
DCR: DataCapsule Replication System

Hanming Lu
John D. Kubiatowicz, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-267

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-267.html

December 16, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

DCR: DataCapsule Replication System

Hanming Lu

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

December 16, 2022

Professor John D. Kubiatowicz, Advisor

Abstract

The DataCapsule Replication System (DCR) is a continuous replication system
using DataCapsule, a cryptographically hardened data container. The system uses
DataCapsules as its underlying storage objects to provide a secure and efficient storage
system on untrusted infrastructure. In particular, it uses an in-enclave proxy with
HMAC channels to minimize write latency, lower compute and network requirements
on clients, enable network efficiency, while maintaining data integrity, confidentiality,
and provenance. In addition, it introduces optimizations such as periodic signatures
to further reduce computation workload on clients, while maintaining provenance on
every piece of stored data. In our benchmarks, the DCR has shown great performance
optimizations from proxies, where throughput is at most 62% higher than the baseline.
Also, a novel anti-entropy failure recovery mechanism is designed using the DataCap-
sule data structure to enable a compute- and network-efficient algorithm that handles
server and network failures. At 30000 records, the DAG-based design’s pairing latency
is at most 76% lower than the baseline.

1

Contents

1 Introduction 4

2 Background 5
2.1 Components Overview . 5
2.2 DataCapsule . 7
2.3 Global Data Plane (GDP) . 8
2.4 Intel Software Guard Extensions (SGX1) 8
2.5 Paranoid Stateful Lambda (PSL) . 8
2.6 CapsuleDB . 9

3 Threat Model 9
3.1 Trusted DataCapsule Writer . 9
3.2 Untrusted Infrastructure . 10
3.3 Untrusted Third Parties . 10

4 Design 10
4.1 Architecture Overview . 10
4.2 DCR Server . 12

4.2.1 DataCapsule in Detail . 13
4.2.2 DCR Client . 14

4.3 Append-Only Write . 14
4.3.1 Write Verification . 14
4.3.2 GDP Network Multicast . 15

4.4 Hash-based Read . 15
4.5 Freshness Service . 16

4.5.1 Freshness Service Security . 16
4.6 Anti-Entropy Failure Recovery . 17

4.6.1 DataCapsule as a DAG . 17
4.6.2 Anti-Entropy on DataCapsules . 18

4.7 Security Model . 20
4.7.1 Security Goals . 20
4.7.2 Key Management . 20
4.7.3 Delegation Certificates . 21
4.7.4 Provision Certificate . 22
4.7.5 Hosting Certificate . 22

5 Optimization 22
5.1 Proxy Server . 22

5.1.1 Threshold Signature Scheme (TSS) 23
5.2 Trusted In-Enclave Proxy Server . 23

2

5.2.1 Hash-Based Message Authentication Code (HMAC) 24
5.2.2 Periodic Signatures and Read Proofs 24

6 Implementation 25
6.1 Storage . 26
6.2 Networking . 26
6.3 Writes . 26
6.4 Reads . 26
6.5 Failure Recovery . 27
6.6 In-Enclave Server . 27

7 Evaluation 27
7.1 Experiment Setup . 27
7.2 Proxy Server Evaluation . 28

7.2.1 Benchmark Design . 28
7.2.2 Overall Performance - Operation Latency 29
7.2.3 Overall Performance - Throughput 30

7.3 Anti-Entropy Evaluation . 32
7.3.1 Benchmark Design . 32
7.3.2 Overall Performance . 32

8 Future Work 35
8.1 Multi-Writer with Bitcoin Wallet . 35
8.2 DataCapsule In Transit . 35
8.3 In-Enclave Proxy Optimization . 35
8.4 Freshness Service Server . 36

9 Conclusion 36

10 References 37

3

1 Introduction

In the world where more and more computing devices are closer to the end users, cloud-
centric computing is losing its dominance [29]. Preferred by Internet of Things (IoT),
Edge computing [20] is a computing paradigm that allows data collection and processing
to happen on the same location, instead of sending data to a remote compute resource such
as the cloud [5]. Edge computing provides properties that cloud computing is not able to
match: lower latency and higher bandwidth than ever. However, edge computing brings
security concerns. Different from computing power provided by credible cloud providers,
edge computing resources on the edge can be provided by anyone, thus less trustworthy
[27]. On the other hand, end users need to send code and input data for computations,
which could be sensitive information. Thus, it is a challenging problem to protect users
from untrusted infrastructure where the code is run and the data is stored. One of existing
solutions is Global Data Plane (GDP) [15], a network infrastructure that solves these
challenges by providing a robust networking and storage infrastructure.

GDP is a data-centric network that uses DataCapsules [15] as storage objects. In
essence, a DataCapsule is a cryptographically hardened container that stores encrypted
application data in the structure of a merkle tree [14]. It utilizes read-only metadata and
append-only data to ensure data integrity, confidentiality, and provenance. With signa-
tures and append-only semantics, DataCapsule prevents any unauthorized party to access
decrypted data, or alter data without being detected. Also, it allows any third-party to
audit the producer of any piece of data in an efficient manner. DataCapsule can be used in
any kind of network, but is especially compatible to GDP. GDP provides a robust network-
ing infrastructure where name-based routing is used, based on flat 256-bit GDP names,
instead of network addresses in IP-network. This provides a convenient layer for users to
directly address objects, such as DataCapsules, in the GDP system. GDP provides a ro-
bust networking infrastructure to efficiently interact, migrate, and address DataCapsules.
However, while GDP aims to provide a robust infrastructure to DataCapsule routing, the
current GDP design does not provide a clear storage solution.

GDP network is a robust networking layer, however, it is relatively complex to use
without simple user-facing APIs. Paranoid Stateful Lambda (PSL) [6] is a solution that
uses the GDP infrastructure, and provides an easy-to-use key-value store (KVS) interface to
users. PSL is a Function-as-a-Service (FaaS) framework, similar to AWS Lambda [2], while
extending its functionality to provide privacy-preserving stateful executions. It utilizes
trusted execution environments (TEE), such as Intel Software Guard Extensions (SGX)
[10], to provide provable privacy-preserving execution. In addition, it uses an in-enclave
cache called memtable to enable stateful executions. PSL efficiently uses DataCapsule
as its storage object and exploits its Conflict-free Replicated Data Type (CRDT) [19]
property to provide eventually consistent ordering among PSL workers. Also, it exploits
DataCapsule security properties to provide secure and private communications. With TEE
and DataCapsule, PSL is able to provide an efficient, secure, and scalable computation

4

layer between DataCapsules and end users to provide a robust infrastructure and simple
KVS APIs at the same time. However, existing PSL does not have a robust continuous
replication mechanism to efficiently persist and replicate PSL execution results.

Both GDP and PSL projects surface the need for a storage solution that can solve the
following challenges: 1) continuous replication with minimal-latency acknowledgements;
2) network efficiency and low burden on clients for both writes and acks; 3) an efficient
failure recovery mechanism to synchronize replicas; 4) efficiently support data durability,
confidentiality, integrity, and provenance.

We introduce a novel storage solution to solve these challenges: DataCapsule Replica-
tion System (DCR). DCR provides a continuous replication mechanism for DataCapsules.
It efficiently supports storing multiple replicas of the PSL key-value store embedded in
DataCapsules, and serve as the storage component in GDP. The system uses DataCap-
sules as its underlying storage objects to provide a secure and efficient storage system on
untrusted infrastructure. In particular, it uses a in-enclave proxy with HMAC [3] chan-
nels to minimize ack latency, lower computation and network burden on clients, enable
network efficiency, while maintaining the same level of security. In addition, it introduces
optimizations such as periodic signatures to alleviate the burden on client to sign every
write message, while maintaining provenance on every piece of stored data. In our bench-
marks, DCR has shown great performance optimizations from proxies, where throughput
is at most 62% higher than the baseline. Also, an Anti-entropy failure recovery mechanism
is specifically designed around the DataCapsule data structure to enable a compute- and
network-efficient algorithm that handles server and network failures. At 30000 records, the
DAG-based design’s pairing latency is at most 76% lower than the baseline.

In this report, I present the design and implementation of DataCapsule Replication
system, a storage solution for both GDP and PSL. The rest of the report is organized as
follows. Section 2 will give a more comprehensive background on DataCapsule, Global
Data Plane, and Paranoid Stateful Lambda. Section 3 will discuss the threat model that
the system is aiming to address. Section 4 and 5 give the full picture on the architecture
design and optimizations. Section 6 talks about the implementation details. Section 7
evaluates the system and gives performance comparisons. Section 8 discusses future work
and Section 9 gives a conclusion.

2 Background

2.1 Components Overview

Figure 1 gives a high-level overview on all components involved in a full picture. From top to
bottom, PSL is the user-facing interface, which provides a key-value store interface. PSL
is responsible for providing secure and fast computation, using an eventually consistent
in-memory cache, while CapsuleDB acts as a secure next-level cache for PSL workers.
CapsuleDB provides consistency and fast data retrieval for PSL workers, and handles

5

Figure 1: Overview of components.

failure recovery by incorporating DCR servers. In the middle, Global Data Plane (GDP)
network acts as the router among three components: Paranoid Stateful Lambda (PSL)
workers, CapsuleDB, and DCR servers. The GDP network provides efficient and secure
data-centric routing to 256-bit destinations, and provides server multicast when multiple
destinations have the same name. Individual components need to register with the GDP
network for permission checks. At the bottom, the DataCapsule Replication system (DCR)
serves to provide durability and replication. In particular, DCR servers are responsible for
collecting writes from upper components like PSL workers and CapsuleDB, and then persist
and replicate them. DCR servers are responsible for ensuring data durability under failures.

6

Figure 2: Overview of a DataCapsule.

2.2 DataCapsule

A DataCapsule [15] is the underlying storage object for the DataCapsule Replication sys-
tem. As shown in Figure 2 , a DataCapsule consists of multiple records of data, connected
by cryptographic hash pointers, with the first records pointing to its read-only metadata.
Every DataCapsule has a public/private key pair that identifies the owner of the Data-
Capsule. The public key is included in the metadata, and the private key is stored and
protected by the DataCapsule owner. With the private key, the DataCapsule owner has
the ability to append new records to the DataCapsule, but is not able to modify existing
records. Each write appends a new signed record to an existing record in the DataCap-
sule using cryptographical hash pointers. Each write must be signed by the private key
to be considered a valid write. After construction, this chain of records has a structure
of a merkle tree, which has two properties: 1) it is Conflict-Free Replicated Data Type
(CRDT), meaning two partial DataCapsules can easily synchronize by taking a union of
records; 2) it prevents malicious parties from forging or altering existing records without
being detected. In summary, a DataCapsule has a cryptographically hardened structure of
a merkle tree, which consists of records connected by hash pointers, wrapped around by
metadata.

In addition, DataCapsules are storage units designed for global distributions, so it is
critical to design a storage system that can efficiently store, organize, and migrate them
globally. This system also needs to secure the data inside each DataCapsule maintains
its integrity and provenance, as well as preventing unauthorized entities from altering or
accessing sensitive information.

7

2.3 Global Data Plane (GDP)

The Global Data Plane (GDP) [15] is a data-centric framework for routing to where Data-
Capsules are stored and transmitted. The GDP is a robust networking infrastructure using
name-based routing instead of network addresses as in IP networks. In particular, every
identity in the GDP network has a unique cryptographically derived flat 256-bit name,
which is called GDP name and is used for routing. The GDP network focuses on routing
security, ensuring that in-transit DataCapsule records cannot be tampered by adversaries
without being detected. As a feature, the GDP network supports unicast and multicast,
which is a great feature DataCapsule Replication system may use to optimize replication
performance.

2.4 Intel Software Guard Extensions (SGX1)

Intel Software Guard Extensions (SGX) [10] provides a Trusted Execution Environment
(TEE). It exploits hardware-based memory encryption to create a private region of memory,
named enclaves, that is isolated from other processes. Intel SGX protects the code and
data running inside the enclave from other processes, even from more privileged processes
like the operating system. Security features of Intel SGX include data confidentiality, data
integrity, and code integrity. In particular, data inside an SGX enclave is confidential such
that no unauthorized entities have access to decrypted data. Intel SGX guarantees data
and code integrity such that no unauthorized entities can alter or modify them. In addition,
Intel SGX also supports remote attestation, which allows another entity to authenticate
the code running inside the enclave. This allows other entities to trust the code running
inside an enclave after attestation.

We are aware of the fact that Intel SGX could be undermined by security attacks such
as side channel attacks [7, 9, 21]. However, there are active research efforts to mitigate or
prevent such attacks [7, 18, 21, 22]. Thus, we consider it orthogonal to our report and will
not discuss it further.

2.5 Paranoid Stateful Lambda (PSL)

Paranoid Stateful Lambda (PSL) [6] is a secure Function-as-a-Servie (FaaS) framework,
which provides privacy-preserving execution using Intel SGX. Each PSL worker (i.e., a
lambda) runs in an enclave, specifically Intel Software Guard Extensions (SGX), to ensure
privacy-preserving execution. Each PSL worker maintains a local memtable, which is an in-
enclave cache of the most recently updated key-value pairs, stored in plain text. Individual
PSL workers collaborate with one another to perform large parallel computations. The
secure Concurrency Layer (SCL) [6] facilitates communication among PSL workers. It is
a communication protocol between PSL workers that achieves eventual consistency among
PSL workers computation results. In particular, every write is multicasted to all other PSL
workers, and ordered by SCL, resulting in an eventually consistent ordering of writes. All

8

communications among PSL workers are encrypted, private, and unforgeable. PSL utilizes
DataCapsule Replication system for persistent storage. In particular, PSL multicasts an
ordered and connected chain of DataCapsule records to DCR, which will then store and
replicate the records for persistence.

2.6 CapsuleDB

CapsuleDB [16] is an eventually consistent in-enclave key-value store. It is an LSM tree-
based storage [17] that provides consistency and secure access to records to PSL workers.
Specfically, PSL workers can save and coordinate state information through CapsuleDB, to
achieve consistency and fast retrieval of records. CapsuleDB acts as a next-level cache and
provides failure recovery in case of crash failures. CapsuleDB employs a novel compaction
mechanism to enable fast recovery, less signature overhead, and adjustable write amplifi-
cation. CapsuleDB utilizes the DCR system to persist and replicate data blocks. Similar
to PSL, CapsuleDB multicasts ordered and connected chains of DataCapsule records to
DCR, which will then store and replicate the records for persistence.

3 Threat Model

In this section, we discuss the threat model that the DataCapsule Replication system aims
to address. Overall, we assume a federated storage model, where autonomous storage
resources, either on the edges or in data centers, are collectively organized to form a
widely distributed system for data storage. This means that anyone can contribute storage
resources and become a part of the system.

We use the typical assumptions for cryptographical tools in the report, including sig-
natures, symmetric and asymmetric encryptions, and hash functions. And we assume that
adversaries have reasonably limited computation power so they cannot launch brute-force
attacks. We also assume a malicious network, where packets may be discarded, and net-
work can partition or fail completely. Another assumption is each entity can protect its
secret keys.

3.1 Trusted DataCapsule Writer

For each DataCapsule, its writer is the only trusted entity. In particular, every modification
to the DataCapsule from the writer, either intentional or accidental, is considered to be
the source of truth and will be trusted. At the same time, a writer does not need to store
a DataCapsule locally, instead, it delegates that responsibility to DCR, and employs the
hash chain of merkle tree to ensure data integrity. Readers of a DataCapsule should trust
the changes from the verified writer.

9

3.2 Untrusted Infrastructure

Confidentiality and Integrity : Our system is based on a federated storage model where
anyone can participate in the network and provide storage services. With a large and
diverse collection of storage providers, we should provide minimal trust to the infrastructure
and their administrative entities. Therefore, despite the fact that DataCapsules being
physically stored in the DCR servers, these servers should not have access to the decrypted
data and should not have the capability to tamper with data without being detected.

Availability and Persistence: Although we do not trust service providers with data
confidentiality and integrity, DataCapsule owners pay service providers for hosting their
DataCapsules. Therefore, service providers have the financial incentives to provide service
availability and data persistence. Thus, we trust service providers to provide availability
and provide persistence as promised. However, in scenarios where individual nodes cannot
guarantee such two properties, either intentionally or unintentionally, the system should
provide alternate solutions to mitigate the situation. In the worst case where no alternates
are possible, the clients should still be able to ensure there is no violation of confidentiality
or integrity.

3.3 Untrusted Third Parties

The federated storage model allows any third party to join the network and contribute.
The system should do an effective job of defending against any reasonable adversaries.

4 Design

4.1 Architecture Overview

The key task of the DataCapsule Replication system is to provide continuous, persistent,
replicated, and secure storage for DataCapsules. The essence of DCR is that every DCR
server securely persists a complete replica of assigned DataCapsules using untrusted in-
frastructure. By providing a failure recovery synchronization scheme among the servers,
DCR is guaranteed to provide durability under network partition, network failure, or f
server failures. Also, it handles disk corruption and partial loss of data by replicating a
DataCapsule on multiple DCR servers.

Figure 3 provides an overview of the DCR system architecture. The DCR system
utilizes a federated storage model, where there are multiple DCR servers, each represents
a physical server administrated by an autonomous storage provider. Within each physical
server, a DataCapsule is used as the underlying storage object. Each physical server hosts
one or more DataCapsules, each DataCapsule is hosted with a delegation certificate, which
is issued by the DataCapsule owner to certify that the server is authorized to host the
DataCapsule. For networking, each server has a 256-bit GDP name. The underlying GDP
network infrastructure uses the GDP names to achieve name-addressable networking.

10

Figure 3: The architecture of DataCapsule Replication system. Each DCR server hosts one
or more DataCapsules. DCR servers communicate with the GDP network to receive write
and read requests. Failure recovery is achieved by anti-entropy via pairing. DataCapsule
writer and DataCapsule readers communicate with the GDP network for write and read
requests, respectively.

For each record write from the DataCapsule writer, we exploit the GDP’s multicast
functionality to propagate write updates to all servers hosting the addressed DataCapsule.
When a DCR server receives a record to append, it verifies the cryptographic hashes and
signatures using the DataCapsule writer’s public key, then locally appends the record to its
parent. After that, it will send an acknowledgement message to the sender. On the other
hand, the sender will receive one ack from each server hosting its DataCapsule. When a
quorum is reached, the sender is able to mark the record persistent and is safe to discard it
locally. For a DCR client to retrieve a record, it can simply send a read query, containing
the record’s hash, to any server hosting the DataCapsule. It is safe to do so because all
DataCapsule records are read-only, so a verified persistent record cannot be modified by
anyone, and it can be verified by the reader using the DataCapsule writer’s public key
upon receiving the record.

By exploiting the CRDT property of DataCapsules, there is no synchronization re-
quired among DCR servers if there is no failure. If failures occur, either server or network
failures, and causes missing records in a DataCapsule replica, anti-entropy will resolve it.
Anti-entropy is a specially designed failure recovery mechanism for synchronizing DataCap-
sule replicas among DCR servers. By considering a DataCapsule as a DAG, anti-entropy
optimizes network and compute efficiency while providing eventual consistency semantics
to DataCapsule replicas.

11

4.2 DCR Server

A critical component in the DataCapsule Replication system is the DCR server. A DCR
server is a physical server that a storage provider provisions and manages. DCR servers
have the responsibility of hosting DataCapsules and serve client requests. To host a Dat-
aCapsule, a DCR server will receive a delegation request from the DataCapsule’s writer,
it will then advertise its DataCapsule replica in the GDP network. After that, the DCR
server will receive write or read requests from the GDP network, and serve them accord-
ingly. A single DCR server is capable of hosting multiple DataCapsules, depending on its
local resource capacity. Note that each DataCapsule will be advertised separately to the
GDP network for routing purpose.

Besides serving requests from clients, DCR server also serves synchronization requests
from each other. In particular, when a server detects missing records, or after a timeout,
it will send a sync request to its peers as a step in the failure recovery process, which
will be discussed in Section 4.6. After synchronization, the DCR server will then become
complete, which provides eventual consistency.

DCR servers have the responsibility of providing persistent storage, and do not have
any authority over what is in the DataCapsule. As long as an incoming record is properly
signed, the DCR server should accept it, store it, and reply with an ack. The only possible
reason it can reject an update is service unavailable, which is a transient failure.

Integrity : Integrity means no unauthorized party is able to alter or discard data with-
out being detected. Since DCR is based on a federated storage model, DCR servers are
considered untrusted infrastructure as well. We prevent DCR servers from altering data,
including both the encrypted payload and hash chain structure, by utilizing a signature on
each record’s encrypted payload and cryptographic pointer. Thus, if there is any unautho-
rized modification, any entity with the DataCapsule verification key can detect it.

Confidentiality : Similarily, DCR servers should not have access to decrypted payload
data, despite the fact that they physically store the data. This is achieved by separating
storage and permission to access. DataCapsule writers encrypt data before sending it to
DCR servers for persisetence. Thus, DCR servers store encrypted data and do not possess
decryption keys because they do not need it to provide persistent and verifiable storage. On
the other hand, authorized readers have access to decrypted data by retrieving encrypted
data from a DCR server and then decrypting it locally.

Provenance: The DCR is designed to provide provenance for every bit of data, which
means any third-party auditor can verify the producer of every stored record. This is done
using the same signature mentioned above, where each record is signed by the DataCapsule
writer. Thus, any third-party auditor can retrieve the record and its signature from a DCR
server, then verify it using the DataCapsule writer’s public key.

Fault Tolerance: Each DataCapsule can be replicated multiple times. In particular,
we use ”full replication” where each replica is a full copy of a DataCapsule. Thus, the
DataCapsule Replication system can tolerate f server failures when there are f+1 servers.

12

It can tolerate more server failures than the 2f + 1 server model because each server is
hosting a complete DataCapsule and DataCapsules have the properties of append-only
and provenance. Since the DataCapsule is append-only, no existing record can be removed
or altered; since every record has a signature, all records’ integrity and provenance can
be verified; since each DataCapsule replica is a complete one, one non-faulty replica is
sufficient to reconstruct the entire DataCapsule. Note that a replica needs to complete
only if f servers fail completely, otherwise, all we need is a record to be present in one
DataCapsule. Thus, any new DCR server or client can reconstruct a complete DataCapsule
in a verifiable manner using only one non-faulty replica.

Figure 4: The detail of a DataCapsule.

4.2.1 DataCapsule in Detail

DCR servers use the DataCapsule structure for organizing data. Figure 4 gives a detailed
visual representation of a DataCapsule. As shown in the figure, each record contains an
encrypted payload, a hash of the record, a signature, and one or more parent hashes.
The encrypted payload contains actual application-level data. It is Advanced Encryption

13

Standard-encrypted (AES) by the DataCapsule writer. The signature is generated over
the entire record using the DataCapsule writer’s private key, which is an Elliptic Curve
Digital Signature Algorithm (ECDSA) signing key. Parent hashes point to the record’s
parents, which are previous records in the DataCapsule. There can be one or branches in a
DataCapsule, for instance, Rec1 and Rec2 are in two branches. The actual data structure
used to store each DataCapsule is dependent on implementations and should be indifferent
from the perspective of design. We will discuss the DataCapsule implementation in Section
6.

4.2.2 DCR Client

A DCR client interacts with the DCR servers for the purpose of producing or consuming
DataCapsules. There are three types of DCR clients: DataCapsule owner, DataCapsule
writers, and DataCapsule readers. The DataCapsule onwer creates the DataCapsule and
delegates it to DCR servers to host the DataCapsule. The DataCapsule writer produces
records and writes to the DataCapsule. The DataCapsule writer possesses an AES encryp-
tion key for encrypting application-level data in each record. It also has an ECDSA signing
key to generate signature on every record. It is the only entity that has the permission
to write to DataCapsule. The DataCapsule reader is the consumer of DataCapsules. In
addition to verifying DataCapsule records, it also has the permission to read decrypted
payloads. It has an ECDSA verifying key and an AES decryption key, for verifying records
and decrypting record payloads, respectively.

4.3 Append-Only Write

One responsibility of a DCR server hosting a DataCapsule is to handle write requests from
clients. After registering the DataCapsule with the GDP network, DCR server will then
start receiving write requests.

DataCapsule writer is responsible for generating records and determining the hash chain
ordering. Each write to the DataCapsule is essentially an append operation, which adds
a new record. Specifically, the DataCapsule writer encrypts application-level data with its
AES encryption key, signs it with its ECDSA signing key, sets its parent record, and then
sends it to the GDP routing network. The GDP routing network will then propagate the
write to DCR servers that host the DataCapsule.

4.3.1 Write Verification

For each write received, the DCR server verifies the signature with its ECDSA verifying
key, finds its parent in the DataCapsule, and then append it to the parent by storing it
locally to disk. After that, the DCR server sends a signed acknowledgement message to
the writer. The writer must verify the signature on the ack to make sure that it is from
one of the organizations that the owner has delegated to physically host a replica of the

14

DataCapsule. The writer can mark a record as persisted when it receives a quorum of
verified acks.

4.3.2 GDP Network Multicast

DCR utilizes the multicast functionality in the GDP network infrastructure. In particular,
the DataCapsule writer sends every write to the GDP network, which will then multicast
the write to all delegated DCR servers. Multicast enables the GDP network to efficiently
propagate every write. This optimizes scalability, especially when a DataCapsule writer
wants additional durability by delegating its DataCapsule to tens or hundreds of DCR
servers. To utilize this multicast tree, every DCR server needs to register with the GDP
network with a delegate certificate from the DataCapsule writer, which we will discuss
further in Section 4.7. However, the DCR system does not rely on reliable multicast for
correctness. As long as a quorum of DCR servers receive the writes, the DataCapsule
writer will receive a quorum of acks and mark the records as persisted.

4.4 Hash-based Read

Similar to serving write requests, DCR servers also have the responsibility of serving read
requests from clients. Again, a DCR server will start receiving read requests after regis-
tering the DataCapsule with the GDP network. In addition to supporting multicast, the
GDP network supports anycast; thus a read request will be routed to the closest registered
DataCapsule.

Every record has a hash value, which is generated using an SHA256 hash function
on the record. A client can retrieve a specific record using its hash by sending a hash-
based request to the GDP network. Since DataCapsule is an append-only data structure
and every record can be independently verified, a client can retrieve the record from any
delegated DCR server. Thus, when a read request is sent to the GDP network, it is
forwarded to only one delegated DCR server. When the DCR server receives the hash-
based read request, it will lookup the hash in its DataCapsule, and then reply it directly
to the client. When the client receives the record, it will verify its signature for integrity
and provenance, and then consume it.

Since this mechanism only needs to read from one server, it minimizes read latency by
utilizing GDP network to optimize for locality. However, this mechanism does not rely on
GDP network for correctness. Even if the GDP network routes the request to a distant
server, the client should still receive a record, even though the latency could be higher. In
the rare case where a desired record is not on the requested DCR server, the DCR server
is responsible for fetching the record from another DCR server, and then serve the request.
In the worst case where the requested server is malicious, the client can still verify if the
retrieved record is tampered with by using the DataCapsule verifying key.

15

4.5 Freshness Service

Figure 5: A visualization of a DataCapsule.

In situations where a client wants to know the most recent records in a DataCapsule,
hash-based reads may not be sufficient. For instance, if a writer crashes and wants to re-
construct the DataCapsule locally, it needs to know which existing records to append new
records to. Thus, in addition to retrieving a record via hash, DCR provides a freshness
service, where a client can also fetch the most recent record for every branch in a DataCap-
sule. In particular, a client will send a freshness read request of a DataCapsule to the GDP
network, which will multicast the request to all DCR servers hosting that DataCapsule.
When a DCR server receives a freshness read request, it will send a response with the latest
records’ hashes on each branch, which is the set H in Figure 5. As long as a client receives
f + 1 responses, where f is the number of faulty servers, it is able to construct the latest
records’ hashes. In detail, since every record is unforgeably defined because of signatures
and hashes, a client can verify a record’s integrity and use its timestamp to find the latest
record on a branch.

4.5.1 Freshness Service Security

In a federated storage model, we should consider the possibility of faulty DCR servers.
We assume there are potentially f faulty servers, either malicious or crash faulted. In this
case, as long as a client receives f + 1 responses, the client will verify every response’s

16

integrity to filter out potentially forged responses. After that, the client can use each
record’s timestamp to find the latest record of each branch.

Since the freshness service is based on all DCR servers hosting the DataCapsule, there is
less potential vulnerability of DDoS attacks compared to a centralized design. In addition,
each freshness read requires a light workload on the servers, which is only returning a set
of hashes. Therefore, this design can mitigate DDoS attacks pretty well.

4.6 Anti-Entropy Failure Recovery

In a federated storage model, it is beyond any service provider’s ability to act as a central
service to coordinate and handle failures in all DataCapsule replicas. A DCR system
exploits anti-entropy, a failure recovery mechanism that, for each pair of replicas, compares
the data of them, and then update each other to be the union of the two. It is a pair-
wise, epidemic synchronization mechanism that allows all replicas to become eventually
synchronized without the need to reach out to a centralized service.

A naive anti-entropy design is that for each pair-wise update, two DataCapsule replicas
exchange all of their current records’ hashes, and fill out each other’s missing records. This
naive design requires sending one or both DataCapsule replicas’ complete hash chains over
the network. Most of the time, when two DataCapsule replicas exchange states, they are
in complete agreement or have minimal differences. This property arises because DCR
utilizes GDP multicast to allow all replicas to receive every new record, so DataCapsule
replicas should be identical under no failures. In such cases, the naive design sends over
at least one complete replica’s hash chain and compares the entire chain of records. Given
the size of a complete DataCapsule can be in the size of GBs, TBs, or even PBs, the naive
design could be prohibitively expensive. Thus, we introduce a novel design that exploits
the DAG structure of DataCapules.

4.6.1 DataCapsule as a DAG

A DataCapsule is a directed acyclic graph (DAG) [25]. It is a DAG because it has an
append-only structure and every new record must reference one or more existing records
as its parent(s). Thus, each hash pointer can be seen as a relationship based on time,
where it points from a later record to an earlier record. In this setup, any cycle would have
to include a pointer in which an earlier record points to a later record, which is impossible
given DataCapsule’s append-only design.

Before introducing the novel anti-entropy algorithm on DAGs, we need to define three
terms: sink, source, and DAG digest. We define a sink to be a record without local outgoing
edges. Similarly, we define a source as a record without local incoming edges. Lastly, we
define a DAG digest of a DataCapsule to be the set of all sinks and sources. As shown in
Figure 6, each DataCapsule replica can have one or more sinks and one or more sources.
Also, by definition, the DAG digest of Figure 6 contains the two sinks and the three sources.

17

Figure 6: A DataCapsule as a directed acyclic graph (DAG) with two sinks and three
sources.

4.6.2 Anti-Entropy on DataCapsules

We introduce a novel Anti-Entropy mechanism that exploits DataCapsule’s DAG struc-
ture to optimize network and compute efficiency. Periodically, each DataCapsule replica
randomly selects another replica, and starts pairing. The pairing requester, A, sends a
pairing request with its replica’s DAG digest (i.e., sinks and sources) to the requestee,
B. After receiving the pairing request from A, replica B compares A’s DAG digest with
its own, and then identifies the records that A is missing. The DAG digest comparison
algorithm is shown in Algorithm 1. With this algorithm, B can generate a set of records
that A is missing, and then send it back to A. Along with these records, B also sends
its DAG digest to A. A will receive, verify, and then store these records locally. At this
point, A’s replica is a union of A’s and B’s. A will then compare its updated DAG digest
with B’s DAG digest, using the same algorithm above. If there are any missing records, A
will send them back to B, who will similarly verify and store the received records. By the
end of this pairing session, replica A and B will have the same copy, which is the union

18

Algorithm 1 DAG Digest Comparison

1: sinkA = all sinks of replica A
2: sinkB = all sinks of replica B
3: sourceA = all sources of replica A
4: sourceB = all sources of replica B
5: nodeB = all records of replica B
6: L = records to return
7:

8: // To handle holes in a chain and stale branches
9: for v ∈ sourceA do

10: if v ∈ nodeB and v /∈ sourceB then
11: add all connected nodes ahead of v in nodeB to L, until we reach a node in

sinkA or in L
12: end if
13: end for
14: for v ∈ sinkA do
15: if v ∈ nodeB and v /∈ sinkB then
16: add all connected nodes after v in nodeB to L, until we reach a node in sourceA

or in L
17: end if
18: end for
19:

20: // To handle missing branches
21: for v ∈ sourceB do
22: if v /∈ sourceA and v /∈ L then
23: add connected component of v to L
24: end if
25: end for
26: for v ∈ sinkB do
27: if v /∈ sinkA and v /∈ L then
28: add connected component of v to L
29: end if
30: end for

19

of them. By periodically pairing and randomly selecting pairing targets, this pair-wise,
epidemic synchronization mechanism allows all DataCapsule replicas to become eventually
synchronized.

In DCR, DataCapsule replicas are usually up-to-date because of the efficient GDP mul-
ticast. This algorithm is network and compute efficient because most pairing sessions only
require the requester to send its DAG digest to a requestee, which verifies both replicas are
up-to-date and simply sends back an acknowledgement. Also, since the number of sources
and sinks is only related to the number of branches, but not related to DataCapsule size,
this method is scalable. For instance, a DataCapsule with one record and a DataCapsule
with one branch of many records have the same DAG digest size: one sink and one source.

In cases where several records are missing, this algorithm only requires exchanging
missing records, optimizing network efficiency. In rare cases where two replicas have sig-
nificant differences, such as a replica has just joined the network, the requestee can send a
partial DataCapsule, and ask the requester to pair with another replica to receive the rest.
This limits performance impacts on any individual requestee, while allowing the requester
to catch up as soon as possible. In the worst case where a requestee is hacked and becomes
malicious, the worst it can do is to send empty or modified records. This will not affect
correctness because the modified records will fail verification, and the requester can receive
correct updates from another replica in the next pairing session.

4.7 Security Model

4.7.1 Security Goals

DataCapsule Replication system has three key security goals: data integrity, confidentiality,
and provenance. For data integrity, our system assures that no unauthorized party has the
capability of altering or discarding stored data without being detected, this includes the
infrastructure that hosts the data. In terms of data confidentiality, we ensures that only
authorized clients have access to decrypted data. Lastly, we provides data provenance,
which means any third party will have the capability of tracing and verifying the producer of
every piece of data. For a replication system built on top of autonomous storage resources,
these security goals are critical to protect clients from malicious parties.

4.7.2 Key Management

There are four parties considered in the DataCapsule Replication system: service providers,
physical servers, DataCapsule owners, and DataCapsule readers. In particular, a service
provider is an organization that provides storage services, such as IBM. A physical server is
the server that stores and persists DataCapsules, an example would be a server provisioned
by IBM. A DataCapsule owner is the owner of a DataCapsule, who possesses and protects
the DataCapsule’s private key as well as data encryption key. A DataCapsule reader is a
reader of a DataCapsule, who is authorized to possess data decryption key.

20

A private/public key pair will be generated for each party mentioned above, except for
DataCapsule readers. Public keys are accessible by anyone for the purpose of verification,
and private keys are stored and protected by each entity. Data encryption key is possessed
by DataCapsule writer, while data decryption key is possessed by authorized DataCap-
sule readers. The type of asymmetric keys generated depends on implementation and is
indifferent for the purpose of this report. Also, the processes of key generation and key
distribution are assumed to be done out of band, and will not be addressed in this report.

Figure 7: Delegation Certificates in the DCR system.

4.7.3 Delegation Certificates

Delegations are used to establish trusted relationships among these parties. A DataCapsule
owner needs service providers to provision DataCapsule replicas, and a service provider
needs physical servers to physically store and host DataCapsule replicas. For a service
provider to provision DataCapsule replicas for the DataCapsule’s owner, the DataCapsule
owner needs to grant the service provider a Provision Certificate. For a service provider’s
physical server to host a DataCapsule replica, the service provider needs to grant the
physical server a Hosting Certificate. As shown in Figure 7 , for a physical server to
register its hosted DataCapsule in the GDP network, it needs to prove both its identity
and its authorization to host, which requires showing both the Provision Certificate and
the Hosting Certificate.

21

4.7.4 Provision Certificate

In the DCR system, a DataCapsule owner pays service providers to provision DataCapsule
replicas on behalf of the owner. A Provision Certificate is a cryptographic delegation
certificate from a DataCapsule owner to a service provider (e.g., IBM) to authorize it
to provision DataCapsule replicas. In particular, a Provision Certificate will contain the
DataCapsule’s GDP name, the service provider’s GDP name, and then signed by the
DataCapsule’s ECDSA signing key. After receiving the certificate, the service provider will
store the certificate locally as well as forward it to its physical servers that are responsible
for hosting a replica. When a physical server registers a DataCapsule replica with the GDP
network, it will present the Provision Certificate, along with Hosting Certificate, to prove
its identity. For further security, a Provision Certificate has an expiration time, and can
be renewed periodically.

4.7.5 Hosting Certificate

For a service provider to provision DataCapsule replicas, it requires its physical servers to
physically store and host each replica. A Hosting Certificate is a cryptographic delegation
certificate from a service provider to its physical server to authorize it to host a specific
DataCapsule replica. A Hosting Certificate proves the ownership relationship between a
service provider and a physical server that it owns. In particular, a Hosting Certificate will
contain both the service provider’s GDP name and the physical server’s GDP name, signed
by the service provider’s ECDSA signing key. After receiving the Hosting Certificate, a
physical server will store it and present it to the GDP network whenever verification is
needed.

When the GDP network receives a registration request from a physical server, it will
receive a Provision Certificate and a Hosting Certificate. The GDP network will verify
both certificates through the DataCapsule’s public key and the service provider’s public
key, respectively. If successful, the GDP network will register the physical server to be
hosting a DataCapsule replica, and then forward corresponding client requests to it in the
future.

5 Optimization

In this section, I discuss system optimizations that improve operation latency and through-
put, while maintaining the same level of security.

5.1 Proxy Server

In the baseline design, a client receives acknowledgement messages from all delegated DCR
servers. In cases where the number of replicas is large, this can be a burden on clients’
networking and computing resources. To alleviate that, we introduce a proxy that collects

22

acks from DCR servers and then sends an aggregated ack to the client. Since we assume
DCR servers and the proxy to be untrusted infrastructures, we need a signature scheme
that does not rely on trust among DCR servers, the proxy, and the client. We exploit
Threshold Signature, a signature scheme that allows an aggregated ack to verifiably prove
a quorum of DCR servers have persisted the record.

5.1.1 Threshold Signature Scheme (TSS)

A Threshold Signature Scheme [4] is a cryptographic signature scheme that allows multiple
parties to establish a group, and allows a quorum of parties to sign on behalf of the group.
Each party is considered an individual signer, which generates its own private key, and has
the capability to sign a share of a message. To sign a message on behalf of the group, TSS
requires at least m of n shares of signatures to be available. When m shares all sign a
message, a single threshold signature is generated, and it means the group has signed the
message. For any verifier, it can simply verify the threshold signature using a public key
to know a quorum of parties have signed the message.

In the context of the DCR system, a DCR server is an individual signer. Each DCR
server has their own private key and can sign a share of the ack after persisting a record. The
proxy has the responsibility of collecting a quorum, m, of signatures from DCR servers,
then generating a threshold signature on the ack. After that, the proxy will send the
threshold signature with ack to the client, which will then verify the threshold signature
received. By using the threshold signature, the client can verify only one ack to know that
the record has been persisted by a quorum of DCR servers. TSS reduces clients’ verification
cost from linear to constant, saving them from receiving and verifying potentially tens or
hundreds of acks.

5.2 Trusted In-Enclave Proxy Server

In the federated storage model, the network and infrastructure are untrusted. Therefore,
DCR servers need to verify every write received. If we can ensure that sender is the
DataCapsule writer in another way, then DCR servers do not need to verify signatures on
every write. Similarly, if the client can ensure that the proxy is collecting acks properly,
then the client does not need to verify ack signatures. We introduce in-enclave proxy
server, a trusted proxy server that runs inside an enclave. An enclave is a secure area of
a main processor which is isolated from other processes running in the system. It protects
code and data running inside the enclave, and allows third parties to attest and verify that
the code is indeed running inside an enclave. Therefore, any third entity can trust the
in-enclave proxy with secrets.

23

5.2.1 Hash-Based Message Authentication Code (HMAC)

With a trusted in-enclave proxy, third parties can establish a HMAC [3] channel for efficient,
secure, and verifiable communication. HMAC is a crypographic authentication scheme that
enables authentication and data integrity in a conversation, without the need for signatures
and asymmetric cryptography on every write.

Our threat model in Section 3 mentions that infrastructures, including proxies, are
untrusted. Thus, HMAC channels with non-enclave proxy does not alleviate the burden
on signatures because the server would have to verify signatures on every write. On the
other hand, Hash-based Message Authentication Code (HMAC) becomes a more efficient
option for an in-enclave proxy and thus can be trusted.

For the write workflow from a client to DCR servers, we establish an HMAC channel for
each of the client-server pair, with the same symmetric key. As a result, a client can simply
send the write to the GDP network, which will multicast the write to all delegated DCR
servers. Since they have the same symmetric key, all DCR servers can properly handle the
write.

For the write ack workflow from DCR servers to the client, we establish an HMAC
channel for each of the server-proxy pair, with different symmetric keys so the proxy can
verify the ack’s identity; and an HMAC channel for the proxy-client pair to reduce signature
traffic and load on the proxy. After receiving acks from a quorum of DCR servers, the proxy
sends an aggregated ack to the client.

As a result, DCR servers do not need to verify the signature on every write for prove-
nance authentication check. Instead, each DCR server can simply store the trusted record
locally, and generate an ack. Since there is an HMAC channel with the in-enclave proxy,
the DCR server does not need to sign the ack. However, the DCR server still needs to
verify the signatures on data, since HMAC cannot be given to anyone else. Thus, any
third party in the future needs the signature to verify data integrity and provenance in the
future.

By employing HMAC channels, a client can save the cost of signing and verifying for
each write request. DCR servers also do not have to verify every write, or signing ack
messages. This design improves write latency and saves compute resources.

5.2.2 Periodic Signatures and Read Proofs

If there is no signature on records at all, even though a DCR server can safely assume
every write request comes from the DataCapsule writer, it is not able to prove it to others,
which undermines provenance. We introduce periodic signature verification, where a DCR
server checks signature every several writes as shown in Figure 8. Let’s say the last verified
record is R100 and the second last one is R103. For records between R100 and R103 (i.e.,
R101 and R102), they will be marked verified whenever R103 is marked verified.

To serve read requests, only verified records can be returned, and the DCR server needs
to generate a proof using a signature of a later record and a hash chain of records including

24

Figure 8: DataCapsule structure with periodic signatures.

the returned record. For a record with a signature, such as R103 in Figure 8, it can be
simply returned because the reader can verify its signature. For a verified record without a
signature, such as R101 in Figure 8, a cryptographic proof is generated. In particular, the
proof consists of the signatures before and after the requested record, which are σ1 and
σ2, along with the hash chain between R103 and R100. With these two signatures and the
hash chain, a reader can first verify that R100 and R103 are valid, and then verify the hash
chain is properly constructed, thus all records in the hash chain are valid. Further, during
the period after R101 and R102 have been written but before R103 arrives, the server
cannot serve R101 or R102 to readers, since there is no way to prove that they are valid.
In fact, if the writer were to crash before writing R103, the unverified data in R101 and
R102 would ultimately have to be discarded. Thus, the HMAC scheme would ultimately
involve a negotiation between writers and servers as to the amount of data wrtiers are
allowed to write without signing.

6 Implementation

The DataCapsule Replication System has a codebase of 3,500 lines of code in C++ exclud-
ing third-party networking and storage components as well as experiment scripts. All hash
functions are SHA-256; symmetric encryption/decryption schemes are AES [23]; asymmet-
ric signature schemes are ECDSA [13]. All cryptographic components mentioned above
are based on OpenSSL [24] implementation, an open-source general-purpose cryptography
library. In-enclave components are implemented on top of Open Enclave [12], which pro-
vides agnostic enclave platform support. In-enclave components of our experiments are
run on Intel Software Guard Extensions (SGX1).

25

6.1 Storage

A DataCapsule record is the base unit of data transfer between DCR servers and clients.
Each DataCapsule record is structured and transmitted using Protocol Buffers [26], a
cross-platform data format used to serialize data. Each DataCapsule record has several
fields, including an encrypted payload that stores application-level data, a parent hash,
a signature, and the sender address. Every DCR server hosts one or more DataCapsules
on local disk. Each DataCapsule is stored in a Key-Value Store, with each record’s hash
being the key, and the complete record being the value. Specifically, we use RocksDB [11],
a log-structured merge-tree embedded KVS. We use RocksDB because it is an easy-to-use
embedded KVS that integrates easily to the DCR system.

6.2 Networking

ZeroMQ (ZMQ) [28], an embedded networking library, is used to implement networking
components. All unicast communications are done using TCP in ZMQ. For multicast, since
GDP routing is under development, we simulate it using multiple unicasts.

6.3 Writes

We have implemented DataCapsule writers to send write requests to DCR servers. For
each write, a DC client creates a record with an encrypted payload, its address, the hash
on the record, and a parent hash. The client will then sign the record using its ECDSA
signing key, serialize it to a string, and send it to all DCR servers via ZMQ simulated
multicast. Specifically, the write API has the format of put(hash, record). When a DCR
server receives a write request, it will deserialize the string, verify its signature, store it
locally in the corresponding DataCapsule KVS, which is a KVS that stores the DataCapsule
for storing and retrieving records. The DCR server will then update its local DAG digest,
including sinks and sources. After that, the DCR server will generate an ack, sign it, and
send it back to the client via ZMQ unicast. When the client receives a quorum of verified
acks, the record is considered durable.

6.4 Reads

For each read, a DC client creates a read request on a hash, a DataCapsule name, and its
address. It then serializes it to a string, and sends it to a DCR server. Specifically, the
hash-based read API has the format of get(hash). When a DCR server receives a read
request, it simply fetches the corresponding record from its local DataCapsule KVS using
the given DataCapsule name and record hash. If the DCR server does not have the record,
it will fetch from another delegated DCR server, verify it, and then return it to the client.
After receiving the record, the client will verify its signature, decrypt payload with its AES

26

key, and then use it. Similarly, a client can send a freshness request to f +1 DCR servers,
in the format of getfresh(), and receive f +1 sets of latest record hashes for every branch.

6.5 Failure Recovery

After a DCR server joins the network, it periodically initiates pairing with other Data-
Capsule replicas. When a DCR server initiates a DataCapsule pairing, it first locks the
DataCapsule KVS to ensure no race condition happens between new records and pairing
response. It then randomly selects another DataCapsule replica among registered replicas.
It will sign and send over its DAG digest, which includes all sources and sinks. When the
requestee receives the pairing request, it verifies the request and then generate a set of
records to return. After that, the requester restores missing records by storing them into
the DataCapsule KVS, and unlock the KVS.

6.6 In-Enclave Server

An in-enclave proxy is implemented using Open Enclave on top of Intel SGX. Each DCR
server initiates an HMAC channel with the in-enclave proxy using the shared secret key.
Periodic signature verification is done by the writer periodically signing records, and the
server verifies signatures whenever there is a signature. It is up to the writer to decide how
frequently they send signatures.

7 Evaluation

7.1 Experiment Setup

We evaluate DCR servers on Azure Standard D4s v3 instances, which run on the Intel(R)
Xeon(R) CPU E5-2673 v3 @ 2.40GHz with 4 virtual CPUs and 16GB memory. It has
maximum cache and temporary storage throughput of 8000/64 IOPS/MBps and expected
network bandwidth of 2000 Mbps. The machine uses Ubuntu 20.04.5 LTS 64bit with Linux
5.15.0-1021-azure. We evaluate the DCR in-enclave proxy on Azure Standard DC2s v3
instances, which run on the Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz with 2
virtual CPUs and 16GB memory. It supports Intel SGX2 and has encrypted memory
(EPC) of 8GB. The machine uses Ubuntu 20.04.5 LTS 64bit with Linux 5.15.0-1021-azure.
We run DCR client on Azure Standard DS1 v2 instances, which run on Intel(R) Xeon(R)
CPU E5-2673 v3 @ 2.40GHz with 1 virtual CPU, 3.5GB memory, and network bandwidth
of 20Mbps. We run OpenEnclave version v0.18.0. We report the average of experiments
that are conducted 5 times.

27

7.2 Proxy Server Evaluation

7.2.1 Benchmark Design

We evaluate DataCapsule Replication system’s performance using Yahoo! Cloud Serving
Benchmark (YCSB) [8] workloads. YCSB is an open-source specification used to evaluate
performance of computer programs. YCSB generates traces of writes and reads to key-
value pairs, it is the standard performance benchmark. For YCSB workloads to work with
the DCR system, the client uses a hash table to store the mapping from a key to its most
recent record hash. When the client writes to a key, it generates a record and stores the
mapping from the key to the record’s hash in the hash table. When the client reads from
a key, it finds its corresponding hash, and sends a hash-based read to the DCR system.

We use four workloads generated by YCSB traces: write-only, write-heavy, read-heavy,
and read-only. In particular, workload A is write-only, where 100% of operations are writes;
workload B is write-heavy with 50:50 reads to writes; workload C is read-heavy with 95:5
reads to writes; and, workload D is read-only.

We have three levels of optimizations: base case, collector proxy, and in-enclave proxy.
For the base case write, a writer signs every write record and sends it to all DCR servers
via GDP network anycasts. A DCR server receives it, verifies signature, stores it, and
sends an ack directly back to the writer. After that, the writer receives and verifies acks
from all DCR servers, and can mark the record replicated. A base case read is to send a
hash-based read to a DCR server, which will send back the record.

For the collector proxy, a writer still signs every write record and then multicasts it
to all DCR servers via GDP multicast. When a DCR server receives a record, it verifies
signature, stores it, and sends an ack to a collector proxy. This collector proxy will receive
acks from a quorum of DCR servers, then signs a threshold signature on the ack, and
send back to the client. The client will verify the threshold signature and mark the record
replicated. Reads are the same as in the base case.

For in-enclave proxy, an HMAC channel is established between the proxy and each of
writers and DCR servers. Then, a writer sends, via HMAC channel, write records to the
in-enclave proxy, which will forward the record to DCR servers via HMAC. DCR servers
store the record and sends an ack via HMAC back to the in-enclave proxy. The in-enclave
proxy collects a quorum of acks and then send one aggregated ack back to the client. Then,
the client will mark the record replicated. Again, reads are the same as in the base case.

We measure three sets of metrics, write latency, read latency, and throughput. We
measure for three levels of optimizations and two payload sizes, 16 bytes and 64KB. For
throughput, we measure the number of operations per second with 5 replicas and a quorum
of 3 for each of the YCSB workloads above. For operation latency, we measure the time
between a read or write request is sent, and a record or ack is received, respectively.

28

Figure 9: Latency for one write and one read under three levels of optimizations with 16B
payloads.

7.2.2 Overall Performance - Operation Latency

Write Latency For write latency, we evaluate the time between when a client sends a
write request to five replicas and receives a quorum of 3 ack messages. We evaluate write
latency with a small payload of 16B and a large payload of 64KB. In the situation of a 16B
payload, cryptographic operations and system overheads are the main factors for latency.
From Figure 9, we see that the base case has a higher write latency because the client has
limited computation power and network bandwidth. Both collector proxy and in-enclave
proxy have a lower latency, which is because the proxy has a better network bandwidth
and reduces the latency to multicast. In-enclave proxy has a slighter higher latency than
collector proxy because of enclave’s system overheads, including ocalls and ecalls.

In the situation of a 64Kb payload, network bandwidth’s impact becomes the significant
factor. As a result, we see that the base case has even higher latency as shown in Figure
10. In the base line case, a client uses multiple anycasts to send writes to the DCR servers,
which becomes the bottleneck on the client with limited networking resources. As a result,
the latency is significantly higher than the proxy cases. On the other hand, both the
collector proxy case and in-enclave proxy case use multicast, which significantly reduces
the networking bottleneck on the client, resulting in lower write latencies.

Read Latency For read latency, we evaluate the time between a client sends a hash-

29

Figure 10: Latency for one write and one read under three levels of optimizations with
64KB payloads.

based read request and receives the DataCapsule record. From Figure 9 and 10, we see
that all three optimizations have similar levels of read latency under both payloads. This
is because read workflows are identical in three optimizations.

7.2.3 Overall Performance - Throughput

Throughput For throughput, we evaluate four workloads: write-only, write-heavy, read-
heavy, and read-only. Similar to operation latency, we evaluate with two payload sizes:
16B and 64KB. With 16B payloads, cryptographic operations and system overheads are
bottlenecks. From Figure 11, we see that for 16B payload write-only workloads, the base
line has a lower throughput because of its limited computation power and network band-
width. In-enclave proxy has a higher throughput than collector proxy because it utilizes
HMAC channels to reduce cryptographic operation costs compared to collector proxy.
For write-heavy and read-heavy workloads, in-enclave proxy optimization has the highest
throughputs. It is because HMAC channels significantly reduces computation workloads on
DCR servers, allowing them to provide more resource to serve read requests. On the other
hand, the base line throughput is limited by its computation power and network band-
width. For read-only workload, throughputs are the same for three operations because
they have the same workflows.

30

Figure 11: Throughput for three levels of optimizations with 16B payloads.

Figure 12: Throughput for three levels of optimizations with 64KB payloads.

31

For large payloads of 64KB, networking overheads are more significant. From Figure
12, we see that the collector proxy and in-enclave proxy have similar throughputs for both
write-only, write-heavy, and read-heavy workloads, it is because both of them experience
the same amount of networking overheads, while the additional system overheads from
collector proxy slightly reduces throughput. The base line has lower throughputs because
the client has limited network bandwidth. Again, read-only workloads have the same
throughputs.

7.3 Anti-Entropy Evaluation

7.3.1 Benchmark Design

We evaluate DataCapsule Replication system’s failure recovery performance. In particular,
we compare between a naive anti-entropy design and the DAG-based anti-entropy design.
We measure the time between a pairing request is sent and the two replicas are fully synced
up under three situations: one complete replica and one empty replica; one complete replica
and one almost complete replica; and two complete replicas. Again, we evaluate under two
payload sizes of 16B and 64KB.

For one complete and one almost complete replica case, the almost complete replica is
randomly generated by creating a DataCapsule of 1000, 10000, 20000, and 30000 records,
with a random number of branches between 1 and 5. After that, 1% of the records are
randomly removed.

7.3.2 Overall Performance

From both Figure 13 and Figure 14, we see that DAG-based anti-entropy is more efficient
and scalable in both two complete replicas and one almost complete replica cases. In
particular, for two complete replicas case, the naive design requires exchanging the hashes
of all records in the DataCapulse, while DAG-based design only requires exchanging sinks
and sources, which are independent from the size of the DataCapsule. As shown in the
figures, as the number of records increases, the latency for DAG-based design remains the
same or increases slightly, while the base line latency increases significantly. The compute
latency is consistent at around 10ms for all cases because the DAG digest, including sinks
and sources, is cached. And the rest of the latency is networking latency. At 30000 records,
the DAG-based design’s latency is 76% and 63% lower than the base line in two complete
and one almost complete cases, respectively. Lastly, when a replica is completely empty,
two designs spent the same amount of time to sync up as shown in 15. This is because
the main bottleneck is record transfer overhead from the complete replica to the empty
replica. Overall, the DAG-based design is significantly more efficient in the most common
cases, where two replicas are complete or almost complete.

32

Figure 13: Time spent for two complete replicas.

Figure 14: Time spent for one almost complete replica and one complete replica.

33

Figure 15: Time spent for one empty replica and one complete replica.

34

8 Future Work

8.1 Multi-Writer with Bitcoin Wallet

In the report, the DCR system is under the assumption of one writer identity, that means
a unique private writer key. In the future, we aim to expand the DCR system to multiple
writer identities, which means multiple private writer keys with mechanisms to assign
new writer keys and revoke existing writer keys. A challenge of having multiple writer
identities is to timely access the most updated information, which is likely to be stored
in a DataCapsule. Given a DCR server currently does not have access to decrypted data
in a DataCapsule, a new mechanism needs to be designed and built. One preliminary
design uses Bitcoin Wallet [1], where a root private/public writer key pair can be used to
derive and verify subsequent writer keys. In particular, the root public writer key can be
included in the metadata of a DataCapsule, and then DCR servers can subsequently derive
the next generation’s public keys using it. On the other hand, writers can derive their next
generation’s private writer key, sign the record using it, and then send the signed record
to DCR servers. DCR servers will have the information on which generation to derive the
public key with, and then validate the signature. Subsequently, the DCR servers can store
the signed records as usual.

8.2 DataCapsule In Transit

In this report, we discuss DataCapsules that are fully loaded in a DCR server, which uses
indexing and caching to enable efficient operations. Currently, the effort required to fully
load a DataCapsule requires parsing through the DataCapsule, generates a hash table from
hashes to records, and creates a table of sinks and sources. This loading mechanism requires
a non-trivial computation power to accomplish, which can be optimized. In the future, if
we want to transfer a DataCapsule from one DCR server to another, the DataCapsule
needs to be transformed to another form. In particular, compaction may be required
to transfer a DataCapsule faster. In addition, how to efficiently compact and then load
from a compacted form are also important. Thus, a future work is to design and build a
mechanism that can efficiently compact and serialize a fully loaded DataCapsule, transfer
it to another DCR server, and also enable efficient loading and indexing from the compact
form.

8.3 In-Enclave Proxy Optimization

As shown in Section 7, in-enclave proxy optimization can efficiently alleviate computation
bottlenecks on DCR servers. A limit of this design is the system overheads of enclave ecalls
and ocalls, which are relatively expensive, and could offset benefits to a certain extent. In
the future, we aim to reduce this system overhead. In particular, we can use mechanisms to

35

improve communications between an in-enclave process and an out-enclave process. One
example is that switchless calls can be employed to reduce system overheads.

8.4 Freshness Service Server

As shown in Section 4.5, the current design requires the client to receive at least f + 1
sets of record hashes from f + 1 DCR servers. This requires the client to determine the
latest set of record hashes by comparing the timestamps. This design relies on timestamps,
which may not be available for applications other than PSL. Therefore, a future work is to
design a freshness service server that determines the latest record on behalf of the client,
and then send one set of latest records to the client.

9 Conclusion

We introduced DataCapsule Replication System, a storage system that provides continu-
ous, persistent, replicated, and secure storage for DataCapsules. We focus on the security,
replication, and efficiency aspects of the DCR system. It utilizes multicast from GDP net-
work to optimize network efficiency, employs in-enclave proxy to alleviate networking pres-
sure on DCR clients, uses HMAC channels to reduce cryptographic operation overheads on
clients and servers, while maintaining the same level of security guarantees of data integrity,
confidentiality, and provenance. It also uses a novel DAG-based anti-entropy mechanism
to enable epidemic, pair-wise synchronization to handle failures. In our benchmarks, DCR
has shown great performance optimizations from proxies, where throughput is at most 62%
higher than the baseline. Also, the efficient failure recovery mechanism optimizes pairing
latency to be at most 76% lower than the baseline. In addition, the DCR system is in use
by the CapsuleDB project and serves as its persistence solution. In conclusion, the DCR
system provides a great replication solution to applications such as GDP and PSL.

36

10 References

[1] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
1st. O’Reilly Media, Inc., 2014. isbn: 1449374042.

[2] AWS. AWS Lambda. url: https://aws.amazon.com/lambda/.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash Functions for Mes-
sage Authentication”. In: Advances in Cryptology — CRYPTO ’96. Ed. by Neal
Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 1–15. isbn: 978-3-
540-68697-2.

[4] Gerrit Bleumer. “Threshold Signature”. In: Encyclopedia of Cryptography and Se-
curity. Ed. by Henk C. A. van Tilborg. Boston, MA: Springer US, 2005, pp. 611–
614. isbn: 978-0-387-23483-0. doi: 10.1007/0-387-23483-7_429. url: https:
//doi.org/10.1007/0-387-23483-7_429.

[5] Flavio Bonomi et al. “Fog Computing and Its Role in the Internet of Things”. In:
Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing.
MCC ’12. Helsinki, Finland: Association for Computing Machinery, 2012, pp. 13–16.
isbn: 9781450315197. doi: 10.1145/2342509.2342513. url: https://doi.org/10.
1145/2342509.2342513.

[6] Eric Chen et al. SCL: A Secure Concurrency Layer For Paranoid Stateful Lamb-
das. Tech. rep. UCB/EECS-2022-232. EECS Department, University of California,
Berkeley, Oct. 2022. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2022/EECS-2022-232.html.

[7] Sanchuan Chen et al. “Detecting Privileged Side-Channel Attacks in Shielded Execu-
tion with Déjà Vu”. In: Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security. ASIA CCS ’17. Abu Dhabi, United Arab Emi-
rates: Association for Computing Machinery, 2017, pp. 7–18. isbn: 9781450349444.
doi: 10.1145/3052973.3053007. url: https://doi.org/10.1145/3052973.
3053007.

[8] Brian Frank Cooper. “Yahoo! cloud serving benchmark”. In: (). url: https://
github.com/%20brianfrankcooper/YCSB.

[9] Intel Corporation. Intel(R) Software Guard Extensions SDK for Linux* OS. https:
//download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_

Reference_Linux_1.8_Open_Source.pdf. 2017.

[10] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR Cryptol.
ePrint Arch. 2016.86 (2016), pp. 1–118.

[11] Siying Dong et al. “RocksDB: Evolution of Development Priorities in a Key-Value
Store Serving Large-Scale Applications”. In: ACM Trans. Storage 17.4 (Oct. 2021).
issn: 1553-3077. doi: 10.1145/3483840. url: https://doi.org/10.1145/3483840.

37

https://aws.amazon.com/lambda/
https://doi.org/10.1007/0-387-23483-7_429
https://doi.org/10.1007/0-387-23483-7_429
https://doi.org/10.1007/0-387-23483-7_429
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-232.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-232.html
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
https://github.com/%20brianfrankcooper/YCSB
https://github.com/%20brianfrankcooper/YCSB
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840

[12] Open Enclave. “Open Enclave: hardware-agnostic open source library for developing
applications that utilize Hardware-based Trusted Execution Environments”. In: ().
url: https://openenclave.io/sdk/.

[13] Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA)”. In: Int. J. Inf. Secur. 1.1 (Aug. 2001), pp. 36–63.
issn: 1615-5262. doi: 10.1007/s102070100002. url: https://doi.org/10.1007/
s102070100002.

[14] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 20-24, 1989, Proceedings. Vol. 435. Lecture Notes in Computer
Science. Springer, 1989, pp. 218–238. doi: 10.1007/0-387-34805-0_21.

[15] Nitesh Mor. “Global Data Plane: A Widely Distributed Storage and Communication
Infrastructure”. PhD thesis. EECS Department, University of California, Berkeley,
Jan. 2020. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-
2020-10.html.

[16] William Mullen. “CapsuleDB: A Secure Key-Value Store for the Global Data Plane”.
MA thesis. EECS Department, University of California, Berkeley, May 2022. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-168.html.

[17] Patrick O’Neil et al. “The Log-Structured Merge-Tree (LSM-Tree)”. In: Acta Inf.
33.4 (June 1996), pp. 351–385. issn: 0001-5903. doi: 10.1007/s002360050048. url:
https://doi.org/10.1007/s002360050048.

[18] Oleksii Oleksenko et al. “Varys: Protecting SGX Enclaves from Practical Side-Channel
Attacks”. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston,
MA: USENIX Association, July 2018, pp. 227–240. isbn: ISBN 978-1-939133-01-4.
url: https://www.usenix.org/conference/atc18/presentation/oleksenko.

[19] Marc Shapiro et al. “Conflict-Free Replicated Data Types”. In: Proceedings of the
13th International Conference on Stabilization, Safety, and Security of Distributed
Systems. SSS’11. Grenoble, France: Springer-Verlag, 2011, pp. 386–400. isbn: 9783642245497.

[20] Weisong Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of
Things Journal 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.2579198.

[21] Ming-Wei Shih et al. “T-SGX: Eradicating Controlled-Channel Attacks Against En-
clave Programs”. In: Jan. 2017. doi: 10.14722/ndss.2017.23193.

[22] Shweta Shinde et al. “Preventing Page Faults from Telling Your Secrets”. In: Pro-
ceedings of the 11th ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’16. Xi’an, China: Association for Computing Machinery, 2016,
pp. 317–328. isbn: 9781450342339. doi: 10.1145/2897845.2897885. url: https:
//doi.org/10.1145/2897845.2897885.

38

https://openenclave.io/sdk/
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/0-387-34805-0_21
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-10.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-10.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-168.html
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.14722/ndss.2017.23193
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885

[23] Information Technology Laboratory (National Institute of Standards and Technol-
ogy). Announcing the Advanced Encryption Standard (AES) [electronic resource].
English. Computer Security Division, Information Technology Laboratory, National
Institute of Standards and Technology Gaithersburg, MD, 2001, 52 p. :

[24] The OpenSSL Project. “OpenSSL: The Open Source toolkit for SSL/TLS”. www.
openssl.org. Apr. 2003.

[25] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. USA: John
Wiley amp; Sons, Inc., 1992. isbn: 0471513563.

[26] Kenton Varda. Protocol Buffers: Google’s Data Interchange Format. Tech. rep. Google,
June 2008. url: http://google-opensource.blogspot.com/2008/07/protocol-
buffers-googles-data.html.

[27] Yinhao Xiao et al. “Edge Computing Security: State of the Art and Challenges”. In:
Proceedings of the IEEE 107.8 (2019), pp. 1608–1631. doi: 10.1109/JPROC.2019.
2918437.

[28] ZeroMQ. “Zeromq: An open-source universal messaging library”. In: (). url: https:
//zeromq.%20org/.

[29] Ben Zhang et al. “The Cloud is Not Enough: Saving Iot from the Cloud”. In: Proceed-
ings of the 7th USENIX Conference on Hot Topics in Cloud Computing. HotCloud’15.
Santa Clara, CA: USENIX Association, 2015, p. 21.

39

www.openssl.org
www.openssl.org
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
https://doi.org/10.1109/JPROC.2019.2918437
https://doi.org/10.1109/JPROC.2019.2918437
https://zeromq.%20org/
https://zeromq.%20org/

	Introduction
	Background
	Components Overview
	DataCapsule
	Global Data Plane (GDP)
	Intel Software Guard Extensions (SGX1)
	Paranoid Stateful Lambda (PSL)
	CapsuleDB

	Threat Model
	Trusted DataCapsule Writer
	Untrusted Infrastructure
	Untrusted Third Parties

	Design
	Architecture Overview
	DCR Server
	DataCapsule in Detail
	DCR Client

	Append-Only Write
	Write Verification
	GDP Network Multicast

	Hash-based Read
	Freshness Service
	Freshness Service Security

	Anti-Entropy Failure Recovery
	DataCapsule as a DAG
	Anti-Entropy on DataCapsules

	Security Model
	Security Goals
	Key Management
	Delegation Certificates
	Provision Certificate
	Hosting Certificate

	Optimization
	Proxy Server
	Threshold Signature Scheme (TSS)

	Trusted In-Enclave Proxy Server
	Hash-Based Message Authentication Code (HMAC)
	Periodic Signatures and Read Proofs

	Implementation
	Storage
	Networking
	Writes
	Reads
	Failure Recovery
	In-Enclave Server

	Evaluation
	Experiment Setup
	Proxy Server Evaluation
	Benchmark Design
	Overall Performance - Operation Latency
	Overall Performance - Throughput

	Anti-Entropy Evaluation
	Benchmark Design
	Overall Performance

	Future Work
	Multi-Writer with Bitcoin Wallet
	DataCapsule In Transit
	In-Enclave Proxy Optimization
	Freshness Service Server

	Conclusion
	References

