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Abstract

Controlling Devices to Achieve Stability Guarantees on Electric Distribution Grids

by

Jaimie Swartz

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Alexandra von Meier, Co-chair

Professor Seth Sanders, Co-chair

Due to the massive increase in renewable energy deployment around the world, the distribu-
tion level of electric power grids has more active devices than ever before. Many distributed
energy resources (DERs) were installed to output the maximum amount of power available
without consideration of the grid’s status or the presence of other devices. As a result, grid
operators can encounter power quality issues, especially voltage volatility, which can stall
the adoption of more renewable energy devices. Traditional grid devices that are intended to
maintain distribution grid power quality may be insufficient to address today’s challenges.
While academic literature has proposed many types of approaches to device control, it can
favor approaches that are optimization-based at the expense of being impractical for deploy-
ment on real distribution grids.

This thesis argues for the analysis of simple, flexible device controls to improve power quality
and power delivery. We take a dynamical systems perspective, which provides transparency
into the underlying device interactions. This perspective allows us to develop intuition for
device interactions and develop safety guarantees that prevent dangerous behavior. For
the important problem of computing DER power injections, we take a holistic approach to
controller design, where control parameters and DER siting are analyzed to achieve improved
voltage stability. Furthermore, this design is achieved without imposing restrictions on
the DER communication network. Next, we consider device design under two important
modeling scenarios. First we consider the case of abnormal voltage events, in which there is a
strict time limit during which DERs must recover the voltage before devices must disconnect.
Then we model the interaction between inverter-based DERs and load-tap changer devices, to
determine parameter relationships that guarantee against voltage oscillations. We conclude
with a discussion of future work and as synthesize important principles for device control in
power systems.
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Chapter 1

Introduction

1.1 Device Control in Distribution Grids

Over the last decade, there has been unprecedented growth in the number of renewable energy
resources connected to the electric power grid in locations around the world [3, 4]. These
newly connected resources promote the reduction of greenhouse gas emissions by deferring
the construction or incentivising the retirement of traditional fossil fuel generators [5]. Many
of these resources are connected to the distribution-level part of power grids and arranged
in a distributed manner. Distributed energy resources (DERs) can be supply-side resources
such as solar photovoltaics (PV), demand-side resources such as flexible loads, or energy
storage technologies such as batteries that operate as generators or loads. To accompany
the rapid installation of these active devices on distribution grids, sensors with increasing
sampling frequency and accuracy have been deployed by grid operators to better monitor
the increasingly complex distribution grids. See Fig. 1.1 for a diagram of the United States
power grid.

Many existing DER installation programs allow customers to independently control their
DERs without visibility of the impact of the devices on power quality across the grid. For ex-
ample, rooftop solar PV installations are typically operated to output the maximum amount
of real power available [6], regardless of the grid’s voltages. Allowing distributed generation
to output power in an unchecked manner, especially at the end of a feeder, can be dangerous
in two ways: power flows may no longer flow from the distribution substation to customers,
and voltages may no longer gradually decrease along the length of the circuit. When there
is reverse power flow due to solar PV output, further solar PV installations can be halted
because substation transformers may not be designed to accommodate reverse power flow [7].
These power flow irregularities are increasingly harder to predict and can result in protection
issues, such as desensitization and unintended islanding [8]. To further emphasize the vari-
ability of solar PV power, cloud cover events can cause ramps in solar PV generation on the
order of 15% per second at a particular location [9]. These ramps in generation have caused
electrical equipment such as inverters to trip offline due to the spikes in grid voltages [10].
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Figure 1.1: Diagram of the electric power grid, with voltage levels that are standard for the
United States. The distribution-level of the power grid is outlined in grey.

In extreme circumstances, over-voltage can cause a substation transformer to overload and
catch fire. These power quality dangers threaten the safety and efficiency of power delivery
and can compromise the integration of higher penetrations of renewable energy.

Currently, grid operators may only use smart meters and legacy voltage regulation de-
vices to monitor and regulate distribution circuit voltages. These devices, namely load-tap
changers (LTCs), line voltage regulators, and capacitor banks, were installed to maintain
distribution grid voltages within the ANSI standard [11], but they were not designed to
accommodate the fluctuations in voltage observed today [12–14]. If the devices do not re-
spond often enough to effectively regulate highly variable voltages, electrical equipment can
become damaged or could trip offline. However, operating these expensive devices more
often reduces their operating lifespan due to accelerated wear [15, 16]. As a result, legacy
voltage regulation devices alone may not be sufficient for effectively mitigating voltages on
grids with high renewable energy penetration.

Due to recent advances in power electronic technologies in the last few decades, inverter-
based DERs (DERs that interface with the grid through an inverter device) now can provide
a fast and flexible response to voltage issues. Distribution grid power lines typically exhibit
a high resistance-to-reactance ratio, so real and reactive power flows both have significant
impacts on voltage magnitudes [17]. Until recently, industry policies only allowed inverters
to set their reactive power output to regulate voltage magnitude (called volt-var control),
since real power was highly prioritized for power delivery. Yet with the 2018 revision of the
IEEE 1547 inverter standard [6], DERs are now required to have the capability of modu-
lating real power for voltage regulation. In light of these new control capabilities, several
works have proposed control approaches to actuate real and reactive power simultaneously
to achieve power quality objectives [18–20]. Another new DER control capability is the
ability to measure, and then by extension regulate, the voltage phase angle at key locations
on distribution grids, allowing grid operators to enforce an optimal state of the grid that
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ensures all voltages are in the ANSI range. The framework for regulating the full voltage
phasor, called Phasor-Based Control (PBC), is detailed later in this thesis.

While new DER control capabilities provide an opportunity for achieving better power
quality, a major challenge with control design for power systems is the continued prevalence
of parameterized control laws. Specifically, to track a reference signal device actions are
computed as a parameterized function of measurements or device states. In a parameterized
function, the relationship between the function inputs and outputs is characterized by a set
of parameters, which may be set externally. The American electric power grid was built
largely in the 20th century when there were very limited measurement and computational
capabilities. As a result, simple, tuneable control logic in the form of parameterized functions
was deployed and standardized in devices to handle different power problems. For example,
commercial power grid software, such as PSLF, encodes dozens of parameters for each layer
of synchronous generator control. Furthermore, LTCs are designed to have mechanical taps
where the tap parameter determines a shift in distribution grid voltages. Manufacturing grid
devices to have parameterized control laws allows standardization of the control logic while
keeping the rest of the model — i.e. the parameters — private to the grid operator. The
history and benefits of parameterized control laws are major factors in why new devices being
deployed continue to have parameterized control laws, such as the droop volt-var function
from the IEEE 1547 inverter standard [6]. The challenge is that parameterized control
laws constrain the control logic to fit a certain form, which can limit control performance
especially at a time where distribution grids are becoming more active and variable in terms
of power flows.

Perhaps because there has historically been minimal monitoring and computation capa-
bility at points below the distribution grid substation, many academic approaches to device
coordination on distribution grids involve solving a large optimization problem on a substa-
tion computer. Computing power dispatch for groups of DERs is often cast as an optimal
power flow problem [21]. Parameter selection for devices (such as LTCs and inverters) is
either selected from rules of thumb [22, Chapter 9.3], or formulated into a mixed-integer
optimization problem [23, 24]. Finally, the placement of DERs has been often formulated
as a mixed integer unit commitment problem [25, 26]. However, optimization is not always
the only or most practical tool for solving these problems. First, grid operators may not
have the computational resources or communications necessary to solve an optimization
problem, especially if the computation must be done in real-time and for large distribution
grid networks which could have thousands of network nodes. Moreover, optimization prob-
lems provide optimal solutions, but it is important to know why the solution is what it is.
Grid operators highly value an understanding of underlying relationships between system
components, especially when the problem has many constraints and objective terms. Some
literature in optimization for power systems applications suffers from a focus on the com-
plexity of solving an optimization problem, rather than discussing in what way the optimal
solution makes sense or reveals important trends.
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For this thesis, we advocate for a set of approaches that are different from yet com-
plementary to optimization. Specifically, we address the aforementioned power systems
problems through the perspective of dynamical systems analysis. A dynamical system
is a model of physical phenomena where differential or difference equations are used to
represent the evolution of a system over time. Dynamical system modeling allows con-
trol designers to analyze how the underlying physics of device interactions impact the
solutions to problems. Essentially, it provides transparency into how a system works. By
focusing on dynamic relationships, for example between design parameters and stabil-
ity, guarantees that eliminate dangerous behavior can be derived and incorporated into
industry manufacturing standards. Furthermore, designing real-time control with feed-
back dynamical systems naturally provides disturbance rejection and reliable set-point
tracking. Having highly responsive automatic controls without the need for extensive
communication or computation can be highly valuable, considering the rapid increase in
the number of interacting devices on distribution grids.

Much of this thesis focuses on key aspects of the DER power set-point control problem
because of its particular prominence in industry recently. Inverter-based DERs have the
technical capabilities to operate at whatever power set-point that is assigned within their
resource limits. This leaves the choice of power set-point, especially for coordinating groups
of DERs, as a critical decision. Many utilities are highly interested in building DER man-
agement systems, where power set-points for commercial and industrial-scale DERs owned
by the utilities are computed to reduce net loads and maintain power quality. Furthermore,
virtual power plant companies are rapidly increasing the installation of smaller-scale DERs
to build large aggregations of coordinated devices. By strategically computing the DER
power set-points, they can direct DER aggregations to provide power quality services and
generate economic value in wholesale energy markets. Such power quality services ensure
that renewable energy, such as solar PV, continues to be connected without compromising
the grid’s safety and efficiency.

1.2 Thesis Overview and Summary of Contributions

This thesis explores the modeling, analysis and design of inverter-based DERs and voltage
regulation devices on distribution grids. The goal is to effectively coordinate these devices
to achieve voltage regulation and power flow objectives, thereby enabling more integration
of renewable energy. We adopt a dynamical systems modeling approach, allowing us to
guarantee against dangerous scenarios and establish relationships between design choices
and control performance. By considering the control design in a holistic manner, we leverage
more tools to meet the practical limitations in communication and computation present on
many distribution grids.

We begin with Chapter 2, which describes relevant background information. The power
flow equations for radial networks and their relationship to power-voltage sensitivities are
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reviewed. Then, some foundational observations about sensitivities are made that provide
the groundwork for the DER siting proofs of Chapter 3. We also review common assumptions
about modeling the dynamical systems considered in this thesis and provide an overview of
the PBC framework.

In Chapter 3 a detailed analysis on the control of Inverter-based DERs on distribution
grids is performed. We develop a model for PBC that accommodates an externally defined
communication infrastructure. Then, the model is reduced and is shown to have the same
stability properties as the original model. The Gershgorin Disc theorem is then employed
to formulate necessary but not sufficient conditions for system stability. The conditions are
then used to prove relationships between the arrangement of DERs and system stability.
Finally, we propose and validate two methods of selecting control parameters: an analytic
method using a conservative stability region, and a heuristic algorithm for sampling candidate
controller parameters.

While in Chapter 3 we consider normal grid operation where external disturbances are
assumed negligible, in Chapter 4 we focus on the abnormal operation case, where DERs are
tasked with recovering from a large-signal voltage disturbance within a standardized time
limit. To model disturbances, a polytope is defined whose bounds are given by fitting mea-
surements from a real distribution phasor measurement unit data set. Then, a reachability
analysis is performed that determines the set of abnormal voltage disturbances that the DER
control is guaranteed to can recover from.

Chapter 3 and 4 considers systems of only DER devices acting on distribution grids, so
in Chapter 5 we focus on the interaction of DER devices with load-tap changer devices. We
model this interaction in a novel way as a switched affine hybrid system. When the inverters
are regulating as intended, we show that all responses to voltage deviations eventually settle
to the safe voltage deadband. Then a scenario in which a cyber-attack causes the inverter
response to be negated is considered. In that case, we determine conditions on device
parameters that guarantee against dangerous, undamped voltage oscillations.

We conclude with Chapter 6, where future research directions and important principles
synthesized from this work are described.

1.3 Notation

Mathematical notation adopted throughout this thesis is provided below.

1. The symbol ∀ denotes for all. The symbol ∈ denotes is an element of.

2. Let Rn be the n-dimensional vector of real numbers, Cn be the n-dimensional vector of
complex numbers, and Rn×n the matrix of real numbers.

3. Bold-faced letters are used for vectors and matrices, with the exception that j =
√
−1

indicates the imaginary part of complex numbers.
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4. For a vector x ∈ Rn, let x[k] be its value at time index k ∈ R, and xi[k] be the value
of the i-th element of x at time index k.

5. For a matrix A ∈ Rp×n, Aij refers to the (i, j)th entry. Further, the transpose of the
matrix is denoted by A⊤, and its pseudoinverse is denoted by A†.

6. Let In and 0m×n stand for the identity n-by-n matrix and zero m-by-n matrix, re-
spectively. The subscript on In and 0m×n are omitted when their dimensions can be
inferred from context.

7. The symbol ⊆ denotes is a subset of. The symbols ∪ and ∩ denote the set union and
set intersection, respectively.

8. For two sets S and Q, we define S \Q as the subset of S not in set Q.

9. The operator |.| applied to a complex scalar denotes the magnitude operator, and when
applied to a set denotes the cardinality of the set.
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Chapter 2

Background

This chapter outlines background that will be used in this thesis. It acts as a primer for
those less familiar with power systems and certain topics in distribution grid management.
This chapter can be skipped without loss of continuity. Later chapters refer to this chapter
for more details on certain ideas.

2.1 Power Flow on Radial Networks

2.1.1 Properties of Distribution Grids

Electric power distribution grids differ from transmission grids in two major ways: they are
operated with radial topology, and their three-phase loads are often unbalanced.

While distribution grids are often constructed with a meshed topology, they are typically
operated in a radial topology. A major reason for operating them radially is so that protection
systems can be designed in a hierarchical manner, where the immediate upstream protection
device responds to a fault first. Moreover, protection devices can be sized according to the
worst-case current only their own network branch. In this thesis, the radial structure of
distribution grids will be leveraged for coordination of legacy voltage regulation equipment
and inverter-based DERs.

Academic control literature sometimes models distribution grids for simplicity, but the
majority of real distribution grids are three-phase and unbalanced. A three-phase unbalanced
grid is one in which the load values are unequal across the phases. The imbalance could be due
to power lines branching off into one or two phases, or the loads being uneven across the three
phases. The unbalanced loads can cause the voltages and currents to differ significantly on
each phase. Therefore, designing device controls using single-phase representations alone may
not capture the effectiveness of control on each separate phase, nor capture the interactions
between phases due to magnetic induction. In this thesis, we use single-phase models to
convey our control approach, but we extend our modeling to three-phase unbalanced feeders
for use in our simulations.
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2.1.2 Graph Network Notation

We begin by considering a single-phase radial distribution network. Because the substation
of a distribution grid interfaces with the transmission grid, the substation has a large source
impedance, resulting in it being effectively a voltage source modeled with constant voltage
magnitude and phase angle. The remaining n nodes are modeled as loads with a constant
real and reactive power injection at each time step. If power is generated at a node, the
generation is subtracted from the power consumption to yield the net load.

A radial distribution network is typically modeled as a tree graph. It consists of a set of
nodes N0 = {0, 1, ..., n} where node 0 is the root of the tree graph. Node 0 represents the
distribution grid substation, and The set of graph edges L is denoted by L ⊂ N0×N0, where
edge (i, j) ∈ L represents a line segment from node i to node j. The distribution network
can then be represented by the graph G = (N0,L). Each node has a unique path to node 0
because of the tree topology of the network. For each node i ∈ N0, denote by Li ⊂ L the
set of lines on the unique path from node 0 to node i. A node j is upstream from node i if
Lj ⊂ Li. Conversely, a node j is downstream from node i if Lj ⊃ Li. We often refer to the
set of nodes downstream of node 0, denoted by N = N0 \ {0}.

2.1.3 Power Flow Linearization

For each node i ∈ N , the voltage magnitude, voltage phase angle, net real power generation
and net reactive power generation are denoted by Vi, δi, pi, and qi, respectively. The voltage
phase angle δi is defined with respect to a reference phase angle, typically chosen to be at the
substation node. The sign of pi and qi is consistent with the positive generation convention.
Line segments can represent either a low-voltage or a medium-voltage network. For each line
segment (i, j) ∈ L, the impedance of the line zij is represented by the line resistance and
reactance in complex form zij = rij + jxij ∈ C. Additionally, the real (reactive) power flow
of the line segment from i to j is Pij (Qij).

We first consider the linearized branch flow model (LinDistFlow equations) developed
in [27] for radial distribution networks. The LinDistFlow equations linearize around a flat
voltage profile at 1 per unit and approximate the line current as zero. As such, the authors
assume negligible power losses in line segments, yet are able to model distribution-level power
networks with satisfactory accuracy as reported in [1, 12, 28]. A single-phase representation
of the LinDistFlow equations is expressed by

Pij =
∑

k:(j,k)∈L

Pjk − pj, ∀j ∈ N , (2.1a)

Qij =
∑

k:(j,k)∈L

Qjk − qj, ∀j ∈ N , (2.1b)

(Vi)
2 = (Vj)

2 + 2(xijQij + rijPij) ∀(i, j) ∈ L (2.1c)
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Next, we consider an extension of the LinDistFlow equations that captures the voltage
phase angle difference between two nodes [17,29,30]. The relationship between nodal voltage
phase angles δi, δj and power flow on a single-phase radial network is described by

sin(δi − δj) =
xijPij − rijQij

ViVj

∀(i, j) ∈ L (2.2)

To linearize the equation, we make the small-angle approximation sin δ ≈ δ and assume
Vi ≈ Vj ≈ 1p.u., retaining the dependence of Pij and Qij on (δi − δj).

δi − δj ≈
xijPij − rijQij

ViVj

, (2.3)

Note that δ in (2.2) and (2.3) can be measured by a distribution-level PMU by comparing
the voltage waveform at node i, vi(t) = V max

i cos(ωt + δi), to that of a reference node
vref (t) = V max cos(ωt) which is typically chosen as the distribution substation. The angular
frequency ω is the assumed to be constant and equal to 2π50 or 2π60 radians per second.

Assumption 1. (linearization holds) A given system operates near the voltage lineariza-
tion point of 1p.u.. Specifically, the negligible power line loss assumption and small-angle
approximations made to produce the linearized power flow equations (2.1) and (2.3) hold.

2.1.4 Sensitivities

to consider the power flow equations in a grid-wise context, we define some vector notation.
We define the squared voltage magnitude as vi := (Vi)

2. Then,

v = [v1, v2, ..., vn]
⊤, (2.4a)

δ = [δ1, δ2, ..., δn]
⊤, (2.4b)

p = [p1, p2, ..., pn]
⊤, (2.4c)

q = [q1, q2, ..., qn]
⊤, (2.4d)

v0 = [v0, v0, ..., v0]
⊤, (2.4e)

δ0 = [δ0, δ0, ..., δ0]
⊤. (2.4f)

For a grid network with only PQ nodes and one slack node, the power flow Jacobian is
defined in [31, Chapter 6.4.3] as[

∆q
∆p

]
= J

[
∆v
∆δ

]
, J =

[
∂q
∂v

∂q
∂δ

∂p
∂v

∂p
∂δ

]
(2.5)

where ∆p and ∆q are vectors of real and reactive power injections at all PQ nodes, respec-
tively. We consider a power injection any change in real or reactive power, whether it be an
increase in generation or increase in consumption. The Jacobian represents the small-signal
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mapping of voltage phasors to real and reactive power flows near the linearization point. In
transmission systems, where inductive reactance is generally much greater than resistance,
reactive power varies mainly with the voltage magnitude, while real power varies mainly
with voltage phase angle. That is, a decoupling assumption of ∂q

∂δ
≈ 0 and ∂p

∂v
≈ 0 is often

adopted. However, distribution feeders tend to have significant resistive components, and
consequently real and reactive power is coupled with both voltage magnitude and phase an-
gle. Moreover, for designing controllers that inject power to regulate voltage on distribution
grids, works such as [32] consider all four blocks of the inverse mapping matrix H, which is
often referred to as a sensitivity matrix.[

∆v
∆δ

]
= H

[
∆q
∆p

]
, H =

[∂v
∂q

∂v
∂p

∂δ
∂q

∂δ
∂p

]
(2.6)

To determine H , one could use grid impedance information. However, because distri-
bution grid impedance models are often incomplete or inaccurate, some works that explore
model-less methods for computing H through measurements of different types and config-
urations of sensors [33, 34]. In what follows, we show a measurement-based method based
on power injection step responses that was validated in simulation [35] and could be imple-
mented on real power grids to estimate impedances. Further, it demonstrates that under
Assumption 1, power-voltage sensitivity is exactly given by impedances.

For a two-bus system, a nodal power injection at the PQ bus p + jq is equal to the line
power flow. We consider these equations at an initial time k and the next steady state time
k + 1, with a power injection that occurs between these times. We assume the injection is
small enough for the linearization Assumption 1 to hold. Then, with the slack bus having
vj[k + 1] = vj[k] = 1, equations (2.1) and (2.3) become

vi[k]− vj[k] = 2rp[k] + 2xq[k] (2.7)

δi[k]− δj[k] = xp[k]− rq[k] (2.8)

vi[k + 1]− vj[k + 1] = 2rp[k + 1] + 2xq[k + 1] (2.9)

δi[k + 1]− δj[k + 1] = xp[k + 1]− rq[k + 1] (2.10)

Subtracting equation (2.7) from (2.9) and rearranging gives

(vi[k + 1]− vi[k])− (vj[k + 1]− vj[k]) = 2r(p[k + 1]− p[k]) + 2x(q[k + 1]− q[k])

vi[k + 1]− vi[k]

q[k + 1]− q[k]
− vj[k + 1]− vj[k]

q[k + 1]− q[k]
=

2r(p[k + 1]− p[k])

q[k + 1]− q[k]
+ 2x

If a small step change in reactive power is injected at node 2 between k and k+1 and there
is no change in real power (p[k + 1]− p[k] = 0), we have

∂v

∂q

∣∣∣∣
lzn point

≈ vi[k + 1]− vi[k]

q[k + 1]− q[k]
= 2x (2.11)
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If instead a step change in only real power is applied, we have

∂v

∂p

∣∣∣∣
lzn point

≈ vi[k + 1]− vi[k]

p[k + 1]− p[k]
= 2r (2.12)

Subtracting equation (2.8) from (2.10) and rearranging gives

(δi[k + 1]− δi[k])− (δj[k + 1]− δj[k]) = x(p[k + 1]− p[k])− r(q[k + 1]− q[k])

(δi[k + 1]− δi[k])

p[k + 1]− p[k]
− (δj[k + 1])2 − (δj[k])

2

p[k + 1]− p[k]
= −r(q[k + 1]− q[k])

p[k + 1]− p[k]
+ x

If a step change in reactive power is injected at node 2 between k and k + 1 we have

∂δ

∂p

∣∣∣∣
lzn point

≈ δj[k + 1]− δj[k]

p[k + 1]− p[k]
= x (2.13)

If instead a step change in only reactive power is applied, we have

∂δ

∂p

∣∣∣∣
lzn point

≈ δj[k + 1]− δj[k]

q[k + 1]− q[k]
= r (2.14)

When a network has more than two nodes, by choosing V0 as the slack bus, the impedances
obtained from the relationships four relationships eqs. (2.11) to (2.14) is the effective impedance
between the node of interest and the slack bus. Using these relationships, we can create use
measurements from step changes in power that are near the linearization point to approx-
imate impedance values. This method can help improve distribution models and provides
model information for inverter control design.

2.1.5 Impedance Matrices for Radial Networks

In this section we familiarize the reader with applying the graph network topology to impli-
cations about power voltage sensitivities. The ideas are synthesized from discussions with
Rayan El Helou (author of [1]).

Using the vector notation (2.4), the voltage magnitude branch flow equation (2.1) and
phase angle equation (2.3) are arranged into the following form:

v = X0q +R0p+ v0 (2.15a)

δ = −1

2
R0q +

1

2
X0p+ δ0. (2.15b)

The (i, j)th element of impedance matrices R0 ∈ Rn×n and X0 ∈ Rn×n are constructed
by

R0
ij = 2

∑
(w,t)∈Li∩Lj

rwt (2.16a)

X0
ij = 2

∑
(w,t)∈Li∩Lj

xwt, (2.16b)
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where the set of nodes that are upstream of both i and j is Li ∩ Lj. The construction
(2.16) is consistent with [1,12,13,16,18]. To extend this modeling to three-phase unbalanced
networks, we replace each element ofR0 andX0 by a 3×3 matrix that represents impedances
across phase A, B, and C, and all system states and inputs increase in dimension by threefold.
With this extension, the off-diagonal elements of R0 andX0 capture cross-phase interactions
(see [29] for details).

Assumption 2. Grid network impedances X0 and R0 are known.

See section 2.1.4 for a discussion on estimating X and R in real distribution grids.
The (i, j)th power-voltage sensitivity is the static mapping of a change in power at node

i to the change in voltage at node j on a circuit. Under the assumptions of linearized power
flow, (2.15) indicates that the power-voltage sensitivities are the impedance matrices R0 and
X0 [12,19,32,36]. We then define the complex impedance matrix Z := R0 + jX0. As such,

we refer to the common-node impedance as |Zij| =
√

(X0
ij)

2 + (R0
ij)

2. It is a measure of

electrical distance between any pair of nodes (i, j) on a radial network [37].

Assumption 3. There is some nonzero impedance between the root node of the tree network
and the first node that has branches.

This assumption is reasonable for most radial grids because the tree graph root is con-
sidered the distribution grid substation (see section 2.1.2) and the substation typically has a
transformer and a conductor extending from the substation before the circuit branches out.

Assumption 4. Given a radial distribution circuit, all line resistances and reactances are
positive.

This assumption is reasonable for most grids because resistance is always positive and the
inductive component of line impedances usually dominates the capacitance. By Assumption
4, X0 and R0 are positive definite, which was proven in [28] and has been used in volt-var
literature to prove convergence of voltage control systems [12,28,38]. Additionally, applying
this assumption to equation (2.15a) confirms the intuition that an increase in nodal real or
reactive power increases voltage magnitude.

We now make some conceptual observations about power-voltage sensitivities using the
diagram of a toy network in Fig 2.1:

1. A single power injection at any node changes the voltage magnitude by some amount
at every node of the network. This can be seen with the power flow equation (2.15a)
and from Zij > 0 ∀ i ∈ N and j ∈ N due to Assumption 3.

2. The change in voltage magnitude by single power injection is determined by only
common-node impedance between the power injection and voltage measurement loca-
tions. For intuition on why, consider a power injection made at node i in Fig. 2.1.
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Figure 2.1: The impedance matrix Z is comprised of the common-node impedances between
pairs of network nodes. The distribution grid includes two example common-node impedance
paths Zij and Zjk marked in green and purple, respectively.

The only current that changes in the network is the current from node i to the substa-
tion, because the power injection is matched by an opposite-direction power injection
at the substation, while loads on the other path Lk continues to demand the same
current. Therefore, the voltage drop across the common-node path Lℓ changes, while
the voltage drop across paths in other branches does not.

3. The power injection at node i in Fig. 2.1 causes all voltages on the other branch, namely
vℓ, vj, vk, change by the same amount. Therefore, it can be difficult to regulate vj, vk
independently using only power injections along path Li.

4. Item (2) implies that a power injection occurring deep in a circuit will change the
distribution level voltage more than if it occurs in a shallow location. This implies
that DERs designed to regulate voltages can be especially effective toward the ends
of circuits, but likewise explains why non-voltage regulating DERs, such as solar PV
in [39]), cause more severe voltage problems at the ends of circuits.

These conceptual points provide a primer to the intuition behind the location-stability
theorems in Chapter 3.3.2. A fun way to summarize these concepts is with Rayan Helou’s
hiking analogy applied to the network diagram in Fig 2.1: suppose you live at node i, your
friend lives at node j, and you want to hike together up to node 0. You meet at node ℓ then
hike together to node 0, then back to node ℓ, then you each go back home. The forward
and return trip helps explain the ’2’ in the construction of the R0 and X0 matrices (2.16).
Finally, the total distance you spend together, measured by the common-node impedance,
determines the voltage drop at i due to a power injection at node j (or vice versa).

2.2 Grid Simulations and Assumptions

The electric power grid is a highly nonlinear, time-varying system with many categories of
active devices and grid phenomena. A central problem in designing and operating the power
grid is determining the appropriate level of modeling detail for both grid devices and the grid
components, since what is appropriate depends on the problem of interest. This challenge
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is exacerbated by the introduction of a new suite of power electronic devices to the grid. In
this section, we draw distinctions between two categories of power systems control, where
we describe the dynamic phenomena, assumptions, and simulation setup for each.

2.2.1 Fast Dynamics

The first category is fast dynamics, where we consider grid phenomena and control loops
with a time constant of less than one second. The main grid equipment categories — power
lines, loads, synchronous generators, power converters circuit breakers — can be modeled
with differential equations that evolve at the sub-second level. In the last decade, there
has been great focus on modeling the fast dynamics of inverters (DC to AC converters),
including modeling of the power electronic circuitry and the internal voltage and current
control loops. When modeling groups of inverters operating on a power grid, the states tend
to be the current and voltage waveforms in the time domain, and loads are often modeled
as having constant resistance and/or being an induction motor. If a single dynamic device
is of interest, such as a synchronous machine or converter, one may model a dynamical
system comprised of differential or difference equations, sometimes using electromagnetic
transient software. In contrast, incorporating the power grid network into the model may
require adding the algebraic power flow equations (see linearized version in (2.1)), which
results in a Differential-Algebraic Equation (DAE) system. DAEs include both differential
equations ẋ = f(x, y) and algebraic equations 0 = g(x, y). MATLAB’s ODE45 function
can be used to solve DAE equations. When simulating DAE models, the simulation is
propagated forward by numerical integration between short timesteps, typically between 1
millisecond and 1 second for power systems applications. For example, when a synchronous
generator is connected with a line to an infinite bus, one could set up a DAE simulation that
integrates the generator’s power-frequency dynamics with the power flow along the line.
DAE simulations have also become popular for assessing small-signal stability and dynamic
interactions in low-inertia grids, as done in [40–43].

2.2.2 Slow Dynamics

The second category is slow dynamics, where we consider grid phenomena and control loops
with a time constant of greater than one second. To isolate and analyze slow dynamics, the
fast dynamics are assumed to be stable.

Assumption 5. we assume the sub-second dynamics from inverters, lines, and loads are
stable, and that those dynamics reach steady state between time steps.

Under this assumption, the voltage and current waveforms are smooth and measurable
with constant grid frequency. As a result, the system states are often voltage magnitude,
current magnitude, energy storage levels, or power levels. Some low-inertia grid literature
is investigating the validity of this assumption for different levels of inverter penetration
on the grid [3]. In the meantime, authors in load tap changing voltage regulation, volt-var
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control [1,12,38,44], DER coordination, and economic dispatch academic spaces often adopt
this assumption.

One common way to simulate models with slow dynamics is with Quasi-static-time series
(QSTS) simulations. The key distinction between QSTS and dynamic (or DAE) simulations
is that QSTS simulations do not involve solving differential equations. Rather, each time
step of QSTS simulations, which are typically between one second and one hour, represents
the steady state of the system. In the power systems field, the steady state may be com-
puted by solving the algebraic power flow equations at each time step, and the inputs to each
power flow computation are determined by discrete events. We note that models may incor-
porate memory or not. Without memory, each time step of the simulation can be computed
independently without any knowledge of variables in other time steps. These simulations
may be sufficient if the grid operation is predictable and has low variability in voltages and
power flows. More recently, however, the discrete events contain memory to enable faster
reaction to grid issues. The simplest model for discrete events with memory is a first-order
autonomous difference equation

x[k + 1] = axk].

Because this equation has the same form as a recursive optimization iteration, some works
refer to the system as having iterative updates rather than evolving as a discrete-time dy-
namical system. The memory is important because the choice of a determines whether the
system state converges or diverges. When authors wish to analyze this convergence behavior,
they may characterize the system as quasi steady-state dynamical system [12,13,38,45,46],
so that traditional dynamical system analysis techniques, such as eigenvalue analysis, can
be applied. The work in this thesis characterizes models in this way.

Common software used for slow dynamics on distribution grids include GridLab-D,
OpenDSS, and MATLAB/Simulink. GridLab-D is typically used for QSTS simulations,
but also includes an option to run part of a simulation with a faster timestep in deltamode.
Simulink’s Simscape component blocks can be used to set up QSTS or dynamic simulations.
Finally, Opal-RT’s power flow solver ePHASORSIM has a Simulink interface for running
QSTS simulations as well as quasi-steady state dynamical systems.

2.3 Phasor-Based Control

In this section we provide context, motivation, and some hierarchical details about Phasor-
Based Control (PBC). The other chapters of the dissertation employ PBC but do not return
to this higher-level discussion.

2.3.1 Phasor-measurement Units (PMUs)

Sophisticated approaches for controlling DERs require advanced sensing capabilities. Phasor-
measurement units (PMUs) are devices that have been successfully used to measure the volt-
age magnitude and phase angle of the electricity grid using GPS synchronization. As a result,
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the number of installments of PMUs on transmission grids has grown dramatically in recent
years [47]. However, there is a lack of distribution level sensors that can measure voltages at
a rate faster than the typical fifteen minutes of a smart meter. One promising technology is
Distribution PMUs (D-PMUs), which provide ultra-precise, synchronized measurements of
voltage magnitudes and phase angles on distribution grids [48]. These instruments sample
at 120Hz and can reliably discern angle differences as small as ten millidegrees, or about half
a microsecond [49].

Measurement of the full voltage phasor using D-PMUs along with the voltage phasor
power flow equation (2.2) motivates PBC, which is a framework where voltage phasors are
regulated to achieve an optimal grid state while providing an immediate corrective response
to disturbances.

2.3.2 Overview

The PBC framework is designed to facilitate the integration of heterogeneous and inter-
mittent distributed energy resources (DER) on the electric grid. PBC presents a unified
approach that is agnostic to optimization criteria and the particular characteristics of par-
ticipating resources. Further, it can be deployed across transmission and distribution level
grids. At its core, PBC frames the control of DERs around tracking voltage phasor targets,
instead of tracking targets for real and/or reactive power set-points. By designing controllers
around the physical grid quantity of voltage, there are opportunities to improve the power
quality and stability of the grid.

Phasor-based control employs a multi-layer control hierarchy that decouples high-level
long-term optimal objectives from short-term power quality objectives [17]. A centralized
controller (called the S-PBC layer) solves an optimal power flow (OPF) problem periodically
to determine optimal voltage phasor targets. The phasor targets computed by the S-PBC
are them broadcast across a network to one or more feedback controllers (called the L-PBC
layer). Each feedback controller regularly computes a set of real and reactive power setpoint
commands for one or more controllable resources to impact the grid voltage phasor. When
the controller drives the voltage phasors to their targets, the grid operates at an optimal state.
If before convergence a voltage disturbance on order of 1Hz or slower occurs, the feedback
controllers compute an immediate power injection response that rejects the disturbance while
the S-PBC computes updated optimal phasor targets.

The PBC system is agnostic to the optimization formulation, the characteristics of partic-
ipating resources, and the structure of the grid. PBC frames the contributions of generators
and loads in terms of their physical effect on the network, by explicitly referring to the
electrical state variables — voltage magnitude and voltage phase angle — that constitute
the voltage phasor at any given network node, not only nodes with a DER connected. The
use of the phasor as a network state variable enables an immediate corrective response to
disturbances without communication between resources and without compromising privacy.
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2.3.3 Important Features

The S-PBC requires a grid network model, desired DER locations, DER capacities, and a
load and generation forecast. OPF objectives can be specified by a utility or other exter-
nal operator, such as a DER aggregator. Some objectives can be very effectively expressed
in terms of voltage phasor targets at specific nodes, including reducing voltage volatility,
balancing three phases, preventing reverse power flow on distribution circuits, and match-
ing voltage phasors across an open switch to facilitate microgrid islanding. The constraints
can align with traditional OPF formulations, including the enforcing of voltage limits at all
network nodes and enforcing of resource constraints (such as capacity and solar power avail-
ability) at DER nodes. When the OPF problem is feasible, there exists a set of nodal power
injections with corresponding voltage phasors that satisfies all OPF constraints, including
the DER capacity limits. Therefore, S-PBC may not converge if there are not enough DERs,
there is not enough capacity per DER, or the DERs are placed in locations that prohibit
them from satisfying the OPF constraints. However, if the OPF is feasible, the forecast lever-
ages knowledge of the load and generation at non-measured nodes, ensuring that tracking a
subset of network nodes achieves objectives across all nodes.

The output of S-PBC is phasor targets for all network nodes, but only a subset needs
to be tracked by the specified set of DERs. Even if the grid state associated with the OPF
solution is feasible, designing a set of feedback controllers to drive the grid’s state to that
state is challenging. Feedback controllers may have limited access to the full set of grid
measurements, and limited or no communication between DERs. Further, the number and
location of nodes being tracked may affect the ability of the controllers to achieve the optimal
grid state. Finally, when a subset of the network nodes are being tracked (commonly the
case), there exist multiple combinations of controller power injections that achieve the same
voltage phasor targets. Therefore, the design of the L-PBC layer is a challenging task that
includes questions about appropriate controller gains, DER locations, sensor locations, and
requirements for controller convergence.
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Chapter 3

Stability of Groups of Inverter-Based
DERs

This chapter is based on the papers [50–52], written in collaboration with Elizabeth Ratnam,
Abhishek Bhardwaj, Brittany Wais, and Alexandra von Meier.

In this chapter, we explore power set-point control of Inverter-based DERs. We de-
velop a dynamical system model for DERs operating under PBC using linearized power
flow equations and discrete time feedback controllers. To incorporate limitation in available
communication infrastructure on many distribution grids, the model accommodates any ex-
ternally defined communication infrastructure. Because typically not all grid network nodes
can be measured, we use the Kalman Decomposition to reduce the model. We then apply
the Gershgorin Disc theorem to create necessary but not sufficient conditions for system sta-
bility. Stability of the dynamical system ensures that all network voltages are driven to the
5% ANSI range, and that the power flow state of the grids is optimal. Using these stability
conditions, we consider a more holistic set of design considerations. Specifically, we prove
relationships between DER and sensor location and system stability, which inform strategic
placement of this control equipment. Additionally, we develop an analytic approximation
of the region of stabilizing controllers, which enables the computation of flexible operating
parameter ranges for each DER. As an alternative to parameter ranges, we also propose a
heuristic sampling algorithm that computes control parameters in a less conservative manner.
Finally, stabilizing controllers are designed and implemented in several realistic scenarios of
the 123-node unbalanced grid network. Through the experiments, we demonstrate that for
any externally given communication requirements, our modeling and analysis determines
strategic placement and flexible parameters for the DER set-point controllers, resulting in
highly effective regulation of voltages and power flows.
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3.1 Introduction

The recent literature on ways to regulate distribution grid voltages using inverter-based
DERs can be categorized by the underpinning communication infrastructure.

On one end of the spectrum, DER power set-points are computed using voltages mea-
sured at their own terminals and without any communication between DERs (so called local
voltage control). The standard voltage control function for DERs is droop volt-var control
(DVVC) as proposed by IEEE 1547. Unfortunately, various works have demonstrated how
oscillations can arise from DVVC [46, 53]. In response, authors in [28, 38] derive conditions
on slope parameters to prevents these oscillations. The authors in [20,54] solve a centralized
optimization problem to determine optimal droop parameters, while authors in [18,19] solve
a local optimization problem over a daily horizon to adjust droop volt-var and volt-watt pa-
rameters. Finally, authors in [12, 44] propose incremental volt-var to achieve better voltage
regulation and accompany their approach with conditions for preventing oscillations.

The other end of the spectrum, set-points are computed with communication betwen
neighboring DERs to solve an OPF problem in a distributed manner. For example, the au-
thors in [55,56] require a communication channel between neighboring DERs in the proposed
distributed optimal power flow (OPF) problem, where reactive power-setpoints are assigned
to DERs across a subset of the distribution network nodes. The authors in [57, 58] also
use a communication channel between neighboring DERs in the proposed distributed OPF
problem, where both real and reactive power setpoints are assigned to grid-connected DERs.
Unfortunately, the aforementioned works require a bi-directional communication channel to
transmit measurement and actuation signals from each DER to the respective neighboring
DERs, which may be impractical or expensive to implement in distribution grids [59].

The PBC framework that has been proposed and demonstrated in prior works (see Chap-
ter 2 section 2.3) leverages the benefits at both ends of the aforementioned spectrum using a
two-layer hierarchical setup. However, we emphasize that the communication requirements
of real power grids are likely to fall anywhere on this spectrum depending on the resources
available and concerns around privacy and ownership. Therefore, we note that existing lit-
erature has not yet adopted a communication agnostic approach to DER control, where the
communication structure can be specified externally by the DER owner and operator.

We also note that the aforementioned literature often implements their proposed control
approaches with a narrow focus on selecting fixed control parameters. Yet there is a more
holistic set of design considerations that each play an important role in achieving effective
regulation of power flows and voltages. For example, an important yet rarely explored design
consideration is DER siting. This is of importance when there are a limited number of DERs
but several locations at which to regulate voltages. [60] places a single DER at the end of
the 30-bus single phase feeder to improve voltages along the length of the feeder. Authors
in [12,13] cite incremental volt-var controllers on five evenly spaced edge nodes of the single
phase 42 and 56-bus network respectively. Authors in [56] cites at 2 particular nodes on the
IEEE 123-node feeder. None of these aforementioned works provide guidance on how to site
the DERs, specifically they do not examine the relationship between DER siting and the
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convergence of the voltage to appropriate values. One exception is the work in [44]. After
siting incremental volt-var DERs at all nodes of the network, the authors derive a stability
region to show that siting DERs at the ends of feeders reduces the stability region where
voltages converge.

Another design consideration would be an allowance of operating parameter flexibility,
since grid operators and customers often have differing control objectives. Stability regions
can provide this flexibility of parameter selection by showing the impact of operating param-
eters on stability [1,61]. Authors in [1] compute a stability region in the space of parameters
for incremental volt-var controllers. Then they propose the idea of allowing customers to
modulate the parameters in the range but the authors do not assess the conservative-ness
of the ranges as the DER system scales. Authors in [61] develop a computationally efficient
way of computing ranges of operating parameters for large groups of DERs. However, they
do so by exploiting the properties of their DER voltage source converter model, which have
different modeling assumptions than our focus on power set-point DER control literature.
We are motivated by [1] and [61] to explore the economic value of allowing customers to
operate within a computed range of stable operating parameters.

The rest of this chapter organized as follows. In Sec. 3.2, we derive a state space model
for DERs operating under PBC. In Sec. 3.3, we establish conditions for system stability
and relationships between DER siting and stability. In Sec. 3.4, we formalize the problem
of finding a set of stabilizing controller gains for our developed model. We then propose a
an analytic approximation of the region of stabilizing controllers in Sec. 3.5, and a heuristic
algorithm for sampling candidate controllers in Sec. 3.6. Sec. Sec. 3.5 and 3.6 both include
experimental case studies of the controller design applied to the IEEE 123-node test feeder.

3.2 Dynamical System Model for Phasor-Based

Control

3.2.1 Siting of DERs and Sensors

On many power grids there is not sufficient infrastructure for DERs to inject power at every
node, nor sensors that deliver voltage measurements to controllers at every node. Often
the sensors used for control are those that are internal to the inverter device, resulting
in an arrangement of DERs and sensors where the set of DER nodes is equal to the set
of sensor nodes. However, basic voltage magnitude sensors and distribution-level voltage
phasor sensors (such as µPMUs) can be installed at voltage-violation prone locations without
needing to be co-located with an inverter device. Hence, we model the set of DER nodes
and set of sensor nodes as separate sets. Specifically, we construct ordered sets D1 and S1
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as the subset of the nodes that have DERs and sensors respectively:

S1 = {p | p ∈ N has a sensor} (3.1a)

S2 = {p+ n | p ∈ N has a sensor} (3.1b)

S := {S1,S2} (3.1c)

D1 = {p | p ∈ N has a DER} (3.1d)

D2 = {p+ n | p ∈ N has a DER} (3.1e)

D := {D1,D2} (3.1f)

In constructing S in (3.1), we include the nodes that have a sensor twice because we are
interested in tracking voltage magnitude and phase angle. Similarly, for D we include the
nodes that have a DER twice because each DER actuates reactive power and real power.
We label the dimension of these sets with s := |S| ≤ 2n and d := |D| ≤ 2n. We also define
complements S := {1, ..., 2n} \ S and D := {1, ..., 2n} \ D.

Next we define a function Γ that generates row and column selector matrices. For an
ordered set Ω = {i1, . . . , ig} ⊂ N, we define

Γk(Ω) =
[
eii . . . eig

]
∈ Rk×g, (3.2)

where ei is the i-th standard basis vector of Rk.

DER Coordination Problem

In Fig. 3.1, we present a conceptual diagram for a medium voltage distribution circuit
with DERs, sensors and controllers. Each DER controller receive measurements of voltage
magnitude and phase angle from one or more nodes as indicated by the dotted arrows. Then
each controller computes real and reactive power setpoints for the DER. Though in this
Chapter we model DERs operating under PBC, the approaches therein can be applied to
any computation of DER power setpoints using voltage measurements. We consider each
load as an industrial or commercial customer, or a collection of low-voltage residential or
commercial customers, potentially seeking to install behind-the-meter DERs.

To describe the control system illustrated in Fig 3.1 acting over time, we introduce
notation for defining time steps. For each controller, we denote the set of time indices
K = {1, ..., k, ..., K}. We denote by ∆ the length of one time interval (i.e., [(k − 1)∆, k∆]),
and we define a time horizon τ = K∆, so that T = [0, τ ]. Consistent with volt-var
control literature [1,12,38,44], we assume the sub-second dynamics from inverters, lines, and
loads are stable, and that those dynamics reach steady state between time steps such that
∆ = 5 seconds is sufficiently large. Moreover, we assume that the grid’s voltage and current
waveforms are approximately sinusoidal, so that measurement and tracking of specific voltage
phasor quantities is possible. Finally, we assume all DERs are synchronized to a common
clock signal.

In what follows, we consider a scenario in which the capacity of a distribution network
can be expanded to host DERs of capacity C across all nodes n ∈ N . To be strategic
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Figure 3.1: Toy diagram of DER system operating on a radial distribution network. Con-
trollers in each DER device take measurements from one or more sensor nodes to compute
power values that are injected at DER nodes.

about the expansion, we seek to determine the subset of nodes n ∈ N where siting DERs of
capacity C ensures voltages and thermal constraints are within grid operating limits.

3.2.2 Introduction to Gershgorin Theorem

As will be shown in section 3.2.4 , the system described in Fig. 3.1 can be modeled as a
linear, time-invariant system whose small-signal stability is determined by a single matrix.
Because the matrix size grows with the number of DERs and sensors on the grid network,
expressing its eigenvalues in terms of the DER controller gains and network impedances is
not tractable for large DER systems. Instead, in section 3.2.6 we use the Gershgorin disc
theorem, which bounds the eigenavlues of any matrix in terms of its elements.

The Gershgorin disc theorem is as follows. For any square matrix A, there exists A =
D + P , where D = diag(A11, ...,Ann), and P = A − D has a zero main diagonal. If
P = 0n×n, the eigenvalues of A are just along the diagonal of D. We denote the deleted
absolute row sums of A as

γi(A) =
∑
j ̸=i

|Aij|, i = 1, ..., n.

and denote the diagonal elements of A as

ϕi(A) = Aii
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Theorem 1. ( [62, Theorem 6.1.1]): (Gersgorin) The eigenvalues of any matrix A ∈
Rn×n are in the union of its Gersgorin discs defined by
Gi(A) = {w ∈ C : |w − ϕi(A)| ≤ γi(A)} i = 1, ..., n

Each Gershgorin disc center ϕi and radii γi can be easily computed from the diagonal
elements and row sums of the matrix. The Gershgorin discs are faster to compute than the
eigenvalues themselves, and can be used to define stability regions.

3.2.3 Model Derivation

In this section we derive a state space model for DERs operating under the PBC frame-
work. The model derivation has similarities in procedure with incremental volt-var control
literature such as [1, 12, 44], but notably incorporates the voltage phase angle as a state,
and incorporates the change in real power setpoint as an input. It is also formulated to ac-
commodate and externally defined arrangement and communication infrastructure between
DERs and sensors.

We begin by considering a single-phase radial distribution network. Because the substa-
tion of a distribution grid interfaces with the transmission grid, the substation has a large
source impedance, resulting in it being effectively a voltage source modeled with constant
voltage magnitude and phase angle. The remaining n nodes are modeled as loads with a
constant real and reactive power injection at each time step. If power is generated at a node,
the generation is subtracted from the power consumption to yield the net load.

A radial distribution network is typically modeled as a tree graph. It consists of a set of
nodes N0 = {0, 1, ..., n} where node 0 is the root of the tree graph. Node 0 represents the
distribution grid substation, and The set of graph edges L is denoted by L ⊂ N0×N0, where
edge (i, j) ∈ L represents a line segment from node i to node j. The distribution network
can then be represented by the graph G = (N0,L). Each node has a unique path to node 0
because of the tree topology of the network. For each node i ∈ N0, denote by Li ⊂ L the
set of lines on the unique path from node 0 to node i. A node j is upstream from node i if
Lj ⊂ Li. Conversely, a node j is downstream from node i if Lj ⊃ Li. We often refer to the
set of nodes downstream of node 0, denoted by N = N0 \ {0}.

Power Flow Linearization

For each node i ∈ N , the voltage magnitude, voltage phase angle, net real power generation
and net reactive power generation are denoted by Vi, δi, pi, and qi, respectively. The voltage
phase angle δi is defined with respect to a reference phase angle, typically chosen to be at the
substation node. The sign of pi and qi is consistent with the positive generation convention.
Line segments can represent either a low-voltage or a medium-voltage network. For each line
segment (i, j) ∈ L, the impedance of the line zij is represented by the line resistance and
reactance in complex form zij = rij + jxij ∈ C. Additionally, the real (reactive) power flow
of the line segment from i to j is Pij (Qij).
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We first consider the linearized branch flow model (LinDistFlow equations) developed
in [27] for radial distribution networks. The LinDistFlow equations linearize around a flat
voltage profile at 1 per unit and approximate the line current as zero. As such, the authors
assume negligible power losses in line segments, yet are able to model distribution-level power
networks with satisfactory accuracy as reported in [1, 12, 28]. A single-phase representation
of the LinDistFlow equations is expressed by

Pij =
∑

k:(j,k)∈L

Pjk − pj, ∀j ∈ N , (3.3a)

Qij =
∑

k:(j,k)∈L

Qjk − qj, ∀j ∈ N , (3.3b)

(Vi)
2 = (Vj)

2 + 2(xijQij + rijPij) ∀(i, j) ∈ L. (3.3c)

Next, we consider an extension of the LinDistFlow equations that captures the voltage
phase angle difference between two nodes [17, 29, 30]. We do so because modeling voltage
phase angle differences is central to PBC. The phase angle equation is linearized by assuming
the small-angle approximation sin δ ≈ δ and that Vi ≈ Vj ≈ 1p.u.. It is expressed by

δi − δj = −rijQij + xijPij ∀(i, j) ∈ L. (3.4)

Using the vector notation (2.4), the voltage magnitude branch flow equation (3.3) and
phase angle equation (3.4) are arranged into the following form:

v = X0q +R0p+ v0 (3.5a)

δ = −1

2
R0q +

1

2
X0p+ δ0. (3.5b)

The (i, j)th element of impedance matrices R0 ∈ Rn×n and X0 ∈ Rn×n are constructed
by

R0
ij = 2

∑
(w,t)∈Li∩Lj

rwt (3.6a)

X0
ij = 2

∑
(w,t)∈Li∩Lj

xwt, (3.6b)

where the set of nodes that are upstream of both i and j is Li ∩ Lj. The construction (3.6)
is consistent with [1, 12,13,16,18].

The (i, j)th power-voltage sensitivity is the static mapping of a power injection at node
i to the voltage at node j on a circuit. Under the assumptions of linearized power flow,
(3.5) indicates that the power-voltage sensitivities are the impedance matrices R0 and X0

[12,19,32,36]. We then define the complex impedance matrix Z := R0+ jX0. We note that



CHAPTER 3. STABILITY OF GROUPS OF INVERTER-BASED DERS 25

the representations of the grid with single-phase impedances can be extended to three-phase
impedances by simple replacement of each element of R0 and X0 by a 3 × 3 matrix that
represents phase A, B, and C [29,38]. In section 3.5 and 3.6 we simulate this model on three-
phase unbalanced grids. In the meantime, we continue with single-phase representations
to focus on graph network properties and the model derivation. As such, we refer to the
’common-node impedance’ as

As such, we refer to the common-node impedance as

|Zij| =
√

X2
ij +R2

ij. (3.7)

It is a measure of electrical distance between any pair of nodes (i, j) on a radial network [37].
In Fig. 3.2, for different pairs of nodes i and j we compare |Zij| by observing the set of
common upstream nodes. This figure highlights the fact that actuation of real or reactive
power at node i has a higher impact on the voltage at node j if they share more common
upstream nodes than if they share less.

Figure 3.2: Network graph representation of a radial distribution grid. The path of the
common-node impedances Zij and Zij are marked in green and purple respectively.

In the next two sections, we use (3.5a) and (3.5b) to derive the state space equations for
PBC.

Voltage Magnitude Dynamics

We first split the nodal power injection vector into components

p = pinv,0 + pother, q = qinv,0 + qother. (3.8)

Power injections by devices under our control are (qinv,0,pinv,0), and those not under our
control are (qother,pother). Next, using the Γ function (3.2), we define

T d := Γn(D1) ∈ Rn×d/2. (3.9)

Note that pinv,0 and qinv,0 have the property where pinv,0i = 0 and qinv,0i = 0 for i ∈ D1.
We capture this zero pattern with

T d(T d)†pinv,0 = pinv,0, T d(T d)†qinv,0 = qinv,0. (3.10)



CHAPTER 3. STABILITY OF GROUPS OF INVERTER-BASED DERS 26

Then we define

R := R0T d, X := X0T d. (3.11)

Next we define
pinv := (T d)†pinv,0, qinv := (T d)†qinv,0. (3.12)

By construction, pinv ∈ Rd/2 and qinv ∈ Rd/2 are the power injections of only the nodes with
a DER. Finally, we pre-multiply both sides of (3.12) by R0 then substitute in (3.10) and
(3.11), resulting in

R0pinv,0 = R0T d(T d)†pinv,0 = R0T dpinv = Rpinv, (3.13a)

X0qinv,0 = R0T d(T d)†qinv,0 = X0T dqinv = Xqinv. (3.13b)

The lefthand side of (3.13a) and (3.13b) considers impedances and power injections at
all nodes, while the righthand side considers those quantities coming from only the nodes
with a DER.

Then we substitute (3.8) into the voltage equation (3.5a). By defining ṽ := R0pother +
X0qother + v0, we have v = R0pinv,0 +Xqinv,0 + ṽ. Then substituting (3.13a) and (3.13b)
into this result, we have

v = Rpinv +Xqinv + ṽ. (3.14)

We consider equation (3.14) at time index k and k + 1, and subtract them from each
other, giving

v[k + 1] = v[k] +R(pinv[k + 1]− pinv[k]) +X(qinv[k + 1]

− qinv[k]) + (ṽ[k + 1]− ṽ[k]). (3.15)

We define up[k] := pinv[k+1]−pinv[k], uq[k] := qinv[k+1]−qinv[k], and dv[k] := ṽ1[k+1]−
ṽ1[k]. Suppose the voltage magnitude squared reference and voltage phase angle reference
(vref ,δref ) are known. Subtracting vref from both sides gives

v[k + 1]− vref [k + 1] = (v[k]− vref [k]) + (vref [k]

− vref [k + 1]) +Rup[k] +Xuq[k] + dv[k]. (3.16)

Finally, with defining ev[k] := v[k] − vref and ξv[k] := vref [k] − vref [k + 1], the upper half
of our state space model is

ev[k + 1] = ev[k] +Rup[k] +Xuq[k] + ξv[k] + dv[k]. (3.17)
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Voltage Phase Angle Dynamics

We follow a similar procedure to the previous section, but work with the phase angle equation
(3.5b). Substituting (3.8) into (3.5b) and defining δ̃ := −1

2
R0pother + 1

2
X0qother + δ0 gives

δ = −1
2
R0pinv,0 + 1

2
X0qinv,0 + δ̃. Then substituting (3.13a) and (3.13b) to this result, we

have

δ = −1

2
Rpinv +

1

2
Xqinv + δ̃. (3.18)

We consider (3.18) at time index k and k+1, and subtract them from each other, giving

δ[k+1] = δ[k]− 1

2
R(pinv[k+1]−pinv[k])+

1

2
X(qinv[k+1]−qinv[k])+(δ̃[k+1]−δ̃[k]). (3.19)

Subtracting δref from both sides gives

δ[k+1]−δref [k+1] = (δ[k]−δref [k])+(δref [k]−δref [k+1])− 1

2
Rup[k]+

1

2
Xuq[k]+dδ[k].

(3.20)

Finally, with defining eδ := δ − δref and ξδ := δref [k] − δref [k + 1], the lower half of our
state space model is:

eδ[k + 1] = eδ[k]− 1

2
Rup[k] +

1

2
Xuq[k] + ξδ[k] + dδ[k]. (3.21)

3.2.4 Model Definition

The state vector of the PBC state space model, e, is the squared voltage magnitude tracking
error ev stacked with the phase angle tracking error eδ at all nodes. The input vector, u, is
the change in inverter reactive power setpoint uq[k] stacked with the change in inverter real
power setpoints up[k] at the DER nodes. Finally, we consider the output read-out map of
the state space model. Using the Γ function (3.2), we define

T s := Γ(Ns) ∈ Rs×2n (3.22)

to capture how we can only measure voltage phasors at nodes of the network that have a
sensor. Therefore, the output read-out map is y[k] = T se[k]. Then, the PBC open-loop
model is

sys Σ1 :[
ev[k + 1]
eδ[k + 1]

]
= A

[
ev[k]
eδ[k]

]
+B

[
uq[k]
up[k]

]
+

[
ξv[k]

ξδ[k]

]
+

[
dv[k]
dδ[k]

]
, (3.23a)

y[k] = C

[
ev[k]
eδ[k]

]
, (3.23b)
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A = I2n, B =

[
X R

−1
2
R 1

2
X

]
, C = T s (3.23c)

Equation (3.23) represents a quasi-steady-state dynamical system describing the evolu-
tion of voltage phasors as nodal power injections are updated over time on a radial network.
Note that e, u, and y have dimension 2n, d, and s, respectively. Also, B and C have
dimensions 2n× d and s× 2n respectively.

We use an output feedback control law for updating the power setpoint:

u[k] = −Fy[k], (3.24)

where F ∈ Rd×s. Note that we map the voltage phasor tracking error y to the change in
inverter power output u, so that inverter power injections increment while voltage phasor
tracking errors persist. The incremental control law (3.24), which can be viewed as a discrete-
time integrator, is of the same form as those proposed in [1,12,13,44]. However, those works
assume F to be diagonal, which corresponds to a CI in which DERs are co-located with their
sensors. We allow for F to have any sparsity structure, in order to allow for an arbitrarily
given communication infrastructure (CI). For example, DERs at two nodes could track a
phasor at a third node, as illustrated by the dotted arrows at the end of the circuit in Fig.
3.1.

By substituting the output feedback control law (3.24) and output read-out map (3.23b)
into open-loop model (3.23a), the closed-loop system becomes

e[k + 1] = (A−BFC)e[k] + ξ[k] + d[k], . (3.25)

Power disturbances from uncontrolled sources such as load changes, cloud cover events,
and solar PV fluctuations can cause voltage spikes resulting in unintended device tripping.
We will model these disturbances with time-series profiles as done in [1, 44]. We assume
the profiles do not bring the system operating point far from the linearization equilibrium
of 1V p.u. Modelled this way, the stability of the closed loop system is determined solely
by the eigenvalues of (A−BFC); which are independent of ξ[k] and d[k], and so we set
ξ[k] = d[k] = 0. The resulting closed-loop system of Σ1 becomes

e[k + 1] = (I −BFC)e[k], (3.26)

since A = I2n. Equation (3.26) defines a linear time-invariant system with dynamic elements
arising from discrete-time integral control action.

3.2.5 Model Reduction

In this section we reduce the state space model of (system Σ1) to a state space minimal
realization (system Σ2) via the Kalman Decomposition. To motivate the need for model
reduction, we make some observations about it:
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Lemma 1. Consider a DER system Σ1 defined in (3.23). T s defined in (3.22) spans the
observable subspace of Σ1, and Γ2n(D) spans the controllable subspace of Σ1.

As described in section 3.2.1, it is common for s < 2n and d < 2n for real power
grids. By Lemma 1, we construct the permutation matrix T by considering the spans of all
combinations of observable and controllable subspaces. That is,

T := [Γ2n (S ∩ D) , Γ2n

(
S ∩ D

)
, Γ2n

(
S ∩ D

)
, Γ2n

(
S ∩ D

)
]. (3.27)

We obtain the Kalman Decomposition representation [63, Chapter 6.4] as (Ã, B̃, C̃)
where Ã = T−1AT , B̃ = T−1B, and C̃ = CT . Since A = I2n, Ã = A = I2n. We
start by extracting the the observable subsystem by defining define a selector matrix G :=
Γ({1...s}) ∈ R2n×s. When G is post-multiplied it selects the first s columns. When when
G⊤ is pre-multiplied it selects the first s rows. The observable subsystem (Ā, B̄, C̄) is then
Ā = G⊤ÃG = Is, B̄ = G⊤B̃ ∈ Rs×d, and C̄ = C̃G ∈ Rs×s.

Lemma 2. The reduced system state vector contains only the sensor nodes of the network,
i.e. ē = T se

The reduced DER system, called Σ2, is

sys Σ2 : ē[k + 1] = Āē[k] + B̄u[k], (3.28a)

y[k] = C̄ē[k]. (3.28b)

By Lemma 1, T s spans the observable subspace of Σ1, so
System Σ2 captures how changes in power setpoints at DER nodes affect the phasor

tracking error at sensor nodes. Notice that due to the tree graph topology of the grid
network, a DER could have the same common-node impedance |Zij| with respect to two
sensors, which would prevent independently tracking each sensor. Thus we introduce the
following assumption about the DER and sensor siting:

Assumption 6. Consider a DER system Σ1 with communication network defined in (3.1).
We assume that for every node with a sensor, there is also an actuator at that node. That
is, S ⊆ D.

In general, applying G to the Kalman Decomposition extracts the observable subsystem
matrices, which includes controllable and uncontrollable modes. However, by Assumption
6, S ⊆ D ↔ S ∩ D̄ = ∅, so applying G extracts exactly the minimal realization. That is,
under Assumption 6, system Σ2 is both observable and controllable. Due to system Σ2 being
completely controllable, there exists a stabilizing state feedback gain matrix, F̄ ∈ Rd×s, that
satisfies

u[k] = −F̄ ē[k], (3.29)

Substituting (3.29) into (3.28) gives a closed-loop system of

ē[k + 1] = (Ā− B̄F̄ )ē[k] = (I − B̄F̄ )ē[k], (3.30)



CHAPTER 3. STABILITY OF GROUPS OF INVERTER-BASED DERS 30

since Ā = Is. Notably, the closed-loop dynamics matrix (I − B̄F̄ ) is s× s dimension. The
reduced state vector ē is only of dimension s ≤ 2n, which captures the voltage phasors only
at the nodes where there are sensors.

3.2.6 Stability Guarantees

In this section, we prove that the stability margin of the closed-loop of the reduced system
is equal to that of the original system. We then apply the Gershgorin disc theorem to the
reduced system to define closed-form analytical expressions for the stability region of the
system.

We define a 2-dimensional open ball in the complex space B(c, r) = {x ∈ C | |x− c| ≤ r}
with center c ∈ C and radius r ∈ R. If (I −BFC) ∈ B(0, 1), the system (3.26) is asymp-
totically stable [63, Chapter 5.3]. Thus, from (3.26) and (3.30), (I −BFC) determines the
stability of system Σ1 and (I − B̄F̄ ) determines the stability of system Σ2.

We label

H := BFC ∈ R2n×2n (3.31)

H̄ := B̄F̄ ∈ Rs×s (3.32)

Due to the spectral mapping theorem, the eigenvalues of (I − H) are equal to one minus
the eigenvalues of H . Therefore, in the proofs that follow we relate the eigenvalues of H
and H̄ to the ball B(1 + 0j, 1).

Lemma 3. Consider H and H̄ defined in (3.31) and (3.32). We have F̄ = FC̄, and
H̄ = G⊤T−1HTG.

Corollary 1. The eigenvalues of H are the eigenvalues of H̄, and zero with algebraic
multiplicity of 2n− s.

We can thus reason about how DER siting and operating parameters affect a submatrix
of H , rather than all elements of H . The number of elements of H ∈ R2n×2n scales with
network size, while H̄ ∈ Rs×s only scales with the number of nodes being tracked.

Theorem 2. (stability assessment) Consider a DER system Σ1 (3.26) and the reduced
system Σ2 (3.30). If for Σ2 the eigenvalues of H̄ (3.32) lie strictly inside B(1+0j, 1), then
(i) ē converges to zero exponentially, (ii) system Σ1 is stable in the sense of Lyapunov
(SISL), and (iii) ep converges to zero exponentially ∀p ∈ S.

If DER-sensor locations and gains are known (i.e. H is known), we can use Theorem
2 to determine whether one particular instance of (S, D, and F̄ ) yields a stable system,
i.e. a system where the phasors converge to their references. However, in practice, it is
desirable to know the region of system parameters where stable operation is guaranteed.
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Applying Theorem 2 to perform a point-by-point direct numerical assessment would require
prohibitively many assessments for large systems, leading to only an approximate a stability
region. Thus, we leverage the Gershgorin disc theorem to create a set of closed-form analytic
inequalities that ensure convergence to the voltage references. The Gershgorin disc theorem
defines Gershgorin discs whose union contains the eigenvalues of H̄ . The system is stable if
each of those Gershgorin discs are contained in B(1 + 0j, 1). See the diagram in Fig. 3.3.

Theorem 3. (closed-form analytic stability region) Consider a DER system Σ1. If the
following Gershgorin disc conditions on H̄ (3.32) are met,

ϕi(H̄) + γi(H̄) < 2 (3.33)

ϕi(H̄)− γi(H̄) > 0 ∀ i = 1...s (3.34)

then, ep converges to zero exponentially for all p ∈ S.

Figure 3.3: Theorem 3 represented on the real-imaginary complex plane. Two example
Gershgorin discs are drawn in blue and characterized by center ϕi and radius γi for i = 1, 2.
The stability ball B(1 + 0j, 1) is drawn in black. By applying the Gershgorin Disc Theorem
(Theorem 1), observe that having all Gershgorin discs of H̄ inside the stability ball is
sufficient for stability.

The value in Theorem 3 is twofold. First, we have a geometric interpretation of the small-
signal eigenvalue stability of our system, and in the proofs that follow we reason about the
Gershgorin disc radii and centers to tell when the system becomes unstable. Secondly, the
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stability region formulated in Theorem 3 can be viewed in the electrical impedance space for
DER siting insights. Conversely, it can be viewed in the controller gain space for controller
gain insights.

3.3 Siting-Stability Relationships

To quantify how close a system is to the stability boundary, we define the shifted spectral
radius for a matrix A as

ρc(A) := max
i

|c+ λi(A)|.

where λi indicates the ith eigenvalue. Typically the spectral radius has no shift, i.e., one
has ρ0. Here, because the system Σ1 is stable when eigenvalues of H are in B(1 + 0j, 1), if
ρ1(H) < 1 then the system Σ1 is stable. Consider the point ϵ ∈ C that is the furthest point
from point 1+0j in the union of all Gershgorin disks Gi(H). By Theorem 1, |ϵ| is an upper
bound on ρ1(H), so we define the distance ρub1 (H) = |ϵ|. For any state space system with
closed-loop dynamics matrix of the form (I−W ), the stability margin of the system m(W )
is

m(W ) = 1− ρub1 (W ). (3.35)

Observe that if ρub1 increases, m decreases.

Remark 1. System Σ1 (3.26) having greater stability margin m(W ) results in faster con-
vergence to the voltage phasor, faster rejection of disturbances, and faster achievement of the
optimal grid state. See Chapter 2 section 2.3 for details on how the PBC framework achieves
an optimal grid state.

Proposition 1. (adding and removing DER-sensor pairs) Consider a DER system Σ1. Re-
moving a DER-sensor pair increases the Σ1 stability margin m(H); adding a pair decreases
the stability margin

Proposition 1 is powerful because it implies that if a sensor becomes compromised or
stops producing measurements, stability of the remaining DER system is maintained and
actually improved.

3.3.1 Expansion of Stability Region Expressions

Theorem 3 expressed a stability region in terms of H̄ Gershgorin discs. In what follows we
expand out the Gershgorin disc center and radii in terms of B̄ and F̄ elements, which allows
us to express the stability region in the space of impedances (section 3.3.2), and in the space
of controller gains (section 3.5).
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First we express B in terms of elements of X0 and R0 from (3.6). From the construction
of R and X (3.11) we have

B =

 xiℓ riℓ

−1
2
riℓ

1
2
xiℓ


for i = 1...n and ℓ ∈ D1. Then, from the construction of T (3.27) and G = Γ({1...s}),

G⊤T−1B = Bpi for p ∈ S, and i = 1...d. Therefore, B̄ = G⊤T−1B in terms of X and R
elements is

B̄ =

 xiℓ riℓ

−1
2
riℓ

1
2
xiℓ

 (3.36)

for i ∈ S1 and ℓ ∈ D1.
The elements ofX and R are indexed by one set of indices while H̄ are indexed by another

due to the matrices having differing dimensions. We define a function σ : R1 × Rn → R1

σ(S, v) = u s.t. Su = v (3.37)

that takes in an ordered set and a value, then outputs the index of the set where the value
is found. Function (3.37) allows us to map the elements of H to those of H̄ .

Next we substitute (3.36) into H̄ = B̄F̄ to get H̄ in terms of X, R, and F̄ elements
(which we’ll label as f).

Gershgorin disc center: The diagonal elements of H̄ gives the first s/2 Gershgorin
disc G(H̄) centers as

ϕc =
∑
ℓ∈D1

xiℓfσ(ℓ,D1),w +
∑
ℓ∈D1

riℓfσ(ℓ,D1),w (3.38)

where i ∈ S1, w ∈ {1...s}, and c ∈ {1...s/2}. For the latter s/2 Gershgorin discs, we have

ϕc =
∑
ℓ∈D1

−1

2
riℓfσ(ℓ,D1),w +

∑
ℓ∈D1

1

2
xiℓfσ(ℓ,D1),w (3.39)

where i ∈ S1, w ∈ {1...s}, and c ∈ {s/2 + 1...s}. The first key is that each Gershgorin disc
center ϕ represents the self-impact of the of the DER’s power injection on the voltage it is
tracking.

Gershgorin disc radius: The first s/2 Gershgorin disc G(H̄) radii are

γc =
∑
j∈S

∣∣∣∣ ∑
ℓ∈D1\{i}

xiℓfσ(ℓ,D1),w +
∑
ℓ∈D1

riℓfσ(ℓ,D1),w

∣∣∣∣ (3.40)

where i ∈ S1, w ∈ {1...s}, and c ∈ {1...s/2}. The latter s/2 Gershgorin disc G(H̄) radii as
σ(i+ n,S) are

γc =
∑
j∈S

∣∣∣∣ ∑
ℓ∈D1

−1

2
riℓfσ(ℓ,D1),w +

∑
ℓ∈D1\{i}

1

2
xiℓfσ(ℓ,D1),w

∣∣∣∣ (3.41)
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where i ∈ S1, w ∈ {1...s}, and c ∈ {s/2 + 1...s}. The second key is that each Gershgorin
disc radius γ represents the cross-impact of other actuator power injections on the voltage
of interest.

Now if we substitute (3.38), (3.39), (3.40), and (3.41) into Theorem 3, we have the
expanded stability conditions:

RHS(3.38) +RHS(3.40) < 2 (3.42a)

RHS(3.39) +RHS(3.41) < 2 (3.42b)

RHS(3.38)−RHS(3.40) > 0 (3.42c)

RHS(3.39)−RHS(3.41) > 0 (3.42d)

where RHS(.) denotes a function that outputs the right-hand side of an equality. The
equations (3.42) are explicit conditions on impedances and controller gains (x, r, f) that
ensure convergence to the voltage phasor at sensor nodes.

These conditions are in an intuitive form. First of all, we need every Gershgorin disc
to satisfy these conditions, so each can be examined independently. Equations (3.42a) and
(3.42b) enforce a limit on the sum of self-impacts and cross-impacts, as they could combine
in the same direction, creating overshoot or instability in the response. Then equations
(3.42c) and (3.42d) indicate that when cross-impacts apply in the opposite direction to the
self-impacts, the self-impacts should dominate the cross-impacts.

3.3.2 Dependence of Siting on Stability

In this section, we consider F̄ to be known B̄ elements unknown. There are three related,
technical metrics for siting DERs: stability margin defined in (3.35), power-voltage sensitiv-
ities (3.5), and a third metric, which we now define.

Consider that the power injection from a DER at the very end of the circuit has the
same power-voltage sensitivity with respect to a voltage sensor near the head of a circuit as
a DER at the sensor location. Yet, power injected at the end of the feeder incurs a greater
change of power across the substation, because it imparts greater changes to voltages at the
end of the feeder. Essentially, two DERs can do the same amount of work on the associated
sensor but differ in the input power exchanged across the substation. Hence we define

η = |Zij|/|Zjj|, (3.43)

on a DER-sensor pair. Recall that |Zij| is the common-node impedance between the sensor
node i and the associated DER node j. Because |Zij| ≤ |Zii| ∀(i, j) (see Fig 2.1), when a
DER-sensor pair is co-located, η = 1 which is the maximum efficiency.

Proposition 2. Consider a DER system Σ1 with no DERs. If we consider adding a new
DER-sensor pair at node i with fixed F̄ , selecting i to be deeper in the network (larger
common-node impedance |Zij|) increases power-voltage sensitivity, but there exists a limit
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on depth for maintaining SISL stability.

Proposition 2 demonstrates that for a set controller gain there is a limit to how deeply
you can place your DER-sensor pair to maintain stability. On small feeders and for small
controller gains, all node locations may meet this impedance limit, while on larger feeders
the entire downstream portion could be unstable. Other works such as [1,16,37] remark that
injecting power deeper in a network as greater power-voltage sensitivity, but they do not
comment on the relationship between DER depth and stability. This proposition formalizes
that there is a sensitivity-stability trade-off for this control system.

Proposition 3. Consider a DER system Σ1 with multiple DER-sensor pairs. For set
controller gains F̄ , the stabilit of Σ1 is only determined by (Xij,Rij) ∀ i ∈ S1 and ∀ j ∈
D1.

Proposition 3 establishes that the stability of the DER system is determined only by
the common-node impedance between each DER and the sensors not associated with the
DER; any other nodes on the network are irrelevant. That means you can use an inaccurate
impedance model if the inaccurate impedances are not on the DER paths to the substation.

By Assumption 6, there is always one DER located at the sensor node. But that DER
may not have enough capacity to meet the phasor tracking objective, in which case we
consider DERs acting at nodes other than the sensor node.

Proposition 4. Consider three instances of a DER system Σ1 with multiple DER-sensor
pairs including one sensor at node i and the associated DER at node j. Suppose all controller
gains F̄ are fixed. Each instance can be characterized by the system stability margin (3.35)
and the controller efficiency of the (i, j)th pair (3.43): (H̄p, ηp) for p = 1, 2, 3.

1. The first instance has i = j (co-located)

2. The second instance has i ̸= j such that |Zij| < |Zii|. For example, when the DER is
upstream from its sensor.

3. The third instance has i ̸= j such that Zij = Zii. For example, when the DER is
downstream from its sensor.

Then, m(H̄1) ≥ m(H̄3), m(H̄2) is inconclusive, and η1 = η2 > η3.

The main takeaway is that placing a DER downstream from the associated sensor is
worse both in terms of stability and efficiency. So when placing a DER that is not co-located
with its associated sensor, it is better to place it upstream from the sensor. This insight is
surprising, given that planners may approve interconnections for DERs on edge nodes and
place sensors on more central nodes.
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3.4 Structured Controller Synthesis Problem

Now that we have established how siting impacts stability of DER systems, we seek to
understand how controller gains impact stability. We can formulate this investigation into the
design of controllers that make the closed-loop DER system stable. As will be described, this
problem is made difficult because communication requirements impose a required structure
on the controllers.

As established in section 3.2.4, the reduced DER system model Σ2 (3.28) is completely
controllable. Therefore, there exists a stabilizing state feedback gain matrix, F̄ ∈ Rd×s, that
satisfies

u[k] = −F̄ ē[k]. (3.44)

We note that the stabilizing F̄ that exists could be totally dense. A dense F̄ matrix cor-
responds communication infrastructure (CI) where each DER has access to all sensor mea-
surements. This requirement on access may incur excessive communication overhead, and
may violate the privacy preferences of certain DER customers. For example, one may want
to design a DER system in which DERs at two nodes only access phasor measurements
at a third node. Therefore, controllability of (3.28) is not generally sufficient for designing
controllers the DER system (3.28). Instead, we define the subspace W ∈ Rs×s to encapsulate
all sparsity structure requirements on the matrix F̄ . Then we define

IW = {(i, j) | F̄ij = 0 is required}. (3.45)

For an example of CI requirements, in droop volt-var control inverters compute power set-
points using only measurements at their own nodes [1,12,38,46]. In this case, F̄ is required
to be diagonal, and IW = {(i, j) | i ̸= j ∀i = 1, ..., s, j = 1, ..., s}. In many distributed OPF
approaches, inverters compute power setpoints using communication between only neighbor-
ing DERs [55–58]. In this case, each row of F̄ would have two nonzero elements for accessing
voltage magnitude and voltage phase angle measurements at its own node, and two nonzero
elements for each neighboring DER.

Given the circuit impedances B̄, DER-sensor locations (Ns, Nd), and CI requirements
IW , we seek an F̄ ∈ W such that the eigenvalues of H̄ are in B(1 + 0j, 1) (see Theorem 2).
More generally, we are interested in solving the following problem:

Problem 1. (structured controller synthesis problem (P1)) Consider the lienar time-invarant
system (3.28). Given an arbitrary non-zero pattern IW , determine whether there exists a
state feedback gain matrix F̄ ∈ W such that the closed-loop system (3.30) is exponentially
stable.

In control theory literature, solving Problem 1 is sometimes referred to as the structured
static output feedback (SOF) problem [64, 65]. Due to the a-priori assigned structural con-
straints on the feedback gain matrix, the problem is nonconvex [64, 66]. Specifically, it is
a bilinear semidefinite program that is NP-hard [67]. This literature has proposed several
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categories of approaches to solving Problem 1 in the optimal controller context, includ-
ing iterative algorithms [68], augmented Lagrangian methods [65], and gradient projection
methods [67, 69]. However, due to its nonconvexity, Problem 1 remains challenging to solve
accurately for large systems, which is essential for the power grid context. In what follows,
we propose two ways to solve Problem 1. The first is an analytic approximation of the re-
gion of stabilizing controllers, and the second is a heuristic algorithm for sampling candidate
controllers.

3.5 Designing Parameter Ranges for Stabilizing

Controllers

In this section, we consider B̄ to be known. We seek to characterize the set of stabilizing
F̄ matrices that have a sparsity requirements IW associated with a given CI. By defining a
stability region in terms of the non-zero F̄ elements, we can determine ranges of controller
parameters that ensure network-wide stability.

With B̄ known and elements of F̄ unknown, the Gershgorin disc conditions from Theorem
3 are linear in the elements of F̄ , as shown by the expanded stability conditions (3.42). We
collect these elements into a vector f ∈ Ry. If there are no CI, y is simply the number of
elements of a dense F̄ ; that is, y = sd. The linear Gershgorin disc conditions (3.42) define
a convex polytope in the controller parameter space. A compact way to express F , the
Gershgorin disc stability region in the y-dimensional gain space, is

F :={f ∈ Ry | (3.42) holds} (3.46)

={f ∈ Ry | A+f ≤ b+}. (3.47)

Since H̄ ∈ Rs×s has s Gershgorin discs, and each Gershgorin disc must satisfy two conditions,
F comprises 2s conditions. Notice the absolute value operations in each condition of (3.42),
which comes from the definition of Gershgorin disc radii. Each inequality has s− 1 absolute
value operations, since the the diagonal element of each row of H̄ is zero. For every absolute
value term |x|, we could have x < 0 or x ≥ 0. Thus there are 2s−1 sign possibilities for the
absolute value terms in each Gershgorin disc condition. Therefore, with 2s Gershgorin disc
conditions, F is defined by 2s · 2s−1 inequalities.

Despite the large number of inequalities that define F , we can still leverage the geometry
of the polytope to determine ranges of controller parameters. Specifically, we seek to compute
a y-dimensional box inside F . The geometry of the rectangle allows each controller parameter
to slide along its associated dimension freely, without any knowledge of the other DER
controller parameters or network impedances. That is, one can adjust the gains of a DER
without communication with other DERs while ensuring that the system is SISL. If we are
interested in computing the best box, we could formulate a convex optimization problem
(see Appendix 7.2). Unfortunately, an optimization problem may need to enforce that each
vertex of the box is within the polytope. The number of vertices of a y-dimensional rectangle
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is 2y. As such, the number of constraints enforced by the above problem grows exponentially
with the number of controller parameters y.

To address the complexity issue of computing the the best box inside F , we instead
compute a square. Characterizing controller parameter ranges with a square aligns well
for practical situations because it is equitable to allow each DER to have the same range.
To compute a square inside a convex polytope, we can compute the Chebyshev ball of the
polytops witha linear program [70, Chapter 4.3]. The largest inscribed square in the ball has
width a = µ ·

√
2, were µ is the Chebyshev ball radius. A diagram of F and the associated

Chebyshev ball is in section 3.5.1. Note that if the Chebyshev ball has a nonzero radius,
then F is nonempty and there exists at least one set of controller parameters adhering to
the CI requirements that results in SISL stability of system Σ1. Then, the projection of the
square along dimension i is the stabilizing controller parameter range of the ith DER.

Remark 2. In the next section, we consider scenarios in which the Chebyshev ball has
nonzero radius. In other cases, the polytope could be degenerate in at least one direction,
which yields a Chebyshev ball with zero radius. Exploring methods for enabling a nonzero or
large Chebyshev ball in the rest of the dimensions will be future work.

3.5.1 Case Studies on DER Control using Stability Regions

In this section, we demonstrate the value in computing stability regions for DER control.
We first use the stability region defined in section 3.5 to design controller gains. Then we
demonstrate the value of accommodating any externally defined communication structure
by comparing our model to the baseline formulation for incremental volt-var [1], where the
baseline shows a danger of instability. Next we examine how conservative the gains from the
stability regions are, and demonstrate how appropriate DER siting can improve the tracking
performance.

3.5.2 Test Setup

Throughout this section, we consider groups of DER-sensor pairs (DSPs) acting on the IEEE
123-node unbalanced test feeder (123NF) [71]. We modify the 123NF by removing the voltage
regulators and the capacitors, which exacerbates underlying voltage issues. The slack node
is assigned to node 150 with a fixed and nominal voltage of 2401.8 volts line-to-line. We
consider 2401.8 ·

√
3 as the base voltage for computing per unit (pu) values.

For all simulations, we include time-varying load data profiles for the medium-voltage
123NF that are constructed as follows: reported spot loads on the 123NF are replaced with
aggregate second-wise time-varying net load data. The data is generated based on public
commercial loads, and residential loads and solar PV generation profiles from Southern
California Edison recorded during a typical summer day. At each node we scale the solar
power profile to have 125% solar PV penetration, which creates an overvoltage of up to
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Table 3.1: DER configurations (CFGs), where each DSP is defined by a DER node (left
side of →) tracking the voltage phasor at a sensor node (right side of →). The secondary
columns indicate on which phases the control acts.

CFG χ1 CFG χ2 CFG χ2

57 → 57 A/B/C 56 → 57 B 41 → 49 C

300 → 300 A/B/C 57 → 57 A/B/C 45 → 49 A

63 → 57 A 49 → 49 A/B/C

76 → 76 A/B/C 76 → 76 A/B/C

80 → 76 A/B/C 80 → 76 A/B/C

87 → 76 B 87 → 76 B

1.065 pu (at 11:00am) when there is no DER control. PV penetration is computed as the
maximum of the solar profile divided by to the maximum of the load profile.

We consider three configurations (CFGs) of DSPs, χi for i = 1, 2, 3 which are defined
in Table 3.1. A DSP is co-located if the DER and associated sensor are at the same node.
CFG χ1 is comprised of co-located DSPs, while χ2 and χ3 do not have them. Each DER
is considered to be a battery with unlimited stored charge. In section 3.5 we modeled a
single-phase balanced feeder. To apply our approach to three-phase unbalanced feeders, we
replace each element of R0 and X0 by a 3 × 3 matrix that represents impedances across
phase A, B, and C [29, 38]. In turn, changing the nodal locations of the DERs and sensors
results in different 3× 3 sub-matrices becoming nonzero in F (3.24).

We will perform nonlinear timeseries simulations using Opal-RT’s full AC power flow
solver ePHASORSIM. We consider a simulation time step is 5 seconds (i.e., ∆ = 5 second,
K = 120 timesteps, and τ = K∆ = 600 seconds for the simulation duration). Using an Intel
Core i7-8565U CPU @ 1.80 GHz, it takes approximately 45 seconds to compute the operating
parameter ranges with MATLAB, and 120 seconds to perform the nonlinear simulations in
ePHASORsim.

3.5.3 DER Clusters for Voltage Stability

We first consider simulations of DERs arranged in the CFG χ1, where there is a co-located
DSP at node 57 and node 76, notably without any measurements sent between the DERs.
Siting at node 57 and 76 is consistent with [56], where DERs are cited at a node with average
voltage and a node with high voltage. Because the DSPs are co-located, D = S and d = s.
The incremental volt-var control proposed in [1] is implemented by populating the upper
left d

2
× s

2
sub-block of F̄ with F̄ii = (1.98/y) ∗ (2/Xii) for i = 1...s/2 and y = s

2
and zero

otherwise. This control policy was proved by authors in [1] to stable in the linear system
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sense for co-located CFGs. We simulate the system from 11:00am to 11:08am. In Fig. 3.4 we
plot a voltage magnitude envelope to encompass the minimum and maximum of all network
voltages, and overlay the example voltage trajectory of node 76 phase B. After the controllers
turn on at τ = 60 seconds, and the overvoltage is mitigated within 15 seconds (3 iterations),
resulting in all network voltages arriving in the desired 5% ANSI range. This simulation
validates that the method proposed in [1] is effective at regulating voltages when DSPs are
co-located.

Figure 3.4: Voltage magnitude envelope capturing all 123NF voltages from simulation of
CFG χ1 with the control approach proposed in [1].

Not allowing DERs to share voltage measurements can limit the network-wide perfor-
mance of the DER system. Transmitting voltage measurements to one or more DERs at
other nodes could enable DERs to share power and respond directly to voltages at the
most important network nodes. Further, the flexibility of allowing newly installed DERs
to help out with existing DER clusters without needing to install a new sensor promotes
modularity when deploying DER systems. Hence we next consider a CFG χ2 where three
DERs help track the nearby sensor at node 57 and another three DERs help track the sen-
sor at node 76. See Fig. 3.5 for an illustration of CFG χ2 marked in gold on the 123NF.
To design DERs for this CFG, we extend the approach from [1] to allow for i ̸= j with
F̄ij = (1.98/y) ∗ (2/Xij) for i = 1...s/2, j = 1...d/2. We simulate the system and plot
the voltage magnitude envelope in Fig. 3.6. We observe voltage oscillations, accompanied
by not only excessive actuation that may degrade the battery DERs, but also repetitive
undervoltage violations.

We have demonstrated that the stability guarantees proved in [1] for co-located DSPs does
not necessarily extend to CFGs where DSPs are not co-located. The voltage oscillations in
Fig. 3.6 illustrates a danger in assuming the DSP arrangement and communication structure.
This assumption is common to many works in volt-var control literature, including [12, 38,
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Figure 3.5: Diagram of DERs and sensors on the 123-node feeder. The CFG The CFG χ1

is marked in pink, CFG χ2 is marked in gold, and CFG χ3 is in blue. Feeder is operated as
a radial network.

53, 56]. As described, it can be beneficial to allow coordination among groups of DERs is
the system can be stabilized.

Our modelling approach accommodates any externally defined communication structure,
where any arrangement of sensors can share voltage phasor measurements with any set of
DERs, allowing us to capture logistical or data privacy requirements. From CFG χ2, we
define the sensor nodes S and DER nodes D (3.1) for our model. Then the DER system
model Σ1 (3.23a) and the reduced system Σ2 (3.28) is constructed according to section
3.2 and 3.2.5 using the given grid impedances B̄. For CFG χ2, d = 24, s = 12, and
y = 120. To compute operating parameter ranges, the stability region in the parameter
space F is constructed according to section 3.5. The upper left d/s × s/2 sub-block of
F̄ is shown in Fig. 3.7 to how the CI requirements IW translates to the nonzero pattern
of F̄ . In Fig. 3.8, we plot F , Chebyshev ball of F , and the parameter range square in
the space of two of the y = 120 parameters. We approximate the true stability region by
fixing all except the plotted dimensions as the center of the Chebyshev ball, then evaluating
the stability of the system (using Theorem 2) as the plotted dimensions are varied. We
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Figure 3.6: Voltage magnitude envelope from simulation of CFG χ2 with the control approach
from [1]

.

validate that the analytical stability polytope F is a subset of the true stability region. The
Chebyshev ball radius is 0.0275 so the parameter range square width is 0.0275 ·

√
2 = 0.0389.

Finally, we select the mid-way point of all parameter ranges (equivalent to the Chebyshev
ball center) and simulate the closed-loop system. From the voltage envelope in Fig. 3.9, we
observe stable tracking, resulting in achieving the voltage phasor references and all voltages
arriving in the desired 5% ANSI range after about 300 seconds (60 iterations). Our proposed
modeling approach effectively employs the externally defined communication structure to
achieve voltage stability and the optimal grid state.

Figure 3.7: Upper left sub-block of operating parameter matrix F̄ for CFG χ2. Purple
outlines mark each DER acting on one or three phases.
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Figure 3.8: Space of stable and unstable operating parameters for CFG χ2, including the
analytical stability region F and the parameter range square.

Figure 3.9: Voltage magnitude envelope from simulation of CFG χ2 with the control approach
proposed in section 3.5 of this thesis. The voltage phasor reference for node 76 phase B is
included in purple.

3.5.4 Siting for Improved Performance

The settling time of the proposed control when applied to CFG χ2 is 300 seconds (see
Fig 3.9). On real grids, it may be important to mitigate overvoltages more quickly so as
to better protect electrical equipment and achieve optimal operation faster. By siting the
DSPs more effectively using siting Propositions 2 and 3, we seek to improve the voltage
regulation performance while maintaining stability. We design CFG χ3 and mark it in blue
on the 123NF diagram of Fig. 3.5. The CFG is comprised of two clusters of DSPs that are
placed more deeply (guidance of Proposition 2) and further apart (guidance of Proposition 3)
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than CFG χ2. Specifically, the cluster around node 49 is deeper in the grid network since
|Z49,49| = 0.8 is greater than |Z57,57| = 0.5. Furthermore, the cluster around node 49 is
further apart from the node 76 cluster since |Z49,76| = 0.26 is less than |Z57,76| = 0.5. We
then construct the original and reduced systems for CFG χ3, resulting in d = 24, s = 12,
and y = 120. In Fig. 3.10, we plot the stability region F , Chebyshev ball of F , and the
parameter range square in the space of two of the y = 120 parameters. We also vary the
plotted parameters and evaluate the system stability to approximate the true stability region
and validate that F is a subset of it. We observe that the Chebyshev ball radius of F is
0.1037 (instead of 0.0275), which indicates that the stablity region F is more than three
times larger when siting at CFG χ3 than when siting at CFG χ2. The parameter range
square width for χ3 is 0.1037 ·

√
2 = 0.1466.

Figure 3.10: Space of stable and unstable operating parameters for CFG χ3, including the
analytical stability region F and the parameter range square.
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Figure 3.11: Voltage magnitude envelope from simulation of CFG χ3 with the control ap-
proach proposed in section 3.5 of this thesis.

We select the mid-way point of all operating parameter ranges and simulate the closed-
loop system operating in CFG χ3. In Fig. 3.11, the voltage phasor references are achieved
and all voltages arriving at appropriate voltage levels — as observed in the case of CFG χ2.
However, for this simulation the voltage phasors settle to their references after 210 seconds
(42 controller iterations) compared to 300 seconds for CFG χ2. Therefore, we have improved
the voltage regulation speed by strategically siting our DSPs using Propositions 2 and 3.

In summary, we have demonstrated an approach to compute ranges of operating pa-
rameters for DER systems without co-located DSPs, and show how those ranges can be
lengthened using strategic siting of DERs and sensors.

3.6 Designing Fixed Parameters of Stabilizing

Controllers

3.6.1 Sampling Algorithm

As described in the previous section, the analytical stability region F can be conservative
compared to the true stability region. As a result, even if F is empty, there may exist a
solution to problem (P1), i.e. a stabilizing controller with the given CI requirements. In
this section, we develop a sampling algorithm that is effective at finding many stabilizing F̄
matrices, which provide fixed sets of parameters. The benefit of this algorithm is twofold:
first, among the stabilizing F̄ s found, one can perform simulations using the stabilizing F̄
that has the greatest stability margin. Secondly, we can compare DER configurations based
on the number of stabilizing controllers found and the associated stability margin. Though
there are many viable approaches, we propose sampling each candidate nonzero element of
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F̄ from a Gaussian distribution, where the mean and standard deviation are selected as
functions of the grid impedances.

Suppose we are given a set of communication requirements IW (3.45). For the purpose
of designing candidate F̄ matrices, we assume each nonzero element of F̄ as an independent
random variable. We sample each nonzero element of F̄ from a Gaussian distribution, then
for each F̄ evaluate the spectral radius of the DER closed-loop system (3.30). We assess
m candidate F̄ matrices, collected into set F , to find the candidate that yields the best
closed-loop performance. We measure performance using the system’s spectral radius ρ,
since the spectral radius indicates how quickly the closed-loop system converges to a steady
state voltage. A formalization of the sampling problem is

Problem 2.
(P2) min

F̄ k∈F
c = ρ(I − B̄F̄ k)

s.t. [F̄ k]ij =

{
∼ N(µi, σ̄) ∀ (i, j) ∈ IW

0 ∀ (i, j) /∈ IW

(3.48)

If the Gaussian sample is negative, we re-sample from the same distribution. We impose
that all gains are non-negative in order to apply the Gershgorin disc stability condition from
Theorem 3, ϕi(H) + γi(H) < 2∀ i = 1...s, when designing the Gaussian µ parameter.

Gaussian mean parameter: We seek to define a starting point for sampling each
nonzero element of F̄ , which will be the mean of each gaussian distribution. The intuition is
as follows: because every element of H̄ is comprised of the sum of products between elements
of B̄ and F̄ , if every element of F̄ is chosen to be the multiplicative inverse of an element
of B̄, every product term will evaluate to about 1. Then to satisfy ϕi + γi < 2, we require
that each product term be scaled down by the number of terms appearing in ϕi + γi.

To formalize this intuition, we expand H̄ = B̄F̄ into

[BF ]ij =
2n∑
l

biℓfℓj. (3.49)

From matrix multiplication, the (ℓ, j) element of F̄ , F̄ℓj, only appears in the jth column of
H̄ . Further, when it appears, it is always multiplied by an element in the ℓth column of B̄.
we start by considering the simpler, special case where (1) the only nonzero element in F̄ is
F̄ℓj and (2) B̄iℓ = c ∀ i = 1...s. If we select F̄ℓj = 1/|c|, ϕi + γi < 2 condition is B̄iℓF̄ℓj < 2,
which evaluates to 1 < 2. In this case, the system is quite stable because the Gershgorin
disc center is at 1 + 0j which is in the exact center of the stability ball B(1 + 0j, 1). If we
relax (2), we would define

bmax := max
i=1...s

|B̄iℓ| (3.50)

Then we select F̄ℓj = 1/bmax, which makes ϕi + γi < 2 ∀ i = 1...s hold. If we then relax (1),
the number of terms in ϕi + γi < 2 for each i is exactly equal to y, the number of nonzero
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elements in F̄ . To maintain ϕi + γi < 2 ∀ i = 1...s, we scale down each term by y:

µ(fℓj) =
1

y
· 1

bmax
(3.51)

Notice that µ is independent of j. That is, µ is the same for all elements in a given row of
F̄ . As such, this design yields s unique values of µ. The 1/y part of the computation of
µ scales down µ for larger DER systems. This is reasonable because the stability condition
ϕi + γi < 2 considers the worst case in which all DER impacts push in the same direction,
in which case it would be stable for each F̄ element to be small-valued. The selection of the
Gaussian standard deviation enables us to explore less conservative controller gains.

Gaussian standard deviation parameter: In (P2), we have a fixed σ = σ̄, and it is
not straightforward to select. The selection of the parameter σ adjusts how widely to explore
gain values. There is a trade-off between finding gain matrices that yield smaller spectral
radii and finding stabilizing gain matrices at all. If σ is chosen to be too large, none or
only a few stabilizing matrices may be found. Conversely, if σ is too small, many stabilizing
matrices may be found but the matrices would be quite uniform resulting in similarly high
spectral radii. Due to this stability-performance trade-off, we assume that the function from
c(σ) from P2 is strictly convex. Then we formalize determining a good σ as

Problem 3.
(P3) σ̄∗ = argmin

σ
c(σ) (3.52)

Due to the non-convexity of c(σ) with respect to σ, it is challenging to solve this problem
directly. Instead, we approximate c(σ) with ĉ(σ), where we evaluate (P2) for a range of σ:

ĉ(σ) = c(σ)|σ∈[σlb,...,σub] (3.53)

If ĉ(σ) is not strictly convex, we widen the range [σlb, ..., σub] until ĉ(σ) becomes strictly
convex. A diagram of c(σ) and ĉ(σ) for different ranges [σlb, ..., σub] is shown in Fig. 3.12.
Once ĉ(σ) is strictly convex, we select σ̄ = argminσ ĉ(σ) for (P2) .

Figure 3.12: Selection of Gaussian parameter σ for sampling stabilizing gain matrices F̄ .

The sampling algorithm described in this section allows us to evaluate a DER system
(3.30) given the inputs of the grid impedances B̄, the DER and sensor locations (Ns,Nd),
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and CI requirements IW . The sampling algorithm samples a specified number of candidate
gain matrices F̄ , and records the spectral radius for each candidate. The algorithm has
three outputs. The first is the number of stabilizing F̄ matrices found as a percentage of
m = 20 candidates. The second output is the minimum spectral radius across the stabilizing
F̄ matrices, which would be the optimal objective value c∗ of (P2). The third output is
the F̄ matrix associated with that minimum, which would be the optimal solution F̄ ∗ of
(P2). These outputs are used in the next section to compare many DER systems on a given
circuit.

3.6.2 Case Studies on Assessing the Stability of DER
Configurations

In this section we illustrate how Propositions 1 to 4 can be used to inform the siting of DERs
and sensors in realistic scenarios from academic literature and industry. Throughout this
section, we consider groups of DER-sensor pairs (DSPs) acting on the IEEE 123-node feeder
(123NF) [72]. We modify the 123NF by removing the voltage regulator transformer and
the capacitors. Without these devices, underlying voltage issues are exacerbated, creating a
more challenging voltage regulaton task for the DERs. We will evaluate many arrangements
of DSPs, each of which is referred to as a configuration (CFG). For each configuration, we
change the nodal locations of the DERs and sensors to enforce different structural require-
ments on F̄ . A DSP is co-located if the DER and associated sensor are at the same node
location, and non-colocated otherwise. Non co-located configurations can be valuable be-
cause they enable coordinating DERs at different nodes to track a voltage at another node.
We measure depth of a DER or sensor at node i as the length of the unit’s self-impedance
path |Zii| (3.7) to the circuit substation. We focus on nine configurations that are denoted
with χi for i = 1, ..., 9.

In what follows, we evaluate configurations by assessing stability of the linear model, and
by simulating the control in simulations that solve nonlinear power flow. For the stability
analysis, we apply the sampling algorithm developed in section 3.6 and evaluate the stability
of the linear model (3.30) using Theorem 2 for different candidate controller gains. For each
configuration, we compute the percent of stabilizing F̄ matrices found among the twenty
candidate matrices, and the minimum spectral radius computed across the stabilizing F̄
matrices.

For all time series simulations, we include time-varying load data profiles that are con-
structed as follows: reported spot loads on the 123NF are replaced with aggregate second-
wise time-varying net load data. The data is generated based on public commercial and
residential loads and solar PV generation profiles from Southern California Edison during a
typical summer day. At each node we scale the solar power profile to have 125% PV pene-
tration. We consider 11:10am, the time of the highest overvoltage of about 1.06 per unit, for
the five-minute simulations that follow. For our simulations, PV penetration is computed as
the maximum (across the day) of the solar profile divided by to the maximum of the load
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profile. The DERs are considered to have unlimited capacity so that the control algorithm
convergence and associated actuation effort can be observed. For each configuration, we se-
lect the stabilizing F̄ matrix associated with the minimum spectral radius, and simulate the
controlled system as a quasi-static-time-series (see Chapter 2 section 2.2). For the simula-
tions, we use Opal-RT’s nonlinear power flow software ePHASORsim, where the time-step of
each simulation iteration is five seconds. The voltage phasor targets for each DER controller
are computed by solving an optimal power flow problem (see Chapter 2 section 2.3) with
an optimization objective of reducing real and reactive power actuation by the controlled
DERs. The performance evaluation criteria is (i) the integrated actuation summed across
all DERs, (ii) the integration of all voltage violations outside the 5% range across all nodes
of the network, and (iii) the maximum settling time across all performance nodes.

Scenario 1

As described in section 3.1, academia and industry have patterns for the siting of DERs, but
may not analyze the how the siting affects DER system stability or simulation performance.
Some authors of distributed OPF approaches [55,56,66] and incremental volt-var approaches
[1, 12, 13] site DERs evenly throughout a feeder. Planning teams at utilities may approve
request for DERs that are deep in the feeder [37] because they have a greater power-voltage
sensitivity, or impact on the voltage per unit of actuation (see Chapter 2 section 2.1.5).
Finally, the siting decision may be influenced by the deployment trends of DER programs,
which could favor clustering DERs in a similar part of the feeder out of convenience.
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Figure 3.13: Case study scenario 1 for assessing the stability of DER configurations. Con-
figurations of co-located DSPs are shown in green (CFG χ1), indigo (CFG χ2), and orange
(CFG χ3) are marked on the 123NF network graph. Light network edges indicate single or
two-phase power lines.
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Table 3.2: Scenario 1: table of metrics comparing the performance three DER configurations
(CFG). The linear analysis samples twenty sets of controller parameters to find stabilizing
sets with the lowest minimum spectral radius for use in the nonlinear simulation. From the
nonlinear simulation, the sum of actuation of all DERs, the sum of voltage violations outside
the 5% ANSI range across all nodes of the network, and the maximum settling time across
all performance nodes are tabulated.

Linear Analysis Nonlinear Simulation
CFG percent

stable (%)
min spec-
tral radius

integrated
voltage vio-
lation (pu)

sum of inte-
grated actu-
ation (kWh)

settling
time (sec)

χ1 75 0.944 0.0093 -335.9 93
χ2 45 0.994 0.0030 -292.0 116
χ3 15 0.969 0.0025 -332.2 187

In light of the DER siting observed in literature and industry, we compare three con-
figurations, each comprised of five co-located DSPs. In χ1, DERs are placed at edge nodes
that are evenly spaced throughout the feeder as done by authors in [1, 12, 13]. In χ2, DERs
are sited deeply in a clustered part of the grid, which could be done on real grids out of
convenience when quickly deploying newDER programs. In χ3, which is our proposed con-
figuration, we site the DERs using using Propositions 2 and 3. Fig. 3.13 has the 123NF
network marked with the three configurations.

For configurations χ1,χ2, and χ3 the voltage magnitudes, voltage phase angle tracking
error, and DER power outputs from the nonlinear simulations are plotted in Fig 3.14. Table
3.2 compares the metrics from the linear system stability analysis and the nonlinear system
simulations. We observe for all simulations that the phasor target converges quickly and
smoothly due to the controller design described in section 3.6. Because the phasor targets
converge, we observe in the voltage envelopes of Fig 3.14 tht voltages at all nodes of the
network converge to optimal values in the 5% ANSI range. The regulation of voltages
at all nodes via tracking at only a subset of nodes is core to the PBC framework (see
2.3). The minimum spectral radius metric indicates that the sampling algorithm is most
effective at stabilizing CFG 1, which is reasonable since the DERs are not placed as deeply
(Proposition 2) in the network as the DERs in CFG2 and CFG3. However, considering
the nonlinear simulations, we observe the worst voltage violations with CFG 1, which may
be due to having fewer DERs placed deeply in the feeder where there are typically more
severe voltage issues. Configuration 2 has the least actuation, which is reasonable because
the clustering of the DERs may allow them to benefit from each others’ voltage regulation
efforts. Finally, CFG 3 exhibits the best voltage regulation by having the DERs placed
deeply to achieve greater voltage sensitivity (Proposition 2), and by being spread out the
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DERs achieve better stability (Proposition 3).

Figure 3.14: Scenario 1: plots comparing the nonlinear simulation performance of three DER
configurations. The simulation runs from 11:00am to 11:05am with 125% PV penetration.
Left column: performance of CFG χ1. Middle column: performance of CFG χ2.Right
column: performance of CFG χ3.

Scenario 2

Next, we consider the value in coordinating multiple DERs to track a single phasor target.
Suppose we have one sensor installed on a distribution grid and wish to site one or more DERs
to track the phasor at the sensor node. From Proposition 4, we would prefer to co-locate
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Table 3.3: Scenario 2: table of metrics comparing the performance of DER configurations
(CFG).

Linear Analysis Nonlinear Simulation
CFG percent

stable (%)
min spec-
tral radius

integrated
voltage vio-
lation (pu)

sum of inte-
grated actu-
ation (kWh)

settling
time (sec)

χ4 95 0.655 0.0035 -133.3 117
χ5 100 0.587 0.0044 -143.5 64

a single DER of large capacity to achieve both stability and controller efficiency. However,
suppose we have the option to install a group of small-capacity DER at many nearby nodes
whose capacities sum to the large-capacity value. In literature about microgrids and medium-
voltage grids, authors may assume these two scenarios yield similar technical performance
because the grid network constraints between the DERs are assumed to have a negligible
impact on DER performance [73, 74]. In this scenario we investigate this question about
the equivalence of DER aggregations using the medium-voltage 123NF. We consider two
configurations, both with a single sensor in the middle of the feeder at node 76. For χ4,
there is a single DER co-located with the sensor. For χ5, there are ten DERs nearby (node
70,73,80,87,90,92,95,67,160, and 61) both upstream and downstream of the sensor node.
Each of these DERs helps to track sensor node (node 76) voltage phasor.

For configurations χ4 and χ5, the DER power outputs from the nonlinear simulations are
plotted in Fig 3.15. Table 3.3 compares the metrics from the linear system stability analysis
and the nonlinear system simulations. From the stability analysis, we observe that CFG
χ4, the CFG with only one DER, has slightly higher spectral radius, which highlights how
having many DERs creates more of a stability concern than when you have one DER due to
the impedances between the DERs. Even still, both CFGs have very low spectral radii (far
below a value of one, which is the boundary of stability), resulting in fast convergence to the
voltage phasor. Configuration χ4 also has less voltage violations, and requires slightly less
total actuation, which may be due to the simplicity of controlling one DER over multiple.
However, CFG χ5 has faster settling time, because multiple DERs are recruited at once to
respond to voltage issues. Overall, we have demonstrated that multiple DERs tracking the
phasor are about as effective as a single large-capacity DER, but the multiple-DER case
has slightly more concern for stability and slightly more total actuation incurred across the
controlled devices.
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Figure 3.15: Scenario 2: plots comparing the nonlinear simulation performance of two DER
configurations. The simulation runs from 11:00am to 11:05am with 125% PV penetration.
Left column: performance of CFG χ4. Right column: performance of CFG χ5.

Visual Tool for Assessing Stability

In Scenario 1 and 2, we compared a few configurations of DSPs to illustrate how design-
ers can use Propositions 1 to 4 to update their intuitions about siting DERs. Distribution
planning literature often proposes iterative approaches to evaluate many DSP configura-
tions [75, 76]. These approaches randomly select candidate DER or sensor locations, solve
power flow, then based on the results decide whether to place the unit or not. Further,
this literature sometimes illustrates the power flow results with a capacity map, were the
nodes of a the graph network are colored to indicate how much resource capacity can be
added until a voltage or thermal violation occurs [77]. Inspired by the illustrative aspect
of these distribution planning approaches, we develop a visual tool to iteratively evaluate
many configurations. Notably, instead of solving power flow once to evaluate each configura-
tion, we iteratively assess the stability of candidate configurations, which does not require a
power flow solver and determines the dynamic evolution of the system in response to voltage
violations. Because our tool does not simulate any system, it does not make claims about
time-series performance, DER capacity limit violations, or power loss. Our tool focuses in
investigating the stability of proposed control configurations, whose results can then inform
the setup of a simulation if needed.

The tool evaluates each configuration using the associated minimum spectral radius (c∗

of (P2)), which is a measure of the system’s stability margin. Recall from Remark 1 that
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a greater stability margin results in faster convergence to the voltage phasor, which pro-
vides disturbance rejection and optimality benefits. After defining a vector c that collects
this spectral radius across all m configurations of interest, we define percentile ranges for
generating the heatmap color gradient.

cmin = min
i
(ci) ∀ i = 1, ...,m (3.54a)

heatmap bin values: ℓi =
ci − cmin

1− cmin
∀ i = 1, ...,m (3.54b)

heatmap colors:


yellow ℓi < 33%

yellow-orange 33 ≤ ℓi < 66%

orange 66 ≤ ℓi < 100%

red ℓi ≥ 100%

(3.54c)

Scenario 3

Next we consider a scenario in which there are many existing DSPs. This is a realistic
situation given that many real distribution grids already have DERs installed with some
control logic. Given a desired location for the next sensor, for example at a location that
commonly experiences overvoltages, we are interested in determining where future DERs
should be sited to track that sensor. Propositions 2 to 4 can be used to identify relatively
more stable nodes to site DERs, but the Propositions do not provide definitive answers about
what specific node locations are stable. For example, a DER may be geographically close
to a sensor but electrically far away (measured by the common-node impedance). The DER
customer may agree to track the sensor, but doing so may make the system unstable or
prohibitively inefficient in terms of actuation effort (see Proposition 4). Therefore, we design
the non-colocated placement process (NPP) to evaluate configurations in a directed manner.

The NPP can be applied to a grid with any number of existing DSPs. We choose a
candidate performance node location, then iterate through all other empty node in the
feeder, fixing each as the associated candidate actuator node. We generate a heatmap of
the network, where a node’s color (3.54c) indicates the stability of the configuration created
by appending the candidate DSP to the existing set of DSPs. Next, we place a DER on
an orange or yellow node to become part of the core configuration, and this chosen node is
colored indigo on subsequent heatmaps. We repeat this process until the desired number
of DSPs have been placed. The NPP produces a configuration of DSPs in locations that
yield fast voltage convergence, and the step-by-step heatmaps show how the choice of sensor
ocations and DERs affect the stability of placing the next DSP.
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Figure 3.16: Scenario 3: Heatmap of the 123NF generated by the Non-colocated placement
process (NPP). The heatmap colors indicate stable locations for adding a DER to the existing
DER system that tracks the voltage phasor at node 105.

We demonstrate the NPP on a feeder where there are two neighborhoods of existing
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DSPs. Specifically, χ6 is comprised of a group of DERs located at node 41, 44, and 49
that track the voltage phasor at node 44, and a group of DERs at node 77, 82, and 87
that track the voltage phasor at node 77. In total, there is an existing configuration of
six DSPs. We run the NPP to find good locations for placing a seventh DSP, which will
start a new group of DERs for tracking the voltage phasor at the chosen performance node
(node 105, marked with indigo triangle). As shown in the heatmap of Fig. 3.16, locations
near node 105 are light yellow, indicating greater stability margin, while locations near the
existing two neighborhoods of DERs are more orange and red. Notably, we have a color
gradient indicating differing DER performance for placements between performance node
105 and performance node 44. Predicting the location of this color transition would have
been challenging to determine without the heatmap.

We validate the heatmap colors of Fig. 3.16 by placing a DSP at each of the following
nodes: 78 (red), 68, 62, 24 (orange), and 104 (yellow). For example, the CFG with DER at
node 62 (orange) has greater settling time (261s) more integrated voltage violations (0.010),
and incurs slightly more integrated actuation (-14.1) than the CFG with DER at node 104
(yellow), which has 89s, 0.007, -13.9 for these metrics respectively.

Circuit Topologies

From Propositions 1 to 4, one may wish to generalize the topological properties of radial
circuit networks that enable well-performing DER systems. For example, authors in [44]
placed a co-located DSP operating under incremental volt-var at every circuit node and
considered different circuit topologies. They show that networks with line topologies (few
branches and many deep nodes) have a smaller stable operating region than more radial
topologies. We note that because every node had a co-located DER, the effective grid
network (EGN) - defined as the set of impedances that are captured by the reduced system
model (3.30) - was coincident with whole grid network. However, when a configuration does
not have a DSP at every node, by Proposition 3, only the impedance paths to the substation
and common-node impedances comprise the EGN and therefore determine the performance
of the DER system. Moreover, DERs could be placed at the same depth on two different-
sized circuits, resulting in the same EGN. This concept implies that Assumption 2 can be
loosened. That is, only the impedances of the EGN, not those of all network nodes, need
to be known for controller design. This notion is useful since many grid operators have
inaccurate network model information, and topologies changes due to a switch opening or
outage may change the grid network without changing the EGN. Then in considering only
the EGN, Proposition 3 suggests that the EGN should have many branches to reduce the
total of the common-node impedances, which is consistent with the findings in [44].

Scenario 4

We know from Proposition 3 and the previous scenarios that placing new DSPs should be
placed electrically distant from existing ones. However, the distance metric is not purely
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based on the graph connectivity of the network. Complex impedance properties matter,
specifically the R/X ratio and mutual impedances in the network paths. The impact of
mutual impedance on effective DER power set-point control has been relatively unexplored
in the literature apart from a few works such as [16] and [54]. In what follows we illus-
trate the value of considering these complex impedance properties on different branches of
a distribution grid.

First we define the R/X ratio and phase ratio for three-phase grids using the impedance
3× 3 block of a power grid line segment.R11 R12 R13

R21 R22 R23

R31 R32 R33

+ j

X11 X12 X13

X21 X22 X23

X31 X32 X33

 (3.55)

We express the R/X of a three-phase network line as

d1 :=
R11

X11

, d2 :=
R22

X22

, d3 :=
R33

X33

(3.56)

The R/X ratio is important for controlling DER systems because high R/X ratio causes
cross interactions between real power and reactive power and voltage magnitude and phase
angle [49]. On the 123NF, the R/X ratios of lines vary from 0.42 to 0.86.

We express the phase ratio of a three-phase network line as

g1 :=
X12 +X13

X11

, g4 :=
R12 +R13

R11

(3.57a)

g2 :=
X23 +X12

X22

, g5 :=
R23 +R12

R22

(3.57b)

g3 :=
X13 +X23

X33

, g6 :=
R13 +R23

R33

(3.57c)

The phase ratio is important for controlling DER systems because high mutual impedances
(Rij+jXij for i ̸= j) relative to the self impedances causes cross interaction between phases.
For example, high mutual impedances cause power injections on phase A to have a significant
effect on phase B and C voltages. On the 123NF, the phase ratios of lines vary from 0.62 to
0.81.

The co-located placement process (CPP) illustrates good places to place the next co-
located DSP to maintain stability of the DER system. It iterates through every empty node
in the feeder, fixing each as a candidate co-located DSP. We assess the stability of appending
the candidate to the existing configuration, and generate a heatmap on the network with
colors (3.54c) indicating the stability of the different configurations.

We define two configurations of co-located DSPs, χ7 = [node 8, node 53, node 57,
node 66] and χ8 =[node 8, node 53, node 57, node 74]. Note that χ7 has an DSP on branch
[node 62 node 66], which has the highest three-phase R/X ratios and phase ratios. Specif-
ically, we consider the R/X ratio and phase ratio content of each node on the branches of
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interest. For a node of interest i, we consider a scalar metric for R/X ratio of the impedance
Zii as maxj dj for j = 1, 2, 3, where the maximum operator captures single-phase impedances.
Similarly, we consider a scalar metric for phase ratio as maxj gj for j = 1, ..., 6.

Figure 3.17: Scenario 4: Heatmaps generated by the co-located placement process (CPP)
that indicate stable locations for placing another co-located DSP. Left: Cfg χ7 is marked in
purple, which includes a DER on a network branch with high R/X and phase ratio. Right:
Cfg χ8 is marked in purple, which includes a DER on a network branch with low R/X and
phase ratio.
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Figure 3.18: Scenario 4: Comparison of heatmap color gradients from Fig. 3.17 heatmaps.
Cfg χ7 (left bar graph) color gradient indicates greater spectral radii across network nodes
than the color gradient for CFG χ8 (right bar graph).

We place χ7 on the 123NF, then run the CPP to find good locations for the fifth DSP,
which is illustrated by the tool’s heatmap in the left pane of Fig. 3.17. We do the same
treatment to χ8, producing the heatmap in the right pane of Fig. 3.17. In Fig. 3.18, we
tabulate the number of nodes of each color across the two CPP runs. The greater percentage
of dark orange nodes indicates that placing co-located DSPs on high R/X and phase ratio
branches makes it difficult to place subsequent co-located DSPs.

3.7 Conclusion

In this chapter, we developed a novel dynamical system model for DERs operating under
phasor-based control. The feedback controllers provide an immediate response to distur-
bances, and the model derivation is consistent with other power-voltage control laws in
literature, making it easy to adapt to other control approaches. The main novelty of the
model is its direct incorporation of any externally defined communication infrastructure,
which allows DERs to unlock coordination benefits while adhering to privacy or ownership
constraints. Then, stability conditions on the dynamical system model enabled us to estab-
lish stability guarantees in terms of the siting of DERs. Next, we described how computing
controller parameters given communication infrastructure is generally a challenging problem
to solve when formulated as an optimization. Yet by applying the Gershgorin disc theorem
we were able to analytically compute stability regions instead. Further, we developed a
reliable heuristic algorithm for sampling stabilizing controllers that was demonstrated to be
effective in several realistic scenarios of the 123-node IEEE test feeder. Finally, the visual
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tool developed is accessible and intuitive to grid operators, enabling a more direct transfer
of these modeling and stability analysis techniques to industry.
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Chapter 4

Reachability Analysis for
Ride-Through Disturbance Events

This chapter is based on the paper ‘Reachability Analysis for Controlling DERs to Mitigate
Disturbances in Distribution Grids’ [78], written in collaboration with Alexandra von Meier.

In contrast to Chapter 3 where DER control was considered in the context of a normal
voltage operating state, in this chapter we consider the abnormal scenario, where there is
a significant voltage excursion outside of the safe range. To prevent the abnormal voltages
from causing equipment damage, DERs are required to disconnect within a few seconds.
In this problem, system stability, where voltages are guaranteed to to converge to nominal
values, is insufficient. Instead, we are interested in assessing whether DER power set-point
control can recover within a given time limit despite the presence of high voltage variability.
We model this variability as a bounded polytope using real distribution phasor measurement
unit (D-PMU) data. Then we compute backwards reachable sets which define the worst-case
voltage excursion that the DER volt-var can recover from before the DERs must disconnect.
We validate our design and analysis with simulations on a 4-bus, IEEE 13-bus, and IEEE
123-bus unbalanced networks.

4.1 Introduction

As more distributed energy resources (DERs) are installed on distribution grids, utilities have
observed increased variability in power flows and voltages. To prevent equipment damage,
there is increasing need to design advanced controls, especially for solar inverters, to mitigate
this variability. We are interested in an abnormal voltage scenario, where DERs are required
to provide real and reactive power support for several seconds (ride-through) before they
and other devices must trip, as prescribed by the national IEEE 1547-2018 standard and
California’s Rule 21 [79]. Therefore, it is important to ensure that DERs can be effective at
mitigating disturbances within an externally specified time limit.
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Droop volt-var control (DVVC) is a standard DER function for mitigating voltage issues.
But literature has shown that volt-var control can introduce risks of voltage oscillations [46],
and [13] proves that volt-var control cannot maintain voltages in acceptable ranges. One
growing class of alternatives is incremental volt-var control [1, 13, 80], where the reactive
power injection is adjusted using the provisioning at the previous time. This control law
removes steady-state error, thereby driving voltages into the 5% ANSI range to promote
safe grid operation.

To analyze the convergence of an incremental volt-var control law, authors [1,13,80] may
assume small-signal fluctuations in voltage due to grid phenomena not under our DER control
to be zero. It is assumed that across the few seconds of ride-through those fluctuations do
not significantly affect the control response. However, cloud transients can cause ramps in
PV generation on the order of 15% per second at a particular location [81] and could change
secondary voltages by up to 0.35V per second [82]. Furthermore, motor loads and legacy
voltage regulation can impart significant step changes in voltage magnitude. Therefore, in
this critical ride-through period it is important to guarantee against the worst-case impact
of these fluctuations with our DER control response.

To the authors’ knowledge, modeling distribution grid small-signal fluctuations on second-
wise or faster timescales is rare in the literature. This may be due to the lack of accurate
sensors with a high sample rate. The newer technology of D-PMUs provides ultra-precise,
synchronized measurements of voltage (and optionally current) magnitudes and phase angles
on distribution grids [49]. Many D-PMU data applications are for event detection, but
the machine learning classification methods used do not explicitly develop a model of the
event behavior [83]. Work of [84] does model a time-dependent disturbance ellipse using
PMU measurements. The difference between our applications is that the authors examine
transmission grids and only use the disturbance model to visualize the disturbance bounds.
In this work, we use the PMU data for a small-signal voltage fluctuation model that we then
use to compute disturbance rejection guarantees.

Reachability analysis has been extensively studied in control theory literature since the
1960s [85]. Backward reachable sets describe the set of system initial states that guarantee
a dynamic system’s trajectory will land in a specified target set within a certain time frame.
To the authors’ knowledge, computing these sets to attain guarantees around disturbance
rejection in distribution grids is novel. Our goal is to compute the largest abnormal voltage
conditions that our controller can overcome within the trip time limits, despite small-signal
voltage fluctuations occurring each second. A conceptual diagram of the problem is in Fig.
4.1.
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Figure 4.1: Conceptual diagram of the voltage disturbance rejection problem on distribution
grids. Following a large-signal voltage disturbance, DER controllers are tasked with driving
the voltage into the safe range within a few seconds despite small-signal voltage fluctuations.

4.2 Problem Formulation

4.2.1 Large-signal Disturbance

Suppose a large-signal disturbance shifts the voltage to an abnormal operating state outside
the 5% ANSI range. We are interested in any disturbance where the voltage recovers slowly,
on the order of several seconds. For example, in a Fault Induced Delayed Voltage Recovery
(FIDVR) event, a fault [86] or [87] could cause a 20% to 55% voltage sag that stalls the motor
loads, thereby lengthening the voltage recovery time. In what follows, we focus on system
trajectories whose initial conditions are the operating point directly after the large-signal
disturbance occurs.

4.2.2 Power Flow Linearization

In the next two subsections, we develop a closed-loop quasi-steady state dynamical system
model that is comprised of the algebraic DistFlow equations and an incremental volt-var
control law. This model is consistent with the works [1, 13, 80], with the extension of not
setting the fluctuations from uncontrollable sources to zero. Consider the Distflow branch
equation [27] for a single-phase radial network

|Vi|2 − |Vj|2 = 2(rijPij + xijQij) + (r2ij + x2
ij)

(P 2
ij +Q2

ij)

|Vi|2
, (4.1)

which approximates the relationship between voltage magnitudes Vi, Vj and power flow Pij+
jQij from node i to node j with complex impedance rij + jxij.
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We linearize (4.1) about a nominal voltage of 1p.u. by dropping the square term. Next, let
vi be the squared voltage magnitude, pi the net real power, qi the net reactive power at node i,
and define vectors v = [v1, v2, ...vn]

⊤, p = [p1, p2, ...pn]
⊤, q = [q1, q2, ...qn]

⊤,v0 = [v0, v0, ...v0]
⊤

on a network with n nodes. Here v0 refers to the substation node which is constant at 1p.u..
As done in [1, 38], we define the time step k to be sufficiently large for the dynamics from
inverters, lines, and loads to settle to steady state before new power injections are updated.
The algebraic relationship between nodal power injections and squared nodal voltages at all
nodes for time steps k and k + 1 becomes

v[k] = Rp[k] +Xq[k] + v0 (4.2a)

v[k + 1] = Rp[k + 1] +Xq[k + 1] + v0 (4.2b)

where the entries of matrices R and X at the ith row and jth column are given by

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk (4.3a)

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk. (4.3b)

Set Pi is the unique set of lines (or path) connecting node i back to the substation node.
Net nodal powers are given by

q[k] = qinv[k] + qother[k] (4.4)

where qinv are DER-inverter combination reactive power set-point commands, and qother are
reactive power injections from sources not under our control.

4.2.3 Model with Incremental Volt-Var Control

We employ incremental volt-var control for computing inverter reactive power set-points qinv

with

qinv[k + 1] = qinv[k]−G(v[k]− vref ) (4.5)

Note that equation (4.5) differs from the related DVVC law, qinv[k+1] = −G(v[k]−vref [k]).
The tracking error is mapped to the next change in actuation command, in contrast to how
DVVC maps the tracking error to the next actuation command.

We subtract equation (4.2a) from (4.2b), giving

v[k + 1] = v[k] +R(p[k + 1]− p[k]) +X(q[k + 1]− q[k]). (4.6)

Next, consider the update equation (4.4) at time step k + 1, then substitute these two
equations into (4.6), giving

v[k + 1] = v[k] +X(qinv[k + 1]− qinv[k]) +w[k] (4.7)
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where w[k] := R(p[k+1]−pk)+X(qother[k+1]−qother[k]). Then we substitute the control
law (4.5), giving

v[k + 1] = v[k]−XG(v[k]− vref ) (4.8)

Finally, we subtract the constant reference voltage vref from both sides and let e[k] =
v[k]− vref . Our closed-loop system is

e[k + 1] = (I −XG)e[k] +w[k] (4.9)

Note that if all nodes of the network are being tracked, vref must be a feasible power flow
solution. If only a subset of the network nodes are being tracked, vref can be assigned to
the nominal vector of ones.

Author [1] proves in their Theorem 3.1 that for the system (4.9), v → vref iff

0 ≺ G ≺ 2X−1.. (4.10)

where the symbol ’≻’ denotes a positive definite matrix. For intuition, condition (4.10)
applied to the one-dimensional case (single phase grid with one DER) establishes that the
integrator gain should be 0 < g < 2

x
, which is positive but not too large. Condition (4.10)

also implies that for any state and input independent term w[k], v → vref . Therefore a
major benefit from the reachability analysis is to determine whether v → vref soon enough,
before the DER devices are required to trip (disconnect).

4.2.4 Small-signal Fluctuation Modeling

Small-signal voltage fluctuations in distribution grids can be due to solar PV, loads, and
legacy voltage regulation devices. These fluctuations are captured by w[k] which is defined
in (4.9) as changes in system voltages between time steps. In this section we develop a
polytope

W = {w ∈ Rn | wlb1 ≤ w ≤ wub1} (4.11)

such that w[k] ∈ W . We assume the fluctuation at each node is independent across nodes,
which is realistic given the variety of phenomena that could occur on different nodes of
medium-voltage networks. Thus wlb amd wub are scalars that are repeated n times to define
W (4.11).

We determine polytope bounds wlb and wub using distribution PMU voltage data from the
Sunshine dataset of the ARPA-E initiative NI4AI [2]. The dataset consists of six D-PMUs
measuring voltage phasors, current phasors, and frequency across two circuits. The circuits
are 12.47 kV (line-to-line) in a sunny region of the United States, both having buildings and
a community-scale PV array. Circuit B has a capacitor bank. The data was sampled at
120 frames per second over four years (2015-2020) with some offline time during scheduled
outages or reconfigurations.

From this data, we extract groups of 16 three-minute voltage magnitude timeseries snip-
pets. Across five times of day (TODs) (hour 10, 12, 14 16, 18), two months (January and
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June), and two circuits (circuits A and B), we have 320 snippets. For each snippet we
interpolate the data to be second-wise, then compute the variance and derivative of each
snippet. Then we find the maximum variance varmax, maximum negative derivative µlb, and
maximum positive derivative µub among each group of 16, and record them in Table 4.1.

Table 4.1: Distribution phasor measurement unit (D-PMU) data from the Sunshine dataset
of the ARPA-E initiative NI4AI [2]. The data is collected at five different times of day
(TOD), during a summer and winter month, on two different distribution circuits. The
variance, maximum change, and minimum change in voltage magnitude is determined for
each data snippet.

Circuit A, June 2016 Circuit B, June 2016
TOD varmax µlb µub varmax µlb µub

multiply ×e−8 ×e−4 ×e−4 ×e−8 ×e−4 ×e−4

10:00 36.0 -26.4 30.7 69.7 -27.4 24.6
12:00 29.7 -49.1 34.3 27.0 -76.5 39.4
14:00 54.0 -30.2 33.0 49.0 30.2 23.3
16:00 34.8 -27.8 32.3 36.0 -34.7 37.9
18:00 47.6 -43.5 25.2 64.0 -29.0 27.0

Circuit A, Jan 2017 Circuit B, Dec 2015
TOD varmax µlb µub varmax µlb µub

multiply ×e−8 ×e−4 ×e−4 ×e−8 ×e−4 ×e−4

10:00 69.7 -61.8 32.7 20.7 -30.5 30.5
12:00 44.2 -27.4 38.3 23.5 -24.4 22.3
14:00 29.2 -24.9 26.9 34.2 -37.4 39.0
16:00 33.1 -18.6 19.8 23.5 -43.0 34.7
18:00 15.2 -18 16.7 19.8 -108.7 36.2

Next we determine wlb and wub. We believe a multimodal Gaussian distribution has an
appropriate probability density function (PDF) for w. Distribution grid voltage changes
tend to occur as small fluctuations (mode around mean of zero), step changes down (mode
µlb at some negative value), or step changes up (mode µub at some positive value) due to
discrete device actions. By defining

wlb = −2
√

˜varmax + µ̃lb (4.12a)

wub = +2
√

˜varmax + µ̃ub, (4.12b)

our polytope bounds capture 95% of the Guassian-modeled voltage fluctuation values. ˜varmax, µ̃lb,
and µ̃ub are the largest (by magnitude) of the varmax, µlb, and µub entries in Table 4.1, re-
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spectively. The multimodal Gaussian PDF along with the polytope range is conceptually
illustrated in Fig. 4.2. This worst-case polytope is conservatively large since the short ride-
through period is unlikely to exhibit the largest voltage shifts observed across the PMU
dataset.

Figure 4.2: Multimodal Gaussian probability distribution function (PDF) fitted to the Dis-
tribution phasor measurement unit (D-PMU) dataset. The function is used to determine
that define the disturbance polytope W .

4.2.5 Robust Backwards Reachable Set Computation

This subsection’s methods are from [88, Chapter 10]. The reachability analysis methods
make use of our system (4.9) being affine, where the affine term w[k] is independent of the
state and inputs.

Definition 1. The N-step robust backwards reachable set (RBRS) of the system (4.9) is

KN := {e[0] ∈ E | ∀k = 0...N − 1, e[k] ∈ E and e[N ] ∈ Ef , ∀w[k] ∈ W} (4.13)

where E is the set of admissible states, Ef is the target set, and W is the small-signal
fluctuations poytope set. To compute KN , we need to compute predecessor sets. A prede-
cessor set of set S is the set of states from which the system evolves to be in S in one time
step. The predecessor set for the linear autonomous system in (4.9) is

Pre(S,W) = {e | H((I −XG)e+w) ≤ h} (4.14)

where H and h define the set S = {e | He ≤ h}. Algorithm 1 computes KN using
predecessor sets.

We seek to allow w to lie anywhere in W when computing the RBRS. One option is to set
w = w̄j in (4.14), where w̄j is the jth vertex of the polytope W . Then one would compute
KN(w̄j) ∀w̄j ∈ VW where VW contains all vertices of W . The intersection of these reachable
sets is the RBRS that approximates w ∈ W . The drawback of this method is that it requires
computing |VW | reachable sets, where |.| denotes cardinality. |VW | grows in a combinatorial
way as |w| increases.
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Algorithm 1: Compute the N-step RBRS, KN

Input: E, Ef . N
Output: KN(S)

1 i = 0, K0(S) = Ef ;
2 repeat
3 i = i+ 1;
4 Ki(S) = Pre(Ki−1(S)) ∩ E

5 until i > N ;

The second option, which we pursue, captures the effect of all w̄j ∈ VW on the set S by
solving the linear program

min
w∈W

(hi −Hiw) (4.15)

where Hi is the ith row of H . We concatenate each linear program’s optimal objective into
a vector h̃, which replaces (h −Hw) in the Pre(S) computation. Therefore, each Pre(S)
computation requires the solving of a new set of linear programs, but notably only a single
RBRS is computed to capture the w ∈ W . This route scales better than the aforementioned
method because fewer set intersections are needed.

4.3 Case Studies

In this section, we compute reachable sets to assess the voltage recovery by DERs for three
different distribution grid circuits. Disturbance polytopeW bounds were found by computing
˜varmax = 69.72e−8, µ̃lb = −0.01087, and µ̃ub = 0.00394 from the PMU dataset described in

section II.D. Then from (4.12b) we have wlb = −0.0125 V pu and wub = 0.0056 V pu, each
repeated n times to define W .

Figure 4.3: Network graph of 4-node radial circuit (4NF). The figure has single lines, but the
experiments model the circuit as three-phase unbalanced with significant mutual impedances.
The circuit self impedances satisfy the relationships z01 = z12, and z13 = 2z01.
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4.3.1 4-Bus Network

We created a 4-node unbalanced circuit (4NF) that is defined in Fig. 4.3. It has mutual
impedances equal to 30% of the self impedances, and the single phase equivalent impedances
r01 and x01 are in Table 4.2. We specify E as 0.7 to 1.2 Vpu on all n = 3 nodes and the target
set Ef as the ANSI 5% range. We placed incremental volt-var controllers at nodes 2 and 3.
We compute K10 using the base case of parameters in Table 4.2. To execute Algorithm 1, we
use MATLAB CVX to solve the linear programs and MATLAB’s Multi-Parametric Toolbox
(MPT) toolbox to compute set intersections and projections. The resulting 10-step RBRS
in Fig. 4.5 has E, Ef , and K10 shifted up by 1 Vpu to convert from errors to voltage values.

Table 4.2: Base case parameters used to simulate the DER control and compute the RBRS
on the 4-node test circuit (4NF).

Parameter Matrix Value Units (not p.u.)
reactance of line 01, x01 0.1776 pu 0.0852 ohms
reactance of line 01, r01 0.0864 pu 0.0415 ohms
control gain for DER at
node 2, f2

0.8 100 kW for deviating by
quarter of 5% ANSI range

control gain for DER at
node 3, f3

0.5 62.5 kW for deviating by
quarter of 5% ANSI range

polytope lower bound, wlb -0.0125 pu 30 volts
polytope upper bound, wub 0.0056 pu 13.44 volts

Figure 4.4: Plot of safe target set Vf , bounds of second-wise disturbance w[k], and Rule 21
trip regions. The DER control must drive node 2 and 3 voltages into the target set. If the
voltage is in a trip region after 12 or 20 seconds, the DERs have failed and must trip.
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Figure 4.5: Ten-step robust backward reachable set (RBRS) computed using base parameters
(Table 4.2) on the 4NF. An initial condition (IC) inside the RBRS (green) is guaranteed to
stay within set V (yellow) for all time steps, and is guaranteed to be within safe set Vf (red)
within 10 time steps.

We compare our system’s control performance to California’s Rule 21 [79], which has
shorter time limits than that of the national IEEE 1547 standard. Note that in Fig. 4.4 Ef ,
which the RBRS guarantees the voltages enter within 10 seconds, is well inside the Rule 21
tripping regions, ensuring that the voltage will recover before the inverters are required to
trip.

Figure 4.6: Simulation of DER system (4.9) on the 4NF with initial conditions marked in
Fig. 4.5. For v2 and v3, the phase (among A,B,C) furthest from one per unit is plotted.
The initial condition in the RBRS (blue) arrives in the 5% ANSI range within the 10-second
time limit, while the initial condition outside the RBRS (red) does not.
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Figure 4.7: Ten-step robust backward reachable set (RBRS) computed using modified pa-
rameters on the 4NF. Left: RBRS when increase base case w bounds by 30%. Right:
RBRS when decrease base case w bounds by 30%.

We validate the RBRS computed with the linear single phase system model (4.9) by
simulating the system in Opal-RT’s ePHASORSIM, which solves nonlinear three-phase power
flow. We turn off inverter capacity limits to focus on the control response settle times. K10

in Fig. 4.5 indicates initial voltages where the trajectory will reach the target set within 10
seconds. We set the system’s net loads such that the initial voltage is inside the RBRS as
marked in Fig. 4.5, then observe in Fig. 4.6 convergence to the target set after 8 seconds.
In contrast, when we set the initial voltage outside the RBRS as marked in Fig. 4.5, in Fig.
4.6 we observe convergence after 12 seconds. This difference demonstrates the power of the
10-step RBRS guarantee.

Next we modify the base case parameters from Table 4.2 to observe the effect on the
RBRS shape. We increase the magnitude of wlb and wub by 30%, which results in the new
RBRS in the left panel of Fig. 4.7. The RBRS has narrowed because the control actions
cannot match the fluctuation that now lie in a larger W . We observe RBRS of a similar
shape to the left panel in Fig. 4.7 for the case of decreasing the controller gains by 30%, and
for the case of decreasing r01 and x01 by 20%. Conversely, when we decrease the magnitude
of wlb and wub by 30%, we have the RBRS in the right panel of Fig. 4.7, which is wider than
the base case. We observe RBRS of a similar shape to the right panel in Fig. 4.7 for the
case of increasing the controller gains by 30%, and for the case of increasing r01 and x01 by
20%.

4.3.2 Larger Networks

Next we validate the reachability analysis on larger unbalanced feeders with the same simu-
lation process. For the IEEE 123-node feeder (123NF) [72], we design incremental volt-var
controller gains for inverters at 15 random nodes that satisfies the condition (4.10). Then
we compute the RBRS and in the left panel of Fig. 4.8 project the set onto node 49 and
52, two inverter locations in the middle of the feeder. We observe that locations at the end
of the feeder have narrow projected reachable sets, while locations at the top of the feeder
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Figure 4.8: Ten-step robust backward reachable set, and simulation of two initial condition
instances on the three-phase unbalanced 123NF. Left: Plot of RBRS with a three-phase
initial condition outside the RBRS (red), and three-phase initial condition inside the RBRS
(blue). Right: Simulation of DER control starting from the IC in the left panel. When the
IC is outside the RBRS, the voltage doe not reach the safe set within 10 time steps.

have wider ones. This observation is consistent with the stability line length relationships
found in [51]. We then simulate voltages at all incremental volt-var controllers locations,
and plot the voltages furthest above and below 1Vpu in the right panel of Fig. 4.8. As
expected, when the initial voltage is outside the RBRS, the system does not reach the 5%
ANSI range in 10 seconds, in fact it takes 80 seconds in this case. The large difference in
settling time (10s vs. 80s) may be due to coupling interactions between the 15 inverters and
their controlled phases.

The RBRS computation times for the different feeder sizes are in Table 4.3. The MAT-
LAB MPT toolbox functions execute slowly for large systems, but we note that Python, a
faster implementation language, does not have an equivalent polytopic geometry toolbox.

Table 4.3: Computation times for computing the 7-step, 10-step, and 14-step RBRS KN on
circuits of different sizes.

N 4NF IEEE 13NF IEEE 123NF
7 0.2 min 4.5 min 63 min
10 1.3 min 7.7 min 81 min
14 2 min 26 min 149 min
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4.4 Conclusion

In this work we considered the abnormal voltage excursion scenario in which DERs have
a given time limit to stay connected and respond. We captured fluctuations in the volt-
age during this period, including voltage regulation equipment actions, with a multimodal
gaussian distribution model. We then used this disturbance model to perform a reachability
analysis which determines the largest range of abnormal conditions that our DER control
is guaranteed to overcome. The benefit of this analysis is that the resulting reachable set
captures the worst case response to the voltage fluctuations, while in contrast it could it may
take many simulations to observe the same result. The system parameters were varied to
understand their effect on the shape of the backwards reachable sets, and the set guarantees
were validated by simulating on unbalanced feeders of different sizes.
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Chapter 5

Hybrid System Stability of Load-Tap
Changers and Inverters

This chapter is based on the paper ‘Parameter Conditions to Prevent Voltage Oscillations
Caused by LTC-Inverter Hunting on Power Distribution Grids’ [89], written in collaboration
with Federico Celi, Fabio Pasqualetti, and Alexandra von Meier.

In this chapter, rather than capture the actions of legacy voltage regulation equipment as
external disturbances as done in Chapter 4, we directly model these device actions in concert
with inverter-based DERs. Our model, composed of two LTCs and two inverter devices, is
shown to create voltage oscillations even with reasonable choices of control parameters. The
model is a switched affine hybrid system, allowing us to analyze the system’s oscillatory
behavior, both during normal operation and following a cyber-physical attack. Through the
analysis we determine the specific region of the voltage state space where oscillations are
possible and derive conditions on the control parameters to guarantee against the oscilla-
tions. Finally, we project the derived parameter conditions onto two-dimensional spaces to
demonstrate important relationships between device operating parameters.

5.1 Introduction

The traditional voltage regulation problem is to design load-tap changer (LTC), voltage
regulator, and capacitor bank control parameters such that, over a minutes-to-day duration,
the distribution grid voltage is kept within 5% of the nominal voltage (ANSI C84.1 standard)
to avoid interrupting or damaging customer equipment. The addition of naively controlled
DERs such as solar PV makes this voltage regulation problem harder [90] and can cause
LTCs to actuate much more frequently, reducing their lifespan. Depending on the control
logic and design parameters, connecting smart inverters can either alleviate [91] these voltage
fluctuations or be a source of adverse interactions [92].

One type of adverse interaction is device hunting which we define as one or more devices
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actuating in a repeated sequence that results in periodic voltage oscillations. Hunting among
LTCs has been observed by utilities since the 1980s [93,94] and has been modeled as a hybrid
system in the literature [94]. Inverter-based DERs may be able to solve these problems if
their control parameters are set appropriately. However, current inverter standards [6] require
inverter control parameters to be adjustable by a remote entity’s communication network,
which introduces a potential vulnerability to cyberattacks [95]. Bad parameters sent to
inverters on a circuit, whether deliberately or by mistake, can trigger adverse interactions
[96]. This motivates our investigation into how a poor choice of device parameters can lead
to hunting, as simulated in Fig. 5.1.

Figure 5.1: Simulation of two LTCs and two inverters that create voltage oscillations with a
period of 70 seconds. Circuit is in Fig. 5.2 and parameters are the defaults listed in Table
5.1. Left: Device hunting when g = 0.5. Right: Device hunting when g = −0.5

There are two common approaches when selecting distribution-grid device parameters
for voltage control: an approach based on rules of thumb followed by simulation, and an
optimization-based approach. For basic operation of LTCs and parameter rules of thumb we
refer to the text [22, Chapter 9.3], and to papers [54, 90]. One limitation of this approach
is the assumed timescale separation between the LTC and inverters, which may not hold
when LTCs delays are shortened to handle increased voltage variability [97]. Moreover, the
simulations in these papers are not sufficient to guarantee against the possibility of sustained
voltage oscillations.

Meanwhile, optimization methods focus on addressing the non-convexity of the mixed-
integer optimal power flow problem resulting from including both continuous (smart inverter)
and discrete (LTC and voltage regulator) dynamics [23,24]. However, the optimal parameter
solution determines tap positions and power dispatch rather than the device parameters in
the control law. As such, the optimal solution does not provide significant insights into the
symbolic relationship between control parameters and adverse interactions.
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Our goal of deriving symbolic parameter conditions for hybrid systems stability is a chal-
lenging task and remains relatively unexplored in control systems literature. The design of
switching strategies for stabilization commonly assumes one can switch modes at any time,
rather than switching according to parameterized conditions [98,99]. Linear parameter vari-
ation (LPV) literature commonly assumes the parameters to be time-varying, but here our
parameters are time-independent and we want to solve for them symbolically [100]. There-
fore, our methodology leverages our familiarity with the specific system’s model dynamics.

In this chapter, we analyze how parameters of LTCs and inverters prevent or contribute
to voltage oscillations created by device hunting. The results yield two distinct benefits:
(i) the parameter conditions can provide intuition for improving the rules of thumb used
to operate these devices in industry and (ii) the conditions can be directly checked on each
device without simulations, enabling real-time checks on incoming parameter updates by
remote entities.

The rest of this chapter organized as follows. In Sec. 5.1, we introduce the LTC-DER
coordination problem. In Sec. 5.2, the system equations are presented and the parameter
condition problem is solved for two subsystems. In Sec. 5.3, the parameter condition problem
is solved for the full system. In Sec. 5.4 the conditions on the full system conditions are
illustrated. In Sec. 5.5 we present conclusions and future work. We include proofs of the
main theorem and lemmas in-line, and refer readers to Appendix 7.3 for the minor proofs.

5.2 System Dynamics and Subsystem Analysis

5.2.1 Notation

Let Rn be the n-dimensional vector of real numbers and Rn×n the matrix of real numbers. We
use bold-faced letters for vectors and matrices, with the exception that j =

√
−1 indicates

the imaginary part of complex numbers. For a vector x ∈ Rn, let x[k] be its value at time
index k ∈ R, and xi[k] be the value of the i-th element of x at time index k. Let x⊤ be
the transpose of vector x. Let ||.||i denote the ℓi vector norm for i = 1, 2,∞. We define the
margin M(S, d) as the set of points x that are within distance d from a set S. We define a
partition of a set S to be a collection of subsets Si, i = 1, ...k such that

⋃
i=1,...,k Si = S and

Si ∩ Sj = ∅ for all i ̸= j. We use → and ↛ to indicate possible and impossible transitions
between partitions, respectively. Let S ′ denote the complement of set S, and S \ Q be the
part of the set S that is not in Q.

5.2.2 Overview of Four-Device System

We model four devices operating on the radial circuit shown in Fig. 5.2. Suppose there
are constant loads at all nodes shown. LTC1 and inverter1 regulate voltage v1, while LTC2
(sometimes called a line voltage regulator) and inverter2 regulate voltage v2. We define the
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Figure 5.2: Radial distribution circuit with voltages of interest v1 and v2, as well as two LTC
and two inverter devices.

difference between the two voltages of interest with

vdiff := v1 − v2 ∈ R1. (5.1)

The LTCs estimate v1 and v2 voltages using line drop compensation, and the inverters
measure these voltages with their internal sensors. All devices operate with fixed time delay
logic; that is, they only respond when the voltage remains outside the deadband for a certain
delay d. We denote the upper deadband boundary as v+ = vref + ε, and lower deadband
boundary as v− = vref − ε, where vref ∈ R1 is the nominal voltage. Then we define the
deadband

D := {(v1, v2) : v− ≤ v1 ≤ v+, v− ≤ v2 ≤ v+}. (5.2)

Because there are no active dynamics when both voltages are in the deadband, the set D
is invariant. We define vectors v = [v1 v2]

⊤ ∈ R2 and vref = [vref vref ]⊤ ∈ R2, since it
is common to assume the nominal voltage is the same for all circuit nodes. When vi >
v+ for i = 1, 2 we say vi has an overvoltage, and when vi < v− we say vi has an undervoltage.
With the shorthand vi ∈ D or vi /∈ D, we refer to whether v− < vi < v+ is satisfied or not.

Next, we define normal operating W := (H ∩ P ) where

H := {(v1, v2) : (v1 > v− and v2 > v−) or (v1 < v+ and v2 < v+)} (5.3)

P := {(v1, v2) :
∥∥v[k]− vref

∥∥
∞ < 3ε}. (5.4)

The hourglass-shaped set H disallows one voltage from being above v+ when the other is
below v−. P bounds the distance each voltage can be away from vref .

Assumption 7. (normal operation) A given system Σ operates in normal operating states
W defined by (5.3) and (5.4).

We consider states outside W to be abnormal operating conditions that should be ad-
dressed with the grid’s protection system rather than the system dynamics analyzed in this
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work. We are interested in the system behavior while v ∈ W , especially if the initial condition
(IC) starts in W and eventually leaves W .

The goal is to coordinate the device actions so that v1 and v2 land inside the deadband
without device hunting. Table 5.1 summarizes the notation for the states, fixed variables,
and parameters we are interested in designing to guarantee against hunting. The table
also assumes relationships from basic operation of power systems that are drawn from [22,
Chapter 9.3] and [13]. In the table, all fixed variables and parameters except for g are taken
to be positive and real valued because of their physical meaning.

Table 5.1: Notation for major variables in Chapter 5. The type of variable, description with
units, default value, and the basic relationship between variables are included.

Symbol Type Description Default Relationship

vref fixed voltage ref. (p.u.) 1.0 –

ε fixed half of deadband width 0.1 –

v−, v+ fixed deadband boundary 0.95, 1.05 v− = vref − ε,
v+ = vref + ε

χ fixed line reactance (p.u.) 0.1 –

η fixed impedance damping factor 0.9 0 < η < 1

v10 state node 2 initial voltage (p.u.) 1.04 –

v20 state node 3 initial voltage (p.u.) 0.94 –

dinv parameter inverter 1 and 2 delay (s) 4 dinv < dL1

dL1 parameter LTC1 delay (s) 30 –

dL2 parameter LTC2 delay (s) 40 dL1 < dL2,
dL2 < 2dL1

v̄L parameter tap voltage (p.u.) 0.03 v̄L < 2ε

g parameter inverter 1 and 2 control gain – –

5.2.3 Conditions for Two-LTC System

Let the Σ1 be the subsystem where LTC1 and LTC2 operate on the circuit in Fig. 5.2
normally (see Assumption 7). Both devices have the same deadband width 2ε that is centered
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on the same voltage reference vref . When the voltage is outside the deadband for dL1
(dL2) seconds, LTC1 (LTC2) taps, which updates both voltages according to v[k + 1] =
v[k] ± [v̄L v̄L]

⊤ where v = [v1 v2]
⊤ ∈ R2. Because all tap actions shift both voltages by v̄L

amount, tapping manifests as discrete jumps on the (v1, v2) space with slope of ±1 between
the initial and after-tap voltage.

Lemma 4. If v̄L > 2ε, system Σ1 will have marginally stable oscillations for all time when
any v1[0] ∈ M(D, c) or v2[0] ∈ M(D, c) where c = v̄L − 2ε > 0.

Distribution engineers know not to set v̄L > 2ε when choosing LTC settings, so next we
focus on how oscillations could occur when v̄L ≤ 2ε.

We partition W into four regions D, Wg, Wb, Wo, based on the possible trajectories from
starting the system in each region. We define Wo such that from there we only transition to
the deadband or oscillate. For example, v1 should satisfy v1 − v̄L < v+. Therefore we define
the boundary of Wo in terms of the v∗i that satisfies v∗i − v̄L = v+ for i = 1, 2. This gives the
regions

Wo = {(v1, v2) ∈ W : (v1 ∈ M(D, v∗1 − v+) and v2 ∈ D),

or (v2 ∈ M(D, v∗2 − v+) and v1 ∈ D)},
(5.5a)

Wb = {(v1, v2) ∈ W : (v1, v2 > v+ and v1 + v2 ≤ v+

+ v̄L), or (v1, v2 < v− and v1 + v2 ≥ v− − v̄L)},
(5.5b)

and Wg is what remains of W . That is, Wg = W \ (D ∪Wo ∪Wg).
Fig. 5.3 shows these regions in the state space as well as the possible transitions between

regionsWg,Wo,Wb, D, andW ′. ForWg possibilities, LTC jumps having a slope of ±1 implies
that the only way Wg → W ′ is by Wg → H ′ ⊂ W ′. Because Wg is v̄L away from D, Wg ↛ D.
For Wb possibilities, LTC jumps having a slope of ±1 implies that Wb cannot transition to
W ′ nor Wg. For Wo possibilities, LTC jumps having a slope of ±1 implies that the only way
Wo → W ′ is by Wo → H ′ ⊂ W ′. By the same logic, Wo cannot transition to Wb nor Wg.
Finally, from the geometry of Fig. 5.3, observe that if vdiff[0] < 2ε, Wo ↛ W ′.

Lemma 5. If v̄L ≤ 2ε, v[T ] ∈ Wo, and vdiff < 2ε− v̄L, system Σ1 will have marginally stable
oscillations starting at time T .

A simulation of marginally stable oscillations due to Lemma 5 hunting is in Fig. 5.4.

5.2.4 Conditions for Two-Inverter System

Let the Σ2 be the subsystem where the two inverters operate on the circuit in Fig. 5.2
normally (see Assumption 7). For now we omit the deadband in the control logic. We employ
a discrete integrator (called incremental volt-var control in [1, 12, 13, 44]) for computing
inverter reactive power set-points qinv with

qinv[k + 1] = qinv[k]−G(v[k]− vref ), (5.6)
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WgWg W ′

WbWb W0W0

D oscillation

WgWgH ′ ⊂ W ′

D v1

v2

2ε

W0Wb

v∗1 − v+v∗1 − v+

Figure 5.3: State space behavior of the two-LTC system Σ1 when v̄L < 2ε. Left: State
transition diagram, indicating the possible behavior of trajectories. Right: State space
partitioned into regions based on trajectory behavior.

Figure 5.4: Simulation of the two-LTC system Σ1 when Lemma 5 holds. Parameters are the
defaults listed in Table 5.1. Marginally stable oscillations are observed.

For any radial circuit with n inverters at different nodes, v ∈ Rn, qinv ∈ Rn, and G is a
diagonal matrix with controller gains along the diagonal. Note that we map the voltage
magnitude tracking error to the change in inverter power output at all nodes so that the
power set-point increments while the tracking errors persist. G being diagonal enforces that
each inverter is injecting power to regulate the voltage at its own node.

We assume that each inverter inject power that is equal to the computed power set-points.
The algebraic power flow equations that map inverter power injections to voltages can be
represented by

v[k + 1] = v[k] +X(qinv[k + 1]− qinv[k]) (5.7)
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from [1, equation 8]. Matrix element Xij is the common-node impedance reactance between
node i and node j on the network (see section 2.1.5 for background on X). Next, we
substitute (5.6) into (5.7), giving

v[k + 1] = v[k]−XG(v[k]− vref ). (5.8)

Finally, we subtract vref from both sides and define e[k] := v[k] − vref , giving [1, equation
12]:

e[k + 1] = (I −XG)e[k]. (5.9)

Author [1] proves in their Theorem 3.1 that for the system (5.9), v → vref iff

0 ≺ G ≺ 2X−1.. (5.10)

For intuition, condition (5.10) applied to the one-dimensional case (one inverter acting on
a single phase circuit) establishes that the integrator gain g should satisfy 0 < g < 2/χ.
This condition implies that under normal operation, g should be positive but not too large
to have the voltages converge. We are also interested in the possibility of g < 0, where the
inverters push the voltage away from vref , because that case is more dangerous.

Lemma 6. If G ≺ 0, system Σ2 given by (5.9) has v → ±∞.

When the deadband is introduced, inverters only operate according to (5.6) when their
voltage is outside the deadband. Because vref is centered in the deadband, Lemma 6 holds in
the same way as the no-deadband case, and the convergence condition (5.10) yields v → D
instead of v → vref .

Power injections have the greatest effect on voltages at injection node and less effect on
voltages electrically far away from the injection point. For our system Σ2, G = diag([g g])
and q = [q1 q2]. The dissipative nature of power grids due to line impedances causes the
diagonal terms of X to be larger than the off-diagonal terms. From the circuit in Fig. 5.2,
system Σ2 has

X =

[
χ ηχ
ηχ χ

]
, (5.11)

where the damping factor η satisfies 0 < η < 1. In general, if inverters have different
reactances in the line path to the substation, η1 = X21/X11 and η2 = X12/X22. Because in
this work we only use η for its property of 0 < η < 1, using η = η1 = η2 does not change the
results.

5.3 Full System Analysis

5.3.1 Modeling as a Hybrid System

Next we model all devices in Fig. 5.2 operating normally (see Assumption 7) as a discrete
hybrid automaton, which is the interconnection of a finite state machine with a switched
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affine system. This system, Σ3, has state vector x =
[
z1 z2 z3 v1 v2

]⊤
, where z1, z2, z3

are the internal timers for LTC1, LTC2, and inverter1 and 2, respectively. The two inverters
use the same timer z3 because they have the same delay of dinv. Let Ts be the timestep of
the discrete model. Each mode has a label with the format m⋆0 where ⋆ = 1, 2, ...8, and has
affine dynamics of the form x[k + 1] = Ax[k] + c where A ∈ R5×5 and c ∈ R5. To define the
switching conditions, we define a function f for whether a voltage is inside the deadband:

fi := max(vi − v+, 0)−max(v− − vi, 0) for i = 1, 2. (5.12)

For i = 1, 2, if vi is an overvoltage then fi > 0. If it is an undervoltage then fi < 0, and if
inside D then fi = 0. Inverter1 (LTC1) responds when f1 ̸= 0 for dinv (dL1) seconds, and
Inverter2 (LTC2) responds when f2 ̸= 0 for dinv (dL2) seconds.

Now we introduce the hybrid model, where we make the design parameters highlighted
in light gray.

m10: tap LTC1 up

Switch condition: z1 > dL1 and (f1 + f2 < 0)

Dynamics: 
z1
z2
z3
v1
v2


k+1

=


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



z1
z2
z3
v1
v2


k

+


Ts

Ts

Ts

v̄L
v̄L


m20 (tap LTC1 down) is the same as m10 except the condition has (f1 + f2) > 0 and the
affine term is [Ts Ts Ts −v̄L −v̄L ]⊤.

m30: tap LTC2 up

Switch condition: z2 > dL2 and (f1 + f2 < 0)

Dynamics: 
z1
z2
z3
v1
v2


k+1

=


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



z1
z2
z3
v1
v2


k

+


Ts

Ts

Ts

v̄L
v̄L


m40 (tap LTC2 down) is the same as m30 except the condition has (f1 + f2) > 0 and the
affine term is [Ts Ts Ts −v̄L −v̄L ]⊤.

m50: inverter(s) respond to voltage issues

Switch condition: z3 > dinv and (f1 ̸= 0 or f2 ̸= 0)
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Dynamics: 
z1
z2
z3
v1
v2


k+1

=


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1− χ g −ηχ g

0 0 0 −ηχ g 1− χ g



z1
z2
z3
v1
v2


k

+

[
Ts Ts Ts χ g vref + ηχ g vref ηχ g vref + χ g vref

]⊤
m60: reset LTC2 and inverter timers
Switch condition: [m = m10 and (f1 > 0 or f2 > 0)] or [m = m20 and (f1 < 0 or
f2 < 0)]

Dynamics: z2[k + 1] = Ts, z3[k + 1] = Ts, v[k + 1] = v[k]

m70: reset LTC1 and inverter timers
Switch condition: [m = m30 and (f1 > 0 or f2 > 0)] or [m = m40 and (f1 < 0 or
f2 < 0)]

Dynamics: z1[k + 1] = Ts, z3[k + 1] = Ts, v[k + 1] = v[k]

m80: increment timers

Switch condition: no other mode conditions hold

Dynamics: zi[k + 1] = zi[k] + Ts ∀i = 1, 2, 3, v[k + 1] = v[k]

Remark 3. By the relationship dinv < dL1 < 2dL2 from Table 5.1, the inverters respond to
voltage issues before LTC1. This relationship is a less conservative version of dinv ≪ dL1,
which is often made for power systems [90]. Therefore, an LTC will never tap twice before
an inverter acts.

Summary of Switched Affine Form

We have formulated a discrete hybrid automaton for the system of two LTCs and two
inverters. The LTC and inverter actions are modeled with discrete dynamics in each
mode, while each mode transitions to a different set of dynamics, resulting in a piece-
wise continuous state trajectory across mode changes. The eight modes of the 4-device
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hybrid system are

m10 : xk+1 = A1xk + c1 LTC1 tap up due to under-voltage

m20 : xk+1 = A2xk + c2 LTC1 tap down due to over-voltage

m30 : xk+1 = A3xk + c1 LTC2 tap up due to under-voltage

m40 : xk+1 = A4xk + c2 LTC2 tap down due to over-voltage

m50 : xk+1 = A5xk + c3 inverter(s) respond to voltage issues

m60 : xk+1 = A6xk + c4 reset LTC2 and inverter timers

m70 : xk+1 = A6xk + c5 reset LTC1 and inverter timers

m80 : xk+1 = A7xk + c6 increment timers

5.3.2 Behavior when g > 0

For positive values of the inverter gain g, our control action renders the voltage dynamics
stable, as shown next.

Theorem 4. (Stability when g > 0) If system Σ3 has 0 < g < 2
χ
, there exists T > 0 such

that v[k] ∈ D for all k ≥ T .

Proof. In order to show the voltage vector v converges to the deadband region D, we seek
one or multiple Lyapunov functions Y that characterize the system’s energy. We consider
the following candidate common lyapunov function for all modes m10 through m80:

Y (v) = ||vref − v||1 (5.13)

If the initial condition satisfies Y ≤ ε, then v ∈ D and the proof is complete the system
is totally stationary in D. Thus we focus on initial conditions where v ∈ W \D and Y > ε.

From [101, Theorem 3.2], if a hybrid system satisfies (i) Y (vref ) = 0, (ii) Y (v) > 0 for
v ̸= vref , (iii) v is non-increasing across mode changes, and (iv) there exists some τ where
Y (v[k + τ ]) ≤ Y (v[k]), then v = vref is an equilibrium point that is stable in the sense
of Lyapunov (SISL). From inspection, Y (5.13) satisfies (i) and (ii). Because in section 5.3
the system was formulated as a switched affine hybrid system, (iii) is satisfied. Next, we
must show that the energy is non-increasing in each mode, i.e. there exists a τ such that
Y (v[k + τ ]) ≤ Y (v[k]) for ∀ v[k] ∈ W \D.

For mode m60 to m80, v[k + 1] = v[k]. For m10-m40, where an LTC takes action, we
observe that Y (v[k + τ ]) = Y (v[k]) when v̄L < 2ε. For intuition, the chosen L1 norm for Y
(5.13) is a diamond shape when projected onto the 2D voltage state space, so when an LTC
taps, the system jumps with slope ±1, thereby maintaining constant energy. For mode 50,
the dynamics of v[k] from section 5.3 can be rewritten as

Y (v[k + 1]) =

[
1− χ −ηχg
−ηχ 1− χg

]
Y (v[k]).
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Observe that if the parameter condition 0 < g < min{ 1
x11

, 1
x22

} holds, for Y (v[k + 1]) <
Y (v[k]). The reduction of energy in m50 is due to the damped effect that inverter actions
have on voltages electrically distant from them, which is captured with η < 1 from Table 5.1.
Because the system loses energy in m50 and all other modes have constant energy, condition
(iv) is satisfied. Therefore, the system is SISL.

Figure 5.5: Diagram of voltage state space with Lyapunov function values on the third axis.
An example Lyapunov function level set {v ∈ R2 : Y (v) = γ, γ > ϵ} is in blue, and the
voltage deadband is in orange. Left: Isometric view. Right: Top view.

Next, we need to prove the stronger guarantee of asymptotic stability, where the system
converges to set D containing the the equilibrium point vref . A diagram of this argument is
shown in Fig. 5.5. Due to the choice of the L1 norm in (5.13), the projection of the system’s
energy levels onto the 2D voltage space are concentric diamonds centered at the equilibrium
vref . Since at least one timer state zi for i = 1, 2, 3 increments in every mode, the LTCs
and inverter action modes will be visited for all time where v /∈ D. Then with Remark 3,
the design choice of dinv < dL1 < 2dL2 ensures that the system always visits m50 at least
once after visiting one of the LTC modes. Every time the inverters act in m50, the system
loses energy, causing the the system energy level set become smaller concentric diamonds.
Therefore, there exists a k > T where the projection of the level set onto the voltage space
is inscribed in D, at which point Y [k] ≤ ε and v[k] ∈ D.

The consequence of Theorem 4 is that for realistic values of the network with g > 0,
the system exhibits damped oscillations which eventually reach the deadband. Thus, we
focus the remainder of this paper on the more dangerous scenario where g < 0 renders any
oscillations unstable.
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Figure 5.6: Simulation of the four-device system Σ3 when g < 0. The simulation parameters
are the defaults in Table 5.1. System start time is at k0, after a disturbance occurs and
parameter g is changed from positive to negative.

5.3.3 Trajectory Walkthrough for g < 0

Here, we describe a scenario on system Σ3 that can result in the beginning of unstable
oscillations. Suppose an adversary gains access to and installs malware in the communi-
cation system that remotely sends parameters to the inverters. The malware logic could,
for example, send a negated inverter controller gain g when any of the inverter voltages
suddenly change substantially (|vi[k + 1] − vi[k]| > 0.6ε), and the voltage lands far from
vref (|vi[k + 1]− vref | > 0.6ε). Such an attack is dangerous because the trigger by external
voltage event(s) conceals the time when the cyber breach occurred, which could be much
earlier than the parameter negation.

Follow along with Fig. 5.6. Suppose shortly before time k0 some external event(s), such
as a fault or effect from the transmission grid, causes the voltages to shift abruptly. Suppose
the voltage shifts increase vdiff, make v2 an undervoltage, and triggers the negation of the
inverter parameter g. See [102] for power flow examples of this voltage shift on realistic
circuits. We are interested in what happens after the system Σ3 start time of k0. From k0 to
k1: at k0 we have f2 < 0 while f1 = 0, so inverter2 actuates several times, each time causing
v2 to get further from the deadband. For k1 to k2: the LTC2 delay is complete so LTC2
taps, fixing the v2 undervoltage but making v1 an overvoltage. For k2 to k3: the inverter1
actuates several times, each time causing v1 to get further from the deadband. For k3 to
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k4: the LTC1 delay is complete so LTC1 taps, fixing the v1 overvoltage but making v2 an
undervoltage again. At k4 we have f2 < 0 while f1 = 0 which was the case for k0, so we have
completed one quasi-periodic oscillation. In future sections we show how these oscillations
continue.

5.3.4 Single Inverter Action Preliminaries

In this section we present some properties of inverter actions between LTC taps to prepare
for later proofs.

Suppose inverter i is acting during a time interval [k ... k + N ]. Define the change in
vj ∈ R1 due to the inverter’s action as ∆vinvj (Xij, k +N, k, vi[k]) := vj[k +N ] − vj[k] ∈ R1.
∆vinvj can be thought of as the projection of inverter’s actuation onto the vj axis of the
(vi, vj) space. Occasionally we omit some of the four parameters from ∆vinv when they are
not relevant.

Assumption 8. (Bounds on LTC and inverter action)
v̄L +∆vinvi (Xii, k +N, k, vi[k]) < 2ε for vi[k] ∈ W , and ∀k,N .

This assumption implies that v̄L < 2ε and ∆vinvi (Xii, k + N, k, vi[k]) < 2ε for vi[k] ∈
W , and ∀k,N . The Assumption is reasonable because v̄L is typically significantly less than
ε, and ∆vinv imparting a voltage change of close to 2ε would require unreasonably large
combinations of circuit impedance and inverter capacity.

Recall the voltage update equation (5.8) v[k+1] = v[k]−XG(v[k]−vref ). The inverter
acts N1 := floor(dL1/dinv) times if after the interval [k ... k + N1] the LTC1 taps, or N2 :=
floor(dL2/dinv) times if after [k ... k+N2] LTC2 taps. The ith row of (5.8) implies that node
i’s voltage is

v[k + 1] = v[k] + χ(v[k]− vref ) ∈ R1, (5.14)

and each other voltage on the network is given by

v[k + 1] = v[k] + ηχ(v[k]− vref ) ∈ R1 (5.15)

from substituting (5.11) into (5.8). Now consider the accumulation of (5.8) for N = N1 or
N = N2 timesteps:

v[N + k] = (I −XG)Nv[k] +
N−1∑
r=0

(1−XG)r(XGvref ). (5.16)

The jth row of (5.16) gives an expression for ∆vinvj in terms of the parameters vref , g, χ,and
N :

∆vinvj (Xij, k +N, k, vi[k], g) = vj[N + k]− vj[k] (5.17)

= ((1− χg)N − 1)v[k] +
N−1∑
r=0

(1− χg)r(Xijgv
ref ). (5.18)
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Remark 4. (Remarks about ∆vinvi ∀ i = 1, 2)

1. Because ∆vinvi < 2ε from Assumption 8, ∆vinvi (Xii, k + 1, k) has the same sign for
k = 0...N .

2. If g > 0, sign{∆vinvi (vi[k])} = −sign{vi[k]− vref}.

3. If g < 0, sign{∆vinvi (vi[k])} = sign{vi[k]− vref}.

The first item establishes that each inverter actuates in the same direction between LTC
taps. The second (third) items establish that when g > 0 (g < 0), the inverters push the
voltage toward (away) from the deadband.

Lemma 7. (∆vinv is a homogeneous function) The coupling effect of a single inverter actu-
ating at node i on the voltage at node j is damped by a factor of η. That is, ∆vinvj (Xij, k +
N, k, vi[k]) = η∆vinvi (Xii, k +N, k, vi[k]).

5.3.5 Partitioning W in State Space when g < 0

In this section we will partition W into D, Wg, Wb, Wo, based on the possible trajectories
from starting the system in each region. We use a similar process to Section 5.2.3. The
Wb region will be when both voltages are above or below the deadband. In that case, both
inverters act between LTC taps, and from Assumption 8 oscillations cannot occur. Then Wo

will be where only one inverter acts between taps, and is close enough to D for oscillations
to occur. An oscillation would begin with an inverter pushing the voltages further from
the deadband (Remark 4 #3) until an LTC tap towards the deadband and overshoots it.
Therefore, the boundary of Wo comes from the states v where after inverter action(s) and
an LTC tap the state is within the deadband edge:

v1 + r1 − v̄L < v+ (5.19a)

v2 + r2 − v̄L < v+ (5.19b)

v1 + r1 + v̄L > v− (5.19c)

v2 + r2 + v̄L > v−. (5.19d)

Function r is the inverters’ change in v before an LTC taps:

r1 := ∆vinv1 (χ,N1, v1) + ∆vinv1 (X12, N1, v2) (5.20a)

r2 := ∆vinv2 (X12, N1, v1) + ∆vinv2 (χ,N1, v2). (5.20b)

Note that r depends on both v1 and v2, but when only one inverter acts, one term in each
of (5.20a) and (5.20b) zeros out, causing eqs. (5.19a) to (5.19d) to depend on only v1 or v2.
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We can now define the state space regions as

Wo ={(v1, v2) ∈ W :

(v1 ∈ M(D, v∗1 − v+) and v2 ∈ D),

or (v2 ∈ M(D, v∗2 − v+) and v1 ∈ D)},
(5.21a)

Wb ={(v1, v2) ∈ W :

(v1, v2 > v+, v2 ≤ v1, (5.19a) holds),

or (v1, v2 > v+, v2 > v1, (5.19b) holds),

or (v1, v2 < v−, v2 > v1(5.19c) holds),

or (v1, v2 < v−, v2 ≤ v1, (5.19d) holds)},

(5.21b)

and Wg is what remains of W . That is, Wg = W \ (D ∪Wo ∪Wg. The v∗1 and v∗2 in (5.21a)
are the v1 and v2 when (5.19a) and (5.19b) are set to be equalities. The Wo region definition
is the same as that of the 2-LTC system Σ1 (5.5), with the distinction that equations (5.19)
have the additional r term.

W ′ WgWg

WbWb W0W0

vdiff > 2ϵ− v̄L

D oscillation

no yes

WgWgW ′

D

v∗1 − v+v∗1 − v+v∗2 − v+v∗2 − v+

v1

v2

W0Wb

Figure 5.7: State space behavior of the four-device system Σ3 when g < 0. Left: State
transition diagram, indicating the possible behavior of trajectories. Right: State space
partitioned into regions based on trajectory behavior. Example trajectory of device hunting
is plotted, where the blue square marks the initial condition.

Fig. 5.7 shows these state space regions as well as the possible transitions between
regions. The trajectory of Fig. 5.6 is plotted on Fig. 5.7 with a blue square marker for
the IC. Observe that the trajectory oscillates until eventually leaving W . In addition to the
possible transitions for system Σ1 in Fig. 5.3, this system has: Wb → Wg, Wo → Wb, and
Wo → Wb since the inverter pushes voltages away from D.
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When the IC is in Wg or Wb, there may exist a k0 > 0 where the full state vector
x[k0] = [0, 0, 0, v1[0], v2[0]]

⊤. Because Σ3 is time-invariant, the Fig. 5.7 regions apply to
any x[k0] where x[k0] = x[0]. For example, the system IC could be in Wg then later have
x[k0] ∈ Wo, after which point the behavior would be the same as if the system started in Wo.

5.3.6 Conditions for Oscillations to Begin when g < 0

In this section we consider trajectories where v[k0] ∈ Wo. As illustrated in Fig. 5.7, Wo

is comprised of four disjoint regions. If hunting occurs in the lower region of Wo (f1 = 0
while f2 < 0), the hybrid system mode sequence (MS) that creates one period of oscillation is
α1 := {m50,m10,m60,m50,m40,m70} after omitting the increment mode (m80) for brevity.
Similarly, let α2, α3, and α4 be the oscillation sequences when the IC is in the upper, left,
and right-hand regions of Wo, respectively.

Lemma 8. (Basis step for oscillations) Consider system Σ3 with g < 0. When f1 = 0 while
f2 < 0, necessary and sufficient conditions for completing one oscillation period starting at
time k0 are

v1[k0] + η∆vinv2 (χ, k0 +N2, k0, v2[k0]) > v− (5.22a)

v[T1] > v− (5.22b)

v[T1] + η∆vinv1 (χ, k0 +N1, k0, v[T1]) < v+ (5.22c)

v[T2] + ∆vinv(χ, k0 +N1, k0, v[T2])− v̄L < v+ (5.22d)

where v[T1] = v2[k0] + ∆vinv2 (χ, k0 +N2, k0, v2[k0]) + v̄L, and v[T2] = v1[k0] + η∆vinv2 (χ, k0 +
N2, k0, v2[k0]) + v̄L.

Proof. Follow along with Fig. 5.6. We will express sequence α1 in terms of the system voltage
trajectories. For the IC, v2[k0] is an undervoltage and v1[k0] in the deadband. Inverter2
responds to the v2 undervoltage, but due to g < 0 it decreases both voltages. To prevent
inverter2 from pushing both voltages below the deadband, we require that

v1[k0] + ∆vinv1 (X12, k0 +N2, k0, v2[k0]) > v−.

Next, with the persisting v2 undervoltage, LTC2 taps which increases both voltages. To
create overshoot so that v1 has an overvoltage, we require that

v2[k0] + ∆vinv2 (X22, k0 +N2, k0, v2[k0]) + v̄L > v−.

Inverter1 responds to the v1 overvoltage, but due to g < 0 it increases both voltages. To
prevent inverter1 from pushing both voltages above the deadband, we require that

v[T1] + ∆vinv2 (X12, k0 +N1, k0, v1[T2]) < v+.
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With the persisting v1 overvoltage, LTC1 taps which decreases both voltages. To create
overshoot so that v2 becomes an undervoltage, we require that

v[T2] + ∆vinv1 (X11, k0 +N1, k0, v1[T2])− v̄L < v+.

Finally, we substitute equation (5.11) into all above equations and apply Lemma 7 to the
first and fourth equation, giving the conditions in the lemma statement.

5.3.7 Showing Oscillations Continue when g < 0

Next we show that once the MS α1 occurs, the next MS will be α1 while v ∈ Wo. The same
process can be applied to the other MS α2, α3, and α4.

Define m[ki] as the mode that system Σ3 is in at time ki. Across each α1 MS, vdiff

increases. We will prove that in the next section, but note that as a result the voltage that is
outside D gets further from vref across each α1 MS. Next, consider the following condition:

vinv1 (k5, k4, v1[k4]) + ∆vinv1 (k3, k2, v1[k2]) > 0 (5.23)

Lemma 9. (Induction step for oscillations) Consider system Σ3 with g < 0. Assuming
condition (5.23) and Assumption 7 holds, if the system completes MS α1, the MS α1 will
repeat.

Proof. Use Fig. 5.6 to follow along. m[k4]: at k0 inverter2 actuates and m[k0] = m50 so
v2[k0] /∈ D. Because v2 gets further from vref , v2[k4] < v2[k0], so v2[k4] /∈ D too. From
Assumption 7, v1[k4] cannot be outside D, so v1[k4] ∈ D. Thus inverter2 actuates at k4 and
m[k4] = m50.

m[k5]: Because g < 0, inv2 actuating (m[k4] = m50) will keep v2 /∈ D. If the inverter’s
coupling effect on v1 is strong enough, even though v1[k4] ∈ D, v1 could go below the
deadband by the time of k5. By Assumption 8, the inverter actions summed with an LTC
tap are not large enough for this. Thus at k5, v1 is still inside D and v2 is still outside D.
So at k5 LTC2 taps up and m[k5] = m30.

m[k6]: The LTC2 tap may not overshoot the deadband at k6. If (5.23) does not hold,
then v1[k6] ∈ D, by Assumption 7, v2[k6] ∈ D too, and the system stays in the deadband.
If (5.23) does hold, inverter1 actuates and m[k4] = m50. m[k7]: Assumption 8 disallows v2
from going above D (like how in m[k5] it disallows v1 from going below D). Thus at k7, v2
is still inside D and v1 is still outside D. So at k7 LCT1 taps down and m[k7] = m20.

Lemma 10. (Oscillations grow) If system Σ3 with g < 0 has oscillations, vdiff increases
after each oscillation period.

Let s1 be the set of (v1[k0], v2[k0]) where basis conditions (5.22) hold. The sets of condi-
tions that correspond to sequences α2,α3, and α4 are derived with the same process as the
Lemma 8 proof, and we call their corresponding sets s2, s3, and s4. Then we define

S := (
⋃

i=1,...,4

si) ∈ Wo (5.24)
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which is the only voltage region where oscillations can begin. Note that with the ∆vinv

parametrized form (5.18), S can be represented by purely the variables listed in Table 5.1.

Theorem 5. (Stability when g < 0) Define T1 as the first instant where v[T1] ∈ D, and
define T2 as the first instant where v[T2] ∈ W ′. When g < 0, v[k0] ∈ S is necessary but
not sufficient for system Σ3 to exhibit growing oscillations starting at time k0. These
oscillations terminate either at time T1 or T2.

Proof. Lemma 8 (basis step) establishes that (5.22) are necessary for on period of oscillations
to occur. By Lemma 9 (induction step), the system continues to oscillate after the first
oscillation period. Lemma 10 establishes that the oscillations grow, so the system will
eventually land in D or outside W .

Theorem 5 implies that when g < 0, the only way for Σ3 to exhibit oscillations is when
v[k0] ∈ S, where S is defined in (5.24). To use this theorem, engineers would choose control
parameters such that S = ∅. Further, if each device has a copy of all control parameters,
they can reject incoming parameter updates when S ̸= ∅.

5.4 Case Studies

In this section, we validate the stability conditions derived above through numerical experi-
ments with realistic parameter settings. We project the derived parameter conditions onto
two-dimensional spaces to demonstrate important relationships between device operating
parameters. Then we discuss initial ideas for extending the mathematical formulations to
circuits with more than four devices.

5.4.1 Plots in the Parameter Space

In this section we use MATLAB’s MPT toolbox to plot set S (5.24) in the (v1, v2) space and
examine its implications on the ratio of the device control delays. Recall that S is the only
voltage region where oscillations can begin, and includes the projection of basis conditions
(5.22) onto the (v1, v2) space.

In Fig. 5.8 we plot S on the (v1, v2) space, and validate that S in the right panel of Fig.
5.8 is indeed a subset of Wo from (5.21a), as both sets have width of 0.0095 pu. Observe that
some corners of Wo are not included in S because trajectories that start there leave W before
completing an oscillation period. We also observe that in the right panel of Fig. 5.8 where
oscillations can grow, the area of S is smaller compared to when oscillations are damped in
the left panel of Fig. 5.8. It is relieving that the regions where dangerous oscillations could
occur are narrow.

Next we examine the appropriate timescale separation between the inverters and LTC1
for system Σ3 when g < 0. Because N1 = floor(dL1/dinv) and N1 enters ∆vinv as the exponent
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Figure 5.8: Plot of set W (light gray), set S (medium gray), and set D (dark gray) in the
(v1, v2) space using default parameters in Table 5.1. Left: State space regions when g = 0.5.
Right: State space regions when g = −0.3.

Figure 5.9: Plot of system Σ3 when g < 0 in the (dL1, dinv) space, where the remaining
parameters are in 5.1. Each line represents delay ratio dL1/dinv. Hunting is impossible
(S = ∅) for ratios marked in light gray, and possible (S ̸= ∅)for ratios marked in dark gray.

(see (5.18)), Each fixed N1 represents the slope of a line through the origin on the (dL1, dinv)
space. As such, varying dL1 and dinv such that N1 is fixed will not change the S region on
(v1, v2). Therefore, rather than iterate over the (dL1, dinv) in a meshgrid, we compare the
area of set S for lines corresponding to different N1 values.

We set all variables except v1[k0] and v2[k0] to the defaults in Table 5.1. Instead of
dL1 = 30 and dL2 = 40, which have a ratio of 4

3
, we set N2 =

4
3
N1 since N2

N1
= dL2

dL1
. We vary

N1 from 5 to 29. For each N1 value, if S = ∅, then hunting oscillations are impossible for
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Figure 5.10: Plot of whether the system Σ3 is guaranteed against hunting or not the (g, v̄L)
space, where the remaining parameters are in 5.1. Hunting is impossible (S = ∅) when the
magnitude of g is large enough compared to v̄L.

all v[k0] ∈ W , and we mark the line with slope N1 as light gray in Fig. 5.9. Conversely,
if S ̸= ∅ then the N1 line is dark gray. The line dinv = dL1 is also marked to only allow
the dinv < dL1 from Table 5.1. We observe that N1 = 17 = floor(dL1/dinv) is the borderline
case where hunting is impossible. For example, if the inverters have a 3-second delay, the
substation LTC needs at least a 51-second delay to prevent hunting for all IC in W .

Finally, we focus on the relationship between inverter parameter g and the LTC parameter
v̄L. These parameters are important to analyze because they may be capable of being
adjusted more often than the delay parameters. We set all variables except g and v̄L to
the defaults in Table 5.1, and sample reasonable parameter ranges of v̄L ∈ (0, 0.07) and
g ∈ (−1, 1.5). We observe that hunting is possible (S ̸= ∅) when v̄L is large compared to
the magnitude of g, which is expected since the oscillatory behavior originates from LTC
actions (see Fig 5.4). Additionally, for sufficiently positive g (around g > 1.2), the system
is guaranteed to not exhibit hunting for any v̄L. The hunting boundary in the figure is
exponential in nature because the change in voltage due to inverter actions is an exponential
function of g (see (5.18)), and the LTC tap voltage v̄L imparts a direct change in voltage in
the same or opposing direction.

5.4.2 Grids with More than Four Devices

Radial distribution grids are typically tree graph networks whose root is the substation (see
Chapter 2 section 2.1.2). Each node has one or more branch(es), where each branch is a tree
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graph network connected to that node’s edge(s). Suppose that there is at most one LTC
and at most two actively controlled inverters on each branch b of the root node, as shown
in Fig. 5.11. Then the combination of each branch with the root node comprises a system
of the substation LTC, the LTC on the branch, and two inverters on the branch. We can
characterize each system as Σ3 and setup conditions to prevent oscillations separately using
the methodology of section 5.3. The conditions across all branches must be jointly satisfied,
but because the substation LTC is common to all subsystems, as b grows the number of
parameter variables grows by 3b+ 1 instead of 4b.

Figure 5.11: Example radial distribution grid, indicating the three branches associated with
the root node of the graph.

5.5 Conclusion

We have presented a novel hybrid system model for LTCs with inverters on radial distribu-
tion circuits. Leveraging the system dynamics, we have derived conditions on the control
parameters to guarantee against voltage oscillations created by device hunting. The condi-
tions inform the design of appropriate parameters, such as the minimal timescale separation
of control delays between LTCs and inverters. The conditions also provide the foundation for
implementing onboard certificates that guard against malicious firmware updates of control
parameters.



97

Chapter 6

Principles and Future Work

In the final chapter of this thesis, we summarize key concepts presented in this thesis and
present further research directions. Then we describe key principles synthesized from the
work and describe a vision for device controls in industry. Many of the ideas about industry
have been inspired by conversations with distribution operators at real utilities.

6.1 Future Work:

6.1.1 Externally Defined Communication Networks

Distribution grids can benefit greatly from coordination among DERs, but currently have
limited communication and computational capabilities. For a given set of DERs, there
are a variety of reasons why each DER may not have access to measurements from all
other DERs through communication channels. For example, there can be restrictions from
geographic distance, privacy concerns, and differing ownership. We saw in Chapter 3 how
a set of feedback controllers could be designed to accommodate any given communication
limitations or requirements. Specifically, the analysis tools do not make any assumptions
about where the DERs are sited relative to the voltage sensors, nor about what set of
measurements each DER can access. As a result, the derived stability regions generalize
across possible communication networks. However, since the system stability is characterized
by a given impedance model, given locations of DERs and sensors, and given communication
requirements, changes to any of these items affect the system stability. For example, we
proved that the addition of any DER-sensor pair increases the system stability, while the
removal of a pair decreases system stability (Chapter 3 Proposition 1). As a result, the gains
of all controllers need to be updated whenever the system changes, including cases of DER
malfunctioning and disconnection.

Naturally, future work would have each DER adaptively update its controller gains.
That way, when the grid network topology changes, DER communication is lost, or DERs
disconnect, the system maintains stability automatically without needing to be re-designed.
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Adaptive control is a well-studied area of control theory literature where each device updates
a control policy as a function of the mismatch between estimated measurements from an
internal model and measurements from the real system. Several works have applied adaptive
control to distribution grid voltage mitigation [53,103], but it would remain important for the
control design to accommodate any externally defined communication network. In addition
to allowing DER to incorporate measurements from any subset of sensors, a communication-
agnostic control approach could be designed to handle other communication irregularities,
including measurement delay and measurement loss.

6.1.2 Ranges of Operating Parameters

Over the last few decades, a large number of DERs have been deployed behind-the-meter
DERs, such as solar PV. These devices are operated with a total focus on reducing the
customer’s net energy bill. Unfortunately this customer-centric operation can adversely
impact the power quality of the distribution grid, for example by increasing voltage volatility
and creating reverse power flow. Naturally then, it’s important to incorporate objectives by
both customers and grid operators into computing DER power set-points. One way to do
this, as we saw in Chapter 3, is to compute ranges of stable operating parameters for each
DER. The range captures the objective of grid operators to regulate voltages and power
flows, while giving customers the freedom to adjust the DER’s responsiveness to grid issues
to improve their own economic outcomes. In a future where customers will be compensated
not only for pure power output, but also for modulation of power to improve grid reliability,
the weight of these preferences will often fluctuate. Future work would focus on algorithms
to perform real-time parameter adjustment within the given range to maximize economic
outcomes. The adjustment would include the latest literature on BTM optimization of
batteries, and expand on the example given in section 3.5.1. Also we would seek polytopic
geometry methods to widen the parameter ranges, for example by identifying the parameters
that cause degeneracy of the stability polytope or form a critical cluster (as seen in [61]).

6.1.3 Reachability during Ride-Through Events

Region of Attraction

In Chapter 4, we were interested in abnormal voltage situations where following a large-signal
disturbance the voltage recovers slowly. We assumed that the system operating point directly
after the large-signal disturbance occurs is in a stable region associated with the equilibrium
point of one per unit, to focus on a system comprised of the controller dynamics and the small-
signal fluctuations from devices not under our control. If modeled with total fidelity, real
distribution grids would be represented as highly nonlinear time-varying dynamical systems
with multiple equilibria. As such, the large-signal disturbance could push the voltage into an
oscillatory operating region, as demonstrated in [104] where motor loads are modeled with
nonlinear dynamics. In future work we would determine the region of attraction around the
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1pu equilibrium to characterize the boundary that guarantees against the system entering
an oscillatory state. Then we would have operating states where the reachability analysis
of Chapter 4 provides fast-recovery guarantees, and operating states where the system has
dangerous oscillations. One could then focus on the dangerous case of oscillatory behavior
around other equilibria and draw inspiration from the analysis of oscillations in Chapter 5
that investigates whether DERs could reduce the oscillations or return the system to the
safe 1pu region of attraction.

Designing for Reachability

In Chapter 4, we have an autonomous system, where the control law (4.5) is chosen and
applied to create a close loop system. The reachability analysis determines the full set of
initial conditions whose trajectories can arrive at the safe set using the given control law. A
natural extension is to design a control law rather than assess a selected one. That is instead
of computing a series of invariant sets,

O = {x ⊂ X ⇒ x(t) ∈ O ∀t ∈ N+} (6.1)

we could compute control invariant sets.

C = {x ⊂ X ⇒ ∃u(t) ∈ U | f(x(t), u(t)) ∈ C ∀t ∈ N+} (6.2)

Control invariant sets are computed for systems subject to external inputs. They determine
the set of initial states for which there exists a controller that results in the system meeting
all constraints on the input and state. Because all control invariant sets are invariant sets,
the computed control invariant sets would be larger, and can help one design the control
policy at each step of the trajectory calculation.

6.1.4 Stability of Systems with Load-Tap Changers and Inverters

In Chapter 5, we demonstrated how a distribution circuit model, composed of two LTCs
and two inverter devices, can create voltage oscillations even with reasonable choices of
control parameters. Though hunting among LTCs has been observed by utilities since the
1980s [93, 94] and was modeled as a hybrid system in the 2007 paper [94], the investigation
and prevention of hunting between LTCs and inverters is a novel problem. As a result, many
future directions extend the small-scale system of devices comprised of relatively simple
dynamical equations examined in Chapter 5. For example, in Chapter 5 the grid’s loads
were assumed to be static constant power loads, which did not impact the system’s dynamics
matrix. In reality, the transient behavior of dynamic loads might be slow enough to interact
with LTC and inverter dynamics, especially during abnormal voltage circumstances where
motor loads stall and can cause oscillating voltages on their own [104]. Another avenue
for exploration is to explore parameter relationships that guarantee against oscillations for
grids with many devices. In Chapter 5 we describe the initial formulation for how one could
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decompose an arbitrarily-sized distribution network into a group of sub-systems coupled by
the substation LTC (see Figure 5.11). From there, it would be important to compare how
the parameter relationships become more conservative for larger grid systems. For example,
with appropriate parameter default values we found the ratio of timescale separation between
LTCs and inverters to be at least 17 (see Figure 5.9). With many devices that required
timescale separation is likely to grow. Finally, in the case where undamped oscillations
occurred, we described how the triggering event for the oscillations could be a cyberattack
scenario where an abrupt change in voltages is followed by the negation of the inverter
controller parameter. We did preliminary experimental work to identify examples of power
injections that result in these kinds of voltage shifts, but in future work we would supplement
these results with a derivation of a set of ’dangerous’ power injections. That way, there would
be better context for the kinds of real grid disturbances — such as faults, cloud cover, and
disconnection of load — that enable the dangerous oscillation case.

6.2 Principles and Recommendations:

6.2.1 Principles for Good Device Controls

There are many approaches to designing and operating devices, such as DERs and voltage
regulation equipment, on distribution grids. Rather than advocating for specific approaches,
in this section we identify a few important principles that should inform the selection and
implementation of an approach. Device control strategies should:

i. provide an immediate response to disturbances or model error

ii. provide guarantees against dangerous behavior

iii. not require extensive computation and communication

iv. provide transparency into decision making

For (i), a disturbance is any change in the state of a system as a result of an external
trigger. On distribution grids disturbances can include faults, sudden changes in load or
solar PV, and voltage regulation equipment. Yet disturbances are likely to become more
pronounced as more active devices operated by different entities are installed on distribution
grids. As a result, real-time responsiveness of device controls is critical to preserving safe
operation of the grid at all times. Throughout this thesis, we demonstrated how feedback
control laws — control logic where an action is taken as a direct function of measurements
— provide this kind of immediate response to disturbances. Certain implementations of
distributed optimal power flow (OPF) may also enable DERs to respond appropriately to
disturbances [13,56,59]. Specifically, in feedback-based distributed optimization, the process
of solving the optimization problem via steepest descent iterations is directly executed as
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feedback, ensuring that the system is driven in the right direction instead of stalling each
time an optimization problem is being solved .

For (ii), it is important to use proofs and closed-form analytical expressions to guarantee
against dangerous behavior. Reliable and safe electricity is seen by many as a basic need, and
sometimes a basic right. Therefore, one of the most important priorities in grid operation is
to preserve the safety of the grid. In electric grid research, it can be more valuable to prove a
dangerous scenario cannot occur than to simulate many possibilities and check for the pres-
ence of any dangerous scenarios. In this thesis, we adopted stability and reachability analysis
techniques to guarantee against control behavior that is unstable (Chapter 3), prohibitively
slow (Chapter 4), and oscillatory (Chapter 5) that is validated with (but does not require)
system simulation. The techniques expressed system behavior without the need for direct
simulation. Optimization-based approaches can directly prescribe safe grid operation with
optimization solutions, but as optimization problems require significant computation time,
there continues to be a danger of the grid becoming unsafe between optimization iterations.

Item (iii) is explained in the next section, section 6.2.3.
For (iv), a single control framework can operate over 800,000 micro-inverter devices at

once [105]. That much consolidated influence on the power grid reminds us that any adopted
control approach needs to have transparency into the how and why of the decision-making.
In an obvious sense, this idea promotes item (ii) where we can better guarantee against and
respond to dangerous behavior. Additionally, this transparency promotes the adoption of
control approaches by industry and helps diagnose problematic behavior when unforeseen
conditions change. Some optimization formulations focus too much on how to formulate
and solve the optimization problem, without demonstrating the methodology or providing
details on why the solution is reasonable. For example, several works such as [25,26] compute
optimal DER or sensor placement using mixed-integer optimization formulations, but do
not show and discuss the actual placement results themselves. That kind of discussion is
important for understanding trends and building intuition about what factors make a good
placement. Having this transparency was a core reason we investigated DER and sensor
placement from a dynamical systems perspective in Chapter 3.3.2. Optimization approaches
could also achieve this transparency using optimization sensitivity analysis, which computes
how variations of particular optimization parameters affect the optimal solution.

6.2.2 Theoretical Validity of Stability Guarantees

The previous section described the importance of using dynamical system models to prove
theoretical guarantees against dangerous behavior. However, these guarantees are only as
valid as the models they are derived from. Because the power grid is highly complex,
models of grid phenomena are never 100% valid with respect to the real world (i.e. all
models are somewhat wrong). Simplifications are often made to tractably and clearly solve
problems, which introduces error between the system model and the real physical phenomena.
Therefore, scrutinizing sources of modeling error and quantifying model fidelity is critical to
supplementing dynamical system analyses.
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One major source of model error in solving power systems problems includes linearizing
dynamical equations so that certain analyses (such as the eigenvalue analysis in Chapter 3)
can be performed. For example, in this thesis, the non-linearity for representing DER satu-
ration was not modeled when designing the DER control so that eigenvalue analysis could be
performed on the linear model. Optimization formulations also typically include linearization
so that solving the problem can be tractable and so that the solution is trustworthy (local
optima may not be global optima). Model error can also come from assumed uniformity of
device models. Specifically, in this thesis we model all DERs as power injectors, but DERs
have further constraints and preferences that vary by DER type. Optimization problems,
notably, do have more flexibility in accommodating variations in equation structures that
are associated with different resource models. Finally, model error can come from assuming
a timescale separation between types of physical phenomena so that certain grid devices or
loads are omitted from the model.

Now that we have established several common sources of modeling error in power systems,
it is important to quantify the error, and assess the validity of proven guarantees given
the modeling error. In Chapter 3 we used the spectral radius of the dynamics matrix to
quantify how relatively how close a candidate controller design is to instability. These relative
stability metrics enable grid operators to choose the controller design that is the most robust
to modeling error among the candidates, which may also coincide with the best voltage
regulation performance. Admittedly, because those stability metrics are relative, they do not
indicate whether the true model error encountered can be overcome by the chosen controller.
Some analyses do incorporate a model of the uncertainty to convey how well the control
design performs with the model error. For example, in Chapter 4 we performed a reachability
analysis to guarantee that the designed DER control overcomes a second-wise uncertainty
model. The uncertainty model captured 95% of voltage uncertainty observed from real
µPMU data. An uncertainty model can also be incorporated into the controller design itself,
which is a core concept in stochastic and robust control. As a greater variety of devices begin
to act on the same timescale in distribution grids, robust and stochastic approaches may
become an important aspect of future work. We note that these complex, model-dependent
approaches should be reserved for applications where the uncertainty is so significant and
difficult to represent that uncertainty metrics and analyses are insufficient for achieving good
control performance.

6.2.3 Aligning Research with Real Grid Problems and
Capabilities

The electric power industry is in a time of great flux. There is an explosion of available
data, but it is accessible by different entities and typically needs extensive processing and
interpolation. Many active devices are being installed and operated, but there continues
to be limited coordination between devices and awareness of their real-time status. As a
result, theoretical methods in control theory, optimization theory, graph theory, and machine
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learning can fail when met with the limitations of real grids, especially distribution grids.
For example, currently (year 2022) virtual power plant companies encounter significant solar
PV and load forecasting errors, which may cause control algorithms that hinge on net load
predictions to fail or be highly sub-optimal. Real grid limitations vary by region and are
rapidly evolving, so it is critically important for researchers to frequently ask about such
limitations to industry players, including grid operators (utilities), DER management system
(DERMS) companies, aggregator (sometimes called virtual power plant) companies, and
grid data analysis companies. For each, researchers should understand their basic business
model, what assets they own and operate, what models they have access to, and what data
they have access to. We note that though utilities have similar organizational structures —
having distribution operations, distribution planning, transmission, and billing departments
— they vary greatly by their adoption of modern grid devices, grid network model fidelity,
and interest in customer autonomy. Therefore, it is important to talk to many different
utilities to develop approaches that address common challenges while generalizing across
variations in needs and capabilities.

Once researchers calibrate their approaches with industry needs and capab ilities, they
should package their algorithms and analyses into standalone tools that can be downloaded
and run independently (for example through Github repositories such as [106]). Moreover,
the tools should have detailed visual components that demonstrate the inner progression of
the analyses or illustrate relationships between important design factors (promotes principle
(iv)). By having these visual properties, the tools may be more easily adopted by grid
operators. Tools can also be more compelling if they mimic existing tools that are already in
use. For example, our stability analysis tool in 3 mimicked the aesthetics of hosting capacity
maps. See the related thesis [107] for a detailed exploration of visual data analysis tools for
grid operators.

6.2.4 Vision for DER Controls on Distribution Grids in Industry

Given the approaches implemented and principles learned in this thesis, we have recommen-
dations for different industry players as it pertains to control on distribution grids.

First, we have recommendations for policy makers and utilities. While power electron-
ics, computation, and data analysis technologies have advanced significantly in the last few
decades, market mechanisms and regulatory policies for distribution grid operation have
lagged behind. We recommend that policy makers create new markets dedicated to com-
petition between DERs that reward them for alleviating distribution and transmission level
issues. To accompany this market, ISOs and utilities should work together to create a dis-
tribution service marketplace, where utilities and/or aggregators coordinate device actions
to efficiently deliver power and increase distribution grid reliability and resiliency. Many
utilities have deferred the responsibility of owning and monitoring DERs to aggregators and
customers, but the utility’s objective of maintaining safe grid operation may be at odds with
the customer’s objective of producing DER power that reduces their energy bill. Therefore,
utilities should own and operate their own DERs, with the help of DERMS companies, that
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directly service their priorities, much like legacy voltage regulation equipment already do. If
utilities do not have the time, expertise, or institutional buy-in to purchase their own DERs,
utility commissions should incentivize or mandate them to do so.

Secondly, we have recommendations for DER aggregator companies. These companies
work with utilities and customers to install DERs at customer sites. They offer customers
a lower electricity bill and historically were paid by utilities to perform demand response,
where aggregators shed customers’ loads during a grid event. For example, a grid event could
be during the one or two hour time of daily peak load. The challenge with this business
model is the control is coarse and delegated to utilities and customers. To leverage the
proliferation of other DERs (solar, batteries, EVs, water heaters), aggregators should take
back their control. That is, when deploying DER integration programs, they should set up
contract agreements and implement control logic to modulate customer DER power outputs
that optimize device operation across the day. This control setup will be rewarded when the
DSO markets become established. In the meantime, aggregators should collect grid models
and data to analyze grid impacts, so that when utilities can be compensated for reliability
services in DSO markets, DER aggregators are ready to help provide those services.

Finally, we present a vision for the future of distribution grid operation, where a distribu-
tion service marketplace is governed by a distribution system operator (DSO). Background
about the concept of DSOs can be found in [108].

During normal operation, the grid operator’s goal is to efficiently operate the power grid
and prevent the grid from having a grid event. Each DER should generally output whatever
power that is available from the resource, with some modulation of the output in response to
to small deviations in voltage or frequency. DERs should have some amount of communica-
tion with each other so that they can share power and contribute to power quality objectives
together. The DER control algorithm could be a distributed OPF formulation if communi-
cation between all neighboring DERs is realizable, otherwise it could be a set of feedback
controllers (see Chapter 3). We note that during normal operation, DER control would
not require direct commands or measurements from utilities. Specifically, investing in real-
time communication between every DER and the utility substation may not be worthwhile.
Gathering performance data and compensating DERs for their services is not time critical,
so can be handled over the internet without direct communication links. The result is that
DERs autonomously respond to voltage and power flow issues, saving money for customers,
and defer the cost of infrastructure upgrades for utilities. Regions where there are not many
active devices, and severe barriers to setting up communication may be particularly suitable
to have DERs operate only in normal mode.

When normal operation is insufficient in addressing grid imbalance, voltage, or other
issues, we envision a different process for grid services that is captured by Fig 6.1, which has
been adapted from a chart presented by Camus Energy [109]. During a grid event, such as
during adverse weather conditions or when the transmission system is highly constrained, the
goal of the grid operator is to prevent damage to equipment and actively mitigate the grid
event so that the grid returns to normal operation. The DSO is the central decision maker,
which is typically a utility but could also be a third-party coordinator. The DSO monitors
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Figure 6.1: Flowchart of the suggested response by the DSO and DERs during a transmission
or distribution grid event.

real-time measurements and forecasted demand and generation to detect a significant and
persistent grid issue, such as an overloaded transformer, frequency drop, or voltage spike.
When the issue is detected, the DSO computer identifies DERs that can be controlled (owned
by utilities or customers), which need two way communication with the DSO. The DSO
identifies what grid service is needed, and sends a price for power (real and/or reactive) to
each DER. Depending on the pricing computation, the price can be location-dependent (as
in D-LMP setups [110]) since power provided at different grid locations may have different
capabilities to mitigate the grid issue. Each DER uses their given price to compute a bid
for producing or consuming a certain amount of power, which is sent back to the DSO.
The DSO runs an auction and sends the clearing price and accepted bids back to each
DER. Finally, the DERs dispatch power according to accepted bids, which helps mitigate
the grid issue. We note that the aforementioned process, from detecting a grid issue to
DERs responding, needs to be done quickly, perhaps within a few seconds if the issue is
severe (see Chapter 4). As a result, streamlining this real-time process is a top priority for
many aggregators today. We predict that as aggregators and DERMS companies develop
further, DER coordination between customers and aggregators will evolve into a system that
achieves the carbon reduction goals, grid reliability goals, and energy savings goals sought
by its participants.
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Chapter 7

Appendix

7.1 Proofs of all Lemmas and Theorems from

Chapter 3

Proof of Lemma 1: From [63, Chapter 6.2], the controllable subspace is the range of the
controllability matrix

Wc =
[
B | AB | ... | An−1B

]
(7.1)

For our system, since A = I, Wc = [B | ... | B]. By the construction of B ∈ R2n×d (3.23c),
Γ2n(D) ∈ R2n×d spans the range of Wc. Then, since A = I, Wo = [C⊤ | ... | C⊤]. By the
construction of C = T s (3.23c), T s ∈ Rs×2n spans the range of Wo.

Proof of Lemma 2: By construction of T , TG = (T s)⊤, so C̄ = CTG = T s(T s)⊤ = Is
As a result, the reduced state vector output-readout map is y = C̄ē = Isē. Because the
output vector is the same for the original and reduced system, setting y = Ce = T se equal
to y = C̄ē = ē yields ē = T se.

Proof of Lemma 3: First, we will show B̄F C̄ = G⊤T−1(BFC)TG. Substituting C̃ = CT
into C̄ = C̃G gives C̄ = CTG. Substituting B̃ = T−1B into B̄ = G⊤B̃ gives B̄ =
G⊤T−1B. Together, we have B̄F C̄ = G⊤T−1(BFC)TG.

Next, we show F̄ = FC̄. Substituting y = C̄ē (3.28) into into y of u = −Fy (3.24)
gives u = −FC̄ē. Then combining u = F̄ ē (3.29) with this result gives −FC̄ē = F̄ ē.
Therefore, F̄ = FC̄

Finally, H̄ = B̄F̄ = B̄F C̄ = G⊤T−1(BFC)TG = G⊤T−1HTG.

Proof of Corollary 1: First we establish that Hip̄ = 0 for i = 1...2n ∀ p̄ ∈ S̄: Considering the
construction of matrix C in (3.23c), Cip̄ = 0 for i = 1...s ∀ p̄ ∈ S̄. Thus with H = BFC,
Hip̄ = 0 for i = 1...2n ∀ p̄ ∈ S̄

From Lemma 3, we know H̄ = G⊤T−1HTG. Then define H̃ = T−1HT . Considering
T , H̃ is a permutation of the rows and columns of H with the zero-columns of H collected
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on the right. It follows that H̄ = G⊤H̃G. Considering G, the upper left s× s block of H̃
is H̄ :

H̃ =

 H̄ 0

H̃12 0

 (7.2)

where the bottom-right diagonal block is 0 ∈ R(2n−s)×(2n−s). Because H̃ is block triangular,
its eigenvalues are equal to the union of the diagonal-block eigenvalues. Because H and H̃
are similar matrices, the eigenvalues of H and H̃ are the same. Thus the eigenvalues of H
are 2n− s zeros, and eig(H̄).

Proof of Theorem 2:
First, we call the set of all λ ∈ C that are eigenvalues of a matrix A the spectrum of A

and denote it with Λ(A).
(i) From [63, Chapter 5.3], a system is exponentially stable if the state trajectory decays

to zero and the trajectory is upper bounded by an exponential function. A discrete linear
time-invariant system x[k+1] = Mx[k] is exponentially stable iff the eigenvalues of M have
magnitudes less than one. Let the pair (µ,υ) be an eigenvalue of H̄ and (1−H̄), respectively.
By the spectral mapping theorem, υ = 1−µ. Thus with the given that µ ∈ B(1+0j, 1), then
υ ∈ B(0+0j, 1) ↔ |υ| < 1 ∀υ ∈ Λ(1−H̄). Then the close-loop system ē[k+1] = (I−H̄)ē[k]
(3.30) is exponentially stable.

(ii) From [63, Chapter 5.3], A system is stable in the sense of Lyapunov if xk is bounded
for all time k ≥ k0. A discrete linear time-invariant system x[k + 1] = Mx[k] is stable in
the sense of Lyapunov iff two conditions hold: the eigenvalues of M have magnitudes less
than or equal to one, and those equal to one are simple roots of the minimal polynomial of
M . Let the pair (κ,ζ) be an eigenvalue of H and (1 − H), respectively. For showing the
first condition: from Corollary 1, κ = µ ∀µ ∈ Λ(H̄), or κ = 0 with algebraic multiplicity of
2n − s. By the spectral mapping theorem, ζ = υ ∀υ ∈ Λ(1 − H̄), or ζ = 1 with algebraic
multiplicity of 2n − s. From (i), |υ| < 1 ∀υ ∈ Λ(1 − H̄), so the first condition is satisfied.
For showing the second condition: the multiplicity of a root in a minimal polynomial is the
smallest k such that the nullity of a matrix M satisfies Null(M − λI)k = n, where n is the
multiplicity of the repeated eigenvalue λ. Since the eigenvalues of (I −H) that are equal to
one have algebraic multiplicity of 2n−s, we want to show that Null(I−H−1·I) = 2n−s, or
equivalently that Null(H) = 2n− s. By the construction of C in (3.23c), for all i = 1...2n,
Hij = 0 and for j ∈ S̄ notice that the jth standard basis vectors ej for j ∈ S̄ satisfy
Hej = 0ej, so belong to the null space ofH . Finally, with s defined as |S|, Null(H) = 2n−s.
So (ii) is satisfied.

(iii) From Lemma 2, ē = T se. This implies that ē is comprised of {ep ∀p ∈ S}. From
(i), ē converges to zero exponentially, so ep does too ∀p ∈ S.

Proof of Theorem 3: From Theorem 2, we need to show the eigenvalues of H̄ are inside
B(1 + 0j, 1). We consider one row for each Gershgorin disc. If each of these Gershgorin
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discs are contained in B(1 + 0j, 1) then by Theorem 1 the union of the Gershgorin discs
(and thus all the eigenvalues) are inside B(1 + 0j, 1). Since all elements of H̄ are real-
valued, all Gershgorin disc centers are real-valued, so varying H̄ elements only causes the
Gershgorin discs grow, shrink, and slide horizontally with centers fixed along the real axis.
Thus necessary conditions for stability would keep the edges of each of the s Gershgorin
discs, (ϕi + γi,0) and (ϕi − γi,0) ∀i = 1, ..., s, inside the edges of B(1 + 0j, 1), which are at
(0,0) and (2,0).

Proof of Proposition 1: Consider modifications of Σ1. When an DER-sensor pair is added,
two indices are added to S, causing s to increase by two and matrix H̄ ∈ Rs×s gains two more
rows and columns. The addition of two more rows results in evaluating two more Gershgorin
discs in Theorem 3 that need to be in B(1 + 0j, 1). The addition of two more columns
results in the original Gershgorin discs becoming larger. The DER-sensor addition does not
modify the original set of diagonal elements of H̄ , so the original Gershgorin disc centers are
unchanged. Together, the union of two more Gershgorin discs with original Gershgorin discs
that have larger radii but have the same center makes ρub1 (H̄) larger, so stability is reduced.
By Lemma 1, m(H) = m(H̄) so system Σ1 has a decreased stability margin m(H).

Then the converse, where an DER-sensor pair is removed, involves S losing two indices, H̄
having two fewer Gershgorin discs, and the original Gershgorin disc radii becoming smaller.
The result Σ1 having an increased stability margin m(H).

Proof of Proposition 2:
Power-voltage sensitivity is given directly by a circuits resistance and reactances (3.5).

We assume that on a given radial distribution circuit, every line segment has some positive
quantity of resistance and reactance. Therefore, as the electrical distance |Zij| of a co-located
(i = j) actuator is increased by placing it deeper into the network, Xii and Rii increases.
As such, each unit of real or reactive power injection will change the voltage magnitude and
phase angle more. In general we want high sensitivity to make the DER power injections
meaningful.

For stability, observe that as Rii → ∞ and Xii → ∞, the inequalities (3.42a) or (3.42b)
will eventually be violated. Graphically, as Xii and Rii increases, from (3.38) and (3.39)
the associated Gershgorin disc center will shift to the right, and from (3.40) and (3.41) the
other Gershgorin disc radii will increase. Eventually, the disc associated with Xii and Rii

will exit on the right side of B(1 + 0j, 0), making the system unstable. Thus if in (3.42a)
and (3.42b) we fix controller gains F̄ and Xij and Rij for i ̸= j, we have a condition on Xii

and Rii for the maximum depth of location i to ensure stability of the system.

Proof of Proposition 3: By Lemma 1, the stability of Σ1 is determined by H̄ , so we focus on
H̄ instead of H . From Theorem 1, every element of H̄ is part of a Gershgorin disc center
or radii, so we can look at (3.38), (3.39), (3.40), and (3.41). In each of these equations, i
iterates over S1. By definition of S1 in (3.1), the xiℓ and riℓ terms only select the rows of X
and R that are associated with sensor nodes. No other impedances impact H̄ . Similarly, ℓ
iterates over D1. By definition of D1 in (3.1), the xiℓ and riℓ terms only select the columns
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of X and R that are associated with DER nodes.

Proof of Proposition 4: (efficiency): Note that by definition of Z,

Rij = min (Rii,Rjj) (7.3)

Xij = min (Xii,Xjj) (7.4)

For instance 1, because i = j, Zij = Zjj, so controller efficiency η1 defined in (3.43) will be
1. For instance 2, |Zij| < |Zii|, so by (7.4), Zij = Zjj, so η2 = 1. For instance 3, Zij = Zii,
so by (7.4) |Zjj| > |Zij|. Thus η3 < 1. Therefore, η1 = η2 > η3.

(stability): Recall H̄ = B̄F̄ with dense B̄ and F̄ having some given sparsity structure.
With Theorem 1 applied to H̄ , Xij and Rij contribute only to the jth Gershgorin disc
center and the p ̸= j Gershgorin disc radii. So Xij and Rij appear only in H̄pj for all
p = 1...s. For instance 2, Rij < Rii and Xij < Xii, so compared to instance 1 the jth

and j + nth Gershgorin disc center is shifted left, and the p ̸= (j, j + n) Gershgorin discs
have reduced radii. The Gershgorin disc shifting has an inconclusive effect in the stability
margin, so m(H̄2) may be greater or less than m(H̄1). For instance 3, Zij = Zii, so the jth

and (j + n)th Gershgorin disc center is the same as in instance 1. Since Zij = Zii, by (3.43)
|Zjj| > |Zij|, so the p ̸= (j, j + n) Gershgorin discs will have increased radii. If there are no
other Gershgorin discs besides (j, j + n), the radii will be the same compared to instance 1.
Therefore, m(H̄1) ≥ m(H̄3).

7.2 Computing an Optimal Box inside Stability

Polytope F from Chapter 3.5

min
f0∈Ry ,w∈Ry

−
y∑

i=1

log(wi) + µ(||f 0||2 + ||f 0 +w||2)

s.t. A+(f 0 + α ·w) ≤ b+ for each α ∈ Ψ

f 0
j ≤ 4

x11

∀ j = 1...y

w ≥ 0

(7.5)

where f 0 is the lower left corner of the hyperrectangle, and w is the vector of hyperrectangle
widths in each dimension. Set Ψ is comprised of all 2y possible combinations of a binary
vector in Ry. The inequality constraint enforces that every vertex of the hyperrectangle
is inside F . The allowable controller gain range (fmin, fmax) of the ith DER is given by
the projection of the hyperrectangle along dimension i. The weight parameter µ trades
off between maximizing the gain ranges represented by widths wi, and the minimizing the
actuation effort represented by the distance of the corners of the rectangle f 0 and f 0 +w
to the origin. That is, a smaller µ will grow the hyperrectangle but drive it away from the
origin. A larger µ will result in smaller gain ranges and overall smaller gain values.
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7.3 Minor Proofs of Lemmas from Chapter 5

Lemma 4 If v̄L > 2ε, system Σ1 will have marginally stable oscillations for all time when
any v1[0] ∈ M(D, c) or v2[0] ∈ M(D, c) where c = v̄L − 2ε > 0

Proof. If v1[0] ∈ M(D, c), LTC1 taps, causing v̄L to overshoot the deadband of width 2ε and
land outside D. After a delay dL1, LTC1 will tap in the opposite direction, landing at the
system IC. Then these actions repeat, causing v1 and v2 to oscillate with constant amplitude
for all time. When v2[0] ∈ M(D, c) we get the same oscillatory behavior.

Lemma 5. If v̄L ≤ 2ε, v[T ] ∈ Wo, and vdiff < 2ε− v̄L, system Σ1 will have marginally stable
oscillations starting at time T

Proof. First consider an IC in Wo (i.e. T = 0) where v2[0] is an undervoltage. Overshooting
the deadband with an LTC tap can be represented with

v2[0] < v− start with undervoltage

v1[0] + v̄L > v+.

Combining the above two equations gives vdiff > 2ε − v̄L. These conditions for v2[0] being
an overvoltage would yield the same vdiff > 2ε− v̄L. Now consider where our IC is not in Wo

but at time T we land in Wo. Because the system has no internal memory states, oscillations
will begin after this nonzero T as if the zero-start time was at T .

Lemma 6. If G ≺ 0, system Σ2 given by (5.9) has v → ±∞.

Proof. Let eig(M ) be a function that returns the set of all eigenvalues of matrix M . Define
a matrix Q = −G. Because G ≺ 0 and is diagonal, Q is diagonal and positive definite. The
proof of Theorem 3.1 in [1] shows that eig(XS) = eig(S

1
2
,⊤XS

1
2 ) ∈ (0, 2) for symmetric

X and diagonal positive definite S. Thus eig(XQ) = eig(Q
1
2
,⊤XQ

1
2 ) ∈ (0, 2). Then

eig(I−XG) = eig(I+XQ) = 1+eig(XQ). With eig(XQ) ∈ (0, 2), eig(I−XG) > 1. Thus
the spectral radius of (I −XG) is greater than 1, so e → ∞, and v → ∞ or v → −∞.

Lemma 7. The coupling effect of a single inverter actuating at node i on the voltage at node
j is damped by a factor of η. That is, ∆vinvj (Xij, k+N, k, vi[k]) = η∆vinvi (Xii, k+N, k, vi[k]).

Proof. From the update equations (5.14) and (5.15),

∆vinvi (Xii, k + 1, k, vi[k]) = −χ(vi[k]− vref )

∆vinvj (Xij, k + 1, k, vi[k]) = −ηχ(vi[k]− vref )

= η∆vinvi (Xii, k + 1, k, vi[k])
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By Remark 4, the voltage change at each timestep over [0N ] is additive in the same direction.
If we consider a duration over two timesteps,

∆vinvj (Xij, k + 2, k, vi[k]) =v[k + 2]− v[k + 1] + v[k + 1]− v[k] (7.6)

=∆vinvj (χ, k + 2, k + 1, vi[k + 1]) + ∆vinvj (χ, k + 1, k, vi[k]) (7.7)

=− ηχ(vi[k + 1]− vref )− ηχ(vi[k]− vref ) (7.8)

=η∆vinvi (Xii, k + 2, k, vi[k])

Lemma 10. If system Σ3 with g < 0 has oscillations, vdiff increases after each oscillation
period

Proof. We consider the case that the IC is below the deadband. We express the voltages
after the first sequence of modes and compare vdiff[k0] to vdiff[k4]

v1[k4] = v1[k0] + η∆vinv2 (k0 +N2, k0, v2[k0]) + v̄L

+∆vinv1 (k0 +N1, k0, c)− v̄L

v2[k4] = v2[k0] + ∆vinv2 (k0 +N2, k0, v2[k0]) + v̄L

+η∆vinv1 (k0 +N1, k0, c)− v̄L

where c := v1[k0] + η∆vinv1 (k0+N2, k0, v2[k0])− v̄L. Subtracting the above two equations, we
have

vdiff[k4] =vdiff[k0] + η∆vinv2 (k0 +N2, k0, v2[k0]) + ∆vinv1 (k0 +N1, k0, c)

−∆vinv2 (k0 +N2, k0, v2[k0])− η∆vinv1 (k0 +N1, k0, c)− v̄L

which simplifies to

vdiff[k4]− vdiff[k0] = (η − 1)(∆vinv2 (v2[0], N2)−∆vinv1 (k0 +N1, k0, c)) (7.9)

The damping factor has 0 < η < 1, so (η−1) is negative. v2[k0] is below the deadband, so
∆vinv2 (N2, v2[k0]) < 0, and v1[k2] is above the deadband, so ∆vinv1 (c,N1) is positive. Together,
(7.9) is always positive. Thus vdiff[k4] > vdiff[k0].

If we repeat this process for the case of the IC being an overvoltage, we get the same
final equation (7.9).
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