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Abstract

Perceiving 3D Humans and Objects in Motion

by

Zhe Cao
Doctor of Philosophy in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley
Professor Jitendra Malik, Chair

We exist in a 3D world, where we accomplish everyday tasks by perceiving and
interacting with other people and objects in dynamic scenes. Could we develop
a perception system to understand such rich interactions? This is crucial for
future intelligent systems to collaborate with humans and to create immersive
AR/VR experiences. While great progress has been achieved in the individual
perception tasks of 3D humans, objects, and scenes, the connections between
these components have not been explored much. In this thesis, we attempt
to build the connections between these three components to understand their
rich interactions.

We start by bridging the scene and object component in Chapter 2, where
we present an end-to-end learning system to perceive 3D scene and indepen-
dent object motions. We next show how 3D scenes influence human motion in
Chapter 3, where we design a framework to predict future 3D human motion
considering the scene context. In Chapter 4, we study the interaction between
human hands and objects, where we introduce an optimization-based method
to reconstruct the interaction in the wild. Finally, we conclude with several
interesting future directions.

Professor Jitendra Malik
Dissertation Committee Chair
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Chapter 1

Introduction

We humans exist in a 3D world, where we accomplish everyday tasks by
perceiving and interacting with other moving agents in the 3D dynamic scene.
Consider the outdoor scenario in Figure 1.1, we humans have the remarkable
capability to infer the 3D structure of the environmisent, such as the floor
plan, the building, and how far each of these elements in the scene is from us.
With temporal frames, we can perceive the nearby moving object and people
in terms of their moving speed and direction in this environment. Moreover,
we can perceive the rich human-object interactions such as riding a bicycle or
pushing a cart. All this perceived 3D information enables us to predict the
environment state in the near future and to plan our next actions.

Could we equip future intelligent agents with similar capabilities to per-
ceive and meaningfully interact with the 3D world? There are three main
components to consider in such a perception system: perceiving 3D scenes,
humans, and objects. In recent years, we have seen large progress in each of
the perception tasks [36, 57, 172]. However, these problems are not isolated
in many cases. For example, the 3D scene layout will constrain the possi-
ble human and object motion inside the environment. By jointly considering
multiple components, we can impose additional constraints to obtain more
natural and feasible results. This thesis attempts to bridge those three per-
ception tasks, as shown in the triangle in Figure 1.1, and demonstrate the
benefits of building the connection in different applications.

We begin in Chapter 2 by briding the scene and object components, we
present a system for learning motion maps of independently moving objects
from stereo videos. The only annotations used in our system are 2D object
bounding boxes which introduce the notion of objects in our system. Unlike
prior learning-based approaches which have focused on predicting dense opti-
cal flow fields and/or depth maps for images, we propose to predict instance
specific 3D scene flow maps and instance masks from which we derive a fac-
tored 3D motion map for each object instance. Our network takes the 3D
geometry of the problem into account which allows it to correlate the input
images and distinguish moving objects from static ones. We present experi-
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Figure 1.1: Left: an example outdoor scenario where people interacting with the 3D scene
and objects. Right: the overall structure of the thesis.

ments evaluating the accuracy of our 3D flow vectors, as well as depth maps
and projected 2D optical flow where our jointly learned system outperforms
earlier approaches trained for each task independently.

In Chapter 3, we consider the scene and human components jointly, where
we present a framework to predict the future human motion considering the
scene context. Human movement is goal-directed and influenced by the spa-
tial layout of the objects in the scene. To plan future human motion, it is
crucial to perceive the environment – imagine how hard it is to navigate a
new room with lights off. Existing works on predicting human motion do not
pay attention to the scene context and thus struggle in long-term prediction.
We instead introduce a novel three-stage framework that exploits scene con-
text to tackle this task. Given a single scene image and 2D pose histories,
our method first samples multiple human motion goals, then plans 3D human
paths towards each goal, and finally predicts 3D human pose sequences fol-
lowing each path. For stable training and rigorous evaluation, we contribute a
diverse synthetic dataset with clean annotations. We show our method shows
consistent quantitative and qualitative improvements over existing methods.

In Chapter 4, we study the problem of understanding hand-object inter-
actions from 2D images in the wild. This task requires reconstructing both
the hand and the object in 3D, which is challenging because of the mutual
occlusion between the hand and the object. We present a novel reconstruc-
tion technique that reconstructs 3D poses of both the hand and the object
with the help of 2D image cues and 3D contact priors. Moreover, we con-
tribute a dataset MOW (Manipulating Objects in the Wild) of 500 examples
of hand-object interaction images that have been “3Dfied” with the help of
the RHO technique together with human intervention. Our dataset contains
121 distinct object categories, with a much greater diversity of manipulation
actions, than in previous 3D hand-object datasets.

We conclude the thesis with a discussion on the limitations of current
systems and promising future directions of perceiving 3D humans and objects
in motion.
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Chapter 2

Perceiving 3D Scene and Object
Motion

Consider the crowded road scene in Figure 2.1, what information do
we as humans use to navigate effectively in this environment? We need to
have an understanding of the structure of the environment, i.e. how far other
elements in the scene (cars, bikes, people, trees) are from us. Moreover, we
also require knowledge of the speed and direction in which other agents in the
environment are moving relative to us. Such a representation, in conjunction
with our ego-motion, enables us to produce a hypothesis of the environment
state in the near future and ultimately allows us to plan our next actions.

In order to gather this information, humans use stereo-motion, i.e. a
stream of images captured with our two eyes as we move through the envi-
ronment. In this chapter, we develop a computational system that aims to
produce such a factored scene representation of 3D structure and motion from
a binocular video stream. Specifically, we propose to predict the 3D object
motion of each moving object (represented by 3D scene flow) in addition to a
detailed depth map of the scene from a stereo image sequence. This task and
its variants have been tackled in supervised settings which require labels such
as dense depth maps and motion annotations that are prohibitively expensive
to collect or alternatively obtained from synthetic datasets [22, 25, 50, 60, 88].
We present a system that learns to predict these quantities using only unla-
belled stereo videos, thus making it applicable at scale. In addition to produc-
ing pixel-wise depth and scene flow maps, our network is aware of the notion
of independent objects. This allows us to produce a rich factored 3D repre-
sentation of the environment where we can measure velocities of independent
objects in addition to their 3D positions in the scene. The only labels used
by our system are those introduced by off-the-shelf object detectors which are
very cheap to acquire at scale.

Prior work in this domain has focused on certain sub-problems such as
learning depth or optical flow prediction without explicit labels [165, 37, 30].
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Figure 2.1: Object motion predicted by our system. Trained with raw stereo motion
sequences in a self-supervised manner, our model learns to predict object motion together
with the scene depth using sequence of stereo images and object proposals as input. The
speed and moving direction of each moving object is derived from our scene flow prediction.

In Section 2.4, we demonstrate that by jointly learning the full problem of
depth and scene flow prediction, we outperform these methods for each of
these sub-problems as well. The key contributions of our work are as follows:
(1) formulating a learning objective which works with the limited amount of
supervision that can be gathered in a real world scenario (object bounding box
annotations), (2) factoring the scene representation into independently moving
objects for predicting dense depth and 3D scene flow and (3) designing a
network architecture that encodes the underlying 3D structure of the problem
by operating on plane sweep volumes.

The sections in this chapter are organized as follows. Section 2.1 discusses
prior work on inferring scene structure and motion. Section 2.2 presents our
technical approach for inferring scene flow from stereo motion - loss functions,
object-centric prediction and priors. In Section 2.3, we describe our network
architecture designed for geometric matching and 3D reasoning in plane sweep
volumes. Section 2.4 details our experiments on the KITTI dataset [91] with
extensive evaluation of our depth and scene flow prediction.

2.1 Background

In this chapter, we recover scene geometry and object motion jointly
while traditionally these problems have been solved independently. The ge-
ometry of a scene is reconstructed by first recovering the relative camera pose
between two or more images taken from different viewpoints using Structure-
from-Motion (SfM) techniques [82, 40]. Subsequently, with dense matching
and triangulation a dense 3D model of the scene is recovered [105]. The un-
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derlying assumption within the aforementioned methods is that the scene is
static, i.e. does not contain moving objects. The case for independently mov-
ing objects has been studied in a purely geometric setting [19]. The key dif-
ficulties are degenerate configurations and outliers in point correspondences
[98]. Therefore additional priors are used - a common example is objects
moving on a ground plane [167]. Similarly, estimating the shape of non-rigid
objects is ambiguous and hence using additional constraints such as maximiz-
ing the rigidity of the shape [140] or representing the non rigid shape as linear
combination of base shapes [11] have been proposed. When reconstructing
videos captured in unconstrained environments additional difficulties such as
incomplete feature tracks and bleeding into the background have to be han-
dled [27]. Our proposed approach is trained on real world data which makes it
robust to appearance variations and suitable priors are directly learned from
data.

Vedula et al.. [143] introduced the problem of 3D scene flow estimation,
where for each point a 3D motion vector between time t and t+1 is computed.
Different variants are considered depending on the amount of 3D structure
that is given as input. A common variant is to consider a stream of binocular
image pairs of a moving camera as input [49, 156, 147, 91, 131], and give
a depth and 3D scene flow as output. This is often referred to as the stereo
scene flow estimation problem. Similarly RGBD scene flow considers a stream
of RGBD (color and depth) images as input [52].

Recently learning-based approaches, especially convolutional neural net-
works have been applied for single view depth prediction [70, 22], optical flow
[25], stereo matching and scene flow [88]. These learning systems are trained
using ground truth geometry and/or flow data. In practice such data is only
available for synthetic data in a large scale. A natural way to complement
the limited amount of ground truth data is using weaker supervision. For the
aforementioned problems, loss functions which are purely based on images
and rely on photometric consistency as learning objective have been proposed
[30, 172, 37, 137, 144]. They essentially utilize a classical non-learned system
[28] within the loss function. A few recent works [165, 177, 162, 83, 110] use
such a self-supervised approach to predict optical flow and depth. To our
knowledge our work is the first network that learns to directly predict object
specific 3D scene flow without relying on pixel-wise flow or depth annotations.

Another key difference of our work from prior works that predict depth
and optical flow is that they predict depth based on a single image. This limits
their performance as demonstrated in our results. Geometric reasoning can
be included into the network architecture as demonstrated in [60, 58, 54, 163].
We extend these ideas to full 3D scene flow estimation while also operating
at the level of object instances allowing us to produce rich factored geometry
and motion representation of the scene.



CHAPTER 2. PERCEIVING 3D SCENE AND OBJECT MOTION 6

Feat.

E
xtractor

RoI Pool

Conv

RoI Conv

Patch and image consistencyDepth and motion predictionFeature extraction

Figure 2.2: Our pipeline for learning depth and object motion. Using a stereo motion
sequence as input, our system predicts a depth map (c), instance mask (d) and 3D scene flow
(e) for each independent moving object in a single forward pass. Using the instance mask
and scene flow, we compose a full scene flow map (g). For each region of interest (RoI), we
synthesize a patch (h) based on the RoI camera intrinsics, RoI depth (f), 3D scene flow (e)
and instance mask (d) as explained in Section 2.2.2. We use the synthesized patch (h) and
original patch (i) from the input image to enforce consistency losses to supervise the RoI
prediction. We use stereo reprojection to supervise the depth prediction. Finally, we use
the full map scene flow and depth to synthesize a image (j) for computing the consistency
loss.

2.2 Scene Flow from Stereo Motion

Figure 2.2 illustrates our system. A stream of calibrated binocular stereo
image pairs I = {I l1, Ir1 , . . . I ln, Irn} captured from times 1 to n is given as input.
The most common case we are investigating is n = 2, i.e. two binocular frames
at time t and t+1. The intrinsic camera calibration K is assumed to be known.
The camera poses of the left camera at each time instant are denoted by
T = {T1, . . . , Tn} and are precomputed using visual SLAM [32]. For any time
instant t, we also have a set of j 2D bounding box detections B = {B1, . . . , Bj}
on the left image I lt predicted by an off-the-shelf object detector. The task is to
compute the following quantities for the reference frame - a dense depth map
D, a set of dense 3D flow fields F = {F 1, . . . , F j} that describe the motion
between t and t+ 1 and a set of instance masksM = {M1, . . . ,M j} for each
moving object. From these instance-level predictions, we can compose the full
scene flow map F by assigning a 3D scene flow vector to each image pixel in
the full image.

We design our system as a convolutional neural network (CNN) which
learns to predict all quantities jointly and train the network in a self-supervised
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manner. The supervision comes from the consistency between synthesized
images and input images at different time instants and from different camera
viewpoints. The basic principle is that given the predictions of the scene flow
F and depthD in a frame Iref , we can use the precomputed ego-motion to warp
another image I into the reference view. This process generates a synthesized
image which we call Î. We then define our learning objective as the similarity
between the captured images Iref and the synthesized images Î. The above
principle is then applied to each region of interest (RoI) independently followed
by an assembly procedure for full image scene flow. This allows us to produce
a factored representation of the environment into static and dynamic objects
with high-quality estimates of instance masks, depth and motion.

2.2.1 Disentangling Camera and Object Motion

The motion in a dynamic scene captured by a moving camera can be
decomposed into two elements - the motion of static background resulting
from the camera motion and the motion of independently moving objects in
the scene. A common way to represent the scene motion is 2D optical flow.
However, this representation confounds the camera and object motion. We
model the motion of the static background using the 3D structure represented
as a depth map and the camera motion. Dynamic objects are modelled with
full 3D scene flow. To this end, we utilize 2D object detections in the form of
bounding boxes and reason about the 3D motion of each object independently.

2.2.2 Supervising Scene Flow by View Synthesis

The key supervision for the scene flow prediction comes from the pho-
tometric consistency of multiple views of the same scene. The process is
illustrated in Figure 2.3. Our network predicts a depth map D and a scene
flow map F for the reference view Iref . Using a different image I we can use
the predictions to warp I into the reference view and generate a synthesized
image Î. We then minimize the photometric difference between Iref and Î
given as

Lphoto = α
1− SSIM(Iref , Î)

2
+ (1−α)‖Iref − Î‖1 (2.1)

where SSIM denotes the structural similarity index [155] and α denotes a
weighting parameter.

We denote the homogeneous coordinates of pixel p as h(p). A pixel p
from the reference frame is transformed to a pixel p̂ within a frame I

h(p̂) = KTrel(D(p)K−1h(p) + F (p)) (2.2)

with Trel the relative transformation from reference frame to I. This allows
us to do a reverse warp using bilinear interpolation, keeping the formulation
differentiable.
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Bilinear Sample  
Depth + RGB

Figure 2.3: Illustration of our image reprojection process. A pixel p from image It is
unprojected using its predicted depth and subsequently transformed to the frame of It+1

using the predicted flow F and the camera transform Trel. The photometric consistency loss
is derived from the photometric difference between It and Ît+1→t where Ît+1→t is created
by warping It+1 into It. The geometric consistency loss is computed by comparing the
difference between depth maps warped in the above manner and having them consistent
with the z-dimension of the predicted flow F . Note that using only photometric consistency
would not resolve the ambiguity in the z direction of the flow.

Using the photometric consistency alone is insufficient for supervising
the 3D flow prediction. The reason is that along a viewing ray multiple
photo consistent solutions are possible, as shown in Figure 2.3. Therefore we
use an additional geometric loss leveraging depth consistency which further
constrains the flow. The idea is that the flow in z-direction, sometimes also
called disparity difference has to agree with the depth maps predicted for the
two time instants t and t + 1. In order to utilize this loss function a depth
map for both time instants needs to be predicted and the warping is applied
to the depth map.

Analogous to the photometric consistency, the geometric consistency is
defined by comparing the predicted depth values of the warped image and
reference image,

Lgeo =
∥∥∥Dref − D̂ + Fz

∥∥∥
1

(2.3)

where Dref refers to the predicted depth at time t and D̂ is the predicted depth
at time t + 1 warped back to time t, Fz is the z-dimension of the predicted
sceneflow.
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Full-image Camera RoI Camera

Figure 2.4: Illustration of image rescale and crop process and the change in the camera
intrinsics.

2.2.3 Object-centric Scene Flow Prediction

Image based consistency losses are typically applied by warping the whole
image and then computing the consistency over the whole image - examples
for optical flow prediction can be found in [165, 177]. For 3D scene flow this is
not an ideal choice due to the sparsity of non-zero flow vectors. Compared to
the static background, moving objects constitute only a small fraction of the
image pixels. This unbalanced moving/static pixel distribution makes naively
learning full image flow hard and ends up in zero flow predictions even on
moving objects. To make the network focus on predicting the correct flow
on moving objects and provide a more balanced supervision, we therefore use
object bounding box detections obtained from a state-of-the-art 2D object
detection system [81]. It is important to note that the object detection does
not actually tell us if the object is moving or not. This information is learned
by our network using our view synthesis based loss functions.

Formally each flow prediction happens in a region of interest (RoI) within
the original image, with size and location B =

[
x, y, w, h

]
. In our system the

per-object flow map is predicted at a fixed size wr × hr using a RCNN based
architecture as detailed in Section 2.3. For our view synthesis based loss

functions we need to transform the image intrinsics K =
[
fx 0 cx
0 fy cy
0 0 1

]
into RoI

specific versions. The change only affects the intrinsic camera parameters
and hence we need to compute a new intrinsic matrix Kj for each RoI j. The
transformation ends up to be a displacement of the principal point and scaling

of the focal length - Kj =

[
fxwr/w 0 (cx−x)wr/w

0 fyhr/h (cy−y)hr/h
0 0 1

]
.

Note that we do not need bounding box associations between different
viewpoints or time instants. We only compute detections for frame I lt and use
a slightly expanded area as our RoI in frames that we warp to our reference
frame for computing consistency losses in Eq. 2.1 and 2.3.
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2.2.4 RoI Assembly for Full Frame Scene Flow

We assemble a complete scene flow from the object specific maps F j.
However, overlapping RoIs and certain RoIs may even contain multiple moving
objects. Therefore we predict an object mask M j for each RoI j in addition
to F j. The full 3D scene flow map F is computed as:

F =
∑

j M
j � F j (2.4)

We then use the full image flow map F with Eq. 2.1 and Eq. 2.3 for full image
photometric and geometric losses. Note that the assembly procedure is fully
differentiable and we are able to train instance masks M = {M1, . . . ,M j}
without any explicit mask supervision. We later use these instance masks
(with flow) to identify moving objects (cf.Figure 2.6).

2.2.5 Full Learning Objective

We first state our full image synthesis based loss and then explain further
priors we impose in our training loss. Our image synthesis loss function is
based on four images I lt , I

r
t , I lt+1 and Irt+1 and can be split into three parts

Ltot = Llr + LRoI + Lt (2.5)

Where Llr is the loss for left-right consistency, LRoI is the RoI based loss
function and Lt is the full image based loss function on flow and depth over
time. To state how the three parts are defined we introduce the notation
s→ t to indicate the warping from source s to target t.

Llr = Lphoto(I
l
t , Î

r→l
t ) + Lphoto(I

l
t+1, Î

r→l
t+1 ) (2.6)

LRoI =
∑
j

Lphoto(I
l,j
t , Î

l,j
t+1→t)+Lgeo(D

l,j
t , D̂

l,j
t+1→t, F

lj
t )

Lt = Lphoto(I
l
t , Î

l
t+1→t) + Lgeo(D

l
t, D̂

l
t+1→t, F

l
t )

Beside the loss detailed above, we use additional priors such as smooth-
ness for depth and flow while respecting discontinuties at boundaries [37].
Optionally, we use the classical stereo system ELAS [31] to compute an in-
complete disparity map and use it for weak supervision with an L1 loss.

2.3 Network Architecture

Figure 2.5 illustrates our network for scene flow, mask and depth pre-
diction. We first talk about the 3D grid representation used to integrate the
information from all images and then describe each component of the network.



CHAPTER 2. PERCEIVING 3D SCENE AND OBJECT MOTION 11

3D Flow

Depth Map

3D View Frustum

Feature Unprojection 3D Grid Reasoning Final Prediction

Object-centric flow prediction

Mask

Figure 2.5: Network architecture. Our system predicts depth and instance-level 3D scene
flow in a single forward pass. With extracted image features, we unproject features into a
discretized view frustum grid, and then use a 3D CNN Φ3D and finally perform prediction
using depth ΦD and scene flow ΦSF decoders.

2.3.1 3D Grid Representation

In order to enable the network to reason about the scene geometry in 3D,
we unproject the 2D features into a 3D grid [58]. A common discretization is to
split a 3D

3D grids discretized in the inverted depth (outdoor scene)

Equally discretized 3d grid 3d grid discretized in the inverted depth space 

 
 

 

cuboid volume of interest into equally sized voxels.
This representation is used for 3D object shape re-
construction [138, 58]. However, it is not suitable for
outdoor scenes with a large depth range, where we
want to be more certain about foreground objects’
geometry and motion, and allow increasing uncer-
tainty with increasing depth in the 3D world. This
lends to using the well known frustum shaped grid
called matching cost volume or plane sweep volume
in classical (multi-view) stereo. In learning based stereo it has recently been
used in [163]. The grid is discretized in image space plus an additional inverse
depth (”nearness”) coordinate, as shown in above image.

2.3.2 Network Components

Image Encoder. In the first stage the images are processed using a 2D CNN
ΦI , which outputs for each image a 2D feature map with c feature channels.
The weights for this CNN are shared for all input frames - typically stereo
frames at two time instants {I lt , Irt } and {I lt+1, I

r
t+1}.

Unprojection. Using the 3D grid defined in Section 2.3.1, we lift the 2D
information into the 3D space. We use the two left camera images as ref-



CHAPTER 2. PERCEIVING 3D SCENE AND OBJECT MOTION 12

erences images {I lt , I lt+1} and generate these 3D grids in both their camera
coordinates. Each grid is populated with image features from all 4 images
by projecting the grid cell centers into the respective images using the corre-
sponding projection matrices [58]. We use the left images as reference frames
as we predict disparity maps and scene flow from I lt to I lt+1.

Grid Pooling. The grids from the previous stage contain image features
from all 4 frames. In order to combine the information from multiple frames
we use two strategies. We use element-wise max pooling for features from left
and right pairs and concatenate the features for different time instants in each
grid cell. The motivation is that for stereo frames, there is no object motion
and hence the feature should align well after unprojection. Thus a simple
strategy of max pooling works well. Whereas for frames at different time
instants, we expect motion in the scene and thus there would be misalignment
where objects move. The output from this stage are two grids Gl

t and Gl
t+1.

3D Grid Reasoning. The next module Φ3D processes the above two grids
independently and generates output grids of the same resolution G̃l

t and G̃l
t+1.

This module is implemented as a 3D encoder-decoder CNN module with skip
connections following the U-Net architecture [115].

Output Modules. The final output is based on two CNN modules - one
producing full frame depth for each reference image and one producing scene
flow for each RoI in frame It. For each image I li , with i ∈ {t, t + 1} we first
collapse G̃l

i (a 4D tensor) into a 3D tensor C l
i by concatenating features in the

depth dimension. As the grid is aligned with the reference image’s camera,
this corresponds to accumulating the features from various disparity planes
at every pixel into a single feature. This tensor is further processed using φD

to produce the full frame disparity map. The 3D flow prediction follows an
RCNN [35] based architecture where given RoIs, we crop out corresponding
regions C l

t using an RoI align layer [45] and pass them to φSF which predict the
scene flow and instance mask for each RoI. We also use skip connections from
the image encoder in φD and φSF to produce sharper predictions. The full
frame scene flow map is created from the RoIs by pasting back as described in
Section 2.2.4. The final outputs from our system are disparity maps Dl

t and
Dl

t+1 and a forward scene flow map F l
t .

2.4 Experiments

We evaluate our instance-level 3d object motion and mask prediction
on the KITTI 2015 sceneflow dataset [91]. This is the only available dataset
that contains real images together with ground-truth scene flow annotations.
Following existing work [89, 165, 177, 37], we adopt the official 200 training
images as test set. The official testing set is adopted for the final finetuning
process. This is possible as we do not require the ground truth for training.
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(a) Ground-truth (b) Prediction

Figure 2.6: Qualitative results on our instance-level moving object mask prediction. In-
stances are color-encoded.

All the related images in the 28 scenes covered by test data are excluded for
training. Figure 2.6 and Figure 2.7 show some qualitative results.

Training details Our system is implemented using TensorFlow [2]. All
models are optimized end-to-end using Adam [61] with a learning rate of
1 × 10−4, decay rate of 0.5 and decay steps of 100000. During training, we
randomly crop the input images in the horizontal direction to obtain patches
with the size of 384 × 640 as input to the network. We set the output size
of each RoI as 128 × 128, we set the number of channels in the 3D grid to
64. The batch size is set as 1 to deal with flexible RoI number for training
patch. For the image encoder, we finetune the first 4 convolutional layers from
Inception ResNet V2 [127] pretrained on ImageNet. The rest of network is
trained from scratch. We first train the depth prediction for 80K iterations
on the KITTI raw dataset and then jointly train the depth and scene flow
prediction for another 100k iterations. We finetune the model on the official
testing set for another 120k iterations and use official 200 training images for
comparison with other methods. The whole training process takes about 30
hours using a single NVIDIA Titan-X GPU.

2.4.1 Moving Object Speed and Direction Evaluation

Our method predicts 3D sceneflow for each independently moving object.
For each test image pair, ground-truth annotation of the disparity image at



CHAPTER 2. PERCEIVING 3D SCENE AND OBJECT MOTION 14

Figure 2.7: Qualitative results of our method. From left to right, reference image, depth,
optical flow and instance-level moving object mask.

Method AMAD↓ AMAE↓ AE≤15◦↑ AE≤30◦↑ SMAD↓ SMAE↓ SE≤0.15↑ SE≤0.3↑

GeoNet [165] + Godard [37] 6.98◦ 28.82◦ 62.93 77.16 0.256 0.503 0.351 0.554

UnflowC [89] + Godard [37] 5.96◦ 26.94◦ 64.87 77.58 0.240 0.471 36.21 58.62

Ours (no RoI consistency loss) 6.03◦ 29.34◦ 67.59 75.94 0.207 0.358 37.46 58.93

Our 3D scene flow 5.19◦ 22.92◦ 74.78 78.87 0.193 0.334 40.95 62.72

Table 2.1: Comparison of instance-level object motion in terms of motion direction(A)
and speed (S). MAE denotes the mean average error, MAD denotes the median absolute
deviation. The lower the better. We also report the percentage of the angle/speed error
below different thresholds, where AE denotes the absolute angular error, SE denotes the
absolute speed error. The higher the better.

time t, the disparity image at time t + 1 warped into the first image’s coor-
dinate frame and the 2D optical flow from time t to time t + 1 are provided.
Using these GT annotations together with the estimated camera egomotion
obtained from Libviso2 [32], we compute the 3D scene flow in the format of
(x, y, z) for each image. To provide an instance-level analysis, we use the bbox
detections [81], and find the dominant 3d flow for each object. As a result, we
represent the motion direction and speed for each instance using a single 3d
flow vector in the ground truth and all algorithms. We evaluate with the fol-
lowing metrics: the mean average error of the euclidean length of the 3d flow
(speed), the mean average error of the angle of the 3d flow (motion direction)
from the moving object pixels. For robustness to outliers we report the per-
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Method Image IoU Instance IoU

Zhou et al. [172] 0.380 -

Bounding box detections [81] 0.365 0.655

Our mask prediction 0.624 0.842

Table 2.2: Moving object mask evaluation. We report IoU number in both the full image
and the moving instance bounding box.

centage of the mean average error below different thresholds. For comparison
with other self-supervised flow and depth learning methods we need to re-
construct scene flow from depth and optical flow prediction. Geonet provides
depthmaps with unknown scale factor and unflow does not estimate depth, we
therefore use the depth results from Godard et al. [37]. As shown in Table 2.1,
the average instance-level motion direction error of our method is less than
23◦, about 15% smaller than the result obtained from the best self-supervised
optical flow combined with the best self-supervised depth algorithm. In our
prediction, about 75% of moving instances have an angular error below 15◦.

2.4.2 Moving Object Instance Mask Evaluation

Our method can produce instance-level moving object segmentation from
object bounding boxes and stereo videos. This is achieved without any in-
stance mask ground truth supervision. We evaluate our predictions on the
KITTI sceneflow 2015 training split. The dataset provides an “Object map”
which contains the foreground moving cars in each image. We use this motion
mask as ground truth in our segmentation evaluation. Figure 2.6 shows some
qualitative result of our moving object mask prediction. As shown in Table 2.2,
we evaluate our mask prediction using the Intersection Over Union (IoU) met-
ric. Specifically, We compute the mean image-level IoU which considers both
moving object and static background and the mean instance-level IoU for only
moving objects. Our method achieves highest IoU for mask prediction. As a
baseline comparison, we use mask generated from SSD [81] 2D bounding box
detections. Those masks contain both moving and static cars, thus it can only
achieve an mean IoU of 0.34 for the full image mask. Even with the GT object
movement information, it does not have tight object boundary and thus can
only achieve a mean IoU of 0.655. This illustrates how our method effectively
learns to determine which object is moving and identify an accurate instance
segmentation for moving cars. We improve the result on both image-level and
instance-level IoU. We also compare with Zhou et al. [172] which generates
the foreground mask for all moving objects and occlusion region in the image.
Their methods do not provide instance-level information, hence we cannot
obtain the instance-level IoU numbers.
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Method Dataset Non-occluded All Regions

EpicFlow [111] - 4.45 9.57

FlowNetS [25] C+ST 8.12 14.19

FlowNet2 [50] C+T 4.93 10.06

GeoNet [165] K 8.05 10.81

DF-Net [177] K+SY - 8.98

UnFlowC [89] K+SY - 8.80

Ranjan et al. [110] K - 7.76

Ours K 4.97 5.39

Ours (refined) K 4.19 5.13

Table 2.3: Results on KITTI 2015 flow training set over non-occluded regions and overall
regions. We use the average end-point error (EPE) metric to do the comparison. The
classical method EpicFlow takes 16s per frame at runtime; The FlowNetS and FlowNet2 are
learned with GT flow supervision. SY denotes SYNTHIA dataset [116], ST denotes Sintel
dataset, C denotes FlyingChairs dataset, T denotes FlyingThings3D dataset. Numbers
from other methods are directly taken from the paper.

2.4.3 Optical Flow Evaluation

An additional evaluation is to project our 3D flow predictions back to
2D to obtain the optical flow. As shown in Table 2.3, our method achieves
the lowest EPE in both non-occluded regions and overall regions compared
to other self-supervised methods. As a baseline comparison, we train a model
without RoI consistency loss, which shows a decrease in performance. Option-
ally, we add an optical flow refinement sub-network, to further improve our
optical flow result. The subnetwork is a unet which takes the warped image
and the raw optical flow, together with original image frames as input. This
enables the network to further improve the optical flow prediction in a similar
way as the architecture proposed in [109].

Method Binocular Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [37] no 0.124 1.388 6.125 0.217 0.841 0.936 0.975

libelas [31] yes 0.1862 2.192 6.307 3.528 0.8197 0.8355 0.8414

Godard et al. [37] yes 0.068 0.835 4.392 0.146 0.942 0.978 0.989

Ours yes 0.064 0.699 3.896 0.144 0.945 0.975 0.987

Table 2.4: Results on the KITTI 2015 stereo training set of 200 disparity images. All
learning-based methods are trained on KITTI raw dataset excluding the testing image
sequences. The top half shows method which uses monocular image as input, the bottom
half shows methods which use binocular images as input.
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Method D1 D2 FL ALL

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

EPC [162] 23.62 27.38 26.81 18.75 70.89 60.97 25.34 28.00 25.74

EPC++ [83] (mono) 30.67 34.38 32.73 18.36 84.64 65.63 17.57 27.30 19.78 >30.67 >84.64 >65.63

EPC++ [83] (stereo) 22.76 26.63 23.84 16.37 70.39 60.32 17.58 26.89 19.64 >22.76 >70.39 >60.32

Godard et al. [37] 9.43 18.74 10.86 - - - - - - - - -

GeoNet [165] - - - - - - 43.54 48.24 44.26 - - -

Godard [37] + GeoNet flow 9.43 18.74 10.86 9.10 25.95 25.42 43.54 48.24 44.26 48.22 55.75 49.38

Ours 6.27 15.95 7.76 8.46 23.60 10.92 14.36 51.25 20.16 16.58 53.20 22.64

Table 2.5: Results on KITTI 2015 scene flow training split. All number shows the per-
centage of correctly predicted pixels. D1 denotes the disparity image at time t, D2 denotes
the disparity image at time t+1 warped into the first frame, FL denotes the 2D optical flow
between the two time instances, fg denotes the foreground, and bg denotes the background.

2.4.4 Depth Evaluation

To evaluate our depth prediction we use the KITTI 2015 stereo training
set of 200 disparity images as test data and compare to other self-supervised
learning and classical algorithms in Table. 2.4. We compare to algorithms
that take binocular stereo as input at test time. Our method achieves a higher
accuracy as we input two consecutive binocular frames and our network also
manages to match over time.

2.4.5 Scene Flow Evaluation

We compare other unsupervised method in the sceneflow subset by di-
rectly using their released results or running their released code. For this
benchmark, a pixel is considered to be correctly estimated if the disparity or
flow end-point error is ≤ 3 pixels or ≤ 5%. For scene flow this criterion needs
to be fulfilled for two disparity maps and the flow map. As shown in Ta-
ble 2.5, our method has an overall better accuracy than earlier self-supervised
methods. Compared to classical approaches which optimize at test time our
accuracy is still lower. However, test time optimization is in general pro-
hibitively slow for real-time systems.

2.5 Discussion

We presented a system to predict depth and object scene flow. Our net-
work is trained using raw stereo sequences with off-the-shelf object detectors
using image consistency as key learning objective. Our formulation is general
and can be applied in any setting where a dynamic scene is imaged by multiple
cameras - e.g. a multi-view capture system [56]. In future work, we would
like to extend our system to integrate longer range temporal information. An
emergent notion of objects to remove the dependence on pretrained object
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detectors is a further research direction. We also intend to explore general
scenarios such as casual video captures using dual camera consumer devices
and leverage large scale training for a truly general purpose depth and scene
flow prediction system.
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Chapter 3

Predicting Long-term Human
Motion

Figure 3.1 shows the image of a typical indoor scene. Overlaid on this
image is the pose trajectory of a person, depicted here by renderings of her
body skeleton over time instants, where Frames 1-3 are in the past, Frame
4 is the present, and Frames 5-12 are in the future. In this paper, we study
the following problem: Given the scene image and the person’s past pose and
location history in 2D, predict her future poses and locations.

Human movement is goal-directed and influenced by the spatial layout
of the objects in the scene. For example, the person may be heading towards
the window, and will find a path through the space avoiding collisions with
various objects that might be in the way. Or perhaps a person approaches
a chair with the intention to sit on it, and will adopt an appropriate path
and pose sequence to achieve such a goal efficiently. We seek to understand
such goal-directed, spatially contextualized human behavior, which we have
formalized as a pose sequence and location prediction task.

With the advent of deep learning, there has been remarkable progress
on the task of predicting human pose sequences [26, 87, 157, 169]. However,
these frameworks do not pay attention to scene context. As a representative
example, Zhang et al. [169] detect the human bounding boxes across multiple
time instances and derive their predictive signal from the evolving appearance
of the human figure, but do not make use of the background image. Given this
limitation, the predictions tend to be short-term (around 1 second), and local
in space, e.g., walking in the same spot without global movement. If we want
to make predictions that encompass bigger spatiotemporal neighborhoods, we
need to make predictions conditioned on the scene context.

We make the following philosophical choices: (1) To understand long
term behavior, we must reason in terms of goals. In the setting of moving
through space, the goals could be represented by the destination points in the
image. We allow multi-modality by generating multiple hypotheses of human
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Figure 3.1: Long-term 3D human motion prediction. Given a single scene image
and 2D pose histories (the 1st row), we aim to predict long-term 3D human motion (pro-
jected on the image, shown in the 2-3rd rows) influenced by scene. The human path is
visualized as a yellow line.

movement “goals”, represented by 2D destinations in the image space. (2)
Instead of taking a 3D path planning approach as in the classical robotics
literature [7, 71], we approach the construction of likely human motions as a
learning problem by constructing a convolutional network to implicitly learn
the scene constraints from lots of human-scene interaction videos. We repre-
sent the scene using 2D images.

Specifically, we propose a learning framework that factorizes this task
into three sequential stages as shown in Figure Figure 3.2. Our model se-
quentially predicts the motion goals, plans the 3D paths following each goal
and finally generates the 3D poses. In Section 3.4, we demonstrate our model
not only outperforms existing methods quantitatively but also generates more
visually plausible 3D future motion.

To train such a learning system, we contribute a large-scale synthetic
dataset focusing on human-scene interaction. Existing real datasets on 3D
human motion have either contrived environment [51, 153], relatively noisy 3D
annotations [119], or limited motion range due to the depth sensor [41, 119].
This motivates us to collect a diverse synthetic dataset with clean 3D an-
notations. We turn the Grand Theft Auto (GTA) gaming engine into an
automatic data pipeline with control over different actors, scenes, cameras,
lighting conditions, and motions. We collect over one million HD resolution
RGB-D frames with 3D annotations which we discuss in detail in Section 3.3.
Pre-training on our dataset stabilizes training and improves prediction per-
formance on real dataset [41].

In summary, our key contributions are the following: (1) We formulate
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(a) predicted goals (b) planned paths (c) final poses

Figure 3.2: Overall pipeline. Given a single scene image and 2D pose histories, our
method first samples (a) multiple possible future 2D destinations. We then predict the (b)
3D human path towards each destination. Finally, our model generates (c) 3D human pose
sequences following paths, visualized with the ground-truth scene point cloud.

a new task of long-term 3D human motion prediction with scene context in
terms of 3D poses and 3D locations. (2) We develop a novel three-stage
computational framework that utilizes scene context for goal-oriented motion
prediction, which outperforms existing methods both quantitatively and qual-
itatively. (3) We contribute a new synthetic dataset with diverse recordings
of human-scene interaction and clean annotations.

3.1 Background

Predicting future human motion under real-world social context and
scene constraints is a long-standing problem [5, 38, 46, 64, 117]. Due to
its complexity, most of the current approaches can be classified into global
trajectory prediction and local pose prediction. We connect these two compo-
nents in a single framework for long-term scene-aware future human motion
prediction.

Global trajectory prediction: Early approaches in trajectory prediction
model the effect of social-scene interactions using physical forces [46], contin-
uum dynamics [135], Hidden Markov model [64], or game theory [84]. Many
of these approaches achieve competitive results even on modern pedestrian
datasets [74, 103]. With the resurgence of neural nets, data-driven prediction
paradigm that captures multi-modal interaction between the scene and its
agents becomes more dominant [5, 6, 15, 38, 85, 117, 130, 166]. Similar to
our method, they model the influence of the scene implicitly. However, unlike
our formulation that considers images from diverse camera viewpoints, they
make the key assumption of the bird-eye view image or known 3D informa-
tion [5, 38, 64, 117].

Local pose prediction: Similar to trajectory prediction, there has been
plenty of interest in predicting future pose from image sequences both in the
form of image generation [145, 171], 2D pose [16, 149], and 3D pose [18,
33, 158, 169]. These methods exploit the local image context around the
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human to guide the future pose generation but do not pay attention to the
background image or the global scene context. Approaches that focus on
predicting 3D pose from 3D pose history also exist and are heavily used in
motion tracking [23, 146]. The goal is to learn 3D pose prior conditioning
on the past motion using techniques such as Graphical Models [10], linear
dynamical systems [102], trajectory basis [3, 4], or Gaussian Process latent
variable models [132, 141, 150, 151], and more recently neural networks such
as recurrent nets [26, 53, 78, 87, 101], temporal convolution nets [47, 48, 75], or
graph convolution net in frequency space [157]. However, since these methods
completely ignore the image context, the predicted human motion may not be
consistent with the scene, i.e, waling through the wall. In contrast, we propose
to utilize the scene context for future human motion prediction. This is similar
in spirit to iMapper [93]. However, this approach relies on computationally
expensive offline optimization to jointly reason about the scene and the human
motion. Currently, there is no learning-based method that holistically models
the scene context and human pose for more than a single time instance [17,
73, 77, 152, 154].

3D Human Motion Dataset Training high capacity neural models requires
large-scale and diverse training data. Existing human motion capture datasets
either contain no environment [1], contrive environment [51, 153], or in the
outdoor setting without 3D annotation [148]. Human motion datasets with 3D
scenes are often much smaller and have relatively noisy 3D human poses [41,
119] due to the limitations of the depth sensor. To circumvent such problems,
researchers exploit the interface between the game engine and the graphics
rendering system to collect large-scale synthetic datasets [24, 65]. Our effort
on synthetic training data generation is a consolidation of such work to the
new task of future human motion prediction with scene context.

3.2 Approach

In this chapter, we focus on long-term 3D human motion prediction that
is goal-directed and is under the influence of scene context. We approach
this problem by constructing a learning framework that factorizes long-term
human motions into modeling their potential goal, planing 3D path and pose
sequence, as shown in Figure Figure 3.3. Concretely, given aN -step 2D human
pose history X1:N and an 2D image1 of the scene I (the Nth video frame in our
case), we want to predict the next T -step 3D human poses together with their
locations, denoted by a sequence YN+1:N+T . We assume a known human
skeleton consists of J keypoints, such that X ∈ RJ×2,Y ∈ RJ×3. We also
assume a known camera model parameterized by its intrinsic matrix K ∈ R3.

1We choose to represent the scene by RGB images rather than RGBD scans because
they are more readily available in many practical applications.
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Figure 3.3: Network architecture. Our pipeline contains three stages: GoalNet predicts
2D motion destinations of the human based on the reference image and 2D pose heatmaps
(Section 3.2.1); PathNet plans the 3D global path of the human with the input of 2D
heatmaps, 2D destination, and the image (Section 3.2.2); PoseNet predicts 3D global human
motion, i.e., the 3D human pose sequences, following the predicted path (Section 3.2.3).

To denote a specific keypoint position, we use the superscript of its index in
the skeleton, e.g., Xr refers to the 2D location of the human center (torso)
indexed by r ∈ [1, J ].

We motivate and elaborate our modular design for each stage in the
rest of the section. Specifically, GoalNet learns to predict multiple possible
human motion goals, represented as 2D destinations in the image space, based
on a 2D pose history and the scene image. Next, PathNet learns to plan a
3D path towards each goal – the 3D location sequence of the human center
(torso) – in conjunction with the scene context. Finally, PoseNet predicts 3D
human poses at each time step following the predicted 3D path. In this way,
the resulting 3D human motion has global movement and is more plausible
considering the surrounding scene.

Thanks to this modular design, our model can have either deterministic
or stochastic predictions. When deploying GoalNet, our model can sample
multiple destinations, which results in stochastic prediction of future human
motion. If not deploying GoalNet, our model generates single-mode prediction
instead. We discuss them in more detail in the rest of the section and evaluate
both predictions in our experiments.

3.2.1 GoalNet : Predicting 2D Path Destination

To understand long-term human motion, we must reason in terms of
goals. Instead of employing autoregressive models to generate poses step-by-
step, we seek to first directly predict the destination of the motion in the
image space. We allow our model to express uncertainty of human motion
by learning a distribution of possible motion destinations, instead of a single
hypothesis. This gives rise to our GoalNet denoted as F for sampling plausible
2D path destination.
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GoalNet learns a distribution of possible 2D destinations {X̂r
N+T} at the

end of the time horizon conditioned on the 2D pose history X1:N and the scene
image I. We parametrize each human keypoint Xj by a heatmap channel Hj

which preserves spatial correlation with the image context.
We employ GoalNet as a conditional variational auto-encoder [62]. The

model encodes the inputs into a latent z-space, from which we sample a ran-
dom z vector for decoding and predicting the target destination positions.
Formally, we have

z ∼ Q(z|H1:J
1:N , I) ≡ N (µ,σ), where µ,σ = Fenc(H

1:J
1:N , I). (3.1)

In this way, we estimate a variational posterior Q by assuming a Gaussian
information bottleneck using the decoder. Next, given a sampled z latent
vector, we learn to predict our target destination heatmap with our GoalNet
decoder,

Ĥr
N+T = Fdec(z, I), (3.2)

where we additionally condition the decoding process on the scene image. We
use soft-argmax [125] to extract the 2D human motion destination X̂r

N+T from

this heatmap Ĥr
N+T . We choose to use soft-argmax operation because it is

differentiable and can produce sub-pixel locations. By constructing GoalNet,
we have

Ĥr
N+T = F(I,H1:J

1:N). (3.3)

We train GoalNet by minimizing two objectives: (1) the destination prediction
error and (2) the KL-divergence between the estimated variational posterior
Q and a normal distribution N (0,1):

Ldest2D = ‖Xr
N+T − X̂r

N+T‖1,
LKL = KL

[
Q
(
z|H1:J

1:N , I
)
||N (0, 1)

]
,

(3.4)

where we weigh equally between them. During testing, our GoalNet is able to
sample a set of latent variables {z} from N (0,1) and map them to multiple
plausible 2D destinations {Ĥr

N+T}.

3.2.2 PathNet : Planning 3D Path towards Destination

With predicted destinations in the image space, our method further pre-
dicts 3D paths (human center locations per timestep) towards each desti-
nation. The destination determines where to move while the scene context
determines how to move. We design a network that exploits both the 2D des-
tination and the image for future 3D path planning. A key design choice we
make here is that, instead of directly regressing 3D global coordinate values of
human paths, we represent the 3D path as a combination of 2D path heatmaps
and the depth values of the human center over time. This 3D path represen-
tation facilitates training as validated in our experiments (Section 3.4.3).
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As shown in Figure 3.3, our PathNet Φ takes the scene image I, the 2D
pose history H1:J

1:N , and the 2D destination assignment Ĥr
N+T as inputs, and

predicts global 3D path represented as (Ĥr
N+1:N+T , d̂

r
1:N+T ), where d̂rt ∈ R

denotes the depth of human center at time t:

Ĥr
N+1:N+T , d̂

r
1:N+T = Φ(I,X1:J

1:N ,X
r
N+T ). (3.5)

We use soft-argmax to extract the resulting 2D path X̂r
N+1:N+T from pre-

dicted heatmaps Ĥr
N+1:N+T . Finally, we obtain the 3D path Ŷr

1:N+T by back-
projecting the 2D path into the 3D camera coordinate frame using the human
center depth d̂r

1:N+T and camera intrinsics K.
We use Hourglass54 [72, 96] as the backbone of PathNet to encode both

the input image and 2D pose heatmaps. The network has two branches where
the first branch predicts 2D path heatmaps and the second branch predicts
the depth of the human torso.

We train our PathNet using two supervisions. We supervise our path
predictions with ground-truth 2D heatmaps:

Lpath2D = ‖Xr
N+1:N+T − X̂r

N+1:N+T‖1. (3.6)

We also supervise path predictions with 3D path coordinates, while encour-
aging smooth predictions by penalizing large positional changes between con-
secutive frames:

Lpath3D = ‖Yr
1:N+T − Ŷr

1:N+T‖1 + ‖Ŷr
1:N+T−1 − Ŷr

2:N+T‖1. (3.7)

These losses are summed together with equal weight as the final training loss.
During training, we use the ground-truth destination to train our PathNet,
while during testing, we can use predictions from the GoalNet.

The GoalNet and PathNet we describe so far enable sampling multiple
3D paths during inference. We thus refer to it as the stochastic mode of the
model. The modular design of GoalNet and PathNet is flexible. By removing
GoalNet and input Xr

N+T from Equation 3.5, we can directly use PathNet
to produce deterministic 3D path predictions. We study these two modes,
deterministic and stochastic mode, in our experiments.

3.2.3 PoseNet : Generating 3D Pose following Path

With the predicted 3D path Ŷr
1:N+T and 2D pose history X1:N , we use

the transformer network [142] as our PoseNet Ψ to predict 3D poses follow-
ing such path. Instead of predicting the 3D poses from scratch, we first lift
2D pose history into 3D to obtain a noisy 3D human pose sequence Ȳ1:N+T

as input, and further use Ψ to refine them to obtain the final prediction.
Our initial estimation consists of two steps. We first obtain a noisy 3D
poses Ȳ1:N by back-projecting 2D pose history X1:N into 3D using the human
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torso depth d̂r
1:N and camera intrinsics K. We next replicate the present 3D

pose ȲN to each of the predicted future 3D path location for an initial esti-
mation of future 3D poses ȲN+1:N+T . We then concatenate both estimations
together to form Ȳ1:N+T as input to our PoseNet:

ŶN+1:N+T = Ψ(Ȳ1:N+T ). (3.8)

The training objective for PoseNet is to minimize the distance between the
3D pose prediction and the ground-truth defined as:

Lpose3D = ‖YN+1:N+T − ŶN+1:N+T‖1. (3.9)

During training, ground-truth 3D path Yr
1:N+T is used for estimating coarse

3D pose input. During testing, we use the predicted 3D path Ŷr
1:N+T from

PathNet.

3.3 GTA Indoor Motion Dataset

We introduce the GTA Indoor Motion dataset (GTA-IM) that empha-
sizes human-scene interactions. Our motivation for this dataset is that exist-
ing real datasets on human-scene interaction [41, 119] have relatively noisy
3D human pose annotations and limited long-range human motion limited by
depth sensors. On the other hand, existing synthetic human datasets [24, 65]
focus on the task of human pose estimation or parts segmentation and sample
data in wide-open outdoor scenes with limited interactable objects.

To overcome the above issues, we spend extensive efforts in collecting a
synthetic dataset by developing an interface with the game engine for control-
ling characters, cameras, and action tasks in a fully automatic manner. For
each character, we randomize the goal destination inside the 3D scene, the
specific task to do, the walking style, and the movement speed. We control
the lighting condition by changing different weather conditions and daytime.
We also diversify the camera location and viewing angle over a sphere around
the actor such that it points towards the actor. We use in-game ray tracing
API and synchronized human segmentation map to track actors. The col-
lected actions include climbing the stairs, lying down, sitting, opening the
door, and etc. – a set of basic activities within indoor scenes. For example,
the character has 22 walking styles including 10 female and 12 male walking
styles. All of these factors enable us to collect a diverse and realistic dataset
with accurate annotations for our challenging task.

In total, we collect one million RGBD frames of 1920 × 1080 resolution
with the ground-truth 3D human pose (98 joints), human segmentation, and
camera pose. Some examples are shown in Figure 3.4. The dataset contains
50 human characters acting inside 10 different large indoor scenes. Each scene
has several floors, including living rooms, bedrooms, kitchens, balconies, and
etc., enabling diverse interaction activities.
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Figure 3.4: Sample RGBD images from GTA-IM dataset. Our dataset contains
realistic RGB images (visualized with the 2D pose), accurate depth maps, and clean 3D
human pose annotations.

3.4 Evaluation

We perform extensive quantitative and qualitative evaluations of our
future 3D human path and motion predictions. The rest of this section is
organized as follows: We first describe the datasets we use in Section 3.4.1. We
then elaborate on our quantitative evaluation metrics and strong baselines in
Section 3.4.2. Further, we show our quantitative and qualitative improvement
over previous methods in Section 3.4.3. Finally, we evaluate our long-term
predictions and show qualitative results of destination samples and final 3D
pose results in Section 3.4.4. We discussed some failure cases in Section 3.4.5.

3.4.1 Datasets

GTA-IM: We train and test our model on our collected dataset as described
in Section 3.3. We split 8 scenes for training and 2 scenes for evaluation.
We choose 21 out of 98 human joints provided from the dataset. We convert
both the 3D path and the 3D pose into the camera coordinate frame for both
training and evaluation.

PROX: Proximal Relationships with Object eXclusion (PROX) is a new
dataset captured using the Kinect-One sensor by Hassan et al. [41]. It com-
prises of 12 different 3D scenes and RGB sequences of 20 subjects moving
in and interacting with the scenes. We split the dataset with 52 training
sequences and 8 sequences for testing. Also, we extract 18 joints from the
SMPL-X model [99] from the provided human pose parameters.

3.4.2 Evaluation Metric and Baselines

Metrics: We use the Mean Per Joint Position Error (MPJPE) [51] as a metric
for quantitatively evaluating both the 3D path and 3D pose prediction. We
report the performance at different time steps (seconds) in millimeters (mm).

Baselines: To the best of our knowledge, there exists no prior work that pre-
dicts 3D human pose with global movement using 2D pose sequence as input.
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Figure 3.5: Qualitative results on long-term stochastic prediction. In each exam-
ple, we first show the input image with 2D pose histories and then our stochastic predictions.
In the first example (1st and 2nd row), we show five different future human movement pre-
dictions by sampling different human “goals”, e.g., turning left to climb upstairs, or going
straight through the hallway. For the following examples at each row, we only show two
stochastic predictions per example due to space limitation. Our method can generate di-
verse human motion, e.g., turning left/right, walking straight, taking a u-turn, standing up
from sitting, and laying back on the sofa.

Thus, we propose three strong baselines for comparison with our method. For
the first baseline, we combine the recent 2D-to-3D human pose estimation
method [100] and 3D human pose prediction method [157]. For the second
baseline, we use Transformer [142], the state-of-the-art sequence-to-sequence
model, to perform 3D prediction directly from 2D inputs treating the entire
problem as a single-stage sequence to sequence task. For the third baseline,
we compare with is constructed by first predicting the future 2D human pose
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3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓
TR [142] 277 352 457 603 291 374 489 641 406
TR [142] + VP [100] 157 240 358 494 174 267 388 526 211
VP [100] + LTD [157] 124 194 276 367 121 180 249 330 193

Ours (deterministic) 104 163 219 297 91 158 237 328 173

Ours (samples=4) 114 162 227 310 94 161 236 323 173
Ours (samples=10) 110 154 213 289 90 154 224 306 165

Ours w/ xyz. output 122 179 252 336 101 177 262 359 191
Ours w/o image 128 177 242 320 99 179 271 367 196
Ours w/ masked image 120 168 235 314 96 170 265 358 189
Ours w/ RGBD input 100 138 193 262 93 160 235 322 172
Ours w/ GT destination 104 125 146 170 85 133 178 234 137

Table 3.1: Evaluation results in GTA-IM dataset. We compare other baselines
in terms of 3D path and pose error. The last column (All) is the mean average error
of the entire prediction over all time steps. VP denotes Pavllo et al. [100], TR denotes
transformer [142] and LTD denotes Wei et al. [157]. GT stands for ground-truth, xyz.
stands for directly regressing 3D coordinates of the path. We report the error of our
stochastic predictions with varying number of samples.

using [142] from inputs and then lifting the predicted pose into 3D using [100].
Note that none of these baselines consider scene context or deal with uncer-
tainty in their future predictions. We train all models on both datasets for
two-second-long prediction based on 1-second-long history and report their
best performance for comparison.

3.4.3 Comparison with Baselines

In this section, we perform quantitative evaluations of our method in the
two datasets. We also show some qualitative comparisons in Figure 3.6. We
evaluate the two modes of our model: the stochastic mode that can generate
multiple future predictions by sampling different 2D destinations from the
GoalNet; and the deterministic mode that can generate one identical predic-
tion without deploying GoalNet.

GTA-IM: The quantitative evaluation of 3D path and 3D pose prediction in
GTA-IM dataset is shown in Table 3.1. Our deterministic model with image
input can outperform the other methods by a margin, i.e., with an average
error of 173 mm vs. 193 mm. When using sampling during inference, the
method can generate multiple hypotheses of the future 3D pose sequence. We
evaluate different numbers of samples and select the predictions among all
samples that best matches ground truth to report the error. We find using
four samples during inference can match the performance of our deterministic



CHAPTER 3. PREDICTING LONG-TERM HUMAN MOTION 30

3D path error (mm) 3D pose error (mm)

Time step (second) 0.5 1 1.5 2 0.5 1 1.5 2 All ↓
TR [142] 487 583 682 783 512 603 698 801 615
TR [142] + VP [100] 262 358 461 548 297 398 502 590 326
VP [100] + LTD [157] 194 263 332 394 216 274 335 394 282

Ours w/o GTA-IM pretrain 192 258 336 419 192 273 352 426 280
Ours (deterministic) 189 245 317 389 190 264 335 406 270

Ours (samples=3) 192 245 311 398 187 258 328 397 264
Ours (samples=6) 185 229 285 368 184 249 312 377 254
Ours (samples=10) 181 222 273 354 182 244 304 367 249

Ours w/ gt destination 193 223 234 237 195 235 276 321 237

Table 3.2: Evaluation results in PROX dataset. We compare other baselines in
terms of 3D future path and pose prediction. VP denotes Pavllo et al. [100], TR denotes
transformer [142] and LTD denotes Wei et al. [157]. GT stands for ground-truth. We rank
all methods using mean average error of the entire prediction (last column).

model (173 mm error), while using ten samples, we further cut down the error
to 165 mm. These results validate that our stochastic model can help deal
with the uncertainty of future human motion and outperform the deterministic
baselines with few samples.

As an ablation, we directly regress 3D coordinates (“Ours w/ xyz.” in
the Table 3.1) and observe an overall error that is 18 mm higher than the
error of our deterministic model (191 mm vs. 173 mm). This validates that
representing the 3D path as the depth and 2D heatmap of the human center is
better due to its strong correlation to the image appearance. We also ablates
different types of input to our model. Without image input, the average
error is 23 mm higher. With only masked images input, i.e., replacing pixels
outside human crop by ImageNet mean pixel values, the error is 16 mm highe.
This validates that using full image to encode scene context is more helpful
than only observing cropped human image, especially for long-term prediction.
Using both color and depth image as input (“Ours w/ RGBD input”), the
average error is 172 mm which is similar to the model with RGB input. This
indicates that our model implicitly learns to reason about depth information
from 2D input. If we use ground-truth 2D destinations instead of predicted
ones, and the overall error decreases down to 137 mm. It implies that the
uncertainty of the future destination is the major source of difficulty in this
problem.

PROX: The evaluation results in Table 3.2 demonstrate that our method
outperforms the previous state of the art in terms of mean MPJPE of all
time steps, 270 mm vs. 282 mm. Overall, we share the same conclusion as
the comparisons in GTA-IM dataset. When using sampling during inference,
three samples during inference can beat the performance of our deterministic
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model (264 mm vs. 270 mm), while using ten samples, the error decreases
to 249 mm. Note that these improvements are more prominent than what
we observe on GTA-IM benchmark. This is because the uncertainty of future
motion in the real dataset is larger. Therefore, stochastic predictions have
more advantage.

Moreover, we find that pre-training in GTA-IM dataset can achieve bet-
ter performance (270 mm vs. 280 mm). Our method exploits the image
context and tends to overfit in PROX dataset because it is less diverse in
terms of camera poses and background appearance (both are constant per
video sequence). Pre-training in our synthetic dataset with diverse appear-
ance and clean annotations can help prevent overfitting and boost the final
performance.

(a) input (b) baseline results (c) our results
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Figure 3.6: Qualitative comparison. We visualize the input (a), the results of VP[100]
and LTD [157] (b) and our results (c) in the ground-truth 3D mesh. The color of pose is
changed over timesteps according to the color bar. The first example includes both top-
down and side view. From the visualization, we can observe some collisions between the
baseline results and the 3D scene, while our predicted motion are more plausible by taking
the scene context into consideration.
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(a) predicted 3D paths (b) predicted 3D poses

Figure 3.7: Comparison between our stochastic predictions and deterministic
predictions. We show error curves of predicted (a) 3D paths and (b) 3D poses with
varying numbers of samples over varying timesteps on GTA-IM dataset. In all plots, we
find that our stochastic model can achieve better results with a small number of samples,
especially in the long-term prediction (within 2-3 second time span).

Figure 3.8: Destination sampling results. In each image, the blue dots denote the path
history, the green dots are ground-truth future destination, red dots are sample destinations
from the GoalNet which we draw 30 times from the standard Gaussian. Our method can
generate diverse plausible motion destination samples which leads to different activities.

Qualitative comparison: In Figure 3.6, we show qualitative comparison
with the baseline of VP [100] and LTD [157]. This baseline is quantitatively
competitive as shown in Table 3.1 and 3.2. However, without considering
scene context, their predicted results may not be feasible inside the 3D scene,
e.g., the person cannot go through a table or sofa. In contrast, our model
implicitly learns the scene constraints from the image and can generate more
plausible 3D human motion in practice.

3.4.4 Evaluation on Longer-term Predictions

To demonstrate our method can predict future human motion for more
than 2 seconds, we train another model to produce the 3-second-long future
prediction. In Figure Figure 3.7, we show the self-comparisons between our
stochastic predictions and deterministic predictions. Our stochastic models
can beat their deterministic counterpart using 5 samples. With increasing
number of samples, the testing error decreases accordingly. The error gap
between deterministic results and stochastic results becomes larger at the
later stage of the prediction, i.e., more than 100 mm difference at 3 second
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Figure 3.9: Visualization of failure cases. In each red circle area, we observe the
intersection between the human feet and the 3D mesh, e.g., the bed.

time step. This indicates the advantage of the stochastic model in long-term
future motion prediction.

We show qualitative results of our stochastic predictions on movement
destinations in Figure 3.8, and long-term future motion in Figure 3.5. Our
method can generate diverse human movement destination, and realistic 3D
future human motion by considering the environment, e.g., turning left/right,
walking straight, taking a U-turn, climbing stairs, standing up from sitting,
and laying back on the sofa.

3.4.5 Failure cases

Our model implicitly learns scene constraints in a data-driven manner
from large amounts of training data, and can produce consistent 3D human
paths without serious collision comparing to previous methods which do not
take scene context into consideration as shown in Figure 3.6. However, with-
out assuming we have access to the pre-reconstructed 3D mesh and using
expensive offline optimization as [41], the resulting 3D poses may not strictly
meet all physical constraints of the 3D scene geometry. Some failure cases are
shown in Figure 3.9. In the red circled area, we observe small intersections
between the human feet and the 3D scene mesh, e.g., the ground floor or the
bed. This issue could be relieved by integrating multi-view/temporal images
as input to the learning system to recover the 3D scene better. The resulting
3D scene could be further used to enforce explicit scene geometry constraints
for refining the 3D poses. We leave this to the future work.

3.5 Discussion

In this chapter, we study the challenging task of long-term 3D human
motion prediction with only 2D input. This research problem is very rel-
evant to many real-world applications where understanding and predicting
feasible human motion considering the surrounding space is critical, e.g., a
home service robot collaborating with the moving people, AR glass providing
navigation guide to visually impaired people, and autonomous vehicle plan-
ning the action considering the safety of pedestrians. We present an initial
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attempt in attacking the problem by contributing a new dataset with diverse
human-scene interactions and clean 3D annotations. We also propose the first
method that can predict long-term stochastic 3D future human motion from
2D inputs, while taking the scene context into consideration. There are still
many aspects in this problem that can be explored in the future, such as how
to effectively evaluate the naturalness and feasibility of the stochastic human
motion predictions, and how to incorporate information of dynamic objects
and multiple moving people inside the scene.



35

Chapter 4

Perceiving Hand-Object
Interaction

Our hands are the primary way we interact with objects in the world.
In turn, we designed our world with hands in mind. Therefore, understanding
hand-object interactions is an important ingredient for building agents that
perceive and act in the real world. For example, it can allow them to learn
object affordances [34], infer human intents [90], and learn manipulation skills
from humans [104, 107, 86].

What does it mean to understand hand-object interactions? We argue
that fully capturing the richness of hand-object interactions requires 3D un-
derstanding. In general, recovering 3D from a single RGB image is an under-

Figure 4.1: Reconstructions in the wild. For each row, we show the input image (top),
the reconstructed hand and object in two different viewpoints (bottom). Our method can
achieve compelling results for a variety of object categories, grasp types, and interaction
scenarios.
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Figure 4.2: Images from existing hand-object dataset. The reality gap between
the existing in-the-lab datasets with 3D annotations (left) and in-the-wild images (right) is
large.

constrained problem. In the case of hand-object interactions, the problem
is even more challenging due to heavy occlusions that occur during object
manipulation, a wide range of small daily objects that are not even present
in labeled recognition datasets, and fine-grained interactions with complex
contacts that are difficult to model.

Overall, our community has made substantial progress toward this goal.
However, due to the difficulty in obtaining 3D annotations in the wild, the data
collection efforts have focused mainly on in-the-lab setting [39, 176, 29, 9, 129].
As shown in Figure 4.2, there is a large reality gap between the existing in-
the-lab settings and the richness of environments and interactions found in
images in the wild. Indeed, as shown in Table 4.1, existing datasets have a
limited number of participants and objects.

In this chapter, we make two main contributions: (1) we develop a new
technique for reconstructing 3D hands and objects from single images in-the-
wild, called RHO for Reconstructing Hands and Objects and (2) we use this
technique in conjunction with human intervention to create a new 3D dataset
of humans Manipulating Objects in-the-Wild, that we call MOW.

Specifically, RHOI is a new optimization-based method for reconstruct-
ing hand-object interactions in the wild. The core idea is to leverage 2D image
cues and 3D contact priors to provide constraints. RHOI consists of four steps:
hand pose estimation using 2D hand keypoints, object pose estimation using
2D object mask and depth via differentiable rendering, joint optimization for
hand-object configuration in 3D, and pose refinement using 3D contact priors.

A key feature of our method is the ability to deal with a wide variety
of objects in the wild—an order of magnitude more than any previous work
in hand-object reconstruction or general object reconstruction areas. This
required several innovations. First, a new insight that segmentation masks
for unknown object categories can be obtained using available recognition
models. Second, a scalable data-driven way to enforce contact priors using a
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HO3D [39] CP [9] GRAB [129] Ours

setting lab lab lab wild

data type video video mocap image

particip. 10 50 10 450

objects 10 25 51 121

Table 4.1: Existing 3D hand-object datasets. Our dataset contains in-the-wild im-
ages, as shown in Figure 4.2 right, and a large number of different participants and objects.

large collection of mocap data recorded in the lab.
We compare RHOI to existing approaches quantitatively in the lab set-

tings where ground truth annotations are available and qualitatively on in-
the-wild images. We find that RHOI performs better or on par with the
state-of-the-art method on in-the-lab datasets. Moreover, we show that the
existing approaches struggle on challenging in-the-wild images reinforcing the
need for the dataset we collect.

We employ our method as part of a semi-automatic data annotation
process. Specifically, we use human intervention for two reasons. First, to find
and prepare the appropriate 3D model for the object being manipulated in the
image. Second, to ensure high quality annotations by verifying and adjusting
the results of our method in an iterative fashion. Using this procedure, we
annotate 500 images from the EPIC Kitchens [21] and the 100 Days of Hands
dataset [120]. These depict a rich diversity of manipulation actions, which we
augment with newly collected 3D object models from 121 object categories,
3D object poses, and 3D hand poses.

Our collected dataset in the wild, MOW, can be useful in many ways.
It enables us to study and understand human manipulation actions using in-
the-wild data. Indeed, the analysis presented in our work already leads to
interesting findings that have not been shown before outside the lab settings.
For example, we discover a low-dimensional embedding whose first dimension
corresponds to the closure of the grasp (Figure 4.8).

In summary, our key contributions are: (1) We present a novel optimization-
based procedure, RHOI, that is able to reconstruct hand-object interactions in
the wild across diverse object categories; (2) We show quantitative and qual-
itative improvements over existing methods, especially on in-the-wild setting;
(3) We contribute a new 3D dataset, MOW, of 500 images in the wild, span-
ning 121 object categories with annotation of instance category, 3D object
models, 3D hand pose, and object pose annotation.
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4.1 Background

3D hand pose estimation. Many previous works on hand pose estimation
directly predict 3D joint locations from either depth [121, 124, 128, 139, 164,
168, 94] or RGB [112, 95, 12, 161, 175] images. Some recent works predict
3D hand joint rotations and shape parameters of parametric hand models
such as MANO [113]. Fitting-based approaches [99, 159, 66] fit such para-
metric models to 2D keypoint detections to optimize 3D hand parameters.
Learning-based approaches [173, 114] utilize deep networks to directly predict
the hand parameter from RGB image input. Recently, [67, 66] proposes to
use mesh convolution to directly predict 3D hand mesh reconstruction. We
use a learning-based method [114] to obtain the initial hand pose estimation
and further improve the result by imposing constraints on 2D hand keypoints
and 3D hand-object contact priors.

3D object pose estimation. There are many existing works on estimating
3D object pose from a single image. Some approaches [136, 68, 36, 69] utilize
neural network to predict the object shape, translation, and global orientation
in the camera coordinate. These methods are trained with limited object
categories and have difficulty generalizing to new objects. On the other hand,
some approaches [79, 92, 160, 170, 126, 118] assume known 3D object model
and focus on 6DOF object pose prediction. In this chapter, we take a fitting-
based approach similar to [126, 170]. Our main novelty is the usage of a depth
loss term which improves the results by imposing object shape constraints.

3D hand and object pose estimation. Early approaches in modeling hand
and object require the input of multi-view image [97] or RGB-D sequence [139].
Recently, [44] proposes a deep model trained on synthetic data to reconstruct
hand and object meshes from a monocular RGB image. [133] designs a
neural network to jointly predict 3D hand pose and 3D object bounding boxes
with a focus on egocentric scenarios. [43] proposes to leverage photometric
consistency from temporal frames as additional signal for training the model
with sparse set of annotated data. All these approaches were trained and
tested on in-the-lab or synthetic datasets. In this chapter, we propose an
approach without 3D supervision and we are the first to achieve good hand-
object results in the wild from a single image.

3D hand-object datasets. Early datasets in hand grasping scenario requires
manual annotations [123] or depth tracking [139] to obtain the ground truth,
resulting in limited dataset size. To avoid the manual efforts, [29] uses motion
capture system with magnetic sensors to collect annotations. [44] uses simula-
tion to collect a synthetic hand-object dataset. [176, 39] introduces large-scale
dataset with 3D annotation optimized from multi-view setups. Some recent
datasets [8, 9, 129] also provide annotation for hand-object contact area in
addition to 3D hand pose and object pose. The contact area is collected from
either thermal sensor [8, 9] or marker-based MoCap system. All these datasets
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Figure 4.3: Method. In this chapter, we present an optimization-based method, called
RHOI, that leverages 2D image cues and 3D contact priors for reconstructing hand-object
interactions in the wild. It consists of four steps: (a) hand pose estimation by 2D keypoints
fitting, (b) object pose estimation via differentiable rendering, (c) joint optimization for
hand-object configuration, and (d) pose refinement using 3D contact priors learnt from
mocap data.

are of great efforts in modeling 3D hand-object interaction, however, they can
only be collected in the lab setting due to the specific camera setup. As a
result, limited number of participants and objects are present in them (as in
Table 4.1). In this chapter, we contribute a dataset with in-the-wild images
and diverse object categories. 3D annotations are obtained by running our
optimization-based method and human intervention to achieve high quality.

Optimizing 3D interactions. Our method is in line with recent optimization-
based approaches for modeling 3D interactions between human and scene [42],
human and objects [170], and among multiple persons [55]. To obtain good
3D reconstructions, these methods require extra 3D input. For example, [42]
requires the input of full 3D reconstructed scene mesh to impose geometry
constraints. [170] requires manually labeling human-object mesh vertices for
fine-grained interaction pairs and is only applied to 8 object categories in
COCO [80]. In this chapter, we focus on modeling hand-object interactions.
Our key advantage is the ability to deal with diverse objects in the wild
without extra input. We propose to model contact priors using a scalable
data-driven approach that levarages the available 3D mocap data. Together
with a new method to obtain object masks, our approach is shown to be able
to reconstruct hand interactions with 121 different object categories.

4.2 Method

We first describe our method for reconstructing hand-object interactions
in the wild, called RHOI. As shown in Figure 4.3, it involves 4 steps: estimat-
ing the hand pose, the object pose, their 3D configuration jointly, and finally
refining the pose using 3D contact priors. Intermediate results from each step
are shown in Figure 4.4. We describe each step next. We note that while
RHOI can be applied to multiple hands and objects, we assume a single pair
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for brevity. We will then evaluate RHOI, then discuss how we curate our new
dataset MOW and its analysis in the following sections.

4.2.1 Hand Pose Estimation

The first step of RHOI involves hand pose estimation (Figure 4.3a).
Given an input image, we aim to reconstruct the full 3D hand mesh. We
use a learning-based method to obtain the initial result and further improve
the estimation by fitting it to 2D hand keypoints.

In particular, we represent the hand using a parametric model defined
by MANO [113]: Vh = H(θ,β), where θ ∈ R3×15 and β ∈ R10 are the pose
and shape parameters, respectively. Taking a single RGB image as input,
we use FrankMocap [114] to estimate the weak-perspective camera model
Πh = (tx, ty, sh), and initial 3D hand parameters θ and β. We further optimize
the hand pose by fitting to 2D hand keypoints obtained from [14, 122].

The hand pose optimization objective is to minimize the difference be-
tween 2D keypoints detection and 2D projection of 3D hand keypoints:

θ∗,β∗ = arg min
θ,β

Ljoints + Lreg, (4.1)

consisting of a 2D keypoints distance term Ljoints and a regularization term
Lreg for hand shape β.

We convert the weak-perspective to perspective camera by assuming a
fixed focal length f . The depth of the hand is approximated by the focal
length divided by the camera scale sh. We obtain the final hand vertices by:

V ∗h = H(θ∗,β∗) + [tx, ty, f/sh], (4.2)

4.2.2 Object Pose Estimation

In the next step of our method, Figure 4.3b, we recover the object pose
using an analysis-by-synthesis approach. Given an input image and 3D model,
we want to optimize the object scale s ∈ R, 3D rotation R ∈ SO(3), and
translation T ∈ R3. We use a differentiable renderer [59] to render 3D model
into 2D mask and depth maps. By comparing the rendered mask/depth with
the targets, we compute the gradients to update the object parameters.

Object mask estimation. How can we obtain good objects masks for di-
verse objects in images in the wild? Modern 2D recognition models trained
on large labeled datasets can provide reasonable predictions on real-world
data [106]. However, in our case, we require instance masks for a range of
object categories that are not even present in the available labeled datasets
(e.g., spatula, pliers, mic, etc.). Thus, we cannot expect the available models
to recognize the objects correctly in our setting. Our key insight is that even
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Figure 4.4: Intermediate results. Top row: input images. 2nd row: results from
individually optimizing hand and object. 3rd row: results from joint optimization (two
viewpoints per example). Bottom row: results after refinement.

if the predicted categories are incorrect, the instance masks are still quite rea-
sonable for a variety of objects. For example, the models do not know what
a spatula is called but are still able to segment it.

With this observation, we use available recognition models to estimate in-
stance mask ignoring the category information. Specifically, we use PointRend
model [63] trained on COCO [80]. For all object instances predictions in the
image, we decide the instance that the hand is interacting with by running a
hand detector [120]. The instance with highest IoU with the detected hand
bounding box is selected. This automatic way allows us obtain instance masks
for more than 100 daily object categories as shown in Section 4.4.3.

Mask loss. Given the estimated object mask, we optimize the object pose
via differentiable rendering. In particular, we define the object mask loss as
the L1 difference between the rendered and the estimated object masks:

Lmask = ‖NRm(s,R,T )−M‖, (4.3)

where NR(·) denotes the differentiable rendering operation which renders the
3D mesh into the 2D mask.

Depth loss. While the 2D mask loss is sufficient in some cases, it does not
capture geometry information and can be ambiguous—multiple object poses
can lead to similar 2D masks. To overcome this, we employ a new loss term
which fits 3D model to the depth map D estimated using [108]:

Ldepth = ‖NRd(s,R,T )−D‖, (4.4)
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Object pose objective. Combining the mask and depth losses, we obtain
the object pose estimation objective:

s∗,R∗,T ∗ = arg min
s,R,T

Lmask + Ldepth, (4.5)

We perform the optimization in the image region centered on the object. We
start with a number of randomly initialized poses and select the one that leads
to the lowest loss.

4.2.3 Joint Optimization

In this section, we describe how to jointly optimize the 3D hand and
object results from previous sections (Figure 4.3c). Naively putting them
together may result in implausible hand-object reconstructions (Figure 4.4,
row 2), i.e., the hand and object are far away from each other in 3D or having
interpenetration. This issue is caused by the depth and scale ambiguity given
only 2D input: a large object distant from the camera can have the same
rendering result in 2D as a smaller object closer to the camera. To help
resolve the ambiguity, we impose additional constraints based on hand-object
distance and collision.

Interaction loss. The reconstructed hand and object could be distant in
3D space. However, when the hand is interacting with objects, their distance
should be small. To push the interaction pair closer in 3D, we define an
interaction loss based on their chamfer distance:

Ldist =
1

|Vo|
∑
x∈Vo

min
y∈Vh

‖x− y‖2 +
1

|Vh|
∑
y∈Vh

min
x∈Vo

‖x− y‖2. (4.6)

For each vertex in the mesh, chamfer distance function finds the nearest point
in the other point set, and sums up the distances. We find this loss term to
be helpful in correcting the object scale by moving it closer to the hand.

Collision loss. Using the interaction loss alone may result in implausible
artifacts, e.g., hand colliding with the object. To resolve the issue, we add an
interpenetration loss term to penalize the object vertices that are inside the
hand mesh. We use the Signed Distance Field (SDF) from the hand mesh to
check if any object vertex is inside the hand. We first calculate a tight box
around the hand and voxelize it as a 3D grid for storing the SDF value. We
use a modified SDF function φ for the hand mesh:

φ(c) = −min(SDF(cx, cy, cz), 0). (4.7)

For each voxel cell c = (cx, cy, cz) in the 3D grid, if the cell is inside the hand
mesh, φ takes positive values, proportional to the distance from the hand
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Figure 4.5: Qualitative results. Our method produces reconstructions of reasonably
high-quality across a range of viewpoints, activities, and objects (see also the supplement).

surface, while φ is 0 outside of the hand mesh. Then, the interpenetration
loss can be calculated as:

Lcollision =
∑
v∈V ∗

o

φ(v), (4.8)

where φ(v) samples the SDF value of each object vertex v from the 3D hand
grid in a differentiable way.

Joint objective. By incorporating the loss terms from object pose estima-
tion, we obtain the overall objective for jointly optimizing the hand and the
object:

L = λ1Lmask + λ2Ldepth + λ3Ldist + λ4Lcollision. (4.9)

4.2.4 Pose Refinement

A physically plausible hand-object reconstruction should not only be
collision-free, but also have enough hand-object contact area to support the
action. However, the interaction loss described in Section 4.2.3 does not take
into account the fine-grained hand-object contact. To further refine the 3D
reconstruction, we impose constraints on the hand-object contact as the final
step of RHOI (Figure 4.3d).

Addressing this issue would be easy if we had per-vertex contact area
annotation for both hand and object as we could enforce the contact region to
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Figure 4.6: Qualitative comparison in the wild. Compared to existing method [43],
our approach produces better hand-object reconstruction across diverse object categories.

be closer. However, obtaining such annotations for large collection of in-the-
wild images is challenging. As a more scalable solution, we learn 3D contact
priors from a large-scale hand mocap dataset [129]. The priors include the
region of an object that the person is likely to contact. For example, human
is more likely to hold the mug by its handle.

Given the hand mesh and object mesh obtained from the joint optimiza-
tion, we want to update the hand pose so that it has more reasonable contact
with the object. We train a small network to perform hand pose refinement.

The input to the network are the initial hand parameters (θ, γ) and the
distance field F from the hand vertices V ∗h to the object vertices V ∗o . For
each hand vertex vh, we compute the distance to its nearest object vertex:

F (vh) = min
vo∈V ∗

o

‖vh − vo‖22 (4.10)

Then, the network refines the hand parameters (θ,β) in an iterative fashion.
After each iteration, the distance field between hand and object is updated so
that it can be used as input to the next step. The training data is obtained by
perturbing the ground-truth hand pose parameters and translation to simulate
noisy input estimates. As shown in Figure 4.4, we can observe that the results
after refinement (4th row) can reconstruct more realistic interaction between
hand and object than the previous step (3rd row).

4.3 Method Evaluation

In this section, we compare our method to existing methings in two
settings: quantitatively in the lab and qualitatively in the wild. We further
present ablation studies of different aspect of our method.
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Metrics [43] Ours

Hand MAE ↓ 14.7 9.7

Obj CF dist ↓ 26.8 19.9

Metrics [43] Ours

Hand MAE ↓ 18.0 14.2

Obj MAE ↓ 22.3 23.9

Table 4.2: Quantitative comparison in the lab. Our method achieves results better
or on par with the state of the art on in-the-lab datasets: HO3D (left) and FPHA (right).

4.3.1 Quantitative Comparison in the Lab

In Table 4.2, we perform quantitative evaluation of our method in the
HO3D dataset [39] and FPH dataset [29]. HO3D [39] dataset contains 3D
annotations for both the hand and object of 68 video sequences, 10 subjects,
and 10 objects. FPHA [29] dataset utilizes a MoCap system to capture hand-
object interaction. 3D object pose annotations are available for 4 objects and
subset of videos. We follow the same testing split as [43] for comparison.

Method for comparison We compare against the state-of-the-art (SOTA)
approach [43] with the same input of monocular RGB image and the known
3D object model. [43] uses a feed-forward neural network to predict 3D hand
pose and object pose where its single-frame model with full 3D supervision
shows SOTA performance.

Evaluation metric. We report the mean average error (MAE) over 21 hand
joints. The error measures the Euclidean distance between predictions and
ground truth. Following [39], we calculate the error after aligning hand root
position and global scale with the ground-truth.

For evaluating object pose, we calculate the Chamfer distance between
ground-truth object vertices and predicted object vertices (obtained by rotat-
ing the input CAD model with the predicted object pose).

Results. Table 4.2 shows our method achieves better accuracy than [43] in
3D hand and object error. In HO3D dataset (left table), our predictions have
smaller hand joint error of 9.7 mm vs. 14.7 mm and smaller object Chamfer
distance of 19.9 vs. 26.8. In FPHA dataset (right table), our method achieves
smaller hand joints error (14.2 mm vs. 18.0 mm). Our object error is slightly
larger than [43]. The main reason is that [43] uses the action split of FPHA,
i.e., same objects with different action labels are used for training and testing.
In comparison, our method are tested directly without 3D supervision in those
datasets.

4.3.2 Qualitative Comparison in the Wild

In Figure 4.6, we show side-by-side qualitative comparisons with [43]
using in-the-wild images from [120], which clearly shows the advantage of our
method. Though [43] achieves good performance in the lab, it struggles on
in-the-wild images. This was primarily due to the lack of labeled in-the-wild
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HO Distance ↓ Collision Score ↓

Individual results 414.8 0

+ Interaction loss 71.5 39.8

+ Depth loss 75.2 17.6

+ Penetration loss 76.4 7.7

+ Refinement 75.8 6.5

Table 4.3: Ablations on loss terms and pose refinement. From top to bottom, we
add each component one by one (cumulative) and evaluate the prediction in terms of the
distance between hand and object, and the collision score.

training data with diverse object categories. As a result, the model trained
on limited object categories in the lab has difficulty in generalizing to new
unseen objects.

In Figure 4.9, we show additional qualitative results of our method, called
RHOI, on images from the 100 Days of Hands and the Epic Kitchens datasets.
For each example, we show the 3D reconstructions from two different view-
points. Overall, RHOI produces high quality reconstructions across a variety
of scenarios and objects, e.g., holding a pen, grab a spoon/knife, touch a
mobile phone, etc.

4.3.3 Ablation Studies

We now present the ablation studies (see also the supplement). We
evaluate the influence of the joint optimization loss terms and the refinement
stage on the overall results. We report the distance between the estimated
hand and object centers and the collision score computed based on SDF.
The more the object intersects with the hand the larger the collision score
is. A good reconstruction should have small collision and small hand-object
distance.

In Table 4.3, we observe that the individually reconstructed hand and
object are far from each other, resulting in large distance and no collision.
By adding the interaction loss, the distance decreases quickly to 71.5 mm
but also results in a large collision, i.e, 39.8. Adding the depth and collision
losses reduces the collision score to 7.7 while keeping a similar hand-object
distance, i.e., 76.4 mm. The refinement stage makes small adjustment to the
final result and can slightly reduce both the collision score (6.5 vs. 7.7) and
hand-object distance (75.8 mm vs. 76.4 mm). These findings are consistent
with visualization in Figure 4.4.
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Figure 4.7: Example annotations. We use the techniques proposed in this chapter to
annotate in-the-wild images and obtain 3D meshes, amodal masks, and contact maps.

4.4 Dataset

We describe our dataset collection procedure and present the analysis
that highlights the variety our data.

Image collections. As a source of in the wild data we use static frames from
the EPIC Kitchens [21, 20] and the 100 Days of Hands [120] datasets, noting
that we do not exploit any temporal information. These datasets contain
a range of interesting hand-object interaction scenarios with varied objects,
people, and viewpoints (both first- and third-person). To determine candidate
images for reconstruction, we use a hand and object detector [120] and select
images that contain a high bounding box overlap between an object and a
hand.

4.4.1 Dataset Construction

Our annotation procedure consists of three steps: selecting a 3D object
model, performing reconstruction using the method proposed in §4.2, and
verification of the results.

Step 1: Model selection. The first step of our annotations requires the
annotator to choose an appropriate 3D object model for the object being
manipulated by the hand. We maintain a collection of available object models.
If the required object is already present in the collection, the annotator directly
selects the model. If not, the annotator finds an appropriate model online and
adds it to the collection. Two primary sources of 3D object models we use
are the YCB dataset [13] and the Free3D online platform.
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Figure 4.8: Variety of objects and grasps. We present analysis that shows the variety
of objects and grasp types in our data. Top left: Our data contains 121 object categories
and a total of 500 instances. The object distribution has a long tail. Top right: We embed
3D hand poses into 2D space using Isomap [134]. Each point is a hand-object interaction
and is color-coded by object category. We notice that there is a cluster of pens but no
other clear clusters. This suggests that our data contains a variety of grasp types for
each object category rather than only iconic grasps. Indeed, we see examples of different
object categories with similar grasp types (pen and spoon) and same object category with
different grasp types (pen). Bottom: We observe that the first embedding dimension (x
axis) corresponds to the closure of the grasp. We show examples for increasing value of x.
From left to right, we see that the grasps gradually transitions from fully closed to fully
open.

Step 2: Reconstruction. Next, we perform the hand-object reconstruction
using our method, called RHOI, proposed in §4.2. This step is semi-automatic
and relies on the annotator to select the appropriate loss weights to obtain a
good reconstruction. In practice, most annotators find that our default loss
settings lead to a reasonable starting point.

Step 3: Verification. In practice, we find that RHOI results in good re-
constructions in many cases. However, there are still cases where the results
are imperfect across different viewpoints due to ambiguity. Thus, to ensure
good annotation quality, we perform an additional step and verify the recon-
structions obtained in step 2. Specifically, we ask the annotator to inspect the
result from step 2 and take one of three possible actions: accept it if good,
return it to step 2 if promising, and remove it from consideration if unlikely
to improve. We iterate back and forth with step 2 until we converge to a set
of reconstructions of reasonable quality.

Summary. To summarize, the output of our annotation procedure is that
for each image we have: 3D object model, 3D object pose, and 3D hand pose.
Moreover, we can easily derive additional annotations, such as amodal masks
or contact maps. Example annotations are shown in Figure 4.7.
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Object IoU Hand IoU Quality Match?

Large 0.84 0.67 - -

Medium 0.78 0.69 - -

Small 0.64 0.63 - -

All 0.77 0.68 4.16 92%

Table 4.4: Dataset evaluation. Left: Amodal masks derived from our 3D annotations
have a high overlap with ground truth amodal masks labeled by humans. Right: Users,
asked to rate the quality of our 3D annotations from 1 to 5, find that they are of good
quality on average and include a 3D object model that matches the true object in most
cases.

4.4.2 Dataset Evaluation

Annotating data in 3D is hard. Evaluating the quality of annotations is
harder. To judge the quality of the collected annotations, we use two types of
evaluation. The evaluation is performed on a sample set of 100 images.

Amodal mask accuracy. To evaluate our annotations, we require a signal
that is predictive of reconstruction quality and can be labeled reliably by
humans. Amodal instance masks, that include both visible and occluded
parts of the object [76], are a good fit. Given only the visible portions of the
image, there are many plausible configurations for the hidden object parts,
especially for articulated objects like hands. Nevertheless, humans are capable
of predicting occluded regions with high consistency [174].

We ask human annotators to label amodal masks for hands and objects,
which serves as ground truth. We then compare amodal masks derived from
our reconstructions to the ground truth. In Table 4.4, we report the mean
intersection (IoU) scores for the hands and the objects. Similar to [80], we
show results for different object sizes. We observe that our amodal masks have
a high overlap with the ground truth. As expected, the overlaps are higher
for larger objects.

User study. We also perform a user study. Given the input image and the
annotated hand-object reconstruction, we ask the users to assign a quality
score to each example on a scale of 1 to 5. The users are instructed to assign
1 when the reconstruction is poor (e.g. heavy collision or hand being far from
the object) and 5 when there are no clear imperfections visible. The users can
rotate the result in 3D visualization to view from different angles. We also
ask the users to say if the object in the image matches the 3D model.

In Table 4.4, we report the results. The average reconstruction quality
we obtain is 4.16. This suggests that most of our annotations are of good
quality. Moreover, we find that the 3D object model matches the true object
in 92% of the cases. Among the 8%, most are due to imprecise mesh topology,
e.g. a cylinder fitted to a mug with a handle.
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Figure 4.9: Additional qualitative results. Our method, RHOI, produces strong
results for a range of interactions and objects.

4.4.3 Dataset Analysis

We annotated 500 images using the proposed procedure. We now present
the analysis of the collected data.

Object variety. Our dataset contains 121 object categories covering a wide
variety of daily objects. In Figure 4.8, top-left, we show the object distribu-
tion for the 50 most frequent objects. There are some categories with many
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examples and a long tail of object categories with few examples.

Grasp variety. A unique feature of our data is that it provides a variety of
hand-object interactions in-the-wild. This allow us to study and learn about
human grasps using real-world data. In Figure 4.8, top-right, we embed 3D
hand poses into 2D space using Isomap [134]. Each point corresponds to an
interaction and is color-coded by object category.

We observe that there is a cluster of pens on the left but no other clear
clusters. This suggests that our data contains a variety of grasp types for
each object category, rather than only iconic grasps. Indeed, looking closer
we notice that there are many examples of similar grasps for different object
categories (e.g. pen and spoon) as well as different grasp types for the same
object category (e.g. pen).

Grasp structure. We further discover an interesting pattern in the data.
In particular, we find that the first dimension of the hand pose embedding (x
axis) corresponds to the closeness of the hand. In Figure 4.8, bottom, we show
example images for increasing value of x. We see that the grasps gradually
transition from fully closed to fully open.

4.5 Discussion

In this chapter, we propose an optimization-based method that leverages
2D image cues and 3D contact priors for reconstructing hand-object interac-
tions in the wild. Using the proposed method for semi-automatic labeling,
we construct a new 3D hand-object interaction dataset in the wild. We hope
that our effort attracts the community’s attention to this challenging setting
and facilitate our future progress.



52

Chapter 5

Conclusion

In this thesis, we have presented a number of advances towards perceiving
3D humans and objects in motion. In Chapter 2, where we present an end-to-
end learning system to perceive 3D scenes and independent object motions.
We next show how 3D scenes influence human motion in Chapter 3, where we
design a framework to predict future 3D human motion considering the scene
context. In Chapter 4, we study the interaction between human hands and
objects, where we introduce an optimization-based method to reconstruct the
interaction in the wild.

While these are encouraging steps towards the goal of understanding rich
interactions between humans, objects, and scenes, a number of challenges still
remain. We will conclude the thesis by discussing some interesting future
directions below.

Spatial-temporal scene graph: The 3D world is compositional, action-
able, and evolving over time. One way to understand the dynamics in the
3D world is building a spatial-temporal scene graph to model the relationship
between components. In this representation, we decompose the 3D scene into
different modules, the scene layout/structure, a set of objects and humans rep-
resented in terms of their shape and pose, and motion. Moreover, the state of
each object/person is influenced by other moving agents. A spatial-temporal
scene graph can be built to understand the pattern of the scene dynamics.
In this thesis, we have presented attempts in building pairwise connections
between humans, scenes, and objects components. It would be an interesting
direction to develop a joint framework that perceives all components and their
rich interactions in this scene graph representation.

Model 3D human full-body contact: We humans interact with the world
and our bodies often have contact with other people, objects, or even self-
contact such as holding our arms. These contact scenarios result in occlusion
and make it hard for 3D reconstruction. Some recent optimization-based ap-
proaches [42, 55] proposed to enforce geometry constraints to model the con-
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tact, however, they either require the extra input of 3D reconstructed scene
mesh or require manually labeling human-object mesh vertices. In Chapter 4,
we propose to make advantage of 3D hand-object contact priors learned from
available 3D MoCap data. This enables us to deal with different scenarios
in the wild without extra input. It is natural to extend the idea of learn-
ing contact priors to the case of full human body for more fine-grained 3D
reconstruction of humans during interactions.

Learn object functionality through interactions: Understanding ob-
jects is more than estimating their instance segmentation, reconstructing their
3D shape and texture. There are much richer properties about the object in-
cluding their structure, whether they are rigid, deformable, or articulated, and
more importantly, their functionality (affordance as defined by Gibson [34]).
These properties are extremely useful for robotic application such as manip-
ulation. Children learn object functionality by interacting with them and
observe the consequence of their action. Could we develop a pipeline for
learning the object functionality using lots of videos of humans interacting
with the scenes and objects? Could we further develop an active learning
system where an actual robot is exploring and interacting with the world?
These are all interesting but unsolved problems that are worth exploring in
the future.
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