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IMPROVED BOUNDS FOR INCOHERENT MATRIX COMPLETION

Emaan Hariri
Computer Science Division
University of California, Berkeley
ehariri@berkeley.edu

ABSTRACT

In this report, we progress towards removing an extraneous condition imposed in previous sample
complexity results for matrix completion via nuclear norm minimization. We build upon the sample
complexity results of Candès and Recht (1), Candès and Tao (2), Gross (3), and Recht (4) which
employ a dual certificate construction that, with high probability, guarantees the optimality of nu-
clear norm minimization. The aforementioned authors all make two assumptions in their analysis
about the rank-𝑟 target matrix M ∈ R𝑛×𝑛 with singular value decomposition U𝚺V∗ which we wish
to recover. The first assumption, that M has coherence bounded by `0, was shown to be necessary
by Candès and Tao (2) and is preserved here. We aim, then, to remove the second assumption, that
entries of UV∗ are bounded in magnitude by `1

√
𝑟/𝑛, by improving on the analysis of Recht (4). In

particular, Recht (4) constructs the dual via an iterative process wherein the approximation error is
tracked using a residual matrix. Recht (4) ensures the maximum entry of the residuals drops ge-
ometrically. Here, we track individual matrix entries and their respective columns and rows much
more closely, rather than relying on a global bound. As a result, we demonstrate exact recovery of
matrices is possible with 𝑚 ≥ 𝑂 (`0𝑛𝑟

3/2𝛽 log2 𝑛) entries, with probability 1−𝑛−Ω(poly(𝛽)) for 𝛽 > 0
of our choosing. This represents an improvement by a factor of 𝑂 (`0

√
𝑟) from 𝑂 (`2

0𝑛𝑟
2𝛽 log2 𝑛),

the best possible result from Recht (4) when not relying on the bounded entry assumption.

1 INTRODUCTION

In the problem of matrix completion, we are given some incomplete sample Ω of 𝑚 = |Ω| entries taken uniformly
at random from some rank-𝑟 matrix M ∈ R𝑛×𝑛 and wish to reconstruct M exactly (and thus “complete” the matrix).
This problem is found in numerous contexts including global positioning (5), system detection (6), and collaborative
filtering and recommender systems (7). The Netflix problem, where we wish to complete some movie-ratings matrix
where the (𝑖, 𝑗)th entry is user 𝑖’s rating of movie 𝑗 , is perhaps the most famous application of matrix completion for
collaborative filtering.

The matrix M has 𝑂 (𝑛𝑟) degrees of freedom (or intrinsic dimension), giving us some hope of completing the matrix
without the need of all 𝑛2 entries, as would be needed for general matrices. The problem of low-rank matrix completion
finds application in numerous contexts and has parallels to the problem of compressed sensing. Under our low-rank
assumption on matrices, the problem of matrix completion can be addressed by applying rank minimization via the
program

minimize rank(X)
subject to 𝑋𝑖 𝑗 = 𝑀𝑖 𝑗 ∀(𝑖, 𝑗) ∈ Ω.

As with the problem of determining the sparsest solution to a system of linear equations, the problem of low-rank
matrix completion is NP-Hard, but has a variety of heuristics and relaxations which make it reasonable to approximate
in polynomial-time. We let 𝜎𝑖 (X) be the 𝑖th largest singular value of X and 𝜎(X) ∈ R𝑛 be a vector of these values.
Consider the nuclear norm of X, ∥X∥∗ =

∑𝑛
𝑖=1𝜎𝑖 (X) = ∥𝜎(M)∥1, and note rank(𝑋) = ∥𝜎(X)∥0. Fazel (8) showed

that nuclear norm is the convex envelope of rank, motivating the use of nuclear norm optimization as a the relaxation
of rank optimization to a convex setting as suggested by Fazel, et. al (9) and built upon by Recht, Fazel, and Parillo
(10). This relaxation can now be addressed in polynomial-time using semidefinite programming (SDP). In particular,
Candès and Recht (1) showed when 𝑚 ≥ 𝑂 (`0𝑛

1.25𝑟 log𝑛), where `0 is the coherence (defined below) of M, that, with
high probability, the solution to

minimize ∥X∥∗
subject to 𝑋𝑖 𝑗 = 𝑀𝑖 𝑗 ∀(𝑖, 𝑗) ∈ Ω

(1.1)
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is M! This is surprising because there is zero error in the recovery of M. This demands a formal definition of
coherence. We must consider matrix such as

M = ®𝑒1 ®𝑒∗3 =
[0 0 1
0 0 0
0 0 0

]
which clearly requires sampling all entries despite being rank-1; this motivates the following definition.

Definition 1.1. (Coherence) The coherence of the dimension-𝑟 subspace 𝑈 ⊆ R𝑛 with respect to the standard basis
{ ®𝑒𝑖}𝑖∈[𝑛] of R𝑛 is

`(𝑈) B max
1≤𝑖≤𝑛

𝑛

𝑟
∥𝑃𝑈 ®𝑒𝑖 ∥2

2

where 𝑃𝑈 : R𝑛 →𝑈 is the projection onto the subspace 𝑈.

Remark 1.2. When referring to the “coherence of matrix M” or using the notation `(M), this refers to the maximum
of the coherences of its row and columns spaces. Furthermore, the coherences of the orthogonal matrices U and
V refer to the coherences of the column spaces spanned by each matrix, respectively. Similarly, we let 𝑃U be the
projection onto the column space of U which we often use in place of 𝑃𝑈 . As 𝑃U = UU∗, we may also express
`(U) = 𝑛

𝑟
max1≤𝑖≤𝑛∥ ®𝑢𝑖 ∥2

2 where {®𝑢𝑖}𝑛𝑖=1 are the rows of U.

Notably, 1 ≤ `(M) ≤ 𝑛/𝑟, where M with `(M) = 𝑛/𝑟 is a maximally coherent matrix; in the case of the aforementioned
M = ®𝑒1 ®𝑒∗3, `(M) = 𝑛/𝑟 and M is thus maximally coherent. Naturally, it follows that our sample complexity bound for
the recovery of M must depend on `(M), motivating the first of the following assumptions made by Candès and Recht
(U𝚺V∗ is the compact SVD of M).

Assumption 1.3. (A0) U and V have coherence bounded by `0, or max{`(U), `(V)} ≤ `0.

Assumption 1.4. (A1) UV∗ has maximum entry bounded by `1
√
𝑟/𝑛, or ∥UV∗∥∞ ≤ `1

√
𝑟/𝑛.

In Corollary 2.6 we show that A0 immediately implies A1 with `1 = `0
√
𝑟. Furthermore, by A0 we may take w.l.o.g.

`(V) ≤ `(U), which we do in this report for simplicity.

Candès and Recht rely on the above assumptions in their construction of the dual Y which verifies that the minimizer
of 1.1 is indeed our desired M. Candès and Tao (2) improve Candès and Recht’s bound to 𝑚 ≥ 𝑂 (`2

2𝑛𝑟 log6 𝑛), relying
on a “strong incoherence condition” stronger than A0 and A1 where max(`0, `1) ≤ `2. Recht (4) further improves
this bound to 𝑚 ≥ 𝑂 (max{`2

1, `0}𝑛𝑟 log2 𝑛), greatly simplifying Candès and Tao’s analysis by employing sampling
with replacement in place of Bernoulli sampling, but still relying on A0 and A1.

Candès and Tao (2) proved that Ω(`0𝑛𝑟 log𝑛) entries are necessary for matrix completion via nuclear norm minimiza-
tion when sampling uniformly at random. This aligns with our expectation that `0 is integral to the sample complexity
and, hence, A0 being necessary. As Recht (4) notes, however, it has not been shown that A1 is necessary.

Our optimality results employ the same setup as Recht (4) but modifies their proof that the dual variable satisfies the
needed conditions (discussed below) that certify M is the unique minimizer of 1.1.

2 SETUP AND FRAMEWORK

We provide notation and outline the framework used in the derivation of our results. We begin with a formal definition
of the problem of matrix completion.

Problem 2.1 (Matrix Completion). We are given a rank-𝑟 matrix M ∈ R𝑛1×𝑛2 and some sample Ω ⊆ [𝑛1] × [𝑛2] of 𝑚
entries from M taken uniformly at random. What is the minimum number of entries 𝑚 = |Ω| needed to exactly recover
M with high probability?

As in previous literature, we concern ourselves with the setting where entries are sampled uniformly at random and
also make the simplifying assumption that 𝑛 = 𝑛1 = 𝑛2. Furthermore, throughout this paper we make use of positive
constant 𝐶 (and 𝐶1, 𝐶2, etc.) to absorb other constants and simplify our analysis. Events are said to occur “with high
probability” if they happen with probability at least 1−𝑛−Ω(poly(𝛽)) for 𝛽 > 0 of our choosing.

Let the compact singular value decomposition of our matrix in question M ∈ R𝑛×𝑛 be U𝚺V∗; U,V ∈ R𝑛×𝑟 . For general
matrix M, denote its 𝑖th row by ®𝑚𝑖 , 𝑗 th column by ®𝑚 ( 𝑗) , and (𝑖, 𝑗)th entry by 𝑀𝑖 𝑗 . We let 𝜎𝑘 (M) be the 𝑘 th largest
singular value of M and let 𝜎(M) ∈ R𝑛 be the vector containing these values. We denote the spectral norm of a
matrix ∥M∥ = 𝜎1 (M), the infinity norm ∥M∥∞ = max1≤𝑖, 𝑗 ,≤𝑛 |𝑀𝑖 𝑗 |, the nuclear norm ∥M∥∗ = ∥𝜎(M)∥1 (observe

rank(M) = ∥𝜎(M)∥0), and the Frobenius norm ∥M∥𝐹 = ∥𝜎(M)∥2 =
√︃∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑀
2
𝑖 𝑗

.
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Furthermore, denote the maximum of row and column norms of M with ∥M∥𝑟 and ∥M∥𝑐, respectively, and let ∥M∥𝑏 B
max{∥M∥𝑟 , ∥M∥𝑐}, or the maximum of both of these1. Matrix operators A :R𝑛×𝑛 →R𝑛×𝑛 have operator norm defined
∥A∥ B supM:∥M∥𝐹 ≤1∥A(M)∥𝐹 .

We let the tangent space of M be 𝑇 = {UX∗ +YV∗ : X,Y ∈ R𝑛×𝑟 } ⊆ R𝑛×𝑛. This is useful as col(M) = col(U) and
row(M) = row(V∗), and we may decompose R𝑛×𝑛 = 𝑇 ⊗𝑇⊥.

Recall the projection operator onto col(U) is denoted 𝑃U, which, for orthonormal U is 𝑃U = UU∗.The projection
operator onto 𝑇 , PT : R𝑛×𝑛 → 𝑇 , is defined

PT (X) B 𝑃UX+X𝑃V −𝑃UX𝑃V

and so PT⊥ (X) = (I −PT) (X) = (I − 𝑃U)X(I − 𝑃V). For convenience, we define PUV∗ (Z) = 𝑃UZ𝑃V and we will
also use 𝑃V (Z) and Z𝑃V interchangeably.

To simplify, we define the sampling operator for Ω ⊆ [𝑛] × [𝑛] to be RΩ, where RΩ acts as a masking matrix W where
𝑊𝑖 𝑗 = 1 iff (𝑖, 𝑗) ∈ Ω and 𝑊𝑖 𝑗 = 0 otherwise, so RΩ (X) = W◦X. Thus, we may state 1.1 as

minimize ∥X∥∗
subject to RΩ (X) = RΩ (M). (2.1)

Recht (4), building off Candès and Recht (1), shows via their Theorem 2 that if there is a dual variable Y ∈ range(RΩ)
such that

∥PT (Y) −UV∗∥𝐹 ≤
√︂

𝑟

2𝑛
(2.2)

∥PT⊥ (Y)∥ ≤ 1
2

(2.3)

then M is the unique minimizer to the nuclear norm minimization program (2.1) with sample complexity 𝑚 ≥
𝑂 (max{`2

1, `0}𝑛𝑟 log2 𝑛), with high probability.

For our result, we use the sampling with replacement model and dual certificate construction from Recht (4). Indeed,
for our main result we employ the the majority of Recht (4) Theorem 2 while using modified theorems which avoid
reliance on A1.

We recall the dual construction from Gross (3) employed by Recht (4) (itself building upon Candès and Recht (1)).
Partition Ω into 𝑝 subsamples of size 𝑞, or {Ω 𝑗 }𝑝𝑗=1 where |Ω 𝑗 | = 𝑞 (thus 𝑚 = 𝑝𝑞). Initialize W0 = UV∗ and iteratively
define

Y𝑘 =
𝑛2

𝑞

𝑘∑︁
𝑗=1

RΩ 𝑗
(W 𝑗−1) and W𝑘 = PT (UV∗−Y𝑘) = UV∗−PT (Y𝑘)

for 𝑘 = 1, . . . , 𝑝, where in Recht (4) takes 𝑞 ≥ 𝑂 (max{`0, `
2
1}𝑛𝑟𝛽 log𝑛) and 𝑝 ≥ 𝑂 (log𝑛). The dual certificate in

question is thus Y = Y𝑝 .

In this report, we refine their method for bounding ∥PT⊥ (Y𝑝)∥. In particular, we modify the applied Theorem 7 of
Recht (4) to use the maximum of the column and row norms rather than just the infinity norm of our dual variables W𝑘 .
We then demonstrate that these norms drop geometrically, allowing us to use ∥UV∗∥𝑏 =

√︁
`0𝑟/𝑛 and the trivial bound

on ∥UV∗∥∞ = `0𝑟/𝑛 that follows from A0 (see Corollary 2.6).

2.1 USEFUL THEOREMS

We provide the following theorems which will be useful in our main argument, beginning with some standard inequal-
ities.

Theorem 2.2 (Standard Bernstein Inequality). Let 𝑋1 . . . 𝑋𝑛 be independent, zero-mean random variables such that
∀𝑖 : |𝑋𝑖 | ≤ 𝑀 , then for 𝜏 > 0

P

[����� 𝑛∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝜏

]
≤ 2exp

(
−

𝜏2/2∑𝑛
𝑖=1E[𝑋2

𝑖
] +𝑀𝜏/3

)
1Originally from Ding (11) and generalized by Nie (12), the 𝐿𝑝,𝑞 “entry-wise” norm of matrix A ∈ R𝑛×𝑛 is ∥A∥𝑝,𝑞 B(∑𝑛
𝑗=1 (

∑𝑛
𝑖=1 |𝐴𝑖 𝑗 |

𝑝) (𝑞/𝑝)
)1/𝑞

. Observe that ∥A∥𝑐 = ∥A∥2,∞ and similarly ∥A∥𝑟 = ∥A∗∥2,∞, hence, ∥·∥𝑏 is clearly a norm.
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Corollary 2.3. Let 𝑋1, . . . , 𝑋𝑛 be independent zero-mean random variables such that ∀𝑖 : |𝑋𝑖 | ≤ 𝑀 , 𝑆B
∑𝑛

𝑖=1 𝑋𝑖 (hence
var (𝑆) = ∑𝑛

𝑖=1E
[
𝑋2
𝑖

]
), we have

|𝑆 | ≤ 2max
{√︁

2var (𝑆) 𝛽 log𝑛, 2/3𝑀𝛽 log𝑛
}

with probability at least 1−2𝑛−𝛽 for 𝛽 > 0.

Theorem 2.4 (Noncommutative Matrix Bernstein). Let {Z𝑘} be a sequence of independent zero-mean random matri-
ces of dimension 𝑑1 × 𝑑2 such that ∀𝑘 : ∥Z𝑘 ∥ ≤ 𝑀 . Let

𝜎2 B max

{∑︁
𝑘

E
[
Z𝑘Z∗

𝑘

] ,
∑︁

𝑘

E
[
Z∗
𝑘Z𝑘

]
}
.

Then, for all 𝜏 ≥ 0,

P

[∑︁
𝑘

Z𝑘

 ≥ 𝜏

]
≤ (𝑑1 + 𝑑2) · exp

(
−

𝜏2/2

𝜎2 +𝑀𝜏/3

)
.

Corollary 2.5. Let {Z𝑘} be independent zero-mean random matrices of dimension 𝑛× 𝑛 where ∀𝑘 : ∥Z𝑘 ∥ ≤ 𝑀 and
𝜎2 B max

{∑
𝑘 E

[
Z𝑘Z∗

𝑘

] ,∑𝑘 E
[
Z∗
𝑘
Z𝑘

]} (as in Theorem 2.4). We have∑︁
𝑘

Z𝑘

 ≤ 2max
{√︃

2𝛽𝜎2 log𝑛, 2/3𝛽𝑀 log𝑛
}

with probability at least 1−2𝑛1−𝛽 for 𝛽 > 0.

We briefly note the following property that follows when only using A0.

Corollary 2.6. A0 immediately implies A1 with `1 = `0
√
𝑟 .

Proof. A0 tells us that ∥UU∗∥2
𝑏
= max1≤𝑖≤𝑛∥𝑃U ®𝑒𝑖 ∥2

2 ≤ `0𝑟/𝑛. By orthogonality of U, max1≤𝑖≤𝑛∥UU∗ ®𝑒𝑖 ∥2 =

max1≤𝑖≤𝑛∥U∗ ®𝑒𝑖 ∥2 = ∥U∥𝑟 and thus ∥U∥𝑟 ≤
√︁

`0𝑟/𝑛 as well as ∥V∥𝑟 ≤
√︁

`0𝑟/𝑛 by a similar argument. Observe
that UV∗ =

[
®𝑢𝑖 · ®𝑣 𝑗

]
𝑖 𝑗

, where ®𝑢𝑖 and ®𝑣𝑖 are the 𝑖th rows of U and V, respectively. Hence, by Cauchy-Schwarz

∥UV∗∥∞ ≤
√︁
∥U∥𝑟 ∥V∥𝑟 = `0𝑟/𝑛, as desired. □

We present the following analog of Theorem 7 of Recht (4). It notes that Z ∈ R𝑛×𝑛 remains close in spectral norm to
the maximum of its row and columns norm after the scaled sampling operator is applied.

Theorem 2.7 (Analog of Recht (4) Theorem 7). Let Z be an 𝑛×𝑛 matrix and RΩ the sampling operator that samples
𝑚 entries of a matrix independently and uniformly with replacement, then(𝑛2

𝑚
RΩ−I

)
(Z)

 ≤ max

{
`0𝑛𝑟𝛽 log𝑛

𝑚

𝑛

`0𝑟
∥Z∥∞,

√︂
2`0𝑛𝑟𝛽 log𝑛

𝑚

√︂
𝑛

`0𝑟
∥Z∥𝑏

}
(2.4)

with probability 1−2𝑛1−𝛽 for 𝛽 > 0.

Proof. As in Recht (4), we decompose ( 𝑛2

𝑚
RΩ − I)(Z) = 1

𝑚

∑𝑚
𝑗=1 𝑛

2𝑍𝑎 𝑗𝑏 𝑗
®𝑒𝑎 𝑗

®𝑒∗
𝑏 𝑗

−Z using Ω = {(𝑎 𝑗 , 𝑏 𝑗 )}𝑚𝑗=1 and
proceed by applying Bernstein. We bound the operator norm

∥Z∥ = sup
∥𝑥 ∥=1, ∥𝑦 ∥=1

∑︁
𝑎,𝑏

𝑍𝑎𝑏𝑦𝑎𝑥𝑏 ≤
(∑︁
𝑎,𝑏

𝑍2
𝑎𝑏𝑦

2
𝑎

)1/2 (∑︁
𝑎,𝑏

𝑥2
𝑏

)1/2

≤
√
𝑛max

𝑎

(∑︁
𝑎

𝑍2
𝑎𝑏

)1/2

≤
√
𝑛∥Z∥𝑏

We now bound each summand ∥𝑛2𝑍𝑎 𝑗𝑏 𝑗
®𝑒𝑎 𝑗

®𝑒∗
𝑏 𝑗
−Z∥ identically to Recht (4),𝑛2𝑍𝑎𝑘𝑏𝑘

®𝑒𝑎𝑘
®𝑒∗𝑏𝑘

−Z
 ≤ 𝑛2𝑍𝑎𝑘𝑏𝑘

®𝑒𝑎𝑘
®𝑒∗𝑏𝑘

+ ∥Z∥ < 3
2
𝑛2∥Z∥∞.

Furthermore, we boundE [(
𝑛2𝑍𝑎 𝑗𝑏 𝑗

®𝑒𝑎 𝑗
®𝑒∗𝑏 𝑗

−Z
)∗ (

𝑛2𝑍𝑎 𝑗𝑏 𝑗
®𝑒𝑎 𝑗

®𝑒∗𝑏 𝑗
−Z

)] ≤ 𝑛2
∑︁
𝑐,𝑑

𝑍2
𝑐𝑑 ®𝑒𝑑 ®𝑒

∗
𝑑 −Z∗Z
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≤ max

{𝑛2
∑︁
𝑐,𝑑

𝑍2
𝑐𝑑 ®𝑒𝑑 ®𝑒

∗
𝑑

 , ∥Z∗Z∥
}

≤ 𝑛2∥Z∥2
𝑐 ≤ 𝑛2∥Z∥2

𝑏

By a similar calculation we get
E [

(𝑛2𝑍𝑎𝑘𝑏𝑘
®𝑒𝑎𝑘

®𝑒∗
𝑏𝑘

−Z) (𝑛2𝑍𝑎𝑘𝑏𝑘
®𝑒𝑎𝑘

®𝑒∗
𝑏𝑘

−Z)∗)
] ≤ 𝑛2 ∥Z∥2

𝑟 ≤ 𝑛2∥Z∥2
𝑏
. Now, we let

𝜎2 = 𝑛2

𝑚
∥Z∥𝑏 and 𝑀 = 3

2
𝑛2

𝑚
∥Z∥∞ and consider 𝜏 such that

𝜏 ≥ max
{

2
3
𝑀𝛽 log𝑛,

√︃
2𝜎2𝛽 log𝑛

}
≥ max

{
𝑛2

𝑚
∥Z∥∞𝛽 log𝑛,

√︂
2𝑛2

𝑚
∥Z∥2

𝑏
𝛽 log𝑛

}
≥ max

{
`0𝑛𝑟𝛽 log𝑛

𝑚

𝑛

`0𝑟
∥Z∥∞,

√︂
2`0𝑛𝑟𝛽 log𝑛

𝑚

√︂
𝑛

`0𝑟
∥Z∥𝑏

}
.

By Theorem 2.4 we have that ∥(𝑛2/𝑚RΩ−I)(Z)∥ ≤ 𝜏, with probability at least 1−2𝑛1−𝛽 , as desired. □

Finally, we will define the constants 0 ≤ 𝑓1, . . . , 𝑓𝑛 ≤ 1 for each of the 𝑛 rows of U motivated by the maximum possible
squared norm of any row `0𝑟/𝑛, induced by incoherence. Specifically, we let 𝑓𝑑 denote the proportion of `0𝑟/𝑛 that the
squared norm of column 𝑑 of U is. More precisely, if ®𝑢𝑑 is the 𝑑th row of U then

𝑓𝑑 B ∥ ®𝑢𝑑 ∥2
2

( `0𝑟

𝑛

)−1
=⇒ ∥®𝑢𝑑 ∥2

2 = 𝑓𝑑

( `0𝑟

𝑛

)
.

We also define 𝑓 ′1 , . . . , 𝑓
′
𝑛 similarly for V.

Claim 2.8. For 𝑓1, . . . , 𝑓𝑛 and 𝑓 ′1 , . . . , 𝑓
′
𝑛 as defined above,

𝑛∑︁
𝑑=1

𝑓𝑑 =

𝑛∑︁
𝑑=1

𝑓 ′𝑑 =
𝑛

`0
. (2.5)

Proof. Recalling ∥U∥2
𝐹
= ∥V∥2

𝐹
= 𝑟 , we have

∑𝑛
𝑑=1∥ ®𝑢𝑑 ∥2

2 =
∑𝑛

𝑑=1 𝑓𝑑 (`0𝑟/𝑛) = 𝑟 and the claim immediately follows. □

3 MAIN RESULT

We provide the following lemma to be used in the refinement of Recht (4) Theorem 2. Briefly, it states that the
maximum of row and column norms of the dual variables drop geometrically through the iterations of their construc-
tion.

Lemma 3.1. Let {W𝑘}𝑛𝑘=1 be the variables defined in the dual construction above with each iteration having sample
size 𝑞, then

∥W𝑘 ∥𝑏 ≤ 2−𝑘 ∥W0∥𝑏 = 2−𝑘
√︂

`0𝑟

𝑛
(3.1)

with probability 1−12𝑛2−𝛽 provided 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2𝛽 log𝑛 for some 𝐶1 > 0.

Proof. Recall the construction of the dual variables, originally from Gross (3): W0 = UV∗, Y𝑘 =
𝑛2

𝑞

∑𝑘
𝑗=1RΩ 𝑗

(W 𝑗−1),
W𝑘 = UV∗−PT (Y𝑘) for 𝑘 = 1, . . . , 𝑝. The triangle inequality and our definition of PT together imply ∀X ∈ R𝑛×𝑛

∥PT (X)∥𝑏 ≤ ∥𝑃U (X)∥𝑏 + ∥𝑃V (X)∥𝑏 + ∥PUV∗ (X)∥𝑏 . (3.2)

We recognize that W𝑘 may be expressed recursively as

W𝑘 = W𝑘−1 −
𝑛2

𝑞
PTRΩ𝑘

(W𝑘−1) = PT

(
W𝑘−1 −

𝑛2

𝑞
RΩ𝑘

(W𝑘−1)
)
= PT

((
I − 𝑛2

𝑞
RΩ𝑘

)
(W𝑘−1)

)
where X𝑘 B (I − 𝑛2

𝑞
RΩ𝑘

) (W𝑘−1). Note that E [X𝑘] = 0, which implies E [W𝑘] = 0. We first inspect W(U)
𝑘
B 𝑃U (X𝑘),

W(V)
𝑘
B 𝑃V (X𝑘), and W(UV∗)

𝑘
B PUV∗ (X𝑘) separately, and then apply equation 3.2.
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We take W𝑘−1 ≤ 2−(𝑘−1)√︁`0𝑟/𝑛 by our inductive hypothesis. Furthermore, Recht (4) Lemma 8 gives us ∥W𝑘 ∥∞ ≤
2−𝑘 ∥W0∥∞ ≤ 2−𝑘 (`0𝑟/𝑛) for 𝑞 as in our lemma statement. For the remainder of this proof we let Z and Z′ represent
W𝑘−1 and 𝑃U (W𝑘−1), respectively.

We now bound the row and column norms of W(U)
𝑘

by inspecting one iteration of the dual construction process acting
upon Z and then applying our inductive hypothesis. Here, we employ the technique used in Lemma 8 of Recht (4)
wherein we examine the individual entries resulting from one iteration of dual construction, but now inspect only the
effects of 𝑃U. In particular, we examine entry (𝑐, 𝑑) of the resultant matrix 𝑃U (( 𝑛

2

𝑞
RΩ𝑘

−I))(Z)) = ( 𝑛2

𝑞
𝑃URΩ𝑘

−
𝑃U) (Z). Specifically, for index entry (𝑐, 𝑑) of resultant matrix we consider sampling some (𝑎, 𝑏) uniformly at random
to define

b𝑐𝑑 =
〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑛

2 〈
®𝑒𝑎 ®𝑒∗𝑏,Z

〉
𝑃U ( ®𝑒𝑎 ®𝑒∗𝑏) −Z′〉

We note that E [b𝑐𝑑] = 0, and now proceed to find an upper bound 𝑀𝑐𝑑 for |b𝑐𝑑 |. We proceed

b𝑐𝑑 =
〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑛

2 〈
®𝑒𝑎 ®𝑒∗𝑏,Z

〉
𝑃U ( ®𝑒𝑎 ®𝑒∗𝑏) −Z′〉

= 𝑛2𝑍𝑎𝑏 ⟨®𝑒𝑐 ®𝑒𝑑 , 𝑃U ( ®𝑒𝑎 ®𝑒𝑏)⟩ − 𝑍 ′
𝑐𝑑 . (⟨𝐴, ®𝑒𝑖 ®𝑒∗𝑗⟩ = 𝐴𝑖 𝑗 )

We begin by bounding the magnitude of the first term. Observe that ∀𝑏 ≠ 𝑑 we have
〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑃U ( ®𝑒𝑎 ®𝑒∗𝑏)

〉
= 0 and so we

concern ourselves only when 𝑏 = 𝑑. Letting P = 𝑃U = UU∗, we have

|𝑛2𝑍𝑎𝑑 ⟨®𝑒𝑐 ®𝑒𝑑 , 𝑃U ( ®𝑒𝑎 ®𝑒𝑑)⟩ | = 𝑛2 |𝑍𝑎𝑑 | | ⟨𝑃U ( ®𝑒𝑐 ®𝑒𝑑), ®𝑒𝑎 ®𝑒𝑑⟩ |
= 𝑛2 |𝑍𝑎𝑑 | |𝑃𝑐𝑎 |
≤ 𝑛2∥®𝑧 (𝑑) ∥∞max

𝑎
{|𝑃𝑐𝑎 |}

≤ 𝑛2√︁ 𝑓𝑐
`0𝑟

𝑛
∥®𝑧 (𝑑) ∥∞ (Definition of 𝑓𝑐)

= `0𝑟𝑛
√︁
𝑓𝑐 ∥®𝑧 (𝑑) ∥∞.

Where we use max𝑎{|𝑃𝑐𝑎 |} = ∥ ®𝑢𝑐 ∥2 ·max𝑎∥ ®𝑢𝑎∥2 =
√︁
𝑓𝑐 · `0𝑟/𝑛

√︁
`0𝑟/𝑛 =

√︁
𝑓𝑐 · `0𝑟/𝑛. Using Z′ = 𝑃UZ =UU∗Z we observe

that second term 𝑍 ′
𝑐𝑑

= ®𝑝𝑐 · ®𝑧 (𝑑) may be bounded

|𝑍 ′
𝑐𝑑 | ≤

√︃
∥ ®𝑝𝑐 ∥2

2 · ∥®𝑧 (𝑑) ∥
2
2 ≤

√︂
𝑓𝑐
`0𝑟

𝑛
· 𝑛∥®𝑧 (𝑑) ∥2

∞ ≤
√︁
`0𝑟 𝑓𝑐 ∥®𝑧 (𝑑) ∥∞ ≤ `0𝑟𝑛

√︁
𝑓𝑐 ∥®𝑧 (𝑑) ∥∞

Using the triangle inequality we now find 𝑀𝑐𝑑

|b𝑐𝑑 | ≤ |𝑛2𝑍𝑎𝑑 ⟨®𝑒𝑐 ®𝑒𝑑 , 𝑃U ( ®𝑒𝑎 ®𝑒𝑑)⟩ | + |𝑍 ′
𝑐𝑑 | ≤ 2`0𝑟𝑛

√︁
𝑓𝑐 ∥®𝑧 (𝑑) ∥∞ C 𝑀𝑐𝑑 . (3.3)

We proceed with finding our variance term E
[
b2
𝑐𝑑

]
by

E
[
b2
𝑐𝑑

]
=

1
𝑛2

𝑛∑︁
𝑎=1

𝑛∑︁
𝑏=1

〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑛

2 〈
®𝑒𝑎 ®𝑒∗𝑏,Z

〉
𝑃U ( ®𝑒𝑎 ®𝑒∗𝑏) −Z′〉2

= 𝑛2
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

〈
𝑃U ( ®𝑒𝑐 ®𝑒∗𝑑), ®𝑒𝑎 ®𝑒

∗
𝑏

〉2 〈
®𝑒𝑎 ®𝑒2

𝑏,Z
〉2 − 𝑍 ′2

𝑐𝑑 (⟨𝐴, ®𝑒𝑖 ®𝑒∗𝑗⟩ = 𝐴𝑖 𝑗 )

= 𝑛2
𝑛∑︁

𝑎=1

〈
𝑃U ( ®𝑒𝑐 ®𝑒∗𝑑), ®𝑒𝑎 ®𝑒

∗
𝑑

〉2 〈
®𝑒𝑎 ®𝑒2

𝑑 ,Z
〉2 − 𝑍 ′2

𝑐𝑑 (∀𝑏 ≠ 𝑑 :
〈
𝑃U ( ®𝑒𝑐 ®𝑒∗𝑑), ®𝑒𝑎 ®𝑒

∗
𝑏

〉
= 0)

= 𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑐𝑎𝑍

2
𝑎𝑑 − 𝑍 ′2

𝑐𝑑 ≤ 𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑐𝑎𝑍

2
𝑎𝑑 .

We make the following observation

E
[
b2
𝑐𝑑

]
≤ 𝑛2

𝑛∑︁
𝑎=1

𝑃2
𝑐𝑎𝑍

2
𝑎𝑑 ≤ 𝑛2∥®𝑧 (𝑑) ∥2

∞

𝑛∑︁
𝑎=1

𝑃2
𝑐𝑎 = 𝑛2∥®𝑧 (𝑑) ∥2

∞ 𝑓𝑐
`0𝑟

𝑛
= `0𝑟𝑛 𝑓𝑐 ∥®𝑧 (𝑑) ∥2

∞. (3.4)

Notice that each entry of our resultant matrix is distributed like 1
𝑞

∑𝑞

𝑘=1 b
(𝑘)
𝑐𝑑
C Z𝑐𝑑 where b

(𝑘)
𝑐𝑑

are i.i.d copies of b𝑐𝑑 .
By Bernstein’s inequality, specifically Corollary 2.5, we get

|Z𝑐𝑑 | ≤ max

√︄
E

[
b2
𝑐𝑑

]
𝛽 log𝑛

𝑞
,
𝑀𝑐𝑑𝛽 log𝑛

𝑞

 .
with probability 1−2𝑛1−𝛽 . This allows us to make the following claim which is an extension of Recht (4) Lemma 8.
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Claim 3.2 (Extension of Recht (4) Lemma 8). With probability 1−2𝑛1−𝛽 for 𝑞 as above we have

∥ ®𝑤 (𝑑)
𝑘

∥∞ ≤ 2−𝑘 ∥ ®𝑤 (𝑑)
0 ∥∞ ≤ 2−𝑘

√︁
𝑓𝑑

( `0𝑟

𝑛

)
. (3.5)

Proof. We observe this by first applying 3.3 and 3.4 in our bound for |Z𝑐𝑑 | (recalling Z = W𝑘−1), giving us

|Z𝑐𝑑 | ≤ max

{√︄
`0𝑟𝑛𝛽 log𝑛

𝑞
,
2`0𝑟𝑛𝛽 log𝑛

𝑞

}√︁
𝑓𝑐 ∥ ®𝑤 (𝑑)

𝑘−1∥∞.

Now, ∥®𝑧 (𝑑) ∥∞ = max𝑐 |Z𝑐𝑑 | (recall | 𝑓𝑐 | ≤ 1) and so for a value of 𝑞 ≥ 𝐶1`0𝑛𝑟𝛽 log𝑛 we get ∥ ®𝑤 (𝑑)
𝑘

∥∞ ≤ 1
2 ∥ ®𝑤

(𝑑)
𝑘−1∥∞. We

consider W = W0 = UU∗ and in particular some entry 𝑊𝑐𝑑 = ®𝑢𝑐 · ®𝑢𝑑 and see

|𝑊𝑐𝑑 | ≤
√︃
∥ ®𝑢𝑐 ∥2

2∥ ®𝑢𝑑 ∥
2
2 =

√︂
𝑓𝑐

( `0𝑟

𝑛

)
𝑓𝑑

( `0𝑟

𝑛

)
≤

√︁
min( 𝑓𝑐, 𝑓𝑑)

( `0𝑟

𝑛

)
hence ∥ ®𝑤 (𝑑) ∥∞ ≤

√︁
𝑓𝑑 (`0𝑟/𝑛).Our claim now immediately follows by induction. □

Now, we bound our squared row norm for some row 𝑐 by

𝑛∑︁
𝑑=1

|Z𝑐𝑑 |2 ≤
𝑛∑︁

𝑑=1
max


√︄
E

[
b2
𝑐𝑑

]
𝛽 log𝑛

𝑞
,
𝑀𝑐𝑑𝛽 log𝑛

𝑞


2

≤ 2max

{
𝛽 log𝑛
𝑞

𝑛∑︁
𝑑=1
E

[
b2
𝑐𝑑

]
,
𝛽2 log2 𝑛

𝑞2

𝑛∑︁
𝑑=1

𝑀2
𝑐𝑑

}
with probability 1−2𝑛2−𝛽 , using union bound. We bound the first summation in the maximum

𝑛∑︁
𝑑=1
E

[
b2
𝑐𝑑

]
≤

𝑛∑︁
𝑑=1

𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑐𝑎𝑍

2
𝑎𝑑

= 𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑐𝑎

𝑛∑︁
𝑑=1

𝑍2
𝑎𝑑

≤ 𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑐𝑎∥Z∥2

𝑏

≤ 𝑛2
( `0𝑟

𝑛

)
∥Z∥2

𝑏 (
∑𝑛

𝑎=1 𝑃
2
𝑐𝑎 ≤ `0𝑟/𝑛 by A0)

≤ 4−(𝑘−1)`0𝑛𝑟
( `0𝑟

𝑛

)
(Inductive Hypothesis)

Similarly, we bound the second summation
𝑛∑︁

𝑑=1
𝑀2

𝑐𝑑 ≤
𝑛∑︁

𝑑=1

(
`0𝑟𝑛∥®𝑧 (𝑑) ∥∞

)2

≤
𝑛∑︁

𝑑=1
`2

0𝑟
2𝑛2∥®𝑧 (𝑑) ∥2

∞

≤ `2
0𝑟

2𝑛2
𝑛∑︁

𝑑=1
4−(𝑘−1) 𝑓𝑑

( `0𝑟

𝑛

)2
(by Claim 3.2)

≤ 4−(𝑘−1)`2
0𝑟

2𝑛2
( `0𝑟

𝑛

)2 𝑛∑︁
𝑑=1

𝑓𝑑

≤ 4−(𝑘−1)`2
0𝑟

2𝑛2
( `0𝑟

𝑛

)2 𝑛

`0
(by Claim 2.8)

≤ 4−(𝑘−1)`2
0𝑟

3𝑛2
( `0𝑟

𝑛

)
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Hence, with probability 1−2𝑛2−𝛽 our squared row norm can be bounded
𝑛∑︁

𝑑=1
|Z𝑐𝑑 |2 ≤ 2max

{
`0𝑛𝑟𝛽 log𝑛

𝑞
,
`2

0𝑛
2𝑟3𝛽2 log2 𝑛

𝑞2

}
4−(𝑘−1)

( `0𝑟

𝑛

)
.

By the symmetry of P, a similar calculation for some fixed column 𝑑 produces an identical bound for
∑𝑛

𝑐=1 |Z𝑐𝑑 |2.
Each row and column is identically distributed to every other row and column, respectively, whence

∥W(U)
𝑘

∥2
𝑏 ≤ max

{
𝑛∑︁

𝑐=1
|Z𝑐𝑑 |2,

𝑛∑︁
𝑑=1

|Z𝑐𝑑 |2
}
≤ 2max

{
`0𝑛𝑟𝛽 log𝑛

𝑞
,
`2

0𝑛
2𝑟3𝛽2 log2 𝑛

𝑞2

}
4−(𝑘−1)

( `0𝑟

𝑛

)
.

with probability 1−4𝑛3−𝛽 , by union bound. Thus, for 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2𝛽 log𝑛 for some 𝐶1 > 0 we obtain that ∥W𝑘 ∥2

𝑏
≤

4−𝑘
9 (`0𝑟/𝑛), with aforesaid probability.

As might be expected, the analysis of W(V)
𝑘

produces the same result and is performed nearly-identical to that above,
but with 𝑃V in place of 𝑃U. We leave our analysis of PUV∗ to Appendix A, where we follow an entry-wise analysis
similar to the above and, again, results identically W(UV∗)

𝑘
. Consequently, we have that ∥W(U)

𝑘
∥, ∥W(V)

𝑘
∥, ∥W(UV∗)

𝑘
∥ ≤

2−𝑘
3

√︁
`0𝑟/𝑛 each with probability 1−4𝑛3−𝛽 . We thus conclude by equation 3.2 that

∥W𝑘 ∥𝑏 ≤ ∥W(U)
𝑘

∥ + ∥W(V)
𝑘

∥ + ∥W(UV∗)
𝑘

∥ ≤ 2−𝑘
√︂

`0𝑟

𝑛

with probability 1−12𝑛3−𝛽 , by union bound, given 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2𝛽 log𝑛 for 𝛽 > 0 and some 𝐶1 > 0, as desired. □

Using the above derivations, we present the following modification of Theorem 2 of Recht (4) which is the main result
of this report.

Theorem 3.3 (Refined Theorem 2 of Recht (4)). Let M ∈ R𝑛×𝑛 be a matrix of rank 𝑟 such that A0 holds, or `(M) ≤ `0.
Given set Ω of 𝑚 entries of M sampled uniformly at random with

𝑚 ≥ 𝐶`0𝑛𝑟
3/2 log2 𝑛 =𝑂 (`0𝑛𝑟

3/2 log2 𝑛),
the solution to the nuclear norm minimization program (1.1) is exactly M with probability at least 1−36log𝑛 ·𝑛2−2𝛽 −
𝑛2−2𝛽1/2

for 𝛽 > 0 and some 𝐶 > 0.

Proof. We refer the to the proof of Theorem 2 in Recht (4). We retain his setup and analysis until where it is shown thatPT⊥ (Y𝑝)
 ≤ 1/2, where improvement can be made by applying our Theorem 2.7 in place of his Theorem 7. Following

Recht, we now have

∥PT⊥ (Y𝑝)∥ ≤
𝑝∑︁
𝑗=1

𝑛2

𝑞
PT⊥RΩ 𝑗

W 𝑗−1


=

𝑝∑︁
𝑗=1

PT⊥

(
𝑛2

𝑞
RΩ 𝑗

W 𝑗−1 −W 𝑗−1

) (W 𝑗−1 ∈ 𝑇)

≤
𝑝∑︁
𝑗=1

(𝑛2

𝑞
RΩ 𝑗

−I
)
(W 𝑗−1)

 (∥PT⊥ (Z)∥ ≤ ∥Z∥)

≤
𝑝∑︁
𝑗=1

max

{
`0𝑛𝑟 log𝑛

𝑞

𝑛

`0𝑟
∥W 𝑗−1∥∞,

√︄
2`0𝑛𝑟 log𝑛

𝑞

√︂
𝑛

`0𝑟
∥W 𝑗−1∥𝑏

}
(Theorem 2.7)

≤
𝑝∑︁
𝑗=1

max

{
2−( 𝑗−1) `0𝑛𝑟𝛽 log𝑛

𝑞

𝑛

`0𝑟
∥W0∥∞,

√︄
2`0𝑛𝑟𝛽 log𝑛

𝑞

√︂
𝑛

`0𝑟
∥W 𝑗−1∥𝑏

}
(Recht (4) Lemma 8)

≤ 2
𝑝∑︁
𝑗=1

2− 𝑗 max

{
`0𝑛𝑟𝛽 log𝑛

𝑞

𝑛

`0𝑟
∥UV∗∥∞,

√︄
2`0𝑛𝑟𝛽 log𝑛

𝑞

√︂
𝑛

`0𝑟
∥UV∗∥𝑏

}
(Lemma 3.1)

≤ 2
𝑝∑︁
𝑗=1

2− 𝑗 max

{
`0𝑛𝑟𝛽 log𝑛

𝑞
,

√︄
2`0𝑛𝑟𝛽 log𝑛

𝑞

}
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≤ max

{
2`0𝑛𝑟𝛽 log𝑛

𝑞
,

√︄
4`0𝑛𝑟𝛽 log𝑛

𝑞

}
≤ 1

2

where the Theorem 2.7 holds for 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2𝛽 log𝑛, and Recht (4) Lemma 8 and the final inequality hold for

𝑞 ≥ 𝐶1`0𝑛𝑟𝛽 log𝑛. Thus, the above holds under 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2𝛽 log𝑛 and therefore 𝑚 ≥ 𝑂 (`0𝑛𝑟

3/2𝛽 log2 𝑛) (recall
𝑝 ≥ 𝑂 (log𝑛) and 𝑚 = 𝑝𝑞). Observe that we obviate the need for A1 by using ∥UV∗∥∞ = `0𝑟/𝑛 rather than ∥UV∗∥∞ =
`1

√
𝑟/𝑛 as used by Recht (4) which requires A1.

Now we may preserve and apply the remainder of the proof of Recht (4) Theorem 2, only needing to modify the
probability our cited events occur. In addition to the events invoked by Recht (4), each of which maintain their
probability of failure for 𝑚 as in the theorem statement, we incur 12𝑛3−2𝛽 probability of failure of Equation 3.1 in
Lemma 3.1 for all 𝑘 = 1, . . . , 𝑝 given said 𝑚. Applying union bound, our desired events now hold with probability

1−18log𝑛 · 𝑛3−2𝛽 −𝑛2−2𝛽1/2

for our value of 𝑚 and 𝛽 > 1, precisely as desired. □

Thus, we have demonstrated sample complexity results of 𝑚 ≥ 𝑂 (`0𝑛𝑟
3/2𝛽 log2 𝑛) for general (that is, requiring only

that the necessary condition A0 holds) low-rank incoherent matrix recovery, with high probability.

4 DISCUSSION

Observe that in our application of Bernstein’s inequality in Theorem 2.7, we apply both the variance and the maximum
term (as opposed to just the variance term). Our advantage is gained in observing that we may use the maximum of
row and column norms in bounding the scaled sampling operator norm, seen in the variance term; our probability of
correctness decreases very slightly in this process. Prior to this, past works relied on the infinity norms of the dual
variables, whereas we may only apply the trivial assumption on A1 that follows from A0, `1 = `0

√
𝑟 .

We make two observations regarding the value of `1 in certain matrices which we may wish to complete, demonstrating
that `1 may not necessarily be as small as desired (that is, `1 =𝑂 (1)). The first concerns a simplified model of random
matrices which were studied by Candès and Recht (1) and Candès and Tao (2).

Observation 4.1 (U,V ∈𝑅 {±1/√𝑛}𝑛×𝑟 ). 2 Suppose M is a matrix such that the entries of U and V are ±1/√𝑛 with equal
probability. Then `0 = 1 and when 𝑟 = Ω(log𝑛) it follows that E [`1] = Θ(

√︁
log𝑛).

Proof. We consider U′,V′ ∈𝑅 {±1}𝑛×𝑟 and let U = 1/√𝑛 ·U′ and V = 1/√𝑛 ·V′; clearly, `0 = 1. We seek the expectation
of `1 = 𝑛/√𝑟 · ∥UV∗∥∞ = 1/√𝑟 · ∥U′V′∗∥∞. Each entry of U′ and V′ is an i.i.d. Rademacher random variable and so each
entry of U′V′∗ is equivalent to the sum of 𝑟 i.i.d. Rademachers. Our problem of finding E [∥U′V′∗∥∞] is thus precisely
the problem of finding the expected maximum of 𝑛 simple symmetric random walks of length 𝑟 on Z. Rademacher
random variables are 1-sub-Gaussian and so each entry of U′V′∗ is 𝑟-sub-Gaussian. Applying the maximal inequality
(see Rigollet (13) Theorem 1.14) across all 𝑛2 entries, we have E [∥U′V′∗∥∞] ≤

√︁
4𝑟 log(2𝑛). Furthermore, Orabana

and Pal (14) show that for 𝑟 ≥ 3log𝑛, that expected maximum of 𝑛 simple symmetric length-𝑟 random walks on Z will
be Ω(

√︁
𝑟 log𝑛). Therefore, we have E [∥UV∗∥∞] = Θ(

√︁
𝑟 log𝑛) and so E [`1] = Θ(

√︁
log𝑛). □

Remark 4.2. Assuming sufficiently large 𝑟 , we use N(0, 𝑟) to approximate each entry by the central limit theorem. Ka-
math (15) shows that the expected maximum of 𝑛 i.i.d. random variables with distribution N(0,𝜎2) is Θ(𝜎

√︁
log𝑛). If

our approximation of N(0, 𝑟) suffices across 𝑛2 entries we find E [∥U′V′∗∥∞] =Θ(
√︁
𝑟 log𝑛) and so E [`1] =Θ(

√︁
log𝑛).

We might expect in cases of large 𝑟 , even when 𝑟 = 𝑜(log𝑛) 3, that E [`1] = Θ(
√︁

log𝑛).

The second observation is regarding positive semi-definite (PSD) matrices.

Observation 4.3. If M is a PSD matrix, then `1 = `0
√
𝑟.

Proof. We consider some PSD matrix M with coherence `0. Observe that the SVD of M is U𝚺V∗ = U𝚺U∗, or V = U.
Recall our alternative definition of coherence, `(U) = max1≤𝑖≤𝑛∥ ®𝑢𝑖 ∥2

2. The (𝑖, 𝑖)th entry of UU∗ is precisely ∥ ®𝑢𝑖 ∥2
2,

thus ∥UV∗∥∞ = ∥UU∗∥∞ ≥ max1≤𝑖≤𝑛∥ ®𝑢𝑖 ∥2
2 =

`0𝑟/𝑛 and so `1 = `0
√
𝑟 (recall `1 ≤ `0

√
𝑟 trivially by A0). □

2The notation 𝑥 ∈𝑅 𝑆 says 𝑥 is an element selected uniformly at random from 𝑆.
3We note that simulating 𝑛 for sufficiently large 𝑟 is often computationally intractable — e.g. taking 𝑟 ∼ log log𝑛 and so 𝑛 ∼ 22𝑟 .
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In the above cases, we see that we can produce `1 ≠ 𝑂 (1) even for maximally coherent matrices. It is here where
we expect to see improvement in sample complexity over Recht (4). The bottleneck in our above analysis is incurred
in the sum of squared maximums in Lemma 3.1 where an extra factor of 𝑟 is incurred. Inspecting various example
matrices, bounding this term may serve as the basis of potential further work.
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A ANALYSIS OF PUV∗

We now inspect the isolated effect of PUV∗ (recall PUV∗ (Z) B 𝑃U𝑋𝑃V) in our dual construction process, simi-
larly to how we did 𝑃U. We wish to show ∥W(UV∗)

𝑘
∥ ≤ 2−𝑘 (`0𝑟/𝑛), with high probability. We proceed immedi-

ately to modeling individual entries of our resultant matrix of interest, (PUV∗ ( 𝑛2

𝑞
RΩ𝑘

−I))(W𝑘−1) = ( 𝑛2

𝑞
PUV∗RΩ −

PUV∗ ) (W𝑘−1).
Now, let Z and Z′ represent W𝑘−1 and PUV∗ (W𝑘−1), respectively. For matrix index (𝑐, 𝑑), consider sampling (𝑎, 𝑏)
uniformly at random to define random variable b ′

𝑐𝑑
, similar to the variable b𝑐𝑑 above. We see

b ′𝑐𝑑 =
〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑛

2 〈
®𝑒𝑎 ®𝑒∗𝑏,Z

〉
PUV∗ ( ®𝑒𝑎 ®𝑒∗𝑏) −Z′〉

Observe that E
[
b ′
𝑐𝑑

]
= 0 as before. We find the maximum magnitude of b ′

𝑐𝑑
, 𝑀𝑐𝑑

′, by decomposing the above form
as is done for b𝑐𝑑 . Again letting P = 𝑃U = UU∗ and now P′ = 𝑃V = VV∗, we bound the first term

|𝑛2𝑍𝑎𝑏

〈
®𝑒𝑐 ®𝑒∗𝑑 ,PUV∗ ( ®𝑒𝑎 ®𝑒𝑏)

〉
| = 𝑛2 |𝑍𝑎𝑏 | | ⟨PUV∗ ( ®𝑒𝑐 ®𝑒𝑑), ®𝑒𝑎 ®𝑒𝑏⟩ |
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= 𝑛2 |𝑍𝑎𝑏 | |𝑃𝑐𝑎 | |𝑃′
𝑑𝑏 |

≤ 𝑛2∥Z∥∞max
𝑎

{|𝑃𝑐𝑎 |}max
𝑏

{|𝑃𝑑𝑏 |}

≤ 𝑛2√︁ 𝑓𝑐

( `0𝑟

𝑛

) √︃
𝑓 ′
𝑑

( `0𝑟

𝑛

)
∥Z∥∞

≤ `2
0𝑟

2
√︃
𝑓𝑐 𝑓

′
𝑑
∥Z∥∞ ≤ `0𝑟𝑛

√︃
𝑓𝑐 𝑓

′
𝑑
∥Z∥∞

Using Z′ = PUV∗ (Z) = 𝑃UZ𝑃V we bound the second term

𝑍 ′
𝑐𝑑 =

𝑛∑︁
𝑘=1

(PZ)𝑐𝑘𝑃′
𝑘𝑑

≤

√√
𝑛∑︁

𝑘=1
(PZ)2

𝑐𝑘

𝑛∑︁
𝑘=1

𝑃′
𝑘𝑑

2

≤

√√
𝑛∑︁

𝑘=1
∥ ®𝑝𝑐 ∥2

2∥®𝑧 (𝑘) ∥
2
2 · 𝑓

′
𝑑

( `0𝑟

𝑛

)2

≤

√√
𝑛∑︁

𝑘=1
𝑓𝑐

( `0𝑟

𝑛

)
∥®𝑧 (𝑘) ∥2

2 · 𝑓
′
𝑑

( `0𝑟

𝑛

)
≤

( `0𝑟

𝑛

) √√
𝑓𝑐 𝑓

′
𝑑

𝑛∑︁
𝑘=1

∥®𝑧 (𝑘) ∥2
2

≤
( `0𝑟

𝑛

) √︃
𝑓𝑐 𝑓

′
𝑑

√︃
𝑛2∥Z∥2

∞ ≤ `0𝑟𝑛
√︃
𝑓𝑐 𝑓

′
𝑑
∥Z∥∞.

Hence, by the triangle inequality we have |b ′
𝑐𝑑
| ≤ 2`0𝑟𝑛

√︁
𝑓𝑐 𝑓

′
𝑑
∥Z∥∞ C 𝑀 ′

𝑐𝑑
. We now find E

[
b ′2
𝑐𝑑

]
as follows.

E
[
b ′𝑐𝑑

2] = 1
𝑛2

𝑛∑︁
𝑎=1

𝑛∑︁
𝑏=1

〈
®𝑒𝑐 ®𝑒∗𝑑 , 𝑛

2 〈
®𝑒𝑎 ®𝑒∗𝑏,Z

〉
PUV∗ ( ®𝑒𝑎 ®𝑒∗𝑏) −Z′〉2

= 𝑛2
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

〈
PUV∗ ( ®𝑒𝑐 ®𝑒∗𝑑), ®𝑒𝑎 ®𝑒

∗
𝑏

〉2 〈
®𝑒𝑎 ®𝑒2

𝑏,Z
〉2 − 𝑍 ′2

𝑐𝑑 (⟨𝐴, ®𝑒𝑖 ®𝑒∗𝑗⟩ = 𝐴𝑖 𝑗 )

= 𝑛2
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

(𝑃𝑎𝑐𝑃
′
𝑑𝑏)

2𝑍2
𝑎𝑏 − 𝑍 ′2

𝑐𝑑 ≤ 𝑛2
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

𝑃2
𝑎𝑐𝑃

′2
𝑑𝑏𝑍

2
𝑎𝑏 (PUV∗ ( ®𝑒𝑐 ®𝑒∗𝑑) =

[
𝑃𝑖𝑐𝑃

′
𝑑 𝑗

]
𝑖 𝑗

).

Entry (𝑐, 𝑑) of our resultant matrix is distributed as 1
𝑚

∑𝑚
𝑘=1 b

′
𝑐𝑑

(𝑘) C Z ′
𝑐𝑑

where b ′
𝑐𝑑

(𝑘) are i.i.d. copies of b ′
𝑐𝑑

. By
Corollary 2.5 we have

|Z ′𝑐𝑑 | ≤ max

√︄
E

[
b ′2
𝑐𝑑

]
𝛽 log𝑛

𝑞
,
𝑀 ′

𝑐𝑑
𝛽 log𝑛
𝑞

 .
with probability 1−2𝑛1−𝛽 . As before, we may bound the squared row norm for any row 𝑐

𝑛∑︁
𝑑=1

|Z ′𝑐𝑑 |
2 ≤

𝑛∑︁
𝑑=1

max

√︄
E

[
b ′
𝑐𝑑

2
]
log𝑛

𝑞
,
𝑀 ′

𝑐𝑑
log𝑛
𝑞


2

≤ 2max

{
log𝑛
𝑞

𝑛∑︁
𝑑=1
E

[
b ′𝑐𝑑

2] , log2 𝑛

𝑞2

𝑛∑︁
𝑑=1

𝑀 ′
𝑐𝑑

2

}
with probability 1− 2𝑛2−𝛽 , using union bound. (Notice that in this case a column calculation will give the same
result, hence precluding the need for an application of Recht (4) Theorem 6). We bound the first summation in the
maximum

𝑛∑︁
𝑑=1
E

[
b ′𝑐𝑑

2] ≤ 𝑛∑︁
𝑑=1

𝑛2
𝑛∑︁

𝑎=1

𝑛∑︁
𝑏=1

𝑃2
𝑎𝑐𝑃

′2
𝑑𝑏𝑍

2
𝑎𝑏
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= 𝑛2
𝑛∑︁

𝑎=1
𝑃2
𝑎𝑐

𝑛∑︁
𝑏=1

𝑍2
𝑎𝑏

𝑛∑︁
𝑑=1

𝑃′2
𝑑𝑏

≤ 𝑛2
( `0𝑟

𝑛

) 𝑛∑︁
𝑎=1

𝑃2
𝑎𝑐 ∥Z∥2

𝑏

≤ 𝑛2
( `0𝑟

𝑛

)2
∥Z∥2

𝑏

≤ 4−(𝑘−1) (`0𝑟)2
( `0𝑟

𝑛

)
.

Observe that
∑𝑛

𝑑=1E
[
b ′
𝑐𝑑

2] ≤ 4−(𝑘−1) (`0𝑟)2 (`0𝑟/𝑛) ≤ 4−(𝑘−1)`0𝑛𝑟 (`0𝑟/𝑛) = ∑𝑛
𝑑=1E

[
b2
𝑐𝑑

]
. Now we may bound our

second summation similarly to
∑𝑛

𝑑=1 𝑀
2
𝑐𝑑

:

𝑛∑︁
𝑑=1

𝑀 ′2
𝑐𝑑 ≤

𝑛∑︁
𝑑=1

`2
0𝑟

2𝑛2 𝑓𝑐 𝑓
′
𝑑 ∥Z∥2

∞

≤ 4−(𝑘−1)`2
0𝑟

2𝑛2
( `0𝑟

𝑛

)2 𝑛∑︁
𝑑=1

𝑓𝑑

≤ 4−(𝑘−1)`2
0𝑟

3𝑛2
( `0𝑟

𝑛

)
(Note that we obtain the same result for

∑𝑛
𝑐=1 𝑀

′2
𝑐𝑑

.) Thus, we may use the same bound for
∑𝑛

𝑑=1 |Z ′𝑐𝑑 |
2 as used

for
∑𝑛

𝑑=1 |Z𝑐𝑑 |2 (which may not be tight). It follows that, with probability 1− 2𝑛2−𝛽 ,our squared row norm can be
bounded

𝑛∑︁
𝑑=1

|Z ′𝑐𝑑 |
2 ≤ 2max

{
`0𝑛𝑟 log𝑛

𝑞
,
`2

0𝑛
2𝑟3 log2 𝑛

𝑞2

}
4−(𝑘−1)

( `0𝑟

𝑛

)
,

thus with probability 1−4𝑛3−𝛽 , by union bound and applying corresponding across rows 𝑐, we have

∥W(UV∗)
𝑘

∥2
𝑏 ≤ 2max

{
`0𝑛𝑟 log𝑛

𝑞
,
`2

0𝑛
2𝑟3 log2 𝑛

𝑞2

}
4−(𝑘−1)

( `0𝑟

𝑛

)
.

So, as was the case for W(U)
𝑘

, for 𝑞 ≥ 𝐶1`0𝑛𝑟
3/2 log𝑛 we obtain ∥W(UV∗)

𝑘
∥𝑏 ≤ 2−𝑘 (`0𝑟/𝑛), as desired.
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