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Abstract
Most caching policies focus on increasing object hit rate
to improve overall system performance. However, these
algorithms are insufficient for transactions. In this work, we
define a new metric, transactional hit rate, to capture when
caching reduces latency for transactions. We present DeToX,
a caching system that leverages transactional dependencies
to make eviction and prefetching decisions. DeToX is
able to significantly outperform single-object alternatives
on real-world workloads and popular OLTP benchmarks,
providing up to a 130% increase in transaction hit rate and
3.4x improvement in cache efficiency.

1 Introduction

To improve latency at scale, application developers often layer
caching systems, such as Memcached [74] and Redis [2], over
standard data stores. These systems traditionally optimize for
object hit rate, or how often requested objects can be served
from cache. Unfortunately, current caching policies fail to
capture the transactional nature of many application work-
loads. Since transactions access groups of objects atomically,
caching will not improve latency unless all objects requested
in parallel are present in the cache. For example, on a produc-
tion workload from Meta’s TAOBench [28] benchmark, we
find that up to 90% of objects cached by LRU and LFU, two
popular caching algorithms, do not have any impact on latency
despite high object hit rates. Existing policies fail to capture
the all-or-nothing property of transactions: if even a single key
accessed in parallel is not in cache, it will harm performance.
Accordingly, object hit rate is the wrong objective for

transactional workloads. Instead, we propose a new metric,
transactional hit rate, which captures the latency reduction
of transactions from accessing the cache. A policy that
maximizes transactional hit rate should cache all objects
requested in parallel within a transaction.

In this paper, we present DeToX, the first high-performance
caching system that optimizes for transactional hit rate. In
accordance with standard caching algorithms, DeToX assigns
scores to objects and evicts those with the lowest values.
As such, its policy is easily adaptable to existing caching
systems. To rank objects in the transactional context, DeToX
leverages the following insight: objects accessed in parallel
within the same transaction should be scored together since
they must all be cached to reduce transactional latency.

While scoring keys together might seem simple, the
structure of transactional workloads complicates matters.
Unlike previous work on caching for parallel jobs [12] and
web applications [8, 11, 19, 96, 97], transactions need to be
modeled as non-trivial directed acyclic graphs (DAGs) of
read and write operations [23, 100]. Crucially, some keys
within a transaction are accessed in parallel, but others are
not. Consequently, a transaction’s latency is determined by
its residual length, or the number of sequential accesses on
its longest, non-cached path. Rather than considering all keys
in a transaction, we should focus on caching the groups of
keys that reduce residual length.
Implementing a caching policy based on grouping presents

several significant challenges. (1) For an arbitrary transaction,
there can be an exponential number of groups, making scoring
prohibitively expensive. (2) Identifying groups requires
access to transactional DAGs, which are not always available.
(3) Objects that are accessed by different transactions can
belong to different groups, which have varying latency
benefits if cached, and these disparities must be captured.

We address each of these issues in DeToX. (1) To avoid the
overhead of an exponential number of groups, we introduce
the notion of interchangeable keys: if two keys can replace
each other in any group and still reduce residual length, then
they can be represented by the same group. Interchangeable
keys drastically curb the number of groups that need to be
scored. (2) When transactional DAGs are not accessible, we
propose a simplified policy that dynamically infers groups
based on which requests are executed in parallel (termed
levels). (3) Finally, we take group membership into account
when scoring keys to ensure these values precisely reflect
each object’s contribution to future transactional hits.
Moreover, while our approach is primarily targeted at

eviction, it also enables prefetching (Section 6). DeToX’s
prefetching policy tracks dependencies within transactions
and brings items into cache preemptively when specific items
are accessed earlier in the transaction.

Our eviction and prefetching algorithms are implemented in
DeToX, which presents a key-value API that supports drivers
for Redis [2], Postgres [3], and TiKV [4]. We evaluate our
system on real-world workloads from TAOBench [28], a so-
cial network benchmark that models Meta’s production work-
loads, as well as standard OLTP benchmarks (Epinions [39],
SmallBank [93], and TPC-C [35]). Compared to single-
object caching algorithms and systems, including LRU, LFU,
GDSF [29], LIFE [12], and ChronoCache [48], our algorithm
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Figure 1: GetLinkedAccounts transaction.

can achieve up to a 130% increase in transactional hit rate,
leading to a 3.4x improvement in cache efficiency (defined
as the least amount of cache space required to achieve a par-
ticular transactional hit rate). For a Redis-Postgres setup, this
translates into 31% higher throughput and 30% lower latency.
We note that our transactional hit rate metric prioritizes la-

tency and exposes a new trade-off in caching enabled by the
cloud’s elastic resources: optimizing for latency versus shed-
ding load off the system. Single-object policies provide high
object hit rates but low transactional hit rates; they reduce load
on the data store but do not always improve transaction re-
quest times. This work instead focuses exclusively on improv-
ing latency. In summary, we make the following contributions:

• We define a new metric, transactional hit rate, to evaluate
the latency reduction of caching for transactions (Section 3).

• We provide the first formalization of transactional caching,
and we prove that it is NP-Hard (Section 3.4).

• We present a new caching system, DeToX that leverages
transactional dependency information to optimize for
transactional hit rate and significantly improve performance
on popular workloads (Sections 4 and 4.2).

2 Motivation

In this section, we illustrate why single-object eviction
algorithms perform poorly for transactional workloads.
Specifically, we show that a well-known optimality result
in caching does not hold for transactions and that popular
caching algorithms achieve low transactional hit rates.

2.1 Object Hit Rate is Insufficient
Most existing cache eviction algorithms focus on maximizing
object hit rate, or the fraction of single object requests served
by the cache. However, this approach fails to capture the
inter-object dependencies that transactions introduce. Con-
sider for example a simple transaction GetLinkedAccounts
that returns secondary bank accounts a2, a3 linked with a
primary account a1 (Figure 1). This transaction must first
read a1 before accessing both secondary accounts a2, a3 in
parallel. Thus, a1, a2 and a3 are all on the longest path of
the transaction. If we cache a1, we can reduce the end-to-end
latency of the transaction. However, if we additionally cache
a2, the overall latency does not improve because we still need
to access a3 from disk. In fact, caching a2 or a3 individually
does not improve performance; transaction latency remains
equivalent to the case in which neither key was cached. On
the other hand, caching both a2 and a3 does improve latency.
Transactions have an implicit all-or-nothing property be-

tween groups of objects that traditional caching algorithms
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Figure 2: Single-object policy performance.
fail to capture. This can lead popular eviction algorithms, such
as least recently used (LRU) or least frequently used (LFU), to
make poor caching decisions. Consider a situation in which a2
is more frequently accessed than a1 while a3 is almost never
accessed. LFU and LRU would choose to evict a1 and a3 over
a2, resulting in no latency improvement for this transaction.
Effectively, the low frequency of a3 contaminates popular key
a2 since both need to be present to achieve a transactional hit.

Real-world workloads. This observation is not limited to
our simple example. We find that single-object eviction algo-
rithms also perform poorly for complex, real-world workloads.
Figure 2a illustrates that over 90% of cached keys do not have
any impact on latency (“unhelpful” keys) for the Product
Group 3 workload of TAOBench [28]. The root cause is sim-
ple: these algorithms optimize for object hit rate (OHR) rather
than transactional hit rate (THR). As we see in Figure 2b,
LRU and LFU achieve high object hit rates but up to 51%
lower transactional hit rates. Transactions in this workload
access either a combination of hot keys and warm keys, or hot
keys and cold keys. Single-object algorithms, which use only
individual object features to score keys, retain hot keys from
transactions in both categories but evict most warm keys and
all cold keys. As a result, they achieve few transactional hits.
A transactionally-aware policy would instead recognize that
cold keys contaminate their associated hot keys and prioritize
caching only the hot and warm keys that are accessed together.

2.2 Optimality

Our observations also have theoretical implications. We find
that Belady [17], the offline, optimal eviction algorithm for
uniformly-sized objects does not make the best decisions for
maximizing THR. This policy evicts keys that are accessed
furthest in the future but fails to take into account whether
these keys generate transactional hits.

We prove that Belady is not optimal even for the simplest
case of uniformly-sized transactions with uniformly-sized
objects (Figure 3). In this example, we have four transactions
with a cache size of 3. T1 and T4 access keys a1,a2,a3, while T2
accesses a4,a5,a6 and T3 accesses a4,a5,a7. Belady chooses
to first cache a1,a2,a3 and then replace the last two keys
with a4,a5 since these keys give object hits (but no latency
reduction) for T3. However, keeping a2,a3 in the cache would
lead to a transactional hit (and latency improvement) for T4.
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T Keys accessed Cache state Optimal cache state
1 a1,a2,a3 - -
2 a4,a5,a6 a1,a2,a3 a1,a2,a3
3 a4,a5,a7 a1,a4,a5 a1,a2,a3
4 a1,a2,a3 a1,a4,a5 a1,a2,a3

Figure 3: Non-optimality of Belady.

2.3 Towards a new approach
Our results highlight how single-object caching strategies
yield low transactional hit rates by storing many unhelpful
objects. Web caching algorithms suggest a potential way
forward: they acknowledge the need to cache multiple objects
together (e.g., page-level hit ratio) but only consider flat
dependencies [12, 97]. In contrast, transactions can have
convoluted topologies with multiple levels of dependencies.
To develop a new transactionally-aware caching system,

we must address three challenges: (1) formalizing caching in
the transactional context, including optimality analysis (Sec-
tions 3 and 3.4), (2) efficiently identifying which groups of
objects lead to transaction hits, given the potentially complex
structure of transactions (Section 4), and (3) scoring the indi-
vidual objects in these groups to determine which objects to
store in the cache (Section 4.2). In our design, we are careful
to emphasize compatibility with existing caching systems,
such as Redis and Memcached, so that our approach can be
easily implemented in these systems for greater applicability.

3 Transactional Caching

In this section, we formalize the transactional caching
problem. We define a new metric, transactional hit rate, to
capture the latency reduction of caching transactions.

3.1 Transactions
Transactions consist of read and write requests that must be
applied atomically [23]. Some of these operations are indepen-
dent and can execute in parallel, while others are dependent
on the result of preceding operations. For instance, a read
operation may query a key determined by the return value of
a previous operation. As a result, these operations must be run
sequentially. In effect, transaction execution can be captured
by a DAG of operations. More formally, we apply the notion
of a logical dependency, generalizing the model from [100]:
Definition 1 (Logical dependency). Given two operations t
and p of a transaction, an operation t is logically dependent
on operation p if p determines the key or value accessed by t.

Traditionally, these dependencies are not captured by the
system, which observes only sequences of reads and writes.
In practice, these relationships can be captured statically
through program analysis or specified at run-time by the
developer. Together, operations and logical dependencies
define a transaction execution graph:

a

s c

(a) Cache state: {}

a

s c

(b) Cache state: {a}

a

s c

(c) Cache state: {c}
Figure 4: Smallbank Balance transactions.

1 id = SELECT cId FROM ACCOUNTS WHERE name = cName
2 s = SELECT savings FROM SAVINGS WHERE cId = id
3 c = SELECT checking FROM CHECKING WHERE cId = id
4 return s + c

Listing 1: Code corresponding to Figure 4. The dependency of
Line 2 and Line 3 on the output of Line 1 is highlighted in red.

Definition 2 (Transaction execution graph). A transaction
execution graph G = (V,E) for transaction T is a DAG,
where each vertex in V represents a pair (x,X) of a read or
write operation to key x in table X, and edges in E represent
logical dependencies between the operations.

Each transaction execution graph, disregarding the exact
keys accessed, corresponds to a transaction type:
Definition 3 (Transaction type). A transaction type Ti is a
class of transactions with execution graphs that are identical
when projected onto tables.

Transaction execution graphs can be extracted from applica-
tion code [38, 100]. Within a type, each transaction accesses
the same tables through the same logical dependencies but
does not necessarily access the same keys. For example,
the Smallbank workload [93] contains the transaction types:
Amalgamate, Balance, DepositChecking, TransactSavings,
SendPayment, and WriteCheck. For the Balance transaction
(Listing 1), requests to both the Savings and Checkings
tables are dependent on the result of the read to the Accounts
table. The corresponding execution graph (Figure 4a) thus
consists of three nodes, one for each operation, and logical
dependencies r[A]→ r[S] and r[A]→ r[C]. While the reads
to S and C are independent and can be executed in parallel,
they cannot proceed until after the read to A finishes.

3.2 Cache
The previous section formalizes the notion of a transaction,
including the logical dependencies that constrain a trans-
action’s execution. We now formalize how caching affects
transactions, drawing from [51] for notation.
Definition 4 (Cache state). A cache state is a set of keys C,
where |C|≤n, where n is the capacity of the cache.

By assumption, objects are served with lower latency from
the cache than from the underlying system. We make the
simplifying assumption that requests served from the cache
have zero latency. Under this model, transaction latency is
defined by the number of sequential, non-cached accesses.
This corresponds to the longest path in the transaction’s
execution graph G, ignoring vertices with cached keys.
We formalize this notion as the residual transaction length:
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Definition 5 (Residual transaction length). Given a trans-
action T with transaction execution graph G, K number of
keys, and cache state C, the residual transaction length is
the length of the longest path from any source vertex (no
incoming edges) to any sink vertex (no outgoing edges)
excluding vertices corresponding to keys in C. We define the
function L : G×2K →N for which 2K is the powerset of all
keys, such that L(G,C) is the residual transaction length.

Given a transaction T with execution graph G, L(G,{}) rep-
resents the length of the longest path in G when the cache is
empty. For example, Figure 4 has longest paths {r[a],r[c]} and
{r[a],r[s]} with transaction length L(G,{})=2. Caching key
a (Figure 4b) would shorten the residual transaction length to
L(G,{a})=1, as the longest paths are reduced to {r[c]} and
{r[s]}. However, caching key c (Figure 4c) does not change
the residual transactional length, since {r[a], r[s]} remains
the longest path with L(G,{c})= 2. Informally, we refer to
a transactional hit when we have a length reduction of one.

3.3 Transactional Hit Rate (THR)

Having defined the necessary formalisms for transaction la-
tency and caching, we can now introduce transactional hit rate.
Informally, this metric captures how much latency improves
when caching for transactions, much like how its single-object
counterpart, object hit rate, does so for individual requests.

We first present THR in the context of a single transaction:
Definition 6 (Individual transactional hit rate). Given
transaction T with execution graph G and cache state C, the
individual transactional hit rate is L(G,{})−L(G,C)

L(G,{}) .

The difference in transaction length represents the reduction
in sequential, non-cached accesses after caching. We
normalize this difference by dividing by the total transaction
length. This metric captures the impact of caching for the
execution of a single transaction. We can easily extend this
definition to a sequence of transactions:
Definition 7 (Transactional hit rate). Given a sequence
of transactions T1, T2, ... , Tm with execution graphs
G1,G2, ... ,Gm and the respective cache states at the time
of execution C1, C2, ... , Cm, the transactional hit rate is
Σm

i=1(L(Gi,{})−L(Gi,Ci))

Σm
i=1L(Gi,{}) .

3.4 Optimality Analysis

Single-object caching is a well-studied problem: past work
has shown that Belady’s algorithm is provably optimal for
eviction when considering uniformly-sized objects, and
this problem is NP-Hard in the general case [31]. However,
Belady does not provide the best possible performance for
transactional caching (proof in Appendix). We further show
in this appendix that the optimal problem in this setting is
NP-Hard by reducing this problem to variable-sized caching.

4 Group Identification and Scoring

Designing an optimal caching policy is impractical for transac-
tional caching, since it would run in exponential time. Unfortu-
nately, traditional heuristics perform poorly for transaction hit
rate (Section 2) because they fail to identify the keys that must
be cached as a group to yield a transactional hit. This notion of
grouping is central to our new transactionally-aware caching
policy. We proceed in two steps: first, we identify which
groups of keys lead to transactional hits when cached together
(group identification). Second, we determine what scores
should be assigned to each key within a group (group scoring).

4.1 Group Identification

Intuitively, a group is a set of keys that, if cached together,
reduce residual transaction length. Specifically, we define the
notion of a complete group from which one cannot remove
any key without increasing residual transactional length.
Completeness optimizes cache efficiency by storing the
minimal subset of keys necessary to reduce latency. Formally:
Definition 8 (Complete group). Given a transaction T and
its execution graph G, a complete group is a subset of keys
g accessed in T such that ∀g′⊂g, L(G,g)<L(G,g′).

We use static analysis to identify complete groups at
compile time, applying previous work to capture logical
dependencies [100]. A simple algorithm would be to iterate
through the powerset of all possible table accesses for each
generated execution graph to identify complete groups and
compute their resulting reductions in transactional length.

Consider Figure 5a, which has a transaction length of three
(serial accesses a,c,d) and seven complete groups ({a}, {c},
{d}, {a,c}, {a,d}, {b,c,d}, {a,b,c,d}). Note that {c,d} is
not a complete group: it generates only one transactional
hit (reducing the length from three to two), but caching
c or d individually also generates one transactional hit.
Similarly, {a,b} is not a complete group because it generates
a transactional hit regardless of whether b is cached.

In the worst case, the number of complete groups can be
exponential in the size of the transaction, even for simple
transaction topologies. Fortunately, many of these groups
are in fact equivalent. We describe this notion more precisely
in Section 5.1 and presents an optimization that drastically
reduces the number of groups that need to be considered.

4.2 Scoring

Caching policies typically assign scores to keys and evict
objects with lower scores. We adopt the same strategy and
carefully map complete groups to scores for individual keys.
This approach has two benefits: 1) we can draw from prior
work on single-object caching algorithms, 2) we minimize
implementation changes to real caching systems.

4



Figure 5: Example transactions and scores. Key sizes are 1, cache size is 3, and Aglobal starts at 0. Cache initially stores {a,b,c}.
a is evicted after T1, and d is evicted after T2, with Aglobal updated on each eviction.

4.2.1 Scoring a Group in a Single Transaction

We begin by assigning individual numerical scores to each
group (a group score), with higher values representing groups
that are more beneficial to cache. We draw inspiration from
GDSF, a high-performing web caching algorithm [29]. GDSF
considers three metrics to score keys: frequency (access
count), recency (time since last access), and size. We leverage
frequency and size to score each group as follows (and
incorporate recency into key scores in Section 4.2.3) :

SCORE_G(group)=
min(Fgroup)×Lgroup

Sgroup

Fgroup is a list of all key frequencies in the group. Lgroup is the
number of transactional hits generated if this group is cached.
Sgroup is the sum of all key sizes in the group. All scoring
parameters can be found in Table 1. We consider the trans-
actions in Figure 5 as running examples. The group scores of
each complete group for these transactions are shown in Fig-
ures 5b and 5d. For instance, Figure 5a has keys a,b,c,d with
frequencies of 1, 29, 99, and 50, respectively and sizes of 1.
The score of group {a,b,c,d} is thus min(1,29,99,50)×3

4 =0.75.
Frequency (Fgroup). Keys within a complete group may

vary in frequency but must all be cached to yield a hit.
For example, if a high-frequency key x is only associated
with a group of keys {y_1...y_k} (each with much lower
frequency than x), then it is not beneficial to cache x. In
effect, the key with the minimum frequency determines the
cacheability of the entire group since it contaminates the
other keys. Thus, we take the minimum of all key frequencies
in calculating the score of a group. Consider for instance
Figure 5c: key c is more frequently accessed than key b. As
a result, b drives down the frequency of the group {b,c} to
min(Fgroup)=min(30,100)=30.
Transactional length reduction (Lgroup). This parameter

captures the reduction in transactional length when caching a
group (Lgroup=L(G,{})−L(G,group)). Other factors being
equal, groups with higher latency reductions are better choices
for caching and should thus be assigned a higher score.
Size (Sgroup). All keys must be present in the cache to

generate a transactional hit. Sgroup represents the cache space

Parameter Description

SCORE_G(group) Score of a group
Fgroup Set of all key frequencies in a group
Lgroup Transactional hits for a group
Sgroup Sum of key sizes in a group
SCORE_K(key) Score of a key
T Skey Sum of instance scores for a key
Fkey Frequency of a key
Aglobal Global aging factor

Table 1: Scoring parameters.
needed to store the group. THR is maximized by retaining
groups of smaller sizes as more of these groups can be cached.

Next, we describe how to go from group scores to key scores.

4.2.2 Scoring Across Groups in a Single Transaction

Mapping group scores to keys is challenging: keys can
belong to multiple groups and their contribution to reducing
transaction length depends on which other keys are present
in the cache. For example, consider the groups {c} and {d}
in Figure 5a. Individually, they can both reduce transactional
length by one. However, {c,d} is not a complete group, so
caching both c and d is wasteful unless b is also cached.
Consequently, one should not give both c and d a high score
unless b also is given a high score.
To address this issue, we adopt an iterative approach to

condition each key’s instance score (SCORE_I) on all previous
scoring decisions for this transaction. Our algorithm first
computes group scores with SCORE_G for all complete groups
in the transaction. At each iteration, it then finds the highest
scoring complete group that is a superset of all previously
scored groups and assigns each unscored key in that group
the corresponding group score. The protocol terminates when
all keys have been scored (note that all keys will eventually
be scored since they are part of the trivial complete group
that contains all keys of the transaction). This algorithm
greedily favors caching groups of keys with higher scores and
accounts for these decisions in all subsequent scoring choices.
Consider again Figure 5a. We use the group scores in

Figure 5b to find instance scores. The first group selected
is {c} since it has the highest group score of 99, and the
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SCORE_I row indicates that c is assigned the corresponding
SCORE_G. The next group with the highest score that contains
c is {b,c,d}, so b and d are assigned the group score of 19.3.
Intuitively, our algorithm captures the fact that, once c is
cached, d should only be cached when b is cached. The low
score of b contaminates d but should not contaminate c (since
c by itself can lead to a transactional hit).

4.2.3 Scoring Across Transactions

Finally, we describe how to integrate instance key scores
across multiple transactions into an aggregate value. This
final score will be used by the system to decide which keys
to evict from the cache. We adopt the following formula:

SCORE_K(key)=
T Skey

Fkey
+Aglobal

T Skey is the sum of all instance scores from Section 4.2.2
across all transactions accessing this key. Fkey is the frequency
of this key. Aglobal is the global aging factor.
Averaging instance scores. To map instance key scores

to a single value for a given key, we take the running
average of these scores. Each time a key is accessed, we
add its instance score to the total score T Skey and increment
Fkey before calculating a new aggregate score. Figure 5e
gives the key scores of a, b, c, and d after executing the
transaction in Figure 5a, assuming that the aging factor
is initialized to 0, key size is 1, and the previous T Skey
values are 0, 30, 200, 70 respectively. For example, c has
an instance score of 99 (Figure 5b) for the transaction in
Figure 5a, a previous T Skey of 200, and frequency of 99,
giving SCORE_K(c)= 200+99

99 +0=3.02 in Figure 5e.
Recency. GDSF, along with many other algorithms [9], uses

an aging factor to account for recency. Since object access
distributions can shift over time, previously popular objects
can remain in the cache for extended periods since their
frequencies are high, preventing newly popular objects from
being cached. Aglobal is a global value added to the score of a
key upon each access to increase the scores of more recently
accessed objects and age older objects out of cache. It is
updated each time an object is evicted and set as that object’s
score. Aglobal acts as a “reset” on scores and ensures that all
accesses after this eviction will have scores higher than the
last evicted key. In Figure 5, a is evicted after the transaction
in Figure 5a, and Aglobal is set to its score (0.75). This value is
then added to SCORE_K for each key accessed the subsequent
transaction in Figure 5c. For example, c has an instance score
of 15 (Figure 5d) for the transaction in Figure 5c, a previous
T Skey of 299, frequency of 100, and Aglobal of 0.75, giving
SCORE_K(c)= 299+15

100 +0.75=3.89 in Figure 5f.

5 Optimizations

Our current approach to grouping and scoring can be
prohibitively expensive, since the number of complete groups

a b c d

(a)

a b c d

e f g h

(b)

Figure 6: Transactions to demonstrate interchangeability.
is exponential for some topologies. We address this problem
in two ways. (1) We observe that many complete groups
capture redundant information and introduce interchangeable
groups to avoid scoring all complete groups and dramatically
reduce run-time overhead. We compute interchangeable
groups offline by static analysis. (2) Assuming no access
to code (i.e., we do not know the transaction’s DAG), we
present a restricted form of grouping, levels, that dynamically
approximates groups at run-time.

5.1 Interchangeability

The number of complete groups can be exponential with
respect to transaction size. For example, in Figure 6a, all
possible groups in the powerset are complete (e.g., caching
{a} gives a transactional hit, so does {a,b}, {a,b,c}, etc).

We observe that transactions often contain complete groups
that differ by only a single key. For instance, for every group
in which b is present in Figure 6a, there exists an identical
group in which a replaces b (and vice-versa). In effect, these
keys can be “swapped” with each other and still produce a
complete group. This interchangeability property is powerful:
if two keys can be exchanged in any complete group, then
deciding to cache one key over the other is entirely dependent
on the individual scores of these keys, as all other parameters
are shared. Consequently, we do not need to calculate the
scores of all their complete groups in order to score each key.
Consider the groups {a,c} and {b,c} where a has a higher
individual score than b. If a and b are interchangeable, then
we know that {a, c} must have a higher group score than
{b,c}. Since our scoring algorithm favors caching groups
with higher scores, we can avoid calculating the score of
{b,c} at run-time.

We can further generalize the idea of interchangeability to
sets of keys that can also be “swapped” with each other. We
call such sets interchangeable groups:
Definition 9 (Interchangeable groups). Let s1 and s2 be
distinct sets of keys in a transaction with execution graph G.
We say that s1 and s2 are interchangeable if
(1) ∀ complete groups g1 such that s1 ⊆ g1 and s2∩g1 =∅,
g′1=g1\s1∪s2 is also a group and L(G,g1)=L(G,g′1), and
(2) ∀ complete groups g2 such that s2 ⊆ g2 and s1∩g2 =∅,
g′2=g2\s2∪s1 is also a group and L(G,g2)=L(G,g′2).

Computationally, interchangeability allows us to reduce
the number of complete groups scored at run-time. We
compress the representation of complete groups and reduce
run-time complexity of the scoring algorithm as follows,
using Figure 6b as a running example:
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• (Compile-time) Find all interchangeable groups in the
set of complete groups. The complete groups are: {a, e},
{b, f}, {c, g}, {d, h}, {a, e, b, f}, {c, g, b, f}, {d, h, b, f},
{a,e,c,g}, {a,e,d,h}, {c,g,d,h}, {a,e,b, f ,c,g}, {a,e,b, f ,d,h},
{a,e,c,g,d,h}, {c,g,b, f ,d,h}, {a,e,b, f ,c,g,d,h}. Consider
replacing {a, e} with {d, h} in any complete group; the
resulting group is still complete. Thus, {a, e} and {d, h}
are interchangeable. Using the same logic, we find that
{a,e},{b, f},{c,g},{d,h} are all mutually interchangeable.

• (Compile-time) Compress complete groups. Denote
an access to any one of the mutually interchangeable
groups—{a, e},{b, f},{c,g},{d,h}—as [C]. For example,
{a,e,b, f ,d,h} becomes [C,C,C]. In this particular example,
all groups of size four can be written as [C,C], groups of size
six as [C,C,C], and groups of size eight as [C,C,C,C]. We call
these representations compressed groups.

• (Run-time) Score compressed groups. Recall from
Section 4.2.2 that our instance scoring algorithm scores all
complete groups before greedily selecting the highest-scoring
ones. With interchangeability, we no longer need to score
all complete groups. Assume the minimum scores of the
following interchangeable groups are: {a, e} : 1, {b, f} :
10,{c,g} : 30,{d,h} : 50. Since we know that {a, e} and
{d,h} are interchangeable and that {d,h} has a higher score,
for any complete group containing {a, e}, there must be
another complete group containing {d,h} that has the same
(or higher) score. Applying this intuition, the highest-scoring
complete group corresponding to the compressed group [C,C]
must be composed of the highest and second-highest scoring
interchangeable groups, {d,h} and {c,g} respectively.

5.2 Levels
For transactions in which code is unavailable, we design a sim-
plified protocol to dynamically infer groups. We define a level
to be a set of keys in a transaction that are sent to the data store
in parallel; similar definitions are used to group tasks to opti-
mize caching for parallel job execution [12]. We assume that
applications send requests as soon as their logical dependen-
cies are fulfilled. For instance, the transaction in Figure 5a has
levels {a}, {b,c}, and {d}. We have d as a standalone level
since it can only be requested once c has finished executing.

We note that in transactions where all keys and groups are in-
terchangeable, as in Figures 6a and 6b, all levels are complete
groups. In these cases, using either levels or complete groups
is equivalent. We find that many real workloads have such
topologies (including all the ones we evaluate in Section 8).
However, levels consider only a subset of all possible com-
plete groups, so it can miss out on performance opportunities
for unbalanced topologies. For example, in Figure 5a, b and
c are scored together under levels, lowering c’s score. To
maximize transactional hits, b should instead be scored with
d since both are colder keys, and c should be given a high
score because caching this key by itself is likely to lead to
a transactional hit. We measure this tradeoffin Section 8.

6 Prefetching

Prefetching is a popular technique to reduce the client-
perceived latency of requests by caching items before they
are requested [11, 26, 47, 48, 96]. We revisit this strategy
in the context of transactions and design a new prefetching
algorithm that uses logical dependencies to minimize latency.
Prefetching leverages conditional probabilities: once key

a is accessed, it may be very likely that key b will also be
requested in the same transaction. Consider for example
GetLinkedAccounts in Figure 1: the access to a primary
account is almost always followed by requests to the same
subsidiary accounts. Our prefetching algorithm tracks these
correlations and brings such objects in the cache. Specifically,
DeToX uses logical dependencies and identifies, for every
request r, sets of keys in subsequent accesses that are
logically dependent on r. The policy then tracks which of
these sets is most frequently accessed and preemptively
fetches in the most popular set into cache alongside r.

7 Implementation

In this section, we describe our implementation of DeToX,
which consists for 7K lines of Java. We adopt a standard two-
tier architecture in which we layer a Redis (7.0) cache on top
of Postgres (12.10) or TiKV (5.4.3). A shim layer routes re-
quests, manages concurrency control, and enables prefetching.

7.1 Shim Layer
All client requests are directed to the shim layer, which
mediates accesses to the cache and data store to support
serializable transactions. Read requests go first to Redis.
In the absence of a cache hit, the shim sends the request
to the data store and updates the cache with the result. All
writes are forwarded to the data store. While our shim
layer currently supports a key-value API, we can convert
SQL queries to this format, as previous systems have
done [36, 37, 50, 62–66, 70–72, 84, 87–90, 98, 104]. We
choose to implement a separate shim layer since there is
limited open-source support for concurrency control between
caching and data store systems [10, 46, 48, 49, 80, 81, 91, 94].
Furthermore, our shim layer allows us to easily plug in
different caches and data stores. We will explore integrating
transactional caching directly into systems in future work.
Concurrency control. We implement two-phase lock-

ing [24] with timeout-based deadlock detection in the shim
layer to maintain serializability. The system maintains the
following invariant: values in the cache will either 1) reflect
the value committed in the (serializable) data store or 2) be
protected by an exclusive write lock.
To achieve this, the shim acquires locks on individual

objects before sending requests to either storage system.
Writes are buffered at the shim layer until commit. All
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requests to the data store are sent as a part of the same
transaction. Once values are committed in the data store, they
are updated in the cache before write locks are released. To
handle crashes, we rely on the data store as the source of
truth, similar to previous work [49, 80, 81], and we clear the
cache after failure to prevent stale reads.
Extracting transaction types and execution graphs. We

extract logical dependencies and transaction types from appli-
cation code in line with prior work [38, 100]. The widespread
adoption of JDBC-style drivers presents a common interface
for extracting transactions across applications.

7.2 Eviction
Our eviction strategy scores keys as a function of their groups
as well as their frequency, size, and recency. The latter three
are all features that are readily available in Redis, which na-
tively supports LRU and LFU. We reuse many of these metrics
to minimize code changes when implementing our heuristics.
We make two primary modifications to Redis: we add 1) a
global aging factor that is updated during eviction (as detailed
in Section 4.2.3), and 2) support for scoring groups of keys.
Our changes involve less than 100 lines of code and suggest
that DeToX can be easily integrated into any caching system.
We also implement a trace-driven simulator in Python to
evaluate offline algorithms Belady and Transactional Belady.

8 Evaluation

In this section, we answer the following questions:
• How does DeToX compare to single-object algorithms in

terms of transactional hit rate and cache efficiency?
• What is the impact of our grouping optimizations?
• What is the tradeoff between optimizing for object hit rate

and transactional hit rate?

8.1 Experimental Setup
We run our shim layer and Postgres on separate c5a.4xlarge
Amazon EC2 instances (16 CPUs, 32GB RAM) and use a
memory-optimized r5.4xlarge machine (16 CPUs, 128GB
RAM) for Redis. Clients run on c5a.16xlarge instances (64
CPUs, 128GB RAM). We host all machines in the same re-
gion with low network latency (0.2ms). For our experiments,
we report the average of three 5-minute runs with 60 seconds
of warm-up time. When an eviction is needed, we score 10
random samples and choose one to evict among these can-
didates. This strategy removes the overhead of maintaining
a sorted list of keys without degrading performance and is
popular in many caching systems [2, 85], including Redis.

Benchmarks. We evaluate DeToX and several single-object
baselines against a range of workloads. TAOBench [28] is
an open-source social network benchmark based on Meta’s
production traces. We run the Product Group 1, 2, and 3

workloads, which represent distinct sets of (anonymized)
applications at Meta that share data and use the same product
infrastructure. All workloads are read-heavy and skewed,
typical of most social networks. They contain point reads
and writes (inserts, updates, and deletes) as well as read-only
and write-only transactions. Since transaction code is not
available for this benchmark, we use levels to score groups
for eviction. 1 We run experiments with 100M objects for
a total data size of around 1 TB. Epinions [39] consists of
nine transaction types that represent behavior of a consumer
reviews website. We run the benchmark with 2M user and 1M
items for a total data size of roughly 1 TB. SmallBank [93]
contains six types of transactions that model a simple banking
application. We configure it to run with 500M (uniformly ac-
cessed) accounts (total size of 1TB). TPC-C [35], a standard
e-commerce OLTP benchmark, simulates the business logic
of e-commerce suppliers with five types of transactions. We
configure TPC-C to run with 100 warehouses (total size of
8GB. In line with prior transactional key-value stores [36, 87],
we use a separate table as a secondary index on the Order table
to locate a customer’s latest order in the Order-Status transac-
tion, and on the Customer table to look up customers by their
last names (for the Order-Status and Payment transactions).

8.2 Application Benchmark Results
We show THR over different cache sizes for all benchmark
workloads in Figure 7. We omit some throughput / latency
graphs for space but describe results in text.

TAOBench. DeToX obtains up to 76% higher transactional
hit rates on the TAOBench PG2 and PG3 workloads compared
to single-object caching algorithms (Figures 7a and 7b).
DeToX achieves this with better cache efficiency: at the 25%
cache size relative to data size (a common setup following the
“80-20 rule”), the protocol achieves an 88% transactional hit
rate while the best single-object algorithm requires 3.4x more
cache space to attain the same result on PG2. Results are
similar for PG3 for which the system requires a 2.2x smaller
cache. Throughput increases by 31% (from 18K txns/s to
24 txns/s) for PG2 and 30% for PG3 (from 31K txns/s to 40
txns/s), while latency reduces by 30% (4.6ms to 3.2ms) for
PG2 (Figure 8b) and 29% for PG3 (2.3ms to 1.6ms).
PG2 is read-dominant (>96%) with a mix of point reads,

short transactions (<10 operations), and larger read transac-
tions that span up to 40 keys. The point reads and shorter trans-
actions make up 60% of the workload and largely access a
small group of hot keys. Consequently, all algorithms achieve
a THR of over 45% for small cache sizes (10% relative size).
The longer read transactions follow one of two patterns: trans-
actions access either a combination of hot and warm keys
(25%), or hot and cold keys (11%). Transactions from the first
category are more beneficial to cache since their keys are more

1TAOBench [28] chooses to model workloads using probability
distributions rather than fixed query types for adaptability.
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Figure 7: TAOBench results.
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Figure 8: TAOBench PG2 results.
frequently accessed and more likely to lead to transactional
hits. There is little benefit in caching any of the keys in the
second category (including hot keys) since transactional hits
are unlikely given the presence of cold keys in each group.
Under DeToX, the cache initially chooses to cache keys

that belong to transactions in the first category (with higher
scores). Thus, transactional hit rate improves as the cache
size increases from 10% to 40% (Figure 7a). Past this point,
the cache begins to retain more keys from transactions in the
second category, but the performance benefit is limited since
these requests rarely lead to transactional hits. In contrast,
single-object algorithms use only individual object features
to score keys, so they retain hot keys from transactions in
both categories. Transactional hit rate increases slowly up
to the 55% cache size at which point the cache becomes
large enough to begin storing the warm keys from the first
transaction category. Since the TAOBench workloads have
no temporal patterns, GDSF and LFU provide slightly higher
hit rates compared to LRU for all cache sizes.
Similarly, in PG3, DeToX achieves better cache efficiency

by not retaining contaminated keys. This workload has a
smaller portion of point reads and shorter transactions (50%),
so hit rates at smaller cache sizes are lower for all policies.
Longer read transactions span up to 60 items and also fall
into two categories. There are more transactions in the first
category (33% compared to 25% in Product Group 2), so
transactional hit rates grow more slowly with respect to cache
size since more warm keys need to be cached.

In contrast to the other workloads, PG1 (Figure 7c) consists
mainly of point reads and some short read transactions (of size
four or smaller), which together make up over 97% of all re-
quests. Our algorithm does not improve transactional hit rate
over single-object policies because most hits result from stan-
dalone requests and short read transactions to a set of highly
popular keys, which single-object algorithms already cache ef-
fectively. Throughput increases by 2% (from 82K txn/s to 84K
txn/s), and latency decreases by 2% (from 0.61ms to 0.60ms).

ChronoCache [48] has similar hit rates to single-object
algorithms since there are no dependencies within transac-
tions for this benchmark; Chronocache simply uses LRU.
The middleware layer, which does dependency analysis at
run-time, quickly becomes the bottleneck.
Epinions. Epinions centers around user interactions and

item reviews. It contains five read-only transactions and four
update transactions. Users have both an n-to-m relationship
with items (i.e., representing user reviews and ratings of
items) and an n-to-m relationship with other users.
DeToX’s algorithm provides up to 41% increase in transac-

tional hit rate (Figure 9a), translating into 29% improvement
in throughput (from 12K txn/s to 17K txn/s) and 25% decrease
in latency (from 6.9ms to 5.5ms). The transactions in Epin-
ions request some group of objects related to a particular user
or item (e.g., get all the reviews from one user), so our policy
is able to successfully capture the n-to-m relationships of the
data with its scoring mechanism. In contrast, the single object
policies focus on caching individually popular keys without
taking into account correlation between accesses. Since there
are no dependencies between or within transactions for this
workload, ChronoCache is unable to successfully prefetch
objects and the results reflect its eviction policy, LRU.

SmallBank. SmallBank consists of requests to the Accounts,
Checking, and Savings tables with six transaction types. Its
transactions are relatively small, involving four distinct keys
at most. Roughly two-thirds of operations are reads. Each
customer account is materialized as three separate entries in
each table and is accessed with a uniform distribution. There
is high correlation between accesses to a customer’s row in the
Accounts table and the other two rows in the other two tables.

Our algorithm provides up to a 130% increase in transac-
tional hit rate (Figure 9b). The absolute hit rates remain rel-
atively low for smaller cache sizes because of the uniform ac-
cess distribution to customer accounts. Transactional hit rate
increases linearly for all algorithms since more cache space
directly results in more hits. DeToX is 1.6x more efficient than
the next best-performing algorithm at the 25% cache size.
We observe up to a 28% increase in throughput (from 12K

txn/s to 16K txn/s) and 26% decrease in latency (from 6.8ms
to 5.4ms) on this workload (Figures 10a and 10b). The long
tail in access patterns and short transactions of this workload
limit the benefits of our eviction algorithm over single-object
alternatives, which all have similar performance.
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Figure 9: OLTP benchmark results.
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Figure 10: SmallBank results.
TPC-C. TPC-C is notably write-heavy and has transactions

that can span over 50 items. Its requests tend to fall into two
categories: either they access a small set of popular keys
(i.e., those in the Warehouse and District tables) or a larger
range of keys from a distribution with a long tail (Customer,
Item, Stock). Single-object caching algorithms are designed
to cache the former while the latter almost always results
in transactional misses. For instance, New-Order accesses
a key in each of the Warehouse, District, and Customer tables
before requesting 10 to 15 items from the Item and Stock
tables, which are chosen from a skewed distribution.

Consequently, TPC-C cannot benefit from transactional
caching: most transactions access a small set of hot keys that
are already in the cache (the object hit rate is >50% with a
10% cache size in Figure 9c) along with a larger set of cold
keys that are unlikely to be cached (hit rate grows slowly as
cache size increases). Moreover, transactions tend to access
keys in quick succession (e.g., once an order is placed, it is
then processed, paid for, and delivered), so recency is espe-
cially important in this workload. All algorithms incorporate
recency in some form, so performance is similar across these
policies, with up to 9K transactions per second and 27ms avg
latency. DeToX performs on par with single-object policies.

8.3 The Need for Dependency Analysis

In this section, we investigate the relative merits of our
grouping optimizations. The dependency analysis required for
complete groups can impose overheads in two ways: 1) the
cost of updating the scores of each key in each group and 2)
metadata overhead associated with scoring. Interchangeability
can reduce the number of groups that need to be scored, lead-
ing to better performance. On the other hand, levels discount
unbalanced topologies while T-DeToX, a baseline that scores
all keys of a transaction together, ignores dependencies. These
simpler policies reduce overhead in some cases but restrict the
groups that keys can belong to, leading to worse performance.
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Figure 11: (a),(b),(c). Microbench. 1 (d) Microbench. 2.

Performance impact. Microbenchmark 1 intentionally
captures the worst-case scenario for grouping. We run a single
transaction type with the topology in Figure 5a, and we extend
the right branch of the graph for larger transaction sizes.
Each read accesses keys uniformly at random among 10M
objects. We measure throughput and latency as we increase
transaction size up to 60 (equivalent to the largest transactions
in the TAOBench workloads). Figures 11a and 11b show that
performance for complete groups decreases dramatically as
transaction size increases due to the exponential number of
complete groups: for a transaction of size 15, over 16K groups
have to be scored. In contrast, performance degradation
is minimal with interchangeable groups (<5% difference
compared to LRU at size 60). There are only a linear number
of groups that must be scored with respect to transaction
size since all keys in the right branch of this topology are
interchangeable. Finally, levels offer similar performance to
LRU. Each key can only belong to one level per transaction,
so larger transaction sizes do not increase overhead. The
run-time CPU overhead of both interchangeable groups and
levels is also minimal compared to single-object algorithms
for all microbenchmark and previous benchmark workloads.

Moreover, the one-off cost of finding complete and inter-
changeable groups remains low: transactions of size 60 (with
100K+ groups due to worst-case topologies) require less than
five minutes to process (Figure 11c). All benchmark work-
loads required less than 30 seconds for dependency analysis.

While dependency analysis incurs a static cost, it can lead
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Figure 12: Scoring heuristics
to significant benefits compared to more basic forms of
grouping (levels and T-DeToX), which ignore some or all
dependency information. Microbenchmark 2 quantifies the
worst-case scenarios for levels and T-DeToX. We run a single
transaction type with the topology in Figure 5a in which the
keys in vertices a and c are hot keys chosen from a Zipfian
distribution while keys in b and d are cold keys chosen from
a uniform distribution over 10M objects. Using levels causes
keys in b and c to be scored together. However, keys in b
are rarely accessed, so the score for c is lowered. T-DeToX
makes even worse eviction decisions since it scores all keys
in a, b, c, and d together. Using complete and interchangeable
groups would instead cause keys in b and d to be scored
together, enabling the algorithm to capture the fact that
caching c individually reduces transactional length. We find
that complete and interchangeable groups significantly out-
perform levels (53% increase) and T-DeToX (139% increase)
for THR (Figure 11d). Complete and interchangeable groups
offer similar performance to LRU since these policies cache
keys in c, which are frequently accessed.
Storage overheads. Metadata overhead in DeToX is low.

Our algorithm stores two additional counters (total group
score, individual score) per key and a global aging factor
for eviction. While prefetching, DeToX stores dependency
sets. On TAOBench, additional metadata takes up less than
1% of the cache space. For workloads in which prefetching
is more prevalent, metadata overheads increase slightly. For
example, in SmallBank, additional metadata grows to 2%.
DeToX must store the dependency set associated with each
transaction (1.5 keys on average).

8.4 Scoring Heuristics
We evaluate different heuristics for calculating instance
(FXNF ) and aggregate scores (FXNKS). DeToX uses the min-
imum frequency of keys in a group for the instance score, and
averages instance scores to compute an aggregate score (Sec-
tion 4.2). We measure transactional hit rates for simple func-
tions (average, maximum, median, minimum) in Figure 12
for the PG3 workload (results are similar across workloads).

For assigning key instance scores, we find that, as expected,
Min provides the best performance (Figure 12a). Since
we only get a transactional hit if all keys of a group are
cached, the key with the smallest frequency should have
outsized impact on the group score. The other functions
discount this information and thus perform worse. However,
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Figure 14: (a), (b). Network latency (c) Simulation results.

these functions still encode the all-or-nothing property of
transactions to some extent since they assign the same
instance scores to all keys in a particular group. As a result,
we still observe higher hit rates than single-object policies.

Average and Median are the most effective functions for
calculating aggregate key score (Figure 12b). Max yields
a lower hit rate since it assigns each key the score of its
highest-scoring group, but this may not be the most frequent
group this key is a member of. Min provides markedly lower
performance (up to 64% lower hit rates). Each key is assigned
the score of its lowest-scoring group, so most scores converge
to the lowest group score (the smallest frequency of any key).
As a result, most scores are low and do not differ much.

8.5 OHR versus THR
There is a tradeoff between optimizing for latency and
for system load. Figure 13 shows the OHR and THR of
online algorithms as well as Belady and Transactional
Belady (see Appendix). As expected, Belady outperforms
other algorithms for object hit rate. Conversely, DeToX and
Transactional Belady give some of the lowest object hit rates.
However, these two algorithms significantly outperform the
other policies for transactional hit rate (and result in better
throughput and latency as shown in Section 8.2). While
we focus on PG3 here, we find similar results on the other
workloads (omitted for lack of space).

The difference between OHR and THR illustrates a tradeoff
between reducing I/O bandwidth and optimizing for latency.
OHR prioritizes the absolute number of requests that can be
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Figure 15: TAOBench Product Group 2 results on TiKV.

served from cache, minimizing requests to disk. In contrast,
THR focuses on the number of latency reductions for
transactions, leading to lower latency and higher throughput.
There are practical motivations for choosing THR as the
caching objective: with increasing elasticity from cloud
resources, applications often focus on latency optimization
for which large wins are possible with DeToX.

8.6 Transactional Hit Rate
Transactional hit rate is independent of system specifics; only
relative throughput and latency gains differ when cache / sys-
tem latency changes. We confirm this by 1) varying this ratio
(both experimentally and through simulation) and 2) evalu-
ating DeToX with an alternative key-value store, TiKV [4].

Network latency. We inject latency between the shim layer
and data store to simulate scenarios in which the latter is
hosted in a remote cloud region. Figure 14 shows that the
performance improvement with DeToX grows as network
latency increases. With no additional network latency (0ms),
there is a 30% increase in throughput and 29% decrease in
latency between DeToX and the best single-object policy for
PG3. With a WAN delay of 10ms, there is a 61% increase
in throughput and 47% decrease in latency.
Simulation results. To illustrate the impact of cache and

data store request times, we provide results for the TAOBench
PG2 workload. At the 25% cache size, the THR for this
workload is around 90% for DeToX and 50% for the other
policies (Section 8.2). We vary request times for the cache
and the data store (DB), using arbitrary units to represent
latency. As we increase the ratio of DB to cache latency in
Figure 14c, we find that the difference in request latency
between LRU and DeToX increases from 0% to 65% as
request times to the data store lengthen.
Transactional key-value store. We confirm that both

the difference in transactional hit rate and gains in cache
efficiency (3.4x) remains identical when executing atop TiKV,
demonstrating that these metrics are independent of the setup
chosen (Figure 15). In contrast, as TiKV exhibits higher
throughput and lower latency than Postgres, throughput and
latency gains fall to 19% and 15% respectively.

9 Related Work

Eviction. There is a wide range of research on efficient
caching policies that consider recency or age [34, 45, 55, 75],

access frequency [25, 42, 44, 57, 68], the number of unique
keys between accesses [15, 53, 61, 69, 78], the variable sizes
of objects or pages [5, 27], or combinations of the above [6–
8, 13, 14, 16, 19, 21, 30, 52, 54, 60, 83, 86, 105]. Some spe-
cialized eviction policies optimize for flash storage [79], adapt
to changing workloads [18, 20, 22, 32, 33, 41, 95], or consider
network bandwidth and download time for proxy caches [99].
PACMan [12] presents eviction algorithms based on the

all-or-nothing property: for jobs that issue tasks in parallel,
latency only improves if all parallel tasks are cached.
Similarly, existing literature on web caching [8, 19, 97]
shows that latency is reduced only when all parts of a page
are cached. Transactional hits in DeToX are based on a
similar insight. However, DeToX addresses the issue of
complex, unbalanced dependency graphs and recognizes
keys can be shared across many transactions.
Prefetching. Prefetching has been applied extensively

for web caching [11, 96]. Past work has focuses on
web page analysis [40, 59, 73, 76, 92, 101, 102], which
most stand-alone caches do not support [2, 74]. Other
research [26, 47, 48, 77] focuses on reducing the latency of
query execution using dependency analysis. These works
assume that each client issues queries sequentially, so any
cache hit can improve latency. Instead, DeToX caches in
order to maximize transactional hit. None of these systems
provide isolation guarantees or consider how eviction policies
should be modified to handle transactions.
Admission algorithms. In contrast to eviction algorithms,

admission policies decide what is allowed into the cache by
enforcing a threshold based on object scores. These algo-
rithms have often been applied alongside eviction policies [8,
22, 43, 56, 67]. While we focus on eviction and prefetching in
this work, our grouping and scoring strategies could feasibly
extend to admission, which we will explore in future work.
Cache coherence. Previous work combining transactions

and caching focuses on maintaining isolation guaran-
tees [1, 58, 82, 103]. DeToX ensures serializability while
focusing on cache eviction and prefetching.

10 Conclusion

We present DeToX, a novel caching system targeting at
transactional workloads. DeToX chooses to maximize THR
over the traditional object hit rate, using the notion of groups
to score keys. Our algorithm improves THR by up to 130%
and cache efficiency by up to 3.4x.
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A Appendix

We describe the NP-Hardness of the optimal offline trans-
actional caching problem through a reduction. We begin by
providing intuition for how and why traditional optimal offline
caching policies fail to translate to transactional caching.

A.1 Transactional Belady
We straightforwardly adapt Belady’s optimal caching pol-
icy [17] to the transactional context by defining Transactional
Belady, a caching policy that evicts keys that result in
transactional hits furthest in the future. While this extension
is intuitive, it does not offer optimal performance even for
flat, uniformly-sized transactions that access equally-sized
objects, as we prove below.

Consider the execution trace in Figure 16 with cache capac-
ity of 5. All transactions access three keys, either all from set
S1: {t,u,v,t ′,u′} or set S2: {x,y,z,x′,y′}. T1 and T2 access only
keys from the former group, while T3 and T4 access only keys
from the latter. T5 and T6 access keys from S1 and overlap in v,
while T7,T8,T9 overlap in x′,y,z from S2. Transactional Belady
evicts keys that will yield a transactional hit furthest in the
future. After T3’s execution, the algorithm thus evicts x,y,z as
they would first yield a hit at T7 while the other keys would
lead a hit at T5 and T6. A similar reasoning leads the algorithm
to evict x′,y′,z′ after T4 executes. This strategy yields two
transactional hits (for T5 and T6). Unfortunately, evicting
x,y,z after T3 is the wrong decision. Keeping all keys of set
S2 in the cache yields three transactional hits T7, T8, T9. As a
result, Transactional Belady achieves only two transactional
hits, while an optimal caching policy would achieve three.

T Keys accessed Cache state Optimal cache state
1 t,u,v - -
2 t ′,u′,v t,u,v -
3 x,y,z t,u,v,t ′,u′ -
4 x′,y′,z t,u,v,t ′,u′ x,y,z
5 t,u,v t,u,v, t ′,u′ x,y,z,x′,y′

6 t ′,u′,v t,u, v,t ′,u′ x,y,z,x′,y′

7 x,y,z t,u,v,t ′,u′ x,y,z, x′,y′

8 x′,y,z t,u,v,t ′,u′ x, y,z,x′, y′

9 x′,y′,z t,u,v,t ′,u′ x,y, z,x′,y′

Figure 16: Non-optimality of Transactional Belady

Transactional Belady does not account for shared keys
across transactions. It caches S1, which is shared across two
transactions, instead of keys in set S2, which is shared across
three transactions. Belady assumes that a cache hit closer
in the future is always as valuable as a cache hit further out.
This assumption holds when a single cached object provides
a single object hit but breaks down when keys are shared
across transactions. In these cases, an equal number of cached
objects can produce varying numbers of transactional hits.

A.2 Optimal Offline Transactional Caching is
NP-Hard

We demonstrate that the optimal offline transactional caching
problem (TxPolicy) is NP-Hard through a reduction to
the variable-sized caching problem, CACHING(FAULT,
OPTIONAL), introduced in [31].
We first provide intuition for our reduction. A page hit is only

possible if the entire page is present in the cache, regardless
of its size. The objective of CACHING(FAULT, OPTIONAL) is
to minimize the number of page faults, or the number of pages
accessed and missed. We convert each page of size X into a
transaction without dependencies that accesses X operations.
Therefore, there is only a transaction hit when the entire
transaction is in the cache. This transforms CACHING(FAULT,
OPTIONAL) into an easier version of TxPolicy with two
simplifying assumptions: 1) all transactions will use unique
keys, so that retaining a key in the cache from any single
transaction provides no benefit to any other transaction and 2)
there are no logical dependencies. If an optimal offline trans-
actional caching policy exists, then through this reduction, we
have the optimal policy for CACHING(FAULT, OPTIONAL).
We now formally describe CACHING(FAULT, OPTIONAL)

from [31]. CACHING(FAULT, OPTIONAL) asks,

Given a set of pages p1,...,pk with sizes

SIZE(p1),...,SIZE(pk), request sequence r1,...,rm
∈ {p1,...,pk}, cache size C, and cost bound F , is
there a replacement policy that serves r1,...,rm with
cache size C and incurs a total fault cost at most F?

A fault is incurred when ri ̸∈Ci, where the FAULT parameter
states that each fault has cost 1. The OPTIONAL parameter
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requires that ∀i>1, Ci⊆{Ci−1∪ri}; informally, the caching
policy does not have to admit the most recent page.
We formally define the offline transactional caching

problem, based on our formalisms from Section 3.
Definition 10 (Offline transactional caching policy). An
offline transactional caching policy is a function P that takes
a sequence of transactions T1,T2, ... ,Tm, cache size n, and
outputs a sequence of cache states C1,C2, ... ,Cm, with the
following restrictions:

1. C1=∅.
2. ∀i>1, Ci⊆{Ci−1∪Ti−1}.

TxPolicy asks,

Given a set of transactions T1, ... , Tm, cache
size C, is there an offline transactional caching
policy that serves T1,...,Tm with cache size C and
incurs at most F transactional misses? We define
transactional misses as the number of i where
Ti ̸⊆Ci, or the number of transactions that cannot
be served from cache.

Theorem 1. The optimal offline transactional caching
problem is NP-Hard.

Proof. We reduce CACHING(FAULT, OPTIONAL) to TxPol-
icy through the following polynomial-time reductions. Each
page pi is reduced to a transaction Ti. SIZE(pi) new tables
are created per transaction, each with only one key. Let X be
one such table. A read operation on the sole key of that table
x∈X is inserted into the transaction Ti. There are no logical
dependencies. Cache size C is preserved. The maximum fault
cost F is converted to the maximum number of transactional
misses. If there exists a policy solving the offline transactional
caching problem, run it with these parameters. Its output is
the output to the CACHING(FAULT, OPTIONAL) problem.
CACHING(FAULT, OPTIONAL) is NP-Hard; therefore, the
offline transactional caching problem is NP-Hard.
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