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Abstract

Safety Methods for Robotic Systems

by

Chia-Yin Shih

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Recently there have been vast interests in introducing robotic systems such as autonomous
cars and UAVs into the real world. Ensuring the safety of these systems when they are
deployed is thus a highly crucial and urgent problem. Safety problems can arise from var-
ious di↵erent settings such as when there are multiple vehicles or human-operated vehicles
in the environment. Di↵erent safety-critical settings often require di↵erent approaches for
addressing the safety of vehicles. In this dissertation, we contribute novel methods for safety
problems that arise from three di↵erent scenarios.

First, we have seen a surge of interests in deploying autonomous vehicles into the everyday
lives of people. Developing accurate and generalizable algorithms for modeling and pre-
dicting human behavior thus becomes important. We present a method for generating the
probabilistic forward reachable set of a human-controlled vehicle in an environment where a
robot is operating in close proximity to the human-controlled vehicle.

Second, motivated by the recent advances in deploying unmanned aerial vehicles into the
airspace, we tackle the problem of multi-vehicle safety. We first contribute a planning and
control strategy for guaranteeing safety of multiple vehicles while vehicles complete their
objectives. We also present an initialization strategy based on machine learning to enhance
the safety of multi-vehicle systems when they adopt least-restrictive safety-aware algorithms.

Finally, machine learning has emerged as a promising tool to enable robots to accomplish
challenging tasks under uncertainty in the dynamics of the robots or the environment. How-
ever, the safety of the robot while it’s learning online is often not taken into account, which
could lead to unsafe behavior of the robot. We present an online learning framework that
enables a robot to learn about its dynamics, accomplish a task, and update its safe set
simultaneously online.



i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Outline and contributions of this thesis . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4
2.1 Hamilton-Jacobi Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Safety in Human-operated Space 10

3 Predicting Probabilistic Human Forward Reachable Sets Based on Learned
Human Behavior 11
3.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Safety for Multi-vehicle Systems 26

4 Reachability-based Safe Planning for Multi-Vehicle Systems with Mul-
tiple Targets 27
4.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



ii

5 Learning-based Initialization Strategy for Safety of Multi-Vehicle Sys-
tems 41
5.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III Safety under Uncertain Dynamics 55

6 A Framework for Online Updates to Safe Sets for Uncertain Dynamics 56
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Framework for Safe Set Computations for Uncertain Dynamics . . . . . . . . 60
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Conclusion 71

Bibliography 74



iii

List of Figures

3.1 The top two figures illustrate the interface we designed to collect data from par-
ticipants. The top left figure shows the initial configuration and the top right
figure shows the configuration after the human has inputted controls to avoid the
robot. The bottom figures illustrate the sub-zero level set for the value functions
VHR and VRH for the configurations in the top figures, computed using [62]. Nei-
ther of the safety value functions are provided to the human subjects during the
experiment: the subjects only see the scenes in the top figures.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 These are probabilistic human forward reachable sets (PHFRS) generated using
our framework. The algorithm predicts that the human will likely turn right
within the next T = 10 time steps. The regions in red, yellow, green, blue, purple
correspond to S

1

,S
2

,S
3

,S
4

,S
5

respectively. The middle figure is generated with
the same k(i)’s as the leftmost figure but the ✏j’s used are larger or equal to those
used in the leftmost figure. Increasing ✏j increases the area of Fj. The rightmost
figure is generated with the same ✏j’s as the leftmost figure, but with k(i)’s smaller
or equal to those in the leftmost figure. We can see that decreasing k(i)’s makes
the areas of Fj’s smaller. For the PHFRS in the middle figure, the probability
for each of the five regions is: pF1 = pS1 = 0.752, pF2 = pS1[S2 = 0.771, pF3 =
p[3

i=1Si
= 0.773, pF4 = p[4

i=1Si
= 0.775, pF5 = p[5

i=1Si
= 1.0. . . . . . . . . . . . . 25

4.1 Four vehicles Q
1

, Q
2

, Q
3

, Q
4

are tasked with visiting their targets. Based on their
targets, the team assignment optimization problem described in Section 4.3.1
assigns Q

1

and Q
4

to cluster H
1

(red), Q
2

to cluster H
2

(green), and Q
3

(blue)
to cluster H

3

. At t = 1.4s, the clusters get into potential conflicts with each
other and the safety control strategy kicks in to make sure each vehicle remains
safe. At t = 14.5s, we see that each vehicle completes visiting all their targets
successfully without any collisions. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 In this figure, we demonstrate our approach on 15 vehicles. The vehicles are
assigned into three cluster, with cluster H

1

(red) having 5 vehicles, cluster H
2

(green) having 6 vehicles, and H
3

having 4 vehicles. We can see that the clusters
resolve conflicts with each other successfully while they are en route to their
targets. At the end, we see that all vehicles safely visited all their targets. . . . 40



iv

5.1 In this figure, we illustrate the initial states selected by our proposed learning-
based strategy (solid arrows) versus those chosen with the baseline random se-
lection method (dash-dot arrows) for four di↵erent scenarios where our proposed
method succeeded in getting all vehicles to their goals successfully without any
safety violation while the baseline method resulted in safety violations even
though the initial states selected from the two methods are very close to each
other. Figure 2 and 3 further illustrate the simulation based on the initial states
selected by the two di↵erent strategies in the scenario depicted in the top right
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 This figure illustrates di↵erent time points of the simulation when we use our
proposed learning-based initialization strategy to select the initial states of the
vehicles. This scenario is identical to that in the top right figure of Figure 5.1. We
observe that our proposed approach learns to identify the strength of the safety-
aware algorithm in guaranteeing safety for three vehicles and initializes vehicles
such that only three vehicles end up coming into close contact with each other.
All vehicles successfully reach their goals without any safety violations. . . . . . 51

5.3 This figure illustrates the simulation when the baseline random initialization
strategy is used in the scenario identical to that in the top right figure of Figure
5.1. This is meant to contrast Figure 5.2 that with the randomized strategy, even
though the initial states are very close to those selected by our proposed method,
it results in the undesirable event that the green and the purple vehicles get into
each other’s danger zone at time t = 2.0s and t = 2.7s. . . . . . . . . . . . . . . 52

6.1 An outline of our approach. O✏ine, we learn a safe policy ⇡(x, p), which depends on
state x and dynamics parameters p, by randomly sampling di↵erent dynamics parame-
ters p. Online, we roll out ⇡(x, µ̂) using the current estimate of the dynamics, and use
it to determine the safety value at current state x. If the state is deemed safe, a task
policy is applied, and otherwise a safe policy is applied. Finally, our estimate of the
dynamics parameters P̂ and µ̂ are updated based on the new data. . . . . . . . . . 57

6.2 Environments and the challenging initial conditions that we randomize around for the
2-link and 3-link manipulators experiments. The arrows represent the velocities at the
joints and the end e↵ectors. The red squares represent the obstacles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 With the same initial configuration (grey), MBRL with safety learns to reach the goal
(green) without hitting the obstacle (red) while MBRL without safety hits the obstacle.
The blue curves illustrate the trajectories of the end e↵ector. Without safety, the robot
starts out speeding towards the goal greedily, turns around, and speeds to the goal
again. Due to torque saturation, it misses the goal then ends up hitting the obstacle.
On the other hand, with safe MBRL, the robot moves slowly and safely towards the
goal.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



v

List of Tables

3.1 This table shows the accuracies of SVM, DT, and LR models using di↵erent fea-
ture sets. We can see that including the information derived from HJ reachability
yields improvement in predictive performance than just including distance as a
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 This table shows results for the metrics Dstart (Ds) and Dend (De). Similarly to
the accuracy metric, we see that both safety levels derived from HJ reachability
improve prediction performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 This table summarizes the targets for each vehicle, the cluster each vehicle is
assigned to based on the proposed cluster assignment algorithm, and the targets
that each cluster should visit for the 15-vehicle collision avoidance problem. We
see that the solution to the cluster assignment successfully minimized the max-
imum number of targets each cluster needs to visit and load balances it so that
each cluster needs to visit the same number of targets. . . . . . . . . . . . . . . 37

5.1 In this table, we summarize the success rate ps and the average number of collisions Ncol

where speed v = 6 and danger zone radius Rc = 4 when using the learned initializa-
tion strategy versus using the baseline randomized initialization strategy. Our method
outperforms the baseline in safety performance for both metrics across all scenarios. . 53

5.2 This table summarizes the success rate ps and the average number of collisions Ncol

where speed v = 5 and danger zone radius Rc = 5. Similarly, we see that our proposed
learning-based strategy outperforms the baseline in terms of safety performance across
all scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vi

6.1 In this table, we show comparisons of success rates between using our framework and the
nominal safe sets. For the random scenario, our framework performs slightly better than
the baseline. This is due to the fact that with the initialization scheme in the random
scenario, the robot rarely gets to a situation where it’s close to being unsafe. However,
to test the robustness of our approach and the baseline, we consider initialization that
is challenging. We can clearly see the performance benefit of our framework in the
challenging scenario, especially for systems with complicated dynamics such as the 3-
link robot arm. Here � determines the range of values we sample the true dynamics
parameter ptrue from and is explained in detail in the text (Section 6.4.1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Average computation time for updating the dynamics and re-computing safety values
at each time step. The compute time for the quadrotor is smaller because even though
the state of the quadrotor has a larger dimension, its dynamics are much simpler than
those of the manipulators.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 This table summarizes our large scale experiment results for incorporating safety into
MBRL. Completion rate indicates the percentage of trials the robot reaches the goal
without hitting the obstacle within the maximum time steps allowed for task comple-
tion. Collision rate refers to the percentage of trials the robot hits the obstacle. We
can see that incorporating safety in MBRL increases the success rate and decreases the
collision rate considerably.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vii

Acknowledgments

I would like to thank Prof. Laurent El Ghaoui for his advice. I am grateful for Prof. Geo↵
Gordon for showing me that one can be technically capable, decent as a human being, and
genuinely interested in knowledge for the sake of knowledge at the same time in academia
when I most needed such an example. Thanks also to several other professors who made a
positive influence on me. Thanks to Akshara and Franzi for the collaboration on a few of
the projects presented in this dissertation.

One of the most valuable things I learned in the past few years is: it is good to know
young that righteousness, authenticity, and depth of a person are independent of anything
else (such as titles, fame, accolades, gender, or how educated a person is etc). I have truly
learned the essence of the saying, “When someone shows you who they truly are, believe
them the first time.”

Serving as a TA was a big part of my graduate school life and I am thankful for the
numerous professors I TA-ed for. I would particularly like to thank Prof. Matt Gormley,
Prof. Ani Adhikari, Prof. Joey Gonzalez, and Prof. Andrew Bray for their mentorship
and trust. I developed skills in teaching, mentoring, and managing a team through these
experiences.

I am grateful for the funding I received throughout my PhD. It supported my basic living
and my travels to many places. I visited around 40 US states and 135 di↵erent cities around
the world and in the US during my PhD. The funding also enabled me to pursue quite a few
adventurous activities.

Thanks to my many teachers in the earlier stage of my life. They showed me what it
means to be a great mentor since young. I have a deep respect for what they are as human
beings and their sincere dedication in developing young minds. They were not narcissistic,
not fake, not manipulative, not cliquey, not ruthless, not vain, not shows, and showed no
a�nity for obsequiousness etc.

Thanks to all my friends for all the fun we had together. It has truly been a pleasure to
have wonderful friends.

Thanks also to the many humanities-related activities I took part in during my PhD.
They were also big parts of my PhD life and enriched my life immensely.

Finally, I owe my deepest gratitude to my parents for their unconditional love and sup-
port.



1

Chapter 1

Introduction

Many things we take for granted everyday rely on safe robotic systems. From planes, cars,
ships, to trains, it is of utmost importance to have functional mechanical and electrical
systems in these vehicles so they can be e↵ectively controlled by human operators. Further-
more, the human operators of these vehicles are generally trained and certified to operate
these vehicles safely. These robotic systems have advanced our society and enabled easy
continental travels and convenient commuting. In the modern era, these technologies are
generally considered reliable and people operating or riding these vehicles trust the safety of
these systems.

Robots have further been introduced to tackle wider problems. Many factories use robots
in their manufacturing process, particularly on procedures that are highly repetitive like
packaging, assembly, and polishing etc [22]. Robots have also been adopted in helping
farmers more e↵ectively manage their crops and farms in agricultural settings [13]. Farmers
have used drones to monitor their crops [76] and small robots on the ground to capture close-
up images of plants [39]. In medicine, robots have been used for wide-ranging purposes such
as assisting in surgery to increase precision, transporting medicine, and helping patients get
out of bed [64]. In homes, robots have been used to perform household works like vacuuming
and mopping [53]. The safety of these robots and the objects they interact with are of high
importance when they are deployed.

Given that it seems that robots are widely deployed in a rather safe way in the above
examples, what are the safety problems that arise in robotics in recent years? If we look at
the type of robotic systems that have already been mature for use in our daily lives, they
generally exhibit one or more of the following properties that make it easy to reason about
safety or make safety problems less likely to occur: First, the dynamics of the systems that
are being controlled is fully known except for some limited degree of noise. Second, they are
controlled by humans who use their prior training and experience to navigate around vehicles
that are also controlled by humans. Third, how the robots are a↵ecting their environment
or the objects they’re operating on is carefully monitored by humans. Fourth, the robots
are traveling at a very slow speed or operating in a sparse environment with no or very few
other robots in close proximity. Fifth, the cost of the potential damage caused by the robot
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is low.
The next generation of challenge in robotics is to design robots that not only function

mechanically and can be controlled by humans but can themselves make intelligent decisions
from learning about the environment they’re acting in, reasoning about other agents in the
environment, and determining how to act safely themselves without human intervention.
The goal is to enable fully autonomous robotic systems that can accomplish interesting and
challenging tasks while relieving humans from having to supervise or operate them. This is a
much more challenging problem as it often doesn’t possess the aforementioned properties that
make existing robotic systems safe. Next we discuss di↵erent facets of the safety problems
that arise as we endeavor to enable robots to act more intelligently and autonomously.

Recently, we have seen a lot of interests in introducing self-driving vehicles into the roads
[82, 33, 8, 65]. For the vehicles to navigate around other vehicles safely, they need to first be
able to make sense of the environment, which involves using perception systems to obtain
information such as where objects are in their surrounding environment and the lanes the
cars should travel in etc. Based on this information, the robots should generate actions such
that they do not collide with static or moving objects. Key to this is the ability to make good
predictions on how non-static objects such as cars or pedestrians are going to move in the
next few time steps in a myriad of scenarios. This can be challenging as there is generally no
explicit communication among the robotic vehicles, the humans operating the other vehicles,
and the pedestrians. Hence the inference of future trajectories of humans or other objects
are solely based on observations gathered by the robotic vehicles and situational context.
Based on this prediction, the robotic vehicles then determine actions that will likely avoid
collisions. This decision making process can be made an even more complicated problem
when the robots reason about how their actions might instead a↵ect the behavior of other
vehicles when they determine what actions to take next, making the problem game-theoretic.

Drone technology has been picking up lots of momentum in the past few years. There
have been many commercial, military, and medical applications that aim to tap into the
agility and the relatively low cost of fully autonomous drone technology for transport and
delivery [5, 47, 78, 86, 79, 19, 38]. There may be many drones operating in close proximity in
the airspace in the near future, making it challenging to maintain safety for all the vehicles.
In addition, compared to typical vehicles traveling on the ground in specified lanes, drones in
the air generally travel in a more unstructured fashion. The safety of these drones are crucial,
not only for the hardware itself but also for the properties and humans on the ground that
the drones may crash on if they malfunction or collide in the air. The problem of detecting
potential conflicts and determining when and how to avoid collisions for any agent in the
multi-vehicle system is thus of high importance.

1.1 Outline and contributions of this thesis

In Chapter 2 Background, we give a high level introduction to technical ideas that our
works in the subsequent chapters are built on. We first give an overview of Hamilton-Jacobi
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reachability, a control theoretic framework that can be used to compute safe sets. Then we
o↵er some background on machine learning knowledge that our works rely on.

In Part I Safety in Human-operated Space, we tackle safety problems that arise in sce-
narios where humans and robots operate vehicles in close proximity. In Chapter 3, we first
demonstrate how to incorporate information derived from HJ reachability into a machine
learning problem which predicts human behavior in a simulated collision avoidance context,
and show that this yields a higher prediction accuracy than learning without this informa-
tion. Then we propose a framework to generate probabilistic forward reachable sets that
flexibly provides the probability of whether a human-controlled vehicle will be in a given
region for di↵erent regions and generalizes to novel scenarios.

In Part II Safety for Multi-Vehicle Systems, we develop approaches for addressing the
safety of multiple vehicles. In Chapter 4, we propose a novel reachability-based approach
that guarantees safety for any number of vehicles while vehicles complete their objectives of
visiting multiple targets e�ciently, given any K-vehicle collision avoidance algorithm where
K can in general be a small number. Our proposed method is scalable to large number of
vehicles with little computation overhead.

In Chapter 5 of Part II, we propose a novel approach using machine learning to enhance
the safety of vehicles by proposing new initial states in very close neighborhood of the original
initial states of vehicles while vehicles use any least-restrictive safety-aware algorithm to get
to their goals.

In Part III Safety under Uncertain Dynamics, we tackle problems in the realm of safety
of robots under uncertain dynamics. In Chapter 6, we propose a novel framework to learn
a safe control policy in simulation, and use it to generate online safe sets under uncertain
dynamics. We also show an application of our framework to a model-based reinforcement
learning problem, proposing a safe model-based RL setup. Our framework enables robots
to simultaneously learn about their dynamics, accomplish tasks, and update their safe sets
online.

In Chapter 7, we summarize our contributions and provide possible future directions in
the context of safety for robots.
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Chapter 2

Background

In this chapter, we describe mathematical background that our works build on. First, we
give a brief overview of Hamilton-Jacobi (HJ) reachability, a mathematical framework that
addresses the safety of dynamical systems. Then we give a high level introduction to machine
learning concepts central to some of our works.

2.1 Hamilton-Jacobi Reachability

Hamilton-Jacobi reachability is a control theoretic framework that can be used to characterize
and compute the set of all states a vehicle could be at or the set of all states such that a
vehicle can remain safe from another vehicle or obstacles in the environment with optimal
control. While reachability can also be used to compute sets such as reachable tubes or reach-
avoid sets, we focus on reachability concepts and background that are directly relevant to our
works in this chapter. We can broadly characterize reachability problems into single-player
problems and two-player problems.

2.1.1 Forward reachable sets for single-player systems

Given a single-player system with state x 2 X , action u 2 U , and dynamics ẋ = f(x, u),
we define the forward reachable set (FRS) with horizon T as the set of all states that the
vehicle can possibly be in within the time interval [0, T ] if the vehicle starts in some initial
set L at time t = 0. Mathematically, the FRS with time horizon T and initial set L can be
expressed as

F(T ) = {x : 9u(t) 2 U s.t. t 2 [0, T ], x(·) satisfies ẋ = f(x, u), x(0) 2 L, x(t) = x}. (2.1)

To compute the forward reachable set, one can formulate the problem into an HJ PDE and
use techniques described in [63] to solve for the solution.
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2.1.2 Safe sets for single-player systems

Consider a single-player system with state x 2 X , action u 2 U , and dynamics ẋ = f(x, u).
We assume that f is uniformly continuous, bounded, and Lipschitz continuous in arguments
x for fixed u.

Let Z represent the danger zone, which is the set of states that the robot should avoid.
We can define Z by using a level set function l(x) such that l(x)  0 if and only if x 2 Z.

Let ⇠uuux(·) be the trajectory resulting from executing uuu(·) from state x. Then the value
function V at a state x is defined as

V (x) = sup
uuu(·)

inf
t�0

l(⇠uuux(t)).

Intuitively, V (x) is the closest the trajectory gets to the danger zone Z given the best possible
control to avoid the danger zone. The safe set K is defined as K = {x : V (x) > 0} and
the unsafe set is then the complement of K. Intuitively, the safe set K is the set of states
such that there exists at least one control strategy for the system to avoid the danger zone
Z. For a finite time horizon t 2 [0, T ], this value function can be computed by solving the
Hamilton-Jacobi-Bellman variational inequality described in [63] for continuous systems.

We can also formulate the discrete-time version of the value function V (x) for the infinite-
horizon case as follows

V (x) = min

⇢
l(x),max

u2U
V (x+ f(x, u)�t)

�
.

In practice, due to errors introduced by discretization, it is common to introduce a safety
level ✏ > 0 such that the safe set is defined as K = {x : V (x) > ✏}.

2.1.3 Backward reachable sets for two-player systems

HJ reachability can provide safety certificates by characterizing the set of states that could,
under the worst case behavior of the unknown but bounded disturbance, lead to danger.

We give a brief overview of how to apply HJ reachability to solve a pairwise collision
avoidance problem such as the one in [63]. Consider two vehicles Q

1

, Q
2

described by the
following ordinary di↵erential equations (ODE):

ẋi = fi(xi, ui), ui 2 Ui, i = 1, 2. (2.2)

Given the dynamics of the two vehicles (5.1), we can derive the relative dynamics in the
form of (2.3):

ẋij = gij(xij, ui, uj)

ui 2 Ui, uj 2 Uj i, j = 1, 2, i 6= j
(2.3)

where xij is a relative state representation between vehicles Qi and Qj.
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We assume the functions fi and gij are uniformly continuous, bounded, and Lipschitz
continuous in arguments xi and xij respectively for fixed ui and (ui, uj) respectively. In
addition, the control functions ui(·) 2 Ui are drawn from the set of measurable functions1.

The set of states that represents a collision is denoted as Zij, and we compute the following
backward reachable set (BRS), which is the set of states from which a collision could occur
over [0, t] based on the worst case action of Qj:

Vij(t) = {xij : 8ui 2 Ui, 9uj 2 Uj,

xij(·) satisfies (2.3), 9s 2 [0, t], xij(s) 2 Zij}.
(2.4)

Reachability theory is valid for any time horizon t; however, for clarity, we will let t!1
in this dissertation. Vij can be obtained as the sub-zero level set of the viscosity solution
Vij(t, x) of a terminal value HJ PDE. For details on obtaining Vij, please see [63]. The BRS
can thus be denoted as Vij = {xij 2 Rn : limt!1 Vij(t, xij)  0}. We will also use a slight
abuse of notation and write Vij(xij) = limt!1 Vij(t, xij). The interpretation is that Qi is
guaranteed to be able to avoid collision with Qj over an infinite time horizon as long as the
optimal control

u⇤
ij = argmax

ui2U
min
uj2U

Dxij
V (xij) · gij(xij, ui, uj) (2.5)

is applied as soon as the potential conflict occurs, represented by the sub-zero level set of
Vij(xij).

2.1.3.1 Least restrictive safe control

As we’ve seen above on HJ reachability, as long as the optimal safe control in Equation (2.5)
is applied by Qi at the boundary of the BRS Vij, Qi will remain safe from Qj for all time. A
similar least-restrictive safe control strategy based on reachability can be adopted for single
agent systems that aim to avoid dangerous regions in the environment. This enables a control
strategy where an agent gets to execute any type of controller such as a goal controller that
gets the vehicle to its target [24], [35] or a learning-based controller [2], [69] when the agent is
not at the boundary of a backward reachable set. We summarize the control of each vehicle
at each time step when it adopts a least-restrictive safe controller below:

Algorithm 2.1: Least-restrictive safety strategy

if Vehicle is at the boundary of an unsafe set then
Safe control is applied.

else
Any control such as a control to get the vehicle to its target or a machine learned
control can be applied.

end

1A function f : X ! Y between two measurable spaces (X, ⌃X) and (Y, ⌃Y ) is said to be measurable
if the preimage of a measurable set in Y is a measurable set in X, that is: 8V 2 ⌃Y , f

�1(V ) 2 ⌃X , with
⌃X , ⌃Y �-algebras on X,Y .
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This can be a highly desirable property in a safety strategy because it o↵ers high flexi-
bility for agents to execute whatever control they would like when they’re deemed safe and
decouples the reasoning of safety-oriented controllers and task-oriented controllers. On the
other hand, this means that the system performs a zero-step look-ahead at each time step
online and does not reason how its current action a↵ect the future trajectories of the vehicles
in the environment. Theoretically we can incorporate safety derived from reachability into
a trajectory optimization problem and reason about future trajectories online. However,
it would be very di�cult to perform this optimization online e�ciently due to the nature
that the safety value function Vij(xij) is a discrete look-up table pre-computed o✏ine. Thus
incorporating the safety values prevents the use of typical e�cient optimization methods
that work on continuous optimization problems. One could theoretically perform the opti-
mization with a sampling-based method, however, this scales poorly with the time horizon
of the trajectory and the number of vehicles.

2.2 Machine Learning

Machine learning (ML) has emerged as a promising tool for many application domains such
as vision, speech, and robotics. ML methods have shown high potential in tackling problems
when the dimension of the task is high or when direct modeling is not feasible due to the
complexity of the system and the substantial computation required.

Machine learning is a field that aims to figure out how to learn from data to best predict
on new data or make decisions for systems. It encompasses subfields such as supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learning. We
will give a brief introduction on supervised learning and reinforcement learning below.

2.2.1 Supervised learning

In supervised learning, we are given both the input and the output of each training example
where the outputs are what we call supervisions. The goal of a supervised learning task is
to learn to best predict the outputs given the inputs from unseen input-output pairs.

Supervised learning can be further categorized into regression and classification tasks. In
regression, the outputs take on continuous values; in classification, the outputs are discrete
classes and we typically call the outputs “labels” in this scenario. In this dissertation, we
are mainly concerned with classification tasks so we focus our attention on classification
problems in this section.

Given a data set {(xj, yj)}n
j=1

where xj is a vector representing the input data point and
yj is the corresponding label for the input data point, a classification problem aims to learn
to predict the labels given the inputs through training. In general, we often transform, with
a function �(·), the original representation of each input data point x to a feature vector
�(x) and use the transformed feature for learning. How to determine this mapping �(·) can
be nontrivial and is often referred to as “feature engineering”. There are various types of
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models that have been proposed for classification tasks. We will go over a few of them on
a high level and delve deeper into models that use probabilistic modeling as understanding
them more deeply is required for our work.

Support vector machine (SVM) learns the maximum margin separating hyperplane to
separate data with di↵erent labels and uses this learned hyperplane for prediction on unseen
data. The hard-margin SVM does not permit any training data point to be misclassified
and hence it can only be used on data that is linearly separable. On the other hand, the
soft-margin SVM allows the plane to misclassify data points and uses a hyper-parameter to
determine the trade-o↵ between the maximum margin and the degree of the misclassification
errors allowed.

A decision tree is another common model used for classification. Its goal is to build a
tree-based structure such that given a data point, starting from the root node, a decision rule
is applied to the data point to determine whether it should go to the left subtree or the right
subtree of the root node next; then recursively each subsequent node the data point passes
through has itself a decision rule to determine the subtree the data point should go to until
a leaf node is reached. Once the data point arrives at the leaf node, a label is predicted for
the data point based on the learned classification rule at the leaf. The goal of the learning is
then to learn to build a tree and determine the decision rule at each node of the tree. Here
we won’t go into the details of how such a model is trained, the typical decision rules, and
practical design decisions for learning a good decision tree model.

2.2.1.1 Probabilistic modeling

In this subsection, we go deeper into probabilistic modeling for classification tasks in ML.
To simplify things, we focus here on the scenario where the labels y are binary and take on
values of either 0s or 1s.

In particular, we model the probability that feature h is associated with label y = 1
as f✓(h) where f✓(h) is some function parameterized by ✓, i.e., p(y = 1|h) = f✓(h) and,
equivalently, p(y = 0|h) = 1� f✓(h). The goal is to learn the parameters ✓ from data. f✓(h)
can in general be any function such as a neural network.

By assuming all observations are independent and identically distributed, a common
assumption made in probabilistically-motivated ML modeling, we have that the likelihood
of observing the data points {(hj, yj)}n

h=1

given ✓ is

L(✓) =
nY

j=1

f✓(hj)
yj(1� f✓(hj))

1�yj . (2.6)

The goal of learning is then to maximize the above likelihood with respect to ✓. This is
equivalent to minimizing the negative log likelihood on the data set with respect to ✓:

nX

j=1

�yj log f✓(hj)� (1� yj) log (1� f✓(hj)) . (2.7)
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2.2.2 Reinforcement learning

Reinforcement learning (RL) is the study on how to enable agents to make decisions that
maximize the cumulative sum of rewards in a given environment. On a high level, reinforce-
ment learning can be categorized into model-free RL and model-based RL. A model-based
RL algorithm explicitly builds a model for the dynamics of the world using data gathered
from the agent’s interactions with the world and updates the model as more data is gathered.
Using this model, the agent selects an action to take at each time step. On the other hand,
model-free RL does not explicitly build a model of the dynamics. There have also been RL
works that mix both model-free and model-based RL, but we will not go into the details of
this.

Since our work includes an extension of model-based RL, a more sample-e�cient learning
framework, here we give a slightly deeper overview of the model-based RL framework. It
has shown recent success at complex robotics tasks [31], even on hardware [14].

Model-based reinforcement learning (MBRL) iteratively tries to optimize a policy to
accomplish a task, and learns the dynamics of the robot. Similar to [31], we use model-
predictive control (MPC) to optimize the policy in Chapter 6. Given c(xh, xh), the cost of
an agent taking action uh from state xh, the objective of model-predictive control (MPC)
is to minimize the total cost J =

Pt+H�1

h=t c(xh,uh) with respect to the actions ut:t+H�1

⌘
{ut, . . . , ut+H�1

} over a horizon H from current the time step t subject to dynamics con-
straint. After the MPC problem is solved, the first action ut is applied to the system, and
the process repeats, starting with the new current state.
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Part I

Safety in Human-operated Space
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Chapter 3

Predicting Probabilistic Human
Forward Reachable Sets Based on
Learned Human Behavior

The research presented in this chapter was originally published in the paper Predicting Stochas-
tic Human Forward Reachable Sets Based on Learned Human Behavior in American Control
Conference 2019 [70].

3.1 Introduction and Related Work

In recent years, there has been much excitement in introducing intelligent systems that can
navigate autonomously in environments with humans. For example, many self-driving car
companies [82], [33], [8] have emerged in the past few years. Furthermore, projects like
Amazon Prime Air [6] and Google’s Project Wing [20] aim to tap into the airspace for
package delivery. There has also been immense interest in using UAVs for disaster response
[9]. While roads provide structure, in airspace the interaction of vehicles occurs in a more
unstructured setting, presenting the challenge of making predictions based on more limited
information.

Critical to introducing autonomous vehicles into the workspace of humans is safety. The
authors in [63] have focused on safety from a di↵erential game perspective by characterizing
the set of states from which one vehicle is guaranteed to be safe from a second assuming the
second can take worst case actions within a bounded set. In [2], the authors demonstrate
learning these bounds online in an uncertain environment. The authors in [51] characterize
the notion of safety using torque limits on the robot. However, these works don’t consider
the complexity of having humans in the environment. Taking humans into account is chal-
lenging because unlike dynamics model governing the robotic systems, we don’t generally
have models for how humans make decisions in unstructured scenarios.

Key to having safe human-robot interaction is the ability for robots to navigate safely
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around human-operated vehicles. To enable this, the autonomous systems need to make
predictions of human behaviors to avoid collisions. Past work has used various methods to
perform behavior prediction of vehicles operated by humans. Many works have modeled
humans as dynamical systems optimizing their own cost functions [1], [85]. Inverse rein-
forcement learning aims to learn these cost functions by observing past trajectories of the
humans. There has also been work on using recurrent neural networks to make predictions
on future trajectories [83], [3]. However, the methods presented in [1]-[3] only generate a
single trajectory and do not provide probabilistic information of future trajectories. Since
human behavior is noisy, having probabilistic information on future trajectories is important.

In the control theory literature, HJ reachability theory models the worst case scenario
[63] and hence is often overly conservative when applied to real world scenarios. There has
been a growing body of work in using probabilistic reachable sets to reduce conservatism
and model uncertainty. For example, [59] derives a probabilistic reachable set and uses it
for motion planning by making assumptions on the behavior of moving obstacles a priori.
However, humans often don’t satisfy these assumptions and human behavior is also often
influenced by the behavior of other vehicles in the environment.

In [61], the authors develop the notion of a human safe set for a human supervisor, to
model when the supervisor would start to intervene with robot teams operating on their
own in order to avoid static obstacles. However, this does not provide information on a
mapping from any joint configuration of the human and robot to the human’s action when
we aim to also model how the human would avoid, for example, predicting the direction
of avoidance, and the entire avoidance process. In this paper, we also aim to model the
situation in which humans are avoiding moving robots and comprehensively evaluate the
e↵ectiveness of incorporating varying degrees of information derived from HJ reachability.

In [48], the authors learn a forward reachable set by optimizing the disturbance bound,
learning from data that is repeatedly gathered from similar initial configurations and gener-
ating a reachable set that satisfies an accuracy threshold. However, if we aim to apply the
learned reachable set to a scenario in which the two vehicles are approaching from an angle
di↵erent from what’s seen in the training data set, the reachable set generated will not be
suitable. In [37], the authors assume that there are di↵erent modes that humans are in and
learn a reachable set for each of these distinct modes. In this paper, we are interested in
prediction methods that generalize to novel scenarios without the need to train a reachable
set for each scenario.

In this paper, we first demonstrate how to incorporate information derived from HJ
reachability in learning human behavior in a specific example of a simulated two vehicle
unstructured setting. We illustrate that the use of HJ reachability yields considerable im-
provement in predicting human behavior when compared to not using it, for the humans that
participated in our study. Furthermore, we propose a framework for learning probabilistic
human forward reachable sets (PHFRS) that flexibly captures regions with varying levels of
safety. The proposed framework generalizes to prediction in scenarios not trained on. We
validate our approaches on data gathered from human experiments with 8 participants.

The paper is organized as follows: Section 3.2 presents our problem statement, how we
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incorporate information derived from HJ reachability into the learning problem, and the
probabilistic reachable set framework. Section 3.3 presents our experiment setup, evaluation
metrics, experimental results, and an implementation of the probabilistic forward reachable
set method described in 3.2. Section 3.4 includes conclusion and future work.

3.2 Methodology

We aim to predict the behavior of a human controlling a vehicle (which we will call QH
for human vehicle) in a shared space with an autonomous vehicle (called QR for robot
vehicle), in an unstructured setting. The unstructured setting presents the challenge of
using a limited amount of information to correctly model humans. The methodology section
consists of two parts. In the first, we frame the learning problem and propose a way to
use information derived from HJ reachability in making better predictions. In the second,
we propose a framework to generate probabilistic human forward reachable sets (PHFRS)
using the behavior prediction obtained from the result of the learning problem in the first
part, although the proposed framework can work with any learning model that outputs
probabilistic prediction over actions of humans.

3.2.1 Predicting human actions

3.2.1.1 Problem Statement

In an environment with a human vehicle QH and a robot vehicle QR with dynamics in the
form of (5.1), the human operator controls QH to avoid colliding with QR. The human
can provide control from a discrete set of M control inputs {u

1

, . . . , uM} where umin 
um  umax,m 2 {1, . . . ,M}. For example, these could be one-dimensional real numbers
corresponding to turning clockwise, turning counter-clockwise, or going straight. Let the
states of the human and robot be denoted as xH and xR respectively. We aim to learn to
predict the human action û within {u

1

, . . . , uM} at any joint configuration of QH and QR.
Our first contribution is to show through a set of human experiments that incorporating
information derived from HJ reachability into the proposed learning problem can improve
accuracy in prediction.

3.2.1.2 Proposed method

In machine learning, feature vectors are representations of data points that can potentially
improve the predictive performance. Since we’re working in an unstructured environment,
we avoid direct dependency on absolute states and use the relative state xHR = xH � xR.

The construction of good features is in general a challenging but important problem in
machine learning [36]. In this project, we choose from a set of ”standard” geometric fea-
tures, and augment with features derived from the safety value functions. The standard
features we can incorporate are the translational and rotational components of the relative
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state. We also include cosine and sine of the rotational components in the relative states
to provide nonlinear angular information. We denote features relevant to translation prop-
erties as ~gt, features relevant to rotational properties as ~gr, and features relevant to the
trigonometric properties of the angles as ~gtrig. For example, if the state of the vehicle is de-
scribed by xH =

⇥
xH,1 xH,2 xH,3

⇤
and xR =

⇥
xR,1 xR,2 xR,3

⇤
where the first, second, and

third components correspond to the x coordinates, y coordinates, and rotational angles, the
relative state is xHR =

⇥
xHR,1 xHR,2 xHR,3

⇤
=
⇥
xH,1 � xR,1 xH,2 � xR,2 xH,3 � xR,3

⇤
.

Then based on our feature construction method, ~gt :=
⇥|xHR,1| |xHR,2|

⇤T
, ~gr :=

⇥
xHR,3

⇤T
,

and ~gtrig :=
⇥
cos (xHR,3) sin (xHR,3)

⇤T
. Combining everything, we have that the standard

feature vector has the form ~gstd :=
⇥
~gTt ~gTr ~gTtrig

⇤T
.

In safety critical scenarios, past works predominantly incorporate distance, measured by
the l-2 norm, k·k

2

, of the translational properties in relative states, as a feature in learning
human behavior. For example, using the previous example, the distance feature is gd :=��⇥xHR,1 xHR,2

⇤��
2

.
We hypothesize that safety levels derived from HJ reachability can potentially provide

crucial information in predicting human action and the safety levels viewed from di↵erent
agents may both provide valuable information. Let the safety levels of the human with
respect to the robot be denoted as VHR(xHR) and the safety levels of the robot with respect
to the human be denoted as VRH(xRH). If we include all the features proposed so far, we

have the feature vector ~g =
⇥
~gTstd gd VHR(xHR) VRH(xRH)

⇤T
.

Now we present how we learn the human actions given the construction of feature vector
~g. Let the data set be represented as {xHR,n, un}N

n=1

, where N represents the number of data
points, xHR,n represents the relative state of data point n, and un represents the action the
human took at this relative state. We call un the label for datapoint xHR,n. Let ~gn be the
feature vector for xHR,n.

To model the problem probabilistically, we denote the probability of label un of a dat-
apoint xHR,n as the function P (un|xHR,n; ✓) that is parameterized by ✓, with the goal to
learn the parameter ✓. We assume that the data points are independent and identically
distributed (iid) and we learn the parameter ✓ by maximizing the probability

max
✓

NY

n=1

P (un|xHR,n; ✓). (3.1)

This is referred to as the maximum likelihood method. Here we refer to P (un|xHR,n; ✓) as
the function approximator.

Alternatively, we could make no probabilistic assumption on the data. For example, a
Support Vector Machine (SVM) finds a hyperplane that separates data points with di↵erent
labels. Another example is a decision tree, which uses a tree-like structure to separate the
data by recursively grouping it based on the decision rule at each node of the tree.
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3.2.2 A framework for generating probabilistic human forward
reachable sets (PHFRS) based on learned human behavior

3.2.2.1 Problem statement

We aim to provide a framework to generate probabilistic human forward reachable sets (PH-
FRS), with varying levels of safety, that capture future trajectories of QH . Mathematically,
the problem is defined as follows: Let Tc denote the current time step. Given the past and
current states of the trajectory, {x(i)

H , x(i)
R }Tc

i=0

, develop a framework to generate a PHFRS S
composed of F mutually disjoint regions Sj such that each region Sj is associated with a
probability pSj

. Furthermore, the probabilities pSj
’s should satisfy

PF
j=1

pSj
= 1.

We say that a region provides a higher safety probability if the region captures future
trajectories with a higher probability. Our second main contribution is thus a framework
that provides varying levels of safety probabilities through probabilistic reachable sets in
novel scenarios.

3.2.2.2 Proposed method

To generate a PHFRS satisfying the properties described earlier, we learn F forward reach-
able sets, F

1

, . . . ,FF that satisfy the following properties:

• F
1

✓ F
2

✓ · · · ✓ FF�1

✓ FF .

• We associate a probability pFj
with each reachable set Fj. This probability specifies the

likelihood that the trajectory in the next T time steps will be within Fj. pF1 , . . . , pFF

should satisfy pF1 � p, pFF
= 1, and pFj+1 � pFj

, 8j 2 {1, . . . , F � 1}. Note that p
represents the desired minimum probability with which the smallest reachable set F

1

should capture the human trajectories.

Note that we define F
0

= ;. With this definition , pF0 = 0. The set of constraints pFj+1 �
pFj

, 8j 2 {1, . . . , F � 1} encourages the set of reachable sets to provide increasing levels of
safety. The constraint pFF

= 1 enables us to provide a safety certificate in the worst case
scenario. Observe that if we let Sj = Fj \ Fj�1

and let pSj
= pFj

� pFj�1 , we will havePF
j=1

pSj
= 1, as desired.

We propose to generate these reachable sets Fj’s by learning time-varying control input
bounds for each. For simplicity, we consider the case in which the human input is one
dimensional, though our method generalizes to the multi-dimensional case.

Definition 1. Time-varying bounds on control inputs: Let u(i)
j and ū(i)

j denote the
lower and upper bounds on the control inputs for reachable set Fj, between time tTc+i and
tTc+i+1

. This is defined for all 8i 2 {0, . . . , T � 1}, 8j 2 {1, . . . , F}. Note that tTc+i

corresponds to the real-valued time at time step Tc + i.

Given u(i)
j and ū(i)

j for all i 2 {0, . . . , T � 1}, we can construct the forward reachable set
Fj using the following definition.
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Definition 2. Forward reachable set with time-varying constraints on inputs:
Suppose we have time varying constraints for the control inputs, i.e., there exists t

0

, . . . , tT
such that 0 = t

0

< t
1

< · · · < tT�1

< tT and the control input between time ti and time ti+1

is
within the set U (i) = [u(i), ū(i)]. Denote L as the initial set of states to grow the reachable set
from. To make this well defined on the boundary time points, we define the reachable set to
be F(t

0

) = L, F(ti+1

) = {x : 9u(t) 2 U (i) s.t. t 2 [ti, ti+1

], x(·) satisfies ẋ = f(x, u), x(ti) 2
F(ti), x(t) = x}. 1

Algorithm 3.1 presents how we determine the time-varying bounds u(i)
j , ū(i)

j . The algo-

rithm takes in the following arguments: {x(i)}Tc
i=0

, G, {✏j}F
j=1

, and {k(i)}T�1

i=0

. We use x(i) as

a shorthand notation for (x(i)
H , x(i)

R ). For generality, the algorithm takes in joint states from
all past time steps and the current time step Tc. The argument G represents any learned
function that can take in the past and current joint configurations of the vehicles, and out-
puts a probabilistic distribution over the set of possible actions. Note that we allow G to
take in the past states for prediction here, however, it could also be the case that G makes
predictions solely based on the current joint configuration like the function approximators
learned in 3.2.1. As we illustrate in the next paragraph as we describe our Algorithm, the
scalar ✏j determines how much to grow the input bounds for Fj, and the positive integer k(i)

indicates the number of likely actions we use to generate these bounds at time step i.
Algorithm 3.1, which learns time varying bounds for the human inputs, is described

below. On line 1, ”low” and ”high” predicted joint states are initialized with the values of
the current joint states; here x̂(Tc+i)

l , i > 0, refers to the predicted joint states at time step
Tc + i, using the low control input value, the subscript h is used for the high control input
value. Inside the loop, lines 3-4 obtain the k(i) top likely actions based on the learned function
G, for both the low and high cases; and lines 5-6 obtain the corresponding lowest and highest
value inputs, denoted u(i), ū(i) respectively. In lines 7-10, we obtain the corresponding desired
u(i)
j , ū(i)

j for each reachable set Fj by expanding u(i), ū(i) with ✏j as shown. Lines 11-12 obtain
the robot’s actions for both the l and h cases using the function getRobotAction, which is
defined using the robot’s model. On line 13, the predicted actions of the human for the case
l and h at time step Tc + i are set to be the lower and upper bounds, respectively, of the
control input for the smallest reachable set F

1

. Lines 14-18 simulate the predicted states of
the human and robot for the next time step Tc+ i+1. This process repeats as i increments.

We now present the conditions ✏j’s should satisfy to enable Fj ✓ Fj+1

, 8j 2 {1, . . . , F�1}.
Theorem 1. Based on this reachable set generation scheme, if for any j 2 {1, . . . , F � 1},
✏j  ✏j+1

and 8j 2 {1, . . . , F}, ✏j � 0, for any j 2 {1, . . . , F � 1}, Fj ✓ Fj+1

.

1In this definition, we adopt the convention used in hybrid systems, in which the input bound switch
corresponds to a mode switch, which allows us to directly use the Level Set Toolbox [62] from past work.
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Algorithm 3.1: Generation of time-varying input bounds for reachable sets Fj’s

input : {x}Tc
i=0

, G, {✏j}F
j=1

, {k(i)}T�1

i=0

output: u(i)
j , ū(i)

j for i 2 {0, . . . , Tc � 1}, j 2 {1, . . . , F}
1 Assign x̂(Tc)

l = x(Tc), x̂(Tc)

h = x(Tc);
2 for i 0 to T � 1 do
3 set ûH,l = getTopKPredictedHumanActions(G, {x}Tc�1

i=0

, {x̂l}Tc+i
i=Tc

, k(i) ) ;

4 set ûH,h = getTopKPredictedHumanActions(G, {x}Tc�1

i=0

, {x̂h}Tc+i
i=Tc

, k(i) ) ;
5 u(i) = getMin (set ûH,l, set ûH,h) ;
6 ū(i) = getMax (set ûH,l, set ûH,h) ;
7 for j  1 to F do

8 u(i)
j = max(u(i) � ✏j, umin) ;

9 ū(i)
j = min(ū(i) + ✏j, umax) ;

10 end

11 û(Tc+i)
R,l = getRobotAction( {x}Tc�1

i=0

, {x̂l}Tc+i
i=Tc

) ;

12 û(Tc+i)
R,h = getRobotAction( {x}Tc�1

i=0

, {x̂h}Tc+i
i=Tc

);

13 û(Tc+i)
H,l , û(Tc+i)

H,h = u(i)
1

, ū(i)
1

;

14 for boundType 2 {l, h} do
15 for agentType 2 {H,R} do

16 x̂(Tc+i+1)

agentType,boundType

=ForwardDynamics(

x̂(Tc+i)
agentType,boundType

, û(i)
agentType,boundType

) ;

17 end
18 end
19 end

Proof. First, observe that if 8j 2 {1, . . . , F � 1}, ✏j  ✏j+1

, then at each time step i 2
{0, . . . , T � 1}, u(i)

j+1

 u(i)
j and ū(i)

j  ū(i)
j+1

. Equivalently, the control input sets at each time

step satisfy U (i)
j = [u(i)

j ū(i)
j ] ✓ [u(i)

j+1

ū(i)
j+1

] = U (i)
j+1

.
Then consider any two initial sets and input bounds for reachable sets Fa, Fb that satisfy

La ✓ Lb and Ua ✓ Ub between time [ts, te] where ts and te indicate the start and end time
respectively. If xa 2 Fa, then by definition 9u(t) 2 Ua, s.t. t 2 [ts, te], x(·) satisfies ẋ =
f(x, u), x(ts) 2 La, x(t) = xa. Since Ua ✓ Ub and La ✓ Lb, this means that u(t) 2 Ub,
t 2 [ts, te], and x(ts) 2 Lb. Hence by definition, xa 2 Fb. This proves that Fa ✓ Fb.

We let Fj(ti) denote the reachable set j grown so far from time t
0

to time ti. Using the

above result, we have Fj(t1) ✓ Fj+1

(t
1

) because Fj(t0) = Fj+1

(t
0

) = L and U (0)

j ✓ U (0)

j+1

.
Then applying this recursively, we have Fj(ti) ✓ Fj+1

(ti) for any i 2 {2, . . . , T}. Hence
Fj ✓ Fj+1

, 8j 2 {1, . . . , F � 1}.
We now present how we compute pj, j 2 {1, . . . , F}.
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We compute pj associated with Fj by letting it be the percentage of the human trajec-
tories that fall entirely within the predicted Fj.

Corollary 1. Using our algorithm, pFj+1 � pFj
, 8j 2 {1, . . . , F � 1}.

Proof. According to Theorem 1, we have that for any j 2 {1, . . . , F � 1}, Fj ✓ Fj+1

. This
suggests that if ⇣k,l 2 Fj,k,l, then ⇣k,l 2 Fj+1,k,l. Hence, 8k 2 {1, . . . , K}, 8l 2 {0, . . . , Lk �
T � 1},1{⇣k,l 2 Fj,k,l}  1{⇣k,l 2 Fj+1,k,l}. Hence, pFj

 pFj+1 , 8j 2 {1, . . . , F � 1}.

Corollary 2. If we set ✏F such that u(i)
F = umin, ū

(i)
F = umax, 8i 2 {0, . . . , T � 1}, then

pFF
= 1.

Proof. Since human inputs are constrained within [umin, umax], any human trajectory must
fall inside the forward reachable set where the bounds on the inputs are always [umin, umax].

Hence if u(i)
F = umin, ū

(i)
F = umax, then ⇣k,l 2 FF,k,l, 8k 2 {1, . . . , K}, 8l 2 {0, . . . , Lk�T �1}.

Thus, pFF
= 1.

Having
PF

j=1

pSj
= pFF

= 1 allows us to capture all possible future trajectories and
provides us with the ability to use FF as the most conservative safety standard.

3.3 Experiments

We conduct experiments to understand how incorporating information derived from HJ
reachability a↵ects the prediction of human behavior with our proposed method. Further-
more, we present the learned probabilistic human forward reachable sets (PHFRS) generated
based on our proposed framework with the same experimental data.

3.3.1 Experimental design

We recruited 8 participants between the age 20-27 from the university campus to participate
in the experiment. We gather trajectory data by having each human subject control a
human vehicle in a simulated environment with another robot vehicle. The robot vehicle has
a goal which is displayed to the human, and the robot is automatically controlled to reach
its designated goal in exactly 10 seconds. The human subject is informed that the robot is
heading straight to the goal and will not actively avoid the human vehicle.

In our experiment, we use vehicles with the following dynamics:

ṗx,i = v cos i

ṗy,i = v sin i

 ̇i = !i, !min  !i  !max

(3.2)

where the state variables px,i, px,i, i represent the x position, y position, and heading of
vehicle Qi, i 2 {H,R}. Each vehicle travels at a constant speed of v = 2, and its turn rate
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!i is constrained by !min = �0.5,!max = 0.5. Using a computer keyboard, the participants
can provide control inputs corresponding to {!min, 0,!max}, which are control inputs for
turning right, going straight, and turning left respectively. We think that these controls
are su�cient for the human participants to avoid the robot vehicle while not burdening the
cognitive load of the humans by giving them an abundance of possible controls, which may
confound the experimental results.

Two example scenes from our data collection web application are presented in the top two
plots in Figure 3.1. The robot and human vehicle are colored in red and blue respectively.
The tails and the directions of the arrows indicate the exact locations and orientations of the
vehicles respectively. The goal of the robot is presented as a red square. The human operator
is asked to provide control inputs so that the human vehicle avoids the danger zone of the
robot vehicle, represented as Lij = {px,ij : (px,i�px,j)2+(py,i�py,j)2  R2

c}, where Rc = 3 in
our experiment. Each scene is also designed so that if the human subject doesn’t avoid the
robot, the human and robot vehicles will collide eventually. Hence the human subjects are
instructed to continuously provide control inputs for avoidance starting from when they feel
danger until they no longer think that the human vehicle and the robot vehicle will collide
if they don’t provide any more avoidance inputs. The human does not need to repeatedly
press the key to avoid but can just hold down the key to avoid continuously. The scene ends
when the robot reaches the goal.

The experiment is divided into three phases. In the first phase, we provide instructions
and the participants are given 1 minute to familiarize themselves with the interface we
developed and the dynamics of the vehicle. In the second phase, participants are given three
practice scenes to further familiarize themselves with the setup of the study. In the third
phase, participants are given 50 vehicle avoidance tasks. The initial states of the human and
robot vehicles are randomized for each scene. We record the states of the human and robot
vehicles, along with the action of the human, every 0.2 seconds.

3.3.2 Analysis of prediction performance

In this section, we present the experimental results of incorporating information derived from
HJ reachability into the learning problem.

We perform a five fold cross validation to tune the hyperparameters of the models and
evaluate the result based on predictive performance on the test data. We model that each
human has a di↵erent pattern in avoidance behavior, hence, we trained a classifier for each
subject. We perform an extensive comparison of incorporating di↵erent subsets of informa-
tion derived from HJ reachability. To rigorously compare the sets of features, we conduct
statistical significance tests to see if the di↵erences in performance are statistically significant.
We apply the Mann-Whitney test on pairs of feature sets and compute the p-values.

As described in 3.2.1, the standard features are B = {|px,HR| , |py,HR| , HR, cos HR, sin HR}.
We augment these with features, dHR =

q
p2x,HR + p2y,HR, vH = VHR(xHR), and vR =

VRH(xRH) to the feature set, which represent the distance between the two vehicles, and the
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safety levels of the human relative to robot and robot relative to human, respectively. To
obtain safety levels, we compute the BRS (2.4) with the relative dynamics of the two vehicles
derived from the vehicle dynamics (3.2). To describe the sets of features, we use subscripts
d, h, and r to represent the addition of the features to the standard feature set dHR, vR, and
vH respectively. For example, Bhrd = B [ {vR, vH, dHR} and Bhr = B [ {vH, dHR}.

We conduct two sets of experiments: in experiment (I), we perform prediction on the
exact control the human inputs, i.e., we predict the control as one of the three possible
control inputs, {!min, 0,!max}. In experiment (II), the goal is to predict whether the human
will input control to avoid at any joint state of the QH and QR, which is equivalent to
predicting whether the input is ! = 0 or if the input falls in {!min,!max} in our setup. We
consider the following metric for both sets of experiments:

• Accuracy: 1PK
k=1 Lk

PK
k=1

PLk

l=1

1{ŷ(l)k = y(l)k } ⇥ 100% where ŷ(l)k and y(l)k represent the

predicted action and the ground truth action of the human at time step l in trajectory
k respectively. Here K represents the number of trajectories and Lk represents the
number of time steps in trajectory k.

For experiment II, we further evaluate the following metrics:

• Dstart: Let T̂k,f be the first time step in trajectory k that our algorithm predicts the
vehicle avoids and Tk,f be the first time step the human avoids in the experiment. This

metric is defined as: 1

K

PK
k=1

���T̂k,f � Tk,f

���.

• Dend: Let T̂k,e be the last time step in trajectory k that our algorithm predicts the
vehicle avoids and Tk,e be the last time step the human avoids in the experiment. This

metric is defined as: 1

K

PK
k=1

���T̂k,e � Tk,e

���.

We consider support vector machine (SVM), decision tree (DT), and logistic regression
(LR) machine learning models. SVM and DT models don’t make assumptions about the
probabilistic distribution of the data. LR assumes that each data point is iid. Despite the
fact that the data we gather are temporally correlated, we are interested in investigating
how well LR performs on the data.

Our experimental results indicate that incorporating the safety levels derived from HJ
reachability can yield considerable improvement in predictive performance. Table 3.1 illus-
trates the accuracies obtained by applying the SVM, DT, and LR models on the two sets of
experiments, (I) and (II). We can see that for all models on both tasks, using the feature set
Bhrd yields the highest performance, considerably higher than just incorporating distance,
Bd (p < 0.05). It is also notable that for all three algorithms on both tasks, incorporating
exactly one of the two safety levels vH, vR outperforms incorporating just the distance dHR
(p < 0.05). We see that incorporating the robot’s safety level with respect to the human, vR,
generally, but not always, yields higher performance than if not including it. This suggests
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that taking into account the safety from the perspective of the robot vehicle is also impor-
tant. With the feature set and model fixed, the accuracies in experiment (II) is in general
higher than those in experiment (I). This is expected as in experiment (II), we need to also
predict the direction of the avoidance. However, the di↵erence is not big, suggesting that
the algorithms did reasonably well in predicting avoidance direction.

Table 3.2 illustrates the performance of the models on predicting the first and last time
steps of avoidance. We can see from the table that using DT with feature set Bhrd yields
the best performance in metric Ds and is on average 1.48 time steps o↵ from the ground
truth, which is equivalent to 1.48 ⇥ 0.2 = 0.296 seconds o↵ since every time step is 0.2
second apart. Similar to the accuracy metric, incorporating just one of the safety levels
yields a more accurate prediction than just considering dHR (p < 0.05). We can also see that
including the feature vR generally result in better prediction than including the feature vH.
It is also interesting to see that the models did a much better job predicting when a human
would start avoiding than when a human would end avoiding. We hypothesize that this is
because humans are generally more noisy in determining when to stop avoiding after there
is no longer immediate danger as once the danger is cleared, when to stop avoiding is less
important.

Bhrd Bhr Bhd Brd Bh Br Bd

SVM (I) 78.67 78.46 76.56 76.74 75.11 76.33 69.75
DT (I) 75.77 74.24 73.65 75.27 71.37 73.65 68.68
LR (I) 77.73 77.4 74.71 77.38 73.31 76.61 69.15

SVM (II) 83.89 83.15 81.12 82.85 79.62 82.15 70.72
DT (II) 81.29 78.58 79.26 80.55 79.15 78.5 68
LR (II) 81.70 81.61 78.79 81.62 77.54 80.88 71.35

Table 3.1: This table shows the accuracies of SVM, DT, and LR models using di↵erent
feature sets. We can see that including the information derived from HJ reachability yields
improvement in predictive performance than just including distance as a feature.

Intuitively, we think the higher performance of including safety levels derived from HJ
reachability is that inherently the safety levels encode some information about the dynamics
and how dangerous the configuration is based on worst case analysis. The geometric distance
of the two vehicles can also encode useful information about how dangerous the configuration
might be, however, it’s not as informative as the safety levels.

3.3.3 Probabilistic human forward reachable set (PHFRS)
implementation

In this section, we demonstrate an implementation of our proposed forward reachable set
prediction framework in 3.2.2 by applying our framework on the experimental data gathered.
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Bhrd Bhr Bhd Brd Bh Br Bd

SVM, Ds 2.02 2.06 2.23 1.88 2.3 2.03 4.22
DT, Ds 1.48 2.02 1.98 1.56 2.44 1.68 2.92
LR, Ds 2.43 2.84 2.6 2.29 2.93 2.83 7.3
SVM, De 6.7 7.38 8.67 7.03 8.78 8.07 15.94
DT, De 8.77 9.09 8.43 8.02 9.45 9.25 14.5
LR, De 7.67 7.35 9.17 7.72 9.96 8.09 17.57

Table 3.2: This table shows results for the metrics Dstart (Ds) and Dend (De). Similarly to
the accuracy metric, we see that both safety levels derived from HJ reachability improve
prediction performance.

For demonstration purpose, we use the logistic regression predictor learned in experiment I
in 3.3.2 for prediction, although it is possible to use any predictor that gives probabilistic
information on the predicted actions. Note that the constraint pF1 � p can always be

satisfied by tuning ✏
1

’s and k(i)’s. The intuition is that the better the predictor we use in
Algorithm 3.1, the smaller ✏

1

and k(i)’s are needed to achieve pF1 � p. An example of the
PHFRS using an implementation of this framework is illustrated in Figure 3.2. We can see
that the probabilistic reachable set we produce gives varying degrees of safety probabilities.

To provide intuition on the e↵ect of tuning ✏j’s and k(i)’s during the optimization, we
demonstrate the e↵ect of changing these parameters. The leftmost figure of Figure 3.2 shows
the probabilistic reachable set generated with ✏

1

= 0, ✏
2

= 0.15, ✏
3

= 0.25, ✏
4

= 0.4, ✏
5

= 1.0
and k(i) = 2, i 2 {0, 1} and k(i) = 1, i 2 {2, . . . , 9}. The PHFRS in the middle figure is
generated by fixing the k(i)’s used in the left figure and varying the ✏j’s. We let ✏

1

= 0.2
✏
2

= 0.3, ✏
3

= 0.35, ✏
4

= 0.45 and leave ✏
5

unchanged. Increasing ✏j makes the region Fj

larger. On the other hand, the PHFRS in rightmost figure is generated by fixing the ✏j’s used
in generating the PHFRS in the leftmost figure and varying the k(i)’s. We let k(i) = 2, i = {0}
and k(i) = 1, i 2 {1, . . . , 9} in the rightmost figure. Making k(i) smaller decreases the area of
Fj’s, except for FF , which aims to capture the worst case scenario.

Algorithm 3.1 can be computed e�ciently online. The generation of PHFRS based on
the output of Algorithm 3.1 can be computed online if the mapping from any {[u(i)

j , ū(i)
j ]}T�1

i=0

to Fj has been computed o✏ine.

3.4 Conclusion and Future Work

We first demonstrate how to incorporate information derived from HJ reachability into a
machine learning problem and show that this can yield considerable improvement in predic-
tion performance of human behavior compared with using one of the most typical features,
the distance feature, in safety critical scenarios. We then propose a framework to generate
probabilistic human forward reachable set (PHFRS) that flexibly o↵ers di↵erent levels of
safety probabilities and generalizes to unseen scenarios. In future work, it would be interest-
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ing to develop methodologies to evaluate how useful safety levels from HJ reachability are for
continuous action prediction or under situations where temporal information are considered.
Other directions include further imposing metrics on the PHFRS framework and generalizing
the framework to work with continuous action prediction.
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Figure 3.1: The top two figures illustrate the interface we designed to collect data from
participants. The top left figure shows the initial configuration and the top right figure
shows the configuration after the human has inputted controls to avoid the robot. The
bottom figures illustrate the sub-zero level set for the value functions VHR and VRH for the
configurations in the top figures, computed using [62]. Neither of the safety value functions
are provided to the human subjects during the experiment: the subjects only see the scenes
in the top figures.
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Figure 3.2: These are probabilistic human forward reachable sets (PHFRS) generated using
our framework. The algorithm predicts that the human will likely turn right within the
next T = 10 time steps. The regions in red, yellow, green, blue, purple correspond to
S
1

,S
2

,S
3

,S
4

,S
5

respectively. The middle figure is generated with the same k(i)’s as the
leftmost figure but the ✏j’s used are larger or equal to those used in the leftmost figure.
Increasing ✏j increases the area of Fj. The rightmost figure is generated with the same ✏j’s
as the leftmost figure, but with k(i)’s smaller or equal to those in the leftmost figure. We
can see that decreasing k(i)’s makes the areas of Fj’s smaller. For the PHFRS in the middle
figure, the probability for each of the five regions is: pF1 = pS1 = 0.752, pF2 = pS1[S2 =
0.771, pF3 = p[3

i=1Si
= 0.773, pF4 = p[4

i=1Si
= 0.775, pF5 = p[5

i=1Si
= 1.0.
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Part II

Safety for Multi-vehicle Systems
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Chapter 4

Reachability-based Safe Planning for
Multi-Vehicle Systems with Multiple
Targets

The research presented in this chapter was originally published in the paper Reachability-
based Safe Planning for Multi-Vehicle Systems with Multiple Targets in American Control
Conference 2021 [71].

4.1 Introduction and Related Work

In recent years, there have been vast interests from commercial companies to government
agencies in introducing unmanned aerial vehicles (UAVs) into the airspace. For example,
Google X [47], Amazon [5], and UPS [78] have all been developing drone technology for
goods transport and delivery. Companies such as Zipline Inc. [86] and Vayu Inc. [79] utilize
drones for delivery of critical medical supplies. The government is also tapping into UAVs for
disaster response [38], [52], [9] and military operations [19]. With the burgeoning enthusiasm
for this emerging technology, the Federal Aviation Administration recently devised guidelines
specifically for UAVs [40]. Ensuring the safety of UAVs is thus an imminent and highly
impactful problem. A central problem in UAVs is to have them visit multiple targets for
purposes such as delivery of supplies or inspection at di↵erent locations. Thus the problem
of e�ciently enabling all vehicles to accomplish their objectives of visiting multiple targets
while maintaining safety at all times is of paramount importance.

The problem of collision avoidance among multi-agent systems has been studied through
various methods. For example, [41, 15] assume that vehicles employ specific simple control
strategies to induce velocity obstacles that must be avoided by other vehicles to maintain
safety. There have also been approaches that use potential functions to tackle safety while
multiple agents travel along pre-determined trajectories [66, 32]. While these approaches
o↵er insights into tackling multi-agent problems, they do not o↵er the safety guarantees that



CHAPTER 4. REACHABILITY-BASED SAFE PLANNING FOR MULTI-VEHICLE
SYSTEMS WITH MULTIPLE TARGETS 28

are highly desirable for safety-critical systems with general dynamical systems.
Di↵erential game concerns the model and analysis of conflicts in dynamical systems

and is a promising tool for safety-critical problems for multi-vehicle systems due to the
strong theoretical guarantees it can provide. One such technique is Hamilton-Jacobi (HJ)
reachability [63]. HJ reachability has been successfully used to guarantee safety for small-
scale problems that concern one or two vehicles [45, 63]. Despite its favorable theoretical
guarantees and applicability to systems with general dynamics, it su↵ers from the curse
of dimensionality because the computation of reachable sets grows exponentially with the
number of states in the system and hence the number of vehicles, making its direct application
to systems of more than two vehicles intractable.

There have been many attempts in using di↵erential games to analyze three-player di↵er-
ential games with varying-degree of assumptions on each agent in non-cooperative settings
[75, 73, 44]. [23] is the first work built on reachability that guarantees safety for three ve-
hicles while vehicles are allowed to execute any control when the safe controller does not
need to be applied, which endows vehicles more flexibility and is thus preferable in certain
scenarios. [35] further builds on [23] to guarantee safety for four vehicles in unstructured
settings. However, [35] assumes that vehicles can remove themselves from the environment
when conflicts cannot be resolved for all vehicles, which is not always possible and could be
undesirable in some situations. In contrast, we propose a control strategy to guarantee safety
for four and more number of vehicles without assuming the ability to remove any vehicle
during conflict resolution.

Works such as [26, 25] have proposed controllers that guarantee safety for larger num-
ber of vehicles by imposing varying degrees of structure on the vehicles, including strong
assumptions such as vehicles traveling in a single line of platoon [25] or vehicles determining
their trajectories a priori [26]. In general, there is a trade-o↵ between the number of vehicles
safety can be guaranteed for and how strong the assumption on the structure of the multi-
vehicle system is. In this paper, we provide a novel approach based on reachability that
guarantees safety for any number of vehicles by using less structure than those of [26, 25] for
a class of dynamical systems. Although our proposed method adopts more structure than
that of [23] and [35], our approach can guarantee safety for any number of vehicles while
avoiding having to remove vehicles from the environment when conflict cannot be resolved
and retaining some level of unstructuredness.

Our main contribution is a novel approach to guarantee safety while any number of
vehicles are tasked with visiting multiple targets for a class of dynamical systems. We first
propose a method that assigns vehicles into “teams” and induces the behavior that vehicles
with similar objectives are assigned to the same team for e�ciency. We then propose a control
strategy to guarantee safety for any pair of vehicles within a team and across di↵erent teams,
e↵ectively guaranteeing safety for all vehicles.

The paper is organized as follows:

• In Section 4.2, we formulate the multi-vehicle collision avoidance and multi-target
satisfaction problem.
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• In Section 4.3, we present our approach of assigning vehicles into di↵erent teams based
on their objectives for e�cient task completion and our strategy for ensuring safety for
all vehicles.

• In Section 4.4, we demonstrate our proposed method in a four-vehicle and a fifteen-
vehicle simulation, illustrating the e↵ectiveness of both our proposed team assignment
algorithm and proposed safety strategy.

4.2 Problem Formulation

Consider N vehicles, denoted Qi, i = 1, 2, . . . , N , with identical dynamics described by the
following ordinary di↵erential equation (ODE)

ẋi = f(xi, ui), ui 2 U , i = 1, . . . , N (4.1)

where xi 2 Rn is the state of the ith vehicle Qi, and ui is the control of Qi. In this paper,
we work with a class of dynamical systems such that the dynamics f can be described
completely by a subset of the state and the control input, i.e., we can write xi = [xi,a xi,b]
where xi,a 2 Rna , xi,b 2 Rnb , na � 1, nb � 0, such that

ẋi = f(xi, ui) = fb(xi,b, ui), ui 2 U , i = 1, . . . , N (4.2)

for some function fb. Note that we will use the subscript ”a” or ”b” to denote the components
of a given state based on the definition above throughout the paper.

Each of the N vehicles is tasked with visiting a set of targets Gi, in no particular order,
out of a set of M targets {T

1

, . . . , TM}, i.e., Gi ✓ {T
1

, . . . , TM}. Note that the exact location
of each target need not to be known a priori. Each vehicle Qi must reach all of its targets
while at all times avoid the danger zone Zij with respect to any other vehicle Qj, j =
1, . . . , N, j 6= i. The danger zone Zij represents relative configuration between Qi and Qj

that are considered undesirable, such as collision. In this work, we assume the danger
zone Zij for each pair of vehicles can be identically defined by a norm function on the
xij,a component of the relative state xij, d(xij,a) : Rna ! R+ where xij,a ⌘ xi,a � xj,a. In
particular, the danger zone Zij is defined such that xij 2 Zij , d(xij,a)  Rij where Rij

is some positive real number. Note that in this work, we assume Rij = Rji for any pair of
vehicles Qi, Qj.

Here we note that, in this work, we use a slight abuse of notation to represent xi � xj

as xij. This is in general di↵erent from the xij used in defining relative dynamics and the
danger zone in subsection 2.1.3 on backward reachable sets in the Background chapter. We
make this distinction because sometimes the relative dynamics between two vehicles cannot
be directly defined in closed form with the relative state when the relative state is defined
directly as xi�xj. We instead use the notation x̄ij to represent a relative state representation
between xi and xj that doesn’t necessarily have to be xi�xj. We assume there is a bijection
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between xij and x̄ij. In this work specifically, similarly, we use the notation Z to denote
the danger zone defined using relative state xij and the notation Z̄ to denote danger zone
defined based on x̄ij. The reachability computation is done based on danger zone Z̄ and
relative dynamics defined based on x̄ij.

Remark 1. Many practical and common dynamical systems have dynamics structures out-
lined in Equation (4.2), such as the 2D point system [67], 3D Dubins Car [23], 6D Quadro-
tor [67], 6D Acrobatic Quadrotor [46], 7D Quadrotor [67], and 10D near-hover quadrotor
[18]. In addition, for all these dynamical systems, defining the danger zone based on the xa

component of the state x makes intuitive sense as the xa components represent the x, y, z
translational coordinates of these systems, which is what we generally use to define collisions
among vehicles.

Given the vehicle dynamics in (5.1), the derived relative dynamics in (2.3), the danger
zones Zij, i, j = 1, . . . , N, i 6= j, and the sets of targets each vehicle Qi needs to go through
Gi, i = 1, . . . , N , we propose a cooperative planning and control strategy that:

1. assigns vehicles to clusters (teams) based on their objectives;

2. determines the initial states of all vehicles;

3. guarantees safety for all vehicles for all time.

Remark 2. In this work, we will use the terms “cluster” and “team” interchangeably.

Our proposed method guarantees that all vehicles will be able to stay out of the dan-
ger zone with respect to any other vehicle regardless of the number of vehicles N in the
environment. Additionally our method guarantees safety for all vehicles without vehicles
having to remove themselves from the environment when conflicts cannot be resolved, as
assumed in [35]. For all initial configurations, target locations, and objectives of each vehi-
cle in our simulations, all vehicles also complete their objectives of visiting all their targets
successfully.

4.3 Methodology

Our proposed method consists of two phases: first, we develop the notion of teams (clusters)
of vehicles and present a method to assign vehicles to teams based on their targets, with the
goal of minimizing the time it takes for all vehicles to complete their objectives. Second,
we propose the idea of augmented danger zone for each pair of teams. Based on this, we
propose a control strategy to ensure safety for any pair vehicles on the same team and across
di↵erent teams, which in combination guarantees safety for all vehicles.
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4.3.1 Assignment of vehicles to clusters

We first propose an optimization problem that assigns theN vehicles toK teams, H
1

, . . . ,HK .
Each vehicle should be assigned to exactly one cluster and the objective of each cluster is
then to visit, in no particular order, the union of the sets of targets of the vehicles in this
cluster. Since we aim to have our approach be applicable to scenarios where the location
of each target is not known a priori, we assume that the amount of time a cluster takes to
complete its objective is proportional to the number of targets each cluster needs to visit
and we don’t consider the order in which each cluster visits its targets during the planning
process in this paper. With this in mind, we formulate the objective function of the pro-
posed optimization problem to minimize the maximum number of targets each cluster needs
to visit, which load-balances the number of targets each cluster should visit by grouping
vehicles with similar objectives into the same cluster. Furthermore, we show that the pro-
posed optimization problem can be converted into an integer linear program and thus solved
e�ciently with standard integer program solvers.

Recall that each vehicleQi’s objective is to visit a set of targets Gi where Gi ✓ {T
1

, . . . , TM}.
Based on this, we define binary variables eij, i 2 {1, . . . , N}, j 2 {1, . . . ,M}, such that
eij = 1{Tj 2 Gi} 1. Next we define optimization variables yik, i 2 {1, . . . , N}, k 2 {1, . . . , K},
which are also binary variables. yik = 1 means that vehicle Qi is assigned to cluster Hk,
and yik = 0 otherwise. Based on the goal of minimizing the maximum number of targets
each cluster needs to visit as described in the previous paragraph, we propose the following
optimization problem to solve for yik’s:

min
yik

max
k

 
MX

j=1

max
i

{eijyik}
!

subject to
KX

k=1

yik = 1, 8i 2 {1, . . . , N}

yik 2 {0, 1}, 8i 2 {1, . . . , N}, 8k 2 {1, . . . , K}

(4.3)

Note that due to space constraints under the min,max notations in the objective, we omit
that we’re optimizing over yik, 8i 2 {1, . . . , N}, 8k 2 {1, . . . , K} for the minimization and
k, 8k 2 {1, . . . , K} and i, 8i 2 {1, . . . , N} for the maximization in the above optimization
problem.

The summation
PM

j=1

max
i

{eijyik} is equivalent to the total number of targets that cluster

Hk needs to visit. To see this, for a given target Tj, the term eijyik in the summation equals
to 1 if vehicle Qi needs to visit target Tj and Qi is assigned to cluster Hk. eijyik = 0
otherwise. Hence max

i
{eijyik} equals to 1 if at least one vehicle assigned to cluster Hk needs

to visit target Tj. max
i

{eijyik} = 0 otherwise. Summing max
i

{eijyik} over all targets gives

the total number of targets cluster Hk needs to visit.

11(A) is an indicator function on event A such that 1(A) = 1 if A is true and 1(A) = 0 otherwise.
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Next we show that the optimization problem (4.3) can be converted into a standard
integer linear program by introducing a slack variable and an inequality constraint for each
of the maximization operations in the objective.

min
yik,okj ,O

O

subject to
KX

k=1

yik = 1, 8i 2 {1, . . . , N}

yik 2 {0, 1}, 8i 2 {1, . . . , N}, 8k 2 {1, . . . , K}
eijyik  okj, 8i 2 {1, . . . , N}, 8k 2 {1, . . . , K},
8j 2 {1, . . . ,M}
MX

j=1

okj  O, 8k 2 {1, . . . , K}.

The above integer linear problem can be solved e�ciently by o↵-the-shelf integer program
solvers. Once solved, the values of yik’s are the solution to the team assignment problem.
This completes the first step of the planning process.

4.3.2 Collision Avoidance Protocol Design

In this section, we present our proposed control strategy that ensure all vehicles remain safe
when completing their objectives after the vehicles have been assigned to teams. Specifically,
given any K-vehicle collision avoidance algorithm that guarantees safety when resolving
potential conflicts among K vehicles, we propose a general way to initialize vehicle locations
and a safe control strategy such that the following always hold for N vehicles where N can
be much larger than K:

• Any vehicle is safe from any other vehicle within the same cluster.

• Any vehicle in a cluster is safe from any vehicle in any other cluster.

4.3.2.1 Guaranteed safety for all vehicles within the same cluster

We first prove a theorem that motivates the control strategy that enables any pair of vehicles
in the same cluster to remain safe from each other.

Theorem 2. Give the structure of the dynamics and the danger zone defined in Section
4.2, for any two vehicles Qi and Qj, if the initial states xi(t0), xj(t0) of the two vehicles
satisfy d(xij,a(t0)) > Rij and xi,b(t0) = xj,b(t0) and the controls of the vehicles satisfy ui(t) =
uj(t) 8t � t

0

, then vehicles Qi and Qj will remain safe from each other for all t > t
0

.
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Proof. Given that xi,b(t0) = xj,b(t0) and ui(t) = uj(t) 8t � t
0

, we have that at any time
t � t

0

, ẋi(t) = f(xi(t), ui(t)) = fb(xi,b(t), ui(t)) = fb(xj,b(t), uj(t)) = f(xj(t), uj(t)) = ẋj(t).
Because ẋij,a(t) = 0 8t � t

0

, xij,a(t) = xij,b(t0) 8t > t
0

. Thus, d(xij,a(t)) = d(xij,a(t0)) >
Rij 8t > t

0

. Since Rij = Rji and xij(t) = �xji(t), we have d(xij,a(t)) = d(xji,a(t)) > Rij =
Rji 8t � t

0

, which proves that Qi and Qj will remain safe from each other for all t > t
0

.

The above shows that if we initialize any pair of vehicles Qi, Qj in the same cluster such
that xi,b(t0) = xj,b(t0), vehicles Qi, Qj start out safe from each other, and that they employ
the same control at any time, the two vehicles will continue to remain outside of each other’s
danger zone for all time. We can directly use this insight to initialize all vehicles in the
same cluster such that any pair of vehicles in the same cluster satisfies the above conditions
and have all vehicles in the same cluster employ the same control to guarantee safety for all
vehicles in the same cluster for all time.

4.3.2.2 Guaranteed safety of any vehicle with respect to any other vehicle in a
di↵erent cluster

The key idea of our proposed method is that we can think of each cluster Hk as an imaginary
vehicle with state xHk

and dynamics identical to that of the individual vehicle’s dynamics.
We propose the concept of augmented danger zone between any pair of clusters, which allows
us to guarantee that any vehicle in a cluster will remain safe from any vehicle in any other
cluster.

Before we proceed to describe our approach, we first define a few essential terms:

Definition 3. Maximum vehicle distance to cluster center for cluster Hk is defined
as RHk

⌘ max
i:Qi2Hk

d(xHk,a � xi,a) where xHk
is the state of the imaginary vehicle representing

cluster Hk.

Definition 4. Augmented danger zone ZHkHl
of cluster Hk with respect to Hl is defined

as xHkHl
2 ZHkHl

, d(xHkHl,a)  RHkHl
where xHkHl

= xHk
� xHl

and RHkHl
= RHk

+
RHl

+ max
Qi2Hk,Qj2Hl

Rij.

Definition 5. Safety level of cluster Hk with respect to Hl is defined as sHkHl
⌘ VHkHl

(x̄HkHl
)

where VHkHl
(x̄HkHl

) is computed based on reachability computation described in subsection
2.1.3 with dynamics identical to that of the vehicle dynamics and danger zone Z̄HkHl

.

Now we prove a result that relates the danger zone of the imaginary vehicles representing
the clusters and the danger zone of the actual vehicles.

Theorem 3. If xHkHl
/2 ZHkHl

, then xij /2 Zij for any pair of vehicles Qi, Qj such that
Qi 2 Hk and Qj 2 Hl.
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Proof. Let rHk
= xHk

� xi and rHl
= xHl

� xj. Based on the definition of the augmented
danger zone ZHkHl

, we have xHkHl
/2 ZHk,Hl

, d(xHkHl,a) > RHkHl
. With this in mind, we

have

d(xHkHl,a) = d(xHk,a � xHl,a)

= d(xi,a + rHk,a � xj,a � rHl,a)

 d(xi,a � xj,a) + d(rHk,a) + d(rHl,a)

 d(xij,a) +RHk
+RHl

where the first inequality follows from the triangle inequality on norms and the second
inequality follows from the definitions of RHk

and RHl
. Hence we have

d(xij,a) +RHk
+RHl

� d(xHkHl,a)

> RHkHl

= RHk
+RHl

+ max
Qi2Hk,Qj2Hl

Rij

� RHk
+RHl

+Rij.

Subtracting RHk
+ RHl

from both sides results in d(xij,a) > Rij, which implies xij /2 Zij, as
desired.

Corollary 3. Suppose at time t = t
0

, for any cluster Hk, xHk,b(t0) = xi,b(t0) for all i such
that Qi 2 Hk. We apply the K-vehicle collision avoidance strategy that guarantees safety on
the K imaginary vehicles representing the K clusters when resolving potential conflicts. If
the strategy suggests to apply u?

Hk
to the imaginary vehicle representing cluster Hk, then in

addition to applying this control on the imaginary vehicle, we also apply this control to all
vehicles in this cluster. Given the aforementioned assumptions and the control strategy, if
at time t = t

0

, any pair of imaginary vehicles representing two distinct clusters Hk,Hl are
not in potential conflict with each other, for any pair of vehicles Qi 2 Hk, Qj 2 Hl, Qi will
remain safe from Qj for all time t � t

0

.

Proof. First we note that it is only possible to have the same or less number of vehicles
in a cluster as time proceeds because a vehicle is allowed to stay at its final target once
it completes visiting all its targets. In addition, the same control is applied to all vehicles
in any cluster Hk and the imaginary vehicle representing Hk. Thus the maximum vehicle
distance to cluster center RHk

for each cluster Hk is non-increasing throughout execution,
which means that the radius RHkHl

defining the augmented danger zone between any two
distinct clusters Hk,Hl is non-increasing. By applying the K-vehicle collision avoidance
control strategy on the imaginary vehicles representing the K clusters, we know that for any
distinct clusters Hk,Hl, we have xHkHl

/2 ZHkHl
for all t � t

0

under the assumption that
they are not in potential conflict initially. Applying Theorem 3, we have that xij /2 Zij for
any vehicle Qi 2 Hk, Qj 2 Hl, which implies that any vehicle with respect to any vehicle in
another cluster will remain safe from each other for all t � t

0

.
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With the above in mind, we summarize our proposed overall initialization and cooperative
control strategy for all vehicles to visit all their targets safely for all time:

• (1) Initialize all vehicles such that for any pair of vehicles Qi, Qj in the same cluster
Hk, xij /2 Zij and xHk,b(t0) = xi,b(t0) = xj,b(t0). Additionally, any two distinct clusters
Hk and Hl are initialized so that the imaginary vehicles representing them are not in
potential conflict with each other.

• (2) At any time t, for any cluster Hk, if the K-vehicle collision avoidance algorithm
determines it’s necessary to apply the optimal safety controller, then all vehicles in
Hk apply this safe control; if the K-vehicle collision avoidance algorithm determines
that no safety control is needed at this time step, all vehicles in Hk apply the target
controller that gets the cluster to its next target.

The target controller is obtained by first computing the optimal control, up to discretiza-
tion accuracy, to reach the goal for any relative state of a vehicle and the goal within a finite
grid using reachability o✏ine. Online, all is needed to get the current target control is to
look up the optimal control using the current relative state of the cluster and its next goal
location. Hence the target locations need not to be known a priori.

Corollary 4. Give the control strategy outlined above, all vehicles will remain safe from each
other for all time.

Proof. The above initialization and control strategy satisfy the assumptions of both Theorem
2 and Corollary 3. Since the union of any pair of vehicles within the same cluster and across
di↵erent clusters is exactly all pairs of vehicles, any pair of vehicles will remain safe from
each other for all time.

4.4 Numerical Simulations

We demonstrate our proposed approach on safe planning and control for multiple vehicles,
each with an objective of visiting multiple targets, in simulation. We show that our approach
enables guaranteed safety for N = 4 vehicles without the need to remove any vehicle in the
environment like it is assumed in [35]. In addition, we also demonstrate that our approach
scales easily to large number of vehicles by demonstrating it on N = 15 vehicles. In all
our simulations, we divide vehicles into K = 3 clusters and build on the 3-vehicle collision
avoidance algorithm in [23].

For illustration purposes, we assumed that the dynamics of each vehicle Qi is given by

ṗx,i = v cos ✓i, ṗy,i = v sin ✓i, ✓̇i = !i, |!i|  !̄ (4.4)

where the state variables px,i, py,i, ✓i represent the x position, y position, and heading of
vehicle Qi. Each vehicle travels at a constant speed of v = 5, and chooses its turn rate !i,
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constrained by maximum !̄ = 1. The danger zone for HJ computation between Qi and Qj

is defined as
Lij = {xij : (px,i � px,j)

2 + (py,i � py,j)
2  R2

c}, (4.5)

whose interpretation is thatQi andQj are considered to be in each other’s danger zone if their
positions are withinRc of each other. Here, xij = [px,ij, py,ij, ✓ij] = [px,i�px,j, py,i�py,j, ✓i�✓j].
The danger zone can be equivalently defined by the L-2 norm of the x and y components of
the states, i.e., xij 2 Zij if and only if d(xij,a) = kxij,ak

2

 Rc.
To obtain safety levels and the optimal pairwise safety controller, we compute the BRS

(2.4) with the relative dynamics

q̇x,ij = �v + v cos q✓,ij + !iqy,ij
q̇y,ij = v sin q✓,ij � !iqx,ij
q̇✓,ij = !j � !i, |!i|, |!j|  !̄

(4.6)

where [qx,ij, qy,ij] is [�px,ij,�py,ij] rotated clockwise by ✓i around the origin on the 2D plane
and q✓,ij = �✓ij. Note that the L-2 norm on [qx,ij, qy,ij] is the same as the L-2 norm on
[px,ij, py,ij] because changing the sign and rotating do not change the value of the norm so
we could have similarly defined the danger zone as Z̄ij = {x̄ij : k[qx,ij, qy,ij]k

2

 Rc} where
x̄ij = [qx,ij, qy,ij, q✓,ij].

For all simulation, we initialize all vehicles and states of the clusters such that any pair
of vehicles in the same cluster is of distance greater than Rc of each other and the pairwise
safety levels of any two distinct clusters based on the augmented danger zones between them
are all above the safety threshold K = 1.5.

In Figure 4.1, we provide snapshots of the simulation of our proposed approach on 4
vehicles in an environment with 4 targets. In this simulation, the set of targets each vehicle
needs to visit is Q

1

: [A,D], Q
2

: [B], Q
3

: [C], Q
4

: [D]. By using our proposed team
assignment algorithm presented in Section 4.3.1, the three clusters H

1

, H
2

, H
3

have the
following vehicles assigned to them, H

1

: Q
1

, Q
4

, H
2

: Q
2

, H
3

: Q
3

. Recall that the set of
targets for each cluster is the union of the targets of all vehicles in the cluster. Hence H

1

should visit targets [A,D], H
2

should visit target [B], and H
3

should visit target [C]. We
see that the team assignment algorithm o↵ers a solution such that no clusters have to visit
more than 2 targets to encourage e�cient completion of the objectives of all vehicles. If Q

1

was paired with either Q
2

or Q
3

instead, one cluster would have to visit 3 targets.
In this simulation, the danger zone radius is Rc = 3. For cluster H

1

, we choose the state x
1

of vehicleQ
1

to be identical to xH1 , the state of the imaginary vehicle representing the cluster,
and choose Q

4

to be at a distance of Rc+ ✏ from the cluster center where ✏ is a small positive
real number. Hence RH1 = max

i2{1,4}
d(xH1 � xi) = 3 + ✏. For clusters H

2

and H
3

, the state of

the imaginary vehicle is the state of the only vehicle in each cluster, i.e., xH2 = x
2

, xH3 = x
3

.
Hence RH2 = RH3 = 0. For each cluster Hk, a circle with radius RHk

centered at xHk
is

plotted if RHk
> 0. We also plot the 0-safety level reachable sets derived from the augmented

danger zones of the clusters around the cluster centers. We can see from the top two subplots
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in Figure 4.1 that the 0-safety level sets corresponding to VH1H2 and VH3H1 are greater than
that of VH2H3 because the radii RH1H2 , RH3H1 that define their augmented danger zones are
RH1H2 = RH3H1 = RH1 +RH2 +Rc = RH3 +RH1 +Rc = 6+✏ while the radius RH2H3 defining
the augmented danger zone between H

2

and H
3

is RH2H3 = RH2 +RH3 +Rc = 3.
In Figure 4.1, as the clusters move towards their first targets, they get into potential

conflicts with each other. Hence the safety control kicks in. After each cluster successfully
resolves the conflict, H

2

heads to target B, H
3

heads to C, and H
1

first goes to target
D, followed by target A. At time t = 14.5s, we see that all vehicles have completed their
objectives. Note that once a vehicle has visited all its targets, it remains at its last visited
target and is no longer considered for collision avoidance.

Vehicle Vehicle Targets Cluster Cluster Targets
Q

6

[F, G, H]
Q

7

[H, I]
Q

8

[H, I, J] H
1

(red) [F, G, H, I, J, M]
Q

10

[I, M]
Q

14

[J]
Q

1

[A, C, E]
Q

2

[A, C]
Q

4

[B, C, D] H
2

(green) [A, B, C, D, E, G]
Q

5

[B, E]
Q

9

[B, D, G]
Q

15

[C, E]
Q

3

[P, K, O]
Q

11

[P] H
3

(blue) [P, A, F, K, O, N]
Q

12

[A, F]
Q

13

[O, N]

Table 4.1: This table summarizes the targets for each vehicle, the cluster each vehicle is
assigned to based on the proposed cluster assignment algorithm, and the targets that each
cluster should visit for the 15-vehicle collision avoidance problem. We see that the solution to
the cluster assignment successfully minimized the maximum number of targets each cluster
needs to visit and load balances it so that each cluster needs to visit the same number of
targets.
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We demonstrate the scalability and e↵ectiveness of our proposed method with a simu-
lation on getting 15 vehicles to complete their objectives where there are 16 targets in the
environment. In this simulation, the danger zone radius is Rc = 2. The targets of each
vehicle and the cluster assignments from running our proposed team assignment algorithm
are summarized in Table 4.1. We see that our proposed assignment algorithm successfully
divides the vehicles into three clusters such that the number of targets each cluster needs to
visit is well-balanced. Each cluster visits the targets in the order under the column “Cluster
Targets” in Table 4.1. The top left graph in Figure 4.2 shows the starting configuration of
the vehicles where the initialization scheme is similar to that explained for the four-vehicle
simulation: cluster H

1

(red) has its center at Q
10

, i.e., xH1 = xQ10 and the rest of the vehicles
in the cluster are located at equal distance to each other on a circle of radius Rc = 2 + ✏
centered at the cluster center. Similarly, for cluster H

2

(green) and H
3

(blue), the cluster
center is located at where vehicles Q

9

and Q
13

are at respectively, and the rest of the vehicles
in each cluster are located at equal distance to each other on a circle of radius Rc = 2+ ✏. In
general, we make the state of the imaginary vehicle representing the cluster identical to the
state of the vehicle that completes its objective last in the cluster. We see that our proposed
method resolves all conflicts and all 15 vehicles complete their objectives of visiting their
targets while maintaining safety successfully.

For the 15-vehicle simulation, it takes on average 0.018 seconds to perform computation
at each time step. All computations were done on a MacBookPro 15.1 laptop with an Intel
Core i7 processor.

4.5 Conclusion and Future Work

In this paper, we proposed a novel method for any number of vehicles to complete their ob-
jectives of visiting multiple targets with guaranteed safety for a class of dynamical systems.
We demonstrate the e↵ectiveness and scalability of our approach through a 15-vehicle simu-
lation. Our work is a promising step towards making HJ reachability more applicable to real
world applications by guaranteeing safety for any number of vehicles when they complete
their objectives while avoiding the need to have highly structured formations such as a single
platoon [25] or having to know trajectories of other vehicles in advance [26]. Future work
includes optimizing the order in which the targets are visited if target locations are known a
priori and developing guaranteed safe control strategies that require less synchronous actions
among groups of vehicles for any number of vehicles.



CHAPTER 4. REACHABILITY-BASED SAFE PLANNING FOR MULTI-VEHICLE
SYSTEMS WITH MULTIPLE TARGETS 39

-10 0 10 20 30
-10

-5

0

5

10

15

20

25

30

35
t = 0

A

B

C

D

-10 0 10 20 30
-10

-5

0

5

10

15

20

25

30

35
t = 1.4

A

B

C

D

-10 0 10 20 30
-10

-5

0

5

10

15

20

25

30

35
t = 5.1

A

B

C

D

-10 0 10 20 30
-10

-5

0

5

10

15

20

25

30

35
t = 14.5

A

B

C

D

Figure 4.1: Four vehicles Q
1

, Q
2

, Q
3

, Q
4

are tasked with visiting their targets. Based on their
targets, the team assignment optimization problem described in Section 4.3.1 assigns Q

1

and
Q

4

to cluster H
1

(red), Q
2

to cluster H
2

(green), and Q
3

(blue) to cluster H
3

. At t = 1.4s,
the clusters get into potential conflicts with each other and the safety control strategy kicks
in to make sure each vehicle remains safe. At t = 14.5s, we see that each vehicle completes
visiting all their targets successfully without any collisions.
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Figure 4.2: In this figure, we demonstrate our approach on 15 vehicles. The vehicles are
assigned into three cluster, with cluster H

1

(red) having 5 vehicles, cluster H
2

(green) having
6 vehicles, and H

3

having 4 vehicles. We can see that the clusters resolve conflicts with each
other successfully while they are en route to their targets. At the end, we see that all vehicles
safely visited all their targets.
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Chapter 5

Learning-based Initialization Strategy
for Safety of Multi-Vehicle Systems

The research presented in this chapter originally appeared in the paper Learning-based Ini-
tialization Strategy for Safety of Multi-Vehicle Systems [72].

5.1 Introduction and Related Work

The safety of multi-vehicle systems has emerged as an essential and important problem as
new technologies such as unmanned aerial vehicles (UAVs) develop quickly. We have seen
vast interests and growth in the domain of UAVs in industry or for government purposes.
For example, Google X [47], Amazon [5], and UPS [78] aim to use drones to accomplish their
business goals of delivery of goods. Drones have also been proposed for use in transport
of critical medical supplies [86], [79]. There have also been many e↵orts in using UAVs for
disaster responses and military operations [38], [52], [9], [19]. Due to the substantial growth
in utilizing drones for a wide range of domains, the Federal Aviation Administration created
guidelines specifically targeting UAVs in recent years [40]. It is thus of high urgency to
develop e↵ective approaches for multiple UAVs to achieve their goals in the same environment
safely.

The problem of safety in multi-agent systems has been studied through various ap-
proaches. Some methods used potential functions to address safety while vehicles travel
along pre-specified trajectories [66, 32]. There have also been works that introduce the idea
of velocity obstacles, induced by control inputs of the vehicles, for collision avoidance [4,
41, 15]. Authors in [60] used control strategies derived with Lyapunov-type analysis for
safe control of multiple vehicles. However, these approaches do not flexibly o↵er the safety
guarantee for general dynamical systems that reachability o↵ers. They also don’t o↵er the
the desirable property of a “least-restrictive” safe control strategy that reachability-based
strategies permit.

A promising class of methods for addressing safety in the context of multi-vehicle systems
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is di↵erential games. In particular, Hamilton-Jacobi (HJ) reachability [63] is a framework
that uses di↵erential games to model conflicts of more than one agent. However, although HJ
reachability o↵ers safety guarantees for general dynamical systems, its computation scales
exponentially with the number of states in the systems, limiting reachabilty to be directly
applicable to systems with only two vehicles [45, 63]. While attempts have been made to
use reachability-based methods to guarantee safety for a larger number of vehicles [26, 25],
these works either make strong assumptions on the formation of the vehicles or require that
the vehicles know other vehicles’ trajectories a priori. In contrast, in this paper, we tackle
unstructured collision avoidance where vehicles don’t have to follow specific structures or
require knowledge of future trajectories of other agents.

The recent work [24] is the first work that enables guaranteed safety for three vehi-
cles in unstructured settings using reachability via a higher level control logic. [35] further
investigates the problem of guaranteed safety for four vehicles, however, it requires the
assumption that vehicles can be removed from the environment when conflicts cannot be
resolved, which is not always possible. Guaranteed-safe collision avoidance methods for four
or more vehicles in unstructured settings without needing to remove vehicles in certain sit-
uation using reachability do not yet exist. However, reachability-based methods enable the
desirable least-restrictive safe control algorithms such that agents can perform any action
while they’re deemed safe. Inspired by this, we tackle the problem of improving safety per-
formance of systems with at least four vehicles when the vehicles adopt least-restrictive safe
control strategies. While our goal is not to o↵er safety guarantees, we demonstrate that
our proposed learning-based approach can e↵ectively improve safety performance just by
learning good initialization of the vehicle states while using the same least-restrictive safe
control strategy.

Machine learning approaches for tackling collision avoidance for multi-vehicle systems
have been investigated in prior works. For example, [58] uses an end-to-end learning approach
to generate reactive safe policies. However, it only considers local collision avoidance and
assumes the system is holonomic. Another line of work uses reinforcement learning (RL)
to learn control policies of multi-vehicle systems [21], [49]. However, RL-based methods
require substantial number of experiences of interactions among the vehicles to learn good
policies and can take hours and, often, days to train. Furthermore, they do not result in
least-restrictive safe controllers. In contrast, our proposed method is not aim at learning a
policy but directed towards tackling the problem of improving safety performance through
learning better initialization for all agents given any least-restrictive safety-aware collision
avoidance algorithm.

Our main contribution is a novel learning-based approach to e↵ectively enhance the safety
of multi-vehicle systems by learning good initialization of vehicles. We formulate the prob-
lem such that each vehicle is tasked with visiting a goal and each also proposes a state it
will start closely at. These agents use a least-restrictive safety-aware algorithm to get to
their goals while taking safety into account. Motivated by the fact that safety cannot be
guaranteed for larger multi-vehicle systems and the di�culty of reasoning about long-horizon
trajectories for least-restrictive safety-aware algorithms, we show that it is possible to figure
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out, without human intervention, a fast and e↵ective strategy that makes only minor modifi-
cation to each agent’s original proposed initial state and run the same safety-aware algorithm
while improving the safety performance of the system. We demonstrate through extensive
experiments on four to six vehicles that our proposed learning-based method consistently
and reliably improves the safety performance of multi-vehicle systems.

The paper is organized as follows:

• In Section 5.2, we formulate the multi-vehicle collision avoidance problem and state the
main goal of devising an approach to improve safety performance of any least-restrictive
safety algorithm.

• In Section 5.3, we describe our proposed learning based methods including data col-
lection, data processing, formulation of the learning problem, and how to utilize the
learned model to improve safety performance.

• In Section 5.4, we demonstrate our proposed learning-based method in large scale
randomized experiments on four to six vehicles and demonstrate its e↵ectiveness in
improving safety performance of multi-vehicle systems.

5.2 Problem Formulation

Consider N vehicles, denoted Qi, i = 1, 2, . . . , N , with identical dynamics described by the
following ordinary di↵erential equation (ODE)

ẋi = f(xi, ui), ui 2 U , i = 1, . . . , N (5.1)

where xi 2 Rn is the state of the ith vehicle Qi, and ui is the control of Qi. Each of the N
vehicles is tasked with visiting a target whose location gi 2 Rng is known before all vehicles
begin their journey.

We assume the vehicles adopt a least-restrictive safety-aware algorithm A that explicitly
optimizes for safety of the vehicles while they get to their targets. Given the vehicle dynamics
in Equation (5.1), the initial states xi(t0), and the target location gi of each vehicle Qi,
the algorithm A should determine the control ui for each vehicle Qi based on the joint
configuration of all vehicles at each time step. In addition, the safety-aware algorithm A
should be primarily designed with safe control of multiple vehicles in mind and should not
be naive when concerning safety. For example, the algorithm introduced in [23] satisfies this
criteria. In this paper, we focus on multi-vehicle systems where there is no guarantee that
the safety-aware algorithm A is able to get all vehicles to their targets without any safety
violation and our goal is to improve the safety performance of the system when safety cannot
be guaranteed.

We allow each vehicle the flexibility in determining approximately where their starting
states are. Instead of having full freedom of placing vehicles wherever we wish, we make
the problem more challenging by only allowing our proposed method to place each vehicle
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within a close neighborhood of the original proposed state of the vehicle. We also enact the
constraint that we are not allowed to modify the proposed initial states of Nfixed vehicles
of the N vehicles. Mathematically, let the original proposed initial state of vehicle Qi be
xi,o(t0) = [p

1,o, p2,o, . . . , pK,o] where pk,o’s, k 2 {1, . . . , K}, are disjoint blocks of the state
and how the state of the system is divided into blocks can be freely determined by users of
our proposed approach. For each agent Qi such that we are allowed to modify the initial
state for, the new initial state xi(t0) = [p

1

, p
2

, . . . , pK ] based on our proposed method should
satisfy constraints kpk � pk,ok  ✏k for some small real ✏k > 0. The norm can be any norm
that makes sense for measuring distance, which typically we use the L-1 or L-2 norm. On
the other hand, if we are restricted from modifying a vehicle Qj’s initial state, then the new
initial state xj(t0) = xj,o(t0).

Given the vehicle dynamics in Equation (5.1), the original proposed initial state of each
vehicle xi,o(t0), the set of Nfixed vehicles that we cannot modify initial states for, the danger
zones Zij, the target location gi for each vehicle Qi, and the least-restrictive safety-aware
algorithm A, we propose an e↵ective learning-based method to improve the safety perfor-
mance of the multi-vehicle system while adopting the same algorithm A. We demonstrate
the e↵ectiveness of our proposed learning-based approach by comparing it with randomly
selecting close neighboring states of the original proposed initial states as new initial states
with experiments and show that our approach results in better overall success rate of zero
safety violation throughout the execution. Our proposed method also achieves lower number
of total safety violations on average.

5.3 Methodology

In this section, we describe in detail our proposed learning-based method for improving
safety performance of any least-restrictive safety-aware algorithm while incurring very little
computation cost online. In particular, our proposed approach encompasses how we frame
this problem as a machine learning problem, which includes gathering data, modeling the
problem, learning the model, and using the learned model to obtain better initialization for
the vehicles to enhance the safety performance of the multi-vehicle system.

5.3.1 Data gathering and preparation

To gather training data for a N -vehicle system for our proposed approach, we ran M sim-
ulations such that the initial states of all vehicles are randomly generated as follows. First,
we determine N distinct initial states that will likely make collision avoidance a challenging
problem. In each simulation, we then randomly assign each vehicle to a distinct initial state
it should start close to. For each vehicle, we further randomly sample a state around the
initial state it is assigned to such that the new initial state is in close proximity to its original
initial state as illustrated in Section 5.2. There are N distinct fixed goal locations, one for
each of the N vehicles. In each simulation, we also randomize the goal location each vehicle
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is assigned to. The reason we determine in advance a set of original initial states the vehicles
should start close to and the target locations instead of just randomly sample initial states
and target locations throughout the entire space is that the vehicles will rarely even come
close to being in danger of each other in the latter initialization method. We want to focus
on challenging scenarios where we have high confidence that the agents will come into close
contact with each other as they head to their targets, enabling the safety-critical control
from algorithm A to play a large role in the safety performance and making it meaningful
to apply our proposed method.

For each simulation j 2 {1, . . . ,M}, we keep track of the following information: the
initial states of all vehicles xi(t0)’s, the goal locations of all vehicles gi’s, and an indicator
variable yj that represents whether the least-restrictive safety-aware algorithm A was able
to get all vehicles to their goals without any vehicle getting into each other’s danger zone
in this trial. We let yj = 1 if all vehicles reach their goals without any safety violation and
yj = 0 otherwise. Note that for each trial j, the simulation continues even when vehicles get
into each other’s danger zone and only ends when all vehicles have reached their goals.

To illustrate how we propose to construct the features for training, first let the concate-
nated vector of all initial states xi(t0) and target locations gi in trial j be

pj = [x
1

(t
0

), . . . , xN(t0), g1, . . . , gN ] 2 RN⇥(n+ng). (5.2)

We construct the feature map �(p) as follows: first we determine the order these initial
states are in counter-clockwise starting from a particular reference direction such as the
twelve o’clock direction. This gives a bijective map whose domain and range are both
{1, . . . , N} and maps each vehicle to its position based on the ordering logic. We use x(i)(t

0

)
and g(i) to denote the initial state and the target location of the vehicle in the ith position
based on the ordering logic mentioned above. The feature map � is then

h = �(p) = [x(1)(t
0

), . . . , x(N)(t
0

), g(1), . . . , g(N)]. (5.3)

After applying this feature map to the data gathered from all M trials, we obtain the data
set {hj, yj}M

j=1

for training.

5.3.2 Learning a model with machine learning

To achieve our desired goal of determining good initialization for vehicles, one intermediate
step is to determine the likelihood of algorithm A succeeding in getting all vehicles to their
targets without any vehicle getting into each other’s danger zone given the initial states
and target locations of all vehicles. To achieve this, we use supervised learning to make
predictions on this likelihood.

During training, we model the probability that algorithm A will succeed in getting all
vehicles to their targets without any safety violations given the feature vector h as f✓(h)
and aim to learn the parameter ✓ where f✓(h) can in general be any function approximator
such as a neural network. As described in the probabilistic modeling part 2.2.1.1 in the
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Background chapter, given data set {hj, yj}M
j=1

where yj’s are binary variables, we minimize
the following negative log likelihood with respect to ✓ to solve for the optimal ✓:

nX

j=1

�yj log f✓(hj)� (1� yj) log (1� f✓(hj)) . (5.4)

We use stochastic gradient descent to find a local minimizer ✓? of this loss function. Once
we obtain the minimizer ✓?, given any new feature vector h representing the configuration
of the initial states and target locations of the vehicles in the environment not seen during
training, we predict the probability that algorithm A will get all vehicles to their goals
without any safety violations as f✓?(h).

5.3.3 Evaluation on novel test scene online

Recall that our goal is to design a strategy to propose a new initial state close to the original
proposed initial state of each vehicle that will result in a higher success rate of getting all
vehicles to their targets without any danger zone violations. We also aim to have less number
of total danger zone violations with a better initialization.

Given a novel scene online where the original proposed states of each vehicle Qi is
xi,o(t0) = [p

1,o, p2,o, . . . , pK,o] where as described in Section 5.2, pk,o’s are disjoint blocks
of the state. Suppose each vehicle’s target location is gi. To find a good initialization,
first we uniformly sample L sets of N initial states in the close neighborhood of xi,o(t0)’s
by setting the constraint that each sampled state xi(t0) should be in the set {xi(t0) =
[p

1

, p
2

, . . . , pK ]| kpk � pk,ok  ✏k, k = 1, . . . , K}. For the Nfixed vehicles that we are restricted
from modifying their original proposed initial states of, we set ✏k = 0, 8k 2 {1, . . . , K}. Oth-
erwise we set ✏k to a small positive real number. Note that we cannot modify the target
locations of the vehicles.

After obtaining L candidate sets of initial states for all vehicles and constructing data
points pl’s, l 2 {1, . . . , L}, based on Section 5.3.1, we select the set of initial states with the
highest likelihood of succeeding in getting all vehicles to their targets without any danger
zone violations using the learned function approximator f✓?(h) as the new set of initial states.
Mathematically, the selected set of initial states is the the set of initial states p? correspond
to where

p? = max
l2{1,...,L}

f✓?(�(pl)). (5.5)

5.4 Experiments

In this section, we present extensive experimental results which demonstrate that with our
proposed learning-based initialization strategy, the safety performance of multi-vehicle sys-
tems are e↵ectively and reliably better compared with the baseline initialization strategy
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that randomly picks a set of initial states from all candidate initial sets in the vicinity of the
original proposed set of initial states of all vehicles.

For all experiments, we use the least-restrictive safety-aware algorithm proposed in [24].
This reachability-based algorithm guarantees safety for three-vehicle systems but does not
guarantee safety when the number of vehicles N is greater than 3. This algorithm has been
demonstrated to be substantially better in safety performance already compared to a baseline
safety algorithm in the paper when N > 3. Thus the safety algorithm we use in this paper is
not a naive collision avoidance algorithm and is an ideal algorithm for use in the evaluation
on our proposed learning-based initialization strategy. We conduct experiments using this
algorithm on multi-vehicle systems where the number of vehicles N are equal to four, five,
or six.

In our experiments, the dynamics of each vehicle Qi is given by the Dubins Car dynamics

q̇x,i = v cos�i, q̇y,i = v sin�i, �̇i = !i, |!i|  !̄

where the state variables qx,i, qy,i,�i represent the x position, y position, and heading of
vehicle Qi. Each vehicle travels at a constant speed of v = 5, and chooses its turn rate !i,
constrained by maximum !̄ = 1. The danger zone for HJ computation between Qi and Qj

is defined as
Zij = {xij : (qx,j � qx,i)

2 + (qy,j � qy,i)
2  R2

c}, (5.6)

whose interpretation is that Qi and Qj are considered to be in each other’s danger zone
if their positions are within Rc of each other. Here, xij represents their joint state, xij =
[qx,j � qx,i, qy,j � qy,i,�j � �i].

To obtain safety levels and the optimal pairwise safety controller, we compute the BRS
(2.4) with the relative dynamics

ṡx,ij = �v + v cos�ij + !isy,ij
ṡy,ij = v sin�ij � !isx,ij

�̇ij = !j � !i, |!i|, |!j|  !̄

(5.7)

where [sx,ij, sy,ij] is [qx,ij, qy,ij] rotated clockwise by �i around the origin on the 2D plane.
Note that we can similarly define the danger zone as {[sx,ij, sy,ij,�ij] : (sx,j � sx,i)2 + (sy,j �
sy,i)2  R2

c} because the norm of a vector is invariant under rotations around the origin.
To evaluate the e↵ectiveness of our proposed learning-based initialization strategy, we

perform large scale experiments on two settings of the speed v in the dynamics and the danger
zone radius Rc, (v = 5, Rc = 5) and (v = 6, Rc = 4), for number of vehicles N = 4, 5, 6.
For each set of experiments, we evaluate extensively the safety performance of the multi-
vehicle systems by varying Nfixed, the number of vehicles such that we cannot modify the
original proposed initial states for. Note that it only makes sense to run experiments to
evaluate the e↵ective of our approach when we can modify at least one of vehicles’ proposed
initial states. For each run, we initialize each vehicle by placing them symmetrically on
a circle of radius 10 + 2 ⇥ (N � 3) facing the center of the circle, and then add random
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perturbations to these states in each run. This gives us the original proposed initial states
of all vehicles. This initialization ensures challenging collision avoidance scenarios as all
vehicles will likely come in close contact with each other as they head to their targets. For
any vehicle Qi that we are allow to modify its initial state for, suppose its proposed initial
state is xi,o(t0) = [qx,i,o, qy,i,o,�i,o]. We constrain the new initial state xi(t0) = [qx,i, qy,i,�i] to
be in close proximity to the original proposed state such that xi(t0) should satisfy

|qx,i,o � qx,i|  3, |qy,i,o � qy,i|  3, |�i � �i,o|  ⇡/5. (5.8)

We train a model for each N 2 {4, 5, 6} for each of the two settings (v = 5, Rc = 5) or
(v = 6, Rc = 4). To train each model, we gather 5000 data points when N = 4 and 10000
data points when N = 5, 6 with the data collection technique described in Section 5.3.1.
For all models, we use a three-layer fully connected neural network with ReLU activation on
the hidden layer and Sigmoid activation on the output layer. The number of nodes in the
hidden layer of the network is 10, 15, 20 for N = 4, 5, 6 vehicles respectively. As described
in Section 5.3.2, we use the cross entropy loss as the loss function. For optimization, we the
Adam optimizer [54] to train the network.

To demonstrate the safety benefits with our proposed approach, we compare our proposed
initialization strategy with a random initialization strategy. For each N -vehicle system, we
ran Nruns = 200 randomized runs for each possible combination of v, Rc, Nfixed. For each
individual comparison run, we randomly sample L = 10 set of initial states in close proximity
to the original proposed states such that each set satisfies the constraints (5.8). With our
proposed learning-based approach, we use the learned parameters of ML model to select
the best set of proposed initial states out of all candidate sets; for the baseline random
initialization strategy, we uniformly select one of the L candidate sets of initial states as the
initial states for the vehicles. We report the results for the settings (v = 6, Rc = 4) and
(v = 5, Rc = 5) in Table 5.1 and Table 5.2 respectively. We consider the following two safety
metrics:

• Success rate ps: the percentage of runs such that all vehicles get to their goals without
any safety violation.

• Average number of collisions Ncol: the total number of safety violations throughout
the entire execution for all Nruns runs divided by the product of the number of vehicles
N and the number of runs Nruns. One safety violation is defined as a pair of vehicle
being within a distance Rc of each other in a time step. There can be multiple safety
violations at a given time because multiple pairs of vehicles might be in each other’s
danger zones at once.

From Table 5.1 and Table 5.2, we can see that our proposed learning-based initialization
strategy e↵ectively and reliably improves the success rate ps and reduces the average num-
ber of collisions Ncol across all experiments, For some scenarios, our approach substantially
outperforms the baseline. In particular, when v = 5, Rc = 5, N = 4, Nfixed = 1, we see
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that our proposed approach has 90% success rate whereas the baseline approach has only
66.5% success rate. In the same setting, the average number of collisions with our proposed
approach is only 25% of the average number of collisions with the baseline initialization strat-
egy. In general, we can see that our proposed approach outperforms the baseline approach
more substantially when Nfixed is smaller, which intuitively makes sense because we get to
optimize the states of more vehicles when Nfixed is small. In addition, we can also observe
that our proposed approach is more likely to considerably outperform the baseline when the
number of vehicles N is smaller, which also makes intuitive sense as there are likely more
interactions among vehicles that are more di�cult to be inferred by the initial states alone
when N is large. However, even when the number of vehicles N is 6 and Nfixed = 5, we still
get around an 18% reduction in the average number of collisions for both settings of (v, Rc)
with our proposed learning-based initialization method.

In Figure 5.1, we plotted the initial states selected with our proposed learning-based
method (solid arrows) versus those selected via the baseline randomized selection (dash-dot
arrows) from the L candidate sets of initial states sampled around the original proposed
initial states for each scenario. For all depicted scenarios, the least-restrictive safety-aware
algorithm was able to get all agents successfully to the goal locations without any safety
violation with our proposed learning-based initialization strategy while the randomized se-
lection failed and resulted in safety violations. The goal location of each vehicle is plotted
with the same color as the vehicle. When the initial state of a vehicle is not allowed to be
modified, initial states are identical for both strategies and the solid and dash-dot arrows
are overlaid on top of each other.

Although it is not possible for humans to always pinpoint why the initial states learned
by our proposed method are more e↵ective for safety than the baseline just by looking at the
initial states given that they are generally very close to each other, we can observe patterns
by running the least-restrictive safety-aware algorithm. Our approach tends to e↵ectively
identify initial states such that vehicles are less likely to run into the situation where many
vehicles are on the boundary of the unsafe sets of each other simultaneously or the situation
where conflicts of multiple vehicles are less likely to be resolved based on the algorithm used.
This shows that our proposed method is able to reason about safety based on the geometry
of initial states of the vehicles and their goals by identifying the strength of the safety-aware
algorithm used.

Figure 5.2 and Figure 5.3 further illustrate the proposed learned v.s. baseline initializa-
tion in the scenario depicted in the top right figure of Figure 5.1. We plot the danger zone
around each vehicle with a dash-dot circle in the same color as the vehicle; if the base of the
arrow representing a vehicle is in a circle of a di↵erent color, safety has been violated. We
see that in Figure 5.2, our proposed initialization strategy enables that only three (red, blue,
purple) of the four vehicles get close to the unsafe sets of each other, which our safety-aware
algorithm is able to resolve with guaranteed success. At the end, all vehicles get to their
goals without any safety violations. On the other hand, in Figure 5.3, the initial states
selected by the baseline strategy results in all four vehicles getting very close to each other
and the algorithm isn’t able to maintain safety while resolving the conflicts. We can see that
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Figure 5.1: In this figure, we illustrate the initial states selected by our proposed learning-
based strategy (solid arrows) versus those chosen with the baseline random selection method
(dash-dot arrows) for four di↵erent scenarios where our proposed method succeeded in getting
all vehicles to their goals successfully without any safety violation while the baseline method
resulted in safety violations even though the initial states selected from the two methods are
very close to each other. Figure 2 and 3 further illustrate the simulation based on the initial
states selected by the two di↵erent strategies in the scenario depicted in the top right figure.
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Figure 5.2: This figure illustrates di↵erent time points of the simulation when we use our
proposed learning-based initialization strategy to select the initial states of the vehicles. This
scenario is identical to that in the top right figure of Figure 5.1. We observe that our proposed
approach learns to identify the strength of the safety-aware algorithm in guaranteeing safety
for three vehicles and initializes vehicles such that only three vehicles end up coming into
close contact with each other. All vehicles successfully reach their goals without any safety
violations.
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Figure 5.3: This figure illustrates the simulation when the baseline random initialization
strategy is used in the scenario identical to that in the top right figure of Figure 5.1. This
is meant to contrast Figure 5.2 that with the randomized strategy, even though the initial
states are very close to those selected by our proposed method, it results in the undesirable
event that the green and the purple vehicles get into each other’s danger zone at time t = 2.0s
and t = 2.7s.
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the green and purple vehicles violated safety at time t = 2.0s and t = 2.7s. We see that
our learning-based proposed method is able to e↵ectively pick up on the advantages of the
least-restrictive safety-aware algorithm assign a higher probability of success for initialization
that is favorable with the algorithm used, e↵ectively improving the safety performance of
the multi-vehicle system.

Nfixed = 0 Nfixed = 1 Nfixed = 2 Nfixed = 3 Nfixed = 4 Nfixed = 5

ps Ncol ps Ncol ps Ncol ps Ncol ps Ncol ps Ncol

Four vehicles
Learned 92 0.425 88.5 0.915 89.5 0.59 81.5 1.175 - - - -
Random 75.5 1.58 77.5 1.69 80 1.255 76 1.75 - - - -

Five vehicles
Learned 88 1.11 79.5 1.87 80.5 1.44 79.5 1.925 69.5 2.61 - -
Random 66.5 3.32 64.5 3.415 67.0 2.925 73.5 2.265 57.5 4.35 - -

Six vehicles
Learned 74 2.54 67.5 3.145 70.5 2.46 66.5 3.5 63 3.635 62 3.575
Random 66 3.77 56 4.58 62 4.335 61.5 4.285 55 4.575 58 4.425

Table 5.1: In this table, we summarize the success rate ps and the average number of collisions Ncol

where speed v = 6 and danger zone radius Rc = 4 when using the learned initialization strategy
versus using the baseline randomized initialization strategy. Our method outperforms the baseline
in safety performance for both metrics across all scenarios.

Nfixed = 0 Nfixed = 1 Nfixed = 2 Nfixed = 3 Nfixed = 4 Nfixed = 5

ps Ncol ps Ncol ps Ncol ps Ncol ps Ncol ps Ncol

Four vehicles
Learned 91 0.785 90 0.875 80.5 2.715 80 1.68 - - - -
Random 68 3.305 66.5 3.56 73 2.88 71 2.81 - - - -

Five vehicles
Learned 80 2.315 77.5 2.79 71 4.01 74 3.39 71 3.51 - -
Random 65 4.55 62 5.39 53.5 8.2 58.5 5.77 61 4.94 - -

Six vehicles
Learned 65.5 4.065 64 6.375 61.5 5.36 64 5.11 59 5.805 57.5 6.31
Random 57.5 6.075 46.5 8.69 52 8.27 52 7.30 49 7.25 53.5 7.70

Table 5.2: This table summarizes the success rate ps and the average number of collisions Ncol

where speed v = 5 and danger zone radius Rc = 5. Similarly, we see that our proposed learning-
based strategy outperforms the baseline in terms of safety performance across all scenarios.

During the training phase, all models take less than 30 seconds to complete training.
During the online phase where we figure out the new initial states based on the learned
model and the original proposed initial states, it takes on average 0.30 seconds total to
compute the optimal sets of initial states for all Nruns = 200 runs in parallel for a given
(v, Rc, N,Nfixed) setting with our proposed strategy. Thus our proposed method can be very
e�ciently applied as we encounter new scenes online.
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5.5 Conclusion

In this paper, we proposed a novel approach for enhancing the safety performance of least-
restrictive safety-aware algorithms for multiple vehicles in unstructured settings and showed
that it is possible to use machine learning to make minor modifications to initial states
of vehicles in the environment and improve, sometimes quite substantially, the safety of
the system compared to a randomized initialization approach. This is a promising step
towards making least-restrictive safety algorithms such as those enabled by reachability more
practically useful in unstructured scenarios for multi-vehicle systems that safety cannot be
guaranteed for with the algorithms.
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Part III

Safety under Uncertain Dynamics



56

Chapter 6

A Framework for Online Updates to
Safe Sets for Uncertain Dynamics

The research presented in this chapter was originally published in the paper A Framework for
Online Updates to Safe Sets for Uncertain Dynamics in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Oct 2020 [69].

6.1 Introduction

Machine learning can help robots adapt to unseen scenarios, but the fear of damaging the
robots or their environment hinders its deployment in the real world. Combining learning
algorithms with control theoretic tools, developed to ensure the safety of dynamical systems,
can help with this. In our work, we build on Hamilton-Jacobi (HJ) reachability [63], a
control-theoretic framework that o↵ers safety guarantees for dynamical systems. Intuitively,
HJ reachability computes safe sets and an action policy that can together ensure that the
system does not enter a danger zone. Once safe sets are computed, they can be used in
combination with learning algorithms to build frameworks that can be guaranteed to be
safe, while achieving a given task.

However, computation of safe sets su↵ers from the curse of dimensionality, due to dis-
cretization of the state space. [68] reported taking 3 days for safe set computation on a
4-dimensional system and exact computation of reachability is intractable for systems with
more than 5 dimensions. As a result, the optimal safe policy and safe sets are often com-
puted o✏ine for low-dimensional systems, assuming perfect knowledge of the dynamics. In
the presence of uncertainties, however, the pre-computed safe sets might not be valid, and
can lead to dangerous situations on the robot. This makes it important to update safe sets
based on the dynamics of the robot online. [42] addresses this for low-dimensional systems.

In this work, we present a least-restrictive safety framework that can be used in combina-
tion with any type of controllers under uncertain dynamics by updating safe sets online for
complex high-dimensional dynamical systems. Specifically, we focus on scenarios where the
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Figure 6.1: An outline of our approach. O✏ine, we learn a safe policy ⇡(x, p), which depends
on state x and dynamics parameters p, by randomly sampling di↵erent dynamics parameters p.
Online, we roll out ⇡(x, µ̂) using the current estimate of the dynamics, and use it to determine the
safety value at current state x. If the state is deemed safe, a task policy is applied, and otherwise
a safe policy is applied. Finally, our estimate of the dynamics parameters P̂ and µ̂ are updated
based on the new data.

dynamics are inaccurate due to uncertainty in rigid body parameters such as mass, inertia,
and center of mass of links. This is a common source of uncertainty in robots, such as ma-
nipulators, but the process of identifying the uncertain parameters with learning typically
does not take safety into account. In our proposed framework, we learn a safe policy o✏ine
by considering a distribution of dynamics for high-dimensional systems using reinforcement
learning (RL) by building on [43]. Online, we start with an initial belief of the distribution
of the dynamics parameters, update it as we gather more data, and re-compute the safe set
by forward simulating the safe policy based on the new belief of the dynamics parameters.
As a result, the robot is not overly conservative during online execution, while maintaining
a high level of safety. Figure 6.1 provides a high level overview of our approach.

The central ideas of our framework can also be directly used with learning approaches with
optimization components, like model-based RL [74]. We demonstrate incorporating safety
derived from our framework in a model-based RL setting, by adding a safety constraint to
the optimization problem, thereby proposing a safe model-based RL setup where the task
policy takes safety into account.

Our work is a step towards online updates and sim-to-real transfer of safe sets for high-
dimensional systems. We test the e�cacy of our proposed framework at avoiding obstacles
during random exploration on an 8-dimensional quadrotor and a 3-link manipulator (6-
dimensional state space). In our experiments, our approach is able to avoid obstacles reliably,
as compared to using a nominal safe set, especially for complex dynamics such as the 3-link
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manipulator in challenging scenarios. While our work is shown only in simulation, we emulate
sim-to-real di↵erences by perturbing dynamics parameters and adding unmodeled noise. We
also test incorporating safe sets learned from our framework in a model-based RL setting
on a 2-link manipulator, and show that this results in safer learning when completing a
task, compared with standard model-based RL. Our results showcase the robustness of our
framework and open promising applications to robotic systems in the future.

6.2 Related Work

Safety of dynamical systems has been widely studied in control literature, and used in com-
bination with learning approaches to ensure or encourage safe learning. Constrained op-
timization, for example with barrier functions, can be used to certify probabilistic safety
[81] or guide exploration to safe regions [28]. However, barrier function methods are gen-
erally limited to control-a�ne systems and the uncertainty considered in these papers are
input-independent. MPC approaches have also been proposed to address safety [80], [56].
However, safety computations in these works are either applied to linear systems or local
linear approximations of nonlinear systems. In comparison, our proposed approach can be
applied to general nonlinear dynamical systems directly and the uncertainty considered in
our proposed framework can be input-dependent.

Works such as [16, 29, 30] use Lyapunov functions to guarantee or encourage safety during
learning. However, [16] requires a Lyapunov function for a given system, [29] is limited to
discrete action spaces, and [30] uses approximations in its proposed Lyapunov constraints
when addressing safety. This can limit their applicability to the safety of complex high-
dimensional complex robots.

Our paper focuses on addressing safety with HJ reachability [63], which is a control-
theoretic framework that provides safety guarantees for general dynamical systems. There
has been a lot of work on guaranteeing safety of single-agent and multi-agent systems using
reachability under varying assumptions on the dynamics and agent formation, such as [27,
34, 24, 12]. [11] provides an overview.

In this work, we build on [43] for approximating the best possible control with reinforce-
ment learning (RL), which typically adopts a discrete-time formulation. Hence in this paper,
we work with the discrete-time formulation of reachability where in the infinite-horizon sce-
nario, the value function V (x) is defined as

V (x) = min

⇢
l(x),max

u2U
V (x+ f(x, u)�t)

�
.

In practice, due to errors introduced by discretization, it is common to introduce a safety
level ✏ > 0 such that the safe set is defined as K = {x : V (x) > ✏} in order to ensure safety.
We adopt this convention in this paper.
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6.2.1 Learning to approximate safe sets from HJ reachability

It is intractable to compute exact safe sets for dynamical systems with more than five states,
due to discretization of the state space during computation [62], and the resulting curse
of dimensionality. As a result, there have been some works on approximating safe sets for
high-dimensional problems.

[68] proposes to use function approximators to represent the optimal safe policy for
control-a�ne systems, which in turn generates safe sets. [43] proposes a time-discounted
Safety Bellman Equation that adapts the standard dynamic programming backup to induce
a contraction mapping in the space of value functions. As a result, RL algorithms designed
for temporal di↵erence learning can now be used to learn safe sets for single-player systems.
Note that there exists a 2-player formulation of reachability [63] where bounded disturbance
is considered. However, no e↵ective approach has been proposed for approximating two-
player reachability for general high dimensional systems.

In practice, we found that the method proposed by [43] learns policies for complicated
or high dimensional systems more reliably. However, it assumes perfect knowledge of the
dynamics and hence does not account for discrepancies between o✏ine training and online
environment, which can cause the robot to think it’s safe while it’s not. We adapt this
approach to learn a safe policy under dynamics uncertainty. Next, we use the learned safe
policy to compute safe sets online, while updating the estimate of the dynamics from data.

6.2.2 Online updates to safe sets from HJ reachability in
robotics problems

In this section, we give an overview of papers that address online updates to safe sets in
the presence of uncertainties in dynamics or the environment. [10] proposes to use local
updates and warm-start to generate safe sets online, as static obstacles in the environment
are detected. However, the proposed methods still rely on discretization of the state space
and is hence intractable for high-dimensional systems.

[42] uses a Gaussian process (GP) to model uncertainty in the dynamics of the system,
followed by applying standard HJ reachability to compute safe sets based on the estimated
dynamics. However, this also relies on online re-computation of safe sets through discretiza-
tion of the state space, making it inapplicable to high-dimensional systems. Moreover, the
uncertainty considered in this work is input-independent, which is easily violated for common
platforms such as robot manipulators.

In contrast, our online update framework can be used on high-dimensional problems,
and does not assume input-independent uncertainty. We assume inaccuracies in dynamics
parameters of a robot and aim to identify these parameters online, while maintaining safety.
This is relevant for tasks such as lifting heavy objects, where the added mass can a↵ect a
manipulator’s dynamics.
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Algorithm 6.1: Online loop of proposed framework

Given : safe policy ⇡(x, p), P̂
0

, µ̂
0

, x
0

, T , ✏, t = 0
1 while t < T do
2 st = V

ˆPt
(xt;T ); // safety value based on P̂t, µ̂t

3 if st > ✏ then
4 ut = any action (can be an action from a learning controller or a random

action)
5 else
6 ut = ⇡(xt, µ̂t)
7 end
8 xt+1

= f(xt, ut; ptrue) ;

9 Update belief of dynamics parameters with (xt, ut, xt+1

) and compute P̂t+1

, µ̂t+1

;
10 t t+ 1 ;
11 end

6.3 Framework for Safe Set Computations for
Uncertain Dynamics

In this section, we present our framework for o✏ine training and online updates to safe
sets, outlined in Figure 6.1. During the o✏ine phase, we train a safe policy ⇡(x, p), which
takes the state x and dynamics parameters p as input. During the online phase, we forward
simulate the safe policy ⇡(x, µ̂) from the current state x, using our current best estimate of
the dynamics parameters µ̂. This computes an approximate safety value V (x) based on our
belief about the dynamics distribution. If V (x) > ✏, the robot is in the safe set, and can
apply any task-specific actions. Otherwise, the robot applies the safe action derived from
the safe policy to avoid entering the danger zone. The resulting state transition on the robot
is then used to update the belief about dynamics parameters p.

6.3.1 O✏ine computation of safe policy

During o✏ine computation, we use reinforcement learning to train a safe policy ⇡(x, p)
which is a function of both the state x and the dynamics parameters p. We assume that we
know where the danger zone Z is during o✏ine training. Every N episodes, we sample new
dynamics parameters p and use them to collect data to train ⇡(x, p). This data is generated
by repeatedly sampling the “true” dynamics parameters from the set P = [p � dp, p + dp]
for some positive dp for the dynamics simulator. For a fixed p, the safe policy ⇡(x, p) is thus
trained on data from a distribution of dynamics, with dynamics parameters drawn from P ,
making it robust to slight variance in the estimated dynamics. The value of dp is determined
based on the predicted uncertainty on the dynamics parameters during test time.

To train ⇡(x, p), we adapt the update rule from [43] to suit our purposes and use RL
algorithms such as Soft Actor-Critic [50] or Q-learning to train the safe policy ⇡(x, p). The
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update rule of the Q-function Q(x, p, u) we use during RL training is

Q(x, p, u) (1� �)l(x)+
�min

⇢
l(x),max

u02U
Q(x+ f(x, u; p)�t, p, u0)

�
,

where f(x, u; p) is the dynamics of the robot with dynamics parameters p and � is the
discount factor.

6.3.2 Online updates to safe set

Given the safe policy ⇡(x, p) learned o✏ine, we can generate safe sets online based on our
estimate of the distribution of the dynamics parameters p. We iteratively perform the fol-
lowing steps at every time step t: (1) Compute the safety value V

ˆPt
(xt) of the current state

xt based on the current estimate of the dynamics parameters set P̂t. (2) Execute an action
on the robot based on whether the safety value is above the safety threshold ✏. (3) Update
the estimate of the distribution of p using the new data gathered.

Algorithm 6.1 summarizes our framework for the online phase. We describe the above
three steps during the online phase in detail below.

6.3.2.1 Computing the safe set online

At any given time step t, we maintain an estimate of P̂t, a set that dynamics parameters
p fall in with some high probability c. We also maintain a current best estimate µ̂t of the
parameters. For example, for a one-dimensional p, if we estimate our belief of p with a
Gaussian distribution p ⇠ N (µ̂t, �̂2

t ) and c = 0.95, then P̂t = [µ̂t � 1.96�̂t, µ̂t + 1.96�̂t]. P̂t

can also be a discrete set if the dynamics parameters are drawn from a discrete distribution.
The safety value at any state x at time t for a fixed time horizon T is computed as follows:

V
ˆPt
(x;T ) = min

p2 ˆPt

V (x; p, T ) (6.1)

where V (x; p, T ) is the estimated safety value for dynamics parameter p for time horizon
T . To compute V (x; p, T ), we roll out the safe policy ⇡(x, µ̂t) from state x for horizon T .

By denoting the resulting trajectory from the roll-out as ⇠
⇡µ̂t

,T
x,p (·), we compute V (x; p, T ) as

follows

V (x; p, T ) = min
t02{t,t+1,...,t+T}

l
⇣
⇠
⇡µ̂t

,T
x,p (t0)

⌘
. (6.2)

Intuitively, V (x; p, T ) is the minimum distance between the robot and the danger zone, when
executing the policy ⇡(x, µ̂t), if the true dynamics parameters were p, for a horizon of T . At
any time t, we can compute the safety values at all states x in the space and form a safe set
based on this. However, in practice, we only need the safety value at the current state xt to
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determine the safety of the robot. By taking the minimum of V (xt; p, T ) over all possible
dynamics parameters in P̂t, the robot uses the safe policy if any dynamics parameter in P̂t

results in V (xt; p, T ) less than or equal to the safety threshold ✏.
As described in Equation 6.1, to compute the safety value V

ˆPt
(xt;T ) at xt, we need to

forward simulate the dynamics for all p 2 P̂t. When P̂t is a continuous set, in practice, we
discretize finely over P̂t and simulate the dynamics with each of the discretized dynamics
parameters in P̂t in parallel.

Given our proposed approach, we now formally present a proof showing that the safe sets
computed using our proposed framework are conservative under specific conditions.

Theorem 4. Assume P̂t is a discrete set. For any time t, state x and horizon T , if the true
dynamics parameter ptrue 2 P̂t, then V

ˆPt
(x;T )  V ?(x; ptrue, T ) where V ?(x; ptrue, T ) is the

true safety value with ptrue as the true dynamics parameters.

Proof. First, we remind the reader that V (x; p, T ) is the safety value at x derived from using
policy ⇡(x, µ̂t) as presented in Equation 6.2. Now we know that for any p, V (x; p, T ) 
V ?(x; p, T ) because ⇡(x, µ̂) is at most as good as the true optimal policy ⇡?(x, p). Hence,
V

ˆPt
(x;T ) = min

p2 ˆPt

V (x; p, T )  min
p2 ˆPt

V ?(x; p, T )  V ?(x; ptrue, T ), where the second inequality

holds because ptrue 2 P̂t under our assumption.

This implies that our framework results in a conservative estimate of the true safe set
under the aforementioned assumptions. For cases where dynamics parameters are drawn
from a continuous set, we discretize the dynamics parameters set P̂t during forward roll-out.
As a result, we lose guaranteed conservatism, but we still demonstrate empirically that using
our proposed approach is safer than using the nominal safe sets.

6.3.2.2 Determining the action to take

In the case of HJ reachability with continuous dynamics [63], as long as the optimal safe
control policy is applied immediately when the safety value is smaller or equal ✏, safety of
the robot is guaranteed. Although we are working with discrete dynamics, this decision rule
still provides a good criterion for selecting whether or not to execute the safe policy. When
the safety value is above ✏, i.e., V

ˆPt
(xt;T ) > ✏, the robot is determined safe and it can apply

any action, such as an action determined by any learning controller. When V
ˆPt
(xt;T )  ✏,

the robot is deemed unsafe and it applies the action determined by the safe policy. In this
sense, we have a least-restrictive safety framework such that the robot is free to perform any
action until it is close to the unsafe set, at which point, the safety controller takes over.

6.3.2.3 Updating dynamics from data

To update our belief about the dynamics parameters p, we can use any system identification
approach that gives us a probabilistic estimate of p. Identifying dynamics parameters for
robots is widely studied in robotics, such as in [7], [77]. In the experiments for this paper,
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we model the uncertain dynamics parameters as a Gaussian distribution N (µ,⌃) where µ
and ⌃ are the mean and covariance matrix of the Gaussian respectively. We use Bayesian
Linear Regression (BLR) to update our belief of µ and ⌃, and in turn use them to update µ̂t

and P̂t. Interested readers can consult Chapter 3 in [17] for details about Bayesian Linear
Regression. This gives us an online and continual way of learning dynamics parameters that
can easily generalize to tasks such as picking and placing heavy objects. In cases where the
uncertain parameters are not linear in the dynamics, we can use more advanced techniques
for parameter identification, such as [77].

6.3.3 Safe Model-based Reinforcement Learning

Our approach can easily be used in combination with model-based learning approaches, like
model-based RL. We add a safety constraint to the model-based RL optimization, which
renders the search for the optimal policy to be biased towards safety. Given current state
xt, the current best estimate µ̂t of the parameters and the set P̂t that dynamics parameters
fall in with high probability, the safe model-based RL optimization problem becomes

ut:t+H�1

= arg minut:t+H�1

t+H�1X

h=t

c(xh, uh) (6.3)

s.t. xh+1

= f(xh, uh; µ̂t) (6.4)

V
ˆPt
(xh+1

;T ) > ✏ 8h 2 {t, . . . , t+H � 1} (6.5)

where f(xh, uh; µ̂t) is the discrete dynamics function assuming the dynamics paramters are
µ̂t and cost c(xh, uh) is determined based on the task, such as getting the robot to a goal.
After ut is applied on the robot, the (state, action, next state) transition is used to update
our belief about the dynamics. The current state is then updated to the new state, and the
process repeats. If no feasible action sequence can be found, the action ⇡(xt, µ̂t) from the safe
policy is applied. [55] proposes a related setup for model-predictive control, with ellipsoidal
safe sets computed with linearized dynamics. In contrast, our approach incorporates safety
directly using the original dynamics.

Note that the planning horizon H is typically chosen to be much shorter than the safety
horizon T . This is because increasing H increases the dimensionality of the optimization
variables, actions ut:t+H�1

. This can lead to poorer solutions or high computation time when
solving the optimization problem for a large H. On the other hand, T does not a↵ect the
optimization dimension, and can be much larger than H. This ensures that even though
our model-based RL algorithm has limited foresight for task planning, the safety constraint
enforces a longer horizon plan for safety. In our experiments, we use random sampling in
the space of actions to solve the optimization problem.
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6.4 Experiments

In this section, we present experimental results on 2-link and 3-link manipulators (4D and
6D problems), and an 8D quadrotor system. We perform extensive experiments to compare
performance of our framework against applying safe sets computed with inaccurate nomi-
nal dynamics. Furthermore we present results on the benefit of using MBRL with safety
constraints derived from our framework, versus using MBRL with no safety constraints.

6.4.1 Comparison between our proposed framework and using
nominal safe sets

We experiment with two di↵erent scenarios, random and challenging. For the random sce-
nario, we initialize the robot randomly at states that are safe; for the challenging scenario,
we initialize the robot at safe states closer to the obstacles. We observe that the robot rarely
gets close to the unsafe states with random initialization. The initialization in the challenging
scenario increases the frequency the robot gets close to the unsafe states. In all trials across
di↵erent scenarios and methods, the nominal dynamics parameter is always p̂

0

= 2. For the
random scenario, the true dynamics is sampled from the set ptrue ⇠ uniform[p̂

0

�2�, p̂
0

+2�]
and for the di�cult scenario, the true dynamics is sampled from ptrue ⇠ uniform[p̂

0

�2�, p̂
0

],
for � = 0.1, 0.3. In general, our method shines in conditions that are tough. For safety, it
is important to avoid obstacles in all scenarios, and the challenging scenario showcases the
robustness of our approach versus using the nominal safe set.

We simulate 200 trials for various dynamical systems. Each trial lasts for T = 100 time
steps. A trial is successful if the robot does not hit any obstacle throughout the entire
trial and unsuccessful otherwise. In each trial, we apply a uniform random action, if it
is determined that the robot is safe, and apply the safe policy otherwise. We compare the
success rates of our framework with that of using nominal safe sets with inaccurate dynamics.
We use Soft Actor-Critic [50] with implementation from [84] to train the safe policy ⇡(x, p)
for all dynamical systems.

Both methods start from the same initial safe condition. To emulate sim-to-real di↵er-
ences, we add a random Gaussian noise with zero mean and standard deviation of 0.1 to the
control inputs for all systems. Note that the noise added to the control input does not satisfy
the assumptions of BLR (Section 6.3.2.3), but our proposed method consistently outperforms
the baseline in challenging scenarios. In addition, for the 3-link manipulator, we also per-
form an extensive experiment where our framework assumes a damping coe�cient di↵erent
from the true damping coe�cient, without updating our belief about this coe�cient. This
further shows the robustness of our approach in situations that violate the assumptions of
our proposed framework.

The complete experimental results are summarized in Table 6.1.
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6.4.1.1 2-link manipulator

We consider the task of safely controlling a 2-link manipulator in the x-y plane. In general,
the dynamics of a manipulator are:

M(q)q̈ + C(q, q̇)q̇ = u. (6.6)

For a 2-link manipulator, q = [✓
1

, ✓
2

] are the joint angles of the two links, M(q) is the inertia
matrix, and C(q, q̇) is the Coriolis matrix. The full state of the system is 4-dimensional,
x = [✓

1

, ✓
2

, ✓̇
1

, ✓̇
2

]. u = [⌧
1

, ⌧
2

] is the 2-dimensional control input, which is constrained
to |⌧

1

| , |⌧
2

|  1. While we did not consider gravity in the dynamics in Equation 6.6, these
dynamics generalize to manipulators with manufacturer-provided gravity compensation, such
as Kuka LBR [57]. We use simplified dynamics with masses at the end of each link (each of
length 1.0m) with the mass at the end of the first link being m

1

=1.0 kg. The uncertainty
in the dynamics comes from the uncertainty in the mass at the end e↵ector p = m

2

. In
all experiments for manipulators, the danger zone in the environment is a square obstacle
centered at (x, y) = (0, 1.5)m with edge length 1.0m.

The initialization of the states is described as follows: where each variable is sampled

[✓
1

, ✓
2

] [✓̇
1

, ✓̇
2

]

Random [0, 0] + xrand [0, 0] + dxrand

Challenging [⇡
7

, ⇡
6

] + xchal [0.3, 0.4] + dxchal

from uniform distribution within the range: xrand : [�⇡, ⇡] rad, dxrand : [�0.5, 0.5]rad/s,
xchal : [�0.5, 0.5] rad, and dxchal : [�0.5, 0.5]rad/s. Figure 6.2 visualizes the state that we
sample around for the challenging scenario. Note that if the sampled initial state is unsafe,
we re-sample until the initial state is inside the safe set.

As summarized in Table 6.1, in the random scenario, the success rates for our proposed
framework and using the nominal safe sets are similar. However, in the challenging scenario
with � = 0.3, our approach successfully avoids the obstacle with a 99.5% success rate,
while using the nominal safe set only succeeds 85% of the time. This shows that even on
a 4-dimensional system, inaccurate dynamics can adversely a↵ect the performance of safety
approaches, especially in challenging scenarios. In such a case, we see that online updates
to safe sets can considerably improve the rate of success for avoiding obstacles.

6.4.1.2 3-link manipulator

The dynamics of a 3-link manipulator can also be described by Equation 6.6. This makes the
state space 6-dimensional and action space 3-dimensional, adding computational complexity.
The full state is x = [✓

1

, ✓
2

, ✓
3

, ✓̇
1

, ✓̇
2

, ✓̇
3

]. u = [⌧
1

, ⌧
2

, ⌧
3

] is the torque, which is constrained
by |⌧

1

| |⌧
2

| , |⌧
3

|  1. Note that computing the safe sets for this 6-dimensional system is
intractable with standard reachability [63]. Similar to the 2-link manipulator, we consider a
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Figure 6.2: Environments and the challenging initial conditions that we randomize around for the
2-link and 3-link manipulators experiments. The arrows represent the velocities at the joints and
the end e↵ectors. The red squares represent the obstacles.

3-link manipulator with mass at the end of each link where the length of each link is 1.0m.
We denote the mass at the end of first, second, and third link as m

1

, m
2

, and m
3

where
m

1

=1.0 kg, m
2

=2.0 kg. The uncertainty in the dynamics comes from the uncertainty in
the mass at the end e↵ector p = m

3

.
The initialization of the states is described as follows: where each variable is sampled

[✓
1

, ✓
2

, ✓
3

] [✓̇
1

, ✓̇
2

, ✓̇
3

]

Random [0, 0, 0] + xrand [0, 0, 0]+rand

Challenging [⇡
7

, ⇡
6

, ⇡
5

] + xchal [0.2, 0.2, 0.2] + dxchal

from the uniform distribution within the range: xrand : [�⇡, ⇡] rad, dxrand : [�0.5, 0.5] rad/s,
xchal : [�0.2, 0.2] rad, and dxchal : [�0.2, 0.2] rad/s. Figure 6.2 visualizes the state that we
sample around for the challenging scenario

In the random scenario, we observe comparable performance between our framework and
the baseline, with ours succeeding 96.5% of the time and the baseline succeeding 91.5%
of the time for � = 0.3. Our framework shines in this complicated dynamical systems in
di�cult scenarios, with the success rate being 53.0% with our framework and 35.5% with the
baseline for � = 0.1. The performance of both approaches gets worse as the complexity of
the dynamics increase, but the nominal safe sets are more brittle than our framework. This
highlights the need for robust, reliable, and online updated safe sets, especially for complex
high-dimensional systems.

6.4.1.3 3-link damped manipulator

We also consider a damped variant of a 3-link manipulator, whose dynamics are given by

M(q)q̈ + C(q, q̇)q̇ +Bq̇ = u. (6.7)

Here, B is the damping coe�cient and the rest of the notations are identical to those of
Equation 6.6. The experimental settings are identical to those of the non-damped version
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described previously, except for the added damping. The uncertainty in the dynamics arises
from the mass p = m

3

at the end e↵ector, as well as the damping coe�cient B. To emulate
unmodelled sim-to-real di↵erences, we do not update our belief about the damping coe�cient
B online. We only update our belief about m

3

online.
For all experiments, we fix the inaccurate damping coe�cient to be 0.4. The true damping

coe�cients are sampled from a uniform distribution within the ranges [0.3, 0.5] and [0.3, 0.4]
for the random and challenging scenarios respectively. Our experiments show that even with
such unmodelled disturbances, with our approach, the robot avoids obstacles 87% of the
time with � = 0.3 in the challenging scenario. On the other hand, with the nominal safe
set, the robot only avoids the obstacle 64.5% of the time. This shows that our framework
generates robust safe sets that generalize to unmodelled disturbances, enabling the robot
to avoid the danger zone reliably. Note that the success rates are higher than those from
3-link manipulator without damping in the previous section because adding damping makes
it easier to learn a reliable safe policy o✏ine.

6.4.1.4 Quadrotor (8-dimensional system)

We also consider an 8-dimensional quadrotor dynamical system for our experiments. The
states of the quadrotor are [x, y, z, vx, vy, vz, ✓,�] where x, y, z are the positions in the x-y-z
space, vx, vy, vz are the velocities, and ✓,� are the roll and yaw angles. Denoting gravity as
g, the dynamics are:

q̇x = vx, q̇y = vy, q̇z = vz (6.8)

v̇x = gtan✓, v̇y = �gtan� (6.9)

v̇z =
uz

m
� g, ✓̇ =

u✓

m
, �̇ =

u�

m
. (6.10)

The input to the systems are forces u✓, u�, uz that directly a↵ect the vertical and angular
accelerations of the quadrotor. The uncertainty in the dynamics arises from uncertainty in
the mass m. The bounds on the control are: |u✓| , |u�|  0.1 and uz 2 [g� 2.0, g + 2.0]. The
obstacle is a cube centered at [qx, qy, qz] = [0, 0, 0] with edge length 1.0m.

The initialization of the states is described as follows: where xrand and dxrand are sampled

[qx, qy, qz] [vx, vy, vz]

Random [0, 0, 0] + xrand [0, 0, 0] + dxrand

Challenging qx = 0, qy = 0, qz = xchal [0, 0, 0] + dxchal

from the uniform distribution within the range: xrand : [�2, 2]m, dxrand : [�0.2, 0.2]m/s,
xchal : [0.55, 0.6]m, and dxchal : [�0.1, 0]m/s. For both random and challenging scenarios,
the initial [✓,�] is always set to [0, 0]rad.

Even though the quadrotor has higher dimensions than the manipulators, it has simpler
dynamics, making it easier to learn a good safe policy. Both using the nominal safe sets and
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2-link manipulator (4D) 3-link manipulator (6D) 3-link-damped (6D) Quadrotor (8D)

� = 0.1 � = 0.3 � = 0.1 � = 0.3 � = 0.1 � = 0.3 � = 0.1 � = 0.3

Random
Nominal (Baseline) 99.5 97 93.5 91.5 97 98.5 100 99.5

Our framework 100 98.5 93.5 96.5 98.5 97 100 98.5

Challenging
Nominal (Baseline) 93 85 35.5 27.5 80.5 64.5 89.5 85

Our framework 99 99.5 53 39.5 93.5 87 93.5 95

Table 6.1: In this table, we show comparisons of success rates between using our framework and
the nominal safe sets. For the random scenario, our framework performs slightly better than the
baseline. This is due to the fact that with the initialization scheme in the random scenario, the
robot rarely gets to a situation where it’s close to being unsafe. However, to test the robustness
of our approach and the baseline, we consider initialization that is challenging. We can clearly
see the performance benefit of our framework in the challenging scenario, especially for systems
with complicated dynamics such as the 3-link robot arm. Here � determines the range of values
we sample the true dynamics parameter ptrue from and is explained in detail in the text (Section
6.4.1).

2-link 3-link Quadrotor

Compute time 0.17 s 0.25 s 0.10 s

Table 6.2: Average computation time for updating the dynamics and re-computing safety values at
each time step. The compute time for the quadrotor is smaller because even though the state of the
quadrotor has a larger dimension, its dynamics are much simpler than those of the manipulators.

our framework result in close to 100% success rates for avoiding the obstacle for the random
scenario. For the challenging scenario, we amplified the di�culty by applying a downward
uz when safe, instead of a random action. In this setting with � = 0.3, our framework has
a success rate of 95% while the baseline has a success rate of 85%, again demonstrating the
robustness of our framework compared to the nominal safe sets.

The compute time online for all dynamical systems considered is shown in Table 6.2,
demonstrating that our framework is fast at updating dynamics and safe sets.

6.4.2 Experiments with safe model-based RL

In this section, we present experimental results on applying our proposed framework for
enhancing safety under uncertain dynamics to model-based RL as described in Section 6.3.3.
We consider a 2-link manipulator identical to that used in the previous experiment 6.4.1.1
and the uncertainty similarly comes from the mass m

2

at the end e↵ector. The objective
is to get the end-e↵ector of the manipulator to some target location while avoid hitting the
obstacle.

We compare safe MBRL with standard MBRL without safety. Both approaches start
at the same initial configuration, [✓
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With safety Without safety

Completion rate 93 77
Collision rate 4 21

Table 6.3: This table summarizes our large scale experiment results for incorporating safety into
MBRL. Completion rate indicates the percentage of trials the robot reaches the goal without hitting
the obstacle within the maximum time steps allowed for task completion. Collision rate refers to
the percentage of trials the robot hits the obstacle. We can see that incorporating safety in MBRL
increases the success rate and decreases the collision rate considerably.

centered at [x, y] = [0, 1.5] with side length 1.0 and the goal is a circle centered at [x, y] =
[1.5, 1.0] with radius 0.03. Figure 6.3 demonstrates qualitatively the benefit of incorporating
safety in MBRL. When considering safety, the 2-link manipulator learns to apply actions that
avoid the obstacle (red) while reaching the goal (green). On the other hand, with standard
MBRL without safety, the robot hits the obstacle while trying to get to the goal.

To compare safe MBRL with standard MBRL quantitatively, we also ran an experiment
with 100 randomized runs to evaluate the e↵ect of incorporating safety into MBRL. For each
trial, the obstacle location and the initial state are identical to those presented in Figure 6.3
and the goal location is randomized for each run. We set the maximum time steps allowed
to reach the goal for both methods to be 300, with integration time-step �t = 0.1. For each
run, both methods (with and without safety constraints) start with the same initial condition
and have the same goal. A trial terminates early when the robot hits the obstacle or reaches
the goal. The true mass at the end e↵ector is p = m

2

= 2.4. Note that both approaches
update the dynamics parameter using BLR, described in Section 6.3.2.3, but MBRL with
safety explicitly reasons about safety using our framework when solving the optimization
problem 6.3. For both approaches, we start with an initial belief of the uncertain dynamics
parameter p as a Gaussian distribution with mean 2.2 and standard deviation 0.1 and update
the belief over time as MBRL runs.

The results are summarized in table 6.3. Completion rate indicates the percentage of trials
in which the robot reaches the goal without hitting the obstacle, and collision rate refers to
the percentage of trials where the robot hits the obstacle. We can see that by incorporating
safety in MBRL, the collision rate is 4% compared with 21% when not incorporating safety.
Hence using MBRL with safety derived from our proposed framework leads to a much safer
learning process.

6.5 Conclusion and Future Work

In this work, we present a framework for o✏ine training and online updates to safe sets in
the context of Hamilton-Jacobi reachability. We start by learning a robust safe policy by
considering a distribution over dynamics. This is then used online to generate safe sets by
rolling out the safe policy from states and current estimate of the dynamics. Simultaneously,



CHAPTER 6. A FRAMEWORK FOR ONLINE UPDATES TO SAFE SETS FOR
UNCERTAIN DYNAMICS 70

(a) MBRL with safety (b) MBRL without safety

Figure 6.3: With the same initial configuration (grey), MBRL with safety learns to reach the goal
(green) without hitting the obstacle (red) while MBRL without safety hits the obstacle. The blue
curves illustrate the trajectories of the end e↵ector. Without safety, the robot starts out speeding
towards the goal greedily, turns around, and speeds to the goal again. Due to torque saturation, it
misses the goal then ends up hitting the obstacle. On the other hand, with safe MBRL, the robot
moves slowly and safely towards the goal.

we collect dynamics data to update our belief about the dynamics parameters. This gives
rise to a safe learning framework that allows robots to learn about its dynamics and achieve
a task with reliable safety. Our framework generalizes to high-dimensional systems, such as
3-link manipulators and quadrotors, and reliably avoids obstacles in challenging scenarios
where using nominal safe sets might fail. In addition, we demonstrate that the central idea
of our framework can be used in combination with MBRL to have robots learn to accomplish
tasks safely.

While our experimental results demonstrate that our framework is robust to uncertainties
in dynamics, our experiments are conducted in simulation with added noise and unmodeled
inaccuracy in the dynamics parameters. The next step is to study this approach on a
real high-dimensional robot arm. In such cases, some of the modeling inaccuracy arises
from inertial parameters, but there may also be other sources of inaccuracy, such as state-
dependent friction coe�cient, which are not captured in our current setup. In the future,
we aim to develop safety approaches that consider more general dynamics uncertainty and
require less computation online.



71

Chapter 7

Conclusion

In this dissertation, we first proposed an approach to generate a probabilistic forward reach-
able set that characterizes the probabilities that the human vehicle will be in di↵erent regions
at each time step and, in the worst case, captures all possible states that the human can be
at in the next few time steps. Then we contributed two methods for multi-vehicle collision
avoidance, focusing on di↵erent aspects of the problem. We first proposed a cooperative
planning and control algorithm that guarantees safety for all vehicles while they complete
their tasks and this safety guarantee can be applied to any number of vehicles. Then we
investigated enhancing the safety performance of least-restrictive safety-aware algorithms
that don’t have safety guarantees for the multi-vehicle systems being considered. To this
end, we proposed a machine learning based approach that enhances the safety of the overall
multi-vehicle system by making minor modification to the initial states of vehicles. Finally,
we proposed an online framework that enables a high dimensional robot to learn about its
dynamics, accomplish a task, and update its safe sets online under uncertain dynamics. We
next outline a few future directions for robot safety in the pursuit of making robots more
autonomous and capable of making complex decisions by themselves.

Making accurate predictions of humans or human-controlled vehicles is a challenging task
but it will undoubtedly have a huge impact to the future of technology as we envision that
robots will be used to work around and assist humans. In Chapter 3, we introduced a way
to predict where the human may be in the next few time steps. In this work, the human
operator in the experiment is aware that the robot only focuses on getting towards its goal
and will not act di↵erently based on how the human vehicle avoids it. This algorithm is
primarily suitable for a second robot that aims to not collide with the human vehicle while
it’s avoiding the first robot as this eliminates considering the interaction e↵ect between the
first robot and the human vehicle, which may not reflect practical scenarios. As humans,
we sometimes make decisions base on how our decisions will influence others. Hence one
direction is to develop prediction strategies that take into account of the interaction e↵ect
between the two agents and construct probabilistic forward reachable sets based on game-
theoretic reasoning. Furthermore, there may be many robotic and human vehicles operating
close to each other at the same time. The heterogeneous multi-agent problem increases the
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complexity of the modeling and prediction problem quickly and is an important direction to
realize the potential of robotic vehicles navigating safely in complicated urban scenarios. It
would also be interesting to explore whether tools in reachability can be useful in prediction
of this type of setting.

How to ensure the safety when multiple robotic vehicles are in close proximity will remain
a highly important problem. Various assumptions are often made to make analyzing the
safety of multi-vehicle systems more manageable such as assuming all vehicles have a specific
form of dynamics, vehicles follow a certain formation, or vehicles have prior knowledge of how
other vehicles will act etc. Generally, there is a trade-o↵ between how few assumptions we
make towards the vehicle dynamics or their formation and how strong the safety guarantees
are. In Chapter 4, we proposed a way to guarantee safety for any number of vehicles by
dividing vehicles into clusters. Although the assumption we made is generally weaker than
other reachability-based methods for multi-agent safety, it would be beneficial to explore
ways that can relax the requirement of synchronous actions among vehicles in the same
cluster while still guaranteeing safety. Another potential direction is to investigate devising
collision avoidance algorithms based on reachability that can guarantee safety for a larger
number of vehicles in an completely unstructured setting compared to the current state-
of-the-art algorithm built on reachability. This can increase the e�ciency of our proposed
algorithm as there will be on average less number of vehicles in a given cluster, making the
time it takes for all vehicles to complete their objectives on average shorter.

Machine learning also has the potential to improve the safety of multi-vehicle systems. In
Chapter 5, we proposed a learning-based approach to improve the safety of least-restrictive
safety-aware algorithms by making minor adaptations to the original proposed initial states
of the vehicles. This works well for the Dubins car dynamics, and we hypothesize this
strategy should work well for most practical dynamical systems that this method aims to
be applied to as systems such as drones or cars are intuitive to control given the geometry
of where the robot is, its heading, and its target. However, it would be interesting to see
whether the proposed strategy can work well on more atypical dynamical systems that do
not exhibit such properties. Another possible direction is to explore ways to instead use
machine learning for parts of the decision making process, such as the cuto↵ threshold of
when safe control should be applied, of a least-restrictive safety-aware algorithm to improve
safety.

The interplay between machine learning and safety will become increasingly important
as the capability of using machine learning methods for robotic control enhances. Recently,
machine learning has enabled agents to perform impressive tasks such as achieving super-
human performance in simulated Atari games, navigating in cluttered environments through
visual inputs of the environment directly, and grasping objects of various shapes and forms
in an situation where the objects are cluttered in a cramped space. In Chapter 6, the
proposed online framework is a first step towards making robots safer by building safe sets
online during robot learning. The uncertainty considered in this work is limited compared to
the uncertainty that the current state-of-the-art machine learning-based methods for task-
oriented controllers can accomplish under. However, these methods typically do not take



CHAPTER 7. CONCLUSION 73

safety into account. Potential directions in this realm include generating safe sets online
when the uncertainty in the dynamics is more complicated such as when there are state-
dependent uncertainty such as frictions. Another line of work is to tackle safety problems
when the inputs are high-dimensional such as images, when inputs include measurement
from force sensors, or situations where the robotic tasks are contact-rich.
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