⪰ 0 diagonal

}
, (4.10)

where k ≪ p is a user-specified rank. Note that when k = p, D∗ = 0 and U = V Λ1/2

where Σ = V ΛV ⊤. While (4.10) is non-convex, we use an alternating minimization scheme
for solving it to (local) optimality. Given UU⊤, solving for D is direct, we simply set
Dii = max(0,Σii − U2

ii). Now, given D, getting the optimal U reduces to projecting Σ −D
onto the space of rank k PSD matrices. The optimal U is given by U∗ = V Λ1/2 where
V ∈ Rp×k are the top k eigenvectors of Σ − D associated with the top k eigenvalues and
Λ ∈ Rk×k is a diagonal matrix with Λii = max(0, λi) for i = 1, . . . k (note Σ−D need not be
PSD).

In the setting where n ≪ p, the empirical covariance tends to be far from the popu-
lation covariance matrix and is ill-conditioned. To alleviate this, [66] uses Stein shrinkage
to compute a better estimate of Σ. We use the regularized covariance (also known as the
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Ledoit-Wolf estimator)

Σ = (1− δ)Σ + δµIp, µ = Tr(Σ)/p, δ⋆ =
1

n2

∑n
i=1(x

⊤
i xi)

2 − nTr(Σ2)

Tr(Σ2)−Tr(Σ)2/p
(4.11)

where δ⋆ is the optimal shrinkage parameter. These traces may be approximated with
stochastic Lanczos quadrature [100] without explicitly evaluating Σ and Σ2.

When p is extremely large, Σ may be too costly to store in memory. In order to circumvent
this issue, since we are only interested in computing the top k eigenvector–eigenvalue pairs,
we can simply compute the top left singular vectors of X instead of performing a spectral
decomposition on Σ when Σ = 1

n
XX⊤ or when Σ is the Ledoit-Wolf estimator [42, 111].

4.3 Sampling factor model Knockoffs

In this section, we detail how to generate the knockoff matrix X̃ ∈ Rp×n once an optimal
solution s to the semidefinite program (4.2) has been found. Each column x̃i is sampled
according to the Gaussian conditional distribution in (4.1). This means sampling x̃i | xi ∼
N (µi,Ω) such that

µi = xi − diag(s)Σ−1xi and Ω = 2diag(s)− diag(s)Σ−1 diag(s) .

Naively sampling from N (µi,Ω) via x̃i = µi + Lv where v ∼ N (0, Ip) and where L satisfies
LL⊤ = Ω has complexity O(p3) (the cost associated with the Cholesky decomposition).

We now show that if we have a factor model assumption on Σ, we can sample knockoffs in
time linear in p. Suppose that Σ has a factor model structure as in (4.8); that is, Σ = D+UU⊤

where D ≻ 0 is a diagonal matrix and U ∈ Rp×k (with k ≪ p). We show how to factorize Ω
and sample the knockoff matrix X̃ in O (npk2) steps using O (p(n+ k)) memory. Using the
factor model assumption and the SWM formula (4.5), we have

Σ−1 = D−1 −D−1UNN⊤U⊤D−1

where N ∈ Rk×k is the Cholesky factorization of (Ik + U⊤D−1U)−1. Setting S = diag(s)
gives

Ω = 2S − SΣ−1S = C + ZZ⊤

where C = 2S − SD−1S is diagonal (but not necessarily PSD) and Z = SD−1UN ∈ Rp×k is
low-rank. Forming C and Z takes at most O (pk2) operations and O (pk) memory. Notice
that the mean µi is easily computed in O (npk2) operations and without additional memory
as follows

µi = xi − Σ−1Sxi = xi −D−1Sxi +D−1UNZ⊤xi .

For this reason, the problem reduces to sampling from N (0,Ω) efficiently. To do so, we
adopt the L∆L⊤ factorization procedure presented by [90], which means decomposing Ω in
the following way

Ω = C + ZZ⊤ = L (Z, B) ∆ L (Z, B)⊤ , (4.12)
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where L (Z, B) (denoted L in the sequel) has the following structure

L (Z, B) =


1

⟨z′2, b′1⟩ 1
...

. . .

⟨z′p, b′1⟩ . . . ⟨z′p, b′p−1⟩ 1

 .

Here z′i, b
′
i denote the ith row of Z and B respectively, with B ∈ Rp×k, and ∆ ∈ S+

p is

diagonal. With a sample v from N (0, Ip), x̃i can be computed by setting x̃i = µi +L
√
∆ v.

The advantages of using the L∆L⊤ decomposition are that (i) we do not require C ⪰ 0 and
(ii) we never have to store the full matrices L or B to compute the product L

√
∆ v.

Forming B and ∆ Given a diagonal plus low-rank covariance Ω = C+ZZ⊤, Algorithm 6
(from [90]) forms the matrices B ∈ Rp×k and ∆ ∈ Rp×p such that Ω = L (Z,B) ∆ L (Z,B)⊤.
It requires O(pk) steps and O(pk) additional memory (if only the diagonal of ∆ is stored).

Algorithm 6 Forming the Cholesky factorization matrices B and ∆

1: Input: Ω = C + ZZ⊤

2: M = Ik, B = 0
3: for j = 1, . . . , p do
4: t =Mzj
5: ∆j, j = Cj, j + z⊤j t {always non-negative}
6: if ∆j, j > 0 then
7: bj = t/∆j, j

8: M =M − tt⊤/∆j, j

9: else
10: bj = 0 {bj may be anything, choose 0 for simplicity}
11: end if
12: end for
13: Output: ∆ and B as in (4.12).

Fast multiplication By virtue of the specific structure of L (and diagonality of ∆), given
the matrices B,∆ and a vector v ∈ Rp, Algorithm 7 computes the product u = L (Z,B)∆v in
only O(pk) operations (instead of the O (p2) normally required for a matrix-vector product)
andO(p+k) memory. A low asymptotic complexity is possible thanks to the special structure



CHAPTER 4. FAST KNOCKOFFS 50

Algorithm 7 Fast Cholesky multiplication

1: Input: B,∆ such that Ω = L (Z,B) ∆ L (Z,B)⊤ and a vector v ∈ Rp

2: w = 0k

3: for j = 1, . . . , p do
4: uj =

√
∆j, jvj + z⊤j w

5: w = w +
√

∆j, jvjbj
6: end for
7: Output: u = L (Z,B)∆v

of L (Z,B). More precisely note that for any j ∈ [p]

uj =
(
L (Z, B)

√
∆v
)
j

=
√
∆j, jvj +

j−1∑
i=1

z⊤j bi
√
∆i, ivi

=
√

∆j, jvj + z⊤j wj

where wj =
∑j−1

i=1 bi
√

∆i, ivi. The buffer vector w may be updated iteratively which allows
to compute u at low cost.

Sampling knockoffs In practice, we derive an iterative procedure that never stores B nor
L in memory to compute x̃i. Instead, their rows are computed on the fly and requires only
O(p + k2) memory. We combine Algorithms 6 and 7 in order to sample knockoffs. From
Algorithm 7, it is clear that neither B, ∆ nor L (Z,B) need to be fully computed and stored
in memory. Instead, the rows of B and the diagonal of ∆ may be computed iteratively, as
shown in Algorithm 8, which has a time complexity of O (pk2) and uses O (k2) memory. Here
a single value is sampled from N (0,Ω); it may be easily extended to sample the n required
knockoffs. Finally, n columns x̃i have to be sampled to form X̃ ∈ Rp×n, which requires
O (npk2) steps and O (p(n+ k)) memory.

Spectrum of Ω If Σ can only be approximated by a factor model (see Section 4.2) we have
Σ ≈ D + UU⊤ and the careful reader may notice that s computed via Algorithm 5 (which
by construction satisfies diag(s) ⪯ 2(D + UU⊤)) need not satisfy diag(s) ⪯ 2Σ. This in
turn implies Ω is not PSD. In order to circumvent this problem, we propose two procedures:
the hybrid approach, and the low rank approach. In the hybrid approach, after obtaining ŝ
from Algorithm 5, as in [Cand18], we solve

γ∗ = argmax
γ

γ : diag(γŝ) ⪯ 2Σ

which is a minimum eigenvalue problem that can be solved efficiently via bisection over
γ. This then ensures that Ω ⪰ 0 when s = γ∗ŝ. In the low rank approach, we assume
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Algorithm 8 Fast Gaussian sampling

1: Input: Ω = C + ZZ⊤ and v ∈ Rp a sample from N (0, Ip)
2: M = Ik
3: w = 0k

4: for j = 1, . . . , p do
5: t =Mzj
6: δj = Cj, j + z⊤j t {δj is always non-negative}
7: uj =

√
δjvj + z⊤j w

8: if δj > 0 then
9: b′j = t/δj {jth row of B}
10: M =M − tt⊤/δj
11: w = w +

√
δjvjwj

12: end if
13: end for
14: Output: u ∈ Rp sampled from N (0,Ω)

Σ = D + UU⊤ and sample our knockoffs accordingly. While not theoretically justified, we
show in Section 4.4 how this model is able to outperform most of the other methods in both
speed and performance while still controlling FDR.

4.4 Numerical Results

In this section, we perform a series of experiments to benchmark the aforementioned al-
gorithms. All experiments utilized a standard workstation. For the plots below, all error
bars represent one standard deviation. Unless referring to our algorithms, all other func-
tions used were from Scikit-Learn [81] and Nilearn [1] (library for machine learning on
neuro-imaging data).

Benchmarks

We first generate random covariance matrices and compare CPU time and quality of solutions
in solving (4.2) using SCS (a first order method) and CVXOPT (an IPM) interfaced with
CVXPY [79, 2, 26] and solving (4.3) using coordinate ascent. We set Σ = D + V ΛV ⊤ where
D ∈ Rp×p, V ∈ Rp×k,Λ ∈ Rk×k where D = 10−3Ip, Λii ∼ U [0, 1], Vij ∼ N (0, 1), and k =
⌈0.05p⌉. Figure 4.1 shows the results of the experiment for increasing p and the optimality
of the generated solution. In addition to comparing the optimality of the methods based
on objective functions, we check the feasibility of the solutions generated by the solutions.
Figure 4.2 plots the minimum eigenvalue of 2Σ − diag(s) versus the dimension. If the
minimum eigenvalue is negative, then the solution generated is infeasible. We see that with
default tolerances, CVXOPT and SCS generate infeasible solutions whereas our models stay
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Figure 4.1: (Left) Convergence time versus dimension for solving (4.2) using CVXOPT and
SCS in CVXPY and using Algorithms 4 and 5 to solve (4.3). (Right) Objective values reached
by the full and low rank algorithms relative to that generated using IPMs. Here f(s) = 1⊤s.

feasible. We noticed that decreasing the default tolerances of CVXOPT and SCS did not help
much in this regard and significantly increased the run time of the methods.
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Figure 4.2: Feasibility plot of λmin(2Σ− diag(s)) versus dimension.

In Figure 4.1, coordinate ascent provides substantial computational gains compared to
using SCS or CVXOPT. Solving the full rank model is consistently one (resp. two) orders of
magnitude faster than CVXOPT (resp. SCS) and the low rank model for p = 500 is four orders
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of magnitude faster than SCS. The slopes also indicate that for larger p, SCS and CVXOPT

become prohibitively slow while the low rank model can comfortably handle p ∼ 105. The
right panel in Figure 4.1 shows that the solution computed by our solver is indeed close to
the CVXOPT solution (while SCS produced infeasible solutions). For the full rank and low
rank models, our convergence criteria was λ ≤ ϵ where ϵ = 10−8. For SCS, eps = 10−6 and
for CVXOPT the default tolerances were used.

Complexity

SDP under factor model We now check empirically the complexity bounds of Algo-
rithm 5 derived in Section 4.2 (under the factor model assumption). We focus on the time
spent per cycle of the for loop in Algorithm 5. We run two sets of experiments: one where
we fix k and increase p and another where we fix p and increase k. For both experiments, we
generate covariance matrices as above (Section 4.4). The results are plotted in Figure 4.3.
This shows a favorable linear rate when k ∈ [101, 102] and the theoretically derived quadratic
rate when k ∈ [102, 103]. Empirically, we observed that 5 to 50 cycles are enough to converge
to a tolerance threshold of 10−6 on all the covariance matrices we experimented.
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Figure 4.3: (Left) Time per cycle versus dimension p with k = 25. This shows a linear
dependence on p. (Right) Time per cycle versus k with p = 50 000.

Sampling knockoffs We also benchmark the complexity of Algorithm 8 to sample from
N (0,Ω) when Ω = C + ZZ⊤ where C ∈ Rp×p is diagonal and Z ∈ Rp×k. In Figure 4.4 we
compare it to the classical approach consisting in finding the Cholesky decomposition of Ω,
which is our baseline. As seen in Figure 4.4, Algorithm 8 enjoys a linear dependence on p, a
favorable (sub)linear rate when k ∈ [1, 102] and a quadratic dependence on k (as expected)
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when k ∈ [102, 103]. Hence, using the special structure of the covariance, knockoffs may be
sampled in linear time.
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Figure 4.4: (Left) Sampling time versus dimension. (Right) Sampling time versus rank for
p = 25 000. Note we use a plain Python/NumPy implementation for our algorithm.

FDR Control on Synthetic Data

We now compare FDR control and power using different methods of solving (4.2) at scale.
For computational reasons, the two main current methods for constructing knockoffs in high
dimension either use an equicorrelated (Equi) construction or an approximate semidefinite
program (ASDP) construction (for more details see [Cand18]). The Equi and ASDP con-
structions are approximations to the solution of (4.2) and in this experiment, we compare
the quality of knockoffs (measured via false discovery rate and power) generated using the
above methods with the knockoffs generated via coordinate ascent, in the full rank and factor
model settings.

We run a similar experiment to that in Figure 5 of [Cand18]. We generate Σ with
Σ = D + V V ⊤ where Dii ∼ U [0, 1], Vij ∼ N (0, 1/k) and V ∈ Rp×k. We then generate
X ∈ Rp×n where the ith column of X is generated according to xi ∼ N (0p,Σ). We then set
y = X⊤β + ϵ where ϵi ∼ N (0, 1) and β has a fixed number of nonzero regression coefficients
each having equal magnitudes and random signs. We then estimate a factor model from the
empirical covariance (see Section 4.2) with rank equal to k, solve the appropriate SDP, sample
the knockoffs 100 times and finally compare the FDR and power of the various methods in
Figure 4.5. Note that in Section 4.1, the results assumes that we know the true covariance
Σ for knockoff generation and sampling. In this experiment, we are estimating Σ from X.

The target FDR rate is set to 10%. The results of Figure 4.5 confirm the fundamental
trade off between maximizing power and minimizing FDR – if the FDR is very low, we do
not expect the method to have much power. However, since the knockoff procedure simply
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provides a bound on the FDR, we are interested in comparing which procedure provides
the most power. We observe in Figure 4.5 that the approximate solutions produced using
Equi and ASDP constructions tend to be more conservative in their FDR control (which
is well below the 10% target) and often have significantly less power than the optimal full
and low rank SDP solutions. Overall, these optimal SDP solutions have an empirical FDR
closer to the target (sometimes marginally above due to model estimation error) and exhibit
more power, probably because the knockoffs are less correlated. Surprisingly, the low rank
solutions have more power than the full rank ones even when their FDR match, which might
be explained by the implicit regularization effect of the low rank structure.

The above setup favours the low rank factor model setting because we explicitly set
Σ = D + V V ⊤. In Figure 4.6, we run the same experiment as in Figure 4.5 but we now set
Σ = V V ⊤ with Vij ∼ N (0, 1/p) and V ∈ Rp×p (i.e Σ is full rank and does not inherently
posses a factor model structure). We then estimate a factor model from the regularized
covariance (see Section 4.2) with rank equal to k = {20, 400}.

Figure 4.6 shows that despite the true covariance not having a factor model structure,
the FDR is still controlled and the power is maintained. Furthermore, based on the right
hand plot in Figure 4.7, a rank 20 factor model is a much poorer approximation to Σ than
a rank 400 approximation. However, we see in Figure 4.6 that in spite of this, the rank 20
approximation still controls FDR and has power comparable to that of other methods.
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Figure 4.5: (n, p, k) = (1000, 500, 50), ∥β∥0 = 50 and each entry has equal amplitude. Each
point represents 100 trials (the same X and β is used for each amplitude; the randomness is
over the knockoff sampling). Error bars represent the std divided by the square root of the
number of trials in order to make it a 68% confidence interval. (Left) FDP versus amplitude.
(Right) Power versus amplitude.
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Figure 4.6: Same setup as the experiment for Figure 4.5 but now we estimate a rank
k = {20, 400} factor model from a full rank Σ = V V ⊤ with V ∈ Rp×p. (Left) FDP versus
amplitude. (Right) Power versus amplitude.
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Figure 4.7: (Left) Spectrum of eigenvalues of Σ (defined via (4.11)) used in estimating a
rank 20 and rank 400 factor model in Figure 4.6. (Right) Error ∥Σ−D − UU⊤∥F in factor
model approximation of Σ with increasing rank k.

fMRI feature selection

We now test the low-rank factor model on the Human Connectome Project (HCP) [31]
dataset for feature selection. Composed of brain connectivity maps, the dataset contains
brain activity from 1 496 healthy patients that was measured while they were shown pictures
of either humans faces or geometric shapes. We derive a binary classification task from the
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fMRI data consisting of identifying the category of the picture shown to each patient given
their brain activity. More specifically, we apply the knockoff filter to find which regions of
the brain are the most discriminative for classification.

Preprocessing Connectivity maps are volumes of size 91×109×91. Among these 902 629
voxels only 212 445 are in the brain envelope. We first extract them because they contain the
functional information of the brain. Since fMRI data is by nature very noisy and extremely
high dimensional, we then perform a spacial clustering step resulting in p = 5000 compo-
nents. This step averages the noise and reduces the data dimension. To do so, we make
use of the package Nilearn which provides parcellation algorithms. We employed the Ward
clustering method [51] because it is known to perform well in terms of accuracy [98]. In
the following experiments, the factor model is then computed for the shrunk (Ledoit-Wolf)
covariance matrix (see Section 4.2) with k = 50. Figure 4.8 shows the error of the factor
model as a function of the rank. We observe a very rapid decrease for small ranks (< 50)
followed by a long plateau. This justifies the choice k = 50.
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Figure 4.8: Error ∥Σ−D−UUT∥F made by the factor model of rank k with respect to the
shrunk (Ledoit-Wolf) covariance matrix Σ for fMRI data.

Sparse Center Classifiers As the knockoff framework offers a lot of freedom regarding the
choice of the covariates statistics, we chose to derive them from sparse centroid classifiers [16],
primarily because it can be computed very efficiently as compared to the LCD [Cand18]
statistic, but also because we found them to be more effective than the LCD statistic for
this classification task. More specifically, for any L0 penalty coefficient λ ≥ 0 we define the
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sparse centroids parameters
(
θ̂+(λ), θ̂−(λ)

)
as the solutions of the optimization problem

(
θ̂+(λ), θ̂−(λ)

)
= argmin

θ+,θ−∈Rp

1

n+

∑
j∈J+

∥xj − θ+∥22 +
1

n−

∑
j∈J−

∥xj − θ−∥22 + λ∥θ+ − θ−∥0 ,

where J ± denotes an index set corresponding to the ±1 labeled data points and n± = |J ±|.
Following the same idea as the LSM statistic [Cand18], we define Zj = sup{λ ≥ 0 | θ̂+(λ) ̸=
θ̂−(λ)} for all j ∈ [2p]. Finally, our statistic takes the following form

Wj = |Zj| − |Zj+p| , (4.13)

using the difference function which is antisymmetric. The knockoff filter controls the FDR
only if the statistics obey the flip-sign property as explained in Section 3.2 of [Cand18]. It
is easy to verify that the statistics defined in Equation (4.13) satisfy the requirements.

Estimating the factor model, solving (4.3), sampling knockoffs and computing the co-
variates statistics takes roughly 20 seconds. Figure 4.9 shows the brain regions that were
selected with a FDR target of 10%. We cannot evaluate power or FDR here since the ground
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Figure 4.9: Discoveries (34 in total) and their weights obtained by applying the knockoff
filter with the low-rank factor model. In comparison, Equi-knockoffs did not result in any
discoveries.

truth is not known. Note however that the discoveries are quite symmetric and concentrated
in a few locations. Since the results were obtained without combining knockoffs with any
additional structured penalty constraint to enforce localization or symmetry, this suggests
that the features are indeed meaningful.

LCD statistics We also experimented LCD statistics as they were shown to be robust
in many settings [Cand18]. The computation takes roughly 5 minutes (as opposed to 2
seconds for the centroids) and the procedure selects approximately the same regions and the
same features. Figure 4.10 shows the features that were selected with a FDR target of 10%
using LCD statistic.
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Figure 4.10: Discoveries (26 in total) and their weights obtained by applying the knockoff
filter with the low-rank factor model and LCD statistic.

Synthetic response As a correctness check, we run the following experiment to assess
the quality of the selection for fMRI data. We generate a random synthetic response y =
Bernoulli(sigmoid(Xβ)) where β has 20 nonzero coefficients each having equal amplitudes a
and random signs. With this construction, the ground truth is known and we can compute
the power and FDR of the selection procedure. We perform knockoffs feature selection with
LCD statistics and we repeat this process 20 times (always changing the ground truth) for
a range of amplitudes. We plot the power and FDR for Equi, ASDP and low-rank knockoffs
in Figure 4.11. This shows that low-rank knockoffs perform very well in terms of power. The
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Figure 4.11: fMRI feature selection for a synthetic binary response, with a target FDR of
10% for Equi, ASDP and low-rank knockoffs (blue, orange and green). Additionally low-rank
knockoffs with a target FDR of 5% is plotted in red. (Left) FDR versus amplitude. (Right)
Power versus amplitude.

target FDR is slightly exceeded, most likely because both the Gaussian and the low-rank
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assumptions are overly optimistic. In contrast, Equi and ASDP knockoffs have a very low
power, even for larger amplitudes. For this particular problem, ASDP has excessively low
power compared to the other two methods. In this experiment, we used 10 blocks for the
ASDP solver and it finds a solution roughly 4 times lower than Equi, at a much higher
computational cost. Even with only 2 blocks, the solution is slightly smaller than that of
Equi. In order to correct the FDR excess of low-rank, we can be more conservative and run
knockoffs with a lower target FDR, say 5%, and hope to meet the actual 10% target. We
plot the results of this approach in red in Figure 4.11. This shows that the FDR is controlled
better, and the power still compares favorably to the other methods. While not plotted, we
observed that using Sparse Center Classifiers statistics (Section 4.4) yields similar results,
even though the power is slightly lower.
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Chapter 5

Sparse Naive Bayes

5.1 Introduction

Modern, large-scale data sets call for classification methods that scale mildly (e.g. linearly)
with problem size. In this context, the classical naive Bayes model remains a very competitive
baseline, due to its linear complexity in the number of training points and features. In fact,
it is sometimes the only feasible approach in very large-scale settings, particularly in text
applications, where the number of features can easily be in the millions.

Feature selection, on the other hand, is a key component of machine learning pipelines,
for two main reasons: i) to reduce effects of overfitting by eliminating noisy, non-informative
features and ii) to provide interpretability. In essence, feature selection is a combinatorial
problem, involving the selection of a few features in a potentially large population. State-
of-the-art methods for feature selection employ some heuristic to address the combinatorial
aspect, and the most effective ones are usually computationally costly. For example, LASSO
[99] or l1-SVM models [32] are based on solving a l1-penalized convex problem in order to
achieve sparsity (at the expense of tuning a hyper parameter to attain a desired sparsity
level).

Since naive Bayes corresponds to a linear classification rule, feature selection in this
setting is directly related to the sparsity of the vector of classification coefficients. This
chapter is devoted to a sparse variant of naive Bayes. Our main contributions are as follows.

• We formulate a sparse naive Bayes problem that involves a direct constraint on the
cardinality of the vector of classification coefficients, leading to an interpretable naive
Bayes model. No hyper-parameter tuning is required in order to achieve the target
cardinality.

• We derive an exact solution of sparse naive Bayes in the case of binary data, and an
approximate upper bound for general data, and show that it becomes increasingly tight
as the marginal contribution of features decreases. Both models can be trained very
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efficiently, with an algorithm that scales almost linearly with the number of features
and data points, just like classical naive Bayes.

• We show in experiments that our model significantly outperforms simple baselines
(e.g., thresholded naive Bayes, odds ratio), and achieves similar performance as more
sophisticated feature selection methods, at a fraction of the computing cost.

Related Work on Naive Bayes Improvements. A large body of literature builds on the
traditional naive Bayes classifier. A non-extensive list includes the seminal work by [36] in-
troducing Weighted naive Bayes; Lazy Bayesian Learning by [116]; and the Tree-Augmented
naive Bayes method by [37]. The paper [103] improves the computational complexity of
the aforementioned methods, while maintaining the same accuracy. For a more complete
discussion of modifications to naive Bayes, we refer the reader to [50] and the references
therein.

Related Work on Naive Bayes and Feature Selection. Of particular interest to this
work are methods that employ feature selection. [55] use information-theoretic quantities
for feature selection in text classification, while [72] compare a host of different methods
and shows the comparative efficacy of the Odds Ratio method. These methods often use
ad hoc scoring functions to rank the importance of the different features. [33] uses the
mutual information to select features in a fast way while [112] employs a weighting approach
for selecting relevant features. [12] achieve soft variable selection by introducing bayesian
regularization into the training problem.

5.2 Background on Naive Bayes

In this paper, for simplicity only, we consider a two-class classification problem; the extension
to the general multi-class case is straightforward.

Notation. For an integer m, [m] is the set {1, . . . ,m}. The notation 1 denotes a vector
of ones, with size inferred from context. The cardinality (number of non-zero elements) in a
m-vector x is denoted ∥x∥0, whereas that of a finite set I is denoted |I|. Unless otherwise
specified, functional operations (such as max(0, ·)) on vectors are performed element-wise.
For k ∈ [n], we say that a vector w ∈ Rn is k-sparse or has sparsity level α% if at most k
or α% of its coefficients are nonzero respectively. For two vectors f, g ∈ Rm, f ◦ g ∈ Rm

denotes the elementwise product. For a vector z, the notation sk(z) is the sum of the top k
entries. Finally, Prob(A) denotes the probability of an event A.

Data Setup. We are given a non-negative data matrix X ∈ Rn×m
+ = [x(1), x(2), . . . , x(n)]⊤

consisting of n data points, each with m dimensions (features), and a vector y ∈ {−1, 1}n
that encodes the class information for the n data points, with C+ and C− referring to the
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positive and negative classes respectively. We define index sets corresponding to each class
C+, C−, and their respective cardinality, and data averages:

I± := {i ∈ [n] : yi = ±1} ,
n± = |I±|,
f± :=

∑
i∈I±

x(i) = ±(1/2)X⊤(y ± 1)

Naive Bayes. We are interested in predicting the class label of a test point x ∈ Rm via
ŷ(x) = argmaxϵ∈{−1,1}Prob(Cϵ |x). To calculate the latter posterior probability, we employ
Bayes’ rule and then use the “naive” assumption that features are independent of each other:
Prob(x | Cϵ) =

∏m
j=1Prob(xj | Cϵ), leading to

ŷ(x) = arg max
ϵ∈{−1,1}

logProb(Cϵ) +
m∑
j=1

logProb(xj|Cϵ). (5.1)

In (5.1), we need to have an explicit model for Prob(xj|Ci); in the case of binary or integer-
valued features, we use Bernoulli or categorical distributions, while in the case of real-valued
features we can use a Gaussian distribution. We then use the maximum likelihood principle
(MLE) to determine the parameters of those distributions. Using a categorical distribution,
Prob(C±) simply becomes n±/n.

Bernoulli Naive Bayes. With binary features, that is, X ∈ {0, 1}n×m, we choose the
following conditional probability distributions parameterized by two non-negative vectors
θ+, θ− ∈ [0, 1]m. For a given vector x ∈ {0, 1}m,

Prob(xj | C±) = (θ±j )
xj(1− θ±j )1−xj , j ∈ [m],

hence
m∑
j=1

logProb(xj | C±) = x⊤ log θ± + (1− x)⊤ log(1− θ±).

Training a classical Bernoulli naive Bayes model reduces to the problem

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
Lbnb(θ

+, θ−;X) (5.2)

where the loss is a concave function

Lbnb(θ
+, θ−) =

∑
i∈I+

logProb(x(i) | C+)

+
∑
i∈I−

logProb(x(i) | C−) (5.3)

=f+⊤ log θ+ + (n+1− f+)⊤ log(1− θ+)
+f−⊤ log θ− + (n−1− f−)⊤ log(1− θ−)
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Note that problem (5.2) is decomposable across features and the optimal solution is simply
the MLE estimate, that is, θ±∗ = f±/n±. From (5.1), we get a linear classification rule: for
a given test point x ∈ Rm, we set ŷ(x) = sign(v + w⊤

b x), where

v := log
Prob(C+)

Prob(C−)
+ 1⊤

(
log(1− θ+∗ )− log(1− θ−∗ )

)
wb := log

θ+∗ ◦ (1− θ−∗ )
θ−∗ ◦ (1− θ+∗ )

. (5.4)

Multinomial naive Bayes. With integer-valued features, that is, X ∈ Nn×m, we choose
the following conditional probability distribution, again parameterized by two non-negative
m-vectors θ± ∈ [0, 1]m, but now with the constraints 1⊤θ± = 1: for given x ∈ Nm,

Prob(x | C±) =
(
∑m

j=1 xj)!∏m
j=1 xj!

m∏
j=1

(θ±j )
xj

⇒ logProb(x | C±) = x⊤ log θ± + log

(
(
∑m

j=1 xj)!∏m
j=1 xj!

)

While it is essential that the data be binary in the Bernoulli model seen above, the multino-
mial one can still be used if x is non-negative real-valued, and not integer-valued. Training
the classical multinomial model reduces to the problem

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
Lmnb(θ

+, θ−)

1⊤θ+ = 1⊤θ− = 1 (5.5)

where the loss is a again a concave function

Lmnb(θ
+, θ−) =

∑
i∈I+

logProb(x(i) | C+)

+
∑
i∈I−

logProb(x(i) | C−)

=f+⊤ log θ+ + f−⊤ log θ− (5.6)

Again, problem (5.5) is decomposable across features, with the added complexity of equality
constraints on θ±. The optimal solution is the MLE estimate θ±∗ = f±/(1⊤f±). As before,
we get a linear classification rule: for a given test point x ∈ Rm, we set ŷ(x) = sign(v+w⊤

mx),
where

v := logProb(C+)− logProb(C−), wm := log θ+∗ − log θ−∗ (5.7)
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5.3 Naive Feature Selection

In this section, we incorporate sparsity constraints into the aforementioned models.

Naive Bayes with Sparsity Constraints

For a given integer k ∈ [m], with k < m, we seek to obtain a naive Bayes classifier that
uses at most k features in its decision rule. For this to happen, we need the corresponding
coefficient vector, denoted wb and wm for the Bernoulli and multinomial cases, and defined
in (5.4) and (5.7) respectively, to be k-sparse. For both Bernoulli and multinomial models,
this happens if and only if the difference vector θ+∗ − θ−∗ is sparse. By enforcing k-sparsity
on the difference vector, the classifier uses less than m features for classification, making the
model more interpretable.

Sparse Bernoulli Naive Bayes. In the Bernoulli case, the sparsity-constrained problem
becomes

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
Lbnb(θ

+, θ−;X)

∥θ+ − θ−∥0 ≤ k (SBNB)

where Lbnb is defined in (5.3). Here, ∥ · ∥0 denotes the l0-norm, or cardinality (number of
non-zero entries) of its vector argument, and k < m is the user-defined upper bound on the
desired cardinality.

Sparse Multinomial Naive Bayes. In the multinomial case, in light of (5.5), our model
is written

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
Lmnb(θ

+, θ−;X)

1⊤θ+ = 1⊤θ− = 1

∥θ+ − θ−∥0 ≤ k (SMNB)

where Lmnb is defined in (5.6).

Main Results

Due to the inherent combinatorial and non-convex nature of the cardinality constraint, and
the fact that it couples the variables θ±, the above sparse training problems look much more
challenging to solve when compared to their classical counterparts, (5.2) and (5.5). We will
see in what follows that this is not the case.
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Sparse Bernoulli Case. The sparse counterpart to the Bernoulli model, (SBNB), can be
solved efficiently in closed form, with complexity comparable to that of the classical Bernoulli
problem (5.2).

Theorem 3 (Sparse Bernoulli naive Bayes). Consider the sparse Bernoulli naive Bayes
training problem (SBNB), with binary data matrix X ∈ {0, 1}n×m. The optimal values of
the variables are obtained as follows. Set

v := (f+ + f−) ◦ log
(f+ + f−

n

)
(5.8)

+ (n1− f+ − f−) ◦ log
(
1− f+ + f−

n

)
w := w+ + w− (5.9)

w± := f± ◦ log f
+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
.

Then identify a set I of indices with the k largest elements in w−v, and set θ+∗ , θ
−
∗ according

to

θ+∗i = θ−∗i =
1

n
(f+

i + f−
i ), ∀i ∈ I, θ±∗i =

f±
i

n±
, ∀i ̸∈ I. (5.10)

Proof. For completeness we also include the following proof in Appendix 5.5. First note that
an ℓ0-norm constraint on a m-vector q can be reformulated as

∥q∥0 ≤ k ⇐⇒ ∃ I ⊆ [m], |I| ≤ k : ∀ i ̸∈ I, qi = 0.

Hence problem (SBNB) is equivalent to

max
θ+,θ−∈[0,1]m,I

Lbnb(θ
+, θ−;X)

s.t. θ+i = θ−i ∀i ̸∈ I, I ⊆ [m], |I| ≤ k (5.11)

where the complement of the index set I encodes the indices where variables θ+, θ− agree.
Then (5.11) becomes

p∗ := max
I⊆[m], |I|≤k

(∑
i ̸∈I

h±i

)
+
(∑

i∈I

h+i + h−i

)
(5.12)

where

h±i = max
θi∈[0,1]

(f+
i + f−

i ) log θi + (n− f+
i − f−

i ) log(1− θi)

h+i = max
θ+i ∈[0,1]

f+
i log θ+i + (n+ − f+

i ) log(1− θ+i )

h−i = max
θ−i ∈[0,1]

f−
i log θ−i + (n− − f−

i ) log(1− θ−i )
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and where we use the fact that n+ + n− = n. All the above expressions for h±i , h
+
i , h

−
i have

closed form values and solutions

θi = θ+∗ i = θ−∗ i =
1

n
(f+

i + f−
i ), ∀i ̸∈ I

θ±∗i =
f±
i

n±
, ∀i ∈ I (5.13)

Plugging the above inside the objective of (5.11) results in a Boolean formulation, with a
Boolean vector u of cardinality ≤ k such that 1 − u encodes indices for which entries of
θ+, θ− agree:

p∗ :=max
u∈Ck

(1− u)⊤v + u⊤w,

where, for k ∈ [m]:
Ck := {u : u ∈ {0, 1}m, 1⊤u ≤ k},

and vectors v, w are as defined in (5.8):

v := (f+ + f−) ◦ log
(f+ + f−

n

)
+ (n1− f+ − f−) ◦ log

(
1− f+ + f−

n

)
w := w+ + w−

w± := f± ◦ log f
+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
We obtain

p∗ = 1⊤v +max
u∈Ck

u⊤(w − v) = 1⊤v + sk(w − v),

where sk(·) denotes the sum of the k largest elements in its vector argument. Here we have
exploited the fact that the map z := w − v ≥ 0, which in turn implies that

sk(z) = max
u∈{0,1}m : 1⊤u=k

u⊤z = max
u∈Ck

u⊤z.

In order to recover an optimal pair (θ+∗ , θ
−
∗ ), we simply identify the set I of indices with the

m− k smallest elements in w − v, and set θ+∗ , θ
−
∗ according to (5.20).

Note that the complexity of the computation (including forming the vectors f±, and
finding the k largest elements in the appropriate m-vector) grows as O(mn log(k)). This
represents a very moderate extra cost compared to the cost of the classical naive Bayes
problem, which is O(mn).
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Multinomial Case. In the multinomial case, the sparse problem (SMNB) does not admit
a closed-form solution. However, we can obtain an upper bound.

Theorem 4 (Sparse multinomial naive Bayes). Let ϕ(k) be the optimal value of (SMNB).
Then ϕ(k) ≤ ψ(k), where ψ(k) is the optimal value of the following one-dimensional convex
optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument, and for
α ∈ (0, 1),

h(α) = C̃ − f+ logα− f− log(1− α).

where C̃ = f+◦log f++f−◦log f−−(f++f−)◦log(f++f−). Furthermore, given an optimal
dual variable α∗ that solves (USMNB), we can reconstruct a primal feasible (sub-optimal)
point (θ+, θ−) for (SMNB) as follows. For α∗ optimal for (USMNB), let I be complement
of the set of indices corresponding to the top k entries of h(α∗); then set B± :=

∑
i ̸∈I f

±
i ,

and

θ+∗ i = θ−∗ i =
f+
i + f−

i

1⊤(f+ + f−)
, ∀i ∈ I

θ±∗i =
B+ +B−

B±

f±
i

1⊤(f+ + f−)
, ∀i ̸∈ I (5.14)

Proof. See Appendix 5.6.

The key point here is that, while problem (SMNB) is nonconvex and potentially hard,
the dual problem is a one-dimensional convex optimization problem which can be solved very
efficiently, using bisection. The number of iterations to localize an optimal α∗ with absolute
accuracy ϵ grows slowly, as O(log(1/ϵ)); each step involves the evaluation of a sub-gradient
of the objective function, which requires finding the k largest elements in a m-vector, and
costs O(m log k). As before in the Bernoulli case, the complexity of the sparse variant in the
multinomial case is O(mn log k), versus O(mn) for the classical naive Bayes.

Quality estimate. The quality of the bound in the multinomial case can be analysed
using bounds on the duality gap based on the Shapley-Folkman theorem.

Theorem 5 (Quality of Sparse Multinomial Naive Bayes Relaxation). Let ϕ(k) be the op-
timal value of (SMNB) and ψ(k) that of the convex relaxation in (USMNB), we have, for
k ≥ 4,

ψ(k − 4) ≤ ϕ(k) ≤ ψ(k) ≤ ϕ(k + 4). (5.15)

Proof. See Appendix 5.7.
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While we defer details of the proof of Theorem 5 to the Appendix, we provide a high
level discussion of how to bound the duality gap. The proof follows from results by [6] (see
[29, 52] for a more recent discussion) which are summarized below. Given functions fi, a
vector b ∈ Rm, and vector-valued functions gi, i ∈ [n] that take values in Rm, we consider
the following problem:

hP (u) := min
x

n∑
i=1

fi(xi) :
n∑

i=1

gi(xi) ≤ b+ u (P)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm. Let hP (u)
∗∗ be the bi-

conjugate of hP (u) defined in (P), then hP (0)
∗∗ is the optimal value of the dual to (P) [29,

Lem. 2.3], and [29, Th. I.3] shows the following result.

Theorem 6. Suppose the functions fi, gji in problem (P) are proper, 1-coercive, lower semi-
continuous and there exists affine minorants for i = 1, . . . , n, j = 1, . . . ,m. Let

p̄j = (m+ 1)max
i
ρ(gji), for j = 1, . . . ,m (5.16)

then
hP (p̄) ≤ hP (0)

∗∗ + (m+ 1)max
i
ρ(fi). (5.17)

where ρ(f) ≜ supx∈dom(f){f(x)− f ∗∗(x)}.
Hence by bounding the non-convexity of the ℓ0 constraint, we are able to bound the

overall duality gap.
The bound in Theorem 5 implies in particular

ψ(k − 4) ≤ ϕ(k) ≤ ψ(k − 4) + ∆(k), for k ≥ 4,

where ∆(k) := ψ(k) − ψ(k − 4). This means that if ψ(k) does not vary too fast with k,
so that ∆(k) is small, then the duality gap in problem (SMNB) is itself small, bounded by
∆(k); then solving the convex problem (USMNB) will yield a good approximate solution
to (SMNB). This means that when the marginal contribution of additional features, i.e.
∆(k)/ψ(k) becomes small, our bound becomes increasingly tight. The “elbow heuristic” is
often used to infer the number of relevant features k∗, with ψ(k) increasing fast when k < k∗

and much more slowly when k ≥ k∗. In this scenario, our bound becomes tight for k ≥ k∗ .

5.4 Experiments

In this section, we compare our sparse multinomial model (SMNB) against other feature
selection methods (Experiments 1-3) we empirically show the quality of our relaxation on a
synthethic dataset (Experiment 4). For the former experiments, we do not use deep learning
methods since we want to compare the features selected rather than the end-to-end training
accuracy. For this reason, we compare (SMNB) against traditional ℓ1 methods, recursive
feature elimination (RFE) methods, and other sparsity-inducing methods.
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Feature Vectors Amazon IMDB Twitter MPQA SST2

Count Vector 31,666 103,124 273,779 6,208 16,599
tf-idf 5000 5000 5000 5000 5000
tf-idf wrd bigram 5000 5000 5000 5000 5000
tf-idf char bigram 5000 5000 5000 4838 5000

ntrain 8000 25,000 1,600,000 8484 76,961
ntest 2000 25,000 498 2122 1821

Table 5.1: Experiment 1 data: Number of features for each type of feature vector for each
data set. For tf-idf feature vectors, we fix the maximum number of features to 5000 for all
data sets. The last two rows show the number of training and test samples.
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Figure 5.1: Experiment 1: Accuracy versus run time with the IMDB dataset/Count Vector
with MNB in stage 2, showing performance on par with the best feature selection methods,
at fraction of computing cost. Times do not include the cost of grid search to reach the
target cardinality for ℓ1-based methods. For more details on the experiment, see Appendix
5.8.
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Feature Vectors Amazon IMDB Twitter MPQA SST2

Count Vector 31,666 103,124 273,779 6,208 16,599
tf-idf 31,666 103,124 273,779 6,208 16,599
tf-idf wrd bigram 870,536 8,950,169 12,082,555 27,603 227,012
tf-idf char bigram 25,019 48,420 17,812 4838 7762

Table 5.2: Experiment 2 data: Number of features for each type of feature vector for each
data set with no limit on the number of features for the tf-idf vectors. The train/test split
is the same as in Table 5.1.
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Figure 5.2: Experiment 2 (Left): Accuracy gain for our method (top panel) and factor
slower (bottom panel) over all data sets listed in Table 5.2 with MNB in stage 2, showing
substantial performance increase with a constant increase in computational cost. Experi-
ment 3 (Right): Run time with IMDB dataset/tf-idf vector data set, with increasing m, k
with fixed ratio k/m, empirically showing (sub-) linear complexity.

Experiment 1: Feature Selection

In the next three experiments, we compare (SMNB) with other feature selection methods for
sentiment classification on five different text data sets. Some details on the data sets sizes
are given in Table 5.1. More information on these data sets and how they were pre-processed
are given in Appendix 5.8.

For each data set and each type of feature vector, we perform the following two-stage
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procedure. In the first step, we employ a feature selection method to attain a desired
sparsity level of (0.1%, 1%, 5%, 10%); in the second step, we train a classifier based on the
selected features. Specifically, we use ℓ1-regularized logistic regression, logistic regression
with recursive feature elimination (RFE), ℓ1-regularized support vector machine (SVM),
SVM with RFE, LASSO, thresholded Multinomial naive Bayes (TMNB), the Odds Ratio
metric described by [72] and (SMNB) in the first step. Then using the selected features, in the
second step we train a logistic model, a MNB model, and a SVM. Thresholded multinomial
naive Bayes (TMNB) means we train a multinomial naive Bayes model and then select
the features corresponding to indices of the largest absolute value entries of the vector of
classification coefficients wm, as defined in (5.7). For each desired sparsity level and each
data set in the first step, we do a grid search over the optimal Laplace smoothing parameter
for MNB for each type of feature vector. We use this same parameter in (SMNB). All models
were implemented using Scikit-learn [82]. Figure 5.1 shows that (SMNB) is competitive with
other feature selection methods, consistently maintaining a high test set accuracy, while only
taking a fraction of the time to train; for a sparsity level of 5%, a logistic regression model
with ℓ1 penalty takes more than 1000 times longer to train.

Experiment 2: large-scale feature selection

For this experiment, we consider the same data sets as before, but do not put any limit
on the number of features for the tf-idf vectors. Due to the large size of the data sets,
most of the feature selection methods in Experiment 1 are not feasible. We use the same
two-stage procedure as before: 1) do feature selection using TMNB, the Odds Ratio method
and our method (USMNB), and 2) train a MNB model using the features selected in stage
1. We tune the hyperparameters for MNB and (USMNB) the same way as in Experiment
2. In this experiment, we focus on sparsity levels of 0.01%, 0.05%, 0.1%, 1%. Table 5.2
summarizes the data used in Experiment 2 and in Table 5.3 we display the average training
time for (USMNB).

Figure 5.2 shows that, even for large datasets with millions of features and data points,
our method, implemented on a standard CPU with a non-optimized solver, takes at most a
few seconds, while providing a significant improvement in performance. See Appendix 5.8
for the accuracy versus sparsity plot for each data set and each type of feature vector.

Experiment 3: complexity

Using the IMDB dataset in Table 5.1, we perform the following experiment: we fix a sparsity
pattern k/m = 0.05 and then increase k and m. Where we artificially set the number of
tf-idf features to 5000 in Experiment 1, here we let the number of tf-idf features vary from
10, 000 to 80, 000. We then plot the the time it takes to train (SMNB) at a the fixed 5%
sparsity level. Figure 5.2 shows that for a fixed sparsity level, the complexity of our method
appears to be sub-linear.
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Amazon IMDB Twitter MPQA SST2

FC 0.043 0.22 1.15 0.0082 0.037
Ft1 0.033 0.16 0.89 0.0080 0.027
Ft2 0.68 9.38 13.25 0.024 0.21
Ft3 0.076 0.47 4.07 0.0084 0.082

Table 5.3: Experiment 2 run times: Average run time (in seconds, with a standard
CPU and a non-optimized implementation) over 4 × 30 = 120 values for different sparsity
levels and 30 randomized train/test splits per sparsity level for each data set and each type of
feature vector. On the largest data set (Twitter, ∼ 12M features, ∼ 1.6M data points), the
computation takes less than 15 seconds. For the full distribution of run times, see Appendix
5.8. FC , Ft1 , Ft2 , Ft3 refer to the count vector, tf-idf, tf-idf word bigram, and tf-idf character
bigram feature vectors respectively.

Experiment 4: Duality Gap

In this experiment, we generate random synthetic data with uniform independent entries:
f± ∼ U [0, 1]m, wherem ∈ {30, 3000}. We then normalize f± and compute ψ(k) and ψ(k−4)
for 4 ≤ k ≤ m and plot how this gap evolves as k increases. For each value of k, we also plot
the value of the reconstructed primal feasible point, as detailed in Theorem 4. The latter
serves as a lower bound on the true value ϕ(k), which can be used to test a posteriori if our
bound is accurate.
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Figure 5.3: Experiment 4: Duality gap bound versus sparsity level for m = 30 (top panel)
andm = 3000 (bottom panel), showing that the duality gap quickly closes asm or k increase.
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Figure 5.3 shows that, as the number of features m or the sparsity parameter k increases,
the duality gap bound decreases. Figure 5.3 also shows that the a posteriori gap is almost
always zero, implying strong duality. In particular, as shown in Figure 5.3(b), as the number
of features increases, the gap between the bounds and the primal feasible point’s value
becomes negligible for all values of k. This indicates that we can solve the original, non-
convex problem (SBNB) by instead solving a 1-dimensional dual problem and constructing
a primal feasible solution in closed form.

5.5 Proof of Theorem 3

Theorem 3 (Sparse Bernoulli naive Bayes). Consider the sparse Bernoulli naive Bayes
training problem (SBNB), with binary data matrix X ∈ {0, 1}n×m. The optimal values of
the variables are obtained as follows. Set

v := (f+ + f−) ◦ log
(f+ + f−

n

)
+ (n1− f+ − f−) ◦ log

(
1− f+ + f−

n

)
,

w := w+ + w−, w± := f± ◦ log f
+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
.

Then identify a set I of indices with the k largest elements in w−v, and set θ+∗ , θ
−
∗ according

to

θ+∗i = θ−∗i =
1

n
(f+

i + f−
i ), ∀i ̸∈ I, θ±∗i =

f±
i

n±
, ∀i ∈ I.

First note that an ℓ0-norm constraint on a m-vector q can be reformulated as

∥q∥0 ≤ k ⇐⇒ ∃ I ⊆ [m], |I| ≤ k : ∀ i ̸∈ I, qi = 0.

Hence problem (SBNB) is equivalent to

max
θ+,θ−∈[0,1]m,I

Lbnb(θ
+, θ−;X) : θ+i = θ−i ∀i ̸∈ I, I ⊆ [m], |I| ≤ k, (5.18)

where the complement of the index set I encodes the indices where variables θ+, θ− agree.
Then (5.18) becomes

p∗ := max
I⊆[m], |I|≤k

∑
i ̸∈I

(
max
θi∈[0,1]

(f+
i + f−

i ) log θi + (n− f+
i − f−

i ) log(1− θi)
)

+
∑
i∈I

(
max

θ+i ∈[0,1]
f+
i log θ+i + (n+ − f+

i ) log(1− θ+i )
)

(5.19)

+
∑
i∈I

(
max

θ−i ∈[0,1]
f−
i log θ−i + (n− − f−

i ) log(1− θ−i )
)
.
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where we use the fact that n+ +n− = n. All the sub-problems in the above can be solved in
closed-form, yielding the optimal solutions

θ+∗ i = θ−∗ i =
1

n
(f+

i + f−
i ), ∀i ̸∈ I, and θ±∗i =

f±
i

n±
, ∀i ∈ I. (5.20)

Plugging the above inside the objective of (5.18) results in a Boolean formulation, with a
Boolean vector u of cardinality ≤ k such that 1 − u encodes indices for which entries of
θ+, θ− agree:

p∗ :=max
u∈Ck

(1− u)⊤v + u⊤w,

where, for k ∈ [m]:
Ck := {u : u ∈ {0, 1}m, 1⊤u ≤ k},

and vectors v, w are as defined in (5.8):

v := (f+ + f−) ◦ log
(f+ + f−

n

)
+ (n1− f+ − f−) ◦ log

(
1− f+ + f−

n

)
,

w := w+ + w−, w± := f± ◦ log f
+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
.

We obtain
p∗ = 1⊤v +max

u∈Ck
u⊤(w − v) = 1⊤v + sk(w − v),

where sk(·) denotes the sum of the k largest elements in its vector argument. Here we have
exploited the fact that the map z := w − v ≥ 0, which in turn implies that

sk(z) = max
u∈{0,1}m : 1⊤u=k

u⊤z = max
u∈Ck

u⊤z.

In order to recover an optimal pair (θ+∗ , θ
−
∗ ), we simply identify the set I of indices with the

k largest elements in w − v, and set θ+∗ , θ
−
∗ according to (5.20).

5.6 Proof of Theorem 4

Theorem 4 (Sparse Multinomial Naive Bayes). Let ϕ(k) be the optimal value of (SMNB).
Then ϕ(k) ≤ ψ(k), where ψ(k) is the optimal value of the following one-dimensional convex
optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument, and for
α ∈ (0, 1)

h(α) := f+ ◦ log f+ + f− ◦ log f− − (f+ + f−) ◦ log(f+ + f−)− f+ logα− f− log(1− α).
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Further, given an optimal dual variable α∗ that solves (USMNB), we can reconstruct a primal
feasible (sub-optimal) point (θ+, θ−) for (SMNB) as follows. For α∗ optimal for (USMNB),
let I be complement of the set of indices corresponding to the top k entries of h(α∗); then
set B± :=

∑
i ̸∈I f

±
i , and

θ+∗ i = θ−∗ i =
f+
i + f−

i

1⊤(f+ + f−)
, ∀i ∈ I, θ±∗i =

B+ +B−

B±

f±
i

1⊤(f+ + f−)
, ∀i ̸∈ I. (5.21)

Proof. We begin by deriving the expression for the upper bound ψ(k).

Duality bound. We first derive the bound stated in the theorem. Problem (SMNB) is
written

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
f+⊤ log θ+ + f−⊤ log θ− : 1⊤θ+ = 1⊤θ− = 1,

∥θ+ − θ−∥0 ≤ k.
(SMNB)

By weak duality we have ϕ(k) ≤ ψ(k) where

ψ(k) := min
µ+,µ−

λ≥0

max
θ+,θ−∈[0,1]m

f+⊤ log θ+ + f−⊤ log θ− + µ+(1− 1⊤θ+) + µ−(1− 1⊤θ−)

+ λ(k − ∥θ+ − θ−∥0).

The inner maximization is separable across the components of θ+, θ− since ∥θ+ − θ−∥0 =∑m
i=1 1{θ+i ̸=θ−i }. To solve it, we thus only need to consider one dimensional problems written

max
q,r∈[0,1]

f+
i log q + f−

i log r − µ+q − µ−r − λ1{q ̸=r}, (5.22)

where f+
i , f

−
i > 0 and µ± > 0 are given. We can split the max into two cases; one case in

which q = r and another when q ̸= r, then compare the objective values of both solutions
and take the larger one. Hence (5.22) becomes

max
(
max
u∈[0,1]

(f+
i + f−

i ) log u− (µ+ + µ−)u, max
q,r∈[0,1]

f+
i log q + f−

i log r − µ+q − µ−r − λ
)
.

Each of the individual maximizations can be solved in closed form, with optimal point

u∗ =
(f+

i + f−
i )

µ+ + µ− , q∗ =
f+
i

µ+
, r∗ =

f−
i

µ− . (5.23)

Note that none of u∗, q∗, r∗ can be equal to either 0 or 1, which implies µ+, µ− > 0. Hence
(5.22) reduces to

max
(
(f+

i + f−
i ) log

((f+
i + f−

i )

µ+ + µ−

)
, f+

i log
(f+

i

µ+

)
+ f−

i log
(f−

i

µ−

)
− λ
)
− (f+

i + f−
i ). (5.24)
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We obtain, with S := 1⊤(f+ + f−),

ψ(k) = −S + min
µ+,µ−>0

λ≥0

µ+ + µ− + λk +
m∑
i=1

max(vi(µ), wi(µ)− λ). (5.25)

where, for given µ = (µ+, µ−) > 0,

v(µ) := (f+ + f−) ◦ log
(f+ + f−

µ+ + µ−

)
, w(µ) := f+ ◦ log

(f+

µ+

)
+ f− ◦ log

(f−

µ−

)
.

Recall the variational form of sk(z). For a given vector z ≥ 0, Lemma 6 shows

sk(z) = min
λ≥0

λk +
m∑
i=1

max(0, zi − λ).

Problem (5.25) can thus be written

ψ(k) = −S +min
µ>0
λ≥0

µ+ + µ− + λk + 1⊤v(µ) +
m∑
i=1

max(0, wi(µ)− vi(µ)− λ)

= −S +min
µ>0

µ+ + µ− + 1⊤v(µ) + sk(w(µ)− v(µ)),

where the last equality follows from w(µ) ≥ v(µ), valid for any µ > 0. To prove this, observe
that the negative entropy function x → x log x is convex, implying that its perspective P
also is. The latter is the function with domain R+ ×R++, and values for x ≥ 0, t > 0 given
by P (x, t) = x log(x/t). Since P is homogeneous and convex (hence subadditive), we have,
for any pair z+, z− in the domain of P : P (z+ + z−) ≤ P (z+) + P (z−). Applying this to
z± := (f±

i , µ
+
i ) for given i ∈ [m] results in wi(µ) ≥ vi(µ), as claimed.

We further notice that the map µ → w(µ) − v(µ) is homogeneous, which motivates the
change of variables µ± = t p±, where t = µ++µ− > 0 and p± > 0, p++p− = 1. The problem
reads

ψ(k) = −S + (f+ + f−)⊤ log(f+ + f−) + min
t>0, p>0,
p++p−=1

{t− S log t+ sk(H(p))}

= C + min
p>0, p++p−=1

sk(H(p)),

where C := (f+ + f−)⊤ log(f+ + f−)− S logS, because t = S at the optimum, and

H(p) := v − f+ ◦ log p+ − f− ◦ log p−,

with
v = f+ ◦ log f+ + f− ◦ log f− − (f+ + f−) ◦ log(f+ + f−).
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Solving for ψ(k) thus reduces to a 1D bisection

ψ(k) = C + min
α∈[0,1]

sk(h(α)),

where
h(α) := H(α, 1− α) = v − f+ logα− f− log(1− α).

This establishes the first part of the theorem. Note that it is straightforward to check that
with k = n, the bound is exact: ϕ(n) = ψ(n).

Primalization. Next we focus on recovering a primal feasible (sub-optimal) point (θ+sub, θ−sub)
from the dual bound obtained before. Assume that α∗ is optimal for the dual problem
(USMNB). We sort the vector h(α∗) and find the indices corresponding to the top k entries.
Denote the complement of this set of indices by I. These indices are then the candidates
for which θ+i = θ−i for i ∈ I in the primal problem to eliminate the cardinality constraint.
Hence we are left with solving

(θ+sub, θ−sub) = arg max
θ+,θ−∈[0,1]m

f+⊤ log θ+ + f−⊤ log θ− (5.26)

s.t.1⊤θ+ = 1⊤θ− = 1,

θ+i = θ−i , i ∈ I
or, equivalently

max
θ,θ+,θ−,s∈[0,1]

∑
i∈I

(f+
i + f−

i ) log θi +
∑
i ̸∈I

(f+
i log θ+i + f−

i log θ−i ) (5.27)

s.t. 1⊤θ+ = 1⊤θ− = 1− s, 1⊤θ = s.

For given κ ∈ [0, 1], and f ∈ Rm
++, we have

max
u : 1⊤u=κ

f⊤ log(u) = f⊤ log f − (1⊤f) log(1⊤f) + (1⊤f) log κ,

with optimal point given by u∗ = (κ/(1⊤f))f . Applying this to problem (5.27), we obtain
that the optimal value of s is given by

s∗ = arg max
s∈(0,1)

{A log s+B log(1− s)} = A

A+B
,

where

A :=
∑
i∈I

(f+
i + f−

i ), B± :=
∑
i ̸∈I

f±
i , B := B+ +B− = 1⊤(f+ + f−)− A.

We obtain

θ+sub
i = θ−sub

i =
s∗

A
(f+

i + f−
i ), i ∈ I, θ±sub

i =
(1− s∗)

B±(A+B)
f±
i , i ̸∈ I,

which further reduces to the expression stated in the theorem.
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5.7 Proof of Theorem 5

The proof follows from results by [6] (see also [29, 52] for a more recent discussion) which are
briefly summarized below for the sake of completeness. Given functions fi, a vector b ∈ Rm,
and vector-valued functions gi, i ∈ [n] that take values in Rm, we consider the following
problem:

hP (u) := min
x

n∑
i=1

fi(xi) :
n∑

i=1

gi(xi) ≤ b+ u (P)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm. We first recall some basic
results about conjugate functions and convex envelopes.

Biconjugate and convex envelope. Given a function f , not identically +∞, minorized
by an affine function, we write

f ∗(y) ≜ inf
x∈dom f

{y⊤x− f(x)}

the conjugate of f , and f ∗∗(y) its biconjugate. The biconjugate of f (aka the convex envelope
of f) is the pointwise supremum of all affine functions majorized by f (see e.g. [86, Th. 12.1]
or [46, Th.X.1.3.5]), a corollary then shows that epi(f ∗∗) = Co(epi(f)). For simplicity,
we write S∗∗ = Co(S) for any set S in what follows. We will make the following technical
assumptions on the functions fi and gi in our problem.

Assumption 5. The functions fi : Rdi → R are proper, 1-coercive, lower semicontinuous
and there exists an affine function minorizing them.

Note that coercivity trivially holds if dom(fi) is compact (since f can be set to +∞
outside w.l.o.g.). When Assumption 5 holds, epi(f ∗∗), f ∗∗

i and hence
∑n

i=1 f
∗∗
i (xi) are closed

[46, Lem.X.1.5.3]. Also, as in e.g. [29], we define the lack of convexity of a function as follows.

Definition 6. Let f : Rd → R, we let

ρ(f) ≜ sup
x∈dom(f)

{f(x)− f ∗∗(x)} (5.28)

Many other quantities measure lack of convexity (see e.g. [6, 10] for further examples).
In particular, the nonconvexity measure ρ(f) can be rewritten as

ρ(f) = sup
xi∈dom(f)

µ∈Rd+1

{
f

(
d+1∑
i=1

µixi

)
−

d+1∑
i=1

µif(xi) : 1
⊤µ = 1, µ ≥ 0

}
(5.29)

when f satisfies Assumption 5 (see [46, Th.X.1.5.4]).
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Bounds on the duality gap and the Shapley-Folkman Theorem Let hP (u)
∗∗ be the

biconjugate of hP (u) defined in (P), then hP (0)
∗∗ is the optimal value of the dual to (P) [29,

Lem. 2.3], and [29, Th. I.3] shows the following result.

Theorem 7. Suppose the functions fi, gji in problem (P) satisfy Assumption 5 for i =
1, . . . , n, j = 1, . . . ,m. Let

p̄j = (m+ 1)max
i
ρ(gji), for j = 1, . . . ,m (5.30)

then
hP (p̄) ≤ hP (0)

∗∗ + (m+ 1)max
i
ρ(fi). (5.31)

where ρ(·) is defined in Def. 6.

We are now ready to prove Theorem 5, whose proof follows from Theorem 7 above.

Theorem 8 (Quality of Sparse Multinomial Naive Bayes Relaxation). Let ϕ(k) be the op-
timal value of (SMNB) and ψ(k) that of the convex relaxation in (USMNB), we have for
k ≥ 4,

ψ(k − 4) ≤ ϕ(k) ≤ ψ(k) ≤ ϕ(k + 4).

for k ≥ 4.

Proof. Problem (SMNB) is separable and can be written in perturbation form as in the result
by [29, Th. I.3] recalled in Theorem 7, to get

hP (u) = minq,r −f+⊤ log q − f−⊤ log r
subject to 1⊤q = 1 + u1,

1⊤r = 1 + u2,∑m
i=1 1qi ̸=ri ≤ k + u3

(5.32)

in the variables q, r ∈ [0, 1]m, where u ∈ R3 is a perturbation vector. By construction, we
have ϕ(k) = −hP (0) and ϕ(k + l) = −hP ((0, 0, l)). Note that the functions 1qi ̸=ri are lower
semicontinuous and, because the domain of problem (SMNB) is compact, the functions

f+
i log qi + qi + f−

i log ri + ri + 1qi ̸=ri

are 1-coercive for i = 1, . . . ,m on the domain and satisfy Assumption 5 above.
Now, because q, r ≥ 0 with 1⊤q = 1⊤r = 1, we have q − r ∈ [−1, 1]m and the convex

envelope of 1qi ̸=ri on q, r ∈ [0, 1]m is |qi − ri|, hence the lack of convexity (5.29) of 1qi ̸=ri on
[0, 1]2 is bounded by one, because

ρ(1x ̸=y) := sup
x,y∈[0,1]

{1y ̸=x − |x− y|} = 1
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which means that maxi=1,...,n ρ(g3i) = 1 in the statement of Theorem 7. The fact that
the first two constraints in problem (5.32) are convex means that maxi=1,...,n ρ(gji) = 0 for
j = 1, 2, and the perturbation vector in (5.30) is given by p̄ = (0, 0, 4), because there are
three constraints in problem (5.32) so m = 3 in (5.30), hence

hP (p̄) = hP ((0, 0, 4)) = −ϕ(k + 4).

The objective function being convex separable, we have maxi=1,...,n ρ(fi) = 0. Theorem 7
then states that

hP (p̄) = hP ((0, 0, 4)) = −ϕ(k + 4) ≤ hP (0)
∗∗ + 0 = −ψ(k)

because −hP (0)
∗∗ is the optimal value of the dual to ϕ(k) which is here ψ(k) defined in

Theorem 4. The other bound in (5.15), namely ϕ(k) ≤ ψ(k), follows directly from weak
duality.

Primalization. We first derive the second dual of problem (P), i.e. the dual of prob-
lem (USMNB), which will be used to extract good primal solutions.

Proposition 9. A dual of problem (USMNB) is written

max. z⊤(g ◦ log(g)) + x⊤(f+ ◦ log(f+) + f− ◦ log(f−)) + (x⊤g) log(x⊤g)− (x⊤g)

−(1⊤g) log(1⊤g)− (x⊤f+) log(x⊤f+)− (x⊤f−) log(x⊤f−)

s.t. x+ z = 1, 1⊤x ≤ k, x ≥ 0, z ≥ 0

(D)

in the variables x, z ∈ Rn. Furthermore, strong duality holds between the dual (USMNB)
and its dual (D).

Proof. The dual optimum value ψ(k) in (USMNB) can be written as in (5.25),

ψ(k) = −S + min
µ+,µ−>0

λ≥0

µ+ + µ− + λk +
m∑
i=1

max(vi(µ), wi(µ)− λ).

with S := 1⊤(f+ + f−), and

v(µ) := (f+ + f−) ◦ log
(f+ + f−

µ+ + µ−

)
, w(µ) := f+ ◦ log

(f+

µ+

)
+ f− ◦ log

(f−

µ−

)
.

for given µ = (µ+, µ−) > 0. This can be rewritten

min
µ+,µ−>0

λ≥0

max
x+z=1
x,z≥0

µ+ + µ− − S + λ(k − 1⊤x) + z⊤v(µ) + x⊤w(µ)
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using additional variables x, z ∈ Rn, or again

min
µ+,µ−>0

λ≥0

max
x+z=1
x,z≥0

λ(k − 1⊤x)− (x+ z)⊤g − (z⊤g) log(µ+ + µ−) + z⊤(g ◦ log(g))
−(x⊤f+) log(µ+)− (x⊤f−) log(µ−)
+x⊤(f+ ◦ log(f+) + f− ◦ log(f−)) + µ+ + µ−

(5.33)

calling g = f+ + f−. Strong duality holds in this min max problem so we can switch the
min and the max. Writing µ± = t p±, where t = µ+ + µ− and p± > 0, p+ + p− = 1 the
Lagrangian becomes

L(p+, p−, t, λ, x, z, α) = 1⊤ν − z⊤ν − x⊤ν + λk − λ1⊤x− 1⊤g − (z⊤g) log(t)

−(x⊤f+) log(t p+)− (x⊤f−) log(t p−) + t

+z⊤(g ◦ log(g)) + x⊤(f+ ◦ log(f+) + f− ◦ log(f−))

+α(p+ + p− − 1),

where α is the dual variable associated with the constraint p+ + p− = 1. The dual of
problem (USMNB) is then written

sup
{x≥0,z≥0,α}

inf
p+≥0,p−≥0,
t≥0,λ≥0

L(p+, p−, t, µ
−, λ, x, z, α)

The inner infimum will be −∞ unless 1⊤x ≤ k, so the dual becomes

sup
x+z=1,1⊤x≤k,

x≥0,z≥0,α

inf
p+≥0,p−≥0,

t≥0

z⊤(g ◦ log(g)) + x⊤(f+ ◦ log(f+) + f− ◦ log(f−))
−(x⊤f+)(log t+ log(p+))− (x⊤f−)(log t+ log(p−))
+t− 1⊤g − (z⊤g) log(t) + α(p+ + p− − 1)

and the first order optimality conditions in t, p+, p− yield

t = 1⊤g (5.34)

p+ = (x⊤f+)/α

p− = (x⊤f−)/α

which means the above problem reduces to

sup
x+z=1,1⊤x≤k,

x≥0,z≥0,α

z⊤(g ◦ log(g)) + x⊤(f+ ◦ log(f+) + f− ◦ log(f−))
−(1⊤g) log(1⊤g)− (x⊤f+) log(x⊤f+)− (x⊤f−) log(x⊤f−)
+(x⊤g) logα− α

and setting in α = x⊤g leads to the dual in (D).

We now use this last result to better characterize scenarios where the bound produced
by problem (USMNB) is tight and recovers an optimal solution to problem (SMNB).
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Proposition 10. Given k > 0, let ϕ(k) be the optimal value of (SMNB). Given an optimal
solution (x, z) of problem (D), let J = {i : xi /∈ {0, 1}} be the set of indices where xi, zi are
not binary in {0, 1}. There is a feasible point θ̄, θ̄+, θ̄− of problem (SMNB) for k̄ = k + |J |,
with objective value OPT such that

ϕ(k) ≤ OPT ≤ ϕ(k + |J |).

Proof. Using the fact that

max
x

a log(x)− bx = a log
(a
b

)
− a

the max min problem in (5.33) can be rewritten as

max
x+z=1
x,z≥0

min
µ+,µ−>0

λ≥0

max
θ,θ+,θ−

λ(k − 1⊤x) + z⊤(g ◦ log θ)
+x⊤(f+ ◦ log θ+) + x⊤(f− ◦ log θ−)
+µ+(1− z⊤θ − x⊤θ+) + µ−(1− z⊤θ − x⊤θ−)

(5.35)

in the additional variables θ, θ+, θ− ∈ Rn, with (5.23) showing that

θi =
(f+

i + f−
i )

µ+ + µ− , θ+i =
f+
i

µ+
, θ−i =

f−
i

µ− .

at the optimum. Strong duality holds in the inner min max, which means we can also rewrite
problem (D) as

max
x+z=1
x,z≥0

max
z⊤θ+x⊤θ+≤1
z⊤θ+x⊤θ−≤1

x⊤1≤k

z⊤(g ◦ log θ) + x⊤(f+ ◦ log θ+ + f− ◦ log θ−) (5.36)

or again, in epigraph form

max. r

s.t.


r
1
1
k

 ∈


0
R+

R+

R+

+
∑n

i=1

zi

gi log θi
θi
θi
0

+ xi


f+
i log θ+i + f−

i log θ−i
θ+i
θ−i
1


 (5.37)

Suppose the optimal solutions x⋆, z⋆ of problem (D) are binary in {0, 1}n and let I = {i :
zi = 0}, then problem (hence problem (D)) reads

(θ+sub, θ−sub) = arg max
θ+,θ−∈[0,1]m

f+⊤ log θ+ + f−⊤ log θ− (5.38)

s.t.1⊤θ+ = 1⊤θ− = 1,

θ+i = θ−i , i ∈ I.
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which is exactly (5.38). This means that the optimal values of problem (5.38) and (D)
are equal, so that the relaxation is tight and θ+i = θ−i for i ∈ I. Suppose now that some
coefficients xi are not binary. Let us call J the set J = {i : xi /∈ {0, 1}}. As in [29, Th. I.3],
we define new solutions θ̄, θ̄+, θ̄− and x̄, z̄ as follows,{

θ̄i = θi, θ̄
+
i = θ+i , θ̄

−
i = θ−i and z̄i = zi, x̄i = xi if i /∈ J

θ̄i = 0, θ̄+i = ziθ + xiθ
+
i , θ̄

−
i = ziθ + xiθ

−
i and z̄i = 0, x̄i = 1 if i ∈ J

By construction, the points θ̄, θ̄+, θ̄− and z̄, x̄ satisfy the constraints z̄⊤θ̄+ x̄⊤θ̄+ ≤ 1, z̄⊤θ̄+
x̄⊤θ̄− ≤ 1 and x̄⊤1 ≤ k. We also have x̄⊤ ≤ k + |J | and

z⊤((f+ + f−) ◦ log θ) + x⊤(f+ ◦ log θ+ + f− ◦ log θ−)
≤ z̄⊤((f+ + f−) ◦ log θ̄) + x̄⊤(f+ ◦ log θ̄+ + f− ◦ log θ̄−)

by concavity of the objective, hence the last inequality.

We will now use the Shapley-Folkman theorem to bound the number of nonbinary coef-
ficients in Proposition 9 and construct a solution to (D) satisfying the bound in Theorem 5.

Proposition 11. There is a solution to problem (D) with at most four nonbinary pairs
(xi, zi).

Proof. Suppose (x⋆, z⋆, r⋆) and (θ, θ+i , θ
−
i ) solve problem (D) written as in (5.7), we get

r⋆

1− s1
1− s2
k − s3

 =
n∑

i=1

zi

gi log θi
θi
θi
0

+ xi


f+
i log θ+i + f−

i log θ−i
θ+i
θ−i
1


 (5.39)

where s1, s2, s3 ≥ 0. This means that the point (r⋆, 1 − s1, 1 − s1, k − s3) belongs to a
Minkowski sum of segments, with

r⋆

1− s1
1− s2
k − s3

 ∈ n∑
i=1

Co




gi log θi
θi
θi
0

 ,


f+
i log θ+i + f−

i log θ−i
θ+i
θ−i
1



 (5.40)

The Shapley-Folkman theorem [93] then shows that
r⋆

1− s1
1− s2
k − s3

 ∈
∑

[1,n]\S



gi log θi
θi
θi
0

 ,


f+
i log θ+i + f−

i log θ−i
θ+i
θ−i
1




+
∑
S

Co




gi log θi
θi
θi
0

 ,


f+
i log θ+i + f−

i log θ−i
θ+i
θ−i
1
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where |S| ≤ 4, which means that there exists a solution to (D) with at most four nonbinary
pairs (xi, zi) with indices i ∈ S.

In our case, since the Minkowski sum in (5.40) is a polytope (as a Minkowski sum of
segments), the Shapley-Folkman result reduces to a direct application of the fundamental
theorem of linear programming, which allows us to reconstruct the solution of Proposition 11
by solving a linear program.

Proposition 12. Given (x⋆, z⋆, r⋆) and (θ, θ+i , θ
−
i ) solving problem (D), we can reconstruct

a solution (x, z) solving problem (9), such that at most four pairs (xi, zi) are nonbinary, by
solving

min. c⊤x
s.t.

∑n
i=1(1− xi)gi log θi + xi(f

+
i log θ+i + f−

i log θ−i ) = r⋆∑n
i=1(1− xi)θi + xiθ

+
i ≤ 1∑n

i=1(1− xi)θi + xiθ
−
i ≤ 1∑n

i=1 xi ≤ k
0 ≤ x ≤ 1

(5.41)

which is a linear program in the variable x ∈ Rn where c ∈ Rn is e.g. a i.i.d. Gaussian
vector.

Proof. Given (x⋆, z⋆, r⋆) and (θ, θ+i , θ
−
i ) solving problem (D), we can reconstruct a solution

(x, z) solving problem (9), by solving (5.41) which is a linear program in the variable x ∈ Rn

where c ∈ Rn is e.g. a i.i.d. Gaussian vector. This program has 2n+ 4 constraints, at least
n of which will be saturated at the optimum. In particular, at least n − 4 constraints in
0 ≤ x ≤ 1 will be saturated so at least n − 4 coefficients xi will be binary at the optimum,
idem for the corresponding coefficients zi = 1− xi.

Proposition 12 shows that solving the linear program in (5.41) as a postprocessing step
will produce a solution to problem (D) with at most n−4 nonbinary coefficient pairs (xi, zi).
Proposition 10 then shows that this solution satisfies

ϕ(k) ≤ OPT ≤ ϕ(k + 4).

which is the bound in Theorem (5).
Finally, we show a technical lemma linking the dual solution (x, z) in (D) above and the

support of the k largest coefficients in the computation of sk(h(α)) in theorem 4.

Lemma 6. Given c ∈ Rn
+, we have

sk(c) = min
λ≥0

λk +
n∑

i=1

max(0, ci − λ) (5.42)
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and given k, λ ∈ [c[k+1], c[k]] at the optimum, where c[1] ≥ . . . ≥ c[n]. Its dual is written

max. x⊤c
s.t. 1⊤x ≤ k

x+ z = 1
0 ≤ z, x

(5.43)

When all coefficients ci are distinct, the optimum solutions x, z of the dual have at most one
nonbinary coefficient each, i.e. xi, zi ∈ (0, 1) for a single i ∈ [1, n]. If in addition c[k] > 0,
the solution to (5.43) is binary.

Proof. Problem (5.42) can be written

min. λk + 1⊤t
s.t. c− λ1 ≤ t

0 ≤ t

and its Lagrangian is then

L(λ, t, z, x) = λk + 1⊤t+ x⊤(c− λ1− t) + z⊤t.

The dual to the minimization problem (5.42) reads

max. x⊤c
s.t. 1⊤x ≤ k

x+ z = 1
0 ≤ z, x

in the variable w ∈ Rn, its optimum value is sk(z). By construction, given λ ∈ [c[k+1], c[k]],
only the k largest terms in

∑m
i=1max(0, ci − λ) are nonzero, and they sum to sk(c) − kλ.

The KKT optimality conditions impose

xi(ci − λ− ti) = 0 and ziti = 0, i = 1, . . . , n

at the optimum. This, together with x+ z = 1 and t, x, z ≥ 0, means in particular that{
xi = 0, zi = 1, if ci − λ < 0
xi = 0, zi = 1, or xi = 1, zi = 0 if ci − λ > 0

(5.44)

the result of the second line comes from the fact that if ci − λ > 0 and ti = ci − λ then
zi = 0 hence xi = 1, if on the other hand ti ̸= ci − λ, then xi = 0 hence zi = 1. When the
coefficients ci are all distinct, ci − λ = 0 for at most a single index i and (5.44) yields the
desired result. When c[k] > 0 and the ci are all distinct, then the only way to enforce zero
gap, i.e.

x⊤c = sk(c)

is to set the corresponding coefficients of xi to one.
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5.8 Details on Datasets

This section details the data sets used in our experiments.

Downloading data sets.

1. AMZN The complete Amazon reviews data set was collected from here; only a subset
of this data was used which can be found here. This data set was randomly split into
80/20 train/test.

2. IMDB The large movie review (or IMDB) data set was collected from here and was
already split 50/50 into train/test.

3. TWTR The Twitter Sentiment140 data set was downloaded from here and was pre-
processed according to the method highlighted here.

4. MPQA The MPQA opinion corpus can be found here and was pre-processed using the
code found here.

5. SST2 The Stanford Sentiment Treebank data set was downloaded from here and the
pre-processing code can be found here.

Creating feature vectors. After all data sets were downloaded and pre-processed, the dif-
feent types of feature vectors were constructed using CounterVectorizer and TfidfVectorizer
from Sklearn [82]. Counter vector, tf-idf, and tf-idf word bigrams use the analyzer =

‘word’ specification while the tf-idf char bigrams use analyzer = ‘char’.

Two-stage procedures. For experiments 2 and 3, all standard models were trained in
Sklearn [82]. In particular, the following settings were used in stage 2 for each model

1. LogisticRegression(penalty=‘l2’, solver=‘lbfgs’, C =1e4, max iter=1e2)

2. LinearSVC(C = 1e4)

3. MultinomialNB(alpha=a)

In the first stage of the two stage procedures, the following settings were used for each of
the different feature selection methods

1. LogisticRegression(random state=0, C = λ1,penalty=‘l1’,solver=‘saga’, max iter=1e2)

2. clf = LogisticRegression(C = 1e4, penalty=‘l2’, solver = ‘lbfgs’, max iter

= 1e2).fit(train x,train y)

selector log = RFE(clf, k), step=0.3)

3. Lasso(alpha = λ2, selection=‘cyclic’, tol = 1e-5)

https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://gist.github.com/kunalj101/ad1d9c58d338e20d09ff26bcc06c4235
http://ai.stanford.edu/~amaas//data/sentiment/
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
https://towardsdatascience.com/another-twitter-sentiment-analysis-bb5b01ebad90
http://mpqa.cs.pitt.edu/
https://github.com/AcademiaSinicaNLPLab/sentiment_dataset
https://nlp.stanford.edu/sentiment/
https://github.com/AcademiaSinicaNLPLab/sentiment_dataset
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4. LinearSVC(C =λ3, penalty=‘l1’,dual=False)

5. clf = LinearSVC(C = 1e4, penalty=‘l2’,dual=False).fit(train x,train y)

selector svm = RFE(clf,k, step=0.3)

6. MultinomialNB(alpha=a)

where λi are hyper-parameters used by the ℓ1 methods to achieve a desired sparsity level k. a
is a hyper-parameter for the different MNB models which we compute using cross validation
(explained below).

Hyper-parameters. For each of the ℓ1 methods we manually do a grid search over all
hyper-parameters to achieve an approximate desired sparsity pattern. For determining the
hyper-parameter for the MNB models, we employ 10-fold cross validation on each data set
for each type of feature vector and determine the best value of a. In total, this is 16+20 = 36
values of a – 16 for experiment 2 and 20 for experiment 3. In experiment 2, we do not use
the twitter data set since computing the λi’s to achieve a desired sparsity pattern for the ℓ1
based feature selection methods was computationally intractable.

Experiment 2 and 3: full results. Here we show the results of experiments 2 and 3 for
all the data sets. All error bars represents 10 separate simulations where each simulation
is a different appropriately-sized train-test split (as per Table 5.1). As seen in Figure 5.1,
the SVM-ℓ1 model was unable to converge and hence has an accuracy of 50%. This was in
spite of manually adjusting max iter=1e7 and using the liblinear solver which is default for
LinearSVC in sci-kit learn.
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Figure 5.4: Experiment 2: AMZN - Stage 2 Logistic
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Figure 5.5: Experiment 2: AMZN - Stage 2 SVM
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Figure 5.6: Experiment 2: AMZN - Stage 2 MNB
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Figure 5.7: Experiment 2: IMDB - Stage 2 Logistic



CHAPTER 5. SPARSE NAIVE BAYES 93

0.1 1 5 10

50

60

70

80

90

A
cc

u
ra

cy
(%

)

IMDB - Count Vector

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

104

S
p

ee
d

u
p

IMDB - Count Vector

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

IMDB - tf-idf

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10

50

55

60

65

70

75

A
cc

u
ra

cy
(%

)

IMDB - tf-idf word bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf word bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10
Sparsity level(%)

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

IMDB - tf-idf char bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10
Sparsity level(%)

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf char bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Figure 5.8: Experiment 2: IMDB - Stage 2 SVM
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Figure 5.9: Experiment 2: IMDB - Stage 2 MNB
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Figure 5.10: Experiment 2: MPQA - Stage 2 Logistic
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Figure 5.11: Experiment 2: MPQA - Stage 2 SVM
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Figure 5.12: Experiment 2: MPQA - Stage 2 MNB
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Figure 5.13: Experiment 2: SST2 - Stage 2 Logistic
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Figure 5.14: Experiment 2: SST2 - Stage 2 SVM
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Figure 5.15: Experiment 2: SST2 - Stage 2 MNB
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Figure 5.16: Experiment 3: AMZN - Stage 2 MNB



CHAPTER 5. SPARSE NAIVE BAYES 102

0.01 0.05 0.1 1

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

IMDB - Count Vector
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

0.210

0.215

0.220

0.225

0.230

0.235

t S
M
N
B

(s
)

IMDB - Count Vector

0.01 0.05 0.1 1

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
(%

)

IMDB - tf-idf
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

0.145

0.150

0.155

0.160

0.165

0.170

t S
M
N
B

(s
)

IMDB - tf-idf

0.01 0.05 0.1 1

40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

IMDB - tf-idf word bigram
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

7.5

8.0

8.5

9.0

9.5

10.0

10.5

t S
M
N
B

(s
)

IMDB - tf-idf word bigram

0.01 0.05 0.1 1

Sparsity level(%)

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

IMDB - tf-idf char bigram
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

Sparsity level(%)

0.455

0.460

0.465

0.470

0.475

t S
M
N
B

(s
)

IMDB - tf-idf char bigram

Figure 5.17: Experiment 3: IMDB - Stage 2 MNB
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Figure 5.18: Experiment 3: TWTR - Stage 2 MNB
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Figure 5.19: Experiment 3: MPQA - Stage 2 MNB
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Figure 5.20: Experiment 3: SST2 - Stage 2 MNB
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Chapter 6

Approximation Bounds for Sparse
Programs

6.1 Introduction

We study optimization problems with low-rank data and sparsity constraints, written

pcon(k) ≜ min
∥w∥0≤k

f(Xw; y) +
γ

2
∥w∥22, (P-CON)

in the variable w ∈ Rm, where X ∈ Rn×m is assumed low-rank, y ∈ Rn, γ > 0, and k ≥ 0.
Here, ∥ · ∥0 stands for the l0-“norm” (cardinality) of its vector argument. We also study a
penalized formulation of this problem written

ppen(λ) ≜ min
w

f(Xw; y) +
γ

2
∥w∥22 + λ∥w∥0 (P-PEN)

in the variable w ∈ Rm, where λ > 0. We provide explicit upper and lower bounds on pcon(k)
and ppen(λ) that are a function of the bidual problem and the rank of X. We also provide
a tractable procedure to compute primal feasible points w that satisfy the aforementioned
bounds. We first begin with the case where f(·) is convex and show how to extend the results
to the case when f(·) is non convex.

Related literature In a general setting, (P-CON) and (P-PEN) are NP-hard [74]. A
very significant amount of research has been focused on producing tractable approximations
and on proving recovery under certain conditions. This is the case in compressed sensing ,
for example, where work stemming from [27, 17] shows that ℓ1-like penalties recover sparse
solutions under various conditions enforcing independence among sparse subsets of variables
of cardinality at most k.

The convex quadratic case (i.e., f(Xw; y) = ∥Xw − y∥22 = w⊤Qw + 2y⊤w + y⊤y with
X⊤X = Q) has been heavily studied. In [80], the authors relax (P-CON) to a non convex
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quadratically constrained quadratic program for which they invoke the S-procedure to arrive
at a convex problem; they also draw a connection between their semidefinite relaxation and a
probabilistic interpretation to construct a simple randomized algorithm. In [85], the authors
obtain a semidefinite programming (SDP) relaxation of the problem. They also consider the
cardinality-penalized version of (P-CON) and use a convex relaxation that is connected with
the reverse Huber penalty. In [91], the authors compute the biconjugate of the cardinality-
penalized objective in one dimension and in the case when Q is an identity matrix and
compare the minimum of their problem using a penalty term inspired from the derivation
of the biconjugate. In [4, 104, 5], the authors take advantage ofthe explicit structure of Q
(e.g., when Q is rank one) to arrive at tighter relaxations of (P-CON) by considering convex
hulls of perspective relaxations of the problem. They additionally study the case when there
is a quadratic penalty on consecutive observations for smoothness considerations. In [109],
the authors show the equivalence between many of the formulations derived in the above
papers and provide scalable algorithms for solving the convex relaxations of (P-CON). In
[38], the authors take a different approach by looking at the Lagrangian dual of the problem
and decoupling the ellipsoidal level sets by considering separable outer approximations of
the quadratic program defining the portfolio selection problem. The non convex quadratic
case has also been studied. Namely, it is a well-known fact that a quadratic optimization
with one quadratic constraint has zero duality gap and can be solved exactly via SDP even
when the quadratic forms are non convex (see, e.g., [14, AppendixB]).

The Shapley Folkman theorem, used to construct our bounds, was derived by Shapley and
Folkman and first published in [93]. In [6], the authors used the theorem to derive a priori
bounds on the duality gap in separable optimization problems and showcased applications
such as the unit commitment problem. Extreme points of the set of solutions of a convex
relaxation are then used to produce good approximations, and [101] describes a randomized
purification procedure to find such points with probability one.

Contributions While the works listed above do produce tractable relaxations of problems
(P-CON) and (P-PEN), they do not yield a priori guarantees on the quality of these solutions
(outside of the sparse recovery results mentioned above) and do not handle the generic low-
rank case. Our bounds are expressed in terms of the value of the bidual, the desired sparsity
level, and the rank of X, which is often low in practice.

Here, we use the Shapley Folkman theorem to produce a priori bounds on the duality gap
of problems (P-CON) and (P-PEN). Our convex relaxations, which are essentially interval
relaxations of a discrete reformulation of the sparsity constraint and penalty, produce both
upper and lower approximation bounds on the optima of problems (P-CON) and (P-PEN).
These relaxations come with primalization procedures, that is, tractable schemes to construct
feasible points satisfying these approximation bounds. Furthermore, these error bounds are
proportional to the rate of growth of the objective with the target cardinality k, which means,
in feature selection problems, for instance, that the relaxations are nearly tight as soon as k
is large enough so that only uninformative features are added.
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Notation and preliminaries

For a vector u ∈ Rm, let D(u) = diag(u1, . . . , um). Let M † denote the pseudoinverse of
the matrix M . For a closed function f(x), let f ∗(y) ≜ maxx x

⊤y − f(x) denote the Fenchel
conjugate, and let f ∗∗(x) be the biconjguate (the conjugate of f ∗(x)). Throughout the pa-
per, we will assume f is closed. If we additionally assume f is convex, then f ∗∗ = f (see,
e.g., [46, Proposition. 6.1.1]). For simplicity, we will drop the explicit dependence of y in our
objective and simply write f(Xw) instead.

Our results fundamentally rely on the Shapely Folkman theorem [93], which we now
state (without proof) for completeness. Let Qn, n = 1, . . . , N , be non empty (possibly non

convex) subsets of Rp. Let x ∈ Co
(∑N

n=1Qn

)
, where Co(·) denotes the convex hull of a

set, and here the sum over sets is understood as the Minkowski sum. In words, the Shapley
Folkman theorem states that x can be decomposed as the sum of some vectors belonging
in Co(Qn) and the other vectors belonging to Qn. Mathematically, the theorem states that
there exists an index set S ⊆ {1, . . . , N} with |S| ≤ p such that

x =
∑
n∈S

xCo(qn) +
∑
i∈Sc

xqn ,

where xCo(qn) represents a point that belongs in Co(Qn) and xqn represents a point that
belongs in Qn. More succinctly,

Co
( N∑

n=1

Qn

)
⊆

⋃
S⊆1,...,N :|S|≤p

∑
n∈S

Co(Qn) +
∑
n∈Sc

Qn.

6.2 Bounds on the duality gap of the constrained

problem

We derive upper and lower bounds on the constrained case (P-CON) in this section. The
penalized case will follow from similar arguments in Section 6.3. In both sections, we assume
f(·) is convex and show in Section 6.3 how the results change when f(·) is non convex. We
begin by forming the dual problem.

Dual problem

Note that the constrained problem is equivalent to

pcon(k) = min
v∈Rm,u∈{0,1}m

f(XD(u)v) +
γ

2
v⊤D(u)v : 1⊤u ≤ k (6.1)
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in the variables u ∈ Rm and u ∈ {0, 1}m, where D(u) = diag(u1, . . . , um), using the fact
D(u)2 = D(u). Rewriting f(·) using its Fenchel conjugate and swapping the outer min with
the inner max to get a dual, we have dcon(k) ≤ pcon(k) by weak duality, with

dcon(k) = max
z
−f ∗(z) + min

v,u∈{0,1}m

γ

2
v⊤D(u)v + z⊤XD(u)v : 1⊤u ≤ k

in the variable z ∈ Rn. Solving the inner minimum over v, we have v∗ = − 1
γ
D(u)†D(u)X⊤z.

Plugging this back into our problem, we get

dcon(k) = max
z
−f ∗(z) + min

u∈{0,1}m
− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z : 1⊤u ≤ k.

Noting that D(u)D(u)†D(u) = D(u) and that z⊤XD(u)D(u)†D(u)X⊤z is increasing with
u, we have

dcon(k) = max
z,ζ
−f ∗(z)− 1

2γ
sk(ζ ◦ ζ) : ζ = X⊤z,

where sk(·) denotes the sum of top k entries of its vector argument (all nonnegative here).

Bidual problem

Rewriting −sk(x) = minu∈[0,1]m −u⊤x, we have

p∗∗con(k) = dcon(k) = max
z

min
u∈[0,1]m

−f ∗(z)− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z : 1⊤u ≤ k.

Note this is equivalent to realizing that the inner minimization in u in the previous section
could be computed over the convex hull of the feasible set since the objective is in fact linear
in u. Using convexity of the u variables (recall D(u)D(u)†D(u) = D(u), and hence the
objective is linear in u) and the concavity of the z variables, Sion’s minimax theorem [88]
allows us exchange the inner min and max to arrive at

p∗∗con(k) = min
u∈[0,1]m

max
z
−f ∗(z)− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z : 1⊤u ≤ k.

Since D(u)D(u)†D(u) ⪰ 0 for all feasible u, we have using conjugacy on the quadratic form

p∗∗con(k) = min
u∈[0,1]m

max
z

min
v
−f ∗(z) +

γ

2
v⊤D(u)v + z⊤XD(u)v : 1⊤u ≤ k.

Switching the inner min and max again, using the definition of the biconjugate of f(·) and
the relation that f = f ∗∗ since f(·) is closed and convex, we get

p∗∗con(k) = min
v∈Rm,u∈[0,1]m

f(XD(u)v) +
γ

2
v⊤D(u)v : 1⊤u ≤ k. (BD-CON)
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While (BD-CON) is non convex, setting ṽ = D(u)v means it is equivalent to the following
convex program

p∗∗con(k) = min
ṽ∈Rm,u∈[0,1]m

f(Xṽ) +
γ

2
ṽD(u)†ṽ : 1⊤u ≤ k (6.2)

in the variables ṽ, u ∈ Rm, where ṽ⊤D(u)†ṽ is jointly convex in (ṽ, u) since it can be rewritten
as a second-order cone constraint. This substitution is without loss of generality since we
can take vi = 0 when ui = 0 and vice versa. To compute (u∗, v∗), we solve the above
problem and set v∗ = D(u∗)†ṽ∗. Note also that (BD-CON) is simply the interval relaxation
of the (P-CON). We could have arrived at (BD-CON) by taking the interval relaxation of
(6.1). However, by working through the dual, we have shown that the interval relaxation is
equivalent to deriving a dual of the problem, implicitly relaxing the binary constraint on u
by reformulating sk(·), and then inverting the steps taken to arrive at the dual. In fact, in
the analysis that follows, we only rely on (BD-CON) and not the dual.

Duality gap bounds and primalization

After deriving the bidual, we are now ready to derive our main result, which is explicit upper
and lower bounds on the optimum of (P-CON) as a function of the rank of the data matrix
X and p∗∗con(k) in (6.2). We will also detail a procedure to compute a primal feasible solution
that satisfies the bounds. An equivalent analysis will follow for the penalized case. Later,
in Section 6.5, we will make weaker assumptions on the rank of X and prove a more general
result.

Theorem 13. Suppose X = UrΣrV
⊤
r is a compact, rank-r SVD decomposition of X. From a

solution (v∗, u∗) of (BD-CON) with objective value t∗, with probability one, we can construct
a point with at most k + r + 2 nonzero coefficients and objective value OPT satisfying

pcon(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ pcon(k) (Gap-Bound)

by solving a linear program written

minimize c⊤u

subject to f(Urz
∗) +

∑m
i=1 ui

γ
2
v∗

2

i = t∗∑m
i=1 ui ≤ k∑m
i=1 uiℓiv

∗
i = z∗

u ∈ [0, 1]m

(6.3)

in the variable u ∈ Rm, where c ∼ N (0, Im), z
∗ = ΣrV

⊤
r D(u∗)v∗.

Proof. Making the variable substitution ΣrV
⊤
r D(u)v = z, (BD-CON) can be rewritten as

p∗∗con(k) = min
v,u∈[0,1]m

f(Urz) +
γ

2
v⊤D(u)v : 1⊤u ≤ k, ΣrV

⊤
r D(u)v = z
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and in epigraph form as

minimize t

subject to

tk
z

 ∈ (
f(Urz)

R+

0

+
∑m

i=1 ui

γ
2
v2i
1
ℓivi


u ∈ [0, 1]m

)

in the variables t ∈ R, z ∈ Rr, and v, u ∈ Rm, where ℓi is the ith column of ΣrV
⊤
r . Note the

above is equivalent to

minimize t

subject to

tk
z

 ∈ (
f(Urz)

R+

0

+
∑m

i=1 Co

0,

γ
2
v2i
1
ℓivi


)

in the variables t ∈ R, z ∈ Rr, and v ∈ Rm. Recall Co denotes the convex hull of a set (in
particular Co(0, x) = (1− t)x for t ∈ [0, 1] and x ∈ Rp). The Shapley Folkman theorem [93]
shows that for any

x ∈
(

m∑
i=1

Co

0,

γ
2
v2i
1
ℓivi


)
,

there exists some ū ∈ [0, 1]m such that

x =
∑
i∈S

ūi

γ
2
v2i
1
ℓivi

+
∑
i∈Sc

ūi

γ
2
v2i
1
ℓivi

 ,
where S = {i | ūi ̸= {0, 1}} and |S| ≤ r + 2. Let (t∗, z∗, v∗, u∗) be OPTimal for (BD-CON).
Then there exists s1 ≥ 0 such that t∗

k − s1
z∗

 =

f(Urz
∗)

0
0

+
m∑
i=1

Co

0,

γ
2
v∗

2

i

1
ℓiv

∗
i

 .

From the above, we know there exists ūi that satisfies these equality constraints, with at
most r+2 non binary entries. In fact, we can compute this ū by solving a linear program. To
see this, given optimal (t∗, z∗, v∗, u∗) for the epigraph reformulation of (BD-CON), consider
the linear program

minimize c⊤u

subject to f(Urz
∗) +

∑m
i=1 ui

γ
2
v∗

2

i = t∗∑m
i=1 ui ≤ k∑m
i=1 uiℓiv

∗
i = z∗

u ∈ [0, 1]m

(6.4)
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in the variable u ∈ Rm, where c ∼ N (0, Im). The problem is feasible since u∗ is feasible.
This is a linear program with 2m + r + 2 constraints, of which m will be saturated at a
non degenerate basic feasible solution. This implies that at least m − r − 2 constraints in
0 ≤ u ≤ 1 are saturated with probability one, so at least m− r − 2 coefficients of ui will be
binary at the optimum.

Now we primalize as follows: given (t∗, z∗, v∗, ū) where ū is a non degenerate basic feasible
solution of the LP in (6.3), let S ≡ {i | ūi ̸∈ {0, 1}}, and define{

ṽi = ūiv
∗
i , ũi = 1, i ∈ S,

ṽi = v∗i , ũi = ūi, i ∈ Sc.

We now claim that (z∗, ṽ, ũ) is feasible for the primal problem pcon(k+r+2) and has objective
value smaller than p∗∗con(k). By construction, ũ ∈ {0, 1}m and 1⊤ũ = ∥ũ∥0 ≤ k + r + 2.
Furthermore, we have

z∗ =
m∑
i=1

ūiℓiv
∗
i

=
∑
i∈S

ūiℓiv
∗
i +

∑
i∈Sc

ūiℓiv
∗
i

=
∑
i∈S

ũiℓiṽi +
∑
i∈Sc

ũiℓiṽi.

Hence, (z∗, ṽ, ũ) is feasible for pcon(k + r + 2) in (6.2) and reaches an objective value OPT
satisfying

t∗ = f(Urz
∗) + γ

2

(
m∑
i∈S

ūiv
∗2
i +

m∑
i∈Sc

ūiv
∗2
i

)

≥ f(Urz
∗) + γ

2

(
m∑
i∈S

ū2i v
∗2
i +

m∑
i∈Sc

ūiv
∗2
i

)

= f(Urz
∗) + γ

2

(
m∑
i∈S

ũiṽi
2 +

m∑
i∈Sc

ũiṽ
2
i

)
≡ OPT.

Since (z∗, ṽ, ũ) is feasible for pcon(k + r + 2), we have pcon(k + r + 2) ≤ OPT, and the result
follows.

This means that the primalization procedure will always reconstruct a point with at most
k + r + 2 nonzero coefficients, with objective value at most pcon(k) − pcon(k + r + 2) away
from the optimal value pcon(k). Note that this bound does not explicitly depend on the
value of γ > 0, which could be arbitrarily small and could simply be treated as a technical
regularization term.
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6.3 Bounds on the duality gap of the penalized

problem

The analysis for the penalized case is very similar to that of the constrained case. We start
with deriving the dual problem.

Dual problem

The penalized problem is equivalent to

ppen(λ) = min
v∈Rm,u∈{0,1}m

f(XD(u)v) +
γ

2
v⊤D(u)v + λ1⊤u (6.5)

in the variables u, v ∈ Rm. Rewriting f using its Fenchel conjugate, switching the min and
max, and solving the minimization over v, we have

dpen(λ) = max
z
−f ∗(z) + min

u∈{0,1}m
− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u.

Using

min
u∈{0,1}m

− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u =

m∑
i=1

min
(
0, λ− 1

2γ
(X⊤z)2i

)
,

the dual problem then becomes

dpen(λ) = max
z
−f ∗(z) +

m∑
i=1

min
(
0, λ− 1

2γ
(X⊤z)2i

)
with dpen(λ) ≤ ppen(λ).

Bidual problem

Rewriting the second term of our objective in variational form, we have

p∗∗pen(λ) = d∗(λ) = max
z

min
u∈[0,1]m

−f ∗(z)− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u.

Performing the same analysis as for the constrained case (cf. Section 6.2), we get

p∗∗pen(λ) = min
v,u∈[0,1]m

f(XD(u)v) +
γ

2
v⊤D(u)v + λ1⊤u (BD-PEN)

in the variables u, v ∈ Rm, which can be recast as a convex program as in (6.2).
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Corollary 1. Suppose X = UrΣrV
⊤
r is a compact, rank-r SVD decomposition of X. From a

solution (v∗, u∗) of (BD-PEN) with objective value t∗, with probability one, we can construct
a point with objective value OPT satisfying

p∗∗pen(λ) ≤ ppen(λ) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1) (Gap-Bound-Pen)

by solving a linear program written

minimize c⊤u

subject to f(Urz
∗) +

∑m
i=1 ui

γ
2
v∗

2

i + λui = t∗∑m
i=1 uiℓiv

∗
i = z∗

u ∈ [0, 1]m

(6.6)

in the variable u ∈ Rm, where c ∼ N (0, Im) and z
∗ = ΣrV

⊤
r D(u∗)v∗.

Proof. The primalization procedure is analogous to the constrained case, the only dif-
ference being the linear program becoming (6.6). We then get the chain of inequalities
in (Gap-Bound-Pen), which means that starting from an optimal point of (BD-PEN), the
primalization procedure will generate a feasible point with objective value at most λ(r + 1)
larger than that of the original problem (P-PEN).

Connections with other relaxations

We first draw the connection between the penalty term in the bidual and the reverse Huber
penalty. The reverse Huber function is defined as

B(ζ) =
1

2
min
0≤ν≤1

ν +
ζ2

ν

=

|ζ| if |ζ| ≤ 1
ζ2 + 1

2
otherwise.

We have

min
u∈[0,1]m
1⊤u≤k

x⊤D(u)−1x = max
t>0

n∑
i=1

tB
( |xi|√

t

)
− 1

2
tk.

There is a direct connection between the second representation of (BD-CON) (based on
the variable substitution ṽ = D(u)v) and the well-known perspective-based relaxation [35]
(a similar argument can also be made for (BD-PEN)). Note that (P-CON) is equivalent to

min
x,u,v

f(x) + 1⊤v : u ∈ {0, 1}m, 1⊤u ≤ k, uivi ≥ x2i , i = 1, . . . ,m.



CHAPTER 6. APPROXIMATION BOUNDS FOR SPARSE PROGRAMS 115

To see this, assume that x is optimal for (P-CON). If u encodes the sparsity pattern of x,
we simply set vi = x2i , so we have 1⊤v = x⊤x, and that triplet (x, u, v) is feasible for the
above problem. Similarly, if (x, u, v) are optimal for the above representation, then xi = 0 if
ui = 0 and x2i = vi otherwise. Similarly, 1⊤v = x⊤x, and x is feasible for (P-CON). Relaxing
u ∈ {u | u ∈ [0, 1]m, 1⊤u ≤ k} and replacing f ∗∗ with f results in the perspective relaxation
of the problem, which is equivalent to (BD-CON).

Extension to non convex setting

The gap bounds derived above can be extended to the case when f is non convex. Starting
from (P-CON) and following the structure of (BD-CON), consider the relaxation

p∗∗con(k) = min
v,u∈[0,1]m

f ∗∗(XD(u)v) +
γ

2
v⊤D(u)v : 1⊤u ≤ k,

where f(·) in (BD-CON) has been replaced by its convex envelope f ∗∗(·) (i.e., the largest
convex lower bound on f). By construction, this constitutes a lower bound on (P-CON).
The analysis follows the same steps as in the proof of Theorem 13, replacing f with f ∗∗

everywhere. The only bound that changes is pcon(k + r + 2) ≤ OPT since the objective
defining OPT uses f ∗∗ while that defining pcon(k+ r+2) uses f . For a non convex function,
we can define the lack of convexity ρ(f) = supw f(Xw) − f ∗∗(Xw) with ρ(f) ≥ 0. We
then have −ρ(f) ≤ f ∗∗(Urz

∗) − f(Urz
∗) and then the chain of inequalities in (Gap-Bound)

becomes

pcon(k + r + 2)− ρ(f) ≤ OPT ≤ p∗∗con(k) ≤ pcon(k).

The exact same analysis and reasoning can be applied to the penalized case to arrive at

p∗∗pen(λ)− ρ(f) ≤ ppen(λ)− ρ(f) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1).

6.4 Quadratically constrained sparse problems

In this section, we consider a version of (P-CON) where the ℓ2 penalty is replaced by a hard
constraint. The explicit ℓ2 constraint proves useful to get tractable bounds when solving
approximate versions of (P-CON) where X is approximately low rank (see Section 6.5). We
follow the same analysis as before and derive similar duality gap bounds and primalization
procedures. We omit some steps of the analysis for brevity and refer the reader to Sections
6.2 and 6.3 for more details. We assume f is convex and can extend the analysis to the non
convex setting using the same arguments in Section 6.3 (for brevity, we omit this). We wish
to point out that there is nothing enlightening about the proofs in this section, and on a
first pass, the reader can skip directly to Section 6.5.
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ℓ2-ℓ0 constrained optimization

As before, we first derive dual and bidual problems in the quadratically constrained case.

Dual problem

Note that the ℓ2-constrained problem is equivalent to

p∗con(k) = min
v,u∈{0,1}m

f(XD(u)v) : 1⊤u ≤ k, v⊤D(u)v ≤ γ,

where D(u) = diag(u1, . . . , um) and we use the fact D(u)2 = D(u). Rewriting f using its
Fenchel conjugate, introducing a dual variable η for the ℓ2 constraint, swapping the outer
min with the inner max via weak duality, and solving the minimum over v, we have

d∗con(k) = max
z,η≥0

−f ∗(z)− ηγ

2
+ min

u∈{0,1}m
− 1

2η
z⊤XD(u)D(u)†D(u)X⊤z : 1⊤u ≤ k,

where d∗con(k) ≤ p∗con(k). This further reduces to

d∗con(k) = max
z,η≥0

−f ∗(z)− ηγ

2
− 1

2η
sk(ζ ◦ ζ) : ζ = X⊤z,

where sk(·) denotes the sum of top k entries of its vector argument. Note the problem is
convex since the latter term is the perspective function of sk(ζ ◦ ζ).

Bidual problem

Rewriting sk(·) in variational form, we have that

p∗∗con(k) = d∗con(k) = max
z,η≥0

min
u∈[0,1]m

−f ∗(z)− ηγ

2
− 1

2η
z⊤XD(u)D(u)†D(u)X⊤z : 1⊤u ≤ k.

Swapping the min and max and using the Fenchel conjugate of the quadratic form, we have

p∗∗con(k) = min
u∈[0,1]m

max
z,η≥0

min
v
−f ∗(z)− ηγ

2
+
η

2
v⊤D(u)v + z⊤XD(u)v : 1⊤u ≤ k.

Switching the inner min and max again, using the definition of the biconjugate conjugate of
f(·), and computing the maximum over η, we arrive at

p∗∗con(k) = min
v,u∈[0,1]m

f(XD(u)v) : 1⊤u ≤ k, v⊤D(u)v ≤ γ, (6.7)

which can be rewritten as a convex program (cf. Section 6.2).
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Corollary 2. Suppose X = UrΣrV
⊤
r is a compact, rank-r SVD decomposition of X. From

a solution (v∗, u∗) of (6.7) with objective value t∗, with probability one, we can construct a
point with objective value OPT satisfying

p∗con(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ p∗con(k) (Gap-Bound2)

by solving a linear program written

minimize c⊤u
subject to

∑m
i=1 ui ≤ k∑m
i=1 uiv

∗2
i ≤ γ∑m

i=1 uiℓiv
∗
i = z∗

u ∈ [0, 1]m

(6.8)

in the variable u ∈ Rm, where c ∼ N (0, Im) and (t∗, v∗) are optimal for the bidual, with
z∗ = ΣrV

⊤
r D(u∗)v∗.

Proof. Following the analysis in Section 6.2, let X = UrΣrV
⊤
r be a compact, rank-r SVD

decomposition of X. Making the variable substitution ΣrV
⊤
r D(u)v = z, our bidual can be

rewritten in epigraph form as

minimize t

subject to


t
k
γ
z

 ∈

f(Urz)
R+

R+

0

+
∑m

i=1Co

0,


0
1
v2i
ℓivi




u ∈ [0, 1]m

in the variables t ∈ R, z ∈ Rn, and v, u ∈ Rm, where ℓi is the ith column of ΣrV
⊤
r . Note

that from the Shapley Folkman lemma [93], there exists some ū ∈ [0, 1]m such that

x =
∑
i∈S

ūi


0
1
v2i
ℓivi

+
∑
i∈Sc

ūi


0
1
v2i
ℓivi

 ,
where S = {i | ūi ̸= {0, 1}} and |S| ≤ r + 2 (note we disregard the first entry of the vector,
and hence it is r + 2 and not r + 3). Now let (t∗, z∗, v∗, u∗) be optimal for the bidual. That
means there exists s1, s2 ≥ 0 such that

t∗

k − s1
γ − s2
z∗

 =

f(Urz
∗)

0
0

+
m∑
i=1

Co

0,


0
1

v∗
2

i

ℓiv
∗
i


 .
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From the above, we know there exists ūi that satisfies the above vector equality with at most
r + 2 non binary entries. We can compute this ū via the linear program in (6.8). We then
primalize precisely as before to arrive at the chain of inequalities

p∗con(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ p∗con(k),

which is the desired result.

ℓ2-constrained, ℓ0-penalized optimization

The analysis for the penalized case is very similar to that of Section 6.3.

Dual problem

The penalized problem is equivalent to

p∗pen(λ) = min
v,u∈{0,1}m

f(XD(u)v) + λ1⊤u : v⊤D(u)v ≤ γ. (6.9)

Using the Fenchel conjugate of f , introducing a dual variable η for the ℓ2 constrain, using
weak duality, and computing the minimization over v, we have

d∗pen(λ) = max
z,η≥0

−f ∗(z)− ηγ

2
+ min

u∈{0,1}m
− 1

2η
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u.

Using the fact that

min
u∈{0,1}m

− 1

2η
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u =

m∑
i=1

min
(
0, λ− 1

2η
(X⊤z)2i

)
,

the dual problem becomes

d∗pen(λ) = max
z
−f ∗(z)− ηγ

2
+

m∑
i=1

min
(
0, λ− 1

2η
(X⊤z)2i

)
with d∗pen(λ) ≤ p∗pen(λ). The term 1

2η
(X⊤z)2i is jointly convex since it can be recast as a

second-order cone constraint using the fact that z2i /η ≤ t⇐⇒
∥∥∥ [ zi
t− η

] ∥∥∥
2
≤ 1

2
(t+ η).

Bidual problem

Rewriting the second term of our objective in variational form, we have

p∗∗pen(λ) = d∗(λ) = max
z,η≥0

min
u∈[0,1]m

−f ∗(z)− ηγ

2
− 1

2γ
z⊤XD(u)D(u)†D(u)X⊤z + λ1⊤u.
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Performing the same analysis as for the constrained case, we have that

p∗∗pen(λ) = min
v,u∈[0,1]m

f(XD(u)v) + λ1⊤u : v⊤D(u)v ≤ γ, (6.10)

which can be recast as a convex program (cf. Section 6.2).

Corollary 3. Suppose X = UrΣrV
⊤
r is a compact, rank-r SVD decomposition of X. From a

solution (v∗, u∗) of (BD-PEN) with objective value t∗, with probability one, we can construct
a point with objective value OPT satisfying

p∗∗pen(λ) ≤ ppen(λ) ≤ OPT ≤ p∗∗pen(λ) + λ(r + 1) (Gap-Bound-Pen-l2)

by solving a linear program written

minimize c⊤u
subject to f ∗∗(Urz

∗) + λui = t∗∑m
i=1 uiv

∗2
i ≤ γ∑m

i=1 uiℓiv
∗
i = z∗

u ∈ [0, 1]m

(6.11)

in the variable u ∈ Rm with z∗ = ΣrV
⊤
r D(u∗)v∗.

Proof. The primalization procedure is analogous to the constrained case with the only dif-
ference being the linear program becoming (6.11). Performing the same analysis as for the
penalized case, we have the chain of inequalities in (Gap-Bound-Pen-l2).

6.5 Tighter bounds for approximately low-rank

matrices

The duality gap bounds detailed above depend on r, the rank of the matrix X, which is an
unstable quantity. In other words, a very marginal change in X can have a significant impact
on the quality of the bounds. In what follows, we will see how to improve these bounds when
the matrix X is approximately low-rank, which will allow us to bound the duality gap.

Starting from the ℓ2-ℓ0 constrained formulation, we formulate a perturbed version

p∗con(k,X, δ) = minimize f(z; y)
subject to Xw = z + δ,

∥w∥0 ≤ k
∥w∥22 ≤ γ

(6.12)

in the variables w ∈ Rm and z ∈ Rn, where δ ∈ Rn is a perturbation parameter. Let

X = Xr +∆X, RankXr = r,

be a decomposition of the matrix X. For notational convenience, we set p∗con(k,X) =
p∗con(k,X, 0). We have the following result.
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Proposition 14. Let w⋆
r be the optimal solution of p∗con(k,Xr, 0) and ν∗r the dual optimal

variable corresponding to the equality constraint, and write (w⋆, ν⋆) the corresponding solu-
tions for p∗con(k,X, 0). We have

p∗con(k,X, 0)− ν∗T∆Xw⋆
r ≤ p∗con(k,Xr, 0) ≤ p∗con(k,X, 0)− ν∗Tr ∆Xw⋆ (6.13)

and the exact same bound when we start with the ℓ2-constrained, ℓ0-penalized formulation.

Proof. Suppose w⋆
r is an optimal solution of problem p∗con(k,Xr, 0). Then w

⋆
r is also a feasible

point of problem p∗con(k,X,∆Xw
⋆
r) because

(Xr +∆X)w⋆
r = z +∆Xw⋆

r

by construction. Since the two problems share the same objective function, this means
p∗con(k,Xr,∆Xw

⋆
r) ≤ p∗con(k,Xr, 0). Now weak duality yields

p∗con(k,X,∆Xw
⋆
r) ≥ p∗con(k,X, 0)− ν⋆T∆Xw⋆

r

and
p∗con(k,Xr, 0) ≤ p∗con(k,Xr,−∆Xw⋆)− ν⋆Tr ∆Xw⋆.

We conclude using as above the fact that if w⋆ is an optimal solution of problem p∗con(k,X, 0),
then w⋆ is also a feasible point of problem p∗con(k,Xr,∆Xw

⋆) because Xrw
⋆ = z − ∆Xw⋆,

which yields p∗con(k,Xr,−∆Xw⋆) ≤ p∗con(k,X, 0) and the desired result. In the proof, we
only used weak duality and the equality constraint in p∗con(k,X, δ) to arrive at the result.
Consequently, the exact same proof and bounds hold for p∗pen(λ,X, δ).

We are now ready to combine the bound in Proposition 14 with the bounds derived in
Section 6.4.

Proposition 15. Let w⋆
r be the optimal solution of p∗con(k,Xr) and ν

∗
r the dual optimal vari-

able corresponding to the equality constraint, and write (w⋆, ν⋆) the corresponding solutions
for p∗con(k,X). Furthermore, let ζr =

√
γ∥∆X⊤ν∗r∥2 and ζ =

√
γ∥∆X⊤ν∗∥2. We have

−ζr − ζ + p∗∗con(k + r + 2, Xr) ≤ OPT ≤ pcon(k,X)− ζ ≤ p∗∗con(k,Xr). (6.14)

Similarly, for p∗pen(λ,Xr), we have

−ζr − ζ + p∗∗pen(λ,Xr) ≤ ppen(λ,X)− ζ ≤ OPT ≤ p∗∗pen(λ,Xr) + λ(r + 1). (6.15)

Proof. Starting from pcon(k,X) = pcon(k,X) − pcon(k,Xr) + pcon(k,Xr), upper and lower
bounding pcon(k,X)−pcon(k,Xr) using Proposition (14) and the Cauchy Schwarz inequality,
and using the bounds derived in Section 6.4, the result follows. The proof for the penalized
case is identical.
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6.6 Experiments

Experiment 1: Duality gap bounds

In this experiment, we generate synthetic data to illustrate the duality gap bounds derived
in Sections 6.2 and 6.3. We plot these bounds for the f(Xw; y) = 1

2n
∥Xw − y∥22 (linear

regression) and f(Xw; y) = 1
n

∑n
i=1 log(1 + exp(−yi(x⊤i w))) (logistic regression). Note that

both functions are convex and closed, hence, f ∗∗ = f and ρ(f) = 0. Specifically, we generate
samples X ∈ R1000×100 with rank(X) = 10 by first generating Xij ∼ N (0, 1) and then taking
a rank-10 SVD. We generate β ∈ R100 with βi ∼ N (0, 25) and ∥β∥0 = 10. In the case of ℓ2
loss, we set y = Xβ+ ϵ, and for the logistic loss, we set y = 2Round(Sigmoid(Xβ+ ϵ))−1 ∈
{−1, 1}n, where ϵi ∼ N (0, 1). For both models, we add a ridge penalty γ

2
∥w∥22 with γ = 0.01.

For the regression task, we use a ℓ0-penalty, while for the classification task, we use a ℓ0-
constraint. Figure 6.1 shows the primalized optimal values as well as the upper and lower
bounds derived earlier. When running the primalization procedure, we pick 20 random linear
objectives and show the standard deviation in the value OPT.
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p∗∗(λ) + λ(r + 1)
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k

0.30

0.35

0.40
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p∗∗(k)

OPT

p∗∗(k + r + 2)

Figure 6.1: Experiment 1. (Left) Linear regression with a ℓ0-penalty. (Right) Logistic
regression with a ℓ0-constraint.

Note that there are no error bars around OPT despite having solved the primalization
linear program with 20 different random linear objectives for each value of the regularization
parameters (λ or k). This strongly indicates that our feasible set for the linear program is
actually a singleton (which was verified by changing the linear objective to arbitrary convex
objectives and noting that the argmin was identical each time). In this case, the solution
is identical to the solution that can be inferred from the bidual (since we know the linear
program is feasible since the solution of the bidual satisfies the constraints). As a result,
primalization simply reduces to rounding the bidual solution to make it primal feasible.
Furthermore, note that in the left plot of Figure 6.1, we know that the true value p∗pen(λ)
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must lie somewhere between OPT (red line) and p∗∗ (blue line) and that this gap decreases as
λ decreases. This is also apparent in the right plot of Figure 6.1 as the marginal importance
of the features decreases as k increases.

Experiment 2: Numerical rank bounds

In this experiment, we plot the bounds outlined by Proposition 15 that combine Shapley
Folkman with numerical rank bounds. We generate X ∈ R1000×100 with bell-shaped singular
values using the make low rank matrix function in scikit-learn [83] to get a numerical rank
of 10. We then generate β and y as in Experiment 1 for the ℓ2 loss. As was used to derive
the numerical rank bounds, we use a constraint ∥w∥22 ≤ γ with γ = 30 instead of a ridge
penalty. We consider the ℓ0-penalized case and fix three values of λ : 10−4, 10−3, 10−2. In
Figure 6.2, we show how the bounds change as we vary the rank of our approximation Xr

from 1 to 100. While running the primalization procedure, we pick a random linear objective
20 times and show the standard deviation in the value of OPT.

From Proposition 15, we know that ppen(λ,X) lies between the red and blue lines. For
small values of λ (e.g. λ = 10−4), we see that as the rank increases, this gap is essentially
zero. This means that in the case of λ = 10−4, taking a rank 20 approximation of the
data matrix or a rank 100 matrix and doing the procedure highlighted in Section 6.4 results
in two different solutions that are both essentially optimal. Both plots at the bottom of
Figure 6.2 highlight a trade-off in choosing the numerical rank; a lower rank improves the
duality gap, while it coarsens the objective function approximation and vice versa. This is
further illustrated in the experiment below.

Experiment 3: Numerical Rank Bounds on Natural Data Sets

In this experiment, we generate the same plot as in Experiment 2 but now with real data,
which we expect to be low rank [102]. Specifically, we use the leukemia data [25] with n = 72
binary responses and m = 3751 features. We scale the data matrix X and then plot the
difference between the upper and lower bounds (duality gap) and the difference between the
primalized upper bound and lower bounds (primalized gap) in Figure 6.3 under a logistic
loss with λ = 0.1 and γ = 50.

In Figure 6.3, we see that both gaps drop sharply until a rank of about 10 (which explains
around 50% of the variance) and then begin to taper off. We also see that the primalization
gap is approaching zero, which shows that as the approximation quality increases, we are
converging closer to the non convex solution via the primalization procedure. However, our
duality gap bound does not approach zero because of the λ(r + 1) term. The difference
between the two gaps in Figure 6.3 highlights that the primalized upper bound and lower
bound are approaching one another, while the dual upper bound and lower bound are not.
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Figure 6.2: Experiment 2. (Top left) Explained variance plot of successive rank-r SVD ap-
proximations of X. Note that rank 10 explains most of the variance. (Top right, bottom)
Plot of upper and lower bounds on ppen(λ,X) for various values of λ as the rank-r approxi-
mation of X changes.
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Figure 6.3: Experiment 3. (Left) Explained variance plot of successive rank-r SVD approx-
imations of X. (Right) Difference between upper bounds and primalized value with lower
bound as in Proposition 15.
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