
A Modular Framework for Socially Compliant Robot

Navigation in Complex Indoor Environments

Sara Pohland
Claire Tomlin

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-36

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-36.html

May 4, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



A Modular Framework for Socially Compliant Robot Navigation in Complex Indoor
Environments

by

Sara Pohland

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire Tomlin, Chair
Professor Sergey Levine

Spring 2022



1

Abstract

A Modular Framework for Socially Compliant Robot Navigation in Complex Indoor
Environments

by

Sara Pohland

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Claire Tomlin, Chair

An important challenge in human-robot interaction is the design of socially compliant robot
navigation policies that enable safe navigation around crowds of people. Deep reinforcement
learning is a popular and effective method to predict human motion and plan paths that
avoid collisions with humans while following social norms. While various deep reinforce-
ment learning methods have proven effective for generating crowd-aware navigation policies,
these policies generally assume the robot is operating around humans in a large open en-
vironment, which is not reflective of typical indoor spaces. To design a socially compliant
robot navigation policy that works effectively in complex indoor spaces with walls and other
stationary objects, I combined a deep reinforcement learning policy with a global path plan-
ning algorithm and a custom safety controller. Combining all these elements in a modular
framework, I enabled a robot to reach its goal from an arbitrary starting position, while
limiting close encounters with humans and avoiding collisions with humans and stationary
objects. I found that my policy achieves an overall success rate of over 99% when tested in
a diverse set of simulation environments comprising different geometries and distributions
of humans and stationary obstacles. When compared against a baseline navigation policy
that does not utilize learning, I found that my modular approach results in better naviga-
tion performance and greater compliance to human social norms. I also implemented my
approach on a physical robot to navigate real-world indoor spaces with various humans and
stationary objects. These simulation and real-world results demonstrate the value of using
learning-based methods as a single component of a larger framework to develop navigation
policies that are effective in real-world settings and comfortable for people.
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Chapter 1

Introduction

1.1 Socially Assistive Robots

Overview

Socially assistive robots (SARs) are defined as robots that provide some form of assistance to
human users through social interaction, rather than physical interaction [16]. These robots
have been used to benefit several different populations of users in various different envi-
ronments. They have been found to be particularly helpful in assisting elderly populations,
individuals in convalescent care, individuals with physical impairments, and individuals with
social and mental disorders in hospitals, assisted living homes, and schools [16].

Robots in Healthcare Centers

SARs are commonly used in hospitals, rehabilitation centers, and other healthcare centers,
where they have been found to ease the workload on the healthcare workers, allowing staff
members to focus more on critical tasks and caring for patients, thus increasing the over-
all efficiency of these facilities [11], [30], [19]. Within healthcare facilities, SARs have been
used as nursing assitants to fetch and distribute supplies, such as food trays, medicines, and
laboratory specimens [11], [30]. Besides reducing the general burden on healthcare workers,
SARs are particularly beneficial when dealing with patients with contagious illnesses. Unlike
nurses and other staff members, robots are not vulnerable to viruses and other microorgan-
isms. This makes SARs useful for collecting specimens from patients for disease screening,
disinfecting hospital environments, delivering supplies to infected patients, and collecting
information on the physiological conditions of patients who may be contagious [22].

Robots in Elderly Communities

There is also a particular interest in using SARs to aid elderly populations in nursing homes
and assisted living communities. The worldwide population is rapidly aging, and it has been
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projected that 21.1% of the population will be above the age of 60 years by 2050, presenting
an increasing need for caregivers [30]. Despite this need, it is predicted that there will be
a worldwide shortage of more than 100,000 caregivers for the elderly population by 2030
[19]. This presents a strong desire to provide support to caregivers that are increasingly
burdened by caring for the ever-growing number of senior patients. SARs are able to assist
older adults mentally by providing reminders, emotional support, and motivation, as well
as physically by delivering items and assisting with daily tasks [30]. They have also been
used as companions to enrich the social lives of elderly populations and address loneliness
and isolation, which are very high in elderly populations [19], [11]. SARs are particularly
useful in supporting older adults with dementia, Alzheimer’s disease, and related cognitive
impairments [11], [26], as well as older adults with depression [35], [19]. Overall, SARs can
improve the quality of life of elderly populations, reduce depression, increase independent
living, enhance well-being, and reduce isolation and loneliness [12], [19]. In addition, studies
have found that elderly populations have a positive perception of SARs [12], [17].

Robots in Schools

The final application of SARs that is currently very popular is in education. SARs have been
used to diagnose and assist in the education of children with social and mental disabilities
[30]. Studies have shown that SARs can therapeutically interact with children who have
autism, and this research can be generalized to other cognitive and behavioral disorders
[16]. In addition, there is interest in using SARs to serve as tutors and coaches within
school settings to support student learning [16]. These robots have also been employed as
companions in elementary schools to facilitate interaction among students from different
social groups and populations, especially within special education classrooms [16].

1.2 Socially Compliant Robot Navigation

Socially Compliant Behavior

It is desirable for SARs to behave in a way that is socially compliant. In designing socially
compliant robot behavior, there are four main goals to consider: comfort, naturalness, effec-
tiveness, and sociability. Comfort refers to the absence of annoyance and stress for humans
while interacting with and around robots [28]. Note that comfort is different from safety
because humans may not feel comfortable around a robot, even if it is moving in a way that
avoids collisions. Rather than simply seeking to avoid collisions, a socially compliant robot
should keep a large enough distance between itself and nearby humans to prevent emotional
discomfort. Discomfort can also be reduced by appropriately changing the velocity of the
robot when it approaches a human and encouraging the robot to approach humans from
the front, among other methods. Naturalness refers to the similarity between robots and
humans in low-level behavior patterns [28]. A robot that moves naturally seeks to mimic the
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navigation patterns of humans. Effectiveness refers to the ability of the robot to complete
desired tasks. Finally, sociability refers to the adherence of robot policies to explicit high-
level cultural conventions [28]. This aspect of social compliance relates to very particular
robot behaviors and is not commonly studied in robot navigation.

Human Trajectory Models

One branch of work in socially compliant robot navigation attempts to explicitly model the
trajectories of pedestrians in the environment and plan a path around these trajectories.
Within this area, there has been work on capturing relevant aspects of human trajectories
to determine the probability distribution that underlies human navigation behavior [29].
Another approach uses a feature-based maximum entropy model to predict joint behavior of
heterogeneous groups of agents from onboard data [34]. There has also been work to model
humans in terms of mixture distributions that capture both discrete navigation decisions and
the natural variance of human trajectories [27]. More recently, there have been efforts to
models danger zones for the robot by considering all possible actions that humans can take
at a given time [37]. While explicitly modeling pedestrian trajectories works well in settings
with very few pedestrians, it does not scale well to environments with a greater number of
people. It has become very popular to use reinforcement learning methods because they
have been shown to generate socially compliant behavior in larger crowds of pedestrians
[7]. There are two main branches of reinforcement learning that have been explored: deep
reinforcement learning and interactive reinforcement learning.

Deep Reinforcement Learning

As mentioned, one very popular approach to generating socially compliant robot navigation
algorithms is to use deep reinforcement learning, through which the robot seeks to learn
a policy that maximizes its expected accumulation of a developer-designed reward through
trial and error. This approach generally focuses on the comfort aspect of socially compliant
robot navigation algorithms by encoding comfort criteria into the reward function. Among
the deep reinforcement learning approaches, one of the earlier ones developed a decentralized
multi-agent collision avoidance algorithm that offloads interaction pattern predictions to an
offline learning procedure [8]. Building on this work, there was later a method proposed
that uses long short-term memory (LSTM) to enable the algorithm to use observations
of an arbitrary number of other agents [14]. Another algorithm inspired by the original
decentralized multi-agent collision avoidance algorithm presented a multi-scenario multi-
stage training framework in an effort to reduce the performance gap between decentralized
and centralized methods [32]. Another expansion of this work sought to focus on avoiding
violations of social norms, rather than specifying precise mechanisms of human navigation
[9]. The decentralized learning approach was later expanded to enable the network to identify
and pay attention to the humans in the crowd that are most critical to navigation [10]. After
this paper, there was a very popular paper that used an attentive pooling mechanism to learn
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the collective importance of neighboring humans with respect to their future states [7]. This
paper then inspired policies that consider both static and dynamic objects [31], as well as
policies that focus on robot navigation behavior that follows group social norms [24].

Interactive Reinforcement Learning

Another very popular approach to generating socially compliant robot navigation algorithms
uses interactive reinforcement learning, through which a human delivers explicit or implicit
feedback to the agent. This approach generally focuses on the naturalness aspect of so-
cially compliant robot navigation algorithms because the robot seeks to mimic the human
demonstrator. Within this area of work, various methods have been explored to learn a good
reward function. One approach uses a flexible graph-based representation of socially nor-
mative human behavior and extends Bayesian inverse reinforcement learning to use sampled
trajectories from this representation [33]. Another approach used to learn a good reward
function uses maximum entropy deep inverse reinforcement learning (MEDIRL) [15]. Most
recently, there have been efforts to learn a reward function while eliminating the additional
sample complexity associated with inverse reinforcement learning [2]. Another area of work
in interactive reinforcement learning uses a generative adversarial imitation learning (GAIL)
strategy, which improves upon a pre-trained behavior cloning policy to mimic human behav-
ior [40]. There has also been a limited amount of work that combines deep reinforcement
learning and interactive reinforcement learning methods to generate robot behavior that is
both comfortable and natural [41].

Comparison of Navigation Methods

As mentioned previously, explicitly modeling pedestrian trajectories does not scale well to
environments with a large number of people. While both deep reinforcement learning meth-
ods and interactive reinforcement learning methods have been effective in generating socially
compliant robot navigation policies in environments with an arbitrary number of pedestri-
ans, there are benefits and drawbacks of both approaches. While deep reinforcement learning
methods have been effective at generating robot behaviors that are safe and comfortable to
the user, it is difficult to design a reward function that can generate a policy that is both
comfortable and natural [41]. On the other hand, interactive reinforcement learning can gen-
erate robot behavior that is natural, but a lack of negative examples, such as collisions, can
lead to a model that only focuses on naturalness without considering comfort or safety [41].
Interactive reinforcement learning also has the drawback that manual feature engineering is
necessary to get reasonable performance [41], [1]. Another interesting consideration to note
is that policies that aim to mimic human behavior may lead to unfair behavior by replicat-
ing, promoting, and amplifying societal issues, such as discrimination and segregation [21].
It is also important to consider whether comfort or naturalness is a better measure of social
compliance for robot navigation algorithms. Because robots are not humans, people do not
necessarily expect robots to operate exactly like a human would and may be distrustful of
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their behavior. For this reason, I would argue that is more important to focus on the comfort
aspect of socially compliant robot navigation algorithms. With all of these aspects consid-
ered, I believe that deep reinforcement learning is the most promising direction to explore
when developing socially compliant robot navigation policies.

1.3 Path Planning Algorithms

Overview

Path planning algorithms are used to find safe and efficient paths that autonomous systems
can follow from their initial location to a target destination while avoiding collisions with
obstacles [23]. Path planning algorithms can generally be divided into two categories: global
planners and local planners [6]. These planners differ based on their assumptions of the
environmental information that the robot can acquire during the navigation process. Global
planners generally only use a static global map to generate a collision-free path to the goal
position that remains fixed throughout the navigation process. Local planners use knowledge
of dynamic obstacles to generate shorter paths that may change during the navigation pro-
cess. I will discuss popular global and local planners, focusing on foundational algorithms.
There has been additional research that expands on many of these algorithms to improve
their performance or efficiency, but I will avoid discussion of these variations.

Global Planners

Among global planners, some of the first and most widely explored algorithms rely on grid-
based search. These algorithms include the Dijkstra algorithm [13], the A* algorithm [20],
and the D* algorithm [38], along with their many variations (some of which are discussed in
[23]). The Dijkstra algorithm is one of the first proposed algorithms that is still used today,
which constructs the tree of minimum total length between nodes in the space and finds the
path of minimum length between any two nodes [13]. This algorithm performs blind searches,
making it computationally intensive. To address this issue, the A* algorithm incorporates
heuristic information from the problem domain into the graph searching algorithm [20].
While this algorithm works well in environments in which the global map is well known,
it does not perform well if the map of the environment is not well known before planning.
To allow for changes in the global map, the D* algorithm provides a method for efficiently
replanning when updates in the map are received [38].

While grid-based search algorithms are effective and widely used in relatively simple two-
dimensional environments, they are generally too computationally expensive to use in large,
complex environments. This limitation led to research on random sampling algorithms.
Among random sampling algorithms, the most popular is Rapidly-exploring Random Trees
(RRTs), which is a randomized data structure that is iteratively expanded by applying
control inputs that drive the system towards randomly selected points [39]. Because RRTs
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are efficient and effective in dynamic and high-dimensional environments, there has been an
extensive amount of research on methods to expand and improve on this approach.

Another class of algorithms that were designed to be used in high-dimensional environments
are roadmap planners. Among these are the Probabilistic Roadmap (PRM) planner [25] and
the Voronoi Roadmap planner [5]. The PRM planner constructs a probabilistic roadmap of
feasible paths between collision-free configurations, then searches this map for a path joining
the initial and goal positions of the robot [25]. The Voronoi Roadmap planner performs a
similar procedure, utilizing a Voronoi diagram [5].

Local Planners

Compared to global planners, there has been less research into local planners. The three
main local planners that are most foundational are the Velocity Obstacle (VO) planner [18],
the Reciprocal Velocity Obstacle (RVO) planner [3], and the Optimal Reciprocal Collision
Avoidance (ORCA) planner [4]. The VO planner generates maneuvers to avoid static and
moving obstacles by selecting robot velocities outside of the set that would result in a colli-
sion with an obstacle that moves at a fixed velocity for some time [18]. While this method
considers passively moving obstacles, the RVO planner takes into account the reactive be-
havior of other agents by assuming that the other agents follow similar collision-avoidance
procedures [3]. The ORCA planner is an expansion of this work, which allows the robot to
avoid collisions with moving obstacles while obeying acceleration constraints [4].

1.4 Project Goals

In order to employ SARs in real-world environments, they need to be equipped with so-
cially compliant navigation policies that perform effectively in complex indoor spaces with
a variable number of people and stationary objects. While there has been a significant
amount of research conducted on socially compliant robot navigation algorithms, most of
these algorithms have been trained and tested in large open environments without stationary
obstacles, greatly limiting their application to real-world environments. On the other hand,
path planning algorithms can be employed in more complex environments if a map of the
environment is known, but they do not consider the need for socially compliant behavior.
My goal is to combine the benefits of these approaches and enable a robot to navigate in
complex indoor spaces while following social norms and avoiding collisions with humans
and stationary objects. With this goal in mind, I design a modular framework that uses a
socially-aware deep reinforcement learning policy as a single component.
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Chapter 2

Deep Reinforcement Learning

2.1 Overview of Reinforcement Learning

Reinforcement learning (RL) can be defined as a mathematical formalism for learning-based
decision making. While controllers and policies governing a system are often designed by
hand using a model of the system, RL is an approach for decision making and control
used to develop a controller or policy from experience. Suppose there is an agent in some
environment with an assigned task. Rather than explicitly telling the agent how to complete
its task, the agent learns how to complete the task through trial and error by interacting
with its environment. The agent is able to receive an observation reflecting the state of the
environment, take an action, and receive the resulting reward and a new observation from
the environment. Based on the rewards it receives, the agent learns which actions are best
to take for a given observation. Figure 2.1 below depicts this learning process.

Figure 2.1: Overview of the reinforcement learning process.
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Neural networks (NNs) are a very popular mathematical structure that can effectively ap-
proximate nonlinear relationships between data and labels. The model of this relationship
can then be used to label previously unseen data. A neural network model is learned through
optimization of a cost function, tuned via hyperparameters. The model architecture spec-
ifies the flow of information between the network layers, which defines the composition of
functions that the network performs from input to output. The model aims to minimize a
cost function, which depends on the true labels and predicted values, and the optimization
algorithm is used to minimize the cost function. The neural network also depends on a set
of hyperparamters, including the learning rate and batch size, among others.

Deep learning is a branch of machine learning that uses neural networks with multiple layers.
Deep reinforcement learning is the combination of deep learning and reinforcement learning,
which allows agents to make decisions from unstructured input data without manually engi-
neering the feature space. The benefit of deep reinforcement learning algorithms is that they
are able to receive very large and complex sensory inputs and decide what actions to per-
form to optimize an objective. These algorithms are able to make decisions based on data,
without the need for well-defined rules about what actions to take in different scenarios.

2.2 Reinforcement Learning Problem

The RL problem can be formulated as an optimization problem, using the notation below:

S – state space describing the set of all possible states of the system

O – observation space describing the set of all possible observations of the system

A – action space describing the set of all possible actions performed by the agent

st ∈ S – true state of the system at time t

ot ∈ O – observed state of the system at time t

at ∈ A – action take by the agent at time t

p(st+1|st, at) – probability of the next state given the current state and action

p(ot|st) – probability of an observation given the current state

πθ(at|ot) – probability of taking an action given the current observation

θ – set of parameters defining the policy governing the agent

r : S ×A → R – reward function

r(st, at) – reward earned for taking some action from the current state
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Figure 2.2 depicts the relationship between the components of the RL problem.

Figure 2.2: State transitions in the reinforcement learning decision process.

The goal of reinforcement learning is to find the best parameters θ∗, which define the optimal
policy πθ∗(at|ot), such that the optimal policy maximizes the expected sum of rewards. Note
that, for some parameters θ, the policy πθ(at|ot) governing the action of the agent for a
given observation is a probability distribution over the action space, conditioned on the
observation. When the agent is running its policy, it receives an observation ot and samples
an action at from the distribution πθ(at|ot). The environment then responds with a reward
r(st, at). Using the probability distributions defined, the state transition probability is

pθ(st+1, at, ot, st) = p(st+1|st, at)πθ(at|ot)p(ot|st)p(st)

Often, we are interested in the sequence of state transitions over T discrete time steps. I will
use τ to denote this trajectory of T state transitions, which can be defined as

τ =
{

(s1, a0, o0, s0), . . . , (sT , aT−1, oT−1, sT−1)
}

The probability distribution of the trajectory induced by the policy is then

pθ(τ) = p(s0)
T−1∏
t=0

p(st+1|st, at)πθ(at|ot)p(ot|st)

With this notation, the reinforcement learning problem can formally be expressed as

max
θ

Eτ∼pθ(τ)

[
T−1∑
t=0

r(st, at)

]
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2.3 Value Network Algorithms

Value Functions

To solve the RL problem, it is useful to define the Q function as the total expected reward
earned over time for taking action at from state st, which is expressed as

Qπ(st, at) =
T∑
t′=t

E(st′ ,at′ )∼pθ(st′ ,at′ |st,at)
[
r(st′ , at′)

]
It is also useful to define the value function as the expected value of the Q function over all
possible actions sampled from the policy πθ(at|ot), which is the total expected reward from
the given state st. The value function can be expressed more formally as

V π(st) = Eat∼πθ(at|st)
[
Qπ(st, at)

]
Target Values

In value network algorithms, a neural network is used to obtain a model V̂ π
φ of the value

function V π. If the length T of each episode is large, the value function can get infinitely
large. To deal with this issue, it is beneficial to use a discount factor γ ∈ [0, 1] with the idea
that the policy should favor more immediate rewards. The Q function is then defined as

Qπ(st, at) =
T∑
t′=t

γt
′−tE(st′ ,at′ )∼pθ(st′ ,at′ |st,at)

[
r(st′ , at′)

]
= r(st, at) +

T∑
t′=t+1

γt
′−tE(st′ ,at′ )∼pθ(st′ ,at′ |st,at)

[
r(st′ , at′)

]
= r(st, at) + γ

T∑
t′=t+1

γt
′−(t+1)E(st′ ,at′ )∼pθ(st′ ,at′ |st,at)

[
r(st′ , at′)

]
= r(st, at) + γE(st+1,at+1)∼pθ(st+1,at+1|st,at)

[
Qπ(st+1, at+1)

]
= r(st, at) + γEst+1∼pθ(st+1|st,at)

[
V π(st+1)

]
If the next state st+1 is known, then the Q function can be expressed as

Qπ(st, at) = r(st, at) + γV π(st+1) ≈ r(st, at) + γV̂ π
φ (st+1)

As mentioned, the goal of value function learning is to find a model V̂ π
φ that best approximates

the true value function V π. Therefore, the target value yt for a state st is

yt = V π(st) = Eat∼πθ(at|st)
[
Qπ(st, at)

]
≈ Eat∼πθ(at|st)

[
r(st, at) + γV̂ π

φ (st+1)
]
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Optimal Policy

The Q function and value function can be used to measure the advantage of taking action at
from state st. The advantage function is defined as the Q function minus the value function
and can be viewed as a measure of how the action at compares to the average over all of the
actions obtained from the policy πθ(at|ot). The optimal action for a given state st is then

a∗t = arg max
at∈A

(
Qπ(st, at)− V π(st)

)
= arg max

at∈A
Qπ(st, at) ≈ arg max

at∈A

(
r(st, at) + γV̂ π

φ (st+1)
)

For this choice of action, the conditional probability πθ(at|st) is implicitly defined as

πθ(at|st) =

{
1 if at = arg maxat∈A

(
r(st, at) + γV̂ π

φ (st+1)
)

0 otherwise

If it assumed that the policy πθ always chooses the optimal action, the target is simply

yt ≈ Eat∼πθ(at|st)
[
r(st, at) + γV̂ π

φ (st+1)
]

= r(st, a
∗
t ) + γV̂ π

φ (st+1)

The loss function used to update the value network parameters will be denoted `, thus the
value network seeks to minimize the objective `

(
V̂φ(st), yt

)
. Typically, mean squared error

(MSE) is used as the loss function, but other functions may be used as well. Given a positive
learning rate α, the parameters of the value network are updated using gradient descent:

φ← φ− α d

dφ
`
(
V̂φ(st), yt

)
Epsilon-Greedy Policy

While the optimal action is found by computing the argmax of the reward plus the discounted
value function over the action space, this may not be the best choice of action when modeling
the value function using a neural network. If the model of the value function does not provide
a good reflection of the true value function, the “optimal” policy may learn bad actions that
never lead to high rewards. A better policy to use during training is the epsilon-greedy
policy, which takes the action believed to be optimal with probability 1− ε and some other
action in the action space with probability ε. For this policy, πθ(at|st) is given by

πθ(at|st) =

{
1− ε if at = arg maxat∈A

(
r(st, at) + γV̂ π

φ (st+1)
)

ε
|A|−1 otherwise

By using this policy during training, the agent can explore more states, improving its model
of the value function. Often, ε is chosen to decay over time as the model of the value function
improves. This is done to balance the exploration-exploitation trade-off. The robot is able
to explore more states early in training, then exploit its model towards the end of training.
Once the value function model has been trained and can provide a descent estimate of the
true value function, the agent can be deployed using the optimal policy.
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Replay Buffer

Because sequential states are strongly correlated, iterative algorithms that rely on state
transitions from entire trajectories can lead to overfitting. One way to address this issue is
to use a replay buffer to store state transitions, consisting of the initial state s, the action a,
and the next state s′ after taking this action. Using this solution, the algorithm will obtain
a batch of M state transitions sampled randomly from the replay buffer at each iteration
and will use this batch to update the model of the value function. Now that the samples
are chosen randomly, rather than sequentially, the samples are no longer highly correlated.
I will use si to denote the initial state, ai to denote the action, and s′i to denote the the next
state in the ith sample. The target value yi corresponding to this sample is now

yi = r(si, ai) + γV̂ π
φ (s′i)

The parameters of the value network will now be updated using stochastic gradient descent:

φ← φ− α 1

M

M∑
i=1

d

dφ
`
(
V̂φ(si), yi

)

Target Network

Notice that because the target value given previously depends on the model of the value
function, it changes with each gradient descent step. Because the target value is constantly
changing, it is difficult for the algorithm to converge to the true value function. One way
to address this issue is to use a target network to obtain an additional model of the value
function to be used when computing the target value. The target network is designed to
track the value network, but this network updates more slowly. This ensures that the target
values do not change in the inner loop of the algorithm. Now the target network will estimate
the value function using the model V̂ π

φ′ and the target values will be defined by

yi = r(si, ai) + γV̂ π
φ′(s

′
i)

Algorithm Parameters

In the value network algorithm, there are several parameters that can be chosen for the
specific RL problem: the discount factor γ, learning rate α, batch size M , number of training
episodes N , target update interval τTU , and epsilon ε. As mentioned previously, the discount
factor γ is used to capture the idea that the agent should favor more immediate rewards. If
the discount factor is one, the agent gives equal weight to the reward at each time step of the
trajectory, and as the discount factor is decreased, the agent becomes more short-sighted.
As shown previously, the learning rate α is used in gradient descent and determines the rate
at which the value network weights are updated. The batch size M is the number of state
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transitions sampled from the replay buffer to update the value network parameters at each
iteration. The number of training episodes N is the number of times the full set of steps in
the value network algorithm is run. The target update interval τTU specifies the frequency
with which the the target network is updated using the value function network parameters.
Finally, the parameter ε used in the epsilon-greedy policy determines how often the agent
is expected to take an exploratory action and how often it will take the action believed to
be optimal. If epsilon is zero, the agent will always take the optimal action, and if it is one,
it will always take a random action. As mentioned previously, it is generally desirable to
choose epsilon to decay to a value closer to zero as training progresses.

Algorithm Pseudocode

Algorithm 1 provides the general structure of the value network algorithm.

Algorithm 1 Value Network Algorithm

1: Initialize the parameters φ and φ′ of the value network and target network.
2: Initialize the replay buffer using state transitions from some policy.
3: for episode = 1→ N do
4: Set t← 0
5: repeat
6: Determine the optimal action for the current state using the epsilon greedy policy:

a∗t ∼ πθ(at|st)

7: Take the optimal action, observe the state transition, and add it to the replay buffer.
8: Randomly sample a batch of M state transitions from the replay buffer.
9: Compute the target value for each of the M samples in the batch:

yi = r(si, ai) + γV̂ π
φ′(s

′
i), i = 1, . . . ,M

10: Update the value function network parameters using stochastic gradient descent:

φ← φ− α 1

M

M∑
i=1

d

dφ
`
(
V̂φ(si), yi

)
11: Increment the current time step: t← t+ 1.
12: until st reaches a terminal state or t ≥ tmax
13: if episode mod τTU = 0 then
14: Update the target network parameters: φ′ ← φ.
15: end if
16: end for
17: return V̂φ
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Chapter 3

Proposed Robot Navigation Policy

3.1 Problem Formulation

Goals of the Policy

The goal of my socially compliant robot navigation policy is to enable a robot to efficiently
navigate in complex indoor spaces while following social norms and maintaining safety. More
specifically, from any arbitrary starting position, the robot should be able to navigate to any
predefined goal position, while limiting uncomfortable encounters with humans and avoiding
collisions with humans, small stationary objects, and walls. Because SARs generally operate
in familiar, known environments, I assume the robot will have access to a map of the walls in
its environment during navigation. Most real-world robots are also equipped with cameras
or motion sensors used for odometry measurements, so I assume the robot will also have
some knowledge of its own state. In addition, it can be assumed that the robot has cameras
or lidar sensors that allow it to detect and track obstacles in its field of view, so the robot
will also have some knowledge of the state of nearby humans and objects.

State Space

The full state of the robot, the full state of the ith human, and the full state of the jth
stationary object are represented by s(r), s(hi), and s(oj) respectively and are given below:

s(r) =
[
p
(r)
x p

(r)
y v

(r)
x v

(r)
y r(r) g

(r)
x g

(r)
y v

(r)
pref θ(r)

]
s(hi) =

[
p
(hi)
x p

(hi)
y v

(hi)
x v

(hi)
y r(hi) g

(hi)
x g

(hi)
y v

(hi)
pref θ(hi) 1

]
s(oj) =

[
p
(oj)
x p

(oj)
y v

(oj)
x v

(oj)
y r(oj) g

(oj)
x g

(oj)
y v

(oj)
pref θ(oj) 0

]
where (px, py) is the current position, (vx, vy) is the velocity, r is the radius, (gx, gy) is the
goal position, vpref is the preferred velocity, and θ is the turning angle corresponding to the
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robot, human, or stationary object. The current position, velocity, goal position, and turning
angle are all measured with respect to a fixed world frame. The radius is measured assuming
that each robot, human, and object can be represented using a circle with a fixed radius.
The preferred velocity is the maximum possible speed of each agent, which is the speed it
would travel at if nothing is obstructing its path. The last term of the human state s(hi) and
object state s(oj) is a flag used to distinguish between humans and stationary objects. If the
environment contains N humans and M objects, the joint state is

s =
[
s(r) s(h1) . . . s(hN ) s(o1) . . . s(oM )

]
Observation Space

It is assumed that the robot has access to its full state but only has knowledge of a portion
of the state of each human and object. The observable state of the robot, ith human, and
jth object are represented by o(r), o(hi), and o(oj) respectively, as given below:

o(r) =
[
p
(r)
x p

(r)
y v

(r)
x v

(r)
y r(r) g

(r)
x g

(r)
y v

(r)
pref θ(r)

]
o(hi) =

[
p
(hi)
x p

(hi)
y v

(hi)
x v

(hi)
y r(hi) 1

]
o(oj) =

[
p
(oj)
x p

(oj)
y v

(oj)
x v

(oj)
y r(oj) 0

]
If the environment contains N humans and M objects, the complete observable state is

o =
[
o(r) o(h1) . . . o(hN ) o(o1) . . . o(oM )

]
In existing socially-aware RL policies used for robot navigation, it is generally assumed that
all of the humans and stationary objects are visible to the robot at all times. However,
in real-world environments, the robot is generally not able to view all of the obstacles it
will encounter at all times during navigation. To make my RL policy viable for real-world
environments, I created an option to restrict the observations of the robot to only those
that could be realistically obtained. Assuming a 360 degree field of view with a four meter
detection range, I ensure that only humans and stationary objects that are within the robot’s
detection range are visible to the robot. I also prevent the robot from viewing humans and
objects that are obstructed by another human, object, or wall.

Action Space

The robot receives x and y velocity commands as actions under the assumption that the
velocity of the robot can be achieved instantly after the action command is received. The
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action space is discretized into 5 speeds exponentially spaced in the range (0, v
(r)
pref ] and 16

rotations evenly spaced in the range [0, 2π). The set V of speeds and set Φ of rotations are

V =

{(
e1/5 − 1

e− 1

)
v
(r)
pref ,

(
e2/5 − 1

e− 1

)
v
(r)
pref ,

(
e3/5 − 1

e− 1

)
v
(r)
pref ,

(
e4/5 − 1

e− 1

)
v
(r)
pref , v

(r)
pref

}

Φ =

{
0,

π

16
,
π

8
,

3π

16
,
π

4
,

5π

16
,

3π

8
,

7π

16
,
π

2
,

9π

16
,

5π

8
,

11π

16
,

3π

4
,

13π

16
,

7π

8
,

15π

16

}
The robot is also able to receive a stop command, resulting in 81 possible discrete actions.
Figure 3.1 depicts all 81 of the actions available in the discrete action space.

Figure 3.1: Aside from the stop command, each of the discrete actions
in the action space is the combination of a speed v ∈ V and a rotation
φ ∈ Φ. Each ring on the wheel shown represents an available speed, and
each spoke is a possible rotation. Every point where a circle and line
intersect is an available action in the discrete action space.
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Simulation Environment

I designed a simulation environment built on OpenAI Gym, which is based on the CrowdNav
simulation environment.1 I modified this environment to allow for the distinct representation
of randomized humans, stationary objects, and walls. An example is shown in Figure 3.2.

Figure 3.2: This is an example of the simulation environment used to train
the robot navigation policy that only includes boundary walls shown in
black. The goal of the robot (blue circle) is to move from its starting
position at the bottom of the room to the goal (red star) at the opposite
side of the room. In this example, there are 4 humans shown in green
with random initial and goal positions, and there are 5 stationary objects
shown in yellow with random positions. This example is shown across four
different times along the robot’s path towards the goal.

1https://github.com/vita-epfl/CrowdNav
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3.2 Overview of Approach

As mentioned in Section 1.2, deep RL algorithms are effective for designing socially compliant
robot navigation policies that allow robots to navigate simple, open spaces while following
human social norms and avoiding collisions with humans. However, existing socially-aware
RL policies cannot generalize to complex indoor environments with walls and other stationary
objects. On the other hand, standard path planning algorithms are able to generate paths
that the robot can take towards its goal in more complex environments, assuming a map of
the environment is known. However, these algorithms treat humans as simple obstacles and
are not designed to generate socially compliant behavior.

RL PolicyEnvironment

Path
Planner

Safety
Controller

Robot

walls

state

waypoints

safe action
space

action

updated state

Navigation Policy

Figure 3.3: My policy is composed of three components: a socially atten-
tive RL policy, a global path planning algorithm to choose waypoints, and
a safety controller to determine the safe action space.

I would like to combine the benefits of each of these approaches by designing a socially
compliant robot navigation policy that can be employed in complex indoor environments.
My goal is to train an RL policy that uses knowledge only of humans and small stationary
objects in randomly generated open environments. At the same time, I explore path planning
algorithms that use a map of the environment, which includes walls but does not contain
humans or small stationary objects. I then use waypoints from the path planning algorithm
to generate local goals for the RL policy. Because the RL policy does not receive information
about walls, I then design a separate safety controller that uses a map of walls in the robot’s
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environment to determine a safe action space to be used by the RL policy. The general
architecture of my policy is shown in Figure 3.3, and all of the components of this architecture
are described in the following sections.

I choose to use this modular architecture to leverage the benefits of deep reinforcement
learning for socially compliant navigation without overloading the capabilities of the neural
network. The most effective socially compliant robot navigation algorithms that depend on
reinforcement learning focus on near-term interactions with humans within close proximity
of the robot. Conversely, global path planning algorithms seek to address longer-horizon
considerations driven by the environment layout and the location of the robot’s ultimate
goal. Relying on a single RL policy to address both of these goals simultaneously would likely
lead to an undesirable trade-off between these two objectives. For this reason, combining an
RL policy with a traditional global path planner seems most reasonable. In addition, it is
difficult to incorporate useful information about the environment layout into the RL policy
effectively. This presents the need for a separate safety controller specifically designed to
avoid collisions with walls. Therefore, I believe a modular framework that uses an RL policy
as a single component would be the most effective approach.

3.3 Reinforcement Learning Policy

Reward Function

Recall that in reinforcement learning, the agent learns a new policy by maximizing a reward
function. To design a policy that enables a robot to reach its goal, while avoiding collisions
and maintaining social norms, I design a reward function that depends on the the following:

Position of the robot at time step t – p
(r)
t =

(
p(r)x , p(r)y

)
t

Position of human i at time step t – p
(hi)
t =

(
p(hi)x , p(hi)y

)
t

Position of object j at time step t – p
(oj)
t =

(
p(oj)x , p(oj)y

)
t

Goal of the robot at time step t – g
(r)
t =

(
g(r)x , g(r)y

)
t

Current distance of robot from goal – dgoal =
∣∣∣∣∣∣p(r)

t − g
(r)
t

∣∣∣∣∣∣
2
− r(r)

Distance of robot to closest human – dhum = min
i∈{1,...,N}

(∣∣∣∣∣∣p(r)
t − p

(hi)
t

∣∣∣∣∣∣
2
− r(r) − r(hi)

)
Distance of robot to closest object – dobj = min

j∈{1,...,M}

(∣∣∣∣∣∣p(r)
t − p

(oj)
t

∣∣∣∣∣∣
2
− r(r) − r(oj)

)
Using these definitions, the reward at time step t is given by

rt = ksuccH(rgoal − dgoal) + kobjH(−dobj) + khumH(−dhum) + kdiscdhumH(ddisc − dhum)
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Note that H(x) is the Heaviside step function, or the unit step function, which is one if x is
greater than zero and zero otherwise. The first term of the reward function rewards the robot
for reaching the goal within some radius, the second term penalizes the robot for colliding
with a stationary object, the third term penalizes the robot for colliding with a human, and
the fourth term penalizes the robot for getting within an uncomfortable distance of a human.
The constants used in this reward function are summarized in Table 3.1.

Parameter Value

Success Reward (ksucc) 1.0
Goal Radius (rgoal) 0.3

Human Collision Penalty (khum) −0.25
Object Collision Penalty (kobj) −0.15

Discomfort Penalty Factor (kdisc) 0.5
Discomfort Distance (ddisc) 0.1

Table 3.1: Reward Function Parameters

Data Processing

The algorithm used to generate the RL policy is a type of value network algorithm, which
was described in Section 2.3. In this type of algorithm, states are fed into a neural network
to generate a model of a value function, which is then used to design a policy expected to
result in high rewards. In the algorithm I use, before the observable state data is passed
into the neural network, it is first transformed to a coordinate frame that is robot-centric
and considers the interactions between the robot and each human/object. Recall that if the
environment contains N humans and M objects, the state that is observable to the robot is

o =
[
o(r) o(h1) . . . o(hN ) o(o1) . . . o(oM )

]
Rather than simply passing the observable state o into the neural network, the observation
is first transformed into a matrix, where each row reflects the interaction of the robot and a
single human or object. This first transformation step results in the matrix

õ =



o(r) o(h1)

...
...

o(r) o(hN )

o(r) o(o1)

...
...

o(r) o(oM )
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Once the observation is expressed in this form, it is then useful to rotate it to a robot-centric
coordinate frame. Consider the first row of the matrix õ given below:

õ1 =
[
p(r)x p(r)y v(r)x v(r)y r(r) g(r)x g(r)y v

(r)
pref θ(r) p(h1)x p(h1)y v(h1)x v(h1)y r(h1) 1

]
Using this information, it is helpful to define the following variables:

Horizontal distance of robot to goal: dgx = g(r)x − p(r)x
Vertical distance of robot to goal: dgy = g(r)y − p(r)y
Total distance of robot to goal: dg =

√
d2gx + d2gy

Angle between robot and goal position: φ = tan−1
(
dgy
dgx

)
Transformed horizontal velocity of robot: ṽ(r)x = v(r)x cos(φ) + v(r)y sin(φ)

Transformed vertical velocity of robot: ṽ(r)y = v(r)y cos(φ)− v(r)x sin(φ)

Transformed horizontal position of human: p̃(h1)x =
(
p(h1)x − p(r)x

)
cos(φ) +

(
p(h1)y − p(r)y

)
sin(φ)

Transformed vertical position of human: p̃(h1)y =
(
p(h1)y − p(r)y

)
cos(φ)−

(
p(h1)x − p(r)x

)
sin(φ)

Transformed horizontal velocity of human: ṽ(h1)x = v(h1)x cos(φ) + v(h1)y sin(φ)

Transformed vertical velocity of human: ṽ(h1)y = v(h1)y cos(φ)− v(h1)x sin(φ)

Total distance of robot to human: dh1 =

√(
p
(h1)
x − p(r)x

)2
+
(
p
(h1)
y − p(r)y

)2
Combined radius of robot and human: rtot = r(r) + r(h1)

With these definitions, the rotated version of the first row of the observation is

õr1 =
[
dg ṽ(r)x ṽ(r)y r(r) v

(r)
pref θ(r) p̃(h1)x p̃(h1)y ṽ(h1)x ṽ(h1)y r(h1) dh1 rtot 1

]
After rotating each row of the observation matrix õ in this way, we are left with an observation
õr, which has been transformed and rotated into a robot-centric coordinate frame. This is the
observation that is used as input to the neural networks described in the following section.

Value Network Architecture

The value network is composed of four different sets of multilayer perceptrons (MLPs), which
I will refer to as MLP1, MLP2, MLP3, and MLP4 and whose layers are given in Table 3.2.
I will use fi to denote the function specified by MLPi with weights Wi for i = 1, 2, 3, 4 and
will use n := N + M to denote the total number of humans and stationary objects in the
robot’s environment. Note that the weight vector includes the bias term for each MLP.
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MLP Layers

1 Linear(14, 150) → ReLU → Linear(150, 100) → ReLU
2 Linear(100, 100) → ReLU → Linear(100, 50)
3 Linear(200, 100) → ReLU → Linear(100, 100) → ReLU → Linear(100, 1)
4 Lin(56, 150) → ReLU → Lin(150, 100) → ReLU → Lin(100, 100) → ReLU → Lin(100, 1)

Table 3.2: The four MLPs in the value network are composed of Rectified Linear Unit
(ReLU) activation functions and linear layers, whose input and output sizes are as shown.

The first goal of the value network is to explicitly model the pairwise interaction between the
robot and each of the humans and objects. The first MLP is used to obtain an embedding
vector ei for each of the n humans and objects, which can be expressed as

ei = f1
(
õri ; W1

)
This embedding vector is then passed through the second MLP to obtain the pairwise inter-
action feature for each of the humans and objects, which is given by

hi = f2
(
ei ; W2

)
The first two MLPs in the value network are used to model the pairwise interaction between
the robot and each of the humans and objects. While this is useful, the number of humans
and objects in the robot’s environment can vary dramatically, and the neural network needs
to obtain a fixed size model of the value function from an arbitrary number of inputs. To
handle this issue, a self-attention mechanism can be used to learn the relative importance
of each human and object in the environment. The self-attention mechanism passes each
of the embedding vectors ei, along with their mean ē, into the third MLP to determine the
attention score of each human and object as shown:

αi = f3
(
ei, ē ; W3

)
where ē =

1

n

n∑
i=1

ei

The softmax function is then applied to each attention score to obtain a normalized set of
weights. From the definition of the softmax function, each weight is given by

ωi = σ(α)i =
eαi∑n
j=1 e

αj

A compact representation of the entire set of humans and objects can then be obtained by
computing a linear combination of the pairwise interaction features hi as given below:

c =
n∑
i=1

ωihi
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The representation c has a fixed size, regardless of the number of humans and objects, and
can be passed into the fourth and final MLP, along with the robot’s transformed state, to
obtain an estimate of the value function for the given observation. From the full transformed
observation, the robot’s transformed state is simply

s =
[
dg ṽ(r)x ṽ(r)y r(r) v

(r)
pref θ(r)

]
With both the representation of the robot s and the representation of the robot’s environment
c, the estimated value function for a given observation can be expressed as

V̂ = f4
(
s, c ; W4

)
The structure of the neural network with all of these components is shown in Figure 3.4.

Figure 3.4: This is the architecture of the neural network used to train a
model of the value function used in the socially-aware RL policy.

Optimal Policy

Recall from Section 2.3 that a popular policy to use during the training phase of value
network algorithms is the epsilon-greedy policy. This policy chooses the action believed to
be optimal with probability 1− ε and randomly selects some other action in the action space
with probability ε. During evaluation, the action believed to be optimal is always chosen.

The optimal action is estimated using the value function described by the neural network
architecture discussed in the previous section. Given the current state s, the expected next
state s′ is determined for each action a in the action space A by using a simple model to
approximate the motion of the robot. The next state is then used as input to the value
network to determine the value V̂ (s′). This value is then multiplied by the discount factor
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γ and added to the reward r(s, a) for the current state and action. The action with the
greatest corresponding value of r(s, a) + γV̂ (s′) is the optimal action:

a∗ = arg max
a∈A

(
r(s, a) + γV̂ (s′)

)
Recall that the action space A is discretized into 5 speeds and 16 rotations, along with a stop
command, resulting in 81 possible actions. Because the action space is discrete, the value of
r(s, a) + γV̂ (s′) can be explicitly computed for each of these 81 actions. The discrete action
corresponding to the maximum value of r(s, a) + γV̂ (s′) is then used to control the velocity
of the robot. Figure 3.5 demonstrates how the optimal action is selected during testing.

Figure 3.5: The image on the left depicts a robot crossing an open room
populated with eight humans and two stationary objects. The image on
the right depicts the value distribution of the action space. Each colored
segment represents one of the 81 possible actions and its color reflects the
relative value. The optimal action is shown in yellow, and the worst set
of actions are shown in purple. Notice that the worst set of actions would
likely result in a collision with pedestrian one, and the best action makes
progress toward the goal by going behind this person.

Training Details

The RL policy was trained in the simulation environment described in Section 3.1. Each
time a simulation is run, a simple square room is generated with a single robot at one edge
of the room whose goal is to move to the opposite side of the room. The distance between
the robot’s initial position and goal position is sampled from a uniform distribution, whose
parameters are given in Table 3.3. There is also a fixed number of humans and stationary
objects with randomly chosen attributes that are sampled from uniform distributions, whose
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parameters are specified in Table 3.3. The stationary objects are given random positions in
the room, and the humans are given random initial positions and goal positions.

Each of the humans is given a goal within its field of view, and its velocities are controlled
using the action specified by the Optimal Reciprocal Collision Avoidance (ORCA) policy [4]
discussed in Section 1.3. Once the human has reached its goal, it is given a new goal, so
the humans are perpetually moving. The robot is always visible to each human, assuming
their view is not obstructed, and the simulated humans treat the robot as if it is another
human operating under the same navigation policy. Note that this may not reflect the true
reactions of real humans. All of the non-human objects are assumed to be stationary.

After initializing the simulation environment for training, at each time step, the robot chooses
an action according to its policy and each human chooses an action according to its policy
until the robot reaches its goal, runs out of time, or collides with a human, object, or wall.
The parameters used to generate each of these training episodes are specified in Table 3.3.

Parameter Value

Distance to Goal [5m, 10m]
Number of Humans 8
Number of Objects 6

Radius of Robot 0.3m
Radius of Humans [0.25m, 0.35m]
Radius of Objects [0.1m, 0.5m]

Preferred Velocity of Robot 1m/s
Preferred Velocity of Humans [0.5m/s, 1.5m/s]

Room Dimensions 14m× 14m
Space Unoccupied by Walls 139.2m2

Time Limit 30 sec
Length of Time Step 0.25 sec

Table 3.3: Training Simulation Environment Parameters

The RL policy was trained using the value network algorithm described in Section 2.3 with
the mean squared error (MSE) loss function. Table 3.4 summarizes the parameters chosen
for training. The discount factor (γ), learning rate (α), batch size (M), number of training
episodes (N), target update interval (τTU), and epsilon (ε) are all discussed in Section 2.3.
The momentum (β) has not yet been discussed but is commonly used in gradient descent
to avoid shallow local minima by preserving some amount of momentum between iterations.
Note that the value of epsilon is chosen such that

ε =

{
εstart +

(
εend−εstart

τε

)
episode if episode ≤ τε

εend otherwise
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Hyperparameter Value

Discount Factor (γ) 0.9
Learning Rate (α) 0.001

Batch Size (M) 100
Number of Training Episodes (N) 10000

Target Update Interval (τTU) 50
Initial Epsilon (εstart) 0.5
Final Epsilon (εend) 0.1
Epsilon Decay (τε) 4000

SGD Momentum (β) 0.9

Table 3.4: Reinforcement Learning Training Parameters

During training, the RL policy is validated after every 1,000 training episodes using 100
previously unseen validation episodes. The success rate across each set of validation episodes
is plotted in Figure 3.6. This figure also shows the training success rate over all 10,000
training episodes, where the success rate is averaged over sets of 200 training episodes.

Figure 3.6: This training curve depicts the success rate during both train-
ing and validation across 10,000 training episodes. Validation is performed
using 100 previously unseen episodes after every 1,000 training episodes,
and the success rate is computed for each set of 100 episodes. For training
data, the success rate is computed using sets of 200 training episodes.
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3.4 Global Path Planner

Probabilistic Roadmap (PRM) Planner

The probabilistic roadmap (PRM) planner is used to generate a path from the robot’s starting
position to its goal position, while avoiding walls specified by the map of the environment.
This path planning algorithm relies on a data structure called a roadmap, which is a network
graph whose nodes V are unoccupied points in the configuration space and whose edges
E are collision-free paths between these points. The configuration space is defined as all
possible positions the robot can attain. Each of these positions may either be occupied or
free, depending on whether a wall is present at that location or not. The PRM planning
algorithm is given the initial position of the robot, the goal position of the robot, the radius
of the robot, and a list of obstacle positions. The algorithm uses this information to generate
a list of coordinates connecting the initial position to the goal. The PRM planning algorithm
follows the general procedure described below and visualized in Figure 3.7.

1. Generate a sample of unoccupied positions.

a) Initialize the set of nodes V with the initial and goal positions of the robot.

b) Sample a random position from the configuration space.

c) If the position is free and sufficiently far from other nodes in V , add it to V .

d) Repeat steps (b) and (c) until the desired number of nodes has been attained.

2. Generate a roadmap from the sampled points.

a) Use the sampled positions in V to generate a kd-tree.

b) For the first sampled point in V , query the kd-tree to find its nearest neighbors.

c) For each of its nearest neighbors, if the path from the neighbor to the given point
does not result in a collision, add this path to the set of edges E.

d) Repeat steps (b) and (c) for each of the sampled points in V .

3. Find the optimal path using the roadmap.

a) Use Dijkstra’s algorithm to find the shortest path between the nodes correspond-
ing to the initial and goal positions in the roadmap.

b) Return the list of nodes in the shortest path from the initial to goal position.
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Figure 3.7: This figure demonstrates how the probabilistic roadmap
(PRM) planning algorithm is used. The blue points were sampled in
the first step of the PRM planning algorithm. Of these points, the ones
with a green X were searched using the Dijkstra algorithm. The red line
is the shortest path along these searched points.

Waypoint Generation

After using the PRM planner to find a collision-free path from the robot’s initial position to
its final goal position, I use this path to generate waypoints for the robot. Waypoints are
chosen to be more dense around corners and doorways and less dense in open spaces to give
the robot more guidance in challenging maneuvers and more freedom when the navigation
task is simple. This is an important consideration because if waypoints are too close, there
may not be enough space to allow for social compliant behavior. However, if waypoints are
too far apart, the global navigation performance may degrade as the robot deviates from the
desired global trajectory. In considering the distance between waypoints, it is also important
to remember the goal distances the robot saw during training because choosing waypoints
very far away from the robot could lead to distributional shift.

To vary the spacing of waypoints, I first conduct a cubic spline interpolation of the points
given by the PRM planner to construct a set of points that are all relatively close together,
beginning at the robot’s initial position and ending at its goal position. From the robot’s
initial position, I construct a small triangle originating from this point with an altitude of
three meters and corresponding angle of eight degrees. I then choose the point in this cone
that is furthest from the starting position to be the first waypoint in the sequence. From
the first waypoint, I choose the second waypoint to be the furthest point in the triangle
originating from the current point. I continue this way until the last waypoint is the robot’s
final goal position. Figure 3.8 helps demonstrate the waypoint selection process.
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Figure 3.8: The dark blue dot represents the robot’s initial position, the red star
represents its goal position, and the black box represents a corner the robot must
navigate around. The equally spaced green dots are obtained by conducting a cubic
spline interpolation of the points obtained from the PRM planner, and the light
blue dots are the robot’s waypoints. From the robot’s initial position, the first
waypoint is the furthest point from the initial position within the gray triangle.
Each subsequent waypoint is chosen in a similar way. The final waypoints are then
denser around the corner and less dense where the robot follows a straight path.

Local Goal Selection

Based on the robot’s current position, its local goal is chosen from the waypoints generated
in the previous section. Initially, the robot’s local goal is set to be the first waypoint after its
starting position. Once the robot has entered within a one meter radius of the first waypoint,
its local goal is set to be the second waypoint in the sequence. After entering within a one
meter radius of this waypoint, its local goal is set to be the third waypoint in the sequence.
This process continues until the robot’s local goal is its ultimate goal position.

As described, local goals are selected from the list of waypoints generated from the collision-
free path provided by the path planning algorithm. The path planning algorithm uses
knowledge of walls in the robot’s environment but does not use knowledge of smaller objects
that may not remain fixed for the robot’s lifetime. For this reason, it is possible for a local
goal to be placed in the same location as a stationary object. To deal with this issue, if
the next waypoint in the robot’s path is in the same location as an object, the robot’s local
goal is shifted to either the left or right side of the object with respect to the robot’s current
position. Figure 3.9 helps demonstrate how a local goal is chosen.
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Figure 3.9: The dark blue dot represents the robot’s current position, the
light blue circles represent its waypoints, the small dark red star represents
its local goal, and the large bright red star represents its final goal position.
The black box represents a corner, the yellow circles represent stationary
objects, and the green circle represents a human. Notice that the robot’s
first waypoint is in the same location as of one of the objects, so the local
goal is shifted to the right side of the object with respect to the robot.

3.5 Safety Controller

Restricting the Action Space

Rather than generating a representation of walls that can be passed into the RL policy, wall
avoidance is handled by limiting the action space of the policy. At each time step, before
determining the optimal action from the RL policy as described in Section 3.3, the safety
controller first determines which directions in the full action space are expected to result
in a collision with a wall, based on the position of the robot and walls within its vicinity.
The RL policy then computes the value of each action among the set of actions that are not
expected to result in a wall collision, and the action with the largest value among these safe
actions is provided to the robot. Figure 3.10 helps to demonstrate how the safety controller
works to limit collisions with walls in the robot’s environment.
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Figure 3.10: The leftmost image shows a situation in which the robot
reaches its goal when the safety controller is employed but collides with
a wall otherwise. The center image shows the value distribution of the
action space without the safety controller, and the rightmost image shows
the value distribution when the safety controller is employed. When the
safety controller is not used, the optimal action shown in yellow results in
a collision. When the safety controller is employed, this action is no longer
valid, and a similar action that does not result in a collision is chosen.

Determining Safe Actions

Recall that the action space is discretized into a set of 5 speeds V and a set of 16 rotations
Φ, which are shown in Figure 3.1. Consider the action (v, φ), which is composed of the
speed v ∈ V and rotation φ ∈ Φ. Within a single time step of ∆t = 0.25 seconds, the robot
will move (v ∗ ∆t) meters in the direction of φ from its initial position (p

(r)
x , p

(r)
y ). If the

robot has a radius of r(r), then a point on it will reach (v ∗∆t + r(r)) meters away from its
initial position. I am interested in whether the robot is expected to collide with a wall when
moving in a straight line to this new point. To check this, I create a triangle originating at
the robot’s initial position with a corresponding angle of π

16
. If this triangle intersects with

a wall, then the associated action is unsafe. Otherwise, the action is assumed to be safe. To
encourage the robot to maintain a comfortable distance away from the walls, I introduce a
safety margin of m = 3 and consider the point (v ∗∆t∗m+ r(r)) meters away from its initial

position (p
(r)
x , p

(r)
y ) in the direction φ. This is demonstrated in Figure 3.11.
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Figure 3.11: As shown in the top image, for each action (v, φ), a triangle
with an altitude dependent on v is drawn pointing in the direction of φ. The
associated action is deemed unsafe if this triangle intersects with a wall and
safe otherwise. The bottom image shows a wall depicted by a black box and
three example actions: one which is unsafe and two that are safe.
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After determining which actions in the entire action space appear to be safe, the set of safe
actions is refined to deal with the fact that the robot has a strictly positive radius and must
navigate around sharp corners. To deal with this issue, actions that neighbor clearly unsafe
actions actions are also deemed unsafe. This idea is demonstrated in Figure 3.12.

Figure 3.12: In this figure, each of the 80 segments is a discrete action composed
of a speed and a rotation, and the dark box represents a wall next to the robot.
In the image on the left, the red segments are actions that are deemed unsafe
through the process described in Figure 3.11, and the green segments are the
actions originally considered safe through this same process. The image on
the right shows how the set of safe actions is refined such that any action that
neighbors an unsafe action is now also deemed unsafe.
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Chapter 4

Experimental Evaluation

4.1 Evaluation Overview

Environment Layouts

I designed several environment layouts that reflect the various hallways, corners, doorways,
and intersections that a robot may encounter in its lifetime. There are seven different layouts
with one to four sets of robot start and goal positions for each. Figure 4.1 depicts three
different basic layouts: an open space, a single long hallway, and multiple hallways. Figure
4.2 and 4.4 each depict an environment with either a wide or narrow intersection and three
different robot goal positions within each layout. Figure 4.3 demonstrates four start and goal
positions for the robot in an environment with various hallways, and Figure 4.5 demonstrates
four start and goal positions for the robot in an environment with various rooms. In total,
there are seventeen environment configurations chosen to reflect the majority of possible
scenarios a robot may encounter when navigating a typical indoor space.

Figure 4.1: The figure on the left demonstrates a situation where the robot navigates
to the opposite side of an open space. In the figure in the center, the robot navigates
to the opposite side of a single hallway. In the figure on the right, the robot navigates
through multiple hallways, where there are multiple paths the robot can take.
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Figure 4.2: These figures depict an environment containing an intersection with
wide hallways. In each figure, the robot starts at the bottom edge of the space and
navigates to either the top, left, or right edge of the environment.

Figure 4.3: These figures depict an environment with various hallways, where the
robot must navigate around humans and stationary obstacles in tight spaces. In
each figure, the robot is given one of two starting positions and one of two goals.
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Figure 4.4: These figures depict an environment containing an intersection with
narrow hallways. In each figure, the robot starts at the bottom edge of the space
and navigates to either the top, left, or right edge of the environment.

Figure 4.5: These figures depict an environment containing various rooms,
where the robot encounters several hallways and doorways. In each figure,
the robot is given a different combination of start and goal positions.
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In my analysis, I grouped the seventeen environment configurations into five qualitatively
distinct groups to better evaluate each component of my modular approach and better
illustrate the utility of my complete architecture (Figure 4.6). These five groups are:

1. Open Space: This group consists only of the open space shown in Figure 4.1, which
is most similar to the environment in which the RL policy was trained.

2. Hallways: This group consists of configurations that are more complex than the open
space but allow the robot to travel in a straight line to the goal. This includes the
single long hallway shown in Figure 4.1, the first wide intersection configuration shown
in Figure 4.2, and the first narrow intersection configuration shown in Figure 4.4.

3. Intersections: This group consists of configurations in which the robot must navigate
around a single corner at a four-way intersection to reach the goal. This includes the
second two configurations shown in Figure 4.2 and the second two shown in Figure 4.4.

4. Doorways: This group consists of configurations containing rooms with doorways the
robot must navigate through, which are all shown in Figure 4.5.

5. Corners: This group consists of configurations that require the robot to navigate
around multiple corners. This includes all four configurations shown in Figure 4.3, as
well as the last configuration with multiple hallways shown in Figure 4.1.

Figure 4.6: The 17 environment configurations are grouped into five cat-
egories: open space, hallways, intersections, doorways, and corners. For
each configuration, walls are shown in black, the blue circle is the robot’s
initial position, and the red star is the robot’s goal.
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Experimental Setup

One hundred trials were performed for each of the 17 environment configurations. For each
trial, the density of humans and density of objects were sampled from a uniform distribution,
whose parameters are specified in Table 4.1. Each circular human was given a random radius
sampled from a uniform distribution, a random preferred speed sampled from a uniform
distribution, and a random starting position. Similarly, each stationary object was given a
random radius sampled from a uniform distribution and a random fixed position. As in the
training environment, all of the non-human objects are stationary. Each human is given a
goal within its field of view, and its velocities are controlled using the action specified by the
Optimal Reciprocal Collision Avoidance (ORCA) policy. Once the human has reached its
goal, it is given a new goal, so the humans are perpetually moving. The robot is always visible
to the human, assuming the human’s view is not obstructed, and the simulated humans treat
the robot as if it is another human operating under the same navigation policy.

After initializing the simulation environment for evaluation, the robot chooses an action
according to its policy at each time step and each human chooses an action until the robot
reaches its goal, runs out of time, or collides with a human, object, or wall. The parameters
used to generate each of these evaluation trials are specified in Table 4.1.

Parameter Value

Density of Humans (humans/m2) [0.02, 0.05]
Density of Objects (objects/m2) [0.01, 0.04]

Radius of Robot (meters) 0.3
Radius of Humans (meters) [0.25, 0.35]
Radius of Objects (meters) [0.1, 0.5]

Preferred Velocity of Robot (m/s) 1
Preferred Velocity of Humans (m/s) [0.5, 1.5]

Time Limit (seconds) 100
Length of Time Step (seconds) 0.25

Table 4.1: Evaluation Simulation Environment Parameters

4.2 Performance of Modular Architecture

I first evaluate the utility of each component of my modular architecture by conducting an
ablation study and analyzing the overall performance of the controller with certain compo-
nents removed. I considered the performance of the RL policy on its own, the RL policy
with just the safety controller, the RL policy with just the global path planner, and the
complete architecture with all three components. In performing this analysis, I considered
the following metrics, which reflect the overall performance of the navigation strategy:
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• Success rate: Percentage of the trials in which the robot reached the goal.

• Human collision rate: Percentage of the trials the robot collided with a human.

• Object collision rate: Percentage of the trials the robot collided with an object.

• Wall collision rate: Percentage of the trials the robot collided with a wall.

• Timeout rate: Percentage of the trials the robot did not reach the goal in time.

As described in Section 3.2, the robot controller I designed is composed of an RL policy,
a global path planner used to generate waypoints, and a safety controller designed to limit
collisions with walls. Table 4.2 helps demonstrate how each of these components impacts
the overall performance of the simulated robot on average.

Path Safety Success Collision Rate (%) Timeout
Planner Controller Rate (%) Human Object Wall Rate (%)

No No 12.3 0.0 0.0 87.5 0.2
No Yes 29.8 0.1 0.0 6.1 64.0
Yes No 97.8 0.2 0.1 1.5 0.5
Yes Yes 99.2 0.1 0.0 0.0 0.7

Table 4.2: This table illustrates the average success rate, collision rates,
and timeout rate across all trials for the RL policy with and without the
path planner, as well as with and without the safety controller.

From Table 4.2, it is clear that, regardless of whether the safety controller is employed,
including a global path planner is necessary for successful robot navigation. As expected,
the RL policy is best used as a local planner in combination with a separate global planner.
From this table, it is also clear that the safety controller increases the success rate of the
robot as well, but this increase is not nearly as great as the increase obtained by employing
the global path planner. The highest success rate, among each combination of controller
components, is over 99% and is obtained by using the RL policy in combination with both
the global path planner and safety controller, indicating that the modular approach proposed
in Section 3.2 is effective and each component of the controller plays an important role.

Rather than simply looking at the average performance across all 1700 trials, it is helpful to
consider the performance within different environment configuration categories. Table 4.3
shows the impact of the controller components on performance across various categories.
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Environment Path Safety Success Collision Rate (%) Timeout
Layout Planner Controller Rate (%) Human Object Wall Rate (%)

Open Space

No No 100.0 0.0 0.0 0.0 0.0
No Yes 100.0 0.0 0.0 0.0 0.0
Yes No 100.0 0.0 0.0 0.0 0.0
Yes Yes 100.0 0.0 0.0 0.0 0.0

Hallways

No No 33.3 0.0 0.0 66.3 0.3
No Yes 93.0 0.3 0.0 0.0 6.7
Yes No 99.7 0.0 0.0 0.0 0.3
Yes Yes 99.7 0.0 0.0 0.0 0.3

Intersections

No No 1.8 0.0 0.0 98.0 0.2
No Yes 14.2 0.0 0.0 0.2 85.5
Yes No 99.8 0.0 0.0 0.2 0.0
Yes Yes 99.8 0.0 0.0 0.0 0.2

Doorways

No No 0.5 0.0 0.0 99.5 0.0
No Yes 16.8 0.0 0.0 1.8 81.5
Yes No 96.8 0.5 0.0 2.0 0.8
Yes Yes 99.0 0.0 0.0 0.0 1.0

Corners

No No 0.0 0.0 0.0 99.8 0.2
No Yes 0.8 0.0 0.0 19.2 80.0
Yes No 95.4 0.2 0.2 3.2 1.0
Yes Yes 98.6 0.2 0.0 0.0 1.2

Table 4.3: This table breaks down the overall performance of the robot controller
across the open space environment used for training and various other categories of
environment layouts. Within each category, performance rates are averaged across
the trials run for each set of configurations in that category and is analyzed with and
without the global path planner, as well as with and without the safety controller.

From Table 4.3, it is evident that the RL policy is 100% successful in open space environ-
ments, regardless of whether a global path planner or safety controller is employed. This
demonstrates that the RL policy is able to generalize to cases where the basic environment
layout is very similar to the one in which it was trained. However, the RL policy on its own
does not generalize well to navigation tasks in more complex environment layouts, resulting
in a low success rate in unseen environments when the global path planner and safety con-
troller are not employed. By introducing just the safety controller for wall avoidance, the
wall collision rate decreases across all of the more complex environment layouts, causing the
success rate of the robot to increase. However, with only the safety controller employed, the
success rate is still relatively low and the timeout rate is quite high. By introducing just the
global path planner, without incorporating the safety controller, the success rate increases to
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over 99% for both the hallway and intersection environments, and the success rate increases
to over 95% for the environments with doorways and multiple corners. Incorporating the
safety controller in addition to the path planner causes the wall collision rate to decrease to
0%, further increasing the success rate of the modular controller to nearly 100% for all envi-
ronment configurations. This indicates that the global path planner is critical for enabling
robot navigation in more complex indoor spaces and demonstrates the effectiveness of the
safety controller in limiting collisions with walls in the environment. In addition, it is clear
that the safety controller is most useful in environments with many doorways and corners.

I ranked the complexity of environment configurations based on the category of the layout
and the density of humans and objects in the space. The simplest configuration is the open
space with a below average density of obstacles, followed by the open space with an above
average density. The complexity of the spaces increases with the order of environment layouts
shown in Table 4.3. The performance of my modular framework with certain components
removed for varying levels of environment complexity is shown in Figure 4.7. This graph
emphasizes the utility of my full modular framework in more complex environments.

Figure 4.7: This graph displays the success rates of the robot controller
across increasing levels of environment complexity with and without the
global path planner, as well as with and without the safety controller.

To see the results of this ablation study for all 17 environment configurations individually,
please refer to Table A.1 and Table A.2 in Appendix A.
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4.3 Safety Controller Analysis

Because the safety controller restricts the action space of the RL policy and prevents it from
choosing the action is believes to be optimal, it is interesting to consider how aggressive this
behavior is. To further analyze how the safety controller interacts with the RL policy in the
modular architecture to prevent wall collisions, I collect data on the following:

• Safety active: Percentage of time the safety controller is active, as determined from
the number of times the safety controller adjusted the action that the RL policy would
have chosen from the unrestricted action space.

• Safety speed: Average speed of the robot when the safety controller is active.

Table 4.4 demonstrates how often the safety controller is active, both when the global path
planner is and is not employed. This table also indicates the speed of the robot when the
safety controller is actively restricting the action space of the RL policy.

Environment Path Safety Active (%) Safety Speed (m/s)
Layout Planner (avg ± std) (avg ± std)

Open Space
No 0.00 ± 0.00 –
Yes 0.00 ± 0.00 –

Hallways
No 33.70 ± 30.83 0.24 ± 0.18
Yes 0.04 ± 0.56 0.76 ± 0.22

Intersections
No 83.14 ± 20.95 0.18 ± 0.13
Yes 1.51 ± 6.64 0.39 ± 0.15

Doorways
No 77.69 ± 22.67 0.20 ± 0.15
Yes 3.97 ± 3.41 0.80 ± 0.19

Corners
No 80.96 ± 24.37 0.21 ± 0.16
Yes 2.13 ± 5.60 0.47 ± 0.20

Table 4.4: This table demonstrates the aggressiveness of the safety con-
troller in restricting the action space of the RL policy to prevent wall
collisions. For each environment layout category, every performance met-
ric is averaged across the trials ran for each set of configurations within
that category and is analyzed with and without the global path planner.

From Table 4.4, it is apparent that the safety controller is relied on very heavily when
the global path planner is not employed but is not used frequently within the complete
architecture. As a component of the complete framework with the global path planner, the
safety controller is never used in open spaces and almost never used in simple hallways. It is
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active around 1.5% of the time in intersection environments, 4.0% of the time in environments
with doorways, and 2.1% of the time in environments with multiple corners. These values
are relatively low, indicating that the RL policy is able to take the socially optimal action
the majority of the time with some limitations when necessary to avoid collisions with walls.
From Table 4.4, it is also clear that the robot moves slower when the safety controller is
active, indicating that the robot slows down around walls to avoid collisions. However, it is
still able to maintain a fair amount of speed in many situations.

To view additional data on the safety controller that considers all 17 environment configu-
rations individually, please refer to Table A.3 in Appendix A.

4.4 Performance of Learning Component

As described in Section 3.3, a key component of my robotic controller is the RL policy, which
is designed to enable socially compliant behavior in simple, open spaces. It is interesting to
consider how learning can enable more effective robotic behavior around crowds of humans
and stationary objects in complex indoor spaces. To demonstrate the impact of learning,
I compared my full modular approach to a navigation strategy that uses ORCA as a local
planner and the probabilistic roadmap (PRM) planner as the global planner. This controller
is used as a baseline to analyze the impact of learning because ORCA is a local planner
designed the navigate safely around humans that does not rely on deep learning. To compare
my modular architecture, which includes a learning component, to a standard navigation
strategy that does not employ learning, I consider the following performance rates:

• Success rate: Percentage of the trials in which the robot reached the goal.

• Human collision rate: Percentage of the trials the robot collided with a human.

• Object collision rate: Percentage of the trials the robot collided with an object.

• Wall collision rate: Percentage of the trials the robot collided with a wall.

• Timeout rate: Percentage of the trials the robot did not reach the goal in time.

I also evaluate both strategies based on robot navigation performance and social compliance.
In terms of robot navigation performance, I assess the quality of the robot’s ability to navigate
to the goal efficiently. More specifically, I consider the following metrics:

• Navigation time: Average time needed by the robot to reach its final goal position
(within some radius) in successful trials.

• Path length: Average length of path taken by robot in successful trials.
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• Average speed: Average speed of robot across all time steps in successful trials.

To assess social compliance, I quantified how well the robot maintained social distance among
humans. Specifically, I considered the following metrics:

• Average distance: Average distance between the robot and the closest human aver-
aged across all time steps in successful trials.

• Minimum distance: The closest the robot gets to any human in successful trials.

• Discomfort time: Percentage of time spent in the discomfort zone (0.1m-radius circle
around each human) of any human in successful trials.

Environment Navigation Success Collision Rate (%) Timeout
Layout Strategy Rate (%) Human Object Wall Rate (%)

Open Space
Mine 100.00 0.00 0.00 0.00 0.00

Baseline 99.00 0.00 1.00 0.00 0.00

Hallways
Mine 99.67 0.00 0.00 0.00 0.33

Baseline 97.33 0.00 1.33 0.00 1.33

Intersections
Mine 99.75 0.00 0.00 0.00 0.25

Baseline 97.25 0.00 1.75 0.00 1.00

Doorways
Mine 99.00 0.00 0.00 0.00 1.00

Baseline 93.00 0.50 3.50 0.75 2.25

Corners
Mine 98.60 0.20 0.00 0.00 1.20

Baseline 92.20 0.00 4.00 0.00 3.80

Table 4.5: This table compares the overall performance of my navigation ap-
proach to that of a standard navigation strategy. The performance rates of
my complete modular architecture, which includes a learning component, and
those of a standard navigation strategy that does not employ learning are
shown across various environment layout categories.

From Table 4.5, it is clear that my navigation strategy generates higher success rates than
the baseline strategy across all environment layout categories. The higher rates of success
seen by my approach are primarily due to fewer collisions with objects and fewer instances in
which the robot is not able to reach the goal in the allotted time. This difference in success
rate becomes more apparent as the complexity of the simulation environment increases and
becomes more similar to the types of environments a robot might encounter in the real
world. This seems to indicate that including a learning component as an element of the robot
navigation strategy can improve the robot’s ability to navigate more complex environments.
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I ranked the complexity of environment configurations based on the category of the layout
and the density of humans and objects. The simplest configuration is the open space with
a below average density of obstacles, followed by the hallways with below average density,
intersections with below average density, doorways with below average density, and corners
with below average density. The next levels of complexity have an above average density of
obstacles and follow the same environment layout order. The performance of my approach
is compared to the baseline in Figure 4.8. This graph emphasizes the utility of incorporating
learning into my modular framework in more complex environments.

Figure 4.8: This graph displays the success rates of my modular approach,
which utilizes a learning component, and a baseline policy that does not
utilize learning across increasing levels of environment complexity

Upon analyzing the videos of various successful and unsuccessful trials, I found that this
improvement is generally seen because the RL policy is able to learn more difficult maneuvers
that ORCA is not capable of. In the majority of cases where the learning-based controller
is successful and the non-learning-based controller is not, the ORCA policy is unable to
maneuver around clumps of objects. In all of these cases, the robot controlled by the baseline
controller either tries to move around the group of objects and hits one, or it gets stuck at
the group of objects before timing out. Figure 4.9 helps demonstrate what commonly occurs
in these situations. These cases indicate that a controller that employs a learning component
can enable successful navigation when more complicated maneuvers are required.
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Figure 4.9: This figure shows a situation where my controller, which uti-
lizes an RL policy, is successful and the baseline controller, which has no
learning component, is unsuccessful. The image on the left shows that
the robot controlled by my learning-based controller is able to success-
fully maneuver around a small clump of objects. The image on the right
shows that the robot controlled by the baseline controller gets stuck at
this clump of objects, where it stays for the remainder of the trial.

While my learning-based controller is generally more successful than the baseline controller,
it is important to note that this increase in success comes with slightly longer navigation
times and path lengths, as seen in Table 4.6. However, this difference in navigation time
and path length is relatively small, compared to the difference in success rate, collision rates,
and timeout rate between the two navigation strategies. This suggests that my approach
provides a worthwhile trade-off between navigation efficiency and overall performance.

Table 4.7 compares the social compliance of my approach to that of the baseline. From this
table, it is clear that my navigation strategy generally achieves a larger average distance
to nearby humans, a smaller percentage of time spent in a human’s discomfort zone, and
a comparable minimum distance to the closest human. Therefore, my navigation approach
performs better in terms of social compliance, compared to the baseline. However, this dif-
ference in social compliance is not very large. Both navigation strategies generally maintain
a reasonable distance from humans, intruding in their discomfort zones very infrequently.

To see a comparison of my navigation strategy to the baseline for all 17 environment config-
urations individually, please reference Tables A.4, A.5, and A.6 in Appendix A.
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Environment Navigation Navigation Time (s) Path Length (m) Speed (m/s)
Layout Strategy (avg ± std) (avg ± std) (avg ± std)

Open Space
Mine 7.65 ± 0.27 7.65 ± 0.27 1.00 ± 0.00

Baseline 7.61 ± 0.17 7.47 ± 0.06 0.98 ± 0.06

Hallways
Mine 24.19 ± 5.68 24.18 ± 5.68 1.00 ± 0.00

Baseline 23.86 ± 5.68 23.57 ± 5.67 0.99 ± 0.05

Intersections
Mine 21.29 ± 4.32 21.19 ± 4.31 1.00 ± 0.01

Baseline 20.87 ± 4.26 20.62 ± 4.23 0.99 ± 0.05

Doorways
Mine 40.70 ± 10.94 40.35 ± 10.72 0.99 ± 0.05

Baseline 39.66 ± 10.14 39.07 ± 10.13 0.99 ± 0.06

Corners
Mine 45.38 ± 5.16 44.89 ± 4.44 0.99 ± 0.03

Baseline 43.71 ± 2.22 43.11 ± 2.02 0.99 ± 0.05

Table 4.6: This table compares the navigation performance of my navigation ap-
proach to that of a standard navigation strategy that does not utilize learning across
various environment layout categories.

Environment Navigation Avg. Distance (m) Minimum Discomfort Time (%)
Layout Strategy (avg ± std) Distance (m) (avg ± std)

Open Space
Mine 1.58 ± 0.74 0.10 0.00 ± 0.00

Baseline 1.57 ± 0.73 0.04 0.21 ± 2.11

Hallways
Mine 1.97 ± 1.40 0.00 0.08 ± 0.52

Baseline 1.96 ± 1.41 0.02 0.17 ± 0.92

Intersections
Mine 2.21 ± 1.46 0.04 0.04 ± 0.31

Baseline 2.18 ± 1.44 0.03 0.15 ± 1.41

Doorways
Mine 2.05 ± 1.41 0.02 0.07 ± 0.32

Baseline 2.07 ± 1.44 0.01 0.18 ± 0.88

Corners
Mine 2.22 ± 1.75 0.00 0.21 ± 1.59

Baseline 2.18 ± 1.72 0.03 0.19 ± 0.75

Table 4.7: This table compares the social compliance of my navigation approach to
that of a standard navigation strategy that does not utilize learning across various
environment layout categories.
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4.5 Real-World Demonstration

Goals of Demonstration

To demonstrate the applicability of my modular controller to real-world systems, I imple-
mented my algorithm on a physical robot. Because real-world robotic systems exhibit many
physical limitations, and assumptions made in simulation may not hold in the real world, I
find it valuable to demonstrate my algorithm on an actual robot. It is important to consider
that physical robotic systems exhibit many sensing limitations that are generally ignored in
simulation. For example, I assumed that the robot has perfect odometry measurements and
that the robot could determine the exact location of humans and objects within its detection
range. However, the robot may not know the exact location of itself and nearby obstacles
in the real world. Physical robotic systems also exhibit control limitations that are ignored
in simulation. For example, I assume that the robot can instantaneously achieve the exact
velocity command, which is not realistic in the real world. In addition, assumptions made
in simulation about the environment the robot could encounter may not hold true in the
real world. For example, I assumed that all of the humans and objects could be represented
using a circle of some radius and that all humans navigated according to the same collision-
avoidance policy. However, this may not necessarily be true for all humans and objects the
robot will encounter in its lifetime. For these reasons, algorithms that work well in simula-
tion may not perform well in the real world. Therefore, to demonstrate that my algorithm
could truly be applied to socially assistive robots navigating around real people and objects
in the physical world, it is valuable to implement my algorithm on a real robot.

Robot Platform & Interface

For the real-world demonstrations, I used a TurtleBot kit, which includes a Kobuki mobile
base, an Orbbec Astra camera, and a Gigabyte laptop computer. Figure 4.10 shows the robot
platform I used for all the hardware demonstrations with all of the components labeled.

To control the TurtleBot, I designed a controller that receives odometry measurements from
the Kobuki mobile base and receives RGB color images and depth images from the Orbbec
Astra camera. The controller then uses this input to determine the position, velocity, angle,
and radius of the robot and obstacles. This information about the state of the environment
is fed into the modular policy described in Section 3.2. My policy uses this state information,
along with information about the walls surrounding the robot, to determine the desired ve-
locity of the robot. The TurtleBot controller receives this velocity and sends the appropriate
command to the mobile base to move the robot. This process is carried out using the Robot
Operating System (ROS) and is summarized in Figure 4.11.
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Figure 4.10: For all of my hardware demonstrations, I used a TurtleBot
as the robot platform, which is composed of an Orbecc Astra camera, a
Gigabyte laptop computer, and a Kobuki mobile base.

Figure 4.11: The TurtleBot controller communicates with the camera,
mobile base, and my policy to control the robot in real-world environments
around people and objects. This figure depicts the messages that are sent
between these components during the hardware demonstrations.
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Camera Calibration

Before performing the real-world demonstrations, the camera needed to be calibrated to
accurately detect objects and humans within the robot’s field of view. Keeping the robot in
a fixed position, I mapped out its field of view as shown in Figure 4.12. I then measured
various distances (dl, dr, df , and doffset), which are labeled in Figure 4.12, and used these
measurements to calculate the field of view angle:

θfov = cos−1
(
d2l + d2r − d2f

2dldr

)
The offset distance doffset and field of view angle θfov are fixed parameters used to determine
the position, velocity, angle, and radius of humans and stationary objects surrounding the
robot. The obstacle detection and tracking processes are described in the proceeding sections.

Figure 4.12: To calibrate the camera, the robot (blue circle) is placed in a
fixed position pointing forward and its field of view (blue shaded region)
is used to determine the offset distance doffset and field of view angle θfov.

Obstacle Detection

To determine the position of a human or an object in the robot’s field of view, I use the “You
Only Look Once” (YOLO) real-time object detection system. This system passes an RGB
color image through a single neural network to generate bounding boxes for each human
and object in the image. An example bounding box is shown in Figure 4.13. For more
information about the YOLO detection system, please refer to [36].
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Figure 4.13: Given an RGB color image with a width of W and height
of H, the YOLO detection system is used to generate a bounding box
around each object in the image. An example bounding box for a chair in
the image is shown with its corners labeled using the pixel positions.

After using the YOLO detection system to generate a bounding box for a given obstacle in
the robot’s field of view, I want to determine the angle φ shown in Figure 4.14. To do so, I
first determine the horizontal position of the obstacle in terms of pixels:

xc = x0 +
x1 − x0

2

I then use the horizontal pixel position of the obstacle in the image and the field of view
angle calculated in the previous section to compute the angle of the obstacle:

φ =
( xc
W

)
θfov +

θfov
2
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Figure 4.14: This figure shows the variables used to compute the position
of an object (yellow circle) with respect to the robot (blue circle). In this
diagram, doffset is the offset distance determined during camera calibra-
tion, φ is the camera angle, ddepth is the distance of the object from the
robot, θr is the angle between the object and robot, and (xr, yr) is the
position of the object with respect to the robot.

I then use the bounding box obtained from YOLO in combination with the depth image to
determine the distance of the object from the robot. More specifically, I use the pixels in
the RGB image corresponding to bounding box of the obstacle to determine the depth at
each associated position in the depth image. Ignoring regions where the view of the obstacle
is obstructed and where the depth sensor cannot get a good measurement, I compute the
median of the depth measurements of the obstacle to estimate its distance from the robot.
This distance is then adjusted to account for inaccuracies in the depth camera, which depend
on the angle φ. This distance is labeled as ddepth in Figure 4.14.

The next step is to find the angle of the obstacle with respect to the robot, which is labeled
θr in Figure 4.14. Using properties of triangles, this angle can be calculated as

θr = φ+ sin−1
(
doffset sin(φ)

ddepth

)
Using the depth measurement and the angle of the obstacle with respect to the robot, I
can then determine the position of the obstacle with respect to the robot. The horizontal



CHAPTER 4. EXPERIMENTAL EVALUATION 53

position xr and vertical position yr (shown in Figure 4.14) are computed as

xr = ddepth ∗ cos(θr)

yr = ddepth ∗ sin(θr)

The position and angle of the robot with respect to the world frame are determined from
the odometry measurements provided by the mobile base. Let

(
p
(r)
x , p

(r)
y

)
be the position of

the robot with respect to the global origin and θ(r) be the angle of the robot. Using these
values, the position of the obstacle with respect to the world frame is given by

p(o)x = xr ∗ cos
(
θ(r)
)
− yr ∗ sin

(
θ(r)
)

+ p(r)x

p(o)y = xr ∗ sin
(
θ(r)
)

+ yr ∗ cos
(
θ(r)
)

+ p(r)y

Figure 4.15: This figure shows the variables used to compute the radius
of an object (yellow circle). In this diagram, doffset is the offset distance
determined during camera calibration, θfov is the field of view angle de-
termined during camera calibration, xr is the horizontal position of the
object with respect to the robot, w is the width of the visible region at
the given distance, and r is the radius of the object.

Finally, we need to determine the radius r of the obstacle as shown in Figure 4.15. Using
knowledge of the amount of space the obstacle takes up in the image and the distance of the
obstacle from the robot, the radius of the obstacle can be determined. First, notice that the
width of the visible region at the depth of the obstacle, which I denote w, is given by

w = 2
(
xr + doffset

)
∗ tan

(
θfov

2

)
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Now we can use the width of the bounding box in pixels (∆x := x1 − x0) and the width of
the image in pixels (W ), along with the width of the visible region in meters (w), to compute
the width of the bounding box in meters. The width of the bounding box will be considered
the diameter of the obstacle. Therefore, the radius of the obstacle is given by

r =
(x1 − x0)w

2W

Obstacle Tracking

Because the robot has a limited field of view, obstacles the robot detects are expected to
remain nearby after they are no longer visible to the robot. To account for this, I developed
a method to track detected obstacles. Because humans and stationary objects are expected
to behave differently, each time an obstacle is detected, I first check whether it is a human
or an object. I then check whether the human or object was previously seen.

If a detected object intersects with an already existing object, these objects are assumed to
be the same. Otherwise, they are assumed to be two distinct objects. Every time the robot
observes a new object, it stores the state of this object in memory. When the robot detects
an object it has already seen, I update the state of the existing object using a weighted
average of the state stored in memory and the position and radius determined from the
current image. Based on the number of times an object was seen, the object remains in
memory for some length of time after the robot last detected the object.

Similar to as is done for objects, each time the robot sees a new human, the current position
and radius of the human are stored in memory. The next time this human is detected, its
change in position over time is used to estimate the human’s velocity. At each time step, the
current position and velocity of the human are used to predict the position of the human
at the next time step. The expected next position of previously seen humans is then used
to predict whether a recently detected human is one of the existing humans. If a detected
human is believed to be the same as an already existing human, the human’s position is
updated to be the position determined from the current image. The radius of the human is
updated using a weighted average of the radius stored in memory and the radius determined
by the current image. The velocity is also updated using the expected position and the
position determined by the current image. Like objects, humans are expected to continue
to exist after they exit the robot’s field of view. However, unlike stationary objects, humans
are expected to continue moving at their last seen velocity, and they remain in memory for
a shorter time after they were last detected by the robot.

Action Selection

Obstacle detection and tracking are used to determine the states of humans and stationary
objects, which are used by my modular policy to determine the best action for the robot to
take. Recall that during simulation, I assumed the robot receives x and y velocity commands
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as actions. The TurtleBot receives linear and angular velocity commands, so the velocity
command sent to the mobile base needs to be adjusted accordingly. Because my controller
was designed based on a simulated robot that does not face many real-world constraints,
I modify the command produced by my controller before sending it to the robot. The
TurtleBot cannot turn instantaneously before moving forward, as it does in simulation, so I
slow the robot’s linear velocity when the angular velocity is high. To reduce strain on the
motors, which did not need to be considered in simulation, I also cap both the linear and
angular acceleration rates. The TurtleBot controller continues to send commands generated
by my modular controller until the robot reaches its final goal position.

Demonstration Performance

A video of my hardware demonstration is available here: https://youtu.be/zd5c6yyiNgE.
This video seeks to demonstrate the role of each component in my modular framework, as
well as the effectiveness of my complete framework in the real world.

For the first part of my hardware demonstration, I set up stationary objects in a hallway such
that all three components of my modular framework–the RL policy, global path planner, and
safety controller–would be actively engaged at various points along the robot’s path. I then
conducted an ablation study to demonstrate the role of each component in the real world.
The hardware demonstration shows how the robot behaves with and without the global path
planner and safety controller. I find that the robot navigates most effectively when my full
policy is employed. Using the RL policy alone, the robot quickly collides with a wall in every
trial. Adding the global path planner, the robot makes more progress towards the goal but
still ends up colliding with a wall. Including the safety controller in addition to the global
path planner, the robot navigates to the goal in every trial. This shows that my modular
framework enables the effective usage of socially-aware RL policies in real indoor spaces.

In the second part of my hardware demonstration, I demonstrate the effectiveness of my
modular framework in more complex environments. I show the robot using my complete
policy to navigate through hallways, around corners, and through doorways in various aca-
demic buildings and office spaces. Using my policy, the robot is able to navigate effectively
in the presence of static and dynamic people and objects.
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Chapter 5

Conclusions & Future Work

5.1 Summary of Results

Through this project, I demonstrated the utility of standard robot navigation methods in
enabling the effective usage of socially-aware RL policies for socially acceptable robot naviga-
tion in complex indoor spaces. In particular, I combined an RL policy with a path planning
algorithm and an additional safety controller in a modular framework. I used the proba-
bilistic roadmap (PRM) planning algorithm to generate waypoints from the robot’s initial
position to its goal, then used these waypoints to select local goals used by the RL policy.
Rather than generating a representation of walls that can be passed into the RL policy net-
work, wall avoidance is handled by a separate safety controller that limits the action space
of the policy to only actions that are not expected to result in a collision with a wall. By
combining all these elements in a modular framework, I enable a simulated robot to reach
its goal from an arbitrary starting position, while limiting close encounters with humans and
avoiding collisions with humans, stationary objects, and walls.

I found that my modular learning-based controller is able to achieve an overall success rate
of over 99% when tested in various simulation environments designed to reflect the majority
of scenarios a robot may encounter when navigating typical indoor spaces. When compared
against a baseline navigation policy that uses the optimal reciprocal collision avoidance
(ORCA) planner, along with the PRM planner, I found that my approach results in higher
success rates in guiding the robot to the target destination and a fewer number of collisions
with walls and stationary objects. This demonstrates the value of combining learning-based
methods with more robust navigation components to develop socially compliant robot navi-
gation policies that are safe and effective in real-world settings. I also employed my controller
on a physical robot to demonstrate its utility in the real world. As research into deep RL
policies increases, such a modular approach could help expedite the adoption of cutting edge
RL policies in real-world applications to increase the use of socially assistive robots.
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5.2 Future Directions

Impact of Learning

There are various avenues of future work related to the ideas presented in this paper. One
potential direction for future work is to continue to explore the impact of learning on so-
cially compliant robot navigation. By comparing my modular learning-based controller to a
traditional controller that does not employ learning, I demonstrated the benefit of including
a learning component to enable successful robot navigation around crowds of people and
objects in indoor spaces. I also suspect that using an RL policy as a single component of a
larger controller architecture would be more effective than training a more complex RL policy
that could be used independently. It would be interesting to compare my modular controller
to an end-to-end RL policy. Doing so may demonstrate that reinforcement learning is best
used as a component of a larger system for certain robotic applications.

Optimal Path Selection & Adaptation

Another area for future work would be to explore even more complex indoor spaces, where
there may be multiple potential paths between the robot and its goal. Within these more
complex spaces, it would be interesting to consider ways to select the optimal path when
multiple are available. This may allow the robot to select shorter or less crowded paths, or
the robot may be able to choose a path that requires the most simple maneuvers. If the robot
is operating in a familiar environment, it may also use some aspect of memory to select the
optimal path in a given scenario. In environments where multiple paths are available, the
robot may also be able to adapt if the first path it chooses is blocked. It would be interesting
to consider ways to enable backtracking and alternative routing in such scenarios.

Safety Guarantees

Another important direction to explore would concern safety in socially compliant robot
navigation. Before employing assistive robots in real-world applications around groups of
humans, it is important to guarantee the safety and comfort of humans operating in these
shared spaces. With this in mind, it would be interesting to consider worst-case robotic
behavior and incorporate probabilistic safety guarantees. Within the general area of safety,
it is also important to be aware that the robot may not behave as expected when it encounters
new scenarios that were not seen during training or validation. It would be interesting to
study the impact of distributional shift and explore ways to mitigate these effects. Along
these same lines, research could be done into uncertainty estimation. If the robot encounters
a very unfamiliar scenario, where it is not confident in its optimal action, it may be beneficial
for the robot to default to a provably safe action or to ask for human intervention.
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Additional Social Norms

Work could also be done to consider additional aspects of socially compliant robot behavior,
beyond limiting close encounters with humans. It would be interesting to consider additional
methods to maintain comfort around humans by encouraging robots to slow down around
humans or avoid approaching humans from behind. This area of research may also benefit
from user studies to determine which behaviors cause the greatest discomfort in humans
and which controllers lead to the most comfortable robot behavior. Beyond the comfort
aspect of socially compliant behavior, it would also be interesting to explore different types
of social norms. For example, in certain regions, humans choose to walk on the right side of
the hallway, so it may be beneficial for robots to follow these same norms. Some high-level
social norms are also domain-specific, so it may be beneficial to consider specific applications.
It would be interesting to collect data of humans operating in particular application domains
to generate better human models and learn domain-specific social norms. With this data,
one may be able to generate better robotic controllers for socially compliant navigation.

Task Planning

Another potential area for future work is in task planning. I considered cases in which the
robot was tasked with traveling to a single goal. However, in real world applications, a robot
may have multiple tasks, which lead to several goals it must travel to. It would be interesting
to consider what changes need to be made to a robot navigation controller such as mine to
enable effective task planning. This could also lead to interesting work in human-robot
teaming, through which humans could give a robot a high level task to execute. Enabling a
robot to receive high-level tasks would be useful to design robot guides for elderly people or
people with disabilities and could be useful in the design of automated wheel chairs.

Interpretability

A final direction for future work that would be interesting to explore is interpretability
in robot navigation. In the simulation environment I used, the simulated humans treat
the robot as if it is another human and behave in a way that is consistent whether it is
around a robot or other humans. Similarly, in the hardware demonstration, the people
walking around the robot are comfortable with the robot, so they also move in a way that is
generally predictable. However, outside of simulation and controlled experiments, humans
are not necessarily comfortable around robots or familiar with how they operate. This may
cause them to behave in a way that is not predictable to the robot. For this reason, it would
be helpful to ensure that the robot’s intent is clear to nearby humans so that these people
may predict the robot’s actions and move in a way that is consistent with how humans
typically behave. It would be interesting to study methods to improve interpretability in
robot navigation and to perform user studies to determine which methods are most effective.
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Environment Path Safety Success Collision Rate (%) Timeout
Layout Planner Controller Rate (%) Human Object Wall Rate (%)

Open
Space

No No 100 0 0 0 0
No Yes 100 0 0 0 0
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Single
Hallway

No No 8 0 0 92 0
No Yes 92 0 0 0 8
Yes No 99 0 0 0 1
Yes Yes 99 0 0 0 1

Multiple
Hallways

No No 0 0 0 99 1
No Yes 2 0 0 7 91
Yes No 98 0 0 1 1
Yes Yes 98 0 0 0 2

Wide
Intersection (1)

No No 70 0 0 30 0
No Yes 93 1 0 0 6
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Wide
Intersection (2)

No No 2 0 0 97 1
No Yes 12 0 0 0 88
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Wide
Intersection (3)

No No 3 0 0 97 0
No Yes 12 0 0 0 88
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Narrow
Intersection (1)

No No 22 0 0 77 1
No Yes 94 0 0 0 6
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Narrow
Intersection (2)

No No 1 0 0 99 0
No Yes 11 0 0 0 89
Yes No 99 0 0 1 0
Yes Yes 99 0 0 0 1

Narrow
Intersection (3)

No No 1 0 0 99 0
No Yes 22 0 0 1 77
Yes No 100 0 0 0 0
Yes Yes 100 0 0 0 0

Table A.1: Controller Components and Performance Across All Layouts (1-9)
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Environment Path Safety Success Collision Rate (%) Timeout
Layout Planner Controller Rate (%) Human Object Wall Rate (%)

Various
Hallways (1)

No No 0 0 0 100 0
No Yes 0 0 0 0 100
Yes No 93 0 0 6 1
Yes Yes 98 0 0 0 2

Various
Hallways (2)

No No 0 0 0 100 0
No Yes 0 0 0 2 98
Yes No 96 0 1 3 0
Yes Yes 100 0 0 0 0

Various
Hallways (3)

No No 0 0 0 100 0
No Yes 2 0 0 0 98
Yes No 95 0 0 5 0
Yes Yes 100 0 0 0 0

Various
Hallways (4)

No No 0 0 0 100 0
No Yes 0 0 0 87 13
Yes No 95 1 0 1 3
Yes Yes 97 1 0 0 2

Various
Rooms (1)

No No 2 0 0 98 0
No Yes 60 0 0 3 37
Yes No 98 1 0 0 1
Yes Yes 99 0 0 0 1

Various
Rooms (2)

No No 0 0 0 100 0
No Yes 7 0 0 1 92
Yes No 98 0 0 1 1
Yes Yes 99 0 0 0 1

Various
Rooms (3)

No No 0 0 0 100 0
No Yes 0 0 0 3 97
Yes No 95 0 0 5 0
Yes Yes 99 0 0 0 1

Various
Rooms (4)

No No 0 0 0 100 0
No Yes 0 0 0 0 100
Yes No 96 1 0 2 1
Yes Yes 99 0 0 0 1

Table A.2: Controller Components and Performance Across All Layouts (10-17)
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Environment Path Safety Active (%) Safety Speed (m/s)
Layout Planner (avg ± std) (avg ± std)
Open
Space

No 0.00 ± 0.00 –
Yes 0.00 ± 0.00 –

Single
Hallway

No 57.08 ± 26.70 0.23 ± 0.18
Yes 0.11 ± 0.96 0.76 ± 0.22

Multiple
Hallways

No 71.96 ± 19.85 0.26 ± 0.20
Yes 2.52 ± 8.88 0.30 ± 0.16

Wide
Intersection (1)

No 8.48 ± 16.99 0.27 ± 0.20
Yes 0.00 ± 0.00 –

Wide
Intersection (2)

No 80.08 ± 20.65 0.20 ± 0.14
Yes 0.09 ± 0.88 0.58 ± 0.28

Wide
Intersection (3)

No 73.01 ± 23.70 0.22 ± 0.18
Yes 0.03 ± 0.28 0.90 ± 0.14

Narrow
Intersection (1)

No 35.55 ± 25.75 0.24 ± 0.18
Yes 0.00 ± 0.00 –

Narrow
Intersection (2)

No 91.20 ± 16.23 0.16 ± 0.10
Yes 1.54 ± 9.34 0.21 ± 0.10

Narrow
Intersection (3)

No 88.26 ± 17.34 0.16 ± 0.10
Yes 4.38 ± 8.72 0.58 ± 0.21

Various
Hallways (1)

No 76.15 ± 25.81 0.23 ± 0.19
Yes 2.66 ± 5.31 0.53 ± 0.21

Various
Hallways (2)

No 92.05 ± 9.74 0.19 ± 0.14
Yes 2.34 ± 4.27 0.59 ± 0.22

Various
Hallways (3)

No 91.75 ± 11.33 0.17 ± 0.12
Yes 2.04 ± 4.28 0.54 ± 0.22

Various
Hallways (4)

No 72.90 ± 35.72 0.22 ± 0.15
Yes 1.10 ± 3.44 0.47 ± 0.21

Various
Rooms (1)

No 59.69 ± 22.60 0.28 ± 0.23
Yes 0.11 ± 0.72 0.73 ± 0.16

Various
Rooms (2)

No 88.17 ± 18.99 0.17 ± 0.12
Yes 6.46 ± 2.64 0.85 ± 0.17

Various
Rooms (3)

No 81.51 ± 24.99 0.20 ± 0.15
Yes 3.89 ± 2.20 0.79 ± 0.20

Various
Rooms (4)

No 81.37 ± 9.95 0.19 ± 0.15
Yes 5.43 ± 3.32 0.78 ± 0.20

Table A.3: Safety Controller Analysis Across All Layouts
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Environment Navigation Success Collision Rate (%) Timeout
Layout Strategy Rate (%) Human Object Wall Rate (%)
Open
Space

Mine 100 0 0 0 0
Baseline 99 0 1 0 0

Single
Hallway

Mine 99 0 0 0 1
Baseline 96 0 2 0 2

Multiple
Hallways

Mine 98 0 0 0 2
Baseline 97 0 1 0 2

Wide
Intersection (1)

Mine 100 0 0 0 0
Baseline 98 0 1 0 1

Wide
Intersection (2)

Mine 100 0 0 0 0
Baseline 97 0 3 0 0

Wide
Intersection (3)

Mine 100 0 0 0 0
Baseline 98 0 1 0 1

Narrow
Intersection (1)

Mine 100 0 0 0 0
Baseline 98 0 1 0 1

Narrow
Intersection (2)

Mine 99 0 0 0 1
Baseline 98 0 0 0 2

Narrow
Intersection (3)

Mine 100 0 0 0 0
Baseline 96 0 3 0 1

Various
Hallways (1)

Mine 98 0 0 0 2
Baseline 89 0 6 0 5

Various
Hallways (2)

Mine 100 0 0 0 0
Baseline 92 0 5 0 3

Various
Hallways (3)

Mine 100 0 0 0 0
Baseline 94 0 2 0 4

Various
Hallways (4)

Mine 97 1 0 0 2
Baseline 89 0 6 0 5

Various
Rooms (1)

Mine 99 0 0 0 1
Baseline 95 0 1 0 4

Various
Rooms (2)

Mine 99 0 0 0 1
Baseline 93 2 1 1 3

Various
Rooms (3)

Mine 99 0 0 0 1
Baseline 92 0 6 1 1

Various
Rooms (4)

Mine 99 0 0 0 1
Baseline 92 0 6 1 1

Table A.4: Learning and Performance Rates Across All Layouts
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Environment Navigation Navigation Time (s) Path Length (m) Speed (m/s)
Layout Strategy (avg ± std) (avg ± std) (avg ± std)
Open
Space

Mine 7.65 ± 0.27 7.65 ± 0.27 1.00 ± 0.00
Baseline 7.61 ± 0.17 7.47 ± 0.06 0.98 ± 0.06

Single
Hallway

Mine 20.25 ± 0.91 20.24 ± 0.88 1.00 ± 0.00
Baseline 19.88 ± 0.58 19.55 ± 0.12 0.98 ± 0.06

Multiple
Hallways

Mine 41.01 ± 2.34 40.59 ± 0.96 0.99 ± 0.02
Baseline 39.93 ± 0.65 39.43 ± 0.33 0.99 ± 0.05

Wide
Intersection (1)

Mine 32.09 ± 0.44 32.09 ± 0.44 1.00 ± 0.00
Baseline 31.83 ± 0.34 31.54 ± 0.11 0.99 ± 0.04

Wide
Intersection (2)

Mine 25.48 ± 0.59 25.47 ± 0.55 1.00 ± 0.00
Baseline 24.97 ± 0.29 24.76 ± 0.16 0.99 ± 0.04

Wide
Intersection (3)

Mine 25.41 ± 0.59 25.40 ± 0.58 1.00 ± 0.00
Baseline 25.22 ± 0.50 24.90 ± 0.20 0.99 ± 0.05

Narrow
Intersection (1)

Mine 20.10 ± 0.76 20.09 ± 0.74 1.00 ± 0.00
Baseline 19.79 ± 0.38 19.54 ± 0.11 0.99 ± 0.05

Narrow
Intersection (2)

Mine 17.20 ± 0.47 17.18 ± 0.40 1.00 ± 0.01
Baseline 16.94 ± 0.44 16.68 ± 0.17 0.98 ± 0.05

Narrow
Intersection (3)

Mine 16.99 ± 2.04 16.61 ± 0.67 0.98 ± 0.04
Baseline 16.31 ± 0.42 16.08 ± 0.22 0.99 ± 0.05

Various
Hallways (1)

Mine 45.22 ± 2.58 44.66 ± 1.21 0.99 ± 0.04
Baseline 43.80 ± 0.86 43.20 ± 0.33 0.99 ± 0.05

Various
Hallways (2)

Mine 46.93 ± 2.88 46.44 ± 2.35 0.99 ± 0.04
Baseline 45.49 ± 1.01 44.88 ± 0.40 0.99 ± 0.05

Various
Hallways (3)

Mine 47.80 ± 7.59 47.25 ± 6.71 0.99 ± 0.04
Baseline 45.18 ± 0.98 44.46 ± 0.35 0.98 ± 0.06

Various
Hallways (4)

Mine 46.09 ± 5.07 45.62 ± 4.12 0.99 ± 0.03
Baseline 44.33 ± 0.82 43.78 ± 0.42 0.99 ± 0.05

Various
Rooms (1)

Mine 32.45 ± 0.79 32.43 ± 0.75 1.00 ± 0.00
Baseline 31.91 ± 0.56 31.58 ± 0.15 0.99 ± 0.04

Various
Rooms (2)

Mine 28.24 ± 4.95 27.93 ± 4.75 0.99 ± 0.06
Baseline 27.60 ± 0.52 26.76 ± 0.24 0.97 ± 0.12

Various
Rooms (3)

Mine 51.29 ± 2.52 50.78 ± 1.78 0.99 ± 0.05
Baseline 49.74 ± 1.22 49.13 ± 0.33 0.99 ± 0.05

Various
Rooms (4)

Mine 51.25 ± 1.14 50.70 ± 0.84 0.99 ± 0.06
Baseline 49.78 ± 1.04 49.17 ± 0.30 0.99 ± 0.05

Table A.5: Learning and Navigation Performance Across All Layouts
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Environment Navigation Avg. Distance (m) Minimum Discomfort Time (%)
Layout Strategy (avg ± std) Distance (m) (avg ± std)
Open
Space

Mine 1.58 ± 0.74 0.10 0.00 ± 0.00
Baseline 1.57 ± 0.73 0.04 0.21 ± 2.11

Single
Hallway

Mine 2.32 ± 1.63 0.06 0.06 ± 0.61
Baseline 2.31 ± 1.64 0.02 0.17 ± 0.95

Multiple
Hallways

Mine 2.29 ± 1.55 0.08 0.05 ± 0.26
Baseline 2.20 ± 1.54 0.04 0.11 ± 0.49

Wide
Intersection (1)

Mine 1.66 ± 1.19 0.00 0.09 ± 0.48
Baseline 1.67 ± 1.22 0.03 0.18 ± 0.80

Wide
Intersection (2)

Mine 2.00 ± 1.34 0.04 0.06 ± 0.38
Baseline 2.07 ± 1.37 0.04 0.08 ± 0.57

Wide
Intersection (3)

Mine 2.17 ± 1.42 0.09 0.01 ± 0.09
Baseline 2.15 ± 1.41 0.08 0.03 ± 0.30

Narrow
Intersection (1)

Mine 2.13 ± 1.52 0.06 0.09 ± 0.48
Baseline 2.09 ± 1.48 0.04 0.15 ± 0.98

Narrow
Intersection (2)

Mine 2.43 ± 1.62 0.12 0.00 ± 0.03
Baseline 2.31 ± 1.51 0.12 0.00 ± 0.00

Narrow
Intersection (3)

Mine 2.36 ± 1.54 0.06 0.09 ± 0.46
Baseline 2.25 ± 1.54 0.03 0.49 ± 2.71

Various
Hallways (1)

Mine 2.26 ± 1.86 0.01 0.19 ± 0.76
Baseline 2.16 ± 1.83 0.03 0.21 ± 0.68

Various
Hallways (2)

Mine 2.25 ± 1.81 0.00 0.14 ± 0.50
Baseline 2.21 ± 1.76 0.03 0.24 ± 0.91

Various
Hallways (3)

Mine 2.16 ± 1.76 0.04 0.13 ± 0.44
Baseline 2.21 ± 1.83 0.03 0.21 ± 0.86

Various
Hallways (4)

Mine 2.14 ± 1.76 0.01 0.55 ± 3.38
Baseline 2.09 ± 1.64 0.03 0.20 ± 0.71

Various
Rooms (1)

Mine 2.09 ± 1.21 0.06 0.05 ± 0.31
Baseline 2.14 ± 1.29 0.03 0.12 ± 0.73

Various
Rooms (2)

Mine 2.24 ± 1.54 0.06 0.04 ± 0.18
Baseline 2.27 ± 1.58 0.01 0.29 ± 1.33

Various
Rooms (3)

Mine 1.99 ± 1.46 0.02 0.11 ± 0.36
Baseline 2.03 ± 1.48 0.03 0.13 ± 0.58

Various
Rooms (4)

Mine 1.98 ± 1.42 0.03 0.07 ± 0.38
Baseline 1.95 ± 1.42 0.04 0.16 ± 0.67

Table A.6: Learning and Social Compliance Across All Layouts


