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Abstract

A Case for Application Driven Design of Energy Harvesting Sensor Systems

by

Neal Schadewald Jackson

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Associate Professor Prabal Dutta, Chair

Any problem becomes tractable with enough power. Since the inception of wireless sensor
networks, researchers have searched for ways to do more with less. Integrated circuits and
sensors have continued to shrink in size, cost, and active and quiescent power. This has
resulted in sensors with increasing computational power and longer lifetimes. By comparison,
however, the options for and quantity of power available for a wireless sensor has stagnated.
The energy density of non-rechargeable batteries as well as photovoltaic efficiency have
approached a plateau. As a result, wireless sensors are constrained in either lifetime or power.

Technology improvements like integrated circuits that perform efficient maximum power
tracking and voltage boosting, near-threshold computing, the advent of non-volatile memory
technologies, and the rapid improvement of supercapacitor technology has enabled the
development of sensors that can operate entirely on harvested power without batteries,
and without a finite lifetime. But the lack of a reliable power source necessarily results in
a system that is fundamentally unreliable. Despite this significant flaw, researchers have
pursued this design archetype tirelessly, producing an impressive corpus of methods, systems,
and solutions that attempt to improve batteryless design. Proponents of batteryless systems
are convinced that batteries are a threat to the future of wireless sensing, and that batteryless
sensing is the only way forward. Despite this, batteryless sensing has not seen widespread
adoption by industry. There is a rift of design understanding between those who value
reliability, and those who do not.

The core argument of this dissertation is that there is not a single design dogma, be it battery-
less or battery-powered, that can provide a solution for all applications. Instead, the correct
design process must involve a balancing act of the inclusion and sizing of energy harvesting,
rechargeable, and non-rechargable energy storage to meet the goals of the application. This
design space is large and difficult to navigate, resulting in many system designers defaulting
to following a predetermined design template archetype instead of fully reasoning about their
application and its requirements. In this dissertation, we develop a design framework for
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energy harvesting systems that provides reasoned guidance for the inclusion and sizing of
various power supply elements. In particular, we develop analytical and simulation tools
to size rechargeable energy capacity in a more reasoned way than current heuristics and
arbitrary methods.

To develop this design framework, this dissertation explores previous wireless sensor applica-
tions, identifying the appropriateness of different approaches qualitatively and quantitatively.
We explore the system-level effects of harvester size and rechargeable and non-rechargeable
energy capacity on wireless sensor application performance. To determine rechargeable energy
capacity selection and sizing, we develop a novel heuristic for determining the minimum
sufficient capacity for a sensor workload and expected energy income. We verify this heuris-
tic through the use of a custom wireless sensor energy state simulator to estimate energy
utilization and system performance. To identify technology options for energy capacity, we
quantitatively compare energy buffer types and reevaluate the many qualitative claims made
against rechargeable batteries by batteryless proponents, concluding that many of them are
without merit. Finally, we utilize the design framework developed within this dissertation,
including the heuristics and simulation tool, to design and implement wireless sensor sys-
tems to address two real indoor sensing applications that achieve long-lived operation with
consistent and reliable sensing.
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To all those who think they cannot:
“Sucking at something is the first step towards being sorta good at something”

— Jake the Dog
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Chapter 1

Introduction

The past two decades have witnessed the proliferation of low power, autonomous, and
wirelessly connected devices. The development and deployment of these devices were inspired
by the vision of ubiquitous computing: computers that are pervasive in our world, providing
information about and intuitive control over our environments in such a way that they
disappear into the background [1]. While initially inspired by this vision, today’s internet
of things (IoT) has failed to fully achieve it. There are many problems standing in the
way of this vision, but one of the most pressing and fundamental problems is power. Low
power embedded systems have experienced exponential increases in computational and power
efficiency in the last two decades. Across the board, components used to build wireless
systems have increased in power efficiency by one to two orders of magnitude. Our ability to
process and infer meaning from vast amounts of collected data has also improved by orders
of magnitude, with approachable and powerful frameworks for developing effective machine
learning models for classification and detection. However, the methods of collecting and
allocating energy to power wireless sensing systems have not improved at the same rate.
So, while today’s small wireless sensing devices have become smaller, more efficient, and
more capable of powerful and complex sensing and data processing, their capabilities are still
limited by the power and energy available to them.

1.1 The Power and Energy Dilemma
Perhaps the most important step in the wireless sensor design process is determining how
to allocate or capture the energy to power it. Nowadays, there are many options for energy
storage: capacitors, supercapacitors, batteries. There are even more sources for energy
harvesting, including photovoltaic panels, thermoelectric and piezoelectric generators, and
microbial fuel cells [2–5]. This results in a vast system-level design space that can be difficult to
navigate. To reduce the design space problem to something comprehensible and manageable,
it is reasonable to consider existing industrial and research designs as templates for a design.
We may look to modern commercial sensors for inspiration, like the Google Nest temperature
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sensor [6], or to a modern research device like the Flicker platform [7]. While these two
examples use similar sensors, microcontrollers, and radios, and are designed for a similar
sensing purpose, they exhibit disparate differences in their power supply design. These two
different designs represent a fork in the road for wireless system design.

Like most modern commercial sensors, the Nest temperature sensor utilizes a non-
rechargeable battery for an energy source [6]. Batteries have been the preferred method of
powering sensors for the last twenty years, and for good reason: they are simple to use and
provide reliable and predictable power. However, a battery provides a finite lifetime and
battery or sensor replacement is inevitable. Wireless sensor lifetime is a first order concern, as
the cost of frequent maintenance and battery replacement is clearly untenable as the number
of wireless devices grows to trillions of devices. The act of maintaining what should be an
invisible sensor renders it visible due to the annoyance of changing a battery. Changing a
single battery is not usually an issue. Still, it is not uncommon for people to simply ignore
a dying device like a smoke detector, opting to remove the battery instead of replace it
when low. Changing the battery of hundreds or thousands of devices within a building is a
significant and costly undertaking.

Recognizing the problem with short, finite lifetimes, researchers have forged ahead with
designs that aspire for immortality. For a decade, many researchers have abandoned batteries
completely and instead built systems that harvest energy to power themselves. The Flicker
platform is an example of a batteryless sensing platform [7]. Sensors built with this batteryless
technique possess indefinite lifetimes. The cost of immortality is steep, however. These
systems generally require significantly more software and hardware design complexity, and
operate unpredictably and without any quality of service guarantees. Due to this, energy har-
vesting systems without batteries have seem limited adoption by industry, despite significant
excitement and a large corpus of work by researchers.

1.2 The Difficulty of Gathering Data
In reality, neither option on its own, battery or energy harvesting, is an entirely satisfactory
solution for many sensing applications. Modern data gathering applications often simultane-
ously demand longevity and consistent operation. It is often not worth the cost of deployment
and frequent maintenance if sensors only last a short while, or if the data they produce is not
ultimately useful for the end goal of the data gathering application.

Traditional environmental sensing applications like wildlife monitoring and tracking require
consistent environmental and location data gathering over seasons and years [8, 9]. Asset
tracking applications have to be able to reliably locate and track commodities throughout
an entire supply chain, over weeks or months in a warehouse, or on store shelves [10].
Infrastructure monitoring applications must consistently and reliably detect vibrational
anomalies or corrosion throughout the multi-decade lifespan of a bridge or a building [11,
12]. All of these example applications require consistent and reliable data gathering over long
periods of time.
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New applications are made feasible with new and improved technology, but they will be
still be limited by the longevity supplied by a non-rechargeable battery or the consistency from
energy harvesting options. As an example, person detection and room occupancy counting
is a useful metric for building lighting and HVAC control. Having a reliable occupancy
measurement can increase efficiency as the building management system can provide light
and comfortable heating tailored to where people exist within the building. Capturing,
manipulating, and transmitting image data requires significant computational, memory, and
networking resources. Even with advances in embedded computing and CMOS imaging, these
resources are generally costly in power compared to the traditional, simpler one-dimensional
data collection of traditional environmental sensors [8, 13]. If designed with a battery, such
an imaging system would possess a short lifetime. If designed to be energy harvesting without
a battery, the sensor can provide no guarantees for when or how many images are captured,
potentially failing to perform the designed purpose: reliably detecting when and how many
people are present in a space.

This choice between a battery or batteryless energy harvesting solution is a false dichotomy.
This choice is predicated on the assumption that a sensor design must be exclusively one or the
other: battery-based or energy harvesting. Many recent energy harvesting systems are built
with the assumption that batteries cannot be trusted, both non-rechargeable and rechargeable
[2, 7, 14–20]. This belief has led many designers to consider batteryless energy harvesting
designs as the default option for any new application. By defaulting to one particular design
archetype, designers are forced to make seemingly arbitrary and ill-considered design decisions
regarding the typing and sizing of components within their power supply in order to achieve
minimally feasible batteryless designs. Instead of thinking of wireless sensor power supply
design as adhering to a predetermined class or pattern of design, an alternate and more
successful design process can consider an application’s requirements and which design options
are appropriate to satisfy those requirements.

1.3 Thesis Statement
An analytical and simulation driven design framework provides better guidance for system-
level power supply design than current energy harvesting intuition. We can use design points
determined through design space analysis and simulation to build systems that provide higher
availability, lower latency, and long lifetimes, all without the need for complex techniques for
managing intermittency.

1.4 Contributions of this Dissertation
This dissertation attempts to address system-level power supply design in the context of
real application requirements. Various parts of this dissertation have been published at
ENSsys’18 [21] and IPSN’19 [22]. Content from these publications are included throughout
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the entire document, including Chapter 3, Chapter 4, and Chapter 5. This work was developed
in collaboration with Joshua Adkins and Prabal Dutta.

We begin with an examination of existing power supply designs and methods for providing
energy to sensors. In Chapter 2, we discuss traditional battery-based sensor design as well
as the history of energy harvesting in wireless sensor research. We explore the design and
trade-offs of batteryless system design, a newer class of energy harvesting sensors that forgo
the use of batteries as energy storage in favor of capacitors and supercapacitors. We identify
the strengths and weaknesses of both battery-based and batteryless design points within the
context of real applications from research and industry. From this exploration, we identify
several common high-level application requirements that drive wireless sensor design.

In Chapter 3, we utilize these requirements to develop system-level design constraints
and heuristics. We consider and compare the efficacy of batteries and energy harvesting
and identify inflection conditions where either option excels over the other. We identify the
benefits of a rarely used hybrid architecture that employs both options and consider the
performance and lifetime implications of a system that utilizes it. Next, we define design
constraints regarding energy income and energy buffer size that partition the design space
into several regions to reason about the necessity of batteryless and intermittent techniques.
We finish this chapter with a deep dive into the effect of rechargeable energy capacity on
the performance of an energy harvesting system. From this exploration, we utilize a simple
model of energy capacity to develop novel and easy to use design heuristics. These heuristics
determine the minimum sufficient sizing for energy capacity for energy harvesting systems.

We expand upon the simple model and heuristics developed in Chapter 3 and build an
wireless sensor energy state simulation in Chapter 4. We use this simulation to verify our
capacity sizing heuristics, consider additional design variables, and examine the performance
of the hybrid battery and energy harvesting architecture explored in Chapter 3. From the
results of our energy simulation, we identify the benefits in energy capture and system
performance when rechargeable energy capacity is increased. From these results, we conclude
that energy harvesting system performance can be increased by 1.4–2× if capacity is increased
several orders of magnitude more than is commonly offered by the capacitor or supercapacitor
energy buffers commonly utilized by batteryless systems.

In Chapter 5, we explore the design space of rechargeable energy capacity, identifying the
classes and options for charge and energy buffers. We compare capacitors, supercapacitors,
and batteries. We examine the common arguments made against the use of rechargeable
batteries by batteryless researchers. We find that many of these arguments are unsubstantiated
when examined quantitatively and conclude that small rechargeable batteries are the superior
method for providing an energy dense buffer for low power applications.

We consider the heuristics, tools, and conclusions from Chapters 3 and 4 to implement
sensors for two wireless sensing applications in Chapter 6. These applications include
illuminance sensing for automated lighting control applications as well as image-based person
detection and counting for accurate space occupancy measurements, both of which require
consistent and long-lived sensing. Both sensor designs utilize the hybrid architecture identified
in Chapter 3, and we utilize the heuristics and simulation tools developed in Chapters 3 and 4
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to size their power supply components to achieve high energy capture and system performance.
We implement and utilize our designs to evaluate our energy simulation developed in Chapter 4.
We evaluate an existing batteryless image sensing platform, quantify its performance using
simulation, and identify design changes that could be made to improve performance. From
these design changes, we build a new indoor image sensing platform that can capture image
data with high consistency and availability and still offer a multi-year lifetime.

Finally, in Chapter 7, we summarize the contributions of this dissertation and identify
several primitives and architectural changes that would enable more efficient and autonomous
energy harvesting wireless sensors.
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Chapter 2

Background

System researchers have been developing wireless sensors for over twenty years. Sensor
systems research is uniquely application focused, with many seminal works involving real
applications and deployments [8, 9, 23]. A lot of other research has been focused on developing
and utilizing new and improved technology for wireless sensor designs. Over the past two
decades, microcontrollers have vastly improved in processing speed and capability, sensors
have continued to shrink in size, and wireless communications have increased throughput
and range. Across the board, all wireless sensor components have also substantially increased
their energy efficiency. However, the availability of power and energy remain limiting factors
for wireless sensor designs.

The energy density of non-rechargeable batteries has not improved at the same rate as
as other wireless sensor components. While newer, more efficient sensors are able to do
more with the limited energy available to them, battery-based sensors are still limited in
lifetime and have the potential to produce substantial battery waste. For longer deployments,
or in applications where the size and weight of a non-rechargeable battery was untenable,
researchers have also developed energy harvesting solutions for wireless sensors. Energy
harvesting sensors do not have concretely limited lifetimes, but they are inherently limited by
the availability and consistency of harvestable power. Like battery technology, the efficiency
of energy harvesting methods have not increased at the same rate as other sensor technology,
and specialized energy harvesting power management ICs are already highly optimized to
extract energy from many sources [24–26], with few exceptions [5, 27]. System designers
are left with two unsatisfying options. Depending on an application’s lifetime, maintenance,
and quality of service requirements, batteries may offer insufficient longevity, and energy
harvesting may allow insufficient availability. This chapter seeks to explore the myriad of
traditional and contemporary methods of powering sensors and their trade-offs with the goal
of identifying common application requirements and how various power supply designs satisfy
those requirements.
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2.1 Methods to Power Wireless Sensors
All wireless sensors require electrical energy to function. Most simply and most commonly,
energy can be provisioned in a finite energy storage such as a battery, also known as a
primary cell. In situations where there is harvestable energy, it can be captured and stored
in rechargeable storage, or a secondary cell. The next sections describe prior work in both
research and industry regarding preallocation and energy harvesting wireless sensor design.

Energy Preallocation

Primary-cell batteries are the preferred method of powering sensors for both academic
experimentation and commercial and industrial applications. The Telos family of motes,
originally designed in 2004 [28], are still the wireless platform of choice for some modern
research projects [29, 30]. The Hamilton mote is a more modern example that seeks to provide
a cost-effective and longer-lived alternative to older motes [31]. Besides research platforms,
the majority of commercial smart home sensors, like those offered by Ecobee, Honeywell,
Lutron, Nest, Phillips, among many others, all opt to use non-rechargeable batteries as
their source of energy [6, 32–35]. Industrial offerings from Emerson, GE, Honeywell, and
others mostly utilize non-rechargeable power cells in their wireless sensors [36–38]. The use
of primary-cells is popular in commercial and industrial sensing because they enable sensors
with predictable lifetimes that are easy to design, simple to program, and reliable to operate.
However, a finite energy storage provides a finite lifetime, meaning battery replacement is
inevitable. To achieve a long lifetime, sensor designers must often sacrifice constraints on
size to accommodate a larger battery. However, advances in energy efficiency and battery
longevity have resulted in reasonably sized commercial and industrial sensors that can last
up to 10 years without battery maintenance [34, 36, 38].

Energy Harvesting

Instead of preallocating energy, a system can utilize external sources of energy. A system that
harvests energy is not as limited in lifetime as a primary-only system, and depending on the
durability and longevity of its harvester and energy storage, can persist indefinitely. However,
the quantity and consistency of external energy can vary widely. If the energy is predictable
or reliable, an energy harvesting system can operate reliably. If the source is unpredictable
and insufficient to power a system continuously, the system may operate inconsistently if it
does not have sufficient energy storage to buffer in times of insufficient income. Capacitors,
supercapacitors or batteries are all options to buffer energy when external energy is variable.

The majority of energy harvesting wireless sensors depend on unreliable external sources
of energy. They utilize photovoltaic, thermoelectric, piezoelectric, ambient RF harvesting,
or other methods to scavenge energy from their environment. Parameters like harvester
size or surface area, impact the amplitude of power delivered to the sensor, while the size
and capacity of the rechargeable storage determines how much energy can be buffered.
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Energy harvesting sensors have largely been developed for use in environments with plentiful
harvestable energy. Most examples of energy harvesting research devices are deployed
outdoors with photovoltaics [39–44]. This is also true of many commercial and industrial
sensor systems like weather and air quality monitoring stations [45], trail cameras [46], and
traffic cameras [47]. Besides photovoltaic harvesting, industrial products have also leveraged
temperature gradients and vibration to power sensors. The Perpetua Power Puck and Tile are
thermoelectric generators designed for high temperature monitoring of critical infrastructure
like steam pipes, hot tanks, and other equipment in high temperature environments [48].
Perpetua harvesters are compatible with the same Emerson, GE, and Honeywell sensor
systems as a drop in replacement for the default non-rechargeable power supplies. Other
companies, like ReVibe and Kinergizer, are utilizing piezoelectric harvesting for industrial
vibrational monitoring [49, 50].

There have been fewer research, commercial, and industrial sensors developed for indoor
environments, or other environments that lack light, a large temperature gradient, or perpetual
motion and vibration. This is because it is more difficult to design a lower power system to
match a lower power income, even with newer and more efficient technology. Despite these
difficulties, researchers and industry have developed sensors for applications with limited
access to harvestable energy. Researchers have followed two distinctly different approaches
for indoor energy harvesting.

Some of the first attempts at bringing energy harvesting indoors consisted of power supply
architectures similar to those of their outdoor counterparts, in that they utilized rechargeable
batteries for energy storage. The EnHANTs sensor used an indoor photovoltaic panel to charge
an intentionally oversized nickel-metal hydride (NiMH) battery, with plans to eventually use
a thin-film battery [51, 52]. DoubleDip utilized thermoelectric harvesting to charge a lithium-
manganese battery [53]. The batteries used by EnHANTs and DoubleDip are examples of
older technology that had numerous limitations. Early rechargeable batteries offered short
cycle lifetimes and low charge and discharge current capabilities. The cycle lifetime limit
results in systems with limited longevity, even though they utilize energy harvesting.

Simultaneously, researchers at University of Washington and Intel Research Seattle began
experimenting with computational RFIDs (CRFIDs) to create battery-free sensors [54]. These
researchers noted the limited storage of non-rechargeable batteries, and the limited cycle
lifetime of rechargeable batteries. Instead of batteries, these systems utilize small capacitor-
based energy buffers that are able to store just enough energy to complete a small atomic task,
be it operating a sensor, transmitting a packet via RFID backscatter, or performing some
amount of computation. While the longevity of CRFIDs are not limited to to the lifetime of
a battery, they require the proximity of an RFID reader to provide power and bidirectional
communication. Since the development of CRFIDs, and as technology has continued to
improve in efficiency, researchers have extended the technique beyond RFID to systems
with active radios and other harvesting methods, including photovoltaic, piezoelectric, and
thermoelectric harvesting [2, 7, 18, 55, 56]. The majority of modern wireless sensor platforms
build by researchers are batteryless, with many convinced that batteryless designs are the
future for wireless sensor power supply design [7, 17, 18, 57–59]. Despite the excitement
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around batteryless designs, they exhibit some serious detracting qualities that may limit
feasibility and adoption for many applications. The next section explores the design and
development of batteryless systems in more detail and describes the benefits and trade-offs of
the design.

2.2 Batteryless Energy Harvesting
The batteryless, or intermittent, sensor movement has abandoned batteries (both rechargeable
and non-rechargeable) under the assumption that current battery technology has too many
detracting qualities to be suitable for energy-harvesting wireless sensors. Most notably,
they argue that rechargeable batteries provide insufficient lifetimes to build long-lasting
deployments [2, 7, 15–20]. Batteryless systems instead utilize capacitors, some types of which
offer functionally infinite lifetimes [60]. However, capacitors and supercapacitors provide
much less energy storage compared to batteries. Due to this, a batteryless design results
in two major drawbacks: at any given time, a batteryless system is limited to the energy
provided by the short discharge cycle of its capacitor bank, and the availability of the system
is determined by the consistency and intensity of energy income.

A batteryless system can technically perform the operations of a wireless sensor but it
may not perform them well. When these systems are harvesting enough power to turn on
and operate, they can only perform operations that require less energy than their capacitor
storage can hold. Often a batteryless system’s income power is intermittent, resulting in a
system that operates intermittently. When harvestable energy is unavailable, batteryless
systems quickly deplete their small energy stores, and lacking any future income, they power
off and lose volatile state, potentially in the middle of an important operation and for an
extended and unknown period of time. The intermittent reality of many harvesting sources
necessitates careful management of energy and detailed and thorough software optimization
to ensure that any operations can be completed.

Despite these complications, the concept of an immortal wireless sensor is tantalizing, and
is the driving motivation behind batteryless systems research. This has resulted in a wealth of
batteryless systems research, the majority of which is focused on developing software solutions
that manage and preserve volatile state across power failures. State preservation has the
potential to extend the runtime of sensor workloads beyond that of a single capacitor buffer
discharge cycle, and is useful for building more general and capable systems. Batteryless
devices are also difficult to debug and develop software for, as in addition to software bugs,
energy is no longer guaranteed at any point during execution. To this end, researchers have
also built tools to recreate energy conditions to help diagnose and fix intermittent energy bugs.
In addition to software solutions, researchers have designed hardware platforms that maximize
individual component availability, as well as platforms that dynamically tune capacitance
to meet individual operation energy requirements. The next sections discuss various system
designs, tools, and software and hardware techniques developed to alleviate the drawbacks to
batteryless systems.
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Forward Progress and State Retention

The type and amount of work that is possible within the energy envelope of a single discharge
cycle of capacitor or supercapacitor buffer is severely limited. Batteryless systems are generally
only able to perform a few seconds or less of computation, or send a single packet before
depleting their capacitor storage and powering off, even with modestly sized supercapacitors [2,
7, 18, 56]. This section discusses the techniques developed by batteryless researchers to
perform interesting sensing under unpredictable power loss.

One-shot Intermittency

One of the simplest methods employed by batteryless systems does not bother to attempt to
retain state across power failures and reboots. One-shot intermittent designs instead just
allocate enough capacitance to turn on and perform a simple predefined task, like sending a
packet. This method is reminiscent of the simple reply behavior of RFID tags, upon which
the design of early intermittent systems is based on [54]. These systems may act as a simple
beacon [61, 62], or a sensor [2, 3, 55, 63]. For some platforms, most notably the Monjolo
family of devices, the rate of harvesting is used as the sensor itself. Every wake-up and
transmit event corresponds to an amount of energy harvested, and can be used to quantify
the harvested phenomenon [3, 55, 63]. This method of coupling harvesting and sensing is the
only way to ensure that interesting sensor data is observed by a batteryless sensor. Otherwise,
when a batteryless sensor is built to sense a phenomena independent of the harvesting method,
it is inevitable that changes in the sensed phenomena will be missed because the sensor is
offline. Even when sensing and harvesting is coupled, a one-shot batteryless design often
does not have the energy required to support message retransmission in the case of packet
loss, or generally support any network reliability mechanisms. Any observation may be
lost upon packet reception failure, and the next time the sensor wakes up it will only have
enough energy to be concerned with transmitting its most recent observation. This one-shot
method is relatively simple compared to other approaches to batteryless software, but it
still requires tedious cold-start software optimization and capacitance tuning to allow the
device to power on and complete its workload within the constraints of its tiny energy storage.
This severely limits the generality of systems developed with this approach. Performing any
sensing or computing outside of the hardware’s intended use case is often not possible. Like
all batteryless sensors, it is also impossible to distinguish between sensor failure and a lack of
energy.
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Checkpointing

Given the limitations of the one-shot technique, researchers have developed tools and tech-
niques for ensuring forward progress across system reboots to enable longer and more complex
workloads than a single capacitor bank can support. One method of enabling forward progress
is checkpointing, where important volatile state is saved at predetermined and run time
locations in code prior to a power outage, and restored upon rebooting. Many methods
have been proposed, using both static and dynamic methods. Mementos utilizes a modified
LLVM compiler, as well as a run-time library, to automatically place checkpointing triggers
within a program [64]. During run-time, at these trigger points, Mementos measures the
system voltage, and if low enough, portions of volatile state are written into non-volatile
flash before turning off. The introduction of new non-volatile technologies like Ferroelectric
RAM (FRAM) allows more energy- and time-efficient checkpointing, while simultaneously
simplifying the state retention logic. Hibernus does not use predefined trigger points, and
instead utilizes a hardware interrupt to detect a low system voltage threshold, and immediately
copies volatile state to FRAM [65]. This state is subsequently restored on a rising voltage
interrupt. Checkpointing is an effective method for enabling forward progress. However,
software development with checkpointing can be very difficult to develop and debug, and
writing and restoring state can become prohibitively expensive in time and energy as the
amount of volatile state increases.

Batteryless Debugging

For batteryless systems, it is very difficult to properly and correctly develop software, especially
when non-volatile memory like FRAM is involved. One-shot system software is difficult to
tune and optimize to complete all within the energy provided by capacitor storage. For
checkpointing systems, if checkpoints are improperly placed such that atomic blocks are not
completed entirely before power loss, and yet their partial state is recorded in non-volatile
memory, it can result in inconsistencies between volatile and non-volatile state. Software
development and debugging for batteryless systems must also consider energy state. To this
end, researchers have developed hardware-software debugging tools that emulate and replay
energy state based on energy trace captures. Ekho is an energy emulator that recreates and
repeats energy harvesting conditions for low power energy harvesting devices [66]. Another
tool, the energy-interference-free debugger (EDB), also replays energy state, specifically for
intermittent systems [67]. EDB augments normal interactive debugging tools like GDB to
allow real time playback of energy state, in addition to interactive program debugging. While
these tools are useful and necessary for ensuring correctness in batteryless development,
they do introduce substantial complexity on top of an already complex embedded software
debugging and development toolchain.
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Safe Forward Progress

While conceptually simple, checkpointing is not a perfect solution to saving state, especially
as that state begins to increase in footprint with increasing application complexity. There
is an upper bound to the size of checkpoints, where the energy required to save and read
state to and from non-volatile memory exceeds that offered by various capacitor storage sizes.
The advent of FRAM (as well as other non-volatile RAM technologies) results in methods
that can avoid explicitly saving and reading back the majority of application state. State
that would normally reside in volatile RAM can now be placed within non-volatile memory,
allowing this state to persist across power outages. While this seems like a straightforward
solution to preserving state, it is complicated by the shrinking boundary between volatile and
non-volatile state. Often both SRAM and FRAM are memory mapped and accessed the same
way. Writes and reads to either are indistinguishable to the programmer and compiler. Code
is often executed multiple times through the course of intermittent execution, and if volatile
and non-volatile state are not carefully managed and accessed by the program, re-execution of
various code sections can result in consistency violations [68]. The aftermentioned debugging
tools can help to detect and fix intermittency bugs during runtime testing. However, many
researchers have developed solutions to avoid these bugs by design. Task-based programming
frameworks and models like Chain [69] and Alpaca [68] ensure forward progress and prevent
intermittent consistency bugs. The task model of execution splits a software application
into idempotent code blocks that read inputs from other tasks, and upon completion write
their own results to channels of non-volatile memory. This has the effect of increasing task
throughput in addition to ensuring safe forward progress.

The Wrong Abstraction

While effective in ensuring safe forward progress, all of these techniques introduce significant
software and compiler complexity. They also necessarily limit programming scope to defined
frameworks and concepts to ensure various constraints and guarantees of safety. Batteryless
programmers must learn and adopt new programming models that incorporate potentially
unfamiliar concepts like tasks, channels, and flows [16, 68, 69]. Once programmers have
mastered the new patterns and methods of batteryless programming, intermittency is largely
hidden from them. This is by design and one of the main goals of these programming
models and frameworks. However, the abstraction of continuous progress is more harmful
for application developers than helpful. This abstraction provides the illusion of continuous
computing progress in processor time, while robbing programmers and users of any meaningful
notion of progress in wall clock time. Continuous operation of a batteryless systems is often
impossible, and software methods for forward progress only guarantee eventual task completion.
While these techniques may make it easier to program batteryless systems, the abstraction of
continuous forward progress is misleading regarding the timeliness and availability of systems
that employ them. These techniques do not address the needs of any application that requires
availability or timeliness of data. System designers and programmers are left without a way
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to reason about and quantify the actual performance of applications built on top of these
abstractions that mask inherent system unreliability.

Timeliness and Availability

While convenient during programming, the abstraction of continuous operation without a
notion of real performance does not result in responsive and available batteryless systems.
The task-based models ensure safety and improve performance over checkpointing-based
approaches, but they do not consider or provide solutions for increasing batteryless system
responsiveness and availability, two qualities that are especially important for wireless sensing.
Timeliness and availability are goals that are generally at odds with the reality of batteryless
sensing, as no guarantees can be made about energy income and thus the timeliness of
event completion or system availability. A batteryless system’s intermittent execution can
span unknown periods of time, where it iteratively works on a task whose results may be
stale and no longer useful by the time it finishes. There is also no way to ensure that a
batteryless system is awake to witness a given event. Despite this, researchers have developed
both software and hardware solutions in attempts to improve batteryless responsiveness and
availability.

Software Timeliness and Availability

Mayfly [16] and InK [70] are task-based software frameworks like Chain and Alpaca. In
addition to ensuring safe forward progress, they also attempt to maximize system timeliness
and availability respectively. Mayfly associates tasks and the data they produce with deadlines,
and maintains time through power failures. After a datum’s deadline passes, it is discarded
and energy is not used to further process or transmit it. This approach prioritizes fresh
data, and allocates more energy towards completing tasks that can be completed within their
deadline. This enables applications that depend on timely data, such as activity recognition.
Alpaca and Chain are unsuitable for such applications, as they are unable to distinguish
between expired irrelevant data and new fresh data. While it increases the timeliness of a
system, Mayfly does not increase the amount of reported data by a system or its availability,
as it cannot increase the energy available to the system. By design, it must sacrifice stale,
potentially important data in order to report fresh data. It is uniquely suited for applications
that are only concerned with close to real time data.

InK prioritizes availability by incorporating timers, interrupts, and event handling into a
batteryless context. The runtime utilizes sleep states and low power interrupts to persist for
longer periods and increase the likelihood of detecting and capturing events. It also utilizes
an ultra-low power timer subsystem to ensure timekeeping across power failures. With these
improvements, a system using Ink is able to capture 14x the number of events over the same
system using Alpaca. While this seems like a dramatic increase, Alpaca was not designed
with event detection workloads in mind. It performs abysmally when applied to such tasks.
With controlled solar harvesting conditions, a system running on Alpaca was only able to
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capture less than 5% of events. Comparatively, the system with Ink was only able to capture
slightly over half of the events even when in the same light conditions [70]. The authors did
not compare the performance of these runtimes with that of a traditionally programmed and
continuously powered embedded system, so there is no baseline comparison.

While these approaches increase the timeliness and availability of a system, it is impossible
for a batteryless system without continuous energy income to ever approach 100% event
detection or data capture and transmission reliability. There will be always be periods of
time where there is no available energy, a batteryless system will remain off, and important
events will remain undetected and important data will be discarded as it grows stale.

Hardware Hysteresis Management

Beyond software techniques, researchers have also explored building specialized hardware
solutions to increase system availability. Batteryless system operation is generally tied to a full
swing capacitor charge/discharge hysteresis. Once enough energy is captured, a batteryless
system will begin executing its workload until it has exhausted its stored energy. The general
rule of thumb for batteryless system capacitor sizing is that it must hold enough energy to
support the most energy intensive atomic task of the system, such as operating a sensor,
performing some quanta of computation, or transmitting a single radio packet [7, 18, 56, 59].
This represents the smallest amount of energy storage that results in a feasible system with
checkpointing or other forward progress mechanism. All batteryless systems operate within
the bounds of capacitor storage voltage thresholds. The energy stored within a capacitor is
directly related to the voltage across its electrodes.

E =
1

2
C(V 2

max − V 2
min) (2.1)

The upper hysteresis threshold Vmax, the point at which the device is charged and turns on,
is the voltage at which a capacitor is full, and the lower threshold Vmin, the point at which
the system turns off, is the minimum operating voltage of the components in the system.
Smaller capacitors can charge to an upper threshold and turn on faster, but store less energy.
Larger capacitors store more energy, but charge slower. Hysteresis management techniques
attempt to combine different sized capacitors to optimize the charging time and available
energy for specific tasks. Managing hysteresis also allows for more platform generality, as the
capacitor storage can be optimized for various operations and workloads. Notable examples
of platforms that utilize this technique are the Flicker and Capybara systems [7, 18].

The Flicker platform practices federated energy storage, where each module (sensor, radio,
microcontroller) has its own built in capacitor that is tuned to the task it is expected to
perform [7, 15]. This has the effect of allowing various components to charge their storage
quickly and begin operating before other parts of the system turn on or are needed. This
also isolates power failure to independent components. Federated storage provides marginal
improvements with regard to component availability and energy harvesting efficiency. A
federated approach provides an average increase of 6.7% for microcontroller uptime (from



CHAPTER 2. BACKGROUND 15

64.2% to 70.9%) and a 1.5% increase for radio uptime (from 3.8% to 5.24%) over a single
duty cycle. Likewise, a federated approach provides at most a 10% improvement in energy
harvested over a duty cycle [15]. A federated approach incurs overhead involving additional
hardware complexity in the form of voltage monitoring circuitry as well as more complex
software to manage and make use of the additional voltage information. The additional
hardware increases the size, cost, and energy overhead of the system.

The Capybara platform also manages capacitor hysteresis to increase system responsiveness
and reactivity. However instead of using federated capacitor storage, it utilizes a central
capacitor bank that can be dynamically resized [18]. This is a more flexible approach than
federated energy, where each hardware peripheral is designed with a specific amount of
capacitance to support a predetermined task. Capybara can resize its capacitor bank on the
fly to match the energy required by an arbitrary task. This results in the lowest possible cold
start and capacitor recharge times to support a given operation. Under controlled conditions
with consistent harvestable power, Capybara is able to detect 2-4x of events over a system
with statically allocated capacitance. However, this improvement only detects 40-70% of
possible events, even under optimistic harvesting conditions. To support this dynamic resizing,
Capybara introduces an extremely complex and costly power system design that occupies
significant board area. The design includes five mixed capacitor and supercapacitor banks,
four state-retaining switches for connecting the capacitor banks to the load and harvester,
and a custom power distribution circuit to charge the configuration of capacitors.

These techniques are based on the assumption that a full swing capacitor hysteresis with
full power downs are necessary and unavoidable. Batteryless systems are often not designed to
support a low power sleep state with volatile state retention. Sleeping is a difficult operation
for systems with relatively little energy storage, as it is difficult to proactively retain enough
energy to enter and sustain a sleeping state when future availability of energy is uncertain.
Additionally, energy must be micromanaged on a time scale of milliseconds to seconds. The
precision timing of entering sleep state at the correct capacitor voltage level is often not worth
the engineering effort to implement when compared to allowing the system power off naturally.
Thus, batteryless systems are not often optimized for sleeping. For example, Capybara is by
design an inefficient sleeper but has very low leakage when powered off. Its power supply
has a significant “power overhead of the power system” that limits the effectiveness of any
low power state besides being completely off [18]. The decision to design around constant
reboots incurs significant cost in energy and time. Without significant software optimization,
the initialization of a processor, radio, and other peripherals is an expensive operation. If
capacitor storage is allowed to leak (over the course of hours without any harvestable energy)
the voltage may drop to a point that a boost converter must cold start. Cold start is also very
expensive, as harvesting ICs and boost converters are optimized for steady state operation and
not cold start efficiency. For example, the TI BQ25505 harvesting boost charger is capable of
operating at >90% efficiency at voltages higher than 1.5V [25]. However, its worst case cold
start efficiency is 5%, and requires at least 600mV input and 400mW instantaneous power
to exit cold start. Over the course of operation, a batteryless system will experience many
repeated cold starts, resulting in wasted energy and time.
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Redundancy for Statistical Availability

Beyond software and hardware techniques for forward progress, timeliness, availability, and
reactivity, researchers have also explored approaches that utilize cooperation within a network
of batteryless devices. Most notably, the Coalesced Intermittent Sensor (CIS) is an abstraction
of a group of intermittent sensors that combines the availability of each sensor to increase the
availability of the group as a whole [20]. The CIS approach leverages the theoretical uniform
distribution of uptimes of an ensemble of sensors, each of which is intermittently operating,
to maximize the probability that at least one sensor is on and able to detect a phenomena at
any given time. While this approach may work in controlled environments, it is dependent
on several assumptions that are difficult to justify when considering real world conditions.

All nodes within a CIS ensemble are assumed to have a priori knowledge about the size of
the deployment and are sufficiently co-located to experience the same harvesting conditions
and sense the same phenomena. These assumptions are unrealistic when considering real-
world deployment scenarios. Without a mechanism to autonomously and dynamically update
network node count, it is onerous for system maintainers to physically reprogram and update
each node when a new member is added to the CIS. If all nodes need to be co-located for the
CIS algorithm to function, it raises the question as to why this problem could not be solved
with a single node with a proportionally larger solar panel and energy storage, instead of the
20-50 nodes it would require to achieve high availability in low light levels.

The evaluation of the CIS greatly overestimates the light levels available to an indoor
sensor, and assumes that node on-times are uniformly distributed. In a real deployment, with
sensors that are not co-located, light levels can differ by at least 10x, and indoors levels are
usually much lower than 300 lux [2]. The evaluation of the CIS sensor shows less than 50%
availability when exposed to 300 lux. The only scenario in which the CIS approaches 100%
availability is when it is exposed to an LED array providing a constant 1000 lux, an unrealistic
environment for many indoor sensors. The CIS approach, like all batteryless approaches, is
dependent the existence of any harvestable energy. In most real-world situations, periods of
no energy are common, such as nighttime. These periods result in 0% availability, regardless
of the amount of node redundancy. For infrequent events with high light levels, the on-times
for nodes within the CIS are extended as they are exposed to more energy allowing longer
sleep. Nodes that are simultaneously sleeping may then trigger on the same event, essentially
synchronizing their on and off times. This results in duplicate event detection and missed
subsequent unique events, and temporarily breaks the assumption of uniformly distributed on-
times. Beyond the questionable assumptions made by the CIS approach, the event-detection
applications that are appropriate for a CIS are limited to short and burst events that can be
captured in one intermittent duty cycle.

The Batteryless Fallacy

The aforementioned programming models, runtime systems, debugging tools, hardware
platforms, and device redundancy schemes represent over a decade of successive and increasing
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complexity and sunk cost in batteryless design. The researchers who have developed these
solutions would almost definitely argue that this body of work is justified and necessary for
the usability and functionality of batteryless systems, and wireless system design in general.
Beyond the ability for a system to safely progress across reboots, the gains in performance
provided by various software and hardware techniques are marginal. The value of these
improvements is reduced when considering the baseline and maximum theoretical performance
of a batteryless system, as well as the hardware and software complexity that is necessary to
achieve a feasible system. Due to the nature of batteryless systems, the maximum achievable
performance is entirely limited by the instantaneous availability of energy, which is often
low and unpredictable in real world applications. Despite the simultaneous high complexity
and poor performance of batteryless systems, proponents of the design believe that they
are the future of wireless sensor design [17]. This claim ignores the significant downsides to
batteryless design, all stemming from an insufficient energy capacity that is unable to support
sensor operation beyond a single duty cycle activation, and only when external energy is
available. This limitation is fundamental and inescapable.

No matter what software framework is used, however the resizable capacitor bank is
configured, or how many sensors are deployed within a coalesced sensor, a batteryless system
is dead and unresponsive whenever there is insufficient energy: at nighttime, when stationary,
without a nearby RFID transmitter, or exposed to an insufficient temperature gradient. To
truly address this problem, batteryless systems builders are left waiting for dramatic and
transformative technology improvements. Either capacitor energy density must increase by
100-1000x, or system-wide power efficiency must similarly improve to render capacitor-based
storage appropriate for many applications [71]. This has resulted in an industry that continues
to focus on building battery-based sensors, which are simple to build and operate reliably and
predictably. With the efficiency of current processor and radio technology, many applications
can persist for a decade or more on just battery power [36–38]. There are few serious attempts
by industry to utilize a purely batteryless design for an application, despite more than a
decade of batteryless development.

Batteryless Designs in Industry

There are some examples of industry sensor solutions that utilize supercapacitors instead of
rechargeable batteries for energy harvesting applications. They deploy supercapacitors that
are often large and able to support hours and days of operation, and are often paired with a
backup non-rechargeable battery to ensure operation. Pressac sensors utilize EnOcean-based
harvesters with a supercapacitor alongside a non-rechargeable battery to ensure a minimum
reliable lifetime [72, 73]. The Davis weather and air quality stations utilize a supercapacitor
to harvest daylight and include a non-rechargeable backup battery [45].

There are fewer examples of purely batteryless products and solutions from industry. Many
new companies are attempting to build batteryless products, including Williot, Perpetua, and
Everactive, among others [10, 48, 74]. The Williot Pixel asset tracking tag was originally meant
to be an RFID-like batteryless peel and stick tag. These batteryless tags require a nearby



CHAPTER 2. BACKGROUND 18

Application Lifetime Workload Power Harvesting Power Size/Weight Reliable
GDI [8] 9 months 300 µW — 25 cm3 yes
ZebraNet [9] 1 year 400mW 300–1000mW 1.15 kg yes
Williot [10] ∞ a — c 10–100µW 0.25 cm3 no
Williot Battery [10] 4 years ∼ 20nW d — 2.8 cm3 yes
CapBand [58] ∞ a 260µW ∼ 100–1000µW ∼ 20 cm3 no
FaceBit [71] 11 days 286µW 70–700µW 10 cm3 yes
Monjolo [55] ∞ a 1–27mW 1–70mW ∼ 80 cm3 no
Kingdom [11] 6 months ∼ 200µW d — — e yes
Empire [11] ∞ a — c <50µW — e no
Cathodic [12] 3–10 years — c 480µW — e yes f

M3 [75] — b 40nW 20nW–10µW 1mm3 yes
a Indefinite capacitor cycle lifetime. b Lifetime limited by cycle lifetime of battery.
c Average workload power assumed equal to harvesting. d Average workload power estimated.
e Size not mentioned or prioritized. f Reliable because harvesting income is reliable.

Table 2.1: An assortment of seminal and recent wireless sensor applications and deployments.
This selection is by no means complete, but provides a reasonable selection of sensors with
varying power supply architectures and intended sensing applications. Wherever possible,
figures are taken or calculated directly from the cited work. Some figures are not mentioned
and are estimated instead.

reader for power and to communicate. For many customer applications, having sufficient
reader infrastructure is likely cost-prohibitive. To address this, Williot has now introduced a
battery-powered tag that performs active BLE beaconing and is compatible with any BLE
device. Perpetua and Everactive are developing batteryless sensors for industrial monitoring,
taking advantage of sensing modalities that are simultaneously sources of harvestable energy,
like thermal gradients or vibration. These applications represent a unique opportunity for a
batteryless design, as the sources of energy are reliable and correspond to valuable sensed
data, resulting in a batteryless system with high availability.

There is a valid argument that batteryless design is suitable for various niche applications,
like those within environments with reliable sources of harvestable energy. However, not
all applications are feasible with batteryless sensor designs, limiting industry adoption. In
Section 2.3, we explore applications in the context of their requirements and how different
energy provisioning techniques address them.

2.3 Wireless Sensor Applications and Their
Requirements

Real applications have requirements for availability, latency, and reliability. For many, these
requirements may be at odds with what can currently be provided by batteryless systems,
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and in some cases energy harvesting methods as a whole. There is a clear niche for batteryless
systems for applications that can tolerate relaxed requirements, or are designed for reliable
energy income, however it is disingenuous to argue that batteryless systems represent the
future for all sensing applications [17]. The next section explores several example applications
from the literature and industry, with qualitative and high level quantitative feasibility
analysis. These example applications and their requirements are summarized in Table 2.1.

Application Requirements

While the popularity and excitement around energy harvesting and batteryless sensing has
led to progressively better batteryless systems, the focus on batteryless design has often
ignored the requirements of real world applications, and the limitations of the batteryless
archetype. Constraints like sensor size, lifetime, the availability of harvestable energy, and
the reliability and consistency of an application all contribute to the end design of a wireless
sensor, and many applications will have requirements that make a batteryless design an
unsuitable choice for many real applications requiring some level of quality of service. Instead
of starting with the assumption that a design must be batteryless, a design should start from
application requirements. Given an application, a set of questions must be answered to define
requirements and design parameters. An appropriate set of questions to help define the power
supply requirements may resemble the following:

1. What is the application lifetime requirement?

This question primarily defines the required lifetime of the wireless sensors driving the
application. Secondarily, it also defines the acceptability of occasional power supply
maintenance.

2. What level of availability is required by the application?

In this question, availability refers to the general ability of the sensor to remain online
and maintain sensing at the rate required by an application. In this sense, availability
is also analogous to reliability. Availability can be defined depending on the application
reporting frequency and distribution. For applications that require measurements on
a uniform sensing period, availability is defined by the percentage of intervals that
the sensor was able to measure, or how often it was able to measure on schedule. For
applications that are event driven, availability can be defined by the percentage of
events captured by the sensor compared to the baseline distribution of events.

3. What are the average sensor power requirements to drive the application?

The power requirements of a sensor generally define application limitations for the size of
the sensor, the feasibility of various energy harvesting methods, as well as the maximum
lifetime on battery power. For opportunistic batteryless sensors, average power has a
different meaning, as such sensors use any energy that is instantaneously available, and
the average power they utilize varies with supply. There is still a limitation, as there is
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a minimum amount of power and energy required for a batteryless system to turn on
and successfully activate.

4. What are the limits of area, volume, weight, and cost for each sensor?

The limits of size, weight, and cost of a sensor directly affects the amount of energy
storage that can be allocated, or the available surface area for an energy harvester.
Many applications have various limitations on the size of individual sensors as to not
be burdensome, difficult to deploy, or unaesthetic.

In the following sections, several example applications from prior work are presented and
their requirements placed within the context of the above questions. While this is by no
means an exhaustive list, the examples discussed form a subset that provides broad coverage
of applications that can and cannot be supported by a batteryless design. Some of these
applications were developed before the introduction of batteryless sensors, however they are
analyzed as if the technology and ideas existed to enable a batteryless option. In Chapter 3,
these questions form the basis of formalizing a set of high-level application constraint equations
to determine power supply design. These constraints are utilized to develop new heuristics
for sensor power supply design.

Monitoring and Tracking

Classic wireless sensor applications generally monitor a phenomena, or track the location of
objects and people. These applications require regular measurement and reporting to provide
clear and complete data of the phenomena being measured or the location and path of the
object, person, or animal being tracked.

Habitat Monitoring

Perhaps the most notable seminal work in wireless sensor networks research is the deployment
of 32 wireless sensors for habitat monitoring on Great Duck Island [8]. These sensors were
built and deployed to measure the environmental conditions inside and around seabird nesting
burrows, as well as their occupancy during breeding season. This subsection attempts to
explore this application’s requirements and identify the suitability of different power supply
architectures to meet these requirements.

This habitat monitoring application has a necessary lifetime of 9 months, a time period
that encapsulates the average 7 month sea bird breeding period. The goal of the study is
to measure burrow conditions and usage patterns consistently over a 24–72 hour cycle. The
sensor must be able to measure occupancy consistently every 5–10 minutes overnight and in
the early morning, when it is most likely that birds are leaving and entering the burrow. It
is acceptable to measure general environmental conditions within and outside the burrows
every hour. Thus, the in-burrow sensor must be able to sense occupancy and environmental
conditions at regular intervals, without interruption.
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To perform this task, based on technology available when this work was published, the
burrow sensors required on average ∼300µW. This power requirement is low enough to
be powered by various energy harvesting methods, however there are not many options for
harvesting within a sea bird burrow. Solar and thermal differential harvesting are not ideal.
The inclusion of these harvesting methods would potentially make the burrows unappealing
to sea birds. For the same reason, the mote must also occupy a small volume. The mote
is based on the Mica mote which occupies about 25 cm3 [76]. Energy harvesting would also
substantially increase the deployment effort and cost. External to the burrows, the gateway
infrastructure for the deployment has plentiful solar energy to harvest from.

The sensor designers chose to utilize non-rechargeable batteries as a source of energy,
and tailored the size of the batteries as well as the sensor workload in order to support a
9 month lifetime. Based on the nature of this application, the power supply design would
be unlikely to change, even given modern technology. The application requires reliable and
periodic measurement, and is unable to utilize harvestable energy for in-burrow motes.

Wildlife Tracking

Zebranet also represents a seminal work in wireless sensor design, involving the development
and deployment of 30 tracking collars on zebras under study [9]. Researchers were primarily
interested in tracking the location and migration of zebras in an environment with no cellular
or other broadcast communications. The collars include a GPS system, a short and long-range
wireless transceiver, and a processor.

The wildlife biologists working with the system designers were interested in capturing
GPS position every 3 minutes for at least 1 year of operation with no human maintenance
or intervention. The biologists understandably want to limit the amount of tranquilizing
and re-collaring of the zebras as much as possible. Like the habitat monitoring application,
Zebranet also requires continuous and reliable operation to collect periodic GPS updates.
Due to the lack of options for long range networking, the ZebraNet collars utilize peer-to-peer
networking and mobile base stations for eventual data collection from the monitored zebras.

Conservatively, ZebraNet collars require an average of 405mW to perform GPS sampling
and occasional peer-to-peer and base station networking. ZebraNet collars are relatively high
power, even compared to other contemporary sensors like the Great Duck Island burrow
sensors. GPS and long range radio technology had high power requirements at the time the
collars were designed. The authors note that to power a collar for just five days would require
a 13.5A h non-rechargeable battery, weighing 4 pounds. Not only would a non-rechargeable
battery be unable to provide sufficient energy to achieve the application lifetime goals, it would
also be too large and heavy to put on a zebra’s neck. Instead, the collar designers opted to
use solar energy harvesting with a lithium polymer battery, resulting in a significantly smaller
collar, weighing only 2.54 lbs total. This allows the collar to harvest the copious amounts
of sunlight during the day, and power the zebra localization workload all day and night.
With a batteryless design, the collars would be unable to function overnight or in the early
morning, limiting zebra localization and behavior data to daytime. Given modern technology,
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the collar could utilize thermal gradient harvesting in addition to solar harvesting. This
would allow harvesting overnight, as the gradient between zebra skin and ambient nighttime
temperatures would be likely be sufficient to generate energy. However, the relative power
provided via thermal harvesting is several orders of magnitude less than harvesting direct
sunlight, and much less than is required by the workload. Even with additional harvesting
sources, a batteryless collar would have to necessarily degrade the consistency and frequency
of GPS sampling and communication with peers or the base station.

Asset Tracking

In many industries, it is important but incredibly difficult to monitor and track various
products and commodities through a supply chain. Asset tracking sensors have the potential
to provide finer granularity tracking and monitoring, which provide clearer estimates for
production and delivery, as well help to increase efficiency by better tailoring supply to
demand. The lifetime of an asset consists of the amount of time it takes an item to traverse
a supply chain end-to-end, from production to end retailer and user, potentially spending an
unknown amount of time in a warehouse or on retail shelves. Tracking sensors must be small,
cheap, and easily disposable or recyclable. Their lifetime must resemble the maximum shelf
lifetime of any given product, which can vary widely.

Generally, these sensors are simple, and only need to report their existence occasionally at
each step of production or delivery, or respond to queries when inventory is taken. This means
their power requirements are modest, as they do not need to consistently and periodically
transmit. Asset tracking is a uniquely situated application that can benefit from a batteryless
design. The infrequency of location reporting coupled with the requirement for cheap and
easily disposable tags results in a design space that favors a batteryless approach. As long
as each step of a supply chain has infrastructure to wirelessly power and communicate with
tags, batteryless asset tags can provide accurate and reliable tracking updates.

Several recent companies are developing cheap batteryless asset tags, including Williot
and Jeeva Wireless [10, 77]. The Williot battery-free IoT Pixel is a peel and stick tag with an
ARM Cortex M0+ and harvesting and transmission antenna. The battery-free Pixel relies on
RFID-like transmitter infrastructure to supply wireless power, and tags report their existence
via active BLE (Bluetooth Low Energy) broadcasts which can be received by any consumer
handheld device. For applications where RFID infrastructure is inadequate, Williot also offers
a battery-assisted tag with a battery lifetime of four years. Jeeva Wireless is also developing
low power RF-harvesting solutions for asset tracking. However, instead of BLE transmissions,
they rely on bidirectional backscatter communication with a wireless router [77].

Asset tags must be physically small and lightweight. Arguably, the most convenient form
factor resembles that of a traditional “dumb” tracking label: a peel and stick tracker with an
integrated harvester and radio. This form factor does not allow much space for a traditional
non-rechargeable battery, but can supply enough surface area to support an energy harvesting
RF antenna, an active antenna, and a limited amount of capacitor-based energy storage. At
most, the minimum atomic operation of an asset tracker must be sending sending a single
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transmission indicating the tag’s existence. This amount of energy is easily supplied by a
bank of capacitors [2, 55, 63]. Beyond size, these asset trackers must also be inexpensive, and
the cost difference between a non-rechargeable battery and a bank of ceramic or tantalum
capacitors is substantial at scale. The Williot battery-free Pixel occupies a sticker form
factor of 2.8x4.4 cm and 0.2mm thick and is projected to cost between $0.10–0.70 USD. The
battery-assisted Pixel is a larger and thicker sticker that is 3.6x6.0 cm and 1.3mm thick and is
projected to cost $1–2.1 USD. Williot does not publish the power or energy requirements for
their tags. We can still estimate the average power requirements for the battery-assisted Pixel
given the volume and lifetime of the battery-assisted Pixel and the volumetric energy density
of lithium batteries. The Williot battery-assisted tag occupies 2.8 cm3, has a purported
lifetime of four years, and the energy density of a lithium primary is 0.8Wh/cm3 [78]. This
suggests that the battery-assisted Pixel only requires 17.8 nW on average. This figure is very
low for an actively broadcasting system, and it would not be surprising that a four year
lifetime is an overestimate for the battery-assisted Pixel. We would expect an average power
requirement multiple orders of magnitude more for active BLE beaconing. For example, a
modern low power SoC like the nRF52 series requires 15 µW to beacon every four seconds [79].
A tag like those that Jeeva is developing utilizes backscatter and will require very little
power to transmit data, usually much less than a µW. This average power is well below the
capabilities for directed RF harvesting from a device similar to an RFID reader, which can
typically supply hundreds of µW at a minimum at reasonable ranges [54].

In environments with plentiful and reliable harvestable energy, like in the case of asset
trackers within a factory or warehouse with widely deployed RFID readers, the batteryless
design point allows for simple, small, and inexpensive wireless devices that require essentially
no maintenance. However, when a batteryless asset tracker is out of range due to theft,
accidental loss, or other reasons, it is impossible to locate them as they have no energy or way
to communicate. The value of batteryless trackers is strictly limited to specific locations and
areas where the tracker is expected to be. It is likely that such events are rare, and for most
asset tracking use cases with plentiful infrastructure, a batteryless tracker is an ideal solution.
In situations where infrastructure is insufficient to power batteryless tags, non-rechargeable
batteries may be necessary. Williot backtracked from originally offering only battery-free
tags to developing and offering battery-assisted Pixels to address this reality.

Wearables

Many human-centric applications are only possible when a sensor is co-located on the human
body. Often, wearables are the best and sometimes only way to accurately measure or interact
with humans. These wearable sensors are uniquely situated when considering their power
supply design. For a wearable, a human is naturally always present and able to provide light
maintenance or a recharge. This allows wearables to have shorter one-charge lifetimes, use
smaller batteries, and achieve smaller form factors. Wearable maintenance is less costly when
humans are always present and are already conditioned to maintain their devices. Humans
have generally accepted the cost of nightly smartphone recharging, making daily or weekly
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wearable charging also acceptable. However, not all populations are as diligent or willing to
utilize wearable sensors if they have to repeatedly remove and charge them. Particularly,
elderly populations have usability issues with discomfort and difficulties with taking wearables
off to charge them and putting them back on [80]. For these populations, a wearable that
does not need to be charged would be beneficial. A batteryless wearable would not have a
charging constraint, however the expectation of constant and immediate wearable human
interactivity demands a baseline of availability that may not be feasible with a batteryless
design. It is hard to imagine a user being willing to adapt their behavior to accommodate
a sporadically operating device. This section examines several recent batteryless wearable
research applications in the context of the aforementioned trade-offs.

Gesture Recognition

CapBand is a batteryless gesture recognition wearable that measures capacitive changes in
skin deformations to identify hand gestures [58]. While the main contribution of this work is
the sensing and processing of wrist capacitance measurements, the authors also claim that
the low power nature of the measurement technique makes this appropriate for a batteryless
design. Capband utilizes a small solar panel for power, and a supercapacitor for energy
storage. Gesture recognition is an application that requires high availability to accurately
capture hand gestures. CapBand’s capacitive measurement needs to run continuously to
capture enough data to predict gestures, on the order of 20 measurements per second for its
neural network inference. At this rate, CapBand requires an average 260 µW. This does not
include the energy required to transmit the measurements. The measurement power alone
allows operation only outdoors during the daytime, and indoors with very bright lighting.
User frustration is likely to arise in insufficient lighting.

Wearables must optimize for size and weight. While CapBand fits within a wrist form
factor, the sensing and energy management circuitry is quite large compared to a normal
wristwatch or smartwatch. There is some room for miniaturization by using different IC
packages and combining modules into one PCB. However, the majority of volume and
surface area of CapBand is actually devoted to the solar panel and supercapacitor. A small
rechargeable 40mA h could power the aforementioned 20Hz measurement for 27 days, and
would take less than half of the volume of CapBand’s designed energy harvesting frontend.

CapBand’s supercapacitor is sized to support an amount of sensing and data transmission
while also minimizing the amount of time it takes to charge to a usable voltage. It is not
designed to support a single atomic operation. CapBand is not designed to power off frequently.
Instead, it sleeps when it does not have sufficient power. A more energy dense storage, as
well as one that has a more stable voltage, like a rechargeable battery, would also allow for
continuous operation. A battery would also allow CapBand to operate overnight and in low
light environments assuming it is charged regularly. The authors do not give consideration to
a battery-based design, beyond claiming one would need frequent recharging. We believe the
decision to use a batteryless design was informed more by the popularity and excitement for
battery-free technology, rather than a careful design exploration that considered all options.
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Smart Face Mask

Beyond traditional wrist-worn wearables, researchers are also developing ways to measure
the efficacy of face masks and the health of the user. The FaceBit platform is a smart mask
platform that is affixed to normal masks and measures non-contact heart rate, respiratory
rate, and mask fit quality and wear time [71]. FaceBit features a hybrid batteryless energy
harvesting design with a backup primary battery. This hybrid design is intended to extend
the lifetime beyond that of a primary-only design. The current FaceBit design cannot operate
in a fully batteryless fashion, as the reporting frequency and computational demands of the
application requires more power and availability than possible with energy harvesting alone.

The FaceBit prototype can persist for 11 days before exhausting its small primary battery.
Its workload consists of periodically sampling a barometer sensor once a second to detect
if it is being worn. If it is being worn, it measures heart rate and respiratory rate every
minute, and reports results every 2 minutes. This workload requires high availability and
consistent periodicity, which is difficult to achieve with a batteryless design. The FaceBit
workload requires an average power of 286 µW. While the current version relies mostly on a
primary battery, the authors have explored the use of energy harvesting methods to power
FaceBit. The authors explore multiple energy harvesting methods, including a photovoltaic
cell, a thermoelectric generator (TEG), as well as a triboelectric nanogenerator (TENG).
The photovoltaic cell must be placed external to the mask, with power leads running into
the mask, potentially degrading the mask fit. The authors also test the use of a TEG placed
against the inside mask surface, with the goal of harvesting from the temperature gradient
from inside the mask to the surface of the mask. The TENG converts the small kinetic forces
caused by breathing into electricity, and is placed within the mask.

Among the energy harvesting methods tested, only the photovoltaic in outdoor light can
provide sufficient power to power the device. In worst-case indoor conditions, where dim
artificial lighting only provides on the order of 10 µW/cm2 [2] the selected photovoltaic panel
for FaceBit can only provide 71µW, assuming a 17% efficiency. The authors also explore the
use of TEG and TENG generation. Thermoelectric harvesting provides a temporary burst of
energy on the order of 50 µW, but quickly dissipates as the inside of the mask and the inside
mask surface reach a temperature equilibrium. The TENG can provide consistent power if
the mask is worn, but generally less than 2µW when the mask wearer is talking. No power
data is provided for when the wearer is just breathing. The authors believe that breath-based
harvesting (Either TEG or TENG) are the most promising avenues for future development,
despite their low power output. They also claim that a 10x improvement in power efficiency
of the SoC (including the processor and radio) would enable a batteryless version of the
FaceBit. This is not possible given the capability of the TEG and TENG methods explored.
It would require closer to a 100x system-wide power improvement to enable a continuously
operating batteryless FaceBit.

FaceBit must be sufficiently small and unobtrusive as to fit in an N95 or surgical mask
without bothering the wearer. It must also be lightweight enough to be held securely with a
magnet affixed to the outside of the mask. The choice of non-rechargeable and rechargeable



CHAPTER 2. BACKGROUND 26

energy storage, as well as the harvesting method is the largest driver for the size, weight,
and cost of a device like FaceBit. The choice to use any energy harvesting, including the
tested solar panel, TEG, or TENG requires significant surface area and added cost. The use
of tantalum capacitors as energy storage is also one of the least energy dense options.

The authors do not give a rationale for the decision to utilize capacitors as energy
harvesting storage. While each capacitor is individually small, FaceBit requires multiple
capacitors to build up enough energy storage to successfully complete its most energy intensive
operations. Since the capacitor bank has very limited energy storage, the utility of having
energy harvesting at all is severely limited. FaceBit can only capture enough energy to
perform a few operations before depleting its storage. Even in cases of sufficient harvesting,
FaceBit can only utilize a small percentage of any available energy because it fills its buffer
quickly and any remaining harvestable energy is wasted. The authors do not examine how
their energy storage capacity and chosen energy harvesting methods affect energy capture
and the lifetime of FaceBit’s primary cell.

The three capacitors that comprise FaceBit’s energy storage occupy nearly 1.5x the
volume of the primary battery itself, at significantly lower energy density. An alternate design
could more than double its lifetime by replacing energy harvesting and the capacitor bank
with additional battery storage. Alternatively, the primary battery and energy harvesting
components could be replaced by a single rechargeable battery and a charging connection. A
rechargeable battery is less energy dense than a primary cell and be unable to offer a similar
lifetime. However, a rechargeable would reduce battery waste. Both options would result in
a smaller, less cumbersome design. The removal of energy harvesting and related circuitry
would also reduce the cost of the unit.

Intra-Body Power Transfer

SkinnyPower is a technology that enables wireless power transfer through human skin to
enable more reliable batteryless wearable sensors [59]. Small batteryless sensors can be
placed on body parts that are unable to support batteries either due to their volume or
weight. SkinnyPower targets sensors for fingers, ears, or mouths, and provides power via
battery-powered transmitters placed elsewhere. SkinnyPower represents an unique approach
to batteryless systems by exploiting their potential for miniaturization, as well as addressing
their weaknesses in availability by providing a reliable source of untethered power.

The SkinnyPower prototype consists of a wrist-worn battery-powered power transmitter
and a finger-worn batteryless sensor that operates on the transmitted power. The authors
target a smartwatch-sized form factor for the power transmitter while the finger-worn sensor
requires a surface area of 2.5x2.5 cm2, about the size of a smart watch underside. The
wrist-worn transmitter powers the batteryless sensor by transmitting an alternating current
through the skin of the user’s hand. With this prototype, SkinnyPower is able to provide
average power on the order of 1mW at an efficiency of 14.5%. This is enough power to
operate a batteryless sensor system continuously. Assuming a 100mAh rechargeable lithium
polymer battery powering the transmitter, a SkinnyPower system could provide 1mW to a
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batteryless finger sensor for 54 hours. Given that SkinnyPower can provide continuous power,
it is possible to operate sensors like an accelerometer continuously with high availability. The
authors evaluate the system with an accelerometer and compare its measured accelerometer
with that of a motion capture system. They confirm that the system is able to continuously
and accurately report acceleration measurements at 1Hz.

Through the use of intra-body power transfer, the SkinnyPower approach is able to separate
a sensing system’s power supply from its sensing system. This allows small and lightweight
batteryless sensors to be placed on body locations where it would be burdensome to place
batteries, while at the same time providing the high sensing availability of a battery-powered
system.

Amalgamated Harvesting and Sensing

There is an application niche where sensed phenomena is correlated with a method of
harvesting. As mentioned previously in Section 2.2, there are one-shot batteryless sensors
that do not directly sense any phenomena, and instead simply transmit packets when their
capacitor storage is charged and full. The rate of packet transmission by these simple sensors
can be used to directly estimate the rate of harvesting, and the intensity of a phenomena.
There are other applications that take this primitive one step further, and integrate active
sensing for more direct and accurate measurements. Applications that harvest the same
phenomena that they sense are well situated for batteryless designs. The inherent unreliability
of a batteryless supply is not as impactful, as whenever there is energy to be harvested
corresponds to when it is important to be sensing. While energy harvesting methods are
limited, many valuable applications are still feasible.

Power Metering

Usually, the proximity to existing powered infrastructure presents relatively easy solutions for
powering power meters. For some use cases, this proximity is not enough to justify the cost
of deployment. It is generally burdensome and costly to instrument a building’s circuit panel,
as traditional submetering equipment must directly connect to a circuit, which requires an
electrician install. Many plug-load power meters are bulky and often block nearby outlets,
and they require substantial standby power to operate. The Monjolo power meter [55] instead
utilizes a current transformer wrapped around one path of an AC power line to harvest energy.
The Monjolo operates on a one-shot batteryless design principle where the quantity and rate
of packets can be used to estimate the current through an instrumented AC line.

The availability of a Monjolo power meter is tied to the availability of the instrumented
load. Unless a load current is constant, a Monjolo sensor is unable to operate continuously,
and when no load current is flowing, it will remain off and not send packets. When a Monjolo
is offline for an extended period, it can be assumed that the measured load is also offline
and drawing no power. The zero-load assumption breaks down when considering real-world
situations where operation and packet reception are not reliable. If a Monjolo breaks, or its
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packets are not reliably received for an extended period, its failure is impossible to distinguish
from the sensor measuring no load. Additionally, any missed packets has an impact on the
reconstructed power rate estimation resulting in underestimation of power. To account for
this, Monjolo employs a monotonically increasing counter sent with each packet such that
high level energy aggregation remains accurate. However, this technique does not correct the
loss in temporal power resolution from lost packets.

Because the Monjolo sensor operation is directly tied to its energy income, its power
requirements vary depending on the measured load. At a minimum, it requires a load of at
least 17W to harvest enough power to turn on and send a packet. This corresponds to a coil
output power of less than 1mW. At some point the induced power from the magnetically
coupled load is enough to power the Monjolo indefinitely. This point represents a maximum
possible measurement, as the rate of packets is limited by how fast the sensor’s software and
hardware can queue and send packets when running continuously. For the Monjolo, this
maximum corresponds to a measured load of 480W, and a packet frequency of 8.5Hz.

Regarding size, the Monjolo platform must fit easily within a circuit breaker panel. Most
of the volume of the Monjolo is dedicated to its coil harvester. The 500 µF storage capacitance
and circuitry is small and amortized in comparison. This capacitance is tuned to support a
single Monjolo activation, allowing the sensor to wake up and transmit a packet. However,
with consistently powered or high current loads, the Monjolo harvester can provide significant
energy, and a larger or more dense energy storage option could allow for more captured energy.
This would potentially support continuous operation and more advanced active sensing to
directly measure current and voltage of the load without the need for power estimation from
packet rate, and the limitations of upper and lower bounds of measurement.

In fact, the Monjolo harvesting method and split-coil form factor has directly influenced
further research and industry solutions. The Triumvi system is a direct improvement over
the Monjolo design, directly measuring voltage through capacitive coupling, and the current
transformer to harvest energy and measure current [4]. Like Monjolo, Triumvi is designed
with a batteryless power supply, but supports an optional rechargeable battery for reliable,
short term instrumentation. Triumvi also supports charge sharing between devices, allowing
a sensor harvesting from and measuring a high load to share its harvesting energy with a
sensor measuring a smaller load. This increases the overall reliability and uptime of the entire
deployment. Vizi Metering is commercializing the Monjolo and Triumvi concepts with some
improvements [81]. Instead of utilizing the one-shot activation and packet rate counting
method of the Monjolo, the Vizi meter directly measures and reports current and voltage like
Triumvi. This direct measurement is much higher accuracy than estimation through packet
counting, which has no phase information or voltage measurement. Unlike both Monjolo and
Triumvi, the Vizi meter is not batteryless. It uses a small rechargeable battery as its energy
storage. The inclusion of a rechargeable battery allows the Vizi meter to run continuously.
Continuous operation allows the meter to utilize reliable transport mechanisms to ensure all
measurements are received successfully. This preserves measurement temporal resolution,
which was potentially lost when Monjolo and Triumvi packets were not received. Like Triumvi,
the Vizi meter also supports daisy-chained charge sharing. This daisy-chained connection
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also allows communication between sensors, primarily to synchronize measurements. This is
especially useful for measuring three-phase or split-phase circuits. Even though the Monjolo
principle of operation is intuitive and a seemingly appropriate fit for a batteryless design, the
limitations of measurement accuracy, resolution, range, and reliability are not appropriate for
an industrial sensor. It was necessary for Vizi to abandon the batteryless aspect of Monjolo
and Triumvi to achieve their availability, accuracy, and resolution goals.

Archaeological Site Monitoring

There are actually few real-world deployments of long-term batteryless sensors. One of
these is a 3.5 year deployment in the Mithræum of the Circus Maximus to measure ambient
temperature, humidity, and structural vibrations [11]. Having data regarding the environ-
mental conditions of the site helps restorers identify the necessary techniques for preservation.
The Mithræum deployment consists of three different generations of devices, starting with
battery-powered sensors and evolving into a deployment of batteryless sensors. This work is
an interesting and unique analysis of the trade-offs of battery-based and batteryless design.

The Mithræum is completely underground and only accessible through spiral staircases,
and entry is strictly regulated to protect the site. Specifically, the installation of vibration
sensors requires difficult climbing on potentially fragile vaults, putting not only the site
in danger of damage, but also the safety of people installing sensors. This makes periodic
sensor network maintenance extremely costly. The original lifetime goal of the battery-based
sensor deployment was six months, however continuous sensing beyond that time was desired.
The battery-based design was built with off the shelf processors, radios, and sensor modules.
Through the course of the 3.5 year deployment, the battery deployment experiences frequent
outages, an average of 9 a year. Due to these outages, the authors turn to batteryless designs
for their environment and vibration sensors, producing custom application-specific hardware
and software designs.

The authors do not explicitly mention many quantitative details of their designs including
power and energy requirements for different operations, making it difficult to gleam the
average application power requirements. However, the off the shelf components used for the
first deployment, along with the described workload provide some insight, enough to make
an educated guess. The first deployment utilized a Libelium Waspmote and an XBee 868LP
sub-GHz radio [82, 83]. Combined, these two components require a sleep current of 34.7µA
at 3.3V. The Waspmote is powered by an ATmega1281 and has an active current of 17mA
and frequency of 14.7456MHz. The Xbee sub-GHz radio requires 45mA when active and
can transmit at 80 kb/s. The temperature and humidity sensor only requires 600 µA when
measuring, while the accelerometer requires 18mA when active. The temperature sensor
workload consists of measuring temperature and humidity every 20 minutes, and transmitting
an average and standard deviation every hour. Similarly, the vibration sensors capture a
one minute burst of accelerometer data every 30 minutes. Every hour the acceleration data
is summarized via an FFT, the fundamental frequency and spectral density is computed,
and the results are compressed and sent. With this information, we can estimate an average
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power draw for each system by making a few assumptions. For simplicity, we assume every
packet sent is an arbitrary 200 bytes. We also conservatively assume that it requires 100ms to
measure the temperature and humidity sensor and one second to summarize the collected data
for the hour. For the vibration sensor, we assume it requires five seconds of computational
time every hour to calculate an FFT and other statistics.

In an hour, the temperature and humidity sensor will spend 300ms measuring its sensor,
one second calculating summary statistics, and the amount of time it requires the radio to
transmit a 200 byte packet over the 80 kb/s link. The rest of the time is spent sleeping. This
corresponds to an average of 191µW to power the temperature sensor workload. Likewise,
every hour the vibration sensor will spend two seconds measuring its sensor, five seconds
computing its statistics, and the same transmit time as the other sensor. This corresponds to
an average of 244 µW to power the vibration sensor workload.

The battery-based sensor used in the first “Kingdom” deployment utilizes six C cell alkaline
batteries in a 2x3 configuration, two in series and three in parallel. This 2x3 configuration of
6 C-type batteries provides a maximum of 16Ah at a nominal voltage of 4.2V, or 67.2Wh.
These batteries should provide more than sufficient energy storage for both types of sensor to
last six months. Despite this, the amount and frequency of failures experienced by the real
deployment points to multiple issues that were not predicted at design time. The authors
lay most of the blame of sensor failures on batteries. They claim that the high humidity
in the underground chambers of the Mithræum caused the frequent battery failures, which
occasionally included visible degradation in the form of leaking battery acid. The authors
claim that different primary battery types, such as lithium, also exhibit issues. To solve this
problem, the authors elect to change their sensor design to be batteryless. The authors do
not consider improving their battery-based design with any efforts to mitigate humidity with
waterproof enclosures, humidity absorbers, or conformal coatings and epoxy. The authors were
primarily interested in developing a deployment of batteryless sensors, and were motivated to
do so when they encountered initial difficulties with batteries in humid environments.

The batteryless temperature and humidity sensors harvest energy via a TEG connected to
a sublayer of Roman concrete. Likewise, the batteryless vibration sensor utilizes piezoelectric
harvesting connected to the columns of the Mithræum. The first batteryless attempt uses
the same COTS components as the battery-based sensor but connected to these harvesters.
The COTS components were not designed to operate in a batteryless context and performed
poorly. The vibration sensor was rarely able to wake up and was unable to capture useful
and relevant data. The second batteryless attempt was to build a custom application-specific
hardware design with more efficient components. The deployment of these new sensors was
named “Empire”. For the vibration sensor, they also designed a vibration-triggered activation.
Rather than sense vibration occasionally and potentially miss important vibration events,
the redesigned sensors began sensing when a sufficient vibration occurs and triggers a wake
up. This aided in coupling the sensor’s sensing modality with its harvesting, resulting in
capturing more relevant data. While vibration sensing was designed to capture rare events,
which is more amenable to the batteryless design, temperature sensing was not as successful,
as it requires regular measurements throughout the day. The Empire temperature sensors
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were only able to capture 22% of the quantity of data provided by the battery-based Kingdom
sensors. The authors do not comment on the temporal distribution of the collected data,
but we assume it was likely clustered around certain times of day when the temperature
differential between the inside of the Mithræum and the outside was sufficient to generate
power. The authors note that over two years, the batteryless Empire deployment has required
no maintenance beyond a cellular failure unrelated to the sensors themselves.

This work represents an interesting design exploration and highlights a few major benefits
of batteryless systems. Most notably, capacitor-based power supplies are more durable in
the face of high humidity. Also, when harvesting and sensing are properly coupled, as was
the case with the Empire vibration sensor, a sample of interesting vibration events can be
captured. However, this work also exemplifies their downsides. Compared to the battery
deployment, which was built with COTS, the batteryless deployment required a custom, more
complex, and application-specific batteryless hardware design. This custom design required
significantly more design time and effort. While some relevant vibration events are able to be
captured by the batteryless design, there still exists the probability of not capturing events if
they are are close in time or the sensor has not been able to instantaneously capture enough
energy from a vibration to sense and report it. The batteryless deployment was also unable
to capture the same amount of temperature and humidity data as the battery deployment,
and did so with much less consistency. Batteryless designs are poorly suited for applications
that require that high data fidelity or that data be captured at regular intervals.

Cathodic Protection Monitoring

Beyond the coupling of sensing to harvesting, sometimes harvestable power is reliable. Reliable
power can be produced from a consistent temperature differential between a hot steam pipe
and the ambient air, microbial activity within soil or wastewater fuel cells, or the voltage
potential produced from a sacrificial anode in a home water heater, a boat, or a bridge. In
these situations, reliable harvestable energy results in a reliable system, even when batteryless.
This allows a batteryless system to maintain a regular and periodic sensing schedule. These
applications are clever and convenient for batteryless systems, as a reliable power source
allows them to avoid the uncertainty of an unreliable income.

Researchers have built proof-of-concept sensors that monitor and harvest from the corrosion
of cathodic protection systems [12]. A corrosion protection system is sometimes employed
on critical infrastructure, especially in aqueous environments, to prevent corrosion. This
protection usually consists of bars of a sacrificial metal, usually of elements that are more
easily corroded, like aluminum or magnesium. The critical metal structure is protected from
corrosion, as the sacrificial metal corrodes first. It is important to monitor the state of a
cathodic protection system, because as soon as it is depleted, the metal structure that was
being protected will begin to corrode.

The chemical process of corrosion is the same process as a galvanic battery. A cathodic
protection system is not a good battery. It provides a very low peak power, and has very
high equivalent series resistance. However, a cathodic protection system can be used to
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slowly charge an actual battery, a bank of capacitors, or a supercapacitor. This stored energy
can then be used to monitor the health of the protection system, powering periodic voltage
measurements between the sacrificial anode and the protected cathode, and reporting these
readings via radio transmissions. As long as a sacrificial cathode exists and is performing its
function, a sensor will be able to scavenge energy from it. Such a system must persist for
the life of the cathode or infrastructure, which in the case of a water heater can be between
1-3 years for the cathode, and around 10 years for the heater itself [12]. While this lifetime
could be supported by a non-rechargeable battery, it is both more elegant and less wasteful
to employ an energy harvesting solution. Since the degradation of a sacrificial anode is slow,
over the course of multiple years in the case of a water heater, such a sensor does not need to
report frequently. A measurement once a day is sufficient to track the health of the sacrificial
anode and predict its failure.

The authors propose a fully energy harvesting solution, meaning that the average power
of their application must be energy neutral, and fully dependent on income from the weak
corrosive battery. Via multiple experiments with a small corrosion cell consisting of a steel
bucket and a magnesium rod, the researchers have discovered a maximum power point at
around 300mV and 1.6mA for a peak power of 480µW. Even from a small example corrosion
cell based on a water heater, this amount of average power is more than enough to power
a low duty-cycle sensor system. In many cases, the infrastructure being monitored will be
much larger, with more surface area resulting in more harvestable power. The size of the
designed system is not of particular concern, as it connects to potentially huge infrastructure.
Any sensor built will be easily dwarfed by a water heater or a bridge.

Since the energy income from a cathodic protection system is stable and reliable up until
the point where it fails, a batteryless design is an attractive choice. The constant trickle of
income power allows a system to preserve volatile state over long sleep periods without the
need for intermittent techniques to ensure forward progress. The left over energy is banked
and eventually used to monitor and report the health of the sacrificial anode. The authors
decide to use a parallel array of three 1F supercapacitors to store harvested energy. This
bank of supercapacitors is sized such that it provides enough energy storage for the system
to run continuously and measure the voltage between the anode and cathode every 4 hours
on average. After measuring, the system transmits the results via a LoRa radio, which has
relatively high power and energy costs. The authors avoid tantalum and ceramic capacitors
used in past designs, as their energy density is insufficient to support LoRa operations within
a reasonable form factor. Alternatively, such a system could utilize a rechargeable battery.
A single small rechargeable battery is more energy dense and significantly less costly than
the bank of three large supercapacitors used. This would result in a smaller, lighter, and
cheaper system. The authors’ concerns of battery cycle lifetime, charging characteristics, and
voltage requirements, are actually inconsequential, especially for this application. They do not
provide any citations for any of these assertions. Given the application’s infrequent periodicity,
cycle depth is shallow, and average discharge and charge rates are low, resulting in less cell
damage and an extended cycle lifetime [84, 85]. For most lithium-based batteries, this would
result in more than the 10 year lifetime of the instrumented water heater, never mind the 1-3
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year lifetime of the sacrificial anode. The authors’ issue with voltage levels is easily addressed
with a buck or boost regulator, depending on the battery chemistry. These trade-offs between
capacitors, supercapacitors, and batteries are further explored in Chapter 5.

Smart Dust and the Future

Beyond applications that were possible ten years ago, as well as ones that are possible
today, it is important to look forward to the requirements of future applications. The
continuing trend in computing and wireless sensors is pushing the boundaries on size and
power. Researchers have begun prototyping a new class of millimeter-scale computers and
sensors, known colloquially as “smart dust” [86].

While some developed millimeter-scale systems are one-off demonstrations of the feasibility
of the device class, some have been developed for specific applications. In particular, millimeter-
scale sensors are uniquely appropriate for injectible or implantible medical applications.
Millimeter-scale devices have been proposed as syringe-implantable medical sensors to to
measure and monitor intraocular pressure for glaucoma diagnosis and management [87],
heart arrhythmia [88], glucose levels for diabetes treatment [89], and cellular temperature
to monitor the metabolism of cancer cells [90]. General purpose, modular, millimeter-scale
sensing platforms have also been proposed for traditional sensing applications [75, 91]

The lifetime goals for many of these applications are to operate perpetually based on avail-
able energy [75, 91]. For many of the medical applications, lifetimes of a few years to decades
are appropriate to avoid frequent sensor re-injection and re-implantation [88]. Typically,
these applications require high availability to support reliable and periodic measurements.
High quality, consistent measurements are necessary to establish reliable trends for the basis
of diagnoses or treatments. Likewise, non-medical smart dust applications also require high
availability. A millimeter-scale image sensor application utilizes always-on motion detection as
opposed to opportunistic or periodic image sensing [91]. This approach attempts to maximize
the value of captured images and minimize energy used to capture non-interesting images.

Despite the superior energy density of primary lithium batteries, at the scale of a millimeter
cubed, the energy provided is insufficient to offer an adequate lifetime for these systems [75].
To achieve perpetual lifetimes, these systems utilize harvesting methods including photovoltaic,
active RF, intra-body transfer, or optical harvesting [75, 89, 90]. Due to their size, these
systems have limited volume for energy storage, and likewise limited surface area available
for energy harvesting. This results in aggressive system-wide power limitations to achieve
adequate lifetimes with high availability. Unlike the previously mentioned devices and
platforms, most of which require on the order of hundreds of µW to mW of average power
to drive their application, smart dust devices require tens or hundreds of nW to operate [75,
88, 90, 91]. Given the low energy density of capacitors and supercapacitors, they provide
insufficient energy storage to allow continuous and perpetual operation, making batteryless
approaches unsuitable for many smart dust applications. Instead, to achieve sufficient energy
storage, most of the aforementioned millimeter-scale systems utilize small rechargeable thin-
film lithium batteries to allow operation between periods of harvestable energy. These
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batteries are sized to provide a few days of operation without any income, corresponding to
capacities on the order of 1-5 µAh.

Not all applications require the extreme size constraints of smart dust. However, they
can benefit from the advancements in power efficiency developed by smart dust researchers.
Within the next decade it is conceivable that microcontrollers, sensors, and radio technologies
will be developed with the power improvements originally meant to enable millimeter-scale
computing. These sensors can remain at the scale of traditional sensor motes with relatively
vast energy storage and energy harvesting capability, but with one or two orders of magnitude
improvement in active and idle power. This will result in sensors that can easily achieve
lifetimes of multiple decades, even with small primary batteries. With average system power
on the order of nW, batteries will be limited more by self-discharge than the actual system
load. For energy harvesting systems with sufficient surface area, an average income power on
the order of tens or hundreds of nW to support perpetual operation is an easy task even in
dim environments. Beyond lifetime extension, these sensors will be capable of doing more with
the energy they have. Future systems will perform advanced sensing and processing that are
currently infeasible due to power and energy constraints. Some of the advancements that have
led to the power efficiency of millimeter-scale systems are starting to be commercialized. In
particular, the development of high performance subthreshold and near-threshold computing
has resulted in an order of magnitude improvement in active power over traditional CMOS
supply voltage techniques [92, 93]. Ambiq Micro has led the commercialization of this
technology, starting with ultra low power real time clocks, and more recently developing
microcontrollers like the Apollo4 that requires only 5µA/MHz. This represents an order of
magnitude improvement over other modern commercial offerings, like the Nordic nRF5340,
which requires 56 µA/MHz [94].

2.4 Summary
Traditional battery-powered wireless sensors cannot provide long lifetimes without sacrificing
size, and upon inevitable battery replacement or sensor retirement, result in significant
battery waste. Modern energy harvesting approaches forgo batteries to achieve indeterminate
lifetimes, but they sacrifice software and hardware design simplicity, provide no guarantees of
availability, and capture significantly less harvestable energy than is available.

Either option is a not entirely satisfactory solution for many classes of applications. Many
applications have quality of service requirements that make a batteryless approach less
amenable than a traditional battery-based one. However, in Section 2.3, we have described
several niches of applications where batteryless designs are an appropriate design choice.
They excel in environments with robust and widespread infrastructure for power transfer or
a reliable source of harvested energy. They are a reasonable option in applications where
the sensing modality can simultaneously be harvested from. Outside of these situations, a
batteryless-based application must relax its requirements for data consistency or availability.
For applications in adversarial environments where any data is better than no data, a
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batteryless design may be appropriate. For any other application without the convenience of
infrastructure or other reliable harvesting source, any quality of service requirements regarding
the frequency, consistency, and availability of collected and reported data necessitate a different
design path. Additionally, any application that cannot justify the design cost of the extra
complexity that a batteryless design requires will require an alternate design approach.

In the next chapter, we make the argument that the distinction between different power
supply classes is a less useful way of thinking about the design space. This thinking delineates
based on the end result of a design, like whether it utilizes energy harvesting, any non-
rechargeable energy storage, or the type and size of rechargeable energy storage. This leads
system designers to begin their design by choosing a power supply type, instead of choosing
a power supply for their application. Since batteryless systems are popular and exciting, this
has resulted in many researchers making the decision to utilize a batteryless design without a
proper analysis of what their end application actually requires. Instead, it is more useful to
reason about an application’s requirements and consider the options for a power supply. A
proper design must determine the quantity of type of energy storage (both rechargeable and
non-rechargeable) and energy harvesting required to meet an application’s requirements. In
the next chapter, we consider the myriad of system-level design options for a wireless power
supply with a focus on determining heuristics for the sizing and inclusion of energy storage
and energy harvesting techniques.
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Chapter 3

Developing System-Level
Power Supply Design Heuristics

Wireless power supplies are the result of a multi-dimensional design space exploration. While
certain design decisions are straightforward, like the choice to use a certain type of harvester
to suit an application environment, some design points are more difficult to determine.
Harvesting and storage technologies are often difficult to directly compare, and it is sometimes
difficult to determine the sizing of these elements in order to satisfy the constraints of an
application. Many times, the type and size of harvesters, batteries, or capacitors are chosen
arbitrarily [9, 75, 95], or are chosen to make the design minimally feasible [2, 7, 11, 55].

The goal of this chapter is to provide high-level guidance for navigating the design space of
wireless sensor power supplies. With the common application requirements from Section 2.3 in
mind, this chapter provides guidance for designers as to when energy harvesting is a beneficial
technique for energy income instead of, or in addition to, a non-rechargeable storage. We
also explore how prospective income and workloads drive component types and sizing, and if
energy-harvesting is utilized, what software and hardware techniques are required to ensure a
feasible design, or what is required to capture sufficient energy to achieve acceptable system
availability. To limit scope of this chapter to be manageable, we focus exclusively on indoor
photovoltaic energy harvesting. Occupied indoor environments are the focus of a significant
amount of prior work, and for good reason: most applications aim to improve the lives of
people and are necessarily present in the spaces they occupy [7, 28, 31, 52, 53, 57, 58, 96–98].
Indoor environments are lit by both natural and artificial light, and may occasionally get
direct or indirect sunlight. Under these conditions, photovoltaic harvesting still offers an order
of magnitude more energy than other methods. However, indoor environments still present
a significantly more challenging and low power design space compared to the outdoor ones.
While we focus on indoor photovoltaic harvesting in this chapter, the conclusions drawn from
the following analyses are still applicable to other environments and harvesting methods.
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3.1 Energy Income
A wireless sensor requires a source of electrical energy to function. Energy-harvesting has
the potential to supply energy indefinitely. However, harvested energy is often variable and
unpredictable, and instantaneous power delivery is limited. Conversely, primary-only systems
have a limited amount of energy, but can use that energy at any rate they please, within
the power limits of the battery. Because of these differences, it can be difficult to directly
compare their performance and determine at what scale and in which conditions harvesting,
energy preallocation, or a hybrid of the two, is the preferable power source strategy for
any given application. This section begins with a description of constraints for properly
sizing components to ensure a sufficient lifetime and energy income. Next, it provides a
method of comparison of energy capture potential between harvesting and preallocation
methods. Finally, the constraints and relations defined and explored in the following section
can be used to estimate proper harvester and primary battery selection to achieve application
requirements.

Sizing

Regardless of how a sensor is powered, it must have sufficient energy at the right times to
continuously and reliably operate. Assuming that the average power required to drive an
application is known at design time, it is relatively straightforward to determine the correct
size of a battery to achieve an expected lifetime, or a photovoltaic panel to achieve an average
power income. Usually battery capacity is expressed as accumulated charge in terms of mAh.
If the nominal voltage of the battery is known, it can be used to estimate lifetime given a
battery’s capacity and intended workload.

Eb = UC (3.1)

P̄b =
UC

T
(3.2)

Equation (3.1) describes the energy contained in a battery with a charge capacity C and a
nominal voltage U . For example, a 1Ah battery with a nominal voltage of 3V would provide
3Wh of energy. Assuming a desired lifetime T , Equation (3.2) describes the maximum
achievable average power supplied by such a battery over that lifetime. Likewise, the average
power provided by a photovoltaic of area A is described by Equation (3.3).

P̄h = ηĒeA (3.3)

Where η denotes the efficiency of the photovoltaic, and is often between 15 and 20%. The
average energetic spectral irradiance, Ēe, is generally between 10 and 100 µW cm−2 for
indoor conditions [2, 99]. Given an average workload power P̄w and a desired lifetime T ,
Equations (3.4) and (3.5) describe the necessary battery capacity and solar cell size.
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C ≥ P̄wT

U
(3.4)

A ≥ ηĒe

P̄w

(3.5)

For some applications, it is obvious when utilizing energy harvesting is a better design
choice over a battery. Such is the case with Zebranet collars [9]. Powering the collar would
require a large and heavy battery, beyond the weight constraints of application, and would
only power the system for 5 days, far below the lifetime goal of a year or more of operation.
In other cases, it is much more difficult to determine which method is appropriate. This is
especially apparent when available harvestable energy is limited, like indoor environments.

Harvesting can Provide More Energy than Preallocation

When potential harvestable energy is limited, it is difficult to determine whether energy
preallocation or harvesting is the most suitable technique. It is very difficult to directly
compare these methods, as the power and energy supplied by either option is dependent on
many factors, including the variance and magnitude of available harvestable energy, the size
of the battery or harvester, and the intended sensor workload. Prior work has attempted to
approach a comparison of preallocated energy storage and energy harvesting by comparing the
expected average power supplied by either option. They simplify the problem by considering
a theoretical cubic sensor of volume V = L3, with the assumption that the entire cubic sensor
volume is dominated by a lithium primary battery, or the entire area of one A = L2 face
is dominated by a photovoltaic panel [2]. The authors compare the power provided by the
battery cube, with that of the photovoltaic square, over the shelf-life of the battery.

For this analysis, Equation (3.1) is not useful for direct comparisons. A more appropriate
method utilizes volumetric energy density. Battery energy capacity (Eb) can be estimated
based on the volume of the battery (V ) and its volumetric energy density (ρ). While ρ
varies depending on the specific battery chemistry, size, and packaging, lithium primary
batteries usually provide on the order of 800mWh/cm3 [78]. The maximum average power
(P̄b) provided by the battery can be calculated with a desired lifetime (T ).

Eb = ρV (3.6)

P̄b =
ρV

T
(3.7)

When considering Equations (3.6) and (3.7), the authors use a more conservative 653mWh/cm3

for ρ, and assume a 7 year lifetime based on shelf-life. They use this lifetime in order to
calculate the maximum power that a primary cell can provide over this period [2]. This
assumption for battery lifetime is very conservative, as it considers a primary battery entirely
empty or unusable after its reported shelf-life. Assuming a static lifetime also ignores the
impact of a sensor’s workload power requirements on battery longevity. Primary battery
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shelf-life is often poorly defined and understood. While some take shelf-life to mean a
battery is expired and not usable after this time, shelf-life actually represents a manufacturer
guarantee that a cell will retain a majority of its capacity over the shelf-life period. A 10
year shelf-life is common for lithium metal primary batteries [100–102]. Energizer claims
that their lithium metal primary batteries experience a self-discharge rate of 1% per year at
room temperature and humidity. This corresponds to 90% remaining capacity at the end of
their listed shelf-life period [102]. A lithium battery can hardly be considered empty after its
shelf-life has expired. A more accurate estimation for battery lifetime is:

T =
ρL3

P̄w + Pl

(3.8)

Where P̄w is the average power required to drive a sensor workload, and Pl is the self-discharge
power of the battery. Any aging effects other than self-discharge are unpredictable and we do
not consider them here. With this new definition of battery lifetime, the comparison of power
is not as useful a metric, as workload power provided by the battery (Pw) is independent of
the battery capacity. The power provided by a battery is technically limited by its maximum
rated load current, which is often related to its capacity. However, this limit is not usually
relevant when considering low power operation.

Conversely, the power provided by an energy harvester is unrelated to the requisite
workload power at all, and is incomparable with that of an on-demand preallocated power
source. Instead of power, the energy provided by a primary cell and the energy captured by
a similarly sized photovoltaic over the course of the lifetime of a primary cell are directly
comparable. The energy captured by a photovoltaic over a time period T is represented
by Equation (3.9). The authors of [2] assume the lower end of irradiance to provide a
conservative estimate, but ignore photovoltaic efficiency η. This results in an overestimation
of harvestable power and energy. This analysis assumes a conservative photovoltaic efficiency
of 17%. Equation (3.9) is a more realistic representation of captured photovoltaic energy.

Eh = ηĒeAT (3.9)

With Equations (3.6) and (3.9), it is possible to calculate the energy contained in a
battery of size L3, the lifetime of that battery given an average workload power Pw, and the
energy captured by a photovoltaic panel of size L2 over the battery lifetime. This is visually
presented in Figure 3.1, an updated energy-harvesting reality check [2]. This figure compares
the preallocated energy provided by a battery with that of the potential harvestable solar
energy over the same time period. Both battery and harvester energy are driven by the same
dimension L. The energy offered by a battery is represented by the blue line, and increases
with L3. This energy, coupled with power requirements of different workloads, define the
lifetime of of the battery (T ). The orange and red lines correspond to the energy captured by
a photovoltaic panel of area L2 over the lifetime of the battery under different workloads. The
two different workloads are represented by the orange (average 25µW) and red (100 µW) lines.
The extents of average indoor photovoltaic harvesting are represented by dashed (10 µW/cm2)
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Figure 3.1: A comparison of preallocated energy and captured energy. Note the logarithmic
y-axis scale. This figure compares the energy offered by a cubic battery with that of potential
harvestable energy captured by a square photovoltaic over the lifetime of the battery. At a
sufficient size and in sufficient harvesting conditions, while powering an appropriate workload,
solar energy-harvesting can provide more energy over the same time frame as a lithium
battery.

and solid (100 µW/cm2) lines. The point at which the harvesting lines (orange, red) cross the
battery line (blue) indicate the size at which a solar panel of size L2 will harvest the same
amount of energy provided by a battery of size L3 over the lifetime (T ) of the battery. These
crossing points also indicate the size at which harvesting collects sufficient average power to
drive its intended workload, approaching energy neutral operation. For appropriate workloads
and lighting conditions, the crossing points suggest that a sensor with a driving dimension
larger than 4 cm will be able to harvest more energy than is contained in a similarly sized
battery for all but the most taxing income and workload scenarios.

The same analysis can be done for designs that scale down in both size and power.
Millimeter-scale systems like the Michigan Micro Mote occupies 1mm2 and requires on the
order of 100s of nW to power its workload [75]. Figure 3.2 is a reconfigured analysis, tuned
for nW workloads and millimeter-scale systems. The same dark blue line represents the
energy preallocated with a lithium battery of size L2. The green lines represent a 100nW
average workload, and the teal lines represent 25nW workload. This figure considers the same
lighting conditions as the previous figure. Like for µW systems, there are sensor sizes where
workloads and lighting conditions result in a sensor that will be able to collect more energy
over time with energy harvesting than can be preallocated with a battery. This reaffirms the
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Figure 3.2: A comparison of preallocated energy and captured energy for nW applications.
This figure is identical to Figure 3.1 except that it considers the nW workloads that character-
ize millimeter-scale systems. A principle node dimension on the order of 1-2mm is generally
sufficient for energy harvesting to collect more energy over a battery, in all but the worst
case: a heavier workload with low harvesting potential.

design decisions made by the designers of many of the millimeter-scale systems, who chose to
utilize energy harvesting to prolong the lifetime beyond that of a non-rechargeable battery.

A Hybrid System Maximizes Energy Capture and Reliability

At the crossing points in Figures 3.1 and 3.2, the benefits of energy harvesting are compounded
when considering that energy capture will continue indefinitely, beyond that of the lifetime of
a battery. However, this energy is not guaranteed to be supplied at times when the system
requires it, even when harvesting supplies enough on average to match that of workload.
This reality has the potential to result in unexpected system outages and system resets. To
ensure that a system always has sufficient energy to operate, a hybrid system can utilize
energy harvesting with a backup preallocated energy storage. This section considers the same
cubic sensor as before, but combines the energy preallocated by the battery and captured by
the photovoltaic panel. A hybrid system can operate even in the absence any ambient or
accumulated harvestable energy. A hybrid system will possess a finite lifetime, but will have
guaranteed reliability during its lifetime. This lifetime primarily depends on the disparity
between its intended workload and the availability of harvestable energy. This disparity can
be expressed by Equation (3.10). If the average power supplied by a photovoltaic harvester
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Figure 3.3: The energy captured by a hybrid system utilizing both harvesting and backup
preallocated energy. This figure uses the same scale and line types as Figure 3.1. The
addition of energy harvesting to a primary cell system has a compounding effect on lifetime
and harvested energy. More harvested energy results in a prolongation of the lifetime of the
primary cell. Subsequently, this lifetime extension results in an increase in harvested energy.
Because of the increased energy and battery lifetime, the crossing points now shift to the left
in the figure, allowing a reduction in volume and area required for a battery and harvester,
respectively.

is sufficient to drive the intended workload, the total power drain, Pt, on the battery is
equal to its self-discharge power, Pl. If the photovoltaic does not harvest sufficient power for
the workload, the battery is drained at an average rate of the difference, plus the battery
self-discharge. Given this new definition of sensor power, the lifetime of its battery now
resembles Equation (3.11).

P̄t =

{
Pl if P̄w < P̄h

P̄w − P̄h + Pl if P̄w ≥ P̄h

(3.10)

T =
ρL3

P̄t

(3.11)

If the amount of average harvestable power is greater than required for a sensor workload,
the lifetime of a hybrid system is compounded. The additional energy captured lengthens the
lifetime of the system, and the longer lifetime allows for additional energy capture. Figure 3.3
explores this relationship visually, using the same workloads, lighting conditions, and visual
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scale and line types as Figure 3.1. The additional energy capture results in the battery line
crossing points shifting to the left, meaning that in a hybrid system a smaller harvester and
battery are required to capture the same amount of energy as that provided by a battery when
compared to a harvester-only system. For a hybrid system, these crossing points represent a
design point that is able to harvest the same amount of energy as it has preallocated, in effect
providing twice the energy as a battery-only system of the same dimensions. As the size of
the system increases beyond the size at which the harvesting lines and battery line cross, the
energy supplied by harvesting begins to approach a vertical asymptote. This represents the
size at which the average income from harvesting is sufficient to power the workload on its
own. When harvesting can sustain the system indefinitely, the backup primary battery is
infrequently or never utilized, and its lifetime is limited by its self discharge. These locations
where the harvesting energy lines approach a vertical asymptote represent the ideal sizing for
a hybrid system given an intended workload and lighting conditions. This ideal sizing results
in a harvester large enough to capture enough average power to results in energy neutrality,
where the system harvests enough energy to sustain its operation.

Limitations

The above analysis is a simplified view of a complex reality. The analysis assumes that a
sensor’s workload and income can be treated as static averages. While it can be argued
that on a timescale of hours to days, a sensor’s workload power can be consolidated into
an average for many applications. The same assumption cannot easily be made for energy
income. For example, lighting conditions are often both diurnal and seasonal, meaning that
a daily or even weekly average income from a photovoltaic will vary significantly over the
course of a day or year depending on the angle and intensity of sunlight, or the occupancy
and activation of artificial lighting.

For simplicity’s sake, the analysis of this section also assumes the whole sensor volume
is available for energy storage, and a whole face is available for energy harvesting. This
assumption breaks down when considering sensors and PCB elements that require substantial
volume, such as a PIR sensor, or a sensor that cannot be covered by a harvesting element,
such as an image or light sensor. However, the relationship to energy capacity and harvesting
capability are directly and linearly related to volume and area respectively. The general
conclusions should hold, even if some percentage of the volume and area of a sensor are
occupied by elements other than energy storage or harvesting.

The above analysis also does not consider the effect of rechargeable energy capacity on
energy income from harvesting. The analysis assumes an ideal rechargeable energy storage
with limitless storage. In reality, energy storage elements are far from limitless or ideal. A
small energy capacity will fill up often, requiring shunting of any additional harvested energy.
By shunting, or wasting this energy, a system with insufficient capacity will effectively reduce
the average energy income power available to it. Sections 3.2 and 3.3 explore the effect of
capacity in further detail.
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The analysis of this section also does not consider the effects of miniaturization, especially
as components approach the scale of millimeters and their packaging begins to dominate
their volume. As batteries reduce in size, the proportion of volume available for energy
storage versus the volume taken by packaging decreases, resulting in less energy density.
This analysis assumes a static energy density for lithium primary cells, when in reality the
density would also decrease as the size of the battery decreases. Similarly, harvesting elements
experience less surface area for the actual harvester versus area required to affix and provide
electrical connections at smaller scales. System designers seeking to build extremely small
devices will have to consider additional factors when considering element sizing. Despite these
limitations, the analysis of this chapter has enough basis to serve as a guiding rule-of-thumb
when considering methods for energy income as well as component sizing requirements for
various applications.

3.2 Harvesting Feasibility and Intermittency
From the previous section, it is obvious that the availability and magnitude of harvestable
energy directly impacts the energy income of an energy harvesting system. Income limits
which and how many operations it can complete and how fast or frequently it can complete
them. What is perhaps not as obvious is that the rechargeable energy capacity used to
capture harvested energy also impacts the overall energy income and ultimately the operation
of the system. The availability and magnitude of harvested power, the size of an energy
buffer, and the intended sensor workload determine whether a design is minimally feasible,
and if so, whether the design will be reliant on software or hardware intermittent techniques
to ensure proper operation. The necessity of the techniques mentioned in Section 2.2 depend
solely on the energy income of a system and how it relates to the design’s efficiency when
idle as well as its energy capacity. This section seeks to illustrate the relationship of income
and storage on the resultant sensor operating regimes.

Design Regimes

Figure 3.4 represents an illustration of a wireless sensor design framework. This framework
splits the design space into four main regimes: Always on, Infeasible, State retention required,
and State retention not required. Additionally, the figure illustrates the conditions in which
hysteresis management techniques are helpful or less helpful. The following sections describe
these regimes and their constraints in more detail.

Always On

If the energy harvester reliably supplies a sensor with more power than the maximum
instantaneous power it will ever draw, then the power supply does not need significant energy
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Figure 3.4: Design space for energy-harvesting sensors based on their energy income (assumed
constantant for this analysis), energy storage capacity, and workload. Workload is represented
by the set of atomic operations required by an application, as well as the deep sleep and
leakage power. The plot breaks into four regions: Always On or effectively powered, Infeasible
due to lack of energy storage or leakage higher than harvesting rate, feasible but Requires
State Retention to make forward progress, and enough energy storage so that State Retention
is Not Required. Additionally, sensors which have high power when they enter deep sleep
before depleting their energy buffer may benefit from Hysteresis Management techniques. This
benefit diminishes with lower sleep currents and higher harvesting potential.

capacity to remain operational. This design point constraint is defined by Equation (3.12).

maxPw ≤ P̄h (3.12)

Where maxPw represents the maximum instantaneous power required by a sensor workload,
and P̄h is the average harvesting income. Additionally, Ph must also have minimum variance
(Var(Ph) ≈ 0), on the order of normal power ripples handled by power supply bypass capacitors.
If the harvesting power has significant variance or frequent outages, then a sensor must have
some ability to buffer energy to use when its instantaneous operating power exceeds that of
the harvester input power. This green region of Figure 3.4 represents design points that have
sufficient income power to be Always on.

Infeasible

If the energy harvester supplies less average power than the system self discharge and leakage,
the system will very infrequently be able to charge its energy buffer. Leakage can exist in a
system via component quiescent currents, energy storage self-discharge, and parasitic current
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paths that are not eliminated when the system is idle or powered off. The constraint on
minimum harvesting income and system leakage is described by Equation (3.13).

P̄h > Pl (3.13)

Where Pl is the total average system leakage in a powered off state. Similarly, if the energy
buffer capacity is less than the energy required to perform a workload’s largest atomic
operation, then that operation will not have enough energy to complete. The total energy
required for a sensor to complete an iteration of its workload can be represented by a the
finite multiset of the energy required for n atomic operations. This multiset is described by
X in Equation (3.14)

X = {ei}ni=0 (3.14)

Each individual ei represents the energy required for a single atomic operation such as
sampling a sensor, sending a radio packet, a processor power on reset, and performing a
checkpoint. The energy capacity (Ecapacity) of a system must be equal to or greater than the
largest atomic operation (maxX). This constraint is described by Equation (3.15).

Ecapacity ≥ maxX (3.15)

Designs that do not satisfy the constraints of Equations (3.13) and (3.15) have insufficient
income to ever power on, or insufficient energy capacity to perform operations and are
therefore infeasible. The red regions of Figure 3.4 represent design points that are Infeasible.

State Retention Required

If the energy capacity of the energy buffer is sufficient to perform the largest atomic operation
as in Equation (3.15), but not enough to complete the entire multiset of atomic operations
in the workload, E, then a mechanism for state preservation is required to ensure forward
progress over power loss and reboots. A design requires state preservation techniques if
Equation (3.16) is satisfied.

maxX ≤ Ecapacity <
∑
e∈X

e (3.16)

In Figure 3.4 the blue region labelled State retention required encompasses designs that satisfy
Equation (3.16) and require state retention techniques to ensure proper operation.

No State Retention Required

A sensor that has a large enough energy buffer to support all of the atomic operations of its
workload, and has sufficient harvesting capability to charge this buffer does not require state
retention methods. All of its workload can be completed with a full energy storage element,
without requiring a reboot and recharge. This constraint is defined by Equation (3.17).

Ecapacity ≥
∑
e∈X

e (3.17)
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Systems satisfying Equation (3.17) exist in the white region of Figure 3.4. In this region,
systems can avoid the complexity of state retention software frameworks, and the energy that
would previously be devoted to performing checkpoints or writing and restoring data to non-
volatile memory can be used toward the workload instead. However, a system that satisfies
Equation (3.17) may still experience intermittent operation depending on the variability of
its energy income and size of its storage. Such systems would occupy the white region of
Figure 3.4 labeled State retention not required.

Hysteresis Management

Hysteresis management is useful for sensors that frequently reboot and must cold start,
recharging their storage element from, or close to, empty. These techniques are particularly
beneficial for frequently restarting systems that have large energy buffers that require signifi-
cant charge and time to provide a sufficient and stable system voltage. Often, intermittent
and batteryless systems are designed to turn off when there is no harvestable energy. Because
of this, they have not optimized the power required to maintain a low power, state retaining
mode. Under these conditions, hysteresis management techniques, such as reconfigurable
capacity [18] and federated energy [7] can decrease the time and energy required to cold start,
increasing sensor performance. These methods can decrease cold start time by reducing the
capacity that must be charged to achieve a cold start and partial system restart.

While a system’s cold start length and frequency are not well represented within the
metrics considered by Figure 3.4, the constraints between a design’s deep sleep power, energy
income, and energy capacity are. A design with average harvestable income (P̄h) less than
what it takes to sustain a low power sleep state (Ps) is better off turning off instead of sleeping.
This constraint is defined by Equation (3.18).

Pl < P̄h ≤ Ps (3.18)

Sensors within this regime will benefit from hysteresis techniques to reduce the amount
of charge and time it takes for them to cold start. They will occupy the purple region in
Figure 3.4 labelled Hysteresis management helpful.

Sensors that are able to harvest more power than it takes to maintain a deep sleep state
will still benefit from hysteresis management if they frequently must cold start, or they have
a lengthy and energy intensive cold start. The utility of hysteresis management is diminished
when the ratio of harvester power to deep sleep power increases and when the energy capacity
of a system increases. More energy and the capacity to hold it reduces the frequency of cold
starts, and capacity has an averaging effect on energy income, providing power when income
is insufficient, and storing in situations of excess. Sensor designs within this region represent
a gradient of diminishing returns on the utility of hysteresis techniques. These designs occupy
the space in Figure 3.4 above the horizontal line for deep sleep power, extending to the point
of sufficient energy capacity for sleeping. This region is represented by a gradient, as the
regime is not as clearly delineated as others as it depends on factors other than harvesting
input power and energy capacity.
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Designs that would not benefit from hysteresis management represent designs with sufficient
energy income and capacity. With enough income and capacity, sensors can willfully enter low
power sleep states for long periods, avoiding powering off and subsequent cold starts. These
sleep states can be managed by the sensor itself, instead of being imposed by the variability
of energy income. When sleeping, deep sleep power becomes analogous to leakage power,
and hysteresis management techniques will not improve recharge times. While it is relatively
straightforward to determine component sizing to achieve proper energy income, as described
in Section 3.1, it is more difficult to determine the proper energy capacity to avoid power
loss and frequent cold starts even with sufficient income. Section 3.3 attempts to identify
and quantify the proper energy capacity that maximizes energy capture and minimizes cold
starts.

Limitations

This framework on feasibility and design regimes makes a few simplifying assumptions to
describe a complex design space. Similar to Section 3.1, The framework assumes a constant
average energy harvesting income, when in reality income is often highly variable. In practice,
a sensor platform defines the regions and limits of the plot, such as the leakage and deep
sleep boundaries. The platform then occupies a vertical line which represents the the range
of harvester input powers it might experience fixed at its designed capacity. By ignoring
variability, the plot also fails to illustrate key benefits of increased capacity under varying
energy incomes and workloads. Intuitively, a large capacity can store energy in times of
excess and supply that energy in times of drought. This balancing out of energy income
effectively increases the average power supplied by the energy harvester, up to the theoretical
maximum available to be harvested. The extent of this impact is completely dependent on
the variability of the energy income and workload of the sensor. In the following Section 3.3,
the performance impact as related to capacity is examined more closely.

This framework also does not consider the impact of a backup energy store. A backup
energy store can be viewed as the ability to inject additional energy to the system at arbitrary
times, eliminating the need for state retention when there is very low harvesting potential. A
backup energy store could also contribute in more subtle ways. It could allow a system to avoid
the energy and complexity of state retention by providing just enough energy for a deep sleep
mode with state retention rather than a full power down when the system depletes its stored
energy. It could also cold start energy buffer charging to eliminate the need for reconfigurable
or federated power supplies, or to increase the efficiency of the energy-harvesting front-end at
low voltages. While the use of a backup energy store does constrain the sensor to a finite
lifetime, as discussed in Section 3.1, energy-harvesting can substantially extend these lifetimes
under certain harvesting conditions.
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Figure 3.5: The continuum of the efficacy of energy storage technologies for averaging and
filtering power at different temporal scales. Small energy buffers filter out high frequency
power supply noise and spikes, while larger energy capacities filter out power variance on
larger temporal scales.

3.3 A Case for Capacity
There are currently many approaches to determining the energy capacity for energy harvesting
sensor designs. Many batteryless systems that expect frequent restarts size their energy
storage to meet minimum design feasibility and to minimize charging hysteresis. They size
their energy storage to support the largest atomic operation required by their application, as
described by Equation (3.15). For example, the sensors developed for the aforementioned
deployment at Mithræum of Circus Maximus have energy storage sized to provide enough
instantaneous energy to ensure the completion of a few atomic operations and subsequent
forward progress [11]. Other platforms also adopt this approach for sizing: Both the previously
mentioned cathodic protection system and Camaroptera size their supercapacitor bank to
support sending a single atomic LoRa radio packet [12, 56], SkinnyPower sizes its capacitor to
provide enough energy for the boot cycle of its SoC [59], and the Flicker platform’s federated
capacitors are all sized to support predefined atomic operations for its peripherals [7]. Similarly,
one-shot batteryless platforms size their energy buffer to support the entirety of their small
workload [2, 3, 55, 63].

Other more traditional energy harvesting systems size their energy buffer to support
an arbitrary amount of runtime without harvestable energy. The Pible platform uses a
supercapacitor that allows 2 hours of BLE advertizing at a 100ms period, but employs a
dynamic power management technique to scale back advertising frequency when available
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Irradiance Trace Total Days Average Irradiance 90th Percentile Daily 10th Percentile Daily
EnHANTS A 393 15.1 25.0 5.2
EnHANTS B 375 14.9 26.0 0.80
EnHANTS C 310 746 1610 176
EnHANTS D 326 97.5 256.5 24.8

Table 3.1: Summary statistics for the indoor photovoltaic irradiance traces from the EnHANTs
dataset [99]. Irradiance is expressed in units of µW/cm2.

energy is low [57]. The ZebraNet collar has enough battery energy capacity to support five days
of operation without harvestable energy [9]. This approach is also taken by millimeter-scale
systems. The M3 platform has allocated enough energy storage to persist for just over two
days in sleep mode [75]. The energy capacity allocated by all of these examples is arbitrarily
chosen. In cases like the ZebraNet collar and the M3 platform, physical size constraints likely
drive the limits of energy capacity. However, no consideration or analysis is given regarding
the consequence of the chosen energy capacity. Like energy income or the size of preallocated
energy, the sizing of capacity of an energy buffer must be considered in a principled manner.

The proper capacity of a charge buffer for a given purpose exists on a continuum of how
it averages or filters temporal power variation. We illustrate this continuum in Figure 3.5.
In electrical circuits, the buffer provided by capacitors generally acts as a low pass filter of
incoming and outgoing power, averaging out noise, ripples, and general supply variation. As a
capacitor or other type of charge buffer increases in capacity, it smooths out larger and larger
temporal power variations. For example, smaller capacitors are generally used for filtering out
noise, slightly larger capacitors are used to stabilize and smooth out power supply ripple, and
large capacitors can be used to provide a rush of instantaneous power to circuits when needed.
The capacity of a supercapacitor energy buffer increases the timescale of averaging variance
in power income to hours to days, depending on its capacitance. Rechargeable batteries offer
even greater energy density and can smooth out energy income variation over the course of
weeks, months, and seasons.

By making arbitrary choices regarding the size of energy capacity, system designers may
be impacting the efficiency of their energy harvesting and ultimately the performance of
their system. This section seeks to identify the relationships between energy capacity, sensor
workload, and potential energy income. By understanding these relationships, future system
designers can determine suitable energy capacity analytically instead of arbitrarily.

Defining an Energy Harvesting Income

Conversely, photovoltaic energy harvesting can differ significantly over the course of a day, a
week, or even a year. To accurately consider the effects of capacity on energy capture, the
full trace of income power must be considered, not simply an average. For a photovoltaic,
this potential income power is dependent on the time series of energetic spectral irradiance,
Ee, the photovoltaic efficiency η, and panel area A. The irradiance trace Ee is described by
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Figure 3.6: Each of the four irradiance traces from the EnHANTs dataset represent different
lighting and environmental conditions. Here, each trace is min-max normalized to illustrate
their individual temporal variance. Setup A, B, and D measure irradiance in a student’s
office. Setup A is located near a south facing window and receives some sunlight. Setup B is
located at a bookshelf, and is largely occluded from sunlight. Setup D is located near a west
facing window and receives significant sunlight during part of the year. Setup C measures
irradiance in a conference room and gets significant sunlight from a north facing window.
The blue line is the raw irradiance for each trace, while the orange line is a moving average
of the irradiance with a day-length window.

Equation (3.19), and the resulting trace of power available to a harvesting system based on
this irradiance is given by Equation (3.20).

Ee = (et)
T
t=0 (3.19)

pt = (ηetA)et∈Ee

Ph = (pt)
T
t=0

(3.20)

The temporal variance of energy income directly impacts the amount of capacity required.
For example, natural light varies significantly both diurnally as well as seasonally over the
course of a year. Energy capacity must be large enough to capture energy during daytime and
summer, so that it can supply it during nighttime and winter, respectively. It is important
to utilize a realistic energy income trace for Ph to properly capture the effect of temporal
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variance. This section utilizes the irradiance traces from the EnHANTS indoor irradiance
dataset [99]. The EnHANTs dataset remains the most complete and extensive dataset for
indoor light irradiance traces, capturing over a year of data in several environments. The
four longest running traces are summarized in Table 3.1 and Figure 3.6. In Figure 3.6 all
irradiance traces have been min-max normalized to show the characteristics of each trace.
Artificial light accounts for the majority of income for Setup A and B. The irradiance for
Setup B is very clearly almost all artificial light, as it consists of a pattern of five weekdays
of artificial lighting followed by two weekend days with very little light when humans are
not present. Conversely, traces C and D have significant income from sunlight that follows a
seasonal pattern throughout the year. This indicates that A and B mostly follow a diurnal
pattern, while C and D are simultaneously diurnal and seasonal. These traces exhibit different
variances, which will impact the necessary capacity required to support a given workload. To
isolate the impact of the variance of energy income, as well as the magnitude of the income,
we synthesize income traces with arbitrary average power from mean-scaled EnHANTs traces.
The traces are divided by their mean to achieve a mean of one, and then scaled by the
multiplication of any average power. This allows us to generate synthetic traces with different
intensities while maintaining the characteristics of each trace, resulting in an analysis with
higher granularity.

Defining a Workload

A sensor workload can be represented as the time series of instantaneous powers over a time
period T , as described by Equation (3.21).

Pw = (wt)
T
t=0 (3.21)

The time series of required power for a system can be measured or it can be estimated
if the sensor behavior is predictable and the power and duration of operations are known.
A simplifying assumption is to reduce the workload trace to an average workload power,
W̄ = 1

T

∑T
t=0wt. For many workloads, a time scale of a few hours to a day is sufficient to

calculate an average workload power assuming periodic behavior occurring within the time
period, or for an application that reacts to events, the probability distribution of those events
is well described by that time period.

Determining Capacity

To determine the ideal amount of energy capacity for a given sensor application, the relationship
between energy capacity and energy income must be understood. As mentioned previously,
energy capacity acts similar to a moving average over energy income. With sufficient capacity,
energy is stored in times of excess harvestable energy, and provided in times of insufficient
energy. At some point, a design can allocate enough capacity to effectively treat its energy
income as an average, even if it is highly variable. While the operation is similar to a moving
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average, it is not exactly, as real energy storage has limits when full or empty. This section
seeks to explore this relationship with the goal of developing guidance and methods for making
design decisions regarding energy capacity.

The ideal energy capacity for a given application depends on the expected harvesting
environment for the application, as well as the intended sensor workload of the application.
Energy harvesting income and a sensor’s workload can both be represented by a time sequence
of instantaneous power across a period T . The sequences for workload and energy income
are defined by Equations (3.20) and (3.21), respectively. Given these traces of workload and
income power, the trace of cumulative energy stored by an energy buffer (Y = (yt)

T
t=0) is

defined by Equation (3.22). The initial condition y0 assumes the buffer starts empty, which
is realistic for capacitor-sized energy buffers, but a very conservative assumption for larger
buffers.

y0 =


0 if pt − wt < 0

(pt − wt)∆t if pt − wt > 0

Ecapacity if (pt − wt)∆t > Ecapacity

yt =


0 if yt−1 + (pt − wt)∆t < 0

yt−1 + (pt − wt)∆t if yt−1 + (pt − wt)∆t > 0

Ecapacity if yt−1 + (pt − wt)∆t > Ecapacity

(3.22)

This relation is essentially a capped sum over the difference of instantaneous income and
workload powers. The amount of energy stored in the buffer is limited to values between
zero and the maximum capacity of the buffer. We assume the energy buffer starts empty.
While systems with large energy capacities are normally deployed with fully or partially
charged buffers, for later analysis using these relations, starting empty will produce a more
accurate estimation of required energy capacity over long periods of time. For simplicity, the
∆t between each element of Ph and Pw can be assumed to be one second. This simplifies
future calculations for energy. Also, as mentioned previously, wt is replaced by the average of
the workload sequence P̄w.

The key metric of interest given the trace of stored energy, Y = (yt)
T
t=0, is the amount

of available energy income that was captured by the energy buffer. Given that the average
income power is equal to the average workload power for this analysis, capturing all of the
available energy also indicates enough energy was captured to run the workload continuously.
Insufficient capacity will fill up prematurely and be unable to capture any additional energy.
Capacity, if too small, can severely limit the total energy captured by an energy harvesting
system. The trace of instantaneous energy captured by an energy buffer is represented by the
sequence Z = (zt)

T
t=0, and each element zt is defined by Equation (3.23). The total energy

captured by an energy harvesting system over a time period T is represented by the sum
of the elements in Z, defined in Equation (3.24). At any given time, the energy captured
depends on whether the energy storage is full or not. If the storage is not full, the entire ptδt
is captured. If nearly full, only a part of the available energy is captured.
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zt =

{
pt∆t if yt + (pt − wt)∆t ≤ Ecapacity

Ecapacity − yt if yt + (pt − wt)∆t > Ecapacity

(3.23)

Ecaptured =
T∑
t=0

zt (3.24)

Due to the conditional and iterative nature of the elements of the capacity sequence (Y )
and captured sequence (Z), there is no way to directly solve for Ecapacity. Instead, we
can use Equations (3.22) and (3.23) to perform a parameter sweep of average workload
power, income power magnitude, and capacity. To simplify the sweep, we assume that the
sensor workload has been tailored to match the expected income, such that the average
workload power is equivalent to the average energy income (P̄w = P̄h). This is a conservative
assumption, as it is usually beneficial to tailor the workload to require less average power
than its income. This provides a margin to ensure performance even if energy income is worse
than expected. However, for this analysis a conservative estimate is ideal. We explore the
impact of considering income margins in Section 3.3.

To determine a minimum sufficient capacity, we are essentially sweeping two variables:
capacity and average power. One of the sweeps of capacity is illustrated in Figure 3.7. This
figure has a fixed income and workload power of 50µW, but capacity is varied from capacity
offered by a ceramic capacitor to that of a small rechargeable battery. As capacity available to
the system increases, the amount of harvestable energy also increases. There are two instances
where the percentage of energy captured increases rapidly. The first occurs around a capacity
of 1mWh, which represents sufficient capacity to overcome diurnal variation. All trace types
experience a substantial increase at this point, as they all exhibit diurnal variation. The
second rapid increase, which occurs around 100mWh, represents the sufficient capacity to
overcome seasonal variation, which Setups C and D exhibit. Setup A also has some seasonal
variation, but to a lesser extent. Setup B does not exhibit the same second rapid increase as
it does not vary substantially between seasons. For this specific income power and workload,
Setup C and D require on the order of 100mWh to capture all the available energy to power
a 50 µW workload continuously. Setup A and B require on the order of 20-40mWh.

The amount of capacity that is sufficient to capture 100% varies not only on the income
variation but also on the relative magnitude of the workload and income power. As the
sensor’s power requirements and income increase, its capacity requirement to achieve the
same performance also increases. The parameter sweep resulting from varying both capacity
and power results in a multitude of curves like those shown in Figure 3.7. For each of these
curves, we can identify the points at which capacity is sufficient for 100% energy capture for a
given power. Figure 3.8 shows the minimum capacity required to capture all of the available
harvestable energy versus the magnitude of income and workload power. This is also the
necessary amount of energy required (when averaged over the period of the trace) to power the
workload continuously, because the average workload power is equal to the average harvestable
power. From this analysis, we find that the relationship between minimum sufficient capacity
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Figure 3.7: The percentage of energy captured to satisfy a workload vs a sweep of capacity.
This figure assumes a 50 µW average income and workload. Note the x-axis log scale. Capacity
ranges from the order of energy capacity offered by a small 100µF capacitor, to the capacity
offered by a small 100mAh battery.

and the magnitude of workload and income power is linear, assuming the same energy income
variability. Traces synthesized from Setup C and D have nearly identical minimum capacity
requirements across a sweep of workload power. These traces also require the more energy
capacity than traces A and B as they have more seasonal variability. Out of all the income
traces, those synthesized from Setup B require an order of magnitude less energy capacity
compared to Setup C and D. Traces synthesized from Setup A require amounts of energy
capacity in between that of B and C or D. Energy harvesting applications that can expect an
amount of natural light should size their rechargeable capacity according to either the Setup
C or D lines. Such an application would have to scale its capacity by at least 2.3× 103 times
the expected magnitude of the income and workload power. For indoor applications that
expect to harvest the majority of light from artificial sources, capacity can be sized according
to the Setup A and B lines, to be at least 4× 102 to 1× 103 times the magnitude of income
and workload power. This result is a significantly more reasoned heuristic for determining
the minimum sufficient rechargeable energy capacity than other methods, like sizing capacity
to support a single atomic operation in a workload, or sizing to support arbitrary amounts of
operating time.
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Figure 3.8: The minimum sufficient capacity to support an average workload power, assuming
an identical average income power. Note the x- and y-axis log scale. The average workload
and income power are set equal; however the variability of income power is determined by
the synthetic EnHANTs traces. The minimum sufficient capacity follows a linear trend with
increasing income and workload power. Even though each line appears parallel, lines that are
higher up on the y-axis actually have a larger slope due to the log-log scale.

The Impact of Income Safety Margin on Sufficient Capacity

Throughout this section, we have assumed that the average workload power was equivalent
to the average income power. This is a very conservative assumption, and engineers rarely
design systems that operate on the edge of feasibility. Usually, systems are over-provisioned
to allow for a margin of error, usually between 20-50%. For energy harvesting, this would
represent altering a workload to require less than the expected available harvestable power,
increasing the size of the harvester, or deploying in a location with more ambient harvestable
energy. In Figure 3.9, we model the impact of an income safety margin on the required
capacity to capture sufficient energy. We utilize the Setup D EnHANTs trace as it represents
the worst case seasonal light distribution out of all of the traces. Figure 3.9 presents required
capacity for multiple sweeps of workload power under different safety margins. The different
sweeps consider different safety margins of income power, from no margin to a 300% margin.
No margin indicates that the average workload power is equal to the average income power,
while an 300% margin indicates the income power is 4× the amount required by the workload,
on average1. As expected, when a workload requires less energy than is available to harvest,

1A safety margin is calculated as a percent difference, 100× Income−Workload
Workload
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Figure 3.9: The impact of workload margin on the minimum sufficient capacity. Traces
synthesized from Setup D are considered, and are scaled by an income power. Six different
workload margins are considered. The zero margin corresponds to the workload power being
equal to the average income power. The 0.2 margin represents the workload power requiring
80% the power provided by the average income, for example. As the margin increases, the
ratio of the average workload power to the income power decreases. With a higher margin
there is less energy that must be captured to satisfy the workload and the minimum sufficient
capacity decreases.

it requires less energy capacity to harvest that energy. With a 25% margin, where the income
provides 1.2× the average required workload power, a design that can expect an energy
income with a similar distribution to the Setup D trace will require a capacity scaled by
2.3× 103 multiplied by the average workload power.

Limitations

The analytical model presented in Equation (3.22) is simple and assumes a perfect energy buffer.
In reality, energy storage technologies are imperfect. They feature less than perfect efficiency;
they leak and have parasitic internal impedance. The efficiency of an energy harvesting front
end is also more complex than presented in this section. Beyond the efficiency of a harvester,
the DC-DC regulation of a harvesting IC does not provide 100% efficiency. Any further
system voltage regulation has similar limits to efficiency. All of these imperfections result in
energy loss and prevent a perfect capture of all available harvestable energy. Workload is also
assumed to be a constant average power. In reality, a workload can be variable depending on



CHAPTER 3. DEVELOPING SYSTEM-LEVEL DESIGN HEURISTICS 58

an application’s reporting requirements or the probability distribution of detectable events.
This section makes the argument that the variability of a workload is sufficiently less than the
variability of income, to the point that workload can be treated as an average in comparison.
This assumption is reasonable for many workloads that do not exhibit long term variation but
does not apply to all possible sensor workloads. Additionally, this analysis did not consider
the effect of a backup non-rechargeable energy store. As seen in Section 3.1, the addition of
a non-rechargeable backup can result in significant increases in the lifetime of a system while
maintaining operation with high availability.

3.4 Summary
In this chapter, we present analytical methods for considering the design space of an energy
harvesting wireless sensor power supply. We present heuristics for determining the proper
sizing of non-rechargeable battery storage and photovoltaic harvesters, and we provide a
framework for considering the use of either option for powering sensors, or a hybrid solution of
both preallocation and harvesting. For energy harvesting sensors, they may require batteryless
and intermittent techniques to ensure feasibility and forward progress. The requirement for
intermittent techniques is solely dependent on energy income and rechargeable energy storage,
and they are avoidable by properly sizing a harvester and energy storage. We also present a
simple model for energy capacity and analysis that indicates that the size of rechargeable
capacity in energy harvesting systems directly impacts the amount of energy that is actually
captured by a system. The end result of the analysis of this chapter is a reasoned heuristic
for determining appropriate rechargeable capacity sizing for a system based on its income
and workload that is superior to arbitrary methods used by other platform designs.

The next chapter seeks to expand upon the iterative model of capacity presented in
Section 3.3 by developing an energy simulation for wireless sensors. It will seek to address
the three previously mentioned limitations by modelling energy income and storage more
realistically, modelling sensor workload more dynamically, and consider the impact of non-
rechargeable backup energy.



59

Chapter 4

A Simulation-based
Exploration of Capacity

In the previous chapter, we presented a simple model for energy capacity and explored
the effect of capacity on the energy captured by a system. We utilized synthesized energy
harvesting traces from an existing irradiance trace dataset, however we simplified the analysis
by assuming a static average workload power. This chapter will explore expanding our model
to an energy state simulator for wireless sensors. This simulator will utilize several different
dynamic workloads based on benchmarks of real hardware, as well as considering a wireless
sensor state machine that better models the behavior of a real sensor. The rest of the chapter
is an analysis of the performance of these simulated wireless sensor workloads under measured
harvesting conditions.

4.1 Upgrading Our Model
In Section 3.3, we argued that a sensor workload, which is often periodic or event driven,
does not vary significantly beyond a few hours to a day of operation when compared to the
variability of energy harvesting income. To verify this assumption and expand our analysis of
capacity, we seek to to explore the dynamic effects that energy capacity and backup storage
have on sensor performance in the face of workload variability. We use representative energy
harvesting traces, measurements of real hardware, and synthesized dynamic workloads in a
new model based on a simple wireless sensor state machine. We use this model to simulate
the behavior of energy harvesting sensors. From the input traces of workload and energy
harvesting income, our model produces estimates of sensor energy utilization, availability,
responsiveness, and lifetime.
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Irradiance Trace Total Days Average Power
(µW/cm2)

90th Percentile
Daily Power
(µW/cm2)

10th Percentile
Daily Power
(µW/cm2)

EnHANTs A 394 15.1 25.0 5.2
EnHANTs D 311 97.4 256.5 24.8

(a) Indoor photovoltaic irradiance traces

Workload Class Energy per Event (uJ) Average Period Average Power (µW) a

Periodic 586

10 s 58.6
30 s 24.5
60 s 14.7
120 s 9.8

Reactive 86
3.4 s b 25.3
6.8 s b 17.6
13.6 s b 11.3

Long-Running 93,300 2weeks c 5.1

(b) Representative workloads

a Average power includes an average 5µW idle power, measured in Section 6.1.
b Event times are based on a Poisson distribution for each hour of the day and drawn every second.
The distribution is parameterized by collected entryway data then scaled.
c Event time is based on a uniform distribution and drawn every second.

Table 4.1: Representative harvesting conditions and workloads. To evaluate different energy
harvesting storage techniques, we define a set of energy harvesting conditions and workloads
that are representative of common sensing applications. We choose two real irradiance traces
with different magnitudes and distributions of available energy. These traces are summarized
in Table 4.1a. We define three workloads: periodic, reactive, and long-running, and we
characterize those workloads for different event frequencies. The energy used for each event
is measured on our reference hardware described in Section 6.1. Statistics for the three
workloads are described in Table 4.1b.
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Energy Harvesting Income

As in Section 3.3, we utilize the EnHANTs irradiance trace dataset as energy income for our
simulation. Unlike our previous analysis, we do not use synthesized traces, and instead utilize
the traces directly. We choose to narrow our focus to two of the traces that we think most
accurately represent indoor lighting conditions: Setup A and Setup D. As shown in Figure 3.6,
Setup A represents a location that receives some sunlight but is mostly lit by artificial sources
while Setup D represents a location near a window that receives significant light during part
of the year. Beyond Figure 3.6, these traces are summarized in Table 4.1. On average, Setup
A provides an average of 15.1µW/cm2 which is on the lower end of expected irradiance in
indoor environments. Setup D represents the higher end of indoor irradiance with an average
97.4µW/cm2.

Representative Hardware

We limit our analysis to the effects of capacity, independent of the differences of energy intensity
or efficiency in device component selection. To do so, we define an example photovoltaic
energy harvesting sensor platform that utilizes currently available commercial components.
These components are listed in Table 4.2. We choose new components in an attempt to better
represent prior energy storage designs and give them the benefit of the improvements that
have occurred in recent years. We take benchmark measurements of various tasks performed
by this representative platform, such as the amount of time and energy required to sample
a sensor or send a Bluetooth Low Energy (BLE) packet. These benchmarks are used to
generate energy utilization metrics for our representative workloads shown in Table 4.1. The
physical size of the solar panel used by this sensor is assumed to be 10.9 cm2 and the volume
of the sensor node is similar to prior work like the Hamilton sensor [103].

Representative Workloads

We find that sensing workloads generally fall into three categories: (i) periodic sense-and-
send [8], (ii) reactive event detection [11, 63], and (iii) infrequent, long-running, high-energy
events [104]. All of these workloads are characterized by long periods in which a sensor is
inactive, punctuated by active events, which may be periodic or drawn from a probability
distribution. These active events may correspond to collecting a measurement from a sensor,
performing some computation, and transmitting the results. We choose a representative
workload for each of the three categories to use in our model. We characterize our “periodic
sense-and-send” workload as periodically sampling a light and three channel color sensor
and sending a BLE advertisement containing the data. Our “reactive workload” consists of
sending a BLE advertisement upon motion detection of the main entrance of a university
building, and we linearly scale the frequency of these events to create synthetic traces with
varying amounts of usage. We treat these workloads as atomic. When a measurement is
taken or a packet is sent in response to a periodic schedule or a detected event, the energy
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Component Function Active Power Idle Power

Nordic NRF52840 Processor 56 µA/MHz 940 nA a

Radio 5.2mA @ 0dbm — a

Ambiq AB1815-T3 Real time clock 55 nA N/A b

ST Micro LIS2DW12 Accelerometer 1 uA @ 12.5Hz 50 nA
Maxim MAX44009 Light sensor 650 nA N/A b

Intersil ISL29125 Color sensor 56 µA 500 nA
Silicon Labs SI7021 Humidty sensor 1.5µA @ 1Hz 60 nA
TE Connectivity MS5637 Pressure sensor 0.6 - 5µA @ 1Hz 10 nA
Panasonic EKMB11011 PIR Occupancy 100µA 1uA

a Sleep current for both processor and radio. b No shutdown or idle mode.

Table 4.2: The components used by our representative hardware. Benchmarks of the processor,
radio, and sensors presented here are used to establish our representative workloads used by
our wireless sensor energy simulation. These components are among the lowest power options
available, and are even 2-4x lower power than those used on relatively recent systems [7, 18,
31].

spent on those operations must be spent instantaneously and atomically. This means a
sensor must currently have sufficient energy stored to complete the operation, otherwise the
event is considered “missed” and counted against the availability of the system. Finally, our
“infrequent expensive” workload is a contiguous task that is representative of an over-the-air
firmware update, which is randomly executed with an average occurrence rate of once every
two weeks. We optimistically assume this long running task can be interrupted and resumed
at any point during execution and that any checkpointing does not incur any overhead.

4.2 An Energy Model for Wireless Sensors
We use the previously discussed indoor irradiance traces, generalized workloads, and hardware
characterizations to model the behavior of sensors using different types and sizes of energy
storage. We develop an open source1 iterative simulator that allows parameterization of
various system characteristics, including regulator efficiency, solar harvester size and efficiency,
energy storage capacity, leakage, equivalent series resistance (ESR), and charge-discharge
efficiency. A subset of these parameters are summarized in Table 4.3.

The simulation of our model operates as a second-by-second calculation of the energy
entering and exiting a device, similar to the model presented in Section 3.3. At every step,
the simulation calculates the net energy gain or loss of the system based on its current state,
the instantaneous harvestable energy, and available stored energy. Occasionally, the model
performs a workload event based on either a periodic schedule (in the case of a sense-and-send

1https://github.com/lab11/permamote/tree/master/simulator

https://github.com/lab11/permamote/tree/master/simulator
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Config Type Parameter Description
Device operating_voltage Output voltage of the power subsystem

boost_efficiency Efficiency of the boost converter
frontend_efficiency Efficiency of the harvesting frontend

Secondary capacity Capacity of secondary in joules or mAh
esr Equivalent series resistance in ohms
leakage_constant Factor for capacity dependent leakage
{max, min}_hyst Secondary capacity upper/lower hysteresis

Primary capacity Capacity of primary in mAh
leakage_percent Percent capacity leakage per year

Harvester area Area of solar harvester in cm2

(Solar) efficiency Efficiency of solar panel

Table 4.3: Simulation configuration parameters. A subset of available configuration options
for the sensor energy simulation. Simulated sensors can be configured to use secondary storage
and an energy harvester, a primary-cell, or both. A secondary-cell can be configured with a
hysteresis, with a lower bound set to min_hyst and an upper bound of max_hyst.

workload) or from a random distribution (reactive event detection or a high-energy event).
For our modeling, workload schedules are generated from values listed in Table 4.1. This
simulation is performed for the entirety of an input irradiance trace, which constitutes about a
year of data. During a simulation, metrics such as energy utilization, the fraction of completed
events versus expected events, and event time to completion are collected, and if applicable,
the primary-cell lifetime is estimated from a calculation of the net difference in energy in the
system from the start to the end of the simulation, if negative.

During simulation, modeled devices can be online or offline and idle or performing work.
These states are shown in Figure 4.1. A device’s state transitions from top to bottom of
this figure and vice versa depending on the energy state of the secondary storage. If the
secondary-cell energy state drops below min_hyst, the state of the system moves to the upper
half (offline) of this diagram. The state of the system moves downward (online) if the state
of charge of the secondary reaches the max_hyst limit. Secondary charging hysteresis limits
are defined by parameters described in Table 4.3. A device’s state can also move to the
right or left of the state machine depending on whether a workload event is scheduled, or the
prescribed workload has been completed. A new workload event is counted as failed if the
device is not in the Online Idle state when it begins. In the case of the “atomic” sense-and-send
and reactive workloads, the modeled device will only begin to perform an expected workload
event if it has enough energy to perform the event in entirety. If the workload is not atomic,
the device will only begin scheduled work if it has enough energy to make the configured
minimum amount of progress. We make an assumption that the duration of atomic events are
less than the one second simulation step. We also assume that a modeled sensor has perfect,
zero-energy progress latching and can go to sleep at any point after an active event. If there
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Offline Idle
Primary Idle

Offline Working
Primary Working

< min hyst≥ max hyst

work completed

work scheduled

< max hyst < max hyst

work completed

work scheduled

Online Working

≥ min hyst

Online Idle

≥ min hyst
(no work)

< min hyst≥ max hyst

Figure 4.1: Model state machine. A modeled device can be in one of four states: Offline Idle,
Online Idle, Online Working, and Offline Working. When a device is Offline Idle, it has run out
of energy and is off. If a device is Online Idle, it is on and in deep sleep, ready to perform
work if triggered. If triggered, a device moves to Online Working, where it performs a portion
of a work event. If a workload is atomic, workload events must be completed in one Online
Working step, without any transitions to an offline state. Offline Working means that while
working on a non-atomic task, the device ran out of energy, checkpointed, and is waiting to
harvest more and resume its task. For devices configured with a primary-cell, Offline Idle
and Offline Working become Primary Idle and Primary Working respectively. In these states,
outgoing energy is charged against the primary-cell and the device remains online and able
to perform work for the life of the primary-cell.
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is energy remaining after performing a task, the modeled sensor will attempt to spend the
rest of the simulation period in the Online Idle state.

If the simulated device is configured with a backup primary-cell, offline states transform
to “primary” states in which the device remains on and able to perform work, but charges
energy usage to the primary storage instead of the secondary. During these periods, the
secondary cell continues charging from harvested energy. Upon reaching the upper charging
hysteresis limit, the device returns to an online state, using energy stored in the secondary.
If the primary storage is depleted, the simulation ends early.

4.3 Capacity Increases Energy Capture and Availability
Using our simulator, we can confirm that the conclusions from Section 3.3 regarding the
relationship between energy capacity and energy capture. An increase in sensor energy
capacity results in an increase in the capture of energy during periods of abundant harvestable
energy. This additional energy has the effect of increasing the availability of the sensor, as
the buffer serves to average out times of energy insufficiency and excess. Higher The next
few subsections explore the effect of capacity on energy utilization and sensor availability.

Ambient Energy Utilization

Ambient energy is underutilized when it is not used to support the specified sensing application.
This may happen for two reasons: 1) the secondary energy storage is full but energy is still
available for harvesting, and 2) the sensor performs work based on its energy state rather than
its application goals. The first scenario is common for energy harvesting systems presented
in prior work that charge up a capacitor and wait for an event before sensing and sending,
failing to capture all energy that may have been harvested while their capacitor was full [11,
63]. For an example of the second scenario, consider opportunistic batteryless systems that
transmit a packet every time their energy storage capacitor is full rather than saving this
energy for use during periods of lower harvesting potential [7, 18]. Another example of this
are sensors in which the harvesting rate is proportional to the sensed phenomena [55].

To explore ambient energy utilization as a function of storage size, we use our simulation
of the charge-discharge patterns of idealized energy stores under the harvesting conditions
and workloads described in Section 4.1. We perform multiple simulation runs while sweeping
energy storage capacity and measuring the amount of harvestable energy captured and used
by the intended workload. We desire to isolate the effect of capacity from the type of storage,
so the idealized energy storage is assumed to have no leakage or ESR. This modeling is
primarily accounting for our first classification of wasted energy, since our workload definitions
do not perform tasks in response to available energy; instead they attempt to maximize
the success rates for the specified sensing tasks. The results of this modeling are shown in
Figure 4.2. The x-axis of Figure 4.2 is split by energy capacities possible with capacitors,
supercapacitors, and batteries. The upper extents of capacity for capacitors represents ten
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Figure 4.2: Ambient energy utilization as a function of idealized secondary storage capacity
for different harvesting scenarios and workloads. The harvesting scenarios and workloads
are described in Table 4.1. Figure 4.2a represents the energy utilized by a periodic sense
and send application, while Figure 4.2b is the energy utilized by a event-driven application.
Despite these two workloads exhibiting different event distributions and variance, the overall
energy utilization follows the same trend with energy capacity. As energy storage increases,
the harvestable energy used in the application also increases. Some scenarios, such as the
periodic 30 s, 15.1µW/cm2 case, reach 100% utilization at sufficient secondary capacities
indicating that all of the available energy is captured and may not be enough to meet the
application’s requirements. Generally, for both workloads and irradiance traces, from the
smallest to largest capacity simulated, we see a 1.4-2.3x increase in utilized energy.
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100µF tantalum capacitors [105]. For supercapacitors, the extent is represented by one large
220mF supercapacitor [106]. These delineations are not hard partitions, as capacitors and
supercapacitors have a wide range of capacities and the capacities offered can overlap in some
configurations.

Regardless of the amount of available energy or the workload considered, energy utilization
increases as buffer energy capacity increases. For scenarios with low harvesting potential
and high power workloads, a sensor with at least 1–10mWh of storage can accomplish
100% utilization. In cases of high harvesting potential and low power workloads, utilization
often stops increasing before reaching 100%. This can be attributed to a small fraction of
the available energy being sufficient to fully support the sensing task. For the low light,
15µW/cm2, environment, a few of the workloads are eventually able to harvest 100% of the
available light as capacity increases. This indicates that the sensor performance is bounded
by available harvestable energy, which is not enough to sustain the workload. Conversely,
in the high light 97 µW/cm2 environment, regardless of the workload, the simulated sensors
are not harvesting all or even the majority of the available energy. This indicates they are
harvesting as much as needed to power their workload.

In most cases, energy utilization for a workload is maximized with the energy capacity
offered by small batteries or very large supercapacitors (>1F). A system configured with
ceramic or tantalum capacitors will be unable to fully utilize available harvestable energy,
resulting not only in unreliable energy, but also less energy. A capacitor-based batteryless
system will simply harvest less overall energy than a supercapacitor or battery counterpart.

Workload Availability

The amount of captured energy directly impacts the capability of an energy harvesting sensor.
With more captured energy, a system is better able to complete its workload consistently
and with high reliability. We utilize our simulation to also measure the ability of varying
energy capacity sizes to meet the simulated sensing tasks under various harvesting intensities.
The results are presented in Figure 4.3. Similar to the results of Figure 4.3, we see marked
increases in performance when the energy capacity is increased to 1–10mWh of capacity.
Simulations experience 100% availability for all but the most energy constrained scenarios
with high power workloads and ≥2mWh of energy storage. Figure 4.4 is another perspective
of availability, and examines sweeping the period of the periodic workload with four decades of
energy capacity. These simulated results indicate that even with gratuitous energy harvesting
potentials and infrequent workloads, sensors with energy capacity on the order of that offered
by capacitors or supercapacitors will experience low availability compared to a sensor designed
with sufficient energy capacity. This is because they are unable to capture and utilize enough
harvestable energy to allow continuous sensing through periods with little to no harvestable
energy, like nighttime or winter.
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Figure 4.3: Workload availability for different harvesting scenarios, workloads, and idealized
secondary storage sizes. We define availability as the percentage of successfully completed
events. If a periodic or random event occurs and the sensor does not have sufficient energy
to complete the event, that event is not completed and is considered missed. As expected,
workload availability follows a similar trend as energy utilization, improving with increased
secondary energy storage and energy capture. For both periodic and reactive workloads, from
the smallest to largest capacity simulated, we see a 1.4-2.7x improvement in availability. In
cases where average harvester power is sufficient to power the workload completely, the sensor
achieves 100% availability on the workload when configured with sufficient capacity.
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Figure 4.4: The performance of workloads with different periodicity with four decades of
energy capacity. We investigate the period at which different secondary storage sizes meet a
specific availability, showing that even with infrequent periodic workloads, small amounts
of secondary storage have low availability while larger secondary stores approach 100%
availability.
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Figure 4.5: A CDF of time to completion of a long-running, high energy event. In this
workload, events are not atomic, and can be paused and resumed based on available energy.
With secondary capacities that are large relative to the workload (which takes 93mJ) we see
immediate completion. However, performing the event on smaller secondary capacities can
take between three hours and a day to complete even for scenarios with large amounts of
harvestable ambient energy.
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Workload Timeliness

Finally, we analyze the ability of different storage configurations to perform a long-running,
contiguous, higher energy task. The characteristics of the long-running task are presented in
Table 4.1b. We This long-running task is an example of a medium-sized, 50 kB over-the-air
code update. Figure 4.5 is a CDF of the time-to-completion for this update with different
configurations of energy capacity, workload, and harvesting conditions. Nearly all of the
configurations with 0.28mWh of energy storage can complete the task in the minimum amount
of time (5 s). In comparison, even reducing the energy storage size to match the energy
required for an update causes significant latency. Many of the updates for smaller energy
storage configurations do not complete for 1000-10,000 s. This aligns with the amount of time
a sensor may sit idle overnight waiting for power from daytime to continue and eventually
complete its update.

4.4 Availability Requires Backup
Increasing secondary capacity greatly improves availability across all workloads. However,
some environmental conditions and workloads do not reach 100% availability regardless of
the size of the secondary store. Some workloads simply require more energy than is available
to harvest, and cannot achieve high availability because they already capture all the energy
they can. For systems that can theoretically capture enough energy on average, they still may
experience periods where they run out of stored energy. Some of the results in Figure 4.3 that
appear to achieve near 100% availability actually miss between 0.1 and 2% of events because
they did not initially start with enough energy stored. In both of these cases, a backup
energy store can greatly increase availability. However, the introduction of a non-rechargeable
backup means a system now has a finite lifetime. While the second case may be solved with
a sufficiently large secondary-cell that is deployed fully charged, the diminishing returns of
increasing secondary size and unpredictability of some reactive applications makes it difficult
to rely solely on harvested power.

We argue that 100% availability is a significant improvement over even low failure rates
with respect to availability and simplicity due to the lack of intermittency. As we discuss
in Section 2.3, many types of applications must provide high availability to be successful.
For applications that are human facing, research suggests that any unavailability results
in frustration and unwillingness to adopt automated solutions [107–109]. To use energy
harvesting sensors for human-facing applications, ones that control safety-critical systems,
or applications that simply require consistent and periodic sensing, inherent unavailability
is intolerable. Beyond the availability of the normal sensor workload, it is also important
to be able to detect and identify the failures in a sensor deployment. Batteryless system
failures are difficult to detect because there is no method for differentiating between lack
of energy and an actual fault. While scheduled communication of current energy state may
help, this would be difficult for systems that only store enough energy to perform a single
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Figure 4.6: Estimated lifetime when varying secondary energy capacity for different harvesting
scenarios and backup energy storage sizes. The periodic application’s period is 30 s and the
reactive application events are scaled to represent a maximum of 2000 events per hour during
the peak hour. The backup sizes correspond to those found in common coin cell batteries:
90mWh, 720mWh, 4500mWh for the CR927, CR2032, and CR123A respectively. As the
ability to capture more harvested energy increases, the sensors lifetime increases. In some
scenarios, expected lifetime becomes unbounded as the device is able to subsist entirely on
harvested energy.
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operation [2, 4, 7, 18]. The only way to ensure there is always energy available to issue a
heartbeat message or report issues, a backup non-rechargeable source of energy is required.

Lifetime of a Backup Energy Store

To achieve 100% availability and avoid frequent power and state loss, designs can utilize a
backup energy store. In this section we simulate the workloads of energy harvesting sensors
with backup non-rechargeable energy storage. In instances where the rechargeable source is
depleted, the system can operate from the backup, masking the effects of variable energy
income. We estimate the lifetime of the backup based on the discharge rate resulting from
the simulated workload. We consider a sensor’s lifetime to be completed when its backup
energy store is depleted. We assume the backup energy store is a primary battery, as they
offer very low self-discharge, long shelf life, and superior energy density.

An analysis of the reliable lifetime of sensors configured with energy harvesting and a
backup energy store is shown in Figure 4.6. We choose several backup energy stores with
energy equivalent to those found in several types of common primary-cells. We see that
with energy harvesting and a sufficiently large secondary energy store, nodes can achieve
100% reliable lifetimes that exceed what we can reasonably predict, especially for harvesting
scenarios that exceed the average power of the application. In these scenarios, the inclusion
of a backup energy store is critical to ensure availability in uncharacteristically adverse
conditions. Even for conditions with limited energy availability we still observe significant
lifetime improvements due to energy harvesting. We identify a 2-4x increase in lifetime
estimates from the smallest to largest capacity simulated, if we only consider bounded results.
In some cases, lifetime estimates grow exponentially as rechargeable energy capacity is
increased, indicating that with sufficient capacity and income, a workload almost never needs
to utilize the energy in its non-rechargeable backup. These results confirm the initial analysis
performed in Section 3.1, which showed substantial lifetime improvements when considering
hybrid energy harvesting systems with backup preallocated energy. We emphasize that these
lifetime estimations are just estimations, and while we do model the 1%/year leakage typical
of coin cells, we do not consider the unknown physical or chemical degradation that would be
experienced over decades of use or in adverse environments.

4.5 Summary
In this chapter, we present an upgraded energy harvesting and storage model and use it to
simulate the behavior and common workloads of wireless sensors. This simulation improves
upon the simple analysis performed in Section 3.3 by considering a dynamic workload, more
realistic energy income and energy storage characteristics, and the effects of preallocated
backup energy storage. We use the results from multiple simulation runs to illustrate the
impact of energy capacity on the performance of wireless sensors. Increasing energy capacity
allows a system to increase its energy utilization. In turn, increased energy utilization
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allows a wireless sensor to more successfully complete its workload, regardless of the type or
distribution of workload activity. When considering the workloads presented in Section 4.1
and the results of Figures 4.2 and 4.3, they will require an energy buffer capacity on the order
of 1–10mWh to achieve sufficient energy capture and workload availability.

Despite the improvements granted by increased capacity, a wireless energy harvesting
sensor will still be limited by the magnitude of available harvestable energy. In cases where
harvestable energy is insufficient to power an intended application workload, it can be
beneficial to include a backup non-rechargeable source of energy to ensure high availability.
While this inclusion results in a wireless sensor with a finite lifetime, energy harvesting with
sufficient rechargeable energy capacity can significantly increase the system lifetime.

In the next chapter, we explore and compare the options for rechargeable energy capacity
for wireless sensors, including capacitors, supercapacitors, and batteries. Capacitors and
reasonably sized supercapacitors are unable to provide the energy capacity predicted by
our workload simulations. However, batteries are a promising option to provide sufficient
energy capacity and density to achieve the energy utilization and workload availability gains
identified in this chapter.
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Chapter 5

A Quantitative Evaluation
of Energy Storage

From the previous two chapters, we have identified the value of properly sizing rechargeable
energy capacity in an energy harvesting design to increase energy capture and system
availability. Many batteryless sensor designs have chosen to utilize capacitors in their
designs, which severely limit energy capacity and the performance of the system. Many
modern applications are attempting to push the energy bounds of sensing, computation and
networking, and batteryless systems have begun incorporating supercapacitors to provide the
necessary energy capacity to make certain applications feasible [56]. These designers have
eschewed batteries as an option, despite their vastly superior energy density, dismissing them
qualitatively as bulky [2, 7, 15–20, 56, 59, 70, 110], inefficient [2, 19, 56, 59], expensive [7,
15–17, 20, 70], short-lived [2, 7, 16–20, 56, 59, 110, 111]. temperature-sensitive [7, 16–19],
and dangerous [7, 16, 17, 20, 70, 110].

In this chapter, we reexamine each of these arguments with respect to modern capacitor,
supercapacitor, and battery technology. While the early battery design of one or two decades
ago were certainly guilty of many of the charges levied against them, new battery electrode
materials and improved lithium-ion manufacturing processes have produced appealing options
for miniature energy storage elements that do not possess the undesirable qualities of older
battery technology. New battery technology paired with newly available low power energy
harvesting and battery management ICs [24, 25] enables the design of high-capacity and
performant energy harvesting systems. Despite improvements, batteries still underperform in
some metrics compared to supercapacitors, but these deficiencies are likely inconsequential
for many of the contemplated wireless sensor applications, and the substantial increase in
energy capacity outweighs these detracting trade-offs.
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Technology Capacitance / Energy Capacity Voltage Volume Energy Density Power Densityb Temperature ESR Self-Discharge Cycle Life (Cycles) j Cost (USD)
Capacity (Wh) (V) (mm3) (Wh/L) (W/L) (Charge/Discharge °C) (Ω) (nA) 100% DoD 10% DoD USm China

MLCC 47µF [112] 0.000 000 259 a 6.3 8.19 0.032 6 060 000 c -55 - 125 0.001-0.1 f <10 h ∞ k ∞ k 0.16 0.03
100µF [113] 0.000 001 39 a 10 20.0 0.069 6 250 000 c -55 - 125 0.001-0.1 f <10 h ∞ k ∞ k 0.31 0.04

Tantalum 100µF [105] 0.000 000 551 a 6.3 18.6 0.030 2 670 000 c -55 - 125 0.2 f <10 h ∞ k ∞ k 0.28 0.17
220µF [105] 0.000 003 06 a 10 91.0 0.034 1 370 000 c -55 - 125 0.07 f <10 h ∞ k ∞ k 0.37 0.16

Supercapacitor 7.5mF [114] 0.000 070 4 a 2.6 7.2 0.980 4690 -30 - 70 d 25 f <10 i >10000 — 2.42 —
33mF [115] 0.000 139 a 5.5 870 0.159 17 400 -20 - 70 d 0.25 f <5 i — — 8.65 —
100mF [116] 0.000 420 a 5.5 1130 0.372 33.5 -25 - 70 d 100 f <10 i — — 1.10 —
470mF [106] 0.001 15 a 4.2 1029 1.17 16 500 -40 - 70 d 0.13 f <1000 100000+/4 yr [117] l — l 5.06 1.00

Li-ion 11mAh [118] 0.0407 3.7 191 213 96.9 0 - 40/-20 - 60 f 1 g 120-400 [119] 500 10000+ [120, 121] 4.00 —
40mAh [122] 0.148 3.7 1010 147 44.4 0 - 40/-20 - 60 f 3 120-400 [119] 500 10000+ [120, 121] 1.62 —
80mAh [118] 0.296 3.7 1010 295 147 0 - 40/-20 - 60 f 2 g 120-400 [119] 500 10000+ [120, 121] 7.00 —

LiPo 40mAh [123] 0.148 3.7 660 224 224 0 - 40/-20 - 60 f 1.5 120-400 [119] 300 10000+ [120, 121] 4.50 0.51
LTO 1.8mAh [124] 0.0043 2.4 88.0 48.9 489 -35 - 70 f 8 <300 g 7000 10000+ [125] — 1.58

5mAh [124] 0.012 2.4 200 60.0 600 -35 - 70 f 2 <300 g 7000 10000+ [125] — 1.58
15mAh [124] 0.036 2.4 496 72.6 726 -35 - 70 f 0.6 <300 g 7000 10000+ [125] — 1.58
20mAh [124, 126] 0.0480 2.4 682 70.4 1410 -35 - 70 f 0.55 g <300 g 7000 10000+ [125] 6.75 1.38
125mAh [124] 0.300 2.4 2360 127 1270 -35 - 70 f 0.18 <300 g 7000 10000+ [125] — 1.58

LFP 70mAh [127] 0.224 3.2 1570 143 1430 -20 - 75 f 0.53 160 [128] 2000 30000+ [84, 85, 129] — 1.38
100mAh [127] 0.320 3.2 1960 163 1630 -20 - 75 f 0.33 160 [128] 2000 30000+ [84, 85, 129] — 1.38

Solid State 0.7mAh [130] 0.002 73 3.9 145 18.8 134.2 -20 - 60 f 100 <3 4000 — 30.00 —
0.1mAh [131] 0.000 150 1.50 14.5 10.3 2.07 -20 - 80 f <200 <80 1000 — 9.31 —

a Energy capacity calculated with rated maximum voltage. b Calculated with battery and capacitor effective power.
c Effective power for capacitors is slightly nebulous. Here the higher end of ESR is assumed. d Supercapacitors experience higher ESR at lower temperatures and higher leakage at higher temperatures [117].
e Lithium batteries experience higher ESR, higher leakage, lower capacity and shorter lifetimes at temperature extremes. f ESR is frequency dependent, supercapacitors are usually rated at 1 kHz.
g Empirically tested. h Both tested and calculated from insulation resistance after absorption period. i Specification after 24 h of charging. j For batteries, measured to 80% original rated capacity.
k Capacitor derating is not considered. With proper design principals these should be nearly infinite. l Supercapacitors are time rather than cycle limited. Assumes 3V, 20 °C. No DoD dependence mentioned [117].
m Prices are based on cheapest available equivalent part in quantities of 100.

Table 5.1: A comparison of miniature energy storage technologies. Data is based on specific components and their
datasheets, and components are chosen for each category based on their inclusion in platforms described by the
literature. Some technologies are rapidly evolving, such as supercapacitors and batteries. Other citations point to
general characteristics of the storage technologies not specified by their datasheets. For most applications, lithium-based
batteries provide much higher energy density without reasonably impacting sensor lifetime, cost, or function. The
minority of sensing applications, such as those operating at extreme temperatures, may require capacitors or active
heating and cooling.



CHAPTER 5. A QUANTITATIVE EVALUATION OF ENERGY STORAGE 76

5.1 Energy Storage Technology
We summarize the notable characteristics of various examples of capacitors, supercapacitors,
and batteries in Table 5.1. Many of the capacitors and supercapacitors in this table were
chosen based on their inclusion in some contemporary batteryless platforms, including the
Solar Monjolo [63], Flicker [7], Capybara [18], and Camaroptera [56]. The selected batteries
represent some of the smallest lithium-based cells that are commercially available. This
section serves to explain the characteristics of various possible energy storage technologies for
low power energy harvesting applications, as a prelude to deeper dives on particular aspects
and comparisons.

Ceramic and Tantalum Capacitors

Along with chip resistors, the multilayer ceramic capacitor (MLCC) is the most widely used
passive component in modern electronics. MLCCs are essentially a parallel connection of
many cearamic plate capacitors, packaged in a small form factor [132]. Traditionally, MLCCs
are used for two applications: resonant circuits and filters and power supply bypass and
decoupling [132]. With sufficient capacitance, MLCC capacitors meant for power supply
decoupling can act as the sole energy storage in a system [2, 7, 63]. However, the energy
storage and density of MLCC components is limited, and is often only enough to support a
single small operation, like measuring and transmitting sensor results over a radio. Similarly,
tantalum capacitors are often used for power supply bypass and decoupling. Tantalum
capacitors consist of a tantalum metal anode and a solid electrolyte as a cathode, separated by
a solid dielectric [133]. They generally provide more capacitance per volume than MLCCs, but
are polar and have worse efficiency. Tantalum capacitors also do not exhibit any noticeable
aging effects, whereas MLCCs experience slight capacitance change over long periods of
time [134]. Compared to batteries and supercapacitors, MLCC and tantalum capacitors
provide infinitely longer lifetimes and higher power density, but are severely limited in energy
capacity and density.

Supercapacitors

Electrochemical double layer capacitors (EDLC) are the most common type of supercapacitor,
and are utilized in many batteryless platforms [18, 56, 57, 135]. Supercapacitors generally con-
sist of electrodes separated by a liquid electrolyte, like batteries, however energy accumulation
is through electrostatic interaction instead of chemical reactions [135, 136]. EDLCs achieve
significantly higher energy density than MLCC and tantalum capacitors due to their large
effective surface area and very small charge separation distances. Supercapacitors are also
durable and long-lived, capable of millions of charge-discharge cycles [135]. supercapacitors
excel in high power, high cycling applications, where large amounts of charge must be stored
and provided quickly, at a high frequency. However, they offer lower power densities due
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to higher internal resistance compared to MLCC and tantalum capacitors [136], and lower
energy density than batteries [106, 126].

Li-ion

Lithium-ion batteries encompass all batteries that utilize lithium ions for charge transfer.
These batteries are well known for their superior energy density, and are used in small wireless
and portable consumer electronics as well as in large multi-cell configurations in electric
vehicles. Like all batteries, Li-ion batteries consist of two oppositely charged electrodes
separated by an electrolyte. The electrodes consist of a negatively charged anode and
positively charged cathode. During discharge, Li- ions move from the anode through the
electrolyte to the cathode, and during charge they move from the cathode to the anode.
Lithium polymer (LiPo) batteries, most commonly used in consumer electronics, utilize a dry
or gel electrolyte, while coin cells or cylindrical Li-ion cells utilize a liquid electrolyte.

There are many different types of li-ion batteries, utilizing different anode, cathode, and
electrolyte materials. Most modern Li-ion cells primarily utilize graphite as an anode material,
and lithium nickel manganese cobalt oxide (LiNi0.33Mn0.33Co0.33O2 or NMC for short) as a
cathode material [137]. These cells offer a nominal voltage of 3.7V, high energy density,
and long lifetimes. The choice of NMC provides several benefits over earlier designs that
utilize LiCoO2 (LCO) or LiMn2O4 (LMO) for cathode materials. LCO lithium batteries are
notorious for their thermal instability and fast capacity fade at high current rates or deep
cycling [137]. Cobalt is also a toxic and expensive metal to produce. LMO lithium batteries
are cheaper, have higher power density, and have significantly better thermal stability than
LCO cells, but have lower energy density and still have poor cycling stability, especially
at higher temperatures [137]. The combination of nickel, manganese, and cobalt in NMC
cathodes results in higher structural stability, longer lifetimes, and less reliance on expensive
transition metals like cobalt [137].

Batteries that utilize LCO cathodes have the propensity to ignite or explode due to
thermal runaway when stressed thermally, mechanically, or electrically [138]. This is primarily
due to the cathodes releasing oxygen at high temperatures, which start an exothermic reaction
with the organic parts of the cell [137, 138]. Like LCO, the newer NMC cathode material is
still susceptible to thermal runaway with abuse, however the peak magnitude of self-heating
on runaway is an order of magnitude less than that of LCO, and onset is delayed and begins
at a higher temperature [138]. Batteries with LMO cathodes are safer than both LCO and
NMC, but have poor cycle cycling lifetime which has limited the commercialization of the
technology.

Lithium Iron Phosphate

Lithium iron phosphate (LiFePO4, or LFP), is a more recently commercialized cathode
material and stands to offer similar safety and power capability to LMO while offering long
lifetimes similar to NMC [137, 139]. Batteries that utilize LFP as a cathode material possess
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a lower nominal voltage (3.2V), and lower energy density than LCO and NMC batteries.
However, LFP cathodes offer higher cycle stability and lifetime, have lower thermal sensitivity,
and are cheaper to produce than cobalt and manganese-based cathodes [137–139]. LFP cells
are also very safe compared to NMC and LCO cells. The only thermal runaway experienced
by LFP batteries is dominated by reactions between the electrolyte and graphite anode, which
decomposes at high temperatures [138].

Lithium Titanate Oxide

Perhaps the most promising replacement for graphite anodes is lithium titanate oxide
(Li4Ti5O4). Lithium titanate oxide, abbreviated LTO, is usually paired with an LMO
cathode, and sometimes an NMC cathode [137, 140, 141]. LTO offers superior thermal
stability, high discharge/charge rates, and longer lifetimes compared to graphite. These
improvements come at a cost of the more expensive titanium compound, and a lower energy
density and nominal voltage (2.4V) [137, 141]. Cells that incorporate LTO anodes are also
extremely safe compared to those that use graphite [137, 140, 141]. Unlike graphite, LTO
anodes do not produce Li dendrites after considerable cycling [137]. This reduces the risk of
inadvertent internal shorts and thermal runaway. LTO anodes also remain stable and do not
break down at high temperatures [140].

Solid-state

All cylindrical or pouch Li-ion batteries employ a liquid or gel electrolyte of lithium salts dis-
solved in an organic, non-aqueous solvent [138]. Liquid electrolyte requires specific packaging
to prevent leakage, and an internal separator to prevent shorts between the electrodes. This
limits the miniaturization of Li-ion batteries, as this packaging is increasingly difficult to man-
ufacture at smaller sizes. This results in smaller batteries that have uncharacteristically high
internal resistance and lower energy density compared to larger cells with the same chemistry.
The organic solvent used in liquid and gel electrolytes also can react exothermically with any
oxygen released upon the breakdown of electrode material and cause thermal runaway. In
addition to developing new anode and cathode materials to mitigate this, researchers and
companies have also begun experimenting with replacing the non-solid electrolyte non-reactive
alternatives. Solid-state batteries are safer, due to the use of non-reactive solid electrolytes,
come in smaller packages, offer longer lifetimes, and have very low self-discharge [142]. How-
ever, solid-state batteries generally have limited energy and power density and high internal
resistance compared to aqueous Li-ion cells. Solid-state batteries are also currently expensive
to manufacture, and their commercial viability has been limited [142].

Summary

Capacitors possess superior power density and have functionally infinite lifetimes, but can
only store minute amounts of energy. Supercapacitors provide one to two orders of magnitude
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more energy density than MLCC and tantalum capacitors, at the cost of reduced power
density, and shorter lifetimes. By contrast, batteries offer one to two orders of magnitude
more energy density than supercapacitors. However, batteries do have limited lifetimes based
on cycle counts, are more temperature sensitive, and some can be dangerous if mishandled.

In the rest of this chapter, we seek to compare these technologies in more depth. The fol-
lowing sections directly analyze each of the high-level qualitative arguments that "batteryless"
platform designers have leveled against batteries. Namely, that they are bulky, inefficient,
expensive, short-lived, temperature-sensitive, and dangerous.

5.2 Volume and Density
Arguments that deride batteries as bulky are likely directly comparing the size of a small
battery to that of single tantalum or ceramic capacitor, without considering energy and power
density. Modern commercially available miniature batteries are comparable in volume to
many supercapacitors, and even a banked combination of ceramic and tantalum capacitors,
while offering substantially more energy density and an acceptable power density. In this
section, we explore the "bulkiness" of capacitors, supercapacitors, and batteries in the context
of energy and power density. Here, we are considering volumetric density (Wh/L and W/L)
instead of specific energy and power (Wh/kg and W/kg, respectively) to better compare
the volume of these energy storage options. The energy density and power density of various
capacitors, supercapacitors, and batteries are compared in Figure 5.1.

Energy Density

Energy density should be the primary consideration for energy harvesting power supply design
to maximize energy capacity while simultaneously minimizing volume. The energy stored in
a capacitor is calculated in one of two ways, illustrated by Equations (5.1) and (5.2).

Etotalcap =
1

2
CV 2 (5.1)

Eeffcap =
1

2
C(V 2 − V 2

min) (5.2)

Where Etotal and Eeff are the total and effective energy stored in a capacitor, respectively.
These amounts are defined by the capacitor’s capacitance C, and the applied voltage V ,
and the minimum voltage Vmin. Usually Vmin represents the minimum supply voltage for
a system. Often this is the minimum open circuit voltage to cold start a boost regulator,
between 400mV to 600mV [24, 25, 143]. For simplicity, we use Etotal to determine energy
capacity and density. For most capacitors, the unusable energy represented by Eeffcap is
negligible compared to the total energy.

The energy stored in a battery cannot be directly calculated, and depends on many
variables. It can be estimated by considering the charge capacity Q, often denoted in terms of
Ah, and the nominal voltage of the cell Vnom This estimation is described by Equation (5.3).
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Figure 5.1: Ragone plot for components listed in Table 5.1, in log-log scale. The upper
cap represents the maximum power that a storage element can provide while the lower cap
represents the effective, continuous power it can provide. A ragone plot directly compares
power and energy density for different devices. Ceramic and tantalum capacitors are very
power dense, but provide abysmal energy density. Batteries provide superior energy density,
are less power dense. Supercapacitors exist between these two extremes. Even though
batteries do not provide comparable power density to either capacitors or supercapacitors,
they can still provide sufficient power for common wireless sensor workloads, like operating a
short or long range radio.

Ebat ≈ QVnom (5.3)

Nominal voltage represents an average of the battery’s voltage curve over the course of a
charge/discharge cycle. The nominal voltage and capacity of a battery are provided by the
manufacturer and are commonly included in a datasheet.

A selection of capacitor, supercapacitor, and battery energy capacities and densities are
summarized in Table 5.1, and their energy density is compared in Figure 5.1. Among this
selection, small batteries are 50-1000x more energy dense than supercapacitors and three to
five orders of magnitude more dense than ceramic and tantalum capacitors. Li-ion and LiPo
batteries are the most energy dense among all options. Solid-state batteries are an order of
magnitude less energy dense than those with aqueous or gel electrolytes, but still an order of
magnitude more dense than supercapacitors.

Several of these capacitors, supercapacitors and batteries are shown visually in Figure 5.2.
The capacitor and supercapacitor configurations are based on examples from batteryless
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Figure 5.2: A size comparison of energy storage methods including capacitors, supercapacitors,
and batteries. They are ordered left to right, by their (total) volume. Total volumes and
energy storage are listed above the respective device. Configuration (a), (c) and (f) represent
the energy storage configurations used in the Flicker platfrom with BLE and several sensors [7],
the Solar Monjolo [63] and the Capybara temperature monitor and alarm [18], which have
total capacitances and energy capacities of 119µF (0.41µWh at 5 V), 500µF (1.7µWh at
5 V) and 8.8mF (8.3µWh at 2.6 V), respectively. Capacitors (d) [144] and (h) [106] are
large supercapacitors available on the Capybara platform and have the capacitances and
energy capacities of 300mF (300µWh at 2.7V) and 220mF (540µWh at 4.2V) respectively.
Devices (b) and (i) are small LTO battery cells with 1.8mAh (4.3mWh at 2.4 V) and 20mAh
(48mWh at 2.4V) capacity respectively [124]. Devices (e) and (j) are small prototype Li-ion
coin cells with 11mAh (41mWh at 3.7 V) and 80mAh (296mWh at 3.7 V) respectively [118].
Device g is a traditional Lithium Polymer pouch cell with 40mAh (148mWh at 3.7 V) [145].
The LTO battery (b) and the Li-ion coin cell (e) are among the smallest of all configurations
of energy storage presented here and also provide one to two orders of magnitude more energy
capacity compared to (f), the largest supercapacitor presented.

platform designs described in the literature [7, 18, 63]. The batteries shown in Figure 5.2 are
as small as 88mm3, and resemble small through-hole capacitors and coin cells. Battery (b)
is smaller in volume than many of the capacitor configurations presented in the literature,
only outdone by systems like Flicker (a) which utilizes only a few ceramic capacitors [7].
This small LTO battery offers 8x more energy storage and 60x more energy density than the
largest supercapacitor presented (h). When considering the size of other components in the
system, most notably the harvester (solar panel, thermocouple, RFID antenna, or piezoelectric
device), the combination of ICs, and large sensors like a PIR motion sensor, the size of small
rechargeable batteries is inconsequential. The Michigan Micro Mote is one of the smallest
energy harvesting systems ever built, occupying a volume on the order of a single ceramic
capacitor [75]. Despite its small size, it utilizes a thin film solid-state lithium battery for
energy storage due to its superior energy density over any capacitor or supercapacitor option.
When one considers energy density instead of purely volume, capacitors and supercapacitors
are significantly more bulky than batteries.
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Power Density

In addition to energy density, power density is also an important metric to consider for
a design. Common wireless sensor workloads are characterized by very low sleep currents
punctuated by infrequent pulses of high current, usually a radio transmission. Energy storage
must provide sufficient peak power to drive these short pulses, but largely, these applications
require low continuous power. The maximum peak power is largely dependent on equivalent
series resistance (ESR) of the storage device, represented by an internal series resistance
to the capacitor or battery cell. Internal resistance for both supercapacitors and batteries
is temperature and age dependent. Both storage elements experience increased ESR at
temperature extremes, and experience increased ESR as they age. The internal resistance of
capacitors and supercapacitors is also frequency dependent, and usually reported for 1 kHz.
This value is generally related inversely with frequency for frequencies below the capacitor’s
self-resonance [146]. For the relatively low frequency of charge/discharge cycles characteristic
of energy harvesting devices, actual ESR is likely higher than reported for supercapacitors.

Internal capacitor, supercapacitor, and battery resistance incurs a voltage drop over this
resistance which is especially noticeable and detrimental during high current loads. Ceramic
and tantalum capacitors have negligible ESR and incomparably high power density, so we
focus on comparing the power density of supercapacitors and batteries. There are two different
metrics for quantifying power output of supercapacitors and batteries. The first is effective
power Peff , and represents the maximum sustainable continuous power that can be provided.
The second is peak power Pmax and represents the maximum possible current that can be
provided in short pulses. These metrics are defined differently for supercapacitors and batteries.
For a supercapacitor, power capabilities are defined by Equations (5.4) and (5.5) [147].

Peffsc =
1

8

V 2

Ri

(5.4)

Pmaxsc =
1

4

V 2

Ri

(5.5)

Where V is the voltage applied to the capacitor, and Ri is the internal resistance, or ESR.
For batteries, these metrics are defined by Equations (5.6) and (5.7).

Peffbat = IcontVnom (5.6)

Pmaxbat
= ImaxVnom (5.7)

Where Icont and Imax are the battery’s rated continuous and peak pulsed current respectively.
These metrics are provided by the battery manufacturer and often included in the battery
datasheet. The continuous and peak currents are often defined in terms of the C-rate, or a
proportion of the rated capacity (in units of Ah). For example, the 1C rate of a 100mAh
battery is 100mA, and the 2C rate is 200mA. Continuously charging and discharging a
battery beyond its specified rate will result in cycles that deliver less energy than rated, and
eventually damage to the cell resulting in capacity fading. For sake of comparison, we use
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Peff in Table 5.1 for batteries and supercapacitors, as it is a more conservative measure of
the energy storage power capability.

Among the supercapacitors and batteries featured in Table 5.1, supercapacitors provide
10-400x higher power density over batteries. However, one supercapacitor outlier provides
the least power density of all options. Like energy density, power density is also directly
compared in Figure 5.1. Despite their superior power density, most applications do not
require the higher power density afforded by supercapacitors. It is hard to imagine a low
power energy harvesting application that must source more than a few to a few hundred mA
at 3V infrequently, never mind continuously. Solid-state batteries are more power limited
than other battery types. Despite their low energy capacity they are able to supply high
C-rates, between 15-50C. This corresponds to currents on the order of 10mA. Conventional
Li-ion and LiPo cells can generally source 1C continuously. The smallest Li-ion cell listed in
Table 5.1 can provide 11mA continuously, and the largest can provide 80mA. The LiPo cell
presented can supply 40mA continuously. Small LTO and LFP cells are capable of very high
C-rates, often between 20-40C for LTOs, and 10-20C for LFP [124, 126, 127]. The smaller
LTO battery listed in Table 5.1 is able to source 18mA, while the larger LTO and LFP cells
can source between 400-700mA continuously. This power capability is more than sufficient
for the majority of wireless sensor applications, either indoors with PANs, or outdoors, with
cellular or LPWANs [148, 149].

Another consideration for power capability and ESR is the effect of voltage drops during
high power loads. If a voltage drop is sufficiently large, it can drop the supply to a level
unusable by a voltage regulator or CMOS logic. This could effectively render part of the
power storage unusable in an unpredictable manner. This effect is particularly detrimental
for supercapacitors. While ESR is comparable between batteries and supercapacitors, the
stability of provided voltage is not. Batteries provide a stable voltage curve centered around
their nominal voltage, and voltage drops due to ESR can still result in a usable voltage even
when almost empty. Supercapacitors, on the other hand, experience a (approximately) linear
decrease in voltage with current until empty. This means that, depending on the load (in
intensity and frequency), a large load and subsequent voltage drop could occur that causes a
system brown-out, potentially corrupting state, or an unexpected reset.

5.3 Efficiency
At a high level, the efficiency of an energy storage element can be defined as the actual
proportion of stored energy that is used to perform a desired task or application. Batteries have
been derided as "inefficient" by batteryless platform designers, however both supercapacitor
and battery technology exhibit the same two phenomena that causes inefficiency, and generally
to the same extent. The first phenomena is power dissipation over the internal resistance
of the device. The second is self-discharge or leakage, which is represented by an internal
parallel resistance to the capacitor or battery. This section seeks to quantitatively compare
these two sources of inefficiency for supercapacitors and batteries.
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Internal Resistance

The power dissipated over the internal resistance, or ESR, of an energy storage element can
be calculated with Ohm’s law, reproduced in Equation (5.8).

Pi = RiI
2 (5.8)

Due to the squared relationship of current to power, high current loads, such as a radio
transmission or long computation, are the primary cause of ESR power losses. The total
power required to drive a load, including losses over internal resistance, is represented by
Equation (5.9).

Ptotal = Pl + Pi

Ptotal = IV +RiI
2 (5.9)

Where Pl, I and V are the power, current, and voltage required to drive an intended load.
Power inefficiency due to ESR can be costly when considering high current loads.

With a subset of the capacitors and batteries mentioned in Table 5.1, an 8mA BLE
transmission from a steady 3V would incur less than 0.03% in resistive loss from a tantalum
capacitor, a 2.1% loss from the 1.8mAh LTO battery, and 6.3% loss from the 7.5mF
supercapacitor. A 130mA LoRa transmission would incur a 0.43%, 25%, and 52% overhead,
respectively [149]. These selections represent some of the worst performing examples in terms
of ESR. For most supercapacitor and battery product lines, as they get smaller, capacitance
and capacity decreases while ESR increases. When the surface area between cell electrodes
decreases, this limits the flux of ions traveling between electrodes. This is manifested as an
increased internal resistance. This has traditionally been an issue for small Li-ion batteries.
However, the recent commercialization of new manufacturing processes and new cathode
and anode materials that increase electrode surface area has led to small form factors with
lower ESR, on the order of 1-2Ω [118]. Current solid-state battery technology still struggles
with ESR, with values at or above 100Ω [130, 131]. In Table 5.1, there are several batteries
and supercapacitors that exhibit much lower ESR, on the order of 1Ω or less, and are thus
more efficient with high current loads. The 20mAh LTO battery is in the same product line
as the 1.8mAh cell, but has 15x less ESR. This cell would only incur a 0.15% and 2.3%
loss on the respective BLE and LoRa transmissions. Generally, there are options for both
supercapacitors and batteries that offer comparable ESR efficiency.

Self-Discharge

In addition to an internal series resistance, capacitors and batteries both feature a non-ideal
parallel resistance that causes a continuous self-discharge. The self-discharge of supercapacitors
and batteries is generally dependent on their size and temperature. Larger capacity/capaci-
tance batteries and capacitors from the same product line will exhibit more self discharge
than smaller ones.
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The batteries selected in Table 5.1 typically exhibit less than 500nA self-discharge in
standard environmental conditions. Solid-state batteries exhibit even less self discharge, at
similar rates to capacitors. Notably, many types of Li-ion and LiPo batteries also require
additional protection circuitry to prevent deep discharges and charging/discharging at high
currents. This additional circuitry incurs additional self-discharge. However, extremely
efficient options exist to manage small batteries [24, 25, 150]. The LTC4071 battery charger
and protection IC requires only 550 nA when in operation, and features a very low disconnect
current (<1nA) to extend shelf-life [150]. This amount of self-discharge is negligible when
considering the average sleep currents of common sensors and MCU options. Generally, sleep
currents will still be dominated by memory retention and low frequency clock operation, on
the order of a few µA.

While the self discharge of capacitors and supercapacitors appears lower than batter-
ies, this is partially due to how it is measured and rated. However, the self discharge of
supercapacitors is actually is comparable to that of batteries when considering short term
post-charge behavior. Supercapacitors exhibit a pronounced, non-ideal phenomena known as
dielectric absorption [151]. Dielectric absorption represents a decreasing exponential decay of
the supercapacitor voltage immediately after charging. After hours or days, self-discharge is
dominated by a linear leakage current. The magnitude of the decay depends on the initial
voltage, temperature, and duration of the charge [152]. Datasheets generally specify superca-
pacitor leakage after a subsequent 24 hour constant voltage charge and 1 hour open circuit
period. This is sufficient time for the contribution of dielectric absorption to be rendered
negligible. After this time, only the internal parallel leakage resistance is a factor.

In the short term, however, the discharge due to dialectric absorption dominates. For
example, after an hour of constant voltage charging, the 33mF BestCap supercapacitor
listed in Table 5.1 experiences an average of 300nA self-discharge over a 3 hour window.
Considering the common use case of supercapacitors in batteryless systems, where any
captured energy is immediately used whenever it is available, this short term cycle use case
means that energy is never stored for an extended period of time, and dialectric absorption is
a primary factor in self-discharge for batteryless systems. While we have not characterized
the self-discharge of each individual supercapacitor listed in Table 5.1, this phenomena is
inherent to electrochemical capacitor technology.

Generally, one can expect the short-term self-discharge of supercapacitors to be comparable
with batteries. In either case, self-discharge is not sufficient to warrant discounting either
option for a low power design. When considering the impact of self-discharge with that of
ESR loss, there are suitable options from both technologies that would provide satisfactory
performance.

5.4 Expense
Like the bulkiness argument, the claim that batteries are expensive is only valid when directly
comparing the cost of a battery to that of single ceramic or tantalum capacitor. This view is
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Figure 5.3: Average energy capacity for various technologies selected in Table 5.1, normalized
by price in USD. Wherever possible, component costs were determined by their price in the
United States. In regards to energy capacity, batteries offer 3-5 orders of magnitude more
energy capacity per dollar than ceramic and tantalum capacitors. Batteries also offer 2-3
orders of magnitude more capacity than supercapacitors.

reductionist, and this section seeks to explore this argument in more detail.
Most batteries are actually comparatively cheap when considering energy capacity and

density. A single battery provides significantly more energy storage per dollar than any
capacitor, supercapacitor, or banked configuration. Figure 5.3 illustrates this by comparing
the energy per dollar one can expect from capacitors, supercapacitors, and batteries. Solid-
state batteries are still costly, as they are a newly commercialized technology and their
manufacture is still expensive. Despite this, solid-state batteries offer a similar magnitude
of energy capacity per dollar to supercapacitors. Other battery types offer several orders of
magnitude more energy capacity per dollar than capacitors and supercapacitors.

The expensiveness of capacitors is accentuated when considering that some designs require
multiple parallel capacitors or supecapacitors to build up enough energy capacity to enable
required atomic operations. For example, the Capybara design is configured with 14 of the
7.5mF Seiko supercapacitors, costing $2.42 USD, for a total of $33.88 [18]. The small 1.8
mAh battery offers 4.4x the energy capacity of the combined 14 parallel supercapacitors, for
only $1.25. It would require 61 of the Seiko supercapacitors to provide the same amount of
energy capacity as the 1.8mAh battery. Those 61 supercapacitors would cost $148.

Besides the Seiko supercapacitor, several of the selected supercapacitors in Table 5.1 are
as expensive or more expensive than the selected batteries [106, 114–116]. Small, 2-50 mAh
LTO batteries can be purchased for $6.75 USD each from US distributors and $1.25 USD
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each from Chinese manufacturers, even in small quantities [124, 126].
Also, when considering the cost of other components in a wireless energy harvesting

system, like an SoC [148], harvester [153] and sensors [154], which each cost around $5 USD
each in low quantities, a battery will not constitute the driving cost. Batteries are by far the
most cost effective option for providing energy capacity. The argument that they are too
expensive for a sensor design does not consider the comparable cost of supercapacitors, and
entirely ignores the benefits of the superior energy density of batteries.

5.5 Lifetime
Batteries are often considered short-lived due to their limited cycle lifetimes, especially when
compared to ceramic and tantalum capacitors. Ceramic and tantalum capacitors lifetimes are
estimated to be thousands to millions of years with proper voltage derating and when used
at room temperature [60]. The lifetime of capacitors, supercapacitors, and batteries generally
refers to the lifetime before the device experiences parametric failure. Parametric failure is
when the device is no longer within specification, usually when rated capacitance/capacity
is lower than 20% its original value, or when ESR or other parasitics are sufficiently higher
than rated. This section serves as an effort to quantify and compare battery lifetime with
capacitors and supercapacitors, and to investigate methods for elongating their cycle lifetimes.
While modern battery technology will never compete with the longevity of capacitors, for low
power energy harvesting, cycle lifetime is unlikely to be the limiting factor on the lifetime of
a battery, never mind the system as a whole.

While ceramic and tantalum capacitors can potentially last a million years or more [60],
these lifetime estimates do not hold for supercapacitors, which are often rated in thousands
of hours at a specified voltage and temperature (often 65-85 °C) [106, 115]. This lifetime is
further influenced by the cycling characteristic and intensity of the workload [155]. For low
power wireless sensors in room temperatures, with the sporadic cycling rate of an intermittent
system, one can still expect lifetimes of one hundred thousand to one million hours (around
10-100 years) [155]. While this is a long lifetime, it is by no means infinite.

Conversely, the cycle lifetime of a battery is generally the number of full cycles at a
rated continuous discharge/charge current (usually 0.5C or 1C) before the battery’s capacity
diminishes to 80% of its original rated capacity. Generally, NMC lithium batteries offer a
cycle lifetime between 3000 and 5000 cycles [139, 156], compared to 300-700 cycles for LCO
and LMO batteries. For small form factor batteries, this cycle lifetime is less, and for those in
Table 5.1, they offer only 300-500 cycles [118, 123] at a 0.5 C charge/discharge rate. However,
new battery chemestries like LTO and LFP batteries offer between 2000 and 7000 cycles at
0.5 C [84, 85, 124–127, 129, 139]. Solid-state batteries also offer long cycle lifetimes, between
1000 and 4000 cycles for commercially available cells [130, 131].

These rated cycle lifetimes represent the cycle life at 100% depth-of-discharge (DoD),
however battery cycle lifetime is heavily influenced by the rate of discharge, as well as
the depth of discharge. The reduction of battery DoD to 10% exponentially reduces cycle
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capacity loss, resulting in potential lifetimes of greater than 10,000 cycles before reaching 20%
capacity degradation with LFP cells [84, 85]. Similarly, LTO cells are estimated to sustain
approximately 15,000 cycles before reaching 20% capacity degradation [157]. These cycle
estimations for LTO cells hold true even for relatively high temperatures (50-60°C) [85, 157].
LTO chemistries can be expected to survive one thousand cycles at 100% DoD at 55°C [158].
Life cycle expectations for both 100% and 10% DoD are summarized in Table 5.1.

On its face, several thousand cycles does not seem like a lot compared to the lifetime
estimates of capacitors and supercapacitors. However, for batteries, this cycle lifetime amounts
to a significant amount energy. This energy also represents a significant amount of time when
considering the energy capacity of batteries, and the expected charge/discharge behavior
of energy harvesting wireless sensors. The comparatively vast energy capacity of batteries
means that each cycle represents a significant amount of energy. This amount of energy can
drive a low power workload for an extended period of time. For example, the representative
periodic workload described in Table 4.1 requires an average power of 58.6 µW. For the
smallest 1.8mAh battery, a single discharge cycle represents just over 3 days of continuous
operation. The rated 7000 cycle lifetime of this cell represents 117 years, assuming an identical
charge/discharge cycle with 100% depth of discharge.

For wireless sensor workloads, battery cycle lifetime is not going to constitute the main
source of failure in designs that incorporate them. Instead, limited shelf-life and poor
battery management are likely to be the driving forces behind usable battery lifetimes. For a
rechargeable battery, shelf-life represents the amount of time a battery can sit uncharged before
depleting itself and experiencing capacity degradation. Batteries must also be properly charged
and discharged within rated current limits, and should not be overvolted or undervolted. It
is conceivable that energy harvesting systems may be deployed in areas with little available
harvestable energy, and be unable to charge their batteries for long periods of time. The shelf-
life for lithium-based batteries is approximately one decade, however, LTO chemistries have
been shown to exhibit no long-term damage when undervolted, even to zero volts [159]. This
is a significant improvement over traditional technologies like LCO, LMO, and NMC which
suffer capacity degradation if undervolted due to long storage without charging. Regardless of
the type of battery, designs should utilize the myriad of small battery charger and management
ICs that exist to properly manage battery state and minimize shelf-life effects [24, 25, 150].

The lifetime of an energy harvesting system is also not solely dependent on the lifetime of
its power supply. Most notably, some components exhibit significant long-term calibration
drift. For example, each year a humidity sensor [154] expects a quarter of a percent relative
humidity drift, while an oscillator [160] expects 3 ppm drift. There is also the question of
relevancy in the face of decades of future progress in networking, processor efficiency, and
MEMS sensors. At some point, the wireless sensor platforms built today will be obsolete and
less useful, regardless of their theoretical lifetimes. Sensors do not need to last indefinitely,
they need to last long enough and provide enough benefit to justify their original deployment.
Replacement and renovation is inevitable for any infrastructure. Conservatively, rechargeable
batteries have the capability to last between 10 and 20 years when managed properly. While
not cycle limited, supercapacitors have similar lifetime estimates on the order of decades.
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When considering this reality, only systems that employ ceramic and tantalum capacitors
can claim to support indefinite lifetimes.

5.6 Temperature Sensitivity
In addition to lifetime considerations, batteries are also notorious for their temperature
sensitivity. As mentioned previously, in temperature extremes, batteries exhibit higher ESR,
self discharge, and have accelerated capacity degradation. Out of the many arguments against
batteries, temperature sensitivity is the most coherent. This section seeks to quantify and
compare the temperature sensitivity of capacitors, supercapacitors, and batteries and identify
the applications for which it has a significant impact.

Ceramic and tantalum capacitors are very temperature resistant. Of the few selected
in Table 5.1, both types are rated for -55 to +125 °C [105, 112, 113]. The ceramic and
tantalum capacitors both exhibit approximately 10% capacitance difference at -55 and 85 °C.
Extreme temperatures can reduce operational lifetimes, however. Tantalum capacitor lifetime
is reduced from 4000 years at 45 °C to just 14 years at 85 °C [60].

Supercapacitors are also rated for extreme temperatures, and those listed in Table 5.1
can withstand temperatures between -40 to -20 °C on the low end to up to 70 °C. Super-
capacitors generally experience increased ESR with lower temperatures, and lifetime limits
with higher temperatures [106, 115, 117, 155]. Capacitance is generally affected by low and
high temperatures. For the 33mF BestCap, at -40 °C, ESR can increase to 20x its rated
value. Similarly for the 470mF Murata capacitor, it can experience 8x its rated ESR at
the same temperature. All supercapacitors have a rated lifetime in terms of hours at a
specific temperature. The BestCap can withstand 1000 hours at 70 °C, and the Murata
cell is rated for 1000 hours at 85 °C before experiencing a capacitance degradation of 20%.
For supercapacitors, the effects of extreme temperatures is actually quite severe. At cold
temperatures, supercapacitors will be unable to supply current at a sufficient voltage, and at
high temperatures their rated lifetime can decrease from hundreds of thousands of hours to
just 1000, or from approximately 11 years to 40 days. Even a moderately high temperature
of 45 °C can reduce some supercapacitor operational lifetimes from 14 years to 3 [155].

Like supercapacitors, batteries experience adverse effects at extreme temperatures. At
low temperatures, lithium-based batteries exhibit a reduced energy capacity, support lower
charge and discharge rates, exhibit higher ESR, and can experience accelerated shelf-life and
cycle aging [161]. For a LFP battery at -20 °C, its capacity is reduced to approximately 60%
of its original value. When this battery is stored at -20 °C for 17 days, it experiences a further
10% capacity degradation to 50%, and a 16x increase in ESR to 8mΩ from 0.5mΩ [161].
If charging rates are exceeded at cold temperatures, or the battery is simply cycled at low
temperatures, additional battery capacity degradation can occur. The same LFP battery
as above experiences a 12% degradation after only 12 cycles at -20 °C [161]. Likewise,
at higher temperatures, lithium batteries also experience accelerated aging and increased
internal resistance [162]. At extreme temperatures, some types of lithium batteries can
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experience thermal runaway and cause explosions or fires. These effects are rarely described
and quantified in battery datasheets. Instead, manufacturers simply provide a range of
operational temperatures.

Li-ion and LiPo batteries are particularly sensitive to temperature. Of those listed in
Table 5.1, they are generally only rated for 0-40 °C for charging, and -20-60 °C for discharging.
We would expect them to perform worse than the metrics listed previously for the LiFeMnPO4

battery. Generally, LTO and LFP batteries perform better in extreme temperatures than
traditional Li-ion and LiPo cells. Some datasheets and authors report operating LTO batteries
successfully as low as -30 °C and as high as 75 °C [124, 127, 163]. From their datasheet, the
selected LTO cells in Table 5.1 exhibit a 10% capacity degradation at -20 °C, and a 20%
degradation at -30 °C. At high temperatures, these cells only experience a 2% degradation
at 75 °C, and less than 1% at 60 °C. LFP cells perform worse than LTO cells at lower
temperatures. According to the datasheet of the cells in Table 5.1, they experience 40%
capacity degradation at -20 °C, which is in agreement with the previous section [127, 161].
Solid-state batteries also perform relatively well in extreme temperatures due to their solid
electrolyte, and there are commercial options rated for -20 to 80 °C. However, at -20 °C,
effective capacity is reduced to just 20% of original. For this solid-state battery, effective
capacity actually increases at 80 °C to 120% [131]. No information is given on the effect of
temperature on ESR and long-term cycle lifetime for these cells, but related work indicates
these metrics would still be severely impacted by extreme temperatures. [85, 128].

Regardless of type, lithium batteries should be kept as close to room temperature as
possible, and in extreme environments like high altitudes, power plants, outer space, or
close to the earth’s mantle, batteries will require active heating or cooling to maintain
an operational lifetime. For example, the Mars Curiosity and Perseverance rovers utilize
a Radioisotope Thermoelectric Generator (RTG) to both provide heating and constant
thermocouple harvesting to charge a bank of two Li-ion batteries [164]. Battery packs with
included (non-RTG) heaters are also commercially available for cubesat applications [165].

Batteries are not as robust as capacitors and supercapacitors when used in extreme
temperatures, and will require temperature control. However, supercapacitors also require
active temperature management to maintain long lifetimes and normal performance at high
and low temperatures. When considering common use cases for wireless sensors, the efficient
and operational range of both batteries and supercapacitors encompasses all applications
located in spaces that humans occupy, and likely will handle most of the range of temperatures
outdoors in many locations.

5.7 Safety
Besides temperature sensitivity, many types of lithium metal batteries are also notorious
for their propensity to burn and explode under mechanical, electrical, and thermal stress.
Capacitors and supercapacitors do not exhibit same caliber of danger, and at most will “pop”
if exposed to electrical stress like overcharge or a large inverted charge. For both batteries
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and supercapacitors, electrical stress is rare for low power energy harvesting applications,
especially if using a battery protection and voltage management circuit. However, in some
extreme environments, mechanical and thermal stress can be an issue. If left uncharged for a
long period, battery undervoltage will occur.

Batteries with LCO and NMC cathodes and graphite anodes are prone to fiery explosions
if mishandled. However, batteries that use other electrode materials, like LFP cathodes or
LTO anodes, are considered much safer [137, 138, 140, 166]. Compared to LCO and NMC,
LFP has enhanced safety and stability [166]. The structure of the LFP cathode is more
thermally and chemically stable. The LFP cathode material has been shown to not release
oxygen during thermal runaway, even when fully decomposed at high temperatures. The
P-O bond within the PO4

3- ion is stronger than that of the Co-O bond in the CoO2
-, so that

when abused, oxygen is released slowly or not at all [137]. This results in a significantly safer
cell, where any thermal runaway is dominated by anode and electrolyte reactions at extreme
temperatures [138].

LTO anodes provide similar benefits over graphite anodes. Graphite is prone to expansion
and contraction during charging and discharging, respectively, which causes internal damage
to the cell, resulting in capacity fading and in rare cases, short circuit conditions [141].
This effect is further exacerbated at extreme temperatures. Titanate oxide is considered
a zero-strain material, meaning it experiences very little change in its chemical structure
during charging, discharging, or temperature changes, unlike graphite. When heated to
high temperatures, graphite can break down and react exothermically with the electrolyte,
releasing flammable hydrocarbons. By contrast, at the same high temperatures, LTO anodes
do not produce heat or release any gasses [140]. Beyond the anode chemical stability, the
high potential of LTO anodes prevents lithium dendrites from forming upon deep cycling or
after many cycles [137]. Lithium dendrites are the main cause for internal shorts in batteries
with graphite anodes. These features of LTO anodes greatly lower the risk of internal short
circuits, thermal runaway, and explosions. The solid electrolyte in solid-state batteries also
substantially improves safety. A solid electrolyte is not flammable, and since it is solid, it is
unable to interact explosively with a decaying cathode or anode [142].

While there is still slight potential for danger under abuse conditions for LTO, LFP, and
solid-state batteries, the danger is substantially less than traditional graphite and cobalt-
based lithium batteries. For LTO batteries, the danger of thermal runaway and explosion
should be equivalent with that of a supercapacitor. Solid-state batteries should be even safer
than supercapacitors, as EDLC supercapacitors employ an aqueous electrolyte. The battery
manufacturer for the LTO and LFP cells listed in Table 5.1 states in the datasheet that no
battery protection circuit is necessary to ensure safety [124, 126]. These cells also feature
a capacitor-like notched cap that fails first in the case of internal pressure and gas release.
Despite their safety, battery management is still important to limit damage to any battery
and maintain capacity and performance. Not all lithium batteries are equivalent, and the
claim that all batteries are dangerous disregards the many safety improvements made with
newer electrode and electrolyte materials.
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5.8 Summary
Among the various arguments that batteryless platform designers have levied against batteries,
very few are relevant in the face of improved battery technology. Out of all addressed here,
temperature sensitivity is the only real limitation of batteries. This complicates their usage
in extreme environments, like space, but does not disqualify them in the vast majority
of applications. Supercapacitors also exhibit poor performance and lifetime at extreme
temperatures. Batteries cannot compete against some supercapacitors on power density and
cycling performance, but for low power applications, these metrics are inconsequential. In
reality, batteries are by far the most energy dense rechargeable storage device available and
they provide many orders of magnitude more energy capacity per dollar than any capacitor or
supercapacitor. New battery technology provides comparable efficiency, lifetime, and safety
to many modern supercapacitors.

The qualitative arguments made by batteryless proponents are the same ones made in
the 2010s, when miniature battery technology was poorly suited for long-lived, low power
applications. Two decades later, these arguments have not been revisited or verified with
quantitative evidence, and continue to find purchase to further justify batteryless design
decisions even when the facts suggest otherwise. The choice to use a (super)capacitor has
become the default, often selected to provide just enough energy storage to allow an application
to function, but far from enough to function well, as Chapters 3 and 4 quantitatively illustrate.
This lack of energy capacity has forced researchers to develop complex software and hardware
solutions and shoehorn capacitors and supercapacitors into applications they are poorly suited
for. There is a far superior and simpler solution for the majority of energy harvesting sensing
applications: use a battery.
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Chapter 6

Implementation and Evaluation of
Capacity Sizing

This chapter considers two example sensing applications and the design and implementation
of wireless sensor systems to achieve the goals of these applications. We explore the system
design for these applications within the context of the conclusions of Chapters 3 and 4,
which suggest that energy capacity is highly important for energy harvesting wireless sensor
performance. The first application that we consider is the measurement of fine-grained
workplane illuminance. Illuminance measurements at the desk or computer monitor can be
used to inform the operation of a lighting control system to balance artificial and natural light
for lighting efficiency and occupant comfort. The goals of this application are to measure
illuminance at high granularity with high availability and provide a lifetime of at least a decade.
This application is relatively simple and it is used to validate the simulation and conclusions
presented in Chapters 3 and 4. The second application is image-based human occupancy
detection and counting. Human occupancy measurement can help inform building energy
management and climate control. The goal of this application is to accurately and consistently
detect the presence of humans within view while providing a lifetime of several years. This
application considers an existing batteryless image sensing solution and reconsiders their
design in the context of the conclusions of previous chapters. We propose designs for each
of these applications, and detail their implementation and evaluation. Utilizing a hybrid
energy harvesting architecture with sufficient rechargeable energy buffer and a backup non-
rechargeable energy storage, our proposed sensor designs are able to provide significantly
higher availability than batteryless designs, as well as much longer lifetimes than designs that
solely use non-rechargeable batteries.

6.1 Measuring Workplane Illuminance
The advent of LED lighting has significantly reduced electricity consumption in residential
and commercial sectors. However, residential and commercial lighting still consumes 5% of the
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(a) Harvesting and storage architecture (b) Hardware

Figure 6.1: The Permamote power supply architecture is informed by the findings in Chapters 3
to 5. An LTO battery is recharged by a solar panel. When the battery is depleted, a primary-
cell powers the system, providing reliability and avoiding intermittency.

total U.S. electrical consumption [167]. Beyond the utilization of LED lighting, the technique
of daylighting, or lighting buildings with natural light, can further reduce the amount of
electricity consumed by buildings. Since the intensity of daylight can be unpredictable as
it depends on weather, it can be difficult to achieve consistent lighting with natural light
alone. Artificial lighting can be used to augment insufficient natural light, but it requires fine-
grained measurement to provide feedback to control and maintain a set point in a space. In
particular, workplane illuminance for commercial buildings is important for occupant comfort
and productivity, but is difficult to maintain with existing lighting control systems. Modern
lighting control systems that perform both measurement and control are generally limited
to large zones of measurement and influence. The cost of instrumentation and automation
is often too exorbitant to justify fine-grained sensing. This often results in inequitable and
sometimes uncomfortable lighting for occupants. Wireless sensing could provide a solution for
fine-grained workplane measurement for daylighting applications, assuming the sensor does
not require frequent maintenance and provides high availability and consistent measurements
for the lighting system feedback loop. For this specific example, our application goals are to
provide at least a ten year lifetime with consistently high availability. This section details
the realization of a design to meet these requirements, and utilizes this design to verify the
results of the simulation and design conclusions detailed in earlier chapters.

Design and Implementation

We design and implement a prototype sensor named Permamote to perform workplane
illuminance sensing based on the application requirements described previously and the design
principals discussed in Chapters 4 and 5. Permamote integrates a processor, BLE/802.15.4
radio, and various environmental, lighting, and a passive infrared (PIR) occupancy sensor. The
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components used in Permamote are the same ones that we used to develop our representative
hardware and workloads for our simulation. These components are listed in Table 4.2. A
picture and system diagram of Permamote is shown in Figure 6.1. All hardware and software
for the platform is open source1.

Energy Harvesting and Storage.

Some of the primary goals of Permamote are to provide workplane illuminance measurements
with high availability for a long lifetime of greater than ten years. Given the results of
our simulation, a design that relies solely on energy preallocation is unlikely to achieve a
sufficiently long lifetime. Permamote is powered by an energy harvesting front end that
capitalizes on the benefits of rechargeable and non-rechargeable energy capacity. It utilizes the
TI BQ25505 energy harvesting IC, which harvests energy while monitoring both rechargeable
and backup energy stores, switching between them at user-configurable voltage thresholds [25].

We utilize the hueristics developed in Section 3.3 to determine the required sizing for our
energy harvesting and energy storage. We select a 10.9 cm2 amorphous silicon photovoltaic
panel as our energy harvester to fit within our form factor. Assuming the lower end of efficiency
(10%) and the upper bound of indoor irradiance, this panel can provide an average of 100 µW.
On average, this income power provides more than sufficient average power to support various
frequencies of the sense and send workload. We can consult Sections 3.3 and 4.3 to estimate
the minimum required capacity for the sense and send workload. Considering the average
power required by the sense and send workload with a 30 second period (24.5µW), the
minimum sufficient capacity should be 1.4× 103 times the average workload power according
to our capacity sizing heuristic. This is if we assume an income distribution similar to the
EnHANTs Setup D and an income margin of 300% of the expected workload power2. Given
this heuristic scaling factor, the capacity of the rechargeable energy storage should be on the
order of 34mWh. This agrees with results from our simulation in Figure 4.3 that suggests
energy capacity on the order of 1–10mWh will be sufficient to achieve near perfect availability
in conditions like Setup D captures. The simulation suggests slightly less capacity is required
compared to the heuristic estimate. This is because the simulations assume the energy buffer
starts fully charged. Most systems, especially those that rely on rechargeable batteries, are
deployed fully or partially charged. In our simulation, this provides an influx of energy into
the system and it does not need to capture as much harvested energy to power its workload,
and thus requires less energy capacity. If simulated for more time, over a longer period than
the energy income trace provides, the capacity determined by simulation results may not be
sufficient to continue an energy neutral operation. The heuristic for energy capacity sizing
provides a safer, more conservative estimate.

Given this analysis, we select a 20mAh (48mWh) LTO battery to achieve this energy
capacity [124, 126]. As described in Section 5.5, we configure the voltage thresholds of the
BQ25505 to derate the usable capacity of this battery to increase the apparent cycle lifetime

1https://github.com/lab11/permamote/tree/master/hardware/permamote
2100µW represents a 300% margin over the 24.5 µW workload

https://github.com/lab11/permamote/tree/master/hardware/permamote
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Figure 6.2: Lifetime estimation of the Permamote sense and send workload given different
rechargeable buffer sizes and different primary cell sizes. This figure utilizes the low irradiance
Setup A environment (15 µW/cm2) and the 30 second sense and send workload period
(24.5µW). This is a different presentation of Figure 4.6 that identifies the rechargeable
capacity of Permamote with a red vertical line.

of the battery. The resulting energy storage provides 24mWh of energy storage, more than
the capacity required to achieve the reliability and energy utilization improvements of the
workloads that were simulated in Section 4.4 and Figure 4.6.

In some cases, the available harvestable power may be lower than expected and insufficient
to operate in an energy neutral fashion. This justifies the addition of a reliable, non-
rechargeable backup energy source. Figure 6.2 is a recreation of Figure 4.6 presenting the
estimated lifetime of Permamote with its configured 24 µWh rechargeable storage and various
non-rechargeable backup energy storage options. We assume a 30 second sense and send
workload period. From this simulation result, Permamote requires at least one CR2032 coin
cell to achieve the application lifetime goals in the worst case energy harvesting potential.
Thus, Permamote is designed to be configured with either one or two CR2032 coin cells or a
CR123A cell. The output of the active battery is boosted by a MAX17222 regulator, which
features high conversion efficiency (>90%) at low output currents and operates down to
400mV [143].

Processor, Radio and Sensor Selection

The components used in the implementation of Permamote are the same that were bench-
marked for our simulation configuration in Chapter 4. These components are summarized
in Table 4.2. We note our choice of the Nordic NRF52840 MCU over the more commonly
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used MSP430FR series because of its higher active power efficiency while offering compa-
rable sleep currents. Specifically, it only draws 56µA/MHz compared to over 100 uA/MHz
for the MSP430. The MSP430 is a common choice for batteryless systems because of its
integrated non-volatile FRAM. Unlike batteryless systems, Permamote is designed with
sufficient rechargeable capacity and backup energy and is intended to never power off and
lose volatile state. This eliminates any reliance on state retention techniques and the need for
the non-volatile FRAM present on the MSP430FR series chips. While slightly more efficient
processors and radios exist than those found in the NRF52840, we value the simplicity of the
SoC-based design as well the platform’s capability of using either BLE or 802.15.4 over its
2.4GHz radio.

Simulation Evaluation using Real Systems

To evaluate our simulation and the benefits of a capacity-focused design, we perform a three-
month-long deployment in a partially sunlit room using i) a primary-cell only system [97], ii)
a batteryless, capacitor-only system [63], and iii) Permamote, our system that features both
a secondary and primary-cell. We model these systems over the same period using estimated
irradiance from Permamote illuminance masurements. We compare the performance and
lifetime of these three systems with the predictions generated by a simulation of their workload.
We also compare the availability of Permamote to the batteryless system.

We analyze the deployment of the systems and compare their behavior to our model’s
predictions: i) ten CR2032 primary-cell (720mWh) only devices, ii) an batteryless system
configured with just 500µF of capacitance (about 0.36 µWh at 2.2V), and iii) Permamote,
configured with a 20mAh (48mWh) secondary-cell, half of which is usable, and a CR2032
backup. The primary-cell only device performs environmental sensing over BLE every second.
The batteryless system sends a beacon as soon as its capacitor bank is full. When its energy
is depleted, it powers off and charges again. Permamote is running the “sense and send”
workload that we described in Section 4.1, and sends illuminance measurements every second.
This workload stresses the model and requires more charge and discharge cycles. We use
Permamote illuminance readings to estimate irradiance using the same scaling factors used
by Yerva et al. [2], and use these traces as model input for the energy harvesting sensors.

Primary-Cell Only

We measure and model the workload of the primary-cell system and produce estimates for
lifetime. The primary cell system requires on average 480 µW to measure and beacon every
second. Our model predicts the platform lifetime to be 58 days. The average lifetime of the
devices in our ten device deployment is 61 days, which is on par with our simulation estimate.
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Figure 6.3: Performance comparison of model expectation versus real batteryless system.
Data from a three month deployment of two systems is used to verify our model. We use
three weeks of illuminance measurements to estimate irradiance and model the number of
packets transmitted by an batteryless node. Average daily error is 15%, with a standard
deviation of 17%.

Batteryless

We model the number of packets sent each hour by the batteryless system over a three
week period, and compare against the results of an actual device in Section 6.1. Like the
simulation of the primary cell system, the model also predicts a more conservative result for
the batteryless system. The simulation predicts fewer successful packets sent compared to
the actual batteryless system under test. The average daily error of the model versus our
results is 15%, with a standard deviation of 17%. This error can attributed to two primary
sources. Illuminance is measured close to, but not exactly at the solar panel of the test
device. Occasional direct sunbeams, like that experienced on day 16, can illuminate the solar
panel but not the sensor, or vice versa. This results in a substantial over or underestimate of
available light. In addition to inaccurate light measurements, we introduce error through our
estimation of irradiance. We measure illuminance instead of irradiance, and must resort to a
piecewise linear estimation, when in reality the relationship is not well defined and non-linear
when considering different light sources [168]. In the case of our estimation, results indicate
that the model consistently underestimates high irradiance measurements.
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Figure 6.4: The estimated state of charge of a week of a workload compared to our model’s
estimation. We use three weeks of illuminance measurements to estimate irradiance and
model the number of packets transmitted by an batteryless node. Average daily error is 15%,
with a standard deviation of 17%. (b) We model and measure a Permamote’s state of charge
while running a “sense and send” workload with a 1 s period for a week, beginning at midnight
on the first day. Charging hysteresis limits of the devices are set at 51% and 43%. Shaded
regions represent periods of low harvestable potential (< 15 µW/cm2), i.e. nighttime. For
the first two days, model predictions closely track the experimental measurements. Errors in
hysteresis and irradiance estimation cause the model to reach its upper hysteresis sooner than
the experiment does, annotated by the green circle. In actuality, the device exits charging
hysteresis at the peak marked with the purple square. More importantly, the frequency
and length of periods spent using harvested energy collected in the secondary-cell (downward
slopes) are identical.
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Figure 6.5: Packets received over two days. This figure compares the availability of an
batteryless design and Permamote. Permamote sends a packet every second and does so
without fail, while the batteryless system is only able to send when light is available.

Secondary and Primary-Cell

We compare our model’s predicted state of charge to a deployed Permamote over a seven
day period in Section 6.1. We estimate state of charge from the reported secondary-cell
voltage, and irradiance from lux measurements. In this figure, the state of charge cycles
between configured battery hysteresis limits, as the workload is too intense to be sustained
by energy harvesting alone. Flat and upward slopes of the curve represent the device in
hysteresis, using the primary battery to perform its workload. Upper slopes indicate the
secondary cell is charging from harvested energy. Downward slopes indicate the device is
out of hysteresis and is using harvested energy stored in its secondary battery to perform its
workload. The shaded “nighttime” regions are not uniform, as the deployment environment
is occupied by graduate students that occasionally work late hours or forget to turn off the
lights. The model correctly predicts the cycling behavior of the deployed device for two days,
but deviates during the third day. The model predicts that the device would charge above
the upper hysteresis limit and begin supplying energy from the secondary-cell before the
test device actually does. This inaccuracy, like that of the last of experiment, is partially
due to our inexact estimation of irradiance. In addition, real device hysteresis limits are
set using resistor networks. The resistors used have 1-5% tolerance, and are susceptible to
temperature changes, which introduces dynamic errors that is not accounted for in our model.
Even though the predicted state of charge deviates after two days, the length and frequency
of periods in which harvested energy is stored and used are identical to our experimental
measurements. The amount of energy that is charged and discharged from the secondary cell
is also identical.

Permamote Performance and Lifetime

We also compare the performance of the deployed batteryless system and Permamote. In
Figure 6.5, we show the number of packets sent per hour for two days. Permamote sends data
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Platform Successful Events (%) Long-Running
Time to Completion Ratio

Lifetime
(yrs)

Periodic Reactive Average 95th Percentile
Telos [28] 100 100 1 1 8.55
Hamilton [103] 100 100 1 1 6.75
BLEES [97] 100 100 1 1 1.11
Gecko [2] 39.5 64.9 387 981 ∞ g

Capybara [18] a 46.3 72.8 37.6 1 ∞ g

Capybara [18] b 41.1 67.1 2730 8900 ∞ g

Flicker [7] 39.3 64.2 1307 5670 ∞ g

EnHANTs [52] 79.4 96.0 1 1 — h

DoubleDip [53] 77.9 66.5 1 1 — h

[169] 78.4 66.9 1 1 — h

Permamote c 81.2 98.3 1 1 — i

Permamote d 100 100 1 1 35.8
Permamote e 100 100 1 1 30.2
Permamote f 100 100 1 1 6.27

a With capacitors: 400 µF ceramic + 330 µF tantalum + 67.5mF supercapacitor.
b With capacitors: 300 µF ceramic + 1100 µF tantalum + 7.5mF supercapacitor.
c No primary-cell. d AA primary-cells like Telos. e CR123A primary-cell like Hamilton.
f CR2032 like BLEES. g Lifetimes are theoretically infinite for capacitor-based systems.
h Not enough information to predict cycling failure time for theses systems.
i Expect cycling degradation in 20-50 years, but do not attempt to estimate.

Table 6.1: Simulated performance of energy-harvesting systems performing the same workloads.
For each platform considered, we model the performance of its energy storage architecture.
Periodic workload and lifetime estimates are based on a 10 s period, and the reactive workload is
scaled to generate a maximum of 2000 events per hour (3.4 s average daily period). Permamote
is the only energy harvesting platform that can provide 100% availability, while also offering
a lifetime of more than triple that of similar battery-only platforms.
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every second, while the batteryless system sends as fast as possible. Permamote is able to
collect and send its data continuously, while the batteryless system is limited to sending only
during the day. This demonstrates the increased availability afforded by increasing secondary
capacity and including a backup energy store.

We also use our model to explore the estimated performance of Permamote compared to
the power supply architectures of historical systems for workloads including our illuminance
sense and send application and the other applications defined in Section 4.1. To isolate
the analysis to just power supply types and sizing, we assume each system uses the same
low-power hardware and is performing the same workload as Permamote. The results of this
modeling are shown in Table 6.1. Our model estimates that Permamote can expect several
decades of 100% reliable lifetime when configured as it was deployed for this evaluation, albeit
configured with the less intense 10 or 30 second periodic workload. For some workloads,
Permamote can provide over double the availability of similar batteryless platforms and more
than triple the lifetime of battery-based architectures.

6.2 Image-based Occupancy Detection
Besides the utilization of LED lighting and daylighting, another way to increase lighting
efficiency in buildings is to automate lighting power states based on human occupancy. Human
occupancy is also a useful metric for regulating building heating and cooling. The presence
and number of people in a space directly effects the amount of heating, ventilation, and air
conditioning (HVAC) a building must perform to maintain a temperature set point [170].
Compared to lighting, building HVAC is much more energy intensive, with cooling consisting
of 10% of the total U.S. electricity consumption in 2021 [167]. Occupancy is measured in
lighting control systems, however they often rely on a binary indication of occupancy based
on simple ultrasonic or PIR motion detection [171]. This technique cannot quantify the
occupancy of a space, and it is prone to false positives and negatives. Non-human objects
that move through a space can trigger an ultrasonic sensor, while any rapid changes in
surface temperatures can result in false positives for a PIR sensor. When a person is not
moving sufficiently, both ultrasonic and PIR sensors may sense a false negative. Instead
of, or in addition to these binary occupancy measurements, image sensing can be used to
more accurately capture the occupancy, including person count, of a space. Image inference,
including classification and object detection, has been one of the most active areas of modern
computer science and machine learning research. However, due to the cost and difficulty
of deploying wired cameras, long-lived applications based on continuous image sensing has
traditionally been untenable. This is especially true for indoor building-centric applications,
where camera density must be higher for sufficient coverage and lifetime must be sufficient to
avoid frequent maintenance.
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Related Work

Indoor wireless camera sensors have been heavily researched and commercialized over the
past fifteen years, but due to the technology available at the time, as well as incompatibilities
between design decisions and longevity, these platforms are typically limited to lifetimes of at
most weeks to months [172–176]. Deployment of these platforms beyond small or temporary
installations remain a challenge due to the cost of frequent battery replacement.

Modern image sensing platforms have taken advantage of technology improvements, as
well as employed new techniques to reduce transmit power and increase (or abolish) lifetime.
WISPCam [177], is a battery-free camera that utilizes RFID for power and backscatter
communication. It can capture an image every 15 minutes when an RFID reader is 5 meters
away. BackCam [176] is another camera platform that utilizes backscatter for communication,
but over commodity WiFi. BackCam can stream video at 4 frames per second for a lifetime
of 32 days. Similar to WISPCam, BackCam also requires a nearby wall-powered transmitter
to generate excitation packets for backscatter communication. Camaroptera [56] is another
batteryless platform, focused on wide-area image sensing. The platform uses a long-range
LoRa radio and harvests energy from solar panels. It performs local inference to detect people
within captured photos and can achieve an end-to-end latency of less than 20 seconds in
well-lit outdoor environments. Commercial platforms like the Blink Indoor wireless security
camera [174] and the Wyze outdoor camera [175] utilize low power motion detection to
minimize energy usage. The Blink Indoor claims a 2 year lifetime consisting of 40000 seconds
of recording 720p video on two AA batteries. Wyze estimates a lifetime of three to six months
on its internal 5.2Ah battery if capturing 10 to 20 video clips per day.

While these modern platforms push the envelop for video streaming or batteryless imaging,
they have drawbacks that limit their deployability in indoor spaces. Backscatter-based
systems require a nearby carrier transmitter to communicate. Even with a dedicated, nearby
transmitter, WISPCam can only periodically capture images every 15 minutes. Camaroptera
is designed for outdoor use, and it is unclear if it can capture and send images indoors,
especially as its energy harvesting system requires 197 µW when idle. The Blink camera lasts
two years if it is placed in locations infrequently occupied by people. Placing the camera in
a kitchen that sees an average 26% occupancy on weekdays leads to a lifetime of only 1.78
days [176]. The Wyze camera faces a similar fate if placed in a frequently occupied area.

Image sensing platforms developed by industry and in research exhibit the same design
disconnect that we noted in Chapter 2. Commercial image sensing systems largely utilize
batteries and avoid energy harvesting, while modern research systems are largely energy
harvesting and batteryless. These two different design result in a deceptive choice between
reliable operation with a preallocated energy source but a limited lifetime, or an unlimited
but unreliable lifetime with batteryless energy harvesting. Neither option is satisfactory for
many applications, including our indoor human occupancy detection example application
that simultaneously demands a long sensor lifetime and high availability.
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The Performance of a Batteryless Image Sensor

In this dissertation, we have argued that a batteryless approach is not appropriate for
applications with QoS requirements. Designers of batteryless systems rarely evaluate their
platforms and frameworks in regards to availability and reliability. However, utilizing the
heuristics and simulation tools we have developed in Chapters 3 and 4, we can estimate the
performance of these systems and identify alternate design decisions that may result in a
more performant image sensing system.

In this section, we consider the design and performance of Camaroptera, a batteryless
image sensor [13, 56]. We capture the design details of Camaroptera and use them to simulate
the system and examine its performance. Camaroptera is designed as a primarily outdoor
system, and utilizes LoRa for communication and image backhaul. It performs local inference
to detect people in captured frames. A positive detection results in transmitting an image, and
if no person is detected, it discards the captured image to preserve energy. It harvests solar
energy with four small high-efficiency (20%) monocrystaline solar panels (6.2 cm2 total area).
Camaroptera stores harvested energy in a 33mF supercapacitor. Camaroptera, like many
batteryless systems, operates opportunistically. Whenever its capacitor is charged sufficiently,
it turns on and performs its workload. Camaroptera’s workload consists of capturing an image,
performing some computations and inference on this image, compressing the image, and
finally transmitting the packetized image. Camaroptera’s energy storage is sized to support
the most energy intensive operation in its workload: transmitting a single LoRa packet. A
single packet cannot fit an entire compressed image, so Camaroptera relies on multiple power
cycles to send between seven and eight packets to transmit an entire image. All combined, a
single image capture and transmission requires 781mJ3. When idle, Camaroptera’s power
subsystem consumes 197µW. With this information, along with operation timing provided
by the authors [13], we are able to complete a simulation configuration like Table 4.3 for
Camaroptera’s hardware design and workload.

For energy income, we synthesize an outdoor irradiance trace based on the EnHANTs
Setup D trace. The authors evaluated Camaroptera from 5–95 klx, which roughly corresponds
to 4–77mW/cm2 for natural light4. We scale the mean of the synthesized outdoor trace to
represent 10 and 50mW/cm2 for an estimate of outdoor irradiance on the same scale. The
simulation results of Camaroptera’s average packet distribution under these two harvesting
conditions are summarized by Figure 6.6. With either income, Camaroptera is able to
maintain high image capture and transmit rates when light is available. However, as expected
of a batteryless system, when light is unavailable, Camaroptera is unable to capture and send
many images. Since Camaroptera performs its workload in response to its energy storage
state, it cannot maintain a periodic schedule or react and detect the presence of people.

This limitation is primarily due to the energy capacity available to the platform. The
available energy in an outdoor setting is essentially limitless to a low power embedded system
like Camaroptera. For the two simulations we consider, our simulated Camaroptera with its

33.06 (capture) + 0.253 (difference) + 66 (inference) + 40 (JPEG) + 96×7 (transmission) = 781mJ [13]
4For natural sunlight: 1W/m2 ≈ 122 lx [168]
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Figure 6.6: The distribution of simulated Camaroptera transmitted image packets per hour
in a day. The distribution represents an average over the length of two synthesized outdoor
traces (10 and 50mW/cm2) based on the EnHANTs Setup D trace. Camaroptera operation
is limited to times when daylight is available, regardless of the scale of average input power.
The average number of packets is significantly lower between 6PM and 6AM.

capacitor energy buffer is only able to capture 48% and 21% of the available energy for the
10 and 50mW/cm2 traces, respectively. Due to its designed energy capacity, Camaroptera is
simultaneously limited in the amount of energy it can capture and the amount of instantaneous
energy available to it at any given time. Given the design heuristics developed in Chapter 3,
we can determine an estimate for Camaroptera’s average income and average workload power
if we assume a fixed sensing period instead of the opportunistic operation of the actual
platform. From these averages and using the capacity sizing heuristics from Section 3.3,
we can determine an estimate for the minimum sufficient capacity to sustain this workload
given our synthesized incomes. As mentioned earlier, each Camaroptera activation requires
781mJ over 40 seconds, assuming all images go through the entire inference pipeline. The
platform’s idle power is 197µW. While the platform is capable of transmitting an image every
45 seconds to two minutes depending on lighting conditions, we assume a relaxed periodic
rate of capturing and transmitting an image every five minutes. This results in a 2.8mW
average workload power5.

From this example workload and Camaroptera’s income, we can use the huristics developed
in Chapter 3 to determine the proper capacity sizing for the platform. With Camaroptera’s
designed solar panel size, maximum power point voltage, and efficiency, it can expect between

5 781mJ+(197 µW×(300−40)s)
300s = 2.77mW
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Figure 6.7: The availability of Camaroptera running a five minute sense and send workload,
as energy capacity is increased from that offered by its original 33mF supercapacitor to the
minimum sufficient capacity estimated by the heuristics developed in Section 3.3. Capacity
must be increased by five orders of magnitude in order to achieve near 100% availability.

12.3 and 61.6mW average income power from our two synthesized traces. On average, this
theoretical energy income should be more than sufficient to power this periodic sense and
send workload, assuming the platform has enough capacity to capture it. The lower end of
this income corresponds to an income margin of over 300%. Considering the sizing factor
for income resembling the distribution of Setup D, determined in Section 3.3, we should
expect a minimum sufficient capacity that is 1.4× 103 times Camaroptera’s average workload
power. This corresponds to an energy capacity of 3920mWh. The 33mF supercapacitor on
Camaroptera only provides 41µWh. This capacity represents five orders of magnitude less
than the minimum sufficient energy capacity predicted by our heuristic. To further explore
the impact of capacity sizing for Camaroptera, we simulate the platform with a sweep of
different amounts of rechargeable capacity. We change our simulated Camaroptera’s workload
behavior from an opportunistic strategy to the periodic schedule discussed above. We sweep
capacity from the size of Camaroptera’s original energy capacity to the amount predicted by
our sizing heuristic. The results of the simulated platform performance versus capacity are
presented in Figure 6.7. For each successive simulation that increases energy capacity, the
periodic Camaroptera workload is able to achieve higher availability. With an energy capacity
above 100mW h, simulations with the 50mW/cm2 income are able to achieve near 100%
availability, while it requires at least 1000mW h for the 10mW/cm2 simulations to achieve
similar levels of availability. Both of these simulation results suggest less energy capacity is
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required than the previously estimated 3920mWh. This is for the same reason as explained
in Section 6.1: the simulation begins with a partially charged energy buffer to mimic how
a real system would be deployed while the heuristic analysis assumes starting from empty.
Thus, the heuristic provides a more conservative estimate that is more likely to result in
energy neutral operation over longer periods of time.

Camaroptera was implemented with an energy capacity that was sized to support its most
energy intensive task. This arbitrary design decision results in a minimally feasible design
that is fails to fully capture and utilize the available harvestable energy. With significantly
more energy capacity, Camaroptera would be able to capture more energy, persist through
periods of no harvesting potential, and provide significantly higher availability. Based on
the capacity requirements determined by this analysis, Camaroptera could be redesigned
with a medium-sized rechargeable battery, on the order of 1000Ah, to achieve the higher
performance estimated in Figure 6.7.

The Design of an Indoor Wireless Image Sensor

Due to Camaroptera’s relatively high active and idle power requirements, it is unsuitable
for use in many indoor environments. Designing an image sensor for indoor use will require
different design decisions to achieve lower power operation. An indoor sensor does not need
to depend on higher power wide-area communications like LoRa. Instead, with modest
infrastructure investment, an indoor platform can rely on low power personal- or local-area
networks. Besides data transmission efficiency, power efficiency can be improved through
the use of a more efficient and capable processor. Idle power requirements can be reduced
through the elimination of Camaroptera’s hysteresis circuitry, and instead utilizing simple
power gating to reduce component quiescent power. Using the heuristics and simulation tools
developed, we can also identify the appropriate size of our energy harvesting, buffer capacity,
and non-rechargeable storage to maximize energy available to our application. The next few
sections expand on these design changes for indoor image sensor we name Permacam.

Indoor Wireless

We design Permacam to be untethered from wired communication and power. There are
several options we consider for Permacam’s networking, including WiFi, and personal area
networks like BLE and 802.15.4. WiFi is attractive as it supports high bandwidth, which
would be appropriate for transmitting large data like images. However, many low power WiFi
SoCs like the ESP32 have significant idle and startup power requirements [178]. If included on
Permacam, a WiFi radio or SoC must act as an external, power-gated component to reduce
idle current. This complicates system design, and it is unclear if WiFi start up cost is worth
the bandwidth advantage. Instead, we focus on technologies like BLE and networks built on
top of 802.15.4. These networks are specifically designed to cater to devices that spend the
majority of their lifetimes in an ultra low power sleep state. We trade off bandwidth and the
time to send images for a simpler design and lower overall power.
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Processor Selection

Processing and manipulating images requires significant computing and memory resources
when compared to sensor data with lesser dimensionality, like periodic illuminance and color
sensor data that is collected by Permamote. Camaroptera’s 16–bit, 16MHz processor requires
25 seconds of constant computation to compress a 160×120 JPEG image with floating point
emulation, and seven seconds to compress the same image with a fixed point algorithm. This
represents a significant amount of time for a low power device to be active and continuously
computing. The Camaroptera design is severely limited in digital signal processing by its
processor selection. For Permacam, we consider more capable, faster, processors with a 32–bit
path and floating point support.

Power Supply

Like Permamote, to support fully wireless operation for a long lifetime, Permacam optimizes
energy harvesting and storage through the use of rechargeable and non-rechargeable batteries.
As we have explored previously in our analysis of Camaroptera, vision applications require
significant energy to capture images, process them, and transmit them. We size Permacam’s
battery in the same manner as Permamote, utilizing the heuristics and simulation tool from
Chapters 3 and 4 to determine a sufficient capacity. To determine this, we take benchmarks
of capturing and transmitting images over an 802.15.4 network, and utilize these benchmarks
to estimate an average power. We utilize the same indoor EnHANTs irradiance traces that
we considered previously [99].

Indoor energy harvesting is inconsistent and variable, and Permacam will operate close to
the edge of harvestable power that is reasonably available in many indoor environments. To
augment harvested energy, we include a backup nonrechargable battery on Permacam. A
backup battery allows continuous operation regardless of energy harvesting conditions. It
safeguards the system from the volatile nature of energy harvesting, at the cost of a finite,
but very long, lifetime.

Other Considerations

Permacam includes additional sensors besides a camera to limit duty cycle and minimize idle
power. A PIR sensor is used to sense motion, providing an ultra low power wake up mechanism
for capturing images. Performing imaging on event detection instead of periodically can save
considerable amounts of energy and extend lifetime. The platform also has a light sensor
that can interrupt on large changes in light illuminance. This provides another wake up
mechanism, allows Permacam to detect when it is too dark to capture a useful image, and
enables illuminance calibration for captured images. Both PIR and illuminance sensors require
many orders of magnitude less energy than an image sensor to sense motion or illuminance.

To address the long-term relevancy of the platform, we also support an over-the-air update
mechanism such that Permacam can receive regular updates to improve energy management.
Additionally, updates can be used to deploy new inference algorithms and models, as well as
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Figure 6.8: Permamote system block diagram. The system is based on the Himax HM01B0
camera and the Nordic NRF52840 MCU. We include a light and PIR sensor to provide a low
power wake up mechanism to drive image capture. A hierarchical energy harvesting system
with a rechargeable and non-rechargeable battery are utilized to provide a long, reliable
lifetime to the system.

change image capture workload behavior. The platform can be configured to periodically
take pictures, use the low power wake up mechanisms mentioned previously, or use some
other software heuristic to only send interesting images.

Permacam Implementation

In this section, we explore the implementation of Permacam, including component selection,
techniques to enable a low power camera interface, and architectural details about the energy
harvesting and storage architecture

We implement the design of Permacam in an open source hardware6 and software7

implementation. The platform is built around the Himax HM01B0 ultra low power camera
[179]. This camera has also enabled other platforms like BackCam [176] and Camaroptera
[56]. The Himax camera is available in two different versions: monochrome and color. We use
the color version of the sensor to ensure the ability to capture color information of images, but
the two versions are pin compatible and can be interchanged. The other key component of
the design is the SoC processor. For a processor, we select the Nordic nRF52840 Cortex-M4F
SoC as it is one of the most power efficient processors available, includes a Floating Point Unit
(FPU), and is relatively fast compared to other low power microcontrollers at 64MHz. An
FPU allows the platform to perform floating point dependent tasks like image compression.

6https://github.com/lab11/permamote/tree/master/hardware/permacam/rev_a
7https://github.com/lab11/permamote/tree/master/software/apps/permacam/camera_coap

https://github.com/lab11/permamote/tree/master/hardware/permacam/rev_a
https://github.com/lab11/permamote/tree/master/software/apps/permacam/camera_coap
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Component Function Active Current Idle Current
Himax HM01B0 Image sensor 2.0 mA 25.1µA a

Nordic NRF52840 Processor 52 µA/MHz 3.16 µA b

Radio 4.8mA @ 0dbm — b

Ambiq AB1815-T3 Real time clock 55 nA N/A c

Maxim MAX44009 Light sensor 650 nA N/A c

Panasonic EKMB11011 PIR Occupancy 100µA 1uA
a Power gated when not in use.
b Sleep current for both processor and radio, full RAM retention, wake on low freq. timer.
c No shutdown or idle mode.

Table 6.2: The components used in Permacam, many of which are shared by Permamote.
They represent some of the lowest power options currently available. Due to the extremely
low idle power of all included components, Permacam is able to sleep at 4.4µA.

It has a multiprotocol BLE/802.15.4 radio that is well supported by OpenThread, an open
source implementation of the Thread 6LoWPAN mesh network protocol [180]. It features
comparatively large amounts of flash (1MB) and SRAM (256MB), which is enough to capture
images and perform some local processing. We include an ultra-low power real time clock
(RTC) to provide accurate image timestamps. The platform also features an ultra low power
PIR sensor and illuminance sensor to provide a low power wakeup mechanism and illuminance
calibration for captured images. A block diagram of the major system components is displayed
in Figure 6.8. Characteristics of the sensors and the MCU are summarized in Table 6.2. In
the next few sections we describe Permacam’s implementation, including the MCU to camera
interface, energy harvesting architecture, image compression methods, the end-to-end image
transmission architecture, and an implementation of onboard person classification.

Camera Interface

The majority of image sensors do not support normal sensor interfaces like I2C or SPI to
transfer data. Instead they rely on high frequency (≥8MHz) serial or parallel data busses.
This is because images are many kilobytes or megabytes in size, and data transfer must
be at a high frequency or parallel to transfer multiple frames per second. The majority of
embedded processors, the nRF52840 included, are not designed to interface with parallel
camera busses. Traditionally, platforms have used intermediate hardware like dedicated
processors, CPLDs or FPGAs to interface with image sensors and buffer frames [172, 173].
The Himax HM01B0 has two interfaces, an I2C command interface and a serial, 4x, or 8x
data interface. The Himax HM01B0 requires an input master clock (MCLK) of 3-36MHz to
drive internal sensor timings and outputs a pixel clock (PCLKO), frame valid (FVLD), and
line valid (LVLD) signals [179]. It can be configured to capture full frame (320x320), QVGA
(320x240), and if the mono version of the sensor, downscaled QQVGA (160x120) resolution
images. In Permacam we capture full frame images and use the color version of the sensor.
This version produces color filter array (CFA) images. A CFA is an alternating "mosaic" of
green-blue-green and red-green-red rows of pixels [181]. Each pixel corresponds to a single
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Figure 6.9: An image from Permacam, displayed as a mosaiced image (left) and demosaiced
(right). Permacam is capable of capturing 320x320 resolution color images, which can be
directly fed to machine learning inference tools for object, person, or in this case: dog
detection.

color, and through post-processing known as "demosaicing", a three channel RGB image is
generated from the single channel representation. An example of a mosaiced image and its
demosaiced counterpart are displayed in Figure 6.9. Permacam’s processor does not possess
enough memory to locally demosaic an full image so any inference or transmission must be
done with the mosaiced image. We power-gate the HM01B0 camera on Permacam, allowing
the system to completely power the camera off and enter the lowest possible power state.

Other systems that utilize the Himax HM01B0 camera including BackCam, Camaroptera,
and the Sparkfun Edge have developed a bit bang protocol to emulate a parallel interface [56,
176, 182]. This is possible because their processors support GPIO direct memory access (DMA).
This allows the GPIO peripheral to directly write to memory, avoiding costly processor cycles
to load GPIO state into registers and then write it to memory. This optimization allows a
bit-bang protocol on these platforms to operate faster than the HM01B0’s minimum operating
frequency. However, a bit-bang protocol is undesirable because it requires the processor
to be on during an image transfer, consuming additional energy. The nRF52840 does not
support GPIO DMA. Because of this, developing a bit-bang protocol that adheres to the
required camera timing is infeasible. Instead, we note that the camera serial protocol closely
resembles SPI, and the nRF52840 implements an 8MHz SPI peripheral with DMA support.
The camera PCLKO signal is identical to SCLK, and can be gated by the LVLD signal.
The LVLD signal from the camera indicates when a line of the image is being transmitted,
and is analogous to a SPI chip select line. However, this line is active high, and most SPI
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Operation Latency (s) Energy (mJ)
Image Capture 1.10 4.96
JPEG Compression (Q=90) 0.203 1.71
Image Transmission 6.67 73.8
Total 7.97 80.5

Table 6.3: Latency and energy measurements for key operations on Permacam, including
image capture, compression, and image transmission. Measurements are averaged over 20
images.

implementations, including the hardware on the nRF52840, expect active low. Inserting a
low latency inverter in between the LVLD output of the camera and the MCU allows the
nRF52840 SPI peripheral to interface with the camera. This has the added benefit of reducing
power required to read in images as the processor can sleep while the SPI peripheral directly
writes images to memory.

Image Compression

To reduce energy and time required to transmit images, we employ JPEG compression on
images prior to transmission. We use the Moodstocks JPEC encoder, a simple and portable
monochrome JPEG encoder written in C [183]. JPEG compression, like most DSP algorithms,
relies heavily on floating point arithmetic. Due to its integrated FPU, Permacam’s processor
is able to compress full resolution 320x320 images in 210ms. This encoder is also used in
Camaroptera [56], although this platform is based on the MSP430, which lacks an FPU. It
requires 25 second to compress an downsampled 160x120 image using floating point emulation,
and 7 second when JPEC is adapted to fixed point math. This fixed point adaptation also
reduces image quality slightly. It is clear that a camera platform like Permacam benefits
greatly from the inclusion of a faster, more capable processor. JPEG is not designed to
compress mosaiced images. However, we find that monochrome compression with a high
quality setting does not overly degrade image fidelity or color representation. We explore the
effects of monochrome compression on Permacam’s captured images further in Section 6.2.

Energy Harvesting and Storage

The energy storage architecture for Permacam is built around the TI BQ25505 [25] maximum
power point tracking boost converter, like Permamote. The output of the BQ25505’s power
OR is boosted to the system voltage by a MAX17222 regulator to power all components
under a single voltage domain. We use a 10.9 cm2 amorpohous photovoltaic to charge a
rechargeable LTO battery. We size this LTO battery according to the capacity heuristic
from Section 3.3. The Permacam workload consists of an image capture, JPEG compression,
and image transfer. These operations are benchmarked on the nRF52840 SoC and HM01B0
image sensor and summarized in Table 6.3. If we assume a periodic workload, capturing,
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Figure 6.10: Lifetime estimates from Permacam simulations with various rechargeable and
non-rechargeable energy capacity. The addition of energy harvesting results in capturing
more than double the energy provided by a non-rechargeable cell alone. The addition of a
CR2477 results in over five years of lifetime for Permacam.

compressing (at JPEG quality 90), and transmitting an image very ten minutes, Permacam
will require 148 µW on average8. This workload for Permacam is pushing the bound on the
energy that is harvestable within an indoor environment. If we consider there is no harvesting
margin, this suggests a minimum sufficient capacity on the order of mWh. This capacity
corresponds closely to a 125mAh LTO battery with a nominal 2.4V, which is the closest size
available for purchase. We simulate Permacam’s workload under the conditions of EnHANTs
Setups A and D, while sweeping capacity and considering several different sizes of backup
batteries. From the results, presented in Figure 6.10, we can determine an appropriate backup
battery size to achieve an acceptable lifetime. We select a lithium 3V, 1Ah CR2477 coin cell
battery. This amount of backup energy results in a design that can persist more than five
years while capturing an image every ten minutes.

End-to-end Image Pipeline

To support transmitting full images, we implement a full application stack based on standard
IP-based protocols. This end-to-end image architecture is depicted in Figure 6.11. We choose
to use OpenThread, an open source implementation of the Thread network protocol for
Permacam devices. Thread is a 6LoWPAN mesh network, and allows packets to be sent

8 80.5mJ+14.5 µW×(600−7.97)
600
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(a) End-to-end image transfer architecture (b) YOLOv3 detection

Figure 6.11: The Permacam end-to-end image transfer architecture. Permacam uses
OpenThread, a 6LoWPAN network. This allows it to transmit images over the CoAP
block protocol directly to any IP endpoint. We implement a CoAP server to receive and
reassemble image, demosaic them, and publish them over an MQTT stream. User applications
can easily subscribe to incoming images and use them as inputs to object detection machine
learning models, like YOLOv3.

end-to-end over a standard IP network. OpenThread also provides implementations of useful
protocols like CoAP, SNTP, and DNS. CoAP is a lightweight restful protocol similar to
HTTP, but over UDP [184]. On top of OpenThread’s CoAP API, we implement the CoAP
Block add-on feature. This allows us to fragment large data like an image across multiple
CoAP payloads [185]. The choice to use CoAP block is a reluctant one however, and was
based on the available implementations of reliable transfer protocols for low power networks.
Permacam image transmission is a perfect application for TCP, although TCP is rarely
implemented for low power networks. TCP has been shown to be provide a 40% higher
throughput compared to CoAP block over an OpenThread network [186] over an OpenThread
network. However, TCP was not implemented in the version of OpenThread used during the
implementation of Permacam, limiting us to CoAP block.

Permacam captures an image, compresses it using JPEG, and transmits the image using a
CoAP blockwise transfer. The CoAP block messages are sent to an endpoint that reassembles
them, parses their contents, and publishes a JSON message over an MQTT broker. An
application running on the endpoint listens for the transmitted mosaiced images, demosaics
them, and republishes the color image for application use. High level applications wishing to
interface with images captured by Permacam devices simply must subscribe to the relevant
device topics to receive images. From there, the images can be easily processed in frameworks
like OpenCV, Tensorflow, or Pytorch [187–189].
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In addition to our data backhaul pipeline, we implement an independent update server.
Permacam devices arbitrarily poll the update server every 24 hours for a new application
image. If a newer image exists, it downloads it over a CoAP blockwise transfer and applies
it. This allows users to deploy new applications quickly across an entire deployment with
minimal intervention.

Local Image Classification

In addition to transmitting images, we also demonstrate the ability of the platform to perform
local inference. While performing local object detection is not feasible with the memory and
compute constraints of Permacam,image classification (with a limited number of classes) is
not. To explore the capabilities of machine learning inference on Permacam, we modify and
train our own MobileNets v1 network to perform person classification. We then deploy it to
Permacam’s processor using TensorFlow Lite for Microcontrollers.

The parameter flexibility of MobileNets v1 allows us to reduce the size of the model so
it can fit on a microcontroller. We reduce the size of the network by reducing the depth of
each convolutional layer by 75% (α = .25). The model consists of a regular convolution with
batch normalization followed by multiple depthwise separable convolutions [190]. There is
insufficient memory to perform the forward pass on full sized 320x320 images, so images need
to be downscaled. We configure this network for different input image dimensions including
48, 72, 96, and 120. We train this model for 80 epochs on the Visual Wake Word dataset [191]
to achieve a validation accuracy of 78%, compared to a 90% accuracy with an unmodified
MobileNet. The model weights require 230k̇B after post-training quantization and achieve an
accuracy of 76% for input images of size 120x120 when using TensorFlow in Python. We
deploy this model on Permacam and evaluate its performance in Section 6.2.

Permacam Evaluation

We evaluate Permacam on our goals of deployability and capability through a number of
experiments. We begin with an analysis of the effects of JPEG compression on image size, time
to send, and energy. From this analysis, we use these measured metrics to estimate platform
lifetime using different representative workloads. We explore the capability of the platform
by writing an object detection application on top of the Permacam end-to-end image transfer
architecture. We evaluate the ability to detect objects in images captured by Permacam at
varying qualities of compression and distance from the camera. We also implement local
image inference in the form of person classification. We evaluate the performance of local
classification, and compare it to image transmission.

Image Compression

A raw, full frame image from Permamote’s camera is over 100 kB in size. Sending these raw
images requires a significant amount of time and energy. We employ JPEG compression to
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Figure 6.12: Effects of JPEG compression on image size, time to send, and energy to send.
Compression provides exponential decrease in image size, which directly relates to decreases
in the time and energy required to send images. Using a low quality factor results in images
that are 8.2% the size of the original raw image. The amount of time and energy required to
send images exhibit more variance than image size. This is the result of occasional packet
loss and backoff during image transmission. Larger images require more packets and thus
exhibit a higher probability of this occurring.
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significantly reduce image size. This decrease in size comes at the cost of reduced image
fidelity and color representation.

We use the Moodstocks JPEC encoder to compress captured images in JPEG format.
JPEC is a monochrome JPEG encoder, and we have configured Permamote to use the color
version of the HM01B0 image sensor. The images captured are a "mosaiced" color filter
array, and performing monochrome JPEG compression on a mosaiced image reduces color
representation in addition to image fidelity. JPEG can be configured with different quality
factors from 1 to 100. A lower quality factor results in a less accurate representation and
smaller compressed size. Image size relates linearly to the time and energy required to send
images. The nRF52840’s FPU is capable of performing floating point JPEG compression on
320x320 images in 210ms, compared to 25 seconds with Camaroptera’s MSP430.

To evaluate the effect of compression on image quality, latency, and energy, we configure
Permamote to capture images, compress them with 6 different JPEG quality factors and
transmit them. We collect 60 images, each with 6 compressed versions, and analyze the
effects of compression. The results are displayed in Figure 6.12. JPEG image compression
allows an exponential decrease in image size with respect to the quality factor. Compressing
images at a high quality factor (JPEC’s default 93) results in greater than a 2x reduction in
image size, time to send, and energy required. There are diminishing gains after the knee of
the curve at quality 90, but an image compressed with quality 30 is only 8% the size of a raw
image, on average. Image compression on mosaiced images from Permamote also does not
appear to degrade the perceived quality of the image. We display four compressed and raw
versions of the same image in Figure 6.13. Qualitatively, and from a distance, these images
appear nearly identical. However, closer inspection reveals artifacts and a significant loss in
color fidelity with lower compression quality factors. Quality 93 and a raw image are nearly
identical, while quality 30 is more obviously a lower quality compression. Even at low quality
compression levels, important image details are preserved and still visible to the human eye.

To more quantitatively analyze the effects of compression on mosaiced images, we measure
the Structural Similarity Index (SSIM) [192] of all 360 compressed images compared to their
raw counterparts. SSIM is often used to measure the quality degradation of images due to
compression or transmission. The results are summarized in Figure 6.14. A higher SSIM
indicates that an image is a closer representation to the original raw image. Even with a low
quality factor of 30 or 50, the SSIM for images average above 0.75. With an image compressed
with a high quality factor, the perceived similarity is above 0.9 and, as seen in Figure 6.13,
is almost indistinguishable from the raw image. These results suggest that using a quality
factor of 90 or above on to compress images on Permamote is advantageous if we can afford
the energy to send them.

Camera Density

While our numerical model can provide an accurate estimate of lifetime, it makes an important
assumption. In our modelling, we assume that every image transfer requires the same amount
of time and energy. The reality is that wireless environments can have interference, especially
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Figure 6.13: An image compressed with different quality factors. In this scene, we set smart
lights to bright, intense colors to determine the effects of compression on color representation.
Compression is performed on the mosaiced version of the image, which after transmission is
demosaiced into the color representations displayed. Due to this, an image compressed with
a low quality factor loses significant color information compared to the raw image. Luckily,
high quality factors produce a near-indistinguishable representation of the raw image. We
explore a more quantitative view of image similarity in Figure 6.14.
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Figure 6.14: The image structural similarity index (SSIM) of images compressed at various
JPEG quality factors. A higher SSIM indicates that an image is a closer representation to
the original raw image. While a low quality factor results in smaller compressed images, it
results in a significant loss in image structural similarity. Quality factors 90 and 93 provide a
>90 SSIM, suggesting that they are near identical representations of the original image.

for low bandwidth networks like 802.15.4. The result of interference from other networks,
devices, or other Permacams, means that packets will be dropped and retransmissions are
necessary. This extends the length of image transmission and the increases required energy.
We explore the scalability and effects of interference when multiple Permacams on the
same network. We place all cameras within a meter radius of each other facing the same
direction. The network consists of only one Thread router. Each Permamote is configured to
simultaneously capture on a motion event to generate a worst-case collision scenario. Each
camera is sending images compressed with quality factor 90. The Permacams are configured
with a 2 minute backoff period after a motion event and camera capture. At the start of the
experiment, a person walks into view of all the cameras, triggering them simultaneously. The
person then remains in view of the cameras for half an hour. We vary the number of cameras
active and measure the average time to send images over the duration of the experiment.
The results are displayed in Figure 6.15.

We do not currently implement any application layer collision avoidance and we use the
default 802.11.4 CSMAMAC protocol specified by Thread. Based on our naive implementation,
having more than three Permamote sensors connected to a single router and on the same
network leads to a dramatic increase in time to send images. Implementing an actual
coordination protocol between Permacams would dramatically reduce collisions. Additionally,
the use of TCP instead of CoAP block would significantly reduce transmission latency
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Figure 6.15: An image’s time to send as number of Permacams on the network increases. All
sensors are within one meter radius of each other, and configured to capture and transmit
images on motion events to generate the worst case collision condition. Images are compressed
with quality 90.

and possible overlap. Irregardless of these improvements, we expect most deployments of
Permamote will be aware of the limitations and will only require one to two cameras per
room.

Object Detection Performance

To illustrate the capability of the platform and end-to-end image transfer system, we evaluate
the ability to perform object detection with Permamote. The images produced by Permamote
are published over an MQTT stream, which feeds into a script that performs object detection
using the pre-trained YOLOv3 network included in the Python ImageAI package [193]. An
example of classification and bounding box detection results are illustrated by Figure 6.11b.
We do not wish to measure the accuracy and performance of the ImageAI YOLOv3 model,
but instead isolate the ability to perform detections on images captured by Permamote’s
camera and the effects of different compression quality factors on detection performance.

Compressed detection accuracy

While we measure the structural similarity of compressed images using SSIM, this does not
directly relate to the performance of object detection on compressed images. To evaluate the
effect of image compression on detection accuracy, we use the same 360 images used previously
to measure the effects of JPEG compression. These images feature various representative
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Figure 6.16: Mean Average Precision (mAP) of YOLOv3 person detection on compressed
images compared to original raw versions. An IoU of 0.5 is used. Based on the qualitative
and quantitative results of image similarity from Figure 6.13 and Figure 6.14 it is surprising
that mAP degrades so quickly as the compression quality factor decreases. A quality factor of
90 or higher is necessary to achieve the near the same detection performance as a raw image

objects of the classes supported by the YOLOv3 model in ImageAI. To quantify the effects
of compression, we calculate the mean average precision (mAP) using an intersection overlap
union (IOU) of 50% of the detections compared to a raw image from Permamote. The metrics
mAP and IoU=0.5 are both common metrics used to evaluate object detection algorithms.
We refer readers unfamiliar with this metric to the Pascal VOC challenge paper [194].

In Figure 6.16, we display the mAP for different JPEG quality factors. Surprisingly,
images compressed with a lower quality factor perform much worse than their SSIM suggests.
Images compressed with quality factor 30 and 50 achieve less than 40% mAP, while factors
above 90 achieve near identical detections to their raw counterparts.

Limitations of resolution

Permamote’s camera is limited in resolution and color representation compared to most
image sensors in modern cameras and cell phones. For example, the Google Pixel 3 features
a 12.2 megapixel image sensor, which offers two orders of magnitude more resolution than
the HM01B0’s 0.1 megapixel. A lower resolution places a limit on the size of objects and
the distance at which they can be detected. If an object is only represented by a few pixels,
there is unlikely to be enough information to successfully detect it. To evaluate the capability
to perform object detection with images captured by Permamote, we compare detection
accuracy to images captured by a modern cell phone camera. We successively capture images
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Figure 6.17: Detection confidence as distance from camera to person is increased. Compared
to a modern smartphone camera, the camera on Permacam cannot compete due to limited
resolution. However, images captured by Permacam still enable person detection at a distance
of 15-20 meters. This distance is generally sufficient for most indoor spaces.

of a person at varying distances and measure the resultant detection accuracy, if any. The
results are summarized in Figure 6.17.

A person is successfully detected at a distance of 20 meters with images from Permamote,
though confidence is only 16%. Unsurprisingly, a person is easily detected at all distances
tested with images taken by a Pixel 3. While images captured by Permamote cannot compete
with the resolution of those captured by cell phones, they are sufficient for detection at
reasonable distances. Many indoor spaces do not have sight lines longer than 20 meters, and
if they do, additional camera coverage can help mitigate the lack of resolution of a single
camera. The ability to clearly depict objects in the distance is partially dependent on the
lens configuration of a camera. During this experiment, Permamote was configured with a
200°, wide angle lens. Better performance could be achieved with a lens with a narrower field
of view and more magnification, at the cost of less coverage. We envision most applications
will prioritize field of view to cover large areas instead of additional magnification.

Local Inference

In addition to end-to-end image transmission, Permamote is also capable of local image
inference. We implement and train a modified MobileNets v1 network using TensorFlow
in Python [187] and the Visual Wake Word dataset [191]. Using TensorFlow Lite for
Microcontrollers, we quantize and deploy the model to Permamote’s processor.
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Dimension (pixels) Latency (s) MOPs Energy (mJ) Memory (kB) Accuracy (%)
48 1.72 0.450 17.2 73.7 68.6
72 2.71 1.01 27.0 91.0 69.2
96 3.64 1.80 36.4 115. 72.4
120 5.10 2.81 50.9 146. 74.7

Table 6.4: Latency, millions of operations, energy, peak memory, and accuracy of local person
classification. Images must be downscaled from full resolution, as inference on a 320x320
image requires too much runtime memory. The quantized version of model weights are used
to measure accuracy of the validation set. The highest accuracy achieved is only 74.7%, and
requires 5.1 seconds of continuous computation.

We upload 20 images from the validation set to Permamote, and measure inference latency
and energy. We measure inference accuracy across our validation set of 8059 images, using
quantized weights in TensorFlow. The results are summarized in Table 6.4. Inference on
the largest image dimension (120) requires just over 5 seconds of continuous computation
and has a peak memory usage of 146k̇B to achieve a 75.1% accuracy. This accuracy pales
in comparison to what can be achieved with a full sized model running on more powerful
hardware. Can local inference provide benefits to energy or latency to make up for its
lackluster accuracy?

To answer this question, we also perform end-to-end image transmissions on Permamote to
compare. Images are downsampled from 320x320 to 160x160 to compare with the downsampled
images used for inference. They are 1.77x as large as the 120x120 images used for classification.
Images are compressed using JPEG at varying qualities. We measure time and energy required
to send images. The results of this experiment are summarized in Table 6.5. Surprisingly,
the average energy required to transmit images of this size is generally less than performing
inference on them. For example, we are able to transmit a 160x160 image compressed at
quality 93 for under half the energy needed to perform inference on a smaller 120x120 image.
Considering the effort to deploy machine learning inference to a microcontroller, the marginal
accuracy of shrunken models, and the demanding energy requirements, a simpler and more
beneficial solution is to just transmit images to more capable endpoints.

6.3 Summary
The designs of Permamote and Permacam are results of the design process developed in
Chapter 3, Chapter 4, and Chapter 5. These designs are simultaneously long-lived and
highly available solutions for illuminance sensing and image sensing. We avoid adhering to
a single design strategy, such as a batteryless or energy preallocation-only design. Instead,
we consider the requirements of each application and identify the type and size of energy
harvesting, rechargeable buffers, and non rechargeable storage to achieve these goals. The
end results are hybrid energy harvesting systems that utilizes a rechargeable LTO battery for
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Compression Quality Size (kB) Latency (s) Energy (mJ)
30 1.98 0.513 4.23
50 3.25 0.764 6.95
70 4.82 1.12 10.3
80 6.19 1.31 13.2
90 9.12 1.86 19.5
93 10.6 2.13 22.7
raw 25.6 4.91 54.7

Table 6.5: Time and energy required to send 160x160 images end-to-end. Images are
compressed with varying JPEG qualities. Sending compressed images requires less time and
energy than performing person classification on lower resolution images.

buffering, and either coin cell or cylindrical non-rechargeable batteries for backup. Through
simulation, we show that these designs can achieve the intended application goals better than
any other proposed battery-based or batteryless wireless sensor power supply in the literature.
Permamote is estimated to provide decades of lifetime with high availability, which is more
than triple the lifetime of similarly sized battery-only sensors, and more than double the
availability of batteryless platforms in some cases. Permacam, inspired by other recent image
sensor work like Camaroptera, is the first long-lived, energy harvesting indoor image sensor.
Unlike Camaroptera, its design considers the effect of energy capacity and makes alternate
design decisions to dramatically lower system power to enable indoor use.

We utilize Permamote and other battery-based and batteryless systems to evaluate our
simulation. We find that our simulation produces lifetime and performance estimates that
match reality. We simultaneously utilize our simulation to identify non-rechargeable backup
battery sizing and estimate lifetime. Permamote is estimated to last for over a decade while
maintaining a reliable and consistent periodic workload schedule.

Through many experiments, we evaluate Permacam’s deployability and capability. For
deployability, we demonstrate the effectiveness of image compression on image size and
resulting time and energy to transmit images. We find that with high compression quality
factors, images sent by Permacam are nearly indistinguishable from raw images, and are
half the size. We also explore network congestion and the impact on the time to send
images when multiple Permacam’s are on the same network. We find that our 6LoWPAN
network can easily tolerate 1-3 Permacams without any significant increase in time to send.
We utlize our simulation tool to measure the performance and lifetime of Permacam under
a periodic workload. Our simulation produces an estimated lifetime of over 5 years with
compression using quality factor 90, and a period of 10 minutes. We also evaluate the effect
of compression on the resulting usefulness of images for object detection. We find that high
quality compressed images produce near identical detection results to raw images, and also
find that Permacam is able to produce images that allow a person to be detected at 20 meters,
despite the low resolution of its image sensor.

In addition to end-to-end image transmission, we also evaluate Permacam on its capability
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of performing local image classification. We find that it is possible to deploy a neural network
for person detection on Permacam. However, the resulting accuracy is only 74.7% and the
required energy to perform this inference is more than double what is required to simply
transmit an image. When considering energy and inference performance, it is preferable for
Permacam to forward images to more capable servers that can perform more complex and
accurate machine learning inference.
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Chapter 7

Conclusion

In this dissertation, we have developed an application-focused framework for the design of en-
ergy harvesting wireless sensor system power supplies. We have identified common application
requirements, and common power supply design archetypes, and identified which requirements
are met by different archetypes. In particular, we find that batteryless energy harvesting
systems fail to address many common and critical application requirements, including reliable
and consistent operation. We examine the efficacy of energy harvesting in general when
compared to non-rechargeable batteries, and determine that energy harvesting is a worthwhile
investment if there is enough harvestable energy and the system has enough rechargeable
capacity to capture the energy. We identify that a hybrid power supply architecture that
combines energy harvesting and non-rechargeable batteries results in a system that can
achieve consistent operation coupled with a long lifetime.

A main contribution of this work is the development of a reasoned approach to system-level
rechargeable capacity sizing for energy harvesting sensor applications. Previous platforms in
the literature have sized rechargeable capacity using ill-conceived heuristics or via arbitrary
means. We develop a more reasoned heuristic for capacity sizing that is based on the
relationship between minimum sufficient capacity, energy harvesting income, and average
workload power. This novel heuristic allows system designers to select a rechargeable capacity
based on their intended workload, expected income distribution, and a safety margin between
the average income and workload power.

We expand upon this heuristic by developing an energy simulation of wireless sensor
systems. We use this simulation tool in tandem with our heuristic to determine appropriate
rechargeable capacity sizing to meet the requirements of a desired application. This simulation
tool also aids in determining the appropriate non-rechargeable backup capacity to achieve
high availability, reliability, and lifetime should an application require it.

Finally, we utilize this new heuristic and simulation tool to design and implement two
new wireless sensor systems to address real indoor sensing applications that require high
sensing availability and long sensor lifetimes. The result is two indoor energy harvesting
sensors that utilize energy harvesting paired with non-rechargeable backup energy. These
systems simultaneously provide high sensing availability and five to ten year lifetimes under
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conservative energy harvesting conditions.
Essentially, the results of this work allows system designers to build energy harvesting

sensors that can capture and utilize a greater amount of available energy. Beyond the design
changes mentioned in this work, future sensors will require additional primitives, architectures,
and more sophisticated embedded processing to capitalize on this additional energy.

7.1 Design Directions for Energy Harvesting Sensors
With more energy, future sensors will be capable of longer lifetimes, more reliable operation,
and more capable local processing. To take full advantage of this energy and to maximize their
lifetime, future sensors will need methods for dynamically reducing or increasing their quality
of service to match that of available harvestable and stored energy. For applications suitable
for batteryless designs, state retention can be greatly simplified with new SoC power domain
architectures, resulting in more consistent and less wasteful operation. Future sensors will
also require more processing and more memory to tackle increased computational complexity
of new sensing modalities and inference methods.

Measuring Energy for Dynamic Adaptation

With greater capacity compared to what is usually allocated on batteryless sensors, embedded
programmers do not need to optimize and develop intermittent software that reacts to energy
state that changes on time scales of milliseconds or seconds. With greater capacity, program-
mers can instead develop software that reacts over days, weeks, months, or seasons [195].
These long-term adaptation strategies are accurate and effective, but would improve greatly
with a new primitive: an accurate measure of the state of charge of a battery and the rate
of energy entering or leaving it. Estimating the state of charge of a battery via its voltage
potential alone is difficult. This is due to the relatively flat voltage charge and discharge curve
of many battery technologies, compared to the linear curve of capacitors. Many commercially-
available integrated circuits exist to estimate the state of charge of batteries via the battery’s
voltage and coulomb counting of the charge entering and exiting the battery. However, they
are generally power prohibitive for many ultra low power applications. For example, the
MAX17260, an "ultralow" power battery fuel gauge IC requires nearly 20 µW to estimate
battery state of charge [196]. The inclusion of this fuel gauge would increase Permamote’s
idle power from 3µW to 23µW. While acceptable for consumer devices like wearables or
smartwatches that are frequently recharged, this increase in idle power is inappropriate for
long-lived energy harvesting sensors in adverse harvesting environments. These fuel gauges
generally utilize periodic coulomb counting with a sense resistor and an ADC.

An alternate method for coulomb counting proposes counting the switching cycles of a
DC-DC regulator [197] In the iCount approach, each cycle represents a fixed quanta of energy,
and the switching frequency of regulators increases linearly with current supplied to a load.
This measurement has the potential to be low power in comparison to other approaches. For
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the initial implementation of iCount, a counter peripheral on an MCU was used and only
required an extra 90nA quiescent current to implement. This current draw could be improved
further with dedicated hardware and the benefits of newer technology. The iCount technique
has been included and improved upon in commercial products like the LTC3335, a buck-boost
DC-DC regulator with an integrated coulomb counter. The LTC3335 only requires a little over
2 µW quiescent power for simultaneous regulation and coulomb counting. Integrated circuits
like the LTC3335 provide a solution for measuring energy expended from a rechargeable
battery, but there is currently no commercially available counterpart for measuring the energy
being captured and stored in the battery. It is slightly more difficult to implement iCount on
an energy harvesting DC-DC regulator, as the voltage of the harvester can vary significantly
compared to that of a battery. Having an accurate measure of voltage is important for the
iCount approach as the switching frequency of a DC-DC regulator is dependent on both the
difference in voltage between the input and output as well as the current draw on the output.
Implementing a iCount-based coulomb counter for a energy harvesting front end regulator
would solve this problem and provide system designers the low power tools to accurately
measure energy entering and leaving the system and write algorithms to adjust workload
dynamically to detect and mitigate energy failure.

Alternate Power Domain Architectures

Beyond measuring the energy entering and leaving an energy harvesting sensor system, there
also exists opportunities for exploring the utility of new power domain architectures for
embedded processors. In particular, it would be useful to separate the power domains for an
embedded processor’s idle state retention and when it is active. With separate power domains
for idle and active states, it would be easier to dedicate different energy storage options for
either purpose. As we discussed in Chapter 2, one of the most challenging problems that
batteryless researchers have attempted to address is maintaining forward progress over system
power outages. They have developed state retention strategies that save volatile state to
non-volatile flash or other memory. All of these strategies assume that the entire system will
lose power at some point, and some state will be lost and must be recomputed the next time
energy is available.

With a different power domain architecture that isolates active and idle operation, it would
be possible to dedicate a small amount of non-rechargeable backup energy to greatly simplify
and improve state retention for batteryless systems. This backup energy store would exist
solely to retain state when the system runs out of harvested energy. For example, the Nordic
nRF52840 utilizes 256 kB of volatile SRAM and requires 2.35 µW for full register and RAM
retention [148]. A small CR2032 coin cell battery, with 240mAh capacity, could preserve
the state of registers and RAM for over a decade. New processors that utilize non-volatile
memory like FRAM or MRAM would allow for even longer idle lifetimes, as they would only
require energy to finish storing data on power outages or load data on restoration. Separate
power domains would provide a simple and long-lasting method for state retention that is
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incorporated into the processor power management architecture, making it easy for designers
to use compared to current software-based approaches.

Sensing Dimensionality Requires Interfaces and Memory

In addition to new power architectures, low power embedded processors and sensors would
also benefit from the inclusion of standard, high-speed, parallel interfaces for fast data transfer,
and additional memory to hold and manipulate that data. Sensing modalities will continue to
increase in power efficiency and the data they produce will increase in size and dimensionality.

This increase in data will require high speed and high bandwidth interfaces that are
not commonly built into existing off-the-shelf embedded processors. For this reason, many
recent research systems built to interface with image sensors have resorted to developing slow
and inefficient bit-bang protocols, or in Permacam’s case, shoehorning existing interfaces to
interface with image sensors [13, 176]. The lack of appropriate interfaces for image sensors
is not ideal, and future commercial embedded processors should consider the addition of a
standard high speed data streaming interface.

Even with an appropriate interface, the increase in sensor data dimensionality requires
significant memory to store it, manipulate it, or infer meaning from it. While the memory
built into embedded processors has steadily increased in size, the ratio of memory size to
processor performance is outpaced by other classes of computing. For example, a desktop
personal computer may have 16GB of RAM and a processor clocked at 3GHz. This represents
a ratio of 5.3B/Hz. Likewise, an iPhone 14 has 6GB and a processor speed of 3.24GHz [198],
with a ratio of 1.9B/Hz. Conversely, the nRF52840 has 256 kB of SRAM and is clocked
at 64MHz. This represents a ratio of only 0.004 B/Hz. Compared to user-oriented devices,
embedded SoCs provide significantly less memory when normalized for processor clock. While
the multi-core CISC processors in desktop personal computers and smartphones are not
necessarily comparable to single-core RISC embedded processors, the multiple orders of
magnitude disparity in memory is notable. Partially, this is due to the workloads commonly
performed on desktops and phones, which are usually graphics intensive and require fast
reaction to user input. If embedded sensors are to collect and manipulate image data, or other
sensor data with higher dimensionality, they will require more memory. Permacam had enough
memory to capture a single raw image frame, but did not have enough to demosaic the image
locally. The nRF52840 used on Permacam was capable of performing fast JPEG compression
as well as other simple image manipulation like downsampling, but was limited by the amount
of memory available to it. Similarly, the neural network models for image inference were
limited by the memory on the system, resulting in models that sacrificed substantial accuracy
just so they could feasibly fit and run within the memory constraints. Future embedded
SoCs will require greatly increased memory to match the increased complexity and data
dimensionality of new sensing modalities and the inference to make sense of them.
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7.2 Implications for Future Sensing
This dissertation has developed and presented a novel design framework for building energy
harvesting wireless sensors that can achieve application goals. This design framework provides
a novel heuristic for sizing capacity to better capture harvestable energy for a given application,
and identifies a hybrid architecture that combines harvesting with non-rechargeable backup
energy as a design point that provides longevity and reliability.

At its core, this work enables wireless system designers to combine the reliability of
traditional battery powered sensors with the longevity of energy harvesting technology.
Designers are now able to determine correct capacity sizing, increasing their sensor energy
budget. This increased budget not only enables longer-lived sensor deployments, but also
permits the development of new and more complex sensing systems. Applications like image-
based person detection and counting are now possible in indoor environments with off-the-shelf
components. We believe that the tools developed and presented in this dissertation will allow
future sensor designers to not only utilize more complex and power intensive sensors but also
create systems that utilize sophisticated local inference and data processing than is currently
practical. This will enable future sensors to better utilize improvements in machine learning
to detect complex phenomena and to do so locally, preserving privacy and reducing costly
network communication. Regardless of what direction future wireless sensors take, one thing
has always proven true: sensor designers will always find a way to better utilize any available
energy, and this work will enable them to capture as much as they need.
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