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Abstract

We study the problem of learning revenue-optimal multi-bidder auctions from samples when
the samples of bidders’ valuations can be adversarially corrupted or drawn from distributions
that are adversarially perturbed. First, we prove tight upper bounds on the revenue we can
obtain with a corrupted distribution under a population model, for both regular valuation
distributions and distributions with monotone hazard rate (MHR). We then propose new algo-
rithms that, given only an “approximate distribution” for the bidder’s valuation, can learn a
mechanism whose revenue is nearly optimal simultaneously for all “true distributions” that are
↵-close to the original distribution in Kolmogorov-Smirnov distance. The proposed algorithms
operate beyond the setting of bounded distributions that have been studied in prior works, and
are guaranteed to obtain a fraction 1�O(↵) of the optimal revenue under the true distribution
when the distributions are MHR. Moreover, they are guaranteed to yield at least a fraction
1 � O(

p
↵) of the optimal revenue when the distributions are regular. We prove that these

upper bounds cannot be further improved, by providing matching lower bounds. Lastly, we
derive sample complexity upper bounds for learning a near-optimal auction for both MHR and
regular distributions.
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1 Introduction

Optimal auctions play a crucial role in economic theory, with a wide range of applications across
various industries, public sectors, and online platforms [4, 15, 16, 18, 21, 22]. In such auctions,
pricing mechanisms need to be determined by the auction designer so as to satisfy various desired
goals, such as revenue maximization and incentive compatibility. Often this determination is made
based on information about the buyers that is assumed to be available a priori. For example, in a
standard valuation model, each bidder has a valuation over the available items, and if the sellers
knows the distribution of these valuations, they could design an optimal auction which maximizes
the revenue.

Arguably the fundamental di�culty in the design of optimal auctions is that real valuations are
private and unknown to the auction designer. Consider specifically the problem of selling one item
to multiple buyers. Suppose that we model the buyers’ valuations as arising as independent draws
from buyer-specific prior distributions. In this scenario, what is the optimal mechanism in terms
of the expected revenue? This problem was solved by Myerson [21] through a characterization of
virtual value functions. In particular, we can define a virtual value function of each buyer based
on their prior distributions. An optimal auction then lets the buyer with the largest non-negative
virtual value win the item, and charges the winner a price that equals the threshold value above
which she wins.1

Unfortunately, there is a further fundamental challenge in deploying these theoretical results
in practice, which is that in real-world settings the auction designer may not even know the prior
distributions on valuations. Instead, what the designer might hope for is that there is a stream
of previous transactions, or some other relevant auxiliary data, that is helpful in inferring the
buyers’ private distributions. This perspective has motivated an active recent literature learning
optimal auctions from samples [2, 7, 8, 9, 11, 12, 13, 14, 19, 20, 23, 24, 25]. In this line of work,
the central question is: suppose we are only able to access the prior distributions in the form of
independent samples, how many samples are su�cient and necessary for finding an approximately
optimal auction?

While this merging of mechanism design and learning theory is appealing, a further concern
arises. Given the potentially adversarial setting of auction design, do we really believe that the
data that we observe are drawn in accord with our assumptions? More concretely, is the learning of
optimal auctions robust to adversarial corruptions of the samples? This problem is arguably at the
core of what it means to learn an optimal auction. It is a challenging problem; indeed, as we show
in Counterexample 1 in Section 4, auction designs that are optimal in the absence of corruptions
can become arbitrarily bad even if a small portion of the samples are corrupted. Building on earlier
work by Cai and Daskalakis [6] and Brustle et al. [3], we tackle a key open problem—what is the
best approximation to the optimal revenue for arbitrary levels of corruption for distributions with
unbounded support? And what is the mechanism that achieves it?

In summary, in this work we explore the problem of the robust learning of optimal auctions,
where the samples of bidders’ valuations are subject to corruption and their support is unbounded.
In particular, we consider having access to samples that are drawn from some distribution D̃ which
is within a Kolmogorov-Smirnov (KS) distance ↵ of the true distribution D

⇤. Denote OPT as the
maximum revenue we can achieve under the true valuation distributions. Our goal is to design
mechanisms that are guaranteed to achieve a revenue of at least (1� ⇢(↵)) ·OPT for the smallest

1More generally, the optimal auction picks the winner based on the virtual value after an “ironing” procedure.
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possible error ⇢(↵) and with the use of a minimal number of samples.

1.1 Our results

We study the problem of learning revenue-optimal multi-bidder auctions from samples when the
samples of bidders’ valuations can be adversarially corrupted or drawn from distributions that are
adversarially perturbed. We summarize our main results as follows:

1. We derive tight upper bounds on the revenue we can obtain with a corrupted distribution
under a population model. For distributions with monotone hazard rate (MHR), and with
total corruption ↵, we obtain an approximation ratio of 1 � O(↵) compared to the optimal
revenue under the true distribution (see Theorem 3.6). For regular valuation distributions,
where for total corruption ↵, we get an approximation ratio of 1�O(

p
↵) (see Theorem 3.8).

2. To achieve these upper bounds, we propose a new theoretical algorithm for the population
model (see Algorithm 1) that, given only an “approximate distribution” for the bidder’s val-
uation, can learn a mechanism whose revenue is nearly optimal simultaneously for all “true
distributions” that are ↵-close to the given distribution in Kolmogorov-Smirnov distance.
The proposed algorithm operates beyond the setting of bounded distributions that have been
studied in prior works; indeed, they apply to general unbounded MHR and regular distribu-
tions.

3. We further show that these upper bounds under the population model cannot be further
improved (up to constant log factors), by providing matching lower bounds for both the
MHR and regular distributions (see Theorem 3.7 and Theorem 3.9).

4. Lastly, we derive sample complexity upper bounds for learning a near-optimal auction for
both MHR and regular distributions with multiple bidders (Theorem 4.3 and Theorem 4.4),
and propose a practical algorithm (see Algorithm 2) which takes samples as input. We also
provide accompanying sample complexity lower bounds (Theorem 4.5), and demonstrate a
small gap relative to the corresponding upper bounds.

1.2 Related work

Designing revenue optimal auctions is a classic problem in economic theory that has attracted much
research attention. We survey the most closely related work in two main areas.

Learning optimal auctions from samples. Recent work has explored settings of learning
approximately optimal auction from samples, both for single-item auctions [7], and multi-item
auctions [1, 2, 19, 25]. Most recently, Guo et al. [13] provide a complete set of sample complexity
bounds for single-item auctions, by deriving matching upper and lower bounds up to a poly-
logarithmic factor. While these approaches have obtained fruitful results on the sample complexity
of learning optimal auctions, a key assumption that is commonly made in this work is that the
samples are independently and identically drawn from the bidders’ valuation distributions, with
the goal of learning an auction which maximizes the expected revenue on the underlying, unknown
distribution over bidder valuations. A major di↵erence in our work is that we consider that the
samples can su↵er from potential corruptions, which is a significantly more challenging setting.

3



Robustness of learning optimal auctions. Our paradigm on the robust learning of optimal
auctions is closely related to recent work that considers the learning of auctions from mismatched
distributions or corrupted samples. Cai and Daskalakis [6] consider a multi-item auction setting,
where there is a given “approximate distribution,” and the goal is to compute an auction whose
revenue is approximately optimal simultaneously for all “true distributions” that are close to the
given one. They provide an algorithm that achieves a poly-↵ additive loss compared to the true
optimal revenue. More recently, Brustle et al. [3] consider learning multi-item auctions where
bidders’ valuations are drawn from correlated distributions that can be captured by Markov random
fields. However, they make a key simplifying assumption—that the bidders’ valuation for the items
lie in some bounded interval. Our results, by contrast, apply to the general setting of unbounded
valuation distributions, a setting that requires new theoretical machinery. To the best of our
knowledge, our work constitutes the first analysis of the learnability of single-item optimal auctions
from corrupted samples for unbounded distributions.

Organization. In Section 2, we provide background on auction models and formally state our
problem. Section 3 contains our main theoretical statements for the population model. We propose
an algorithm that achieves optimal theoretical upper bounds, by providing matching lower bounds.
Section 4 contains our main results on learning with finite samples. We provide a practical algorithm
that takes samples from the corrupted distribution, and provides sample complexity upper and lower
bounds for both the regular and MHR distributions cases. We conclude in Section 5.

2 Preliminaries

We begin by formally defining the setting we study for robust learning of optimal auctions, which
includes the revenue objective and the general classes of valuation distributions that we consider.

2.1 Auction models

Single-bidder setting. Consider one item for sale to one bidder. The bidder has a private

valuation v 2 R+ for this item. We assume that v is a random variable distributed according to
the distribution D

⇤, with support R+, cumulative distribution function F , and probability density
function f .

It is well known that the optimal auction in this setting is a reserve price auction, such that
the task for the seller is to compute a reserve price p that optimizes revenue [21]. We assume that
the bidder has a quasi-linear utility that is equal to u(p) = v � p if she decides to buy the item
and u(p) = 0 otherwise. The seller aims to set p such that her expected revenue—i.e., the received
payment—is maximized. We consider the setting where both v and D

⇤ are unknown to the seller.
However, the seller can access i.i.d. samples that are drawn from a distribution D̃, which is ↵-close
to D with regard to the Kolmogorov distance:

Definition 2.1. (Kolmogorov-Smirnov distance) For probability measures µ and ⌫ on R, define

dk(µ, ⌫) = sup
x2R

|µ((�1, x))� ⌫((�1, x))|.
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It is well known that dk(µ, ⌫) 6 dTV (µ, ⌫), where dTV denotes the total variation (TV) distance
between µ and ⌫. The closeness of D̃ to D

⇤ is thus formalized as follows:

dk(D
⇤
, D̃) 6 ↵,

for some ↵ > 0.
Multi-bidder setting. Consider one item for sale to n bidders. Each bidder has a private
valuation, vi 2 R+, where vi is independently drawn from the corresponding prior distribution D

⇤
i .

Thus, the valuations v = (v1, v2, · · · , vn) follow a product distribution D
⇤ = D

⇤
1 ⇥ · · ·⇥ D

⇤
n. Each

bidder submits a bid bi > 0. Denote all the bids as b = (b1, · · · , bn). A mechanism in this setting
consists of two rules: the allocation rule x(b) that takes the bids b and outputs the probability
xi(b) that each bidder i will receive the item, and the payment rule p(b) that takes the bids b and
outputs the payment of bidder i. Bidder i’s utility is then ui(b) = vi · xi(b) � pi(b). The goal of
the seller is to find a mechanism that maximizes the expected revenue E[

P
i2[n] pi(b)], where the

expectation is over v ⇠ D
⇤, under the following Dominant Strategy Incentive Compatibility (DSIC)

and the Individual Rationality (IR) constraints:

ui(vi,b�i) > ui(bi,b�i) for all vi, bi 2 R+ and all b�i 2 Rn�1
+ (DSIC)

ui(vi,b�i) > 0 for all vi 2 R+ and all b�i 2 Rn�1
+ . (IR)

We consider the setting in which the valuations and the prior distributions are unknown to the
seller. Instead, the seller has access to a finite number of i.i.d. samples drawn from the product
distribution D̃ = D̃1 ⇥ · · ·⇥ D̃n, where each D̃i satisfies

dk(D
⇤
i , D̃i) 6 ↵i,

for some ↵i > 0, 8i 2 [n].
Revenue objective. Letting D, D0 be product or single bidder distributions as described above,
we define MD to be the mechanism that achieves the optimal revenue for the value distributions D
and OPT(D) its expected revenue. Let also Rev(MD,D

0) be the expected revenue of the mechanism
MD when applied to a setting where the values are drawn with respect to D

0.

2.2 Monotone hazard rate (MHR) and regular distributions

For any bidder i with a valuation vi ⇠ Di, define the virtual value function for this bidder as

�i(v)
def
= v �

1�Fi(v)
fi(v)

, where Fi and fi are the CDF and PDF of Di. The hazard rate of the

distribution Di is defined as the function fi(v)
1�Fi(v)

. Then, the distribution Di is said to be regular if

the virtual value �i(v) is monotonically non-decreasing in v. Further, distribution Di has monotone

hazard rate (MHR) if fi(v)
1�Fi(v)

is monotone non-decreasing.

3 The Population Model

In this section, we study the problem of learning optimal auction assuming that we have the exact
knowledge of the adversarially perturbed distributions D̃. We relax this assumption in Section 4
where we show how to learn optimal auctions when we only have sample access to D̃.
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We begin in Section 3.1 with the description of our mechanism in the population model. Then,
in Section 3.2, we present our analysis for the population mechanism for Monotone Hazard Rate
distributions and we also present the sketch of our proof for the single-bidder case. Similarly, in
Section 3.3 we state our analysis for the population mechanism for regular distributions and we
present a proof sketch for the single-bidder case. Finally, we show that our proposed mechanism
achieves optimal (up to constants) guarantees among any mechanism in the population model.

3.1 Robust Myerson auction in the population model

Our algorithm assumes as an input the exact knowledge of a product distribution, D̃ = D̃1⇥· · ·⇥D̃n,
such that the dk(D⇤

i , D̃i) 6 ↵i and its goal is to find a mechanism that achieves approximately
optimal revenue for D

⇤, where D
⇤ = ⇧iD

⇤
i . Without further assumptions, this is an impossible

task, as we explain in Section 4 via an example. Thus we assume that the algorithm possesses some
additional knowledge regarding D

⇤
i , either that it is MHR or regular, and the mechanism needs to

exploit this additional property.
To utilize the additional property of the distributions D

⇤
i , our mechanism uses the important

concept of the link function for MHR and regular distributions.

Definition 3.1 (Link Function). The link function hM (x;F ) for MHR distributions is defined as
hM (x;F ) = � ln(1 � F (x)) and the link function hr(x;F ) for regular distributions is defined as
hr(x;F ) = 1/(1 � F (x)). We also define the corresponding inverse link functions h

�1
M (x;h) = 1 �

exp(�h(x)) and h
�1
r (x;h) = 1�1/h(x). Observe that h�1

M (x;hM (x;F )) = F (x) and h
�1
r (x;hr(x;F )) =

F (x). We may write hM (x) or hr(x) when F is clear from the context.

We provide some intuition on the link function. First, by construction, the link function of
either an MHR distribution or a regular distribution is convex and non-decreasing. Second, the
link function is monotone with regard to F . These two properties are important when we define
the notion of a minimal MHR/regular distribution in a Kolmogorov ball, momentarily, which will
be used as a necessary step in our algorithm.

Importantly, the link function provides a convenient characterization of the optimal reserve
price and optimal revenue for a distribution F that is MHR or regular. To see this, first consider
a single bidder with a valuation distribution F . Denote the optimal reserve price for selling one
item to her as x⇤, and the optimal expected revenue as OPT(F ). Then, when F is MHR, we show
that x

⇤ is also the unique minimizer of (hM (x) � log(x)). On the other hand, when F is regular,
v
⇤ is the point where hr(x) intersects with its tangent line kx, with k = 1/OPT(F ) (proof details in

Appendix). Figure 1 illustrates such a useful property for hM and hr explicitly, for a single-item,
single-bidder auction.

Next, we formally define stochastic dominance between two distributions, and state the property
of strong revenue monotonicity.

Definition 3.2 (Stochastic dominance). Given two distributions D1 and D2 with CDFs as F1 and
F2. Then, we say D1 (first-order) stochastically dominates D2 if for every x 2 X ,

F1(x) 6 F2(x),

denoted as D1 ⌫ D2. We say a product distribution D = ⇧iDi (component-wise) stochastically
dominates another product distribution D

0 = ⇧iD
0
i if for every i, we have Di ⌫ D

0
i.
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hM(F)

x

log(x) � log(OPT(F))

x

hr(F)

x x
(0,1)

x
OPT(F)

Figure 1: Optimal reserve price x
⇤ with regard to the link function, for a single-item single-bidder

auction with a valuation distribution F . (left) F is MHR; (right) F is regular.

Algorithm 1 Robust Myerson Auction in the Population
Model

1: Input: ↵1 . . .↵n > 0, link function h(·), possibly cor-
rupted valuation distribution F̃ = ⇧n

i=1F̃i.
2: for i = 1. . . n do

3: Compute a minimal regular / MHR distribution in
Bdk,↵i(F̃i) according to Eq (1), denote as bFi.

4: end for

5: Set bF = ⇧n
i=1

bFi.

6: Output Myerson’s optimal auction M bF w.r.t. the dis-

tribution bF .

(0,1)

hr(F̃)

d(F, F̃) � �

�h

x
Figure 2: A minimal regular distri-
bution in Bdk,↵, in the space trans-
formed by applying the link func-
tion.

Lemma 3.3 (Strong revenue monotonicity [13]). Let D, D0 be two product distributions such that
D

0
⌫ D, then, for M that is the optimal mechanism for D, we have:

Rev(M,D) 6 Rev(M,D
0).

The following lemma illustrates the importance of the link functions as well as their connection
with first-order stochastic dominance. The proof of this lemma is given in Appendix A.

Lemma 3.4. A distribution with CDF F is MHR if and only if hM (x;F ) is a convex function of
x. Similarly, F is regular if and only if hr(x;F ) is a convex function of x. Moreover, for two MHR
(resp. regular) distributions F1 and F2, such that F1 ⌫ F2, we have that hM (x;F1) 6 hM (x;F2)
(resp. hr(x;F1) 6 hr(x;F2)) for all x.

A key idea used in our algorithm is the minimal MHR/regular distribution within a Kolmogorov
distance divergence ball. Formally,
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Definition 3.5. For a given distribution with its cumulative distribution function as F , denote
the set of all the distributions that are ↵-close to F in Kolmogorov distance as Bdk,↵(F ):

Bdk,↵(F )
def
= {F

0 : dk(F
0
, F ) 6 ↵}.

Further, define a minimal MHR/regular distribution within Bdk,↵(F ) as:

bF (x) = h
�1(x;bh), where bh(x) def

= max
F̃2Bdk,↵(F )

F̃ is MHR / regular

h

⇣
F̃ (x)

⌘
8x 2 R+. (1)

Figure 2 gives an illustration of a minimal regular distribution within Bdk,↵(F ), in the space
transformed by the link function of regular distributions.

3.2 Analysis for MHR distributions

In this section we state the results for the performance of Algorithm 1 for MHR distributions and
we provide a proof sketch for the single-bidder case. The full proof of the following theorem can be
found in Appendix B.

Theorem 3.6. Let D⇤ = D
⇤
1⇥ · · ·⇥D

⇤
n be a product distribution where every D

⇤
i is MHR. Let also

D̃ = D̃1 ⇥ · · · D̃n be any product distribution such that for all i 2 [n] it holds that dk(D⇤
i , D̃i) 6 ↵i.

If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds that

Rev(M̃,D
⇤) >

 
1� Õ

 
nX

i=1

↵i

!!
·OPT(D⇤).

In particular for n = 1, if ↵ = ↵1, then we have that Rev(M̃,D
⇤) > (1�O (↵)) ·OPT(D⇤).

Proof sketch for n = 1. The first key step in our proof is the observation that, by construction,
Algorithm 1 runs the Myerson optimal auction on an MHR distribution bF , such that bF is stochas-
tically dominated by any other MHR distribution that is within Bdk,↵(F̃

0). On the other hand we

have dk(F ⇤(x), F̃ (x)) 6 ↵. Applying the triangle inequality, we have dk(F ⇤(x), bF (x)) 6 2↵. It is
then su�cient for us to bound the ratio of the optimal revenue for any two MHR distributions F1

and F2, with dk(F1, F2) 6 2↵, and where F1 is stochastically dominated by F2.
The key part of our proof then considers such F1, F2, and due to the fact that the ratio of the

revenues, OPTF1/OPTF2 , is scale invariant, we assume without loss of generality that OPTF1 = 1.
We then prove that this leads to h(P ⇤

F1
) 6 1. The result then follows from two further key lemmas.

First, for any reserve price x < P
⇤
F1
, |h1(x) � h2(x)| =

���log
⇣
1�F2(x)
1�F1(x)

⌘���. Further applying the fact

that by assumption |F1(x) � F2(x)| 6 ↵ we show that |h1(x) � h2(x)| = O(↵) for any reserve
price x < P

⇤
F1
. Second, using the fact that F1 is stochastically dominated by F2, we derive that

P
⇤
F2

6 P
⇤
F1
. The conclusion then follows from bounding the ratio of s1(x) = h1(x) � log(x), and

s2(x) = h2(x)� log(x), based on the definition of P ⇤
F1

and P
⇤
F2
. ⌅

Next we show that the information-theoretic Algorithm 1 is optimal up to constants for MHR
distributions. We provide the proof of the following theorem in Appendix C.

Theorem 3.7. Let M be any DSIC and IR mechanism that takes as input a product distribution
D̃ = D̃1 ⇥ · · · ⇥ D̃n. Then there exists a product distribution D

⇤ = D
⇤
1 ⇥ · · · ⇥ D

⇤
n such that

dk(D⇤
i , D̃i) 6 ↵, D⇤

i is MHR for every i, and

Rev(M,D
⇤) 6 (1� ⌦̃(n · ↵)) ·OPT(D⇤).
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3.3 Analysis for regular distributions

In this section we state the results for the performance of Algorithm 1 for regular distributions and
we provide a proof sketch for the single-bidder case. The full proof of the following theorem can be
found in Appendix B.

Theorem 3.8. Let D⇤ = D
⇤
1⇥ · · ·⇥D

⇤
n be a product distribution where every D

⇤
i is regular. Let also

D̃ = D̃1 ⇥ · · · D̃n be any product distribution such that for all i 2 [n] it holds that dk(D⇤
i , D̃i) 6 ↵i.

If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds that

Rev(M̃,D
⇤) >

0

@1� 5 ·

vuut
nX

i=1

↵i

1

A ·OPT(D⇤).

Proof sketch for n = 1. We first prove a general result that for two regular distributions F and
F̄ , such that dk(F, F̄ ) 6 ↵, where F (x) is stochastically dominated by F̄ (x) for x 2 R+. The

optimal revenue of these two distributions is close, formally OPT(F )
OPT(F̄ )

> 1 � O(
p
↵). The first

key step replies on using the link function hr(x) = 1
1�F (x) for regular distributions. Since hr(x)

preserves the same monotonicity property as F (x), we first derive a lower bound on h̄r(x, F̄ ) that
is h̄r(x, F̄ ) > hr(x, F ) � ↵h

2
r(x, F ), using the fact that dk(F, F̄ ) 6 ↵. This bound gives us useful

constraints to discuss in di↵erent cases in the following part of the proof. Denote the corresponding
optimal reserve prices for F and F̄ as P and P̄ . We discuss separately two cases for h(P̄ ), where, for
case 1 we have h(P̄ ) 6 1p

↵
, and for case 2, we have h(P̄ ) > 1p

↵
. Using the connection from the link

function to the revenue (see Figure 1), case 1 directly leads to the conclusion that OPT(F )
OPT(F̄ )

> 1�
p
↵.

Case 2 is more subtle and requires a more careful argument. Lastly, by construction, Algorithm 1
runs the Myerson optimal auction on a regular distribution bF , such that bF > bF 0(x) for all x 2 R+,
for any other regular distribution F

0(x) such that dk(F 0(x), F̃ (x)) 6 ↵. Applying the triangle
inequality and combining with the conclusions obtained from the two cases concludes the proof. ⌅

Finally, we show that the information-theoretic Algorithm 1 is optimal up to constants for
regular distributions. We provide the proof of the following theorem in Appendix C.

Theorem 3.9. Let M be any DSIC and IR mechanism that takes as input a product distribution
D̃ = D̃1 ⇥ · · · ⇥ D̃n. Then there exists a product distribution D

⇤ = D
⇤
1 ⇥ · · · ⇥ D

⇤
n such that

dk(D⇤
i , D̃i) 6 ↵, D⇤

i is regular for every i, and

Rev(M,D
⇤) 6 (1� ⌦(

p
n · ↵)) ·OPT(D⇤).

4 Finite Samples

We provide a practical algorithm that takes samples from the corrupted distribution D̃ as an input.
We show that this algorithm achieves almost optimal sample complexity for the MHR distribution
case and the single-bidder regular distribution case, whereas for the multi-bidder regular distribu-
tions there is a small gap between our upper and lower bounds.

An important notion to explain our algorithm for the finite-sample case is the following notion
of the convex envelope.
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Definition 4.1 (Convex Envelope). The convex envelope Conv(f) of a function f is a function
with the following property

Conv(f)(x) = sup{g(x) | g is convex and g 6 f over R+}.

In words, Conv(f) is the maximum convex function that is below f .

For our algorithm one important property of the convex envelope is expressed in the following
lemma whose proof is presented in Appendix A.

Lemma 4.2. Let f be a non-decreasing piecewise constant function with k pieces, then Conv(f)
can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.

Algorithm 2 Robust Empirical Myerson Auction

1: Input: m i.i.d. samples from (possibly corrupted) value distribution D = ⇧n
i=1Di, link function

h(·).
2: Let E = ⇧n

i=1Ei be the empirical distribution, i.e., the uniform distribution over the samples.

3: for i = 1 . . . n do

4: Construct cEi as following: let qEi(v) be the quantile of Ei; the quantile of cEi is as follows:

q
bEi(v) =

8
<

:
max

⇢
0, qEi(v)�

q
2qEi (v)(1�qEi (v)) ln(2mn��1)

m �
4 ln(2mn��1)

m � ↵i

�
if v > 0

1 if v = 0

5: Construct Ẽi such that h
⇣
Ẽi(·)

⌘
is the convex envelope of h

⇣
bE(·)

⌘
, i.e.

Ẽi(·) = h
�1

⇣
Conv

⇣
h( bEi(·))

⌘⌘

6: end for

7: Set Ẽ = ⇧n
i=1Ẽi

8: Output Myerson’s optimal auction MẼ w.r.t. Ẽ.

The above algorithm resembles the main algorithm of [13] with the addition of step 5. We
first show that step 5 is necessary if we wish to obtain any non-trivial result in the robust auction
learning setting that we explore in this paper.

Counterexample 1. Imagine we have just one agent, i.e., n = 1, with true distribution D
⇤ equal

to an exponential distribution with parameter � = 1. Also, to strengthen our counterexample
imagine that we have available an infinite number of samples, i.e., m!1. Now consider D̃ to be
the corrupted distribution where probability mass ↵ is removed from the mass closer to 0 and it
is placed as a point mass at the point c/↵ for some number c. In this case, running Algorithm 2
without step 5 will result is implementing an auction with reserve price that is very close to c/↵.
The probability though that the true agent with distribution D

⇤ will buy this item goes to zero
with a rate exp(�c/↵) as c!1. Hence, the total revenue will be at most (c/↵) · exp(�c/↵) and
therefore we can make the total revenue to go to zero as we increase c ! 1. Observe that this
counterexample works even though we assumed that the initial distribution D

⇤ is MHR.
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We next provide the analysis of the performance of Algorithm 2 for MHR and regular distribu-
tions. The proof of the following result can be found in Appendix D.

Theorem 4.3 (Finite samples, Regular distribution). Let D⇤ = D
⇤
1 ⇥ · · ·⇥D

⇤
n be a product distri-

bution where every D
⇤
i is regular. Let also D̃ = D̃1 ⇥ · · · D̃n be any product distribution such that

for all i 2 [n] it holds that dk(D⇤
i , D̃i) 6 ↵i. If M̃ is the mechanism that Algorithm 2 outputs with

input m samples from D̃ and assume that m = ⌦̃
�
maxi2[n]

�
log(1� )/↵

2
i

 �
then it holds that

Pr

0

@Rev(M̃,D
⇤) >

0

@1�O

0

@

vuut
nX

i=1

↵i

1

A

1

A ·OPT(D⇤)

1

A > 1� �.

Additionally, in the single-bidder case with n = 1 and ↵ = ↵1 the sample requirement becomes
m = ⌦̃

�
log(1� )/↵

3/2
�
.

The corresponding theorem for MHR distributions is the following, whose proof can be found
in Appendix D.

Theorem 4.4 (Finite samples, MHR distribution). Let D⇤ = D
⇤
1⇥· · ·⇥D

⇤
n be a product distribution

where every D
⇤
i is MHR. Let also D̃ = D̃1 ⇥ · · · D̃n be any product distribution such that for all

i 2 [n] it holds that dk(D⇤
i , D̃i) 6 ↵i. If M̃ is the mechanism that Algorithm 2 outputs with input

m samples from D̃ and assume that m = ⌦̃
�
maxi2[n]

�
log

�
1
�

�
/↵

2
i

 �
then it holds that

Pr
 
Rev(M̃,D

⇤) >
 
1� Õ

 
nX

i=1

↵i

!!
·OPT(D⇤)

!
> 1� �.

We make a few remarks about the sample complexity upper bounds in the sequel.
First, in both Theorem 4.3 and Theorem 4.4, the sample complexity upper bounds depend

in a simple way on the sum of all the fractions of corruptions for each bidder; i.e.,
Pn

i=1 ↵i,
indicating the important e↵ect of the total amount of corruption. Second, for regular distributions,
in Theorem 4.3 we obtain a tight sample complexity bound for the single-bidder case, with m =
⌦̃
�
log(1� )/↵

3/2
�
. For multi-bidder settings, our upper bound contains a small gap, with m =

⌦̃
�
maxi2[n]

�
log(1� )/↵

2
i

 �
. Whether such a gap can be matched is an interesting open question for

future work. Lastly, comparing Theorem 4.3 and Theorem 4.4, it appears that for the multi-bidder
settings the sample complexity bounds are of the same order, but we emphasize the key di↵erence
that for regular distributions this sample size is needed to provide a much weaker guarantee on

the revenue objective, which is a
⇣
1�O

⇣pPn
i=1 ↵i

⌘⌘
fraction of the optimal revenue, while the

guarantee for MHR distributions is a (1�O (
Pn

i=1 ↵i)) fraction of the optimal revenue.
We next provide an information-theoretic lower bound that establishes the tightness of our

upper bounds for the single-bidder single-item case with regular and MHR distributions.

Theorem 4.5 (Sample complexity lower bounds). Let M be any DSIC and IR mechanism for a
single-item single-buyer setting that takes as input m samples from a distribution D̃. If

Rev(M,D
⇤) > (1�O(

p
↵)) ·OPT(D⇤),

for all distributions D
⇤ such that dk(D⇤

, D̃) 6 ↵, where D
⇤ is regular, then m > ⌦̃

�
log(2� )/↵

3/2
�
.

Additionally, if
Rev(M,D

⇤) > (1�O(↵)) ·OPT(D⇤),

for all distributions D⇤ such that dk(D⇤
, D̃) 6 ↵, where D

⇤ is MHR, we have m > ⌦̃
�
log(2� )/↵

3/2
�
.
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Theorem 4.5 provides a general sample complexity lower bound on learning a near-optimal
auction with at least a (1 � O(

p
n · ↵)) fraction of the optimal revenue under the true valuation

distribution. In comparison to our upper bounds (see Theorem 4.3 and Theorem 4.4), there is a
small gap and we leave the nature of this gap as an open question for future work.

5 Conclusions

We have studied the learning of revenue-optimal auctions for multiple bidders, in a setting in which
the samples can be corrupted adversarially. We first consider the information-theoretic limit in a
population model, assuming exact knowledge of the adversarially perturbed valuation distribution.
We develop a theoretical algorithm which obtains a tight upper bound on the revenue for the MHR
and regular distributions, obtaining the information-theoretic limit of the robustness guarantee.
We then relax the population model and derive sample complexity bounds for learning optimal
auctions from samples. We propose a practical algorithm which takes the corrupted samples as
input, and provide the sample complexity upper bounds for the MHR distribution case and the
single-bidder regular distribution case. We also provide accompanying sample complexity lower
bounds, and demonstrate a small gap relative to the corresponding upper bounds.

Acknowledgments

This work was supported in part by the Mathematical Data Science program of the O�ce of Naval
Research under grant number N00014-18-1-2764.

References

[1] M.-F. Balcan, T. Sandholm, and E. Vitercik. Sample complexity of automated mechanism
design. arXiv preprint arXiv:1606.04145, 2016.

[2] M.-F. Balcan, T. Sandholm, and E. Vitercik. A general theory of sample complexity for multi-
item profit maximization. In Proceedings of the 2018 ACM Conference on Economics and
Computation, pages 173–174, 2018.

[3] J. Brustle, Y. Cai, and C. Daskalakis. Multi-item mechanisms without item-independence:
Learnability via robustness. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 715–761, 2020.

[4] M. M. Bykowsky, R. J. Cull, and J. O. Ledyard. Mutually destructive bidding: The FCC
auction design problem. Journal of Regulatory Economics, 17(3):205–228, 2000.

[5] Y. Cai and C. Daskalakis. Extreme-value theorems for optimal multidimensional pricing. In
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 522–531.
IEEE, 2011.

[6] Y. Cai and C. Daskalakis. Learning multi-item auctions with (or without) samples. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 516–527.
IEEE, 2017.

12



[7] R. Cole and T. Roughgarden. The sample complexity of revenue maximization. In Proceedings
of the Forty-Sixth Annual ACM Symposium on Theory of Computing, pages 243–252, 2014.

[8] N. R. Devanur, Z. Huang, and C.-A. Psomas. The sample complexity of auctions with side
information. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Com-
puting, pages 426–439, 2016.

[9] M. Dud́ık, N. Haghtalab, H. Luo, R. E. Schapire, V. Syrgkanis, and J. W. Vaughan. Oracle-
e�cient online learning and auction design. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science, pages 528–539. IEEE, 2017.

[10] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. The Annals of Mathematical
Statistics, pages 642–669, 1956.

[11] Y. A. Gonczarowski and N. Nisan. E�cient empirical revenue maximization in single-parameter
auction environments. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 856–868, 2017.

[12] Y. A. Gonczarowski and S. M. Weinberg. The sample complexity of up-to-" multi-dimensional
revenue maximization. Journal of the ACM, 68(3):1–28, 2021.

[13] C. Guo, Z. Huang, and X. Zhang. Settling the sample complexity of single-parameter revenue
maximization. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 662–673, 2019.

[14] Z. Huang, Y. Mansour, and T. Roughgarden. Making the most of your samples. SIAM Journal
on Computing, 47(3):651–674, 2018.

[15] P. Klemperer. What really matters in auction design. Journal of Economic Perspectives, 16
(1):169–189, 2002.

[16] S. Lahaie, D. M. Pennock, A. Saberi, and R. V. Vohra. Sponsored search auctions. Algorithmic
Game Theory, 1:699–716, 2007.

[17] P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of
Probability, pages 1269–1283, 1990.

[18] P. Milgrom and P. R. Milgrom. Putting Auction Theory to Work. Cambridge University Press,
2004.

[19] J. Morgenstern and T. Roughgarden. The pseudo-dimension of near-optimal auctions. arXiv
preprint arXiv:1506.03684, 2015.

[20] J. Morgenstern and T. Roughgarden. Learning simple auctions. In Conference on Learning
Theory, pages 1298–1318. PMLR, 2016.

[21] R. B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

13



[22] A. E. Roth and A. Ockenfels. Last-minute bidding and the rules for ending second-price
auctions: Evidence from ebay and amazon auctions on the internet. American Economic
Review, 92(4):1093–1103, 2002.

[23] T. Roughgarden and O. Schrijvers. Ironing in the dark. In Proceedings of the 2016 ACM
Conference on Economics and Computation, pages 1–18, 2016.

[24] T. Roughgarden and J. R. Wang. Minimizing regret with multiple reserves. ACM Transactions
on Economics and Computation, 7(3):1–18, 2019.

[25] V. Syrgkanis. A sample complexity measure with applications to learning optimal auctions.
arXiv preprint arXiv:1704.02598, 2017.

14



Appendix

A Proofs of Technical Lemmas

Lemma 3.4. A distribution with CDF F is MHR if and only if hM (x;F ) is a convex function of x.
Similarly, F is regular if and only if hr(x;F ) is a convex function of x. Moreover, for two MHR (resp.
regular) distributions F1 and F2, such that F1 ⌫ F2, then we have that hM (x;F1) 6 hM (x;F2)
(resp. hr(x;F1) 6 hr(x;F2)) for all x.

Proof. We first show that given the CDF of any MHR distribution F (x) : R+ ! [0, 1], hM (x)
def
=

� log(1 � F (x)) is a convex, non-decreasing function with h(0) = 0. (Without loss of generality,
we consider x 2 [0,1], i.e. argminx h(x) = 0.) We first present the analysis for the case when
the distribution is continuous and smooth, and then generalize the same statement to discrete
distributions.
MHR continuous distributions:

Denote the corresponding PDF of F (x) as f(x), and g(x)
def
= f(v)

1�F (v) . By definition, F (0) = 0

implies hM (0) = 0. Then, given that F (x) is MHR, we have that g(x) is monotone non-decreasing.
By construction,

(hM (x))00 =

✓
f(v)

1� F (v)

◆0
= g

0(x) > 0.

Therefore, hM (x) is convex. Moreover, since F (x) is a CDF thus non-decreasing, hM (x) = � log(1�
F (x)) is also non-decreasing. We show that given any hM (x) : R+ ! R+, such that hM (x) is convex,

non-decreasing, hM (0) = 0, and maxx hM (x) =1. Then, F (x)
def
= 1� exp(�hM (x)) is CDF of an

MHR distribution.
By construction, hM (0) = 0 implies F (0) = 0, and maxx hM (x) implies maxx F (x) = 1. Also

given that hM (x) is convex, g0(x) =
⇣

f(v)
1�F (v)

⌘0
= (hM (x))00 > 0, which by definition implies F (x)

is MHR.
MHR discrete distributions:

The lemma statement generalizes to the case when the valuation is discrete. We assume that the
valuation can take a discrete set of values {xi}, i = 1, · · · , n. Without loss of generality, we will
restrict these values to the set N0 with probability mass function P (x = i) = pi; i = 0 · · ·n. We
define the discrete hazard rate as:

g(xi) =
P (x = i)

P (x > i)
.

Then, the valuation distribution is MHR i↵ the discrete hazard rate is non-decreasing:

g(xi+1) > g(xi), (2)

for all i = 0 · · ·n.
In this case, our link function will also be discrete. Further, denote si

def
= P (x > i), then

h(xi) = � log(P (x > xi)) = � log(si).
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Then h(x) is convex if and only if for any i > 0,

h(xi+2)� h(xi+1) > h(xi+1 � h(xi). (3)

We show that Eq (2) and Eq (3) are equivalent. Notice that

h(xi+2)� h(xi+1) > h(xi+1 � h(xi)

()
si+1

si+1 � pi+1
> si

si � pi

() pi+1si > pisi+1

()
pi+1

si+1
> pi

si

() g(xi+1) > g(xi),

which completes the proof.
Regular continuous distributions:

We further prove a similar statement for regular continuous distributions. First, given a CDF of a
regular distribution F (x),

✓
1

1� F (x)

◆00
=

(1� F (x))f(x)0 + 2f(x)2

(1� F (x))3
.

By definition, the virtual value function is �(x)
def
= v �

1�F (x)
f(x) , and

�
0(x) =

(1� F (x))f(x)0 + 2f(x)2

f(x)2
.

Therefore,
⇣

1
1�F (x)

⌘00
and �

0(x) share the same sign. Moreover, the distribution with CDF as F (x)

is regular if and only if the virtual value �(x) is monotonically non-decreasing, which is �0(x) > 0.

Hence the regularity of F (x) implies that hr(x)
def
= 1

1�F (x) is convex. Since F (x) is a CDF thus

non-decreasing, hr(x) =
1

1�F (x) is also non-decreasing.
Regular discrete distributions:

Similar to the MHR distributions, the lemma statement generalizes to the case when the valuation
is discrete for regular distributions. Assume that the valuation can take a discrete set of values
{xi}, i = 1, · · · , n. Without loss of generality, we will restrict these values to the set N0 with
probability mass function P (x = i) = pi; i = 0 · · ·n. Further, consistent with the proof for MHR

distributions, we denote si
def
= P (x > i).

The discrete virtual value function is defined as:

�(xi) = xi �
si

pi
,

and the valuation distribution is regular i↵ �(x) is non-decreasing:

�(xi+1) > �(xi), (4)

for all i = 0 · · ·n.
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In this case, our link function will again be discrete:

h(xi) =
1

P (x > xi)
=

1

si
.

and h(x) is convex if and only if for any i > 0,

h(xi+2)� h(xi+1) > h(xi+1)� h(xi). (5)

We show that Eq (4) and Eq (5) are equivalent.

h(xi+2)� h(xi+1) > h(xi+1)� h(xi)

()
1

si+2
+

1

si
> 2

si+1

()
1

si+1 � pi+1
+

1

si
> 2

si+1

() s
2
i+1 + pipi+1 > sisi+1 � sipi+1.

() pipi+1 + pi+1si + si+1(si+1 � si) > 0

() pipi+1 + pi+1si � si+1pi > 0

(6)

Moreover, from the regularity condition Eq (4), we have

�(xi+1) > �(xi)

() i+ 1�
si+1

pi+1
> i�

si

pi

() 1�
si+1

pi+1
+

si

pi
> 0

() pipi+1 + pi+1si � si+1pi > 0.

(7)

Combining (6) and (7) together completes the proof.
Stochastic dominance:

Lastly, we show that for two MHR (resp. regular) distributions F1 and F2, such that F1 ⌫ F2,
then we have that hM (x;F1) 6 hM (x;F2) (resp. hr(x;F1) 6 hr(x;F2)) for all x. This follows
directly from the monotonicity of the link functions and the definition of stochastic dominance (see
Definition 3.2).

Recall that the link function hM (x;F ) for MHR distributions is defined as hM (x;F ) = � ln(1�
F (x)), and the link function hr(x;F ) for regular distributions is defined as hr(x;F ) = 1/(1�F (x)).
Therefore, for two MHR (resp. regular) distributions F1 and F2, F1(x) < F2(x) implies hM (x, F1) <
hM (x, F2) (resp. hr(x, F1) < hr(x, F2)), which completes the proof.

⌅

Lemma 4.2. Let f be a non-decreasing piecewise constant function with k pieces, then Conv(f)
can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.

Proof. Given that f(x) is a non-decreasing piecewise constant function with k pieces, we show
that the following iterative procedure outputs its lower convex envelope Conv(f) , which can be
computed in time poly(k) and is a piecewise linear function with O(k) pieces. Figure 3 provides an
illustration of the construction according to this procedure.
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Procedure 1 Computing lower convex envelope for non-decreasing piecewise constant functions

1: Input: a piecewise constant function f(x) : R ! R with k pieces. Denote the left
starting point of each piece and the end point as x0, . . . , xk.

2: Initialize: i 0, i0  0.
3: while i 6 k � 1 do

4: x̄i0  xi, g(x̄i0) f(xi).
5: i

0
 i

0 + 1.
6: Compute i argmini<j6k

f(xj)�f(xi)
xj�xi

.

7: end while

8: x̄i0  xi, g(x̄i0) f(xi); k0  i
0.

9: Return: a piecewise linear function g(x) : R ! R with k
0
< k pieces. The left starting

points of each piece and the end points are x̄0, . . . , x̄i0 , with the corresponding function values
as specified in the procedure.

x0 x1 x2

…

xk… x

f(x)

Conv( f )

(x̄0) (x̄1) (x̄2) (x̄k� 
)

Figure 3: Lower convex envelope of a non-decreasing piecewise constant function f(x) .

First, the above procedure requires at most k
2 rounds. We show that its output, g(x), is the

lower convex envelope for f(x). It is clear from construction that g(x) is piecewise linear, with
vertices at x̄0, . . . , x̄k0 . Moreover, g(x) 6 f(x) for all x by construction.

Next we show that g(x) is convex. Consider at a round t with i = it, 1 < 1 < k. Then, step (6)

computes it+1 = argminit<j6k
f(xj)�f(xit )

xj�xit
. Further denote minit<j6k

f(xj)�f(xit )
xj�xit

as s(it). We show

that s(it+1) > sit .
Suppose that s(it+1) < sit . Then there exists j⇤ > it+1 > it, such that

f(xj⇤)� f(xit+1)

xj⇤ � xit+1

<
f(xit+1)� f(xit)

xit+1 � xit
,

which further implies that
f(xj⇤)� f(xit)

xj⇤ � xit
<

f(xit+1)� f(xit)

xit+1 � xit
.
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Since j
⇤
> it+1 > it, this contradicts the fact that it+1 = argminit<j6k

f(xj)�f(xit )
xj�xit

. Therefore

s(it+1) > sit , which means that the slope of each piece for g(x) is non-decreasing. Thus g(x) is
convex. Lastly, since g(x) has all vertices with the same function values as f(x), i.e. g(x) = f(x)
at all its vertices, and given that g(x) 6 f(x) for all x, the values at these vertices are maximized
and cannot be further improved. This completes the proof. ⌅

We further provide two lemmas which present useful properties of the link functions in connec-
tion to the revenue.

Lemma A.1. Given an MHR distribution with the CDF as F (x) : R+ ! [0, 1]. Define h(x)
def
=

� log(1 � F (x)). Then, at any reserve price x, the expected revenue R(x) = exp(�h(x) + log(x)).
Moreover, the optimal reserve price P

⇤
F is the minimizer of (h(x)� log(x)).

Proof. First by construction, h(x)� log(x) = � log(R(x)). By definition, the optimal reserve price
maximizes the revenue R(x) = x(1� F (x)), thus

max x(1� F (x))

() min � log(x(1� F (x)))

() min � log(x)� log(1� F (x))

() min h(x)� log(x),

which completes the proof. ⌅

Lemma A.2. Consider a valuation distribution D with CDF as F (x). Denote the optimal reserve
price as P ⇤

F and the optimal expected revenue at P ⇤
F as OPTF . Then P

⇤
F should be P ⇤

F 6 e, assuming
that OPTF 6 1 and F (x) is MHR.

Proof. By Lemma A.1, OPTF 6 1 implies that,

h(P ⇤
F ) = log(P ⇤

F ) + b,

for some b > 0. Also by Lemma 3.4, h is convex. Combined with the fact that OPTF is the optimal
reserve price and the concavity of log(x), OPTF is the only point where h(P ⇤

F ) = log(P ⇤
F )+b holds.

Now consider a linear function y = ax, a > 0, which is a tangent line of the function log(x) + b.
Denote the tangent point as x⇤. Solving the equation that a = (log(x))0 = 1

x , and ax = log(x) + b

give that:

x
⇤ = e

1�b 6 e.

Suppose that P
⇤
F > x

⇤. Consider the linear function g(x) =
h(P ⇤

F )
P ⇤
F

x. Since x
⇤ is the tangent

point, there exists a point x̄ < P
⇤
F , such that g(x̄) = log(x̄) + b. Further, since h is convex, for

any point 0 < x < P
⇤
F , we have h(x) < g(x). By the continuity of log(x) and h(x), there exists

x̄
0
< P

⇤
F , such that h(x̄0) = log(x̄) + b. This implies that x̄0 achieves a larger revenue than P

⇤
F , and

contradicts the fact that P ⇤
F is the optimal reserve price. Hence, P ⇤

F < x
⇤ 6 e, which completes the

proof. ⌅
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B Proof of Upper Bounds for the Population Model

We first prove the following technical lemma that connects the coordinate Kolmogorov distance
with the di↵erence in expectation of increasing functions.

Definition B.1 (Increasing Functions and Sets). Let u : Rn
! R, we say that u is increasing if

for every v = (v1, . . . , vn), v0 = (v01, . . . , v
0
n) such that v0i > vi, it holds that u(v0) > u(v). We say

that the subset A ✓ Rn is increasing if and only if its characteristic function 1A(x) is an increasing
function of x.

Lemma B.2. Let D = D1 ⇥ · · ·⇥Dn, D0 = D
0
1 ⇥ · · ·⇥D

0
n be product n-dimensional distributions

with dk(Di,D
0
i) 6 ↵i. Then for every increasing function u : Rn

! [0, ū] it holds that

���� E
v⇠D

[u(v)]� E
v0⇠D0

[u(v0)]

���� 6 ū ·

 
nX

i=1

↵i

!
.

Proof. Our first step is to prove that the lemma holds for any function u that is a characteristic
function of an increasing set A and then we extend to all increasing functions.

Let u = 1A we have that Ev⇠D[u(v)] = Prv⇠D(v 2 A). We define the sequence of distributions
Dj = D

0
1 ⇥ · · · ⇥ D

0
j ⇥ Dj+1 ⇥ · · · ⇥ Dn for j = 0, . . . , n, where obviously D0 = D and Dn = D

0.
Now via triangle inequality we have that

���� Prv⇠D
(v 2 A)� Pr

v⇠D0
(v 2 A)

���� 6
nX

j=1

���� Pr
v⇠Dj

(v 2 A)� Pr
v⇠Dj�1

(v 2 A)

���� . (8)

Let bj(v�j) be the threshold of the step function 1A(vj ,v�j) when we fix v�j and we view it as a
function of vj . Now we have that

Pr
v⇠Dj

(v 2 A) =

Z

Rn
1A(xj ,x�j) dD

0
1(x1) · · · dD

0
j(xj) · dDj+1(xj+1) · · · dDn(xn)

=

Z

Rn�1
(1�D

0
j(bj(x�j))) dD

0
1(x1) · · · dD

0
j�1(xj�1) · dDj+1(xj+1) · · · dDn(xn)

similarly we have

Pr
v⇠Dj�1

(v 2 A) =

Z

Rn�1
(1�Dj(bj(x�j))) dD

0
1(x1) · · · dD

0
j�1(xj�1) · dDj+1(xj+1) · · · dDn(xn).

Combining these we get that
���� Pr
v⇠Dj

(v 2 A)� Pr
v⇠Dj�1

(v 2 A)

���� 6

6
Z

Rn�1

��D0
j(bj(x�j))�Dj(bj(x�j))

�� dD
0
1(x1) · · · dD

0
j�1(xj�1) · dDj+1(xj+1) · · · dDn(xn).

from the latter we can use the fact that dk(Dj ,D
0
j) 6 ↵j and we get that

���� Pr
v⇠Dj

(v 2 A)� Pr
v⇠Dj�1

(v 2 A)

���� 6 ↵j .
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Applying the above to (8) we get that

���� Prv⇠D
(v 2 A)� Pr

v⇠D0
(v 2 A)

���� 6
nX

j=1

↵j . (9)

The last steps is to extend the above to arbitrary increasing functions. We are going to ap-
proximate the increasing function u via a sequence of functions uk which uniformly converges to u.
Then we will show the statement of the lemma for every function uk which by uniform convergence
implies the lemma for u as well. We set Ai,k , {x 2 Rn

| u(x) > i
k ū} and we define

uk(x) =
ū

k

kX

i=1

1Ai,k(x).

Observe from the above definition that uk ! u uniformly and since u is increasing we also have
that all the sets Ai are increasing. Also observe that

E
v⇠D

[uk(v)] =
ū

k

kX

i=1

Pr
v⇠D

(v 2 Ai,k)

therefore we get that

���� E
v⇠D

[uk(v)]� E
v⇠D0

[uk(v)]

���� 6
ū

k

kX

i=1

���� Prv⇠D
(v 2 Ai,k)� Pr

v⇠D0
(v 2 Ai,k)

���� .

Now we can apply (9) and we get

���� E
v⇠D

[uk(v)]� E
v⇠D0

[uk(v)]

���� 6 ū ·

0

@
nX

j=1

↵j

1

A .

Finally, since this is true for every uk and u converges uniformly to u the above should be true for
u as well and hence the lemma follows. ⌅

We are going to use Lemma B.2 both for the regular distributions case and for the MHR
distributions case.

B.1 Monotone Hazard Rate Distributions—Proof of Theorem 3.6

In this section we show the part of the Theorem 3.6 related to n > 1. For the stronger result for
the case n = 1 we refer to Section B.3.

Let D̃ be the corrupted product distribution that we observe, bD be the output distribution
of Algorithm 1, D

⇤ be the original distribution that we are interested in. We know from the
description of Algorithm 1 for bD = bD1 ⇥ · · ·⇥ bDn that bDi is MHR, that dk( bDi,D

⇤
i ) 6 ↵i and that

bDi � D
⇤
i . We also know that D

⇤
i is MHR. Finally, we know that the output M of Algorithm 1

is the Myerson optimal mechanism for the distribution bD and hence Rev(M, bD) = OPT(bD). So
applying the strong revenue monotonicity lemma 3.3 we have that

OPT(bD) = Rev(M, bD) 6 Rev(M,D
⇤). (10)
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Therefore to show Theorem 3.6, it su�ces to show that

OPT(bD) >
 
1� Õ

 
nX

i=1

↵i

!!
·OPT(D⇤). (11)

We are going to use the following result from [5] but with the formulation obtained in Lemma
17 of [13], combined with the weak revenue monotonicity (Lemma 3 of [13]).

Theorem B.3 ([5]). For any product MHR distribution D, and any 1
4 > " > 0 and u > c ·

log
�
1
"

�
OPT(D). Let tu(D1), . . . , tu(Dn) be the distributions obtained by truncating D1, . . . , Dn

at the value ū and let tu(D) be their product distribution, where c is an absolute constant. Then,
we have that

OPT(D) > OPT(tu(D)) > (1� ") ·OPT(D).

Now let ū = c · log
�
1
"

�
OPT(D⇤), then we also have that ū > c · log

�
1
"

�
OPT(bD) due to weak

revenue monotonicity (Lemma 3 of [13]). Hence, applying Theorem B.3 we have that

OPT(bD) > OPT(tū(bD)) and OPT(tū(D
⇤)) > (1� ") ·OPT(D⇤). (12)

Since we know that dk( bDi,D
⇤
i ) 6 ↵i we also have that dk(tū( bDi), tū(D⇤

i )) 6 ↵i. Let now M
⇤
ū be the

optimal mechanism for the distribution tū(D⇤). It is easy to see that the ex-post revenue obtained
from the mechanism M

⇤
ū is an increasing function of the observed bids. Hence, we can apply Lemma

B.2 to the [0, ū] bounded distributions tū(bD) and tū(D⇤) and we get that

OPT(tū(bD)) > Rev(M⇤
ū , tū(bD)) > Rev(M⇤

ū , tū(D
⇤))� ū ·

 
nX

i=1

↵i

!

= OPT(tū(D
⇤))� ū ·

 
nX

i=1

↵i

!
. (13)

If we combine (12) and (13) then we have that

OPT(bD) > (1� ") ·OPT(D⇤)� ū ·

 
nX

i=1

↵i

!
. (14)

Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) >
 
1� c · log

✓
1

"

◆
·

 
nX

i=1

↵i

!
� "

!
·OPT(D).

Finally, setting " =
Pn

i=1 ↵i we get

OPT(D̃) >
 
1� (c+ 1) ·

 
nX

i=1

↵i

!
· log

✓
1Pn

i=1 ↵i

◆!
·OPT(D).

Hence, (11) follows and as we explained this proves Theorem 3.6.
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B.2 Regular Distributions—Proof of Theorem 3.8

Let D̃ be the corrupted product distribution that we observe, bD be the output distribution of
Algorithm 1, D⇤ be the original distribution that we are interested in. We know from the description
of Algorithm 1 for bD = bD1 ⇥ · · · ⇥ bDn that bDi is a regular distribution, that dk( bDi,D

⇤
i ) 6 ↵i and

that bDi � D
⇤
i . We also know that D⇤

i is regular. Finally, we know that the output M of Algorithm

1 is the Myerson optimal mechanism for the distribution bD and hence Rev(M, bD) = OPT(bD). So
applying the strong revenue monotonicity lemma 3.3 we have that

OPT(bD) = Rev(M, bD) 6 Rev(M,D
⇤). (15)

Therefore to show Theorem 3.8, it su�ces to show that

OPT(bD) >
 
1� Õ

 
nX

i=1

↵i

!!
·OPT(D⇤). (16)

We are going to use the following theorem from [8], combined with the weak revenue mono-
tonicity (Lemma 3 of [13]).

Theorem B.4 (Lemma 2 of [8]). Let D be a product of n regular distributions and OPT(D) be
the optimal revenue of D. Suppose 1

4 > " > 0 and u > 1
"OPT(D). Let tu(D1), . . . , tu(Dn) be

the distributions obtained by truncating D1, . . . , Dn at the value u and let tu(D) be their product
distribution. Then, we have that

OPT(D) > OPT(tu(D)) > (1� 4") ·OPT(D).

Now let ū = 1
"OPT(D⇤), then we also have that ū > 1

"OPT(bD) due to weak revenue mono-
tonicity (Lemma 3 of [13]). Hence, applying Theorem B.4 we have that

OPT(bD) > OPT(tū(bD)) and OPT(tū(D
⇤)) > (1� ") ·OPT(D⇤). (17)

Since we know that dk( bDi,D
⇤
i ) 6 ↵i we also have that dk(tū( bDi), tū(D⇤

i )) 6 ↵i. Let now M
⇤
ū be the

optimal mechanism for the distribution tū(D⇤). It is easy to see that the ex-post revenue obtained
from the mechanism M

⇤
ū is an increasing function of the observed bids. Hence, we can apply Lemma

B.2 to the [0, ū] bounded distributions tū(bD) and tū(D⇤) and we get that

OPT(tū(bD)) > Rev(M⇤
ū , tū(bD)) > Rev(M⇤

ū , tū(D
⇤))� ū ·

 
nX

i=1

↵i

!

= OPT(tū(D
⇤))� ū ·

 
nX

i=1

↵i

!
. (18)

If we combine (17) and (18) then we have that

OPT(bD) > (1� ") ·OPT(D⇤)� ū ·

 
nX

i=1

↵i

!
. (19)
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Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) >
 
1�

1

"
·

 
nX

i=1

↵i

!
� 4"

!
·OPT(D).

Finally, setting " =
pPn

i=1 ↵i we get

OPT(D̃) >

0

@1� 5 ·

vuut
nX

i=1

↵i

1

A ·OPT(D).

Hence, (16) follows and as we explained this proves Theorem 3.8.

B.3 MHR Distributions – Proof of Theorem 3.6, n = 1 Case

In this subsection we show the part of the Theorem 3.6 related to n = 1, for which we obtain a
stronger result compared to the case n > 1. We first show a useful proposition:

Proposition B.5. Consider two MHR distributions D1, D2 with CDFs as F1 and F2, such that
dk(D1,D1) 6 ↵, and F1(x) > F2(x) for all x 2 R+. Denote the optimal expected revenue under
D1 and D2 as OPTF1 and OPTF2, and the corresponding optimal reserve prices as P

⇤
F1

and P
⇤
F2
.

Then,

(1 + ↵e)�1 6 OPTF1

OPTF2

6 1 + ↵e.

Proof. Consider two MHR distributions D1, D2 with CDFs as F1 and F2, such that dk(D1,D1) 6 ↵,
and F1(x) > F2(x) for all x 2 R+. Denote the optimal expected revenue under D1 and D2 as
OPTF1 and OPTF2 , and the corresponding optimal reserve prices as P ⇤

F1
and P

⇤
F2
. Without loss of

generality, we consider OPTF1 > OPTF2 . Further, since the ratio of the revenues, e.g.
OPTF1
OPTF2

is

scale invariant, we assume without loss of generality that OPTF1 = 1.
By Lemma A.2, we have P ⇤

F1
6 e. By Lemma A.1, OPTF1 = 1 implies that h1(P ⇤

F1
) = log(P ⇤

F1
).

Since P
⇤
F1

6 e, we have

h1(P
⇤
F1
) 6 1

() � log(1� F1(P
⇤
F1
)) 6 1

() F1(P
⇤
F1
) 6 1�

1

e

() 1� F1(P
⇤
F1
) > 1

e
.

Therefore, since F1 is non-decreasing, for any x < P
⇤
F1
, 1� F1(x) > 1

e . So for any x < P
⇤
F1
, we

have

|h1(x)� h2(x)| =

����log
✓
1� F2(x)

1� F1(x)

◆����

=

����log
✓
1 +

F1(x)� F2(x)

1� F1(x)

◆����

6 log (1 + ↵e)

= O(↵),
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where the at the second last step, the inequality follows from the fact that dk(D1,D1) 6 ↵, and
x < P

⇤
F1
.

Further, F1(x) > F2(x) for all x 2 R+ implies that h1(x) > h2(x) for all x 2 R+. Therefore,
h1(P ⇤

F1
) = log(P ⇤

F1
) > h2(P ⇤

F1
). Therefore, we have P

⇤
F2

6 P
⇤
F1
, and

|h1(P
⇤
F2
)� h2(P

⇤
F2
)| 6 log (1 + ↵e) .

Now define functions s1(x) = h1(x)� log(x), and s2(x) = h2(x)� log(x). Then by the definition of
P

⇤
F1
, P ⇤

F2
and Lemma A.1,

min
x6P ⇤

F1

s1(x) = s1(P
⇤
F1
) 6 s1(P

⇤
F2
)

6 s2(P
⇤
F2
) + log (1 + ↵e)

= min
x6P ⇤

F2

s2(x) + log (1 + ↵e) .

Therefore, by the definitions of s1 and s2,

����� min
x6P ⇤

F1

s1(x)� min
x6P ⇤

F2

s2(x)

����� 6 log (1 + ↵e)

() | log(OPTF2)� log(OPTF1)| 6 log (1 + ↵e)

() � log (1 + ↵e) 6 log(OPTF2) 6 log (1 + ↵e)

() (1 + ↵e)�1 6 OPTF2 6 1 + ↵e.

The above directly implies:

(1 + ↵e)�1 6 OPTF1

OPTF2

6 1 + ↵e.

which completes the proof. ⌅

Now we are ready to prove Theorem 3.6 for the n = 1 case.

Proof. First, by construction, Algorithm 1 runs the Myerson optimal auction on an MHR dis-
tribution bF , such that bF > bF 0(x) for all x 2 R+, for any MHR distribution F

0(x) such that
dk(F 0(x), F̃ (x)) 6 ↵. Also by assumption, dk(F ⇤(x), F̃ (x)) 6 ↵. Therefore by triangle inequality,
dk(F ⇤(x), bF (x)) 6 dk(F ⇤(x), F̃ (x)) + dk(F̃ (x), bF (x)) 6 2↵.

Denote ↵
0 = 2↵. By Proposition B.5,

�
1 + ↵

0
e
��1 6 OPTF1

OPTF2

6 1 + ↵
0
e.

Note that (1 + ↵
0
e)�1 = (1 + 2↵e)�1 = 1�O(↵), which completes the proof. ⌅
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C Proof of Optimality for the Upper Bounds

For these lower bounds we follow the idea of the lower bounds from [13] adapted to the corrupted
case that we consider in this paper. The lower bound constructions of [13] are based on a family
of distributions

H = {D | D1 = D
b
,Di = D

h or Di = D
` for all 2 6 i 6 n}.

Observe that this family is characterized by the triplet of distributions D
b, Dh, and D

` for which
we ask for the following conditions.

a) D
b is a point mass at v0.

b) The propability of v > v2 is at most 1/n both when v ⇠ D
h and when v ⇠ D

`.

c) The probability of v1 > v > v2 is at least p both when v ⇠ D
h and when v ⇠ D

`.

d) For any value v such that v1 > v > v2, we have �
`(v) +� 6 v0 6 �

h(v)��, where �
` is the

virtual value function of D` and correspondingly for �h.

e) For any value v such that v < v2, we have that �h(v),�`(v) 6 v0.

f) For any value v1 > v > v2 we have that the ratio dDh

dD` (v) is upper and lower bounded by a

constant, where dDh

dD` is the Radon–Nikodym derivative between D
h and D

`.

g) D
h is regular.

h) The point v1 is either +1 or is a point mass and an upper bound on the support in both D
`

and D
h.

Under these conditions and using the exact same proof as the Lemma 18 from [13] we can show
the following.

Lemma C.1. Let H be a class of distributions that satisfies the conditions a) - h) and additionally
satisfies the following.

i) We have that dk(D`
,D

h) 6 ↵/n.

Then any algorithm that is robust to a total corruption ↵ in Kolmogorov distance across all bidders
achieves revenue of at most

OPT(D)� ⌦(n · p ·�)

for any distribution D 2 H.

C.1 MHR Distributions – Proof of Theorem 3.7

Let a = ln(n)� ln(1� �), b = ln(n), v0 = a� 1, v1 = ln(n)� 2 · ln(1� �), v2 = a, p = � · (1� �)/n,
� = 1/2. Then we define D

` and D
h according to their CDFs F ` and F

h which are the following:

F
`(v) =

(
1� exp(�v) v < v1

0 v > v1
,

26



F
h(v) =

8
>><

>>:

1� exp
�
�

b
a · v

�
v < v2

1� exp
⇣
�

v1�b
v1�a · (v � a) + b

⌘
v2 6 v < v1

0 v > v1

.

Observe also that for this choice of distributions it holds that

�
`(v) =

(
v � 1 v < v1

v1 v > v1
,

�
h(v) =

8
><

>:

v �
a
b v < v2

v �
v1�a
v1�b v2 6 v < v1

v1 v > v1

.

Now the conditions a) - h) are easy to verify. For the condition i) we observe that the maximum
di↵erence between the two CDFs is at v = v2 for which we have that

��F `(v2)� F
h(v2)

�� 6 �/n.
Hence, Lemma C.1 implies that the maximum revenue achievable by any robust mechanism is

OPT(D)� ⌦(n · p ·�) = OPT(D)� ⌦(�).

Observe that since the maximum value of any bidder is at most ln(n) we have that the maximum
revenue is ✓

1�
�

ln(n)

◆
·OPT(D).

If we write this expression with respect to the amount of corruption per bidder, then we have that
the maximum possible revenue is

✓
1�

n · ↵

ln(n)

◆
·OPT(D).

Finally, we observe that all of Db, D`, and D
h are MHR and hence Theorem 3.7 follows.

C.2 Regular Distributions – Proof of Theorem 3.9

For the case of regular distributions we will use the same distributions used by [13] in their proof
of their Theorem 2. In particular, let v0 = 3/2, v1 = +1, v2 = 1 + 1

� , p = �
n , and � = 1/2. We

define D
` and D

h through their CDFs as follows

F
`(v) = 1�

1

n · (v � 1)
,

F
h(v) =

8
>><

>>:

0 v < 1 + 1
n

1� 1
n·(v�1) 1 + 1

n > v < v2

1� 1��
n·(v�2) v > v2

.

The fact that these distributions satisfy a) - h) can be found in [13]. We will focus on proving i).
It is not hard to see that the two CDFs appears when v = v̄ = 1 + 1p

1��
. For this value we have

���F `(v̄)� F
h(v̄)

��� =
1

n

⇣
2� � � 2

p
1� �

⌘
6 �

2

n
,
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where the last inequality can be easily verifies for � 6 1. Now setting ↵ = �2

n , observing that
n · p · � = ⌦(�), and observing that OPT(D) 6 O(1) we can apply Lemma C.1 and we get that
the maximum possible revenue is

�
1� ⌦

�p
n · ↵

��
·OPT(D).

Finally by observing that all of Db, D`, and D
h are regular Theorem 3.9 follows.

D Proofs of Sample Complexity Bounds

D.1 Proof of Theorem 4.3, n > 1 Case

This follows easily from Theorem 3.8 and the DKW inequality Dvoretzky et al. [10], Massart [17]
that states that the empirical CDF with m samples is close to the population CDF with an error
of at most

O

 r
log(1/�)

m

!

with probability at least 1� �. ⌅

D.2 Proof of Theorem 4.3, n = 1 Case

We present in this section a proof of Theorem 4.3 for the case with n = 1 and regular distributions.
In this case, we show that Algorithm 2 achieves the optimal sample complexity, up to a poly-
logarithmic factor.

First, by [Lemma 5, Guo et al. [13]], we have that with probability at least 1� �, for any value
v > 0, the quantiles of D̃ and its empirical counterpart E satisfy that:

|q
E(v)� q

D̃(v)| 6

s
2qD̃(v)(1� qD̃(v)) ln(2m��1)

m
+

ln(2m�
�1)

m
. (20)

Further note that by construction, we have

q
E
� q

bE 6
r

2qE(v) (1� qE(v)) ln(2m��1)

m
+

4 ln(2m�
�1)

m
+ ↵.

Given that Algorithm 2 runs the Myerson optimal auction on Ẽ, which is a minimal regular dis-
tribution that dominates Ẽ. Further, bE ⌫ D

⇤ by construction, assuming Eq (20) holds. Therefore,
we have D

⇤
⌫ Ẽ assuming Eq (20) holds. Applying Lemma 3.3 yields:

Rev(MẼ ,D
⇤) > Rev(MẼ , Ẽ) = OPT(Ẽ).

Therefore, the remaining task is to ensure that m is su�ciently large such that

OPT(Ẽ) > (1�
p
↵)OPT(D⇤).

We will use a useful lemma below which connects the ratio of revenues that we are interested
in with the value of link function at an optimal reserve price.
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Lemma D.1. Given two regular distributions D, D̄ with CDFs F, F̄ , such that F̄ ⌫ F and
dk(D, D̄) 6 �. Denote the optimal reserve price for F̄ as P̄ , and the optimal expected revenue
for F, F̄ as OPTF ,OPTF̄ . Then we have

OPTF

OPTF̄
> 1� �hr(P̄ )

Proof. Recall that hr(x) =
1

1�F (x) , and h̄r(x) =
1

1�F̄ (x)
. Then, F (x) > F̄ (x) implies hr(x) > h̄r(x).

By definition, dk(D, D̄) 6 � implies that maxx F (x)� F̄ (x) 6 �. So we have:

hr(x)� h̄r(x) =
F (x)� F̄ (x)

(1� F (x))(1� F̄ (x)
= (F (x)� F̄ (x))hr(x)h̄r(x) 6 �h

2
r(x),

where the last inequality follows from the fact that maxx F (x) � F̄ (x) 6 �, and hr(x) > h̄r(x).
Thus, for all x,

h̄R(x) > hr(x)� �h
2
r(x). (21)

Note that the expected revenue, R(x) = x(1 � F (x)), at any x, equals to x
hr(x)

, which is the

reciprocal of the slope for the linear function g(a) = hr(x) · a. Hence, the revenue is maximized
when the slope for the linear function g(a) = hr(x) · a is minimized.

Denote the corresponding optimal reserve prices for F and F̄ as P and P̄ . Then at P̄ ,

h̄r(P̄ ) =
1

1� F̄ (P̄ )
=

1

OPTF̄
· P̄ .

Denote Rev(F, x) as the expected revenue with a reserve price at x for a valuation distribution
with CDF as F . Then,

OPTF

OPTF̄
> Rev(F, P̄ )

OPTF̄
=

h̄r(P̄ )

h(P̄ )
> hr(P̄ )� �h

2
r(P̄ )

hr(P̄ )
= 1� �hr(P̄ ),

where the first inequality follows directly from the definition of the optimal revenue, and the second
inequality is from Eq (21). ⌅

Now we will use Lemma D.1 to proceed. Denote the optimal reserve price for D⇤ as P ⇤. Denote
the link function applied to Ẽ and D

⇤ as h̃, h⇤, respectively. Then, we will discuss two cases for
h̃(P ⇤).

Case 1: h̃(P ⇤) > 1p
↵
. For this case, h̃(P ⇤) > 1p

↵
implies that qẼ(P ⇤) <

p
↵. Applying [Lemma

5, Guo et al. [13]] and triangle inequalities, we have

|q
Ẽ
� q

D⇤
| 6

vuut2qẼ(v)
⇣
1� qẼ(v)

⌘
ln(2m��1)

m
+

4 ln(2m�
�1)

m
+ ↵.

Given that qẼ(P ⇤) <
p
↵, we have q

Ẽ(1� q
Ẽ) 6 q

Ẽ 6 p↵. Therefore, it su�ces to have

rp
↵

m
6 C1↵,
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for some universal constant C1 to ensure that |qẼ � q
D⇤

| = O(↵), which implies m > 1/{C2
1↵

3/2} for
some universal constant C1.

Case 2: h̃(P ⇤) 6 1p
↵
. For this case, h̃(P ⇤) 6 1p

↵
implies that qẼ(P ⇤) > p↵.

By lemma D.1, we have that
OPTẼ

OPTD⇤
> 1� �h̃r(P

⇤),

therefore it su�ce to ensure that 1� �h̃r(P ⇤) > 1� C2
p
↵ for some universal constant C2, which

implies that � 6 q
Ẽ(P ⇤) · C2

p
↵. Applying [Lemma 5, Guo et al. [13]], it su�ces to have thatq

qẼ(P ⇤)
m 6 � 6 q

Ẽ(P ⇤) · C2
p
↵, which yields that m >

1
C2

2↵q
Ẽ
. Lastly, applying the fact that we

are in the case where q
Ẽ(P ⇤) > p↵ we get that is su�ces to have m >

1
C2

2↵
3/2 for some universal

constant C2. This completes the proof.
⌅

D.3 Proof of Theorem 4.4

This follows easily from Theorem 3.6 and the DKW inequality [10, 17] that states that the empirical
CDF with m samples is close to the population CDF with an error of at most

O

 r
log(1/�)

m

!

with probability at least 1� �. ⌅

D.4 Proof of Theorem 4.5

We omit the details of this proof since it follows from Theorem 2 and Appendix E of [13] applied
for the case n = 1. The reason is that if we could get a better bound in our corrupted case then
this algorithm could be used to improve our sample complexity result in the non-corrupted case.
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