
Learning-Based Program Synthesis: Towards

Synthesizing Complex Programs from Multi-Modal

Speci�cations in the Wild

Xinyun Chen

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-42

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-42.html

May 9, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Learning-Based Program Synthesis: Towards Synthesizing Complex Programs from
Multi-Modal Specifications in the Wild

by

Xinyun Chen

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Professor Alvin Cheung

Professor Bruno Olshausen

Spring 2022

Learning-Based Program Synthesis: Towards Synthesizing Complex Programs from
Multi-Modal Specifications in the Wild

Copyright 2022
by

Xinyun Chen

1

Abstract

Learning-Based Program Synthesis: Towards Synthesizing Complex Programs from
Multi-Modal Specifications in the Wild

by

Xinyun Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

With the advancement of modern technologies, programming becomes ubiquitous not only
among professional software developers, but also for general computer users. However,
gaining programming expertise is time-consuming and challenging. Therefore, program
synthesis has many applications, where the computer automatically synthesizes programs
from specifications such as natural language descriptions and input-output examples. In this
dissertation, we present our work on learning-based program synthesis, where we demonstrate
deep learning techniques for synthesizing programs from different specification formats.

First, we present our work on synthesizing programs from multi-modal specifications with
real-world applications. In particular, our SpreadsheetCoder work has been integrated into
Google Sheets to support the formula suggestion feature, showing the power of learning-based
program synthesis in real products. Second, we present our work on execution-guided program
synthesis, which brings significant performance gain for synthesizing more complex programs
from input-output examples. Our work on program translation and code optimization then
demonstrate the importance of representing the program structures and designing learning
algorithms correspondingly, which improve the generalization of the learned model and the
complexity of programs that can be correctly generated. Finally, our work on neural-symbolic
frameworks show that integrating symbolic components into neural networks empower the
models with better reasoning and generalization capabilities.

i

To my parents.

ii

Contents

Contents ii

List of Figures vi

List of Tables xii

1 Introduction 1

I Synthesis with Natural Language 3

2 SpreadsheetCoder: Formula Prediction from Semi-structured Context 4
2.1 Introduction . 4
2.2 Problem Setup . 6
2.3 SpreadsheetCoder Model Architecture . 8
2.4 Experiments . 10
2.5 Related Work . 18
2.6 Discussion . 20

3 PlotCoder: Synthesizing Visualization Code in Programmatic Context 21
3.1 Introduction . 21
3.2 Visualization Code Synthesis Problem . 23
3.3 PlotCoder Model Architecture . 25
3.4 Experiments . 28
3.5 Related Work . 35
3.6 Discussion . 37

II Synthesis from Input-Output Examples 38

4 Execution-Guided Neural Program Synthesis 39
4.1 Introduction . 39
4.2 Problem Setup . 40

iii

4.3 Execution-Guided Synthesis . 42
4.4 Synthesizer Ensemble . 47
4.5 Evaluation . 47
4.6 Related Work . 51
4.7 Discussion . 52

5 Latent Execution for Neural Program Synthesis 53
5.1 Introduction . 54
5.2 Problem Setup . 55
5.3 Program Synthesis with Learned Execution 57
5.4 Restricted C Program Synthesis Domain . 59
5.5 Experiments . 61
5.6 Related Work . 67
5.7 Discussion . 68

IIISynthesis for Software Engineering Applications 69

6 Tree-to-tree Neural Networks for Program Translation 70
6.1 Introduction . 70
6.2 Program Translation Problem . 72
6.3 Tree-to-tree Neural Network . 73
6.4 Evaluation . 77
6.5 Related Work . 80
6.6 Discussion . 81

7 Neural Rewriter for Code Optimization and beyond 83
7.1 Introduction . 83
7.2 Problem Setup . 84
7.3 Neural Rewriter Model . 85
7.4 Applications . 86
7.5 Experiments . 89
7.6 Related Work . 95
7.7 Discussion . 96

IVNeural-Symbolic Reasoning for Language Understanding 97

8 Neural Symbolic Reader for Reading Comprehension 98
8.1 Introduction . 98
8.2 Neural Symbolic Reader . 100
8.3 Training with Weak Supervision . 102
8.4 Evaluation . 104

iv

8.5 Related Work . 109
8.6 Discussion . 110

9 Compositional Generalization via Neural-Symbolic Stack Machines 113
9.1 Introduction . 113
9.2 Neural-Symbolic Stack Machine (NeSS) . 114
9.3 Training . 119
9.4 Experiments . 120
9.5 Related Work . 125
9.6 Discussion . 126

10 Conclusion 127
10.1 Future Work . 128

Bibliography 130

A SpreadsheetCoder: Formula Prediction from Semi-structured Context 150
A.1 An Extended Discussion of Related Work . 150
A.2 More Experimental Results . 150
A.3 More Dataset Details . 151
A.4 More Discussion of the FlashFill-like Setting 153
A.5 Implementation Details . 153

B PlotCoder: Synthesizing Visualization Code in Programmatic Context 154
B.1 Implementation Details . 154
B.2 Training with Varying Number of Contextual Code Cells 155
B.3 Detailed Analysis on Results Per Plot Type 155
B.4 Other Plot Types . 156
B.5 More Discussion of Error Analysis . 156

C Execution-Guided Neural Program Synthesis 158
C.1 More Descriptions of the Karel Domain . 158
C.2 More Details about the Execution-guided Algorithm 158
C.3 Model Details . 159
C.4 Evaluation Details . 161

D Latent Execution for Neural Program Synthesis 164
D.1 Details in Model Architecture . 164
D.2 Implementation Details . 167
D.3 More Results of Iterative Retraining . 168

E Tree-to-Tree Neural Networks for Program Translation 171
E.1 Hyper-parameters of Neural Network Models 171

v

E.2 More Statistics of the Datasets . 172
E.3 More Results on the CoffeeScript-JavaScript Task 172
E.4 Grammar for the CoffeeScript-JavaScript Task 173
E.5 Evaluation on the Synthetic Task . 173

F Neural Rewriter for Code Optimization and beyond 178
F.1 More Details of the Dataset . 178
F.2 More Details on the Rewriting Ruleset . 180
F.3 More Details on Model Architectures . 181
F.4 More Results for Job Scheduling Problem . 184
F.5 More Discussion of the Evaluation on Vehicle Routing Problem 185
F.6 More Results for Expression Simplification 186

G Neural-Symbolic Reader for Reading Comprehension 190
G.1 More details about the input preprocessing 190
G.2 More discussion about the domain specific language 190
G.3 More details about the model architecture 191
G.4 More details about training . 193
G.5 Examples of wrong annotations on DROP 194
G.6 Examples of wrong predictions on DROP . 194

H Compositional Generalization via Neural-Symbolic Stack Machines 197
H.1 Discussion of the Benchmark Selection for Evaluation 197
H.2 More Details of the Stack Machine . 197
H.3 More Details of the Neural Controller Architecture 198
H.4 More Details for Training . 201
H.5 Implementation Details . 204
H.6 More Results on the Context-free Grammar Parsing Task 205
H.7 More Details of the Few-shot Learning Task 205

vi

List of Figures

2.1 Illustrative synthetic examples of our spreadsheet formula prediction setup. (a):
The formula manipulates cell values in the same row. (b): The formula is executed
on the rows above. (c) and (d): Formulas involve cells in different rows and
columns. The data value in the target cell is excluded from the input. All of these
formulas can be correctly predicted by our model. 6

2.2 The full grammar for range representation. 8
2.3 An overview of our model architecture. 9
2.4 Top-1 formula accuracies for different sketch lengths. 15
2.5 Examples of wrong formula predictions by our full model. (a) The sketch prediction

is correct, but the range is wrong. (b) The range prediction is correct, but the
sketch is wrong. These are synthetic examples for illustrative purposes. 17

2.6 Top-1 formula accuracy in the FlashFill-like setting, with different number of
input rows. 18

2.7 Examples of formulas that are correctly predicted by our full model with the full
context, but wrongly predicted with missing context. (a) The wrong prediction
when the model input does not include headers. Note that the model with
headers predicts it correctly even if only one data row is provided. (b) The wrong
prediction when the model input only includes headers and one data row. These
are synthetic examples for illustrative purposes. 19

3.1 An example of plot code synthesis problem studied in this work. Given the natural
language, code context within a few code cells from the target code, and other
code snippets related to dataframes, PlotCoder synthesizes the data visualization
code. 23

3.2 Overview of the PlotCoder architecture. The NL-Code linking component connects
the embedding vectors for underscored tokens in natural language and code context,
i.e., “age”. 26

3.3 Examples of predictions where the model selects the correct set of data to plot,
but the order is wrong. 32

3.4 Examples of model predictions even without the natural language input. 33
3.5 A sample prediction that requires a good understanding of the code context. . . 34

vii

4.1 A neural network architecture for input-output program synthesis (e.g., [35]). At
each timestep t, the decoder LSTM generates a program token gt conditioned
on both the input-output pairs {IOK} and the previous program token gt−1.
Each IO pair is fed into the LSTM individually, and a max-pooling operation
is performed over the hidden states {hkt }Kk=1 of the last layer of LSTM for all
IO pairs. The resulted vector is fed into a softmax layer to obtain a prediction
probability distribution over all the possible program tokens in the vocabulary.
More details can be found in Appendix C.3. 42

4.2 An example of the execution of partial programs to reach the target state in the
Karel domain. The blue dot denotes the marker put by the Karel robot. 43

4.3 Semantic rules 〈B, s〉 → 〈B′, s′〉 for Lext. 44
4.4 Results of the ensemble model trained with Exec + RL approach. Left: general-

ization accuracy. Right: exact match accuracy. The corresponding figures using
models trained with Exec approach can be found in Appendix C.4. 50

5.1 Illustration of the C program synthesis pipeline. For dataset construction, we develop a

random program generator to sample random C programs, then execute the program

over randomly generated inputs and obtain the outputs. The input-output pairs are fed

into the neural program synthesizer to predict the programs. Note that the synthesized

program can be more concise than the original random program. 56
5.2 (a) An overview of LaSynth model architecture. (b), (c), and (d) present the details

of the program decoder, latent executor, and the operation predictor. Note that the

operation predictor is specialized for numerical calculation, and thus is not used for the

Karel domain. 56
5.3 Generalization accuracies with different training data sizes on Karel. With the full

training set, the accuracies are 86.04%, 89.28% and 89.36% for training on random

programs, retraining for 1 and 2 iterations. 62
5.4 Program distributions after iterative retraining on Karel. (a) The distributions of

different program types. Seq-only : no control flows. If-only : the program includes If

statements but no loops. Repeat/While-only : the program includes Repeat/While loops,

but no other control flow constructs. Mixture: the program includes at least two types

of control flow constructs. (b) The distributions of programs with different token lengths. 63
5.5 Sample programs that could be correctly predicted by LaSynth, but wrongly predicted

by models without the latent executor. These programs require multiple different

operations for different input list elements. 64
5.6 Accuracies of different program types on C dataset. 65
5.7 Results of iterative retraining on the C dataset. (a) Accuracies with different training

data sizes. With the full training set, the accuracies are 55.2%, 56.0% and 56.5% for

training on random programs, retraining for 1 and 2 iterations, respectively. (b) The

program distributions after each retraining iteration. 65

viii

5.8 Results on programs of different token lengths on the C dataset. (a) The program token

length distributions after each retraining iteration. (b) The accuracies on programs of

different token lengths. 66

6.1 Translating a CoffeeScript program into JavaScript. The sub-component in the
CoffeeScript program and its corresponding translation in JavaScript are highlighted. 73

6.2 Tree-to-tree workflow: The arrows indicate the computation flow. Blue solid
arrows indicate the flow from/to the left child, while orange dashed arrows are for
the right child. The black dotted arrow from the source tree root to the target
tree root indicates that the LSTM state is copied. The green box denotes the
expanding node, and the grey one denotes the node to be expanded in the queue.
The sub-tree of the source tree corresponding to the expanding node is highlighted
in yellow. The right corner lists the formulas to predict the value of the expanding
node. 74

7.1 The instantiation of NeuRewriter for different domains: (a) expression simplification;

(b) job scheduling; and (c) vehicle routing. In (a), st is the expression parse tree, where

each square represents a node in the tree. The set Ω(st) includes every sub-tree rooted

at a non-terminal node, from which the region-picking policy selects ωt ∼ πω(ωt|st))
to rewrite. Afterwards, the rule-picking policy predicts a rewriting rule ut ∈ U , then

rewrites the sub-tree ωt to get the new tree st+1. In (b), st is the dependency graph

representation of the job schedule. Each circle with index greater than 0 represents

a job node, and node 0 is an additional one representing the machine. Edges in the

graph reflect job dependencies. The region-picking policy selects a job ωt to re-schedule

from all job nodes, then the rule-picking policy chooses a moving action ut for ωt, then

modifies st to get a new dependency graph st+1. In (c), st is the current route, and ωt
is the node selected to change the visit order. Node 0 is the depot, and other nodes are

customers with certain resource demands. The region-picking policy and the rule-picking

policy work similarly to the job scheduling ones. 87
7.2 Experimental results of the expression simplification problem. In (b), we train

NeuRewriter on expressions of different lengths (described in the brackets). 90
7.3 Experimental results of the job scheduling problem varying the following aspects: (a) the

number of resource types D; (b) job frequency; (c) resource distribution; (d) job length.

For NeuRewriter, we describe training job distributions in the brackets. Workloads

in (a) are with steady job frequency, non-uniform resource distribution, and non-uniform

job length. In (b), (c) and (d), D = 20. In (b) and (c), we omit the comparison with

some approaches because their results are significantly worse; for example, the average

slowdown of EJF is 14.53 on the dynamic job frequency, and 11.06 on the uniform

resource distribution. More results can be found in Appendix F.4. 90

ix

7.4 Experimental results of the vehicle routing problem with different number of customer

nodes and vehicle capacity; e.g., VRP100, Cap50 means there are 100 customer nodes

and the vehicle capacity is 50. (a) NeuRewriter outperforms multiple baselines and

previous works [142, 186]. More results can be found in Appendix F.5. (b) We evaluate

the generalization performance of NeuRewriter on problems from different distributions,

and we describe the training problem distributions in the brackets. 91
7.5 The framework of our neural rewriter. Given the current state (i.e., solution to the

optimization problem) st, we first pick a region ωt by the region-picking policy πω(ωt|st),
and then pick a rewriting rule ut using the rule-picking policy πu(ut|st[ωt]), where

πu(ut|st[ωt]) gives the probability distribution of applying each rewriting rule u ∈ U
to the partial solution. Once the partial solution is updated, we obtain an improved

solution st+1 and repeat the process until convergence. 95

8.1 Comparison of NeRd with previous approaches for reading comprehension requiring
complex reasoning. The components in grey boxes are the neural architectures.
Previous works mainly take two approaches: (1) augmenting pre-trained language
model such as BERT with specialized modules for each type of questions, which is
hard to scale to multiple domains or multi-step complex reasoning; (2) applying
neural semantic parser to the structured parses of the passage, which suffers
severely from the cascade error. In contrast, the neural architecture of NeRd is
domain-agnostic, which includes a reader, e.g., BERT, and a programmer, e.g.,
LSTM, to generate compositional programs that are directly executed over the
passages. 100

9.1 An illustrative example of how to use the stack machine for SCAN benchmark. A
more complex example can be found in the supplementary material. 115

9.2 An illustration of component categorization, where Csi and Cti denote the i-th
category of source and target languages respectively. 116

9.3 An illustration of the operational equivalence captured by the execution traces
on SCAN benchmark. (a) With primitive replacement, e.g., changing “walk”
into “jump”, the operator trace remains the same, while the REDUCE arguments
differ, thus “walk” and “jump” can be grouped into the same category. Such
equivalence is also characterized by local equivariance defined in [93]. (b) By
changing “twice” into “thrice”, the operator trace remains the same, while the
CONCAT M and CONCAT S arguments could differ, thus “twice” and “thrice” are in
the same category. Such equivalence is crucial in achieving length generalization
on SCAN, which is not characterized by primitive equivariance studied in prior
work [93, 158, 149] . 117

9.4 An overview of the neural architecture for the machine controller. A more detailed
illustration is included in the supplementary material. 118

x

A.1 Top-1 formula accuracies for different sketch lengths, excluding headers in the
context. 151

B.1 Program accuracy with different number of input code cells. (a) Results of different
model architectures. (b) The comparison between the accuracy of the hierarchical
model and the upper bounds. 155

C.1 Grammar for the Karel task. 158
C.2 An example of the predicted program that generalizes to all input-output examples,

but is different from the ground truth. Here, we only include 2 out of 5 input-
output examples for simplicity. Notice that the predicted program is simpler than
the ground truth. 162

C.3 Results of the ensemble model trained with our Exec approach. Left: generalization
accuracy. Right: exact match accuracy. 162

D.1 More examples of predicted correct programs that are more concise than the randomly

generated ground truth programs on C dataset. Left: input-output examples. Middle:

the randomly generated ground truth program. Right: the predicted programs. Unless

otherwise specified, the predicted programs come from the model trained on random

programs. 169
D.2 Examples of predicted correct programs that are more concise than the randomly

generated ground truth programs on Karel dataset. 1st and 3rd columns: the randomly

generated ground truth programs. 2nd and 4th: the corresponding predicted programs.

The predictions come from the model trained on random programs. 170

E.1 A subset of the CoffeeScript grammar used to generate the CoffeeScript-JavaScript
dataset. Here,
 denotes the newline character. 174

E.2 An example of the translation for the synthetic task. 175
E.3 Grammar for the source language FOR in the synthetic task. 176
E.4 Grammar for the target language LAMBDA in the synthetic task. 176
E.5 The Python code to translate a FOR program into a LAMBDA program in the

synthetic task. 177

F.1 Grammar of the Halide expressions in our evaluation. “select (c, e1, e2)” means
that when the condition c is satisfied, this term is equal to e1, otherwise is equal
to e2. In our dataset, all constants are integers ranging in [−1024, 1024], and
variables are from the set {v0, v1, ..., v12}. 179

F.2 An example of the rewriting process for Halide expressions. The initial expression
is 5 ≤ max(v0, 3) + 3, which could be reduced to 1, i.e., True. 180

F.3 An example to illustrate the job embedding approach for the job scheduling problem.182
F.4 An example to illustrate two possible job schedules on a single machine and their

corresponding graph representations. Node 0 was added to represent the start of
the scheduling process. For multiple machines, multiple node 0 will be added. . 182

xi

F.5 An example of the rewriting steps for a VRP20 problem. The square is the depot,
and circles are customer nodes. The customer node sizes are proportional to their
resource demands. At each stage, red edges are to be rewritten at the next step,
and green edges are rewritten ones. The tour length of the initial route is 7.31,
and the final tour length after rewriting is 5.98. 187

F.6 The rewriting process that simplifies the expression ((v0−v1 + 18)/35∗35 + 35) ≤
v0− v1 + 119 to 34 ≤ (v0− v1 + 13)%35. 188

F.7 The rewriting process that simplifies the expression ((v0−v1+12)/137∗137+137) ≤
min((v0− v1 + 149)/137 ∗ 137, v0− v1 + 13) to 136 ≤ (v0− v1 + 12)%137. . . . 189

H.1 A more complicated usage of the stack machine for SCAN benchmark. 199
H.2 An illustrative example of our stack machine for context-free grammar parsing.

This example showcases the execution steps that are equivalent to a REDUCE

operation defined in the parsing machine of [48]. CONCAT M is used to select the
children for the generated tree, REDUCE is used to generate the non-terminal, and
CONCAT S is used to construct the tree. 200

H.3 The neural architecture for the machine controller. The dotted arrows indicate
the update of machine status representation after executing the corresponding
instructions. 200

H.4 Sample spurious traces on SCAN benchmark, which could be pruned by rule
extraction. The wrong predictions of operators and arguments are marked with red.202

H.5 The full dataset used for the few-shot learning of compositional instructions. This
figure is taken from [150], where the percentage after each test sample is the
proportion of human participants who predict the correct output. 206

xii

List of Tables

2.1 Formula accuracy on the test set. “−” means the corresponding component is
removed from our full model. 14

2.2 Sketch and range accuracy on the test set. 16
2.3 Formula accuracy on the test set, excluding headers in the context. Corresponding

results with headers are in Table 2.1. 17

3.1 Dataset statistics. 28
3.2 Evaluation on program accuracy. 30
3.3 Evaluation on plotted data accuracy. 31
3.4 Evaluation on plot type accuracy. 31
3.5 Evaluation on the full hierarchical model with different inputs. 32
3.6 Plot type accuracy on Test (hard) per type. 34
3.7 Plotted data accuracy on Test (hard) per type. All models are trained with

canonicalized target code. 35
3.8 Error analysis on Test (gold) with the hierarchical model. 36

4.1 Syntax of Lext. 43
4.2 Accuracy on the Karel test set. In the “Training”column, we use “MLE” and

“Exec” to indicate the training approaches proposed in [35] and this work, “SL”
and “RL” to indicate supervised learning and reinforcement learning respectively.
In the “Ensemble” column, dash indicates that no ensemble is used, “S” and “MV”
indicate the shortest and majority vote principles respectively. For the single
model accuracy, we report the results of the model with the best generalization
accuracy. We include 15 models in each ensemble. 49

5.1 The comparison between our restricted C domain and existing programming by example

tasks. 59
5.2 The comparison between LaSynth and baseline neural program synthesis models in our

evaluation. 61
5.3 Results on Karel dataset. Gen and Exact denote generalization and exact match

accuracies. 62
5.4 Results on C dataset. 65

xiii

6.1 Program accuracy for the translation between CoffeeScript and JavaScript. . . . 79
6.2 Program accuracy on the Java to C# translation. In the parentheses, we present

the program accuracy that can be achieved by increasing the training set. 80

7.1 Average runtime (per instance) of different solvers (OR-tools [92] and the tactic

Z3-ctx-solver-simplify of Z3 [68]) and RL-based approaches (NeuRewriter, DeepRM [174],

Nazari et al. [186] and AM [142]) over the test set of: (a) expression simplification; (b)

job scheduling; (c) vehicle routing. 94

8.1 Overview of our domain-specific language. See Table 8.7 for the sample usage. . 102
8.2 An example in MathQA dataset. 105
8.3 Results on DROP dataset. On the development set, we present the mean and

standard error of 10 NeRd models, and the test result of a single model. For
all models, the performance breakdown of different question types is on the
development set. Note that the training data of BERT-Calc model [11] for test
set evaluation is augmented with CoQA [216]. 107

8.4 Results of counting and sorting questions on DROP development set, where
we compare variants of NeRd with and without the corresponding operations.
(a): counting; (b): sorting. For each setting, we present the best results on
development set. 108

8.5 Results of different training algorithms on DROP development set. For each
setting, we present the best results on the development set. 108

8.6 Results on MathQA test set, with NeRd and two variants: (1) no pre-training; (2)
using 20% of the program annotations in training. 109

8.7 Examples of correct predictions on DROP development set. 111
8.8 Examples of counting and sorting questions on DROP development set, where

NeRd with the corresponding operations gives the correct predictions, while the
variants without them do not. (a): counting; (b): sorting. 112

9.1 Instruction semantics of our stack machine. See Figure 9.1 for the sample usage. 115
9.2 Learned categories on SCAN. The words in a pair of brackets belong to the same

category. The categories contained in the three lines are respectively learned from
input sequences of length 1, 2 and 3. 121

9.3 Test accuracy on SCAN splits. All models in the top block are trained without
additional data. In the bottom, GECA is trained with data augmentation, while
Meta Seq2seq (perm) and both variants of Synth are trained with samples drawn
from a meta-grammar, with a format close to the SCAN grammar. In particular,
Synth (with search) performs a search procedure to sample candidate grammars,
and returns the one that matches the training samples; instead, other models
always return the prediction with the highest decoding probability. 122

9.4 Accuracy on the few-shot learning task proposed in [150]. 123

xiv

9.5 Accuracy on the compositional machine translation benchmark in [148], measured
by semantic equivalence. 123

9.6 Results on the context-free grammar parsing benchmarks proposed in [48]. “Test-
LEN” indicates the testset including inputs of length LEN. 123

A.1 Breakdown accuracies on the test set, excluding headers in the context. 152

B.1 Breakdown accuracies of plots in “Others” category on Test (hard), using the full
hierarchical model. 156

C.1 Representation of each cell in the Karel state. 159
C.2 Exact match accuracy of the ensemble. 163
C.3 Generalization accuracy of the ensemble. 163

D.1 Results of iterative retraining on Karel dataset. 168
D.2 Results of iterative retraining on C dataset. 168

E.1 Hyper-parameters chosen for each neural network model. 171
E.2 Statistics of the datasets used for the CoffeeScript-JavaScript task. 172
E.3 Statistics of the Java to C# dataset. 172
E.4 Token accuracy of different approaches for translation between CoffeeScript and

JavaScript. 173
E.5 Token accuracy and program accuracy of different approaches for the synthetic task.175
E.6 Statistics of the datasets used for the synthetic task. 175

F.1 Statistics of the dataset for expression simplification. 179
F.2 Experimental results of the job scheduling problem with different distribution of

job frequency. 185
F.3 Experimental results of the job scheduling problem with different distribution of

job resources. 185
F.4 Experimental results of the job scheduling problem using initial schedules with

different average slowdown. The number of resource types D = 20. 185
F.5 Experimental results of the vehicle routing problems. 186

G.1 Some samples in DROP training set with the wrong annotations, which are
discarded by NeRd because none of the annotated programs passes the threshold
of our training algorithm. 195

G.2 Examples of wrong predictions on DROP dev set. 196

H.1 The full experimental results on context-free grammar parsing benchmarks pro-
posed in [48]. 207

xv

Acknowledgments

I am very grateful for all the support and help I have received in my Ph.D. journey. First, I
would like to thank my advisor Dawn Song. I have been working with her since my junior
undergraduate year when I interned in her lab as a visiting student. Our first project is to
design deep neural networks to translate natural language descriptions into a single program
statement, which led to my first publication at top-tier conferences as the first author. I
became deeply interested in learning-based program synthesis, and continued working in this
field for my Ph.D. research. Dawn’s support, guidance and encouragement are crucial in
guiding me to build my own research agenda.

Next, I would like to thank Alvin Cheung and Bruno Olshausen for serving on both my
dissertation committee and qualifying exam committee, and thank Koushik Sen for being
the chair of my qualifying exam. Thank you all for giving many insightful comments and
suggestions on my thesis research. I also enjoy my collaboration with Alvin Cheung on our
PlotCoder project for synthesizing visualization code in Python Jupyter notebooks, where I
learn more about the challenges of dealing with ambiguous program specifications for program
synthesis in the wild.

I am fortunate to have the opportunities of interning at several great industrial research
labs and working with amazing people. First, I want to thank Yuandong Tian and Denny
Zhou, who hosted my internships at Meta AI and Google Brain. I met both of them when I
was a senior undergraduate, and I didn’t expect that I will have long-term collaboration with
them throughout my Ph.D. journey. They not only closely work with me on my internship
projects, but also give me a lot of career advice and regularly chat with me even if my
internships already ended. Their mentorship has been playing a key role in my Ph.D. life.

Meanwhile, I would like to thank Petros Maniatis, Rishabh Singh and Charles Sutton,
who are my mentors in the program synthesis team of Google Brain. I am super excited
about our SpreadsheetCoder work, which shows the production impact of our developed
techniques. The success will not be possible without the support from many people in Google
Brain and Google Sheets teams. I also want to thank Yujia Li, who introduced me to the
DeepMind AlphaCode team and brought me into this project in my internship. Building an
agent that outperforms human programmers on competitive programming has been a dream
since I started working on program synthesis, and I am excited to join the effort of tackling
this challenge. It is a wonderful experience working in this amazing team, and I have been
consistently impressed by the rapid progress of the team.

I would like to thank my colleagues and friends in Dawn’s group for hanging out together
and chatting about research and life, including Min Du, Linyuan Gong, Ruoxi Jia, Bo Li,
Chang Liu, Jian Liu, Xiaoyuan Liu, Richard Shin, Chenguang Wang, Lun Wang, Tiancheng
Xie, Gai Yu, Jiaheng Zhang, Siyuan Zhuang, and others. I also want to thank my collaborators
and friends outside Berkeley, including Bo Dai, Hanjun Dai, Cheng Fu, Yujian Gan, Chen
Liang, Hongyu Ren, Hui Shi, Adams Wei Yu, and many others.

Finally, I would like to thank my parents for their unconditional love and support.

1

Chapter 1

Introduction

Nowadays, programming is ubiquitous among not only professional software developers, but
also general computer users. However, gaining programming expertise is time-consuming
and challenging. Therefore, program synthesis has many applications, where the computer
automatically synthesizes the programs from the specification, i.e., the required program
functionality that can be described in various formats such as natural language descriptions
and input-output examples. Program synthesis transforms the way we interact with computers,
which makes programming more friendly and accessible to general users, aids data scientists
in data processing, and improves the programming efficiency of software developers.

Classic program synthesis techniques are largely based on heuristic-guided search and
rule-based generation. These hand-engineered systems require a lot of manual effort to tune
the search heuristics and synthesis rules for different applications, and they are not capable of
handling program specifications that are noisy and less well-defined, such as natural language
descriptions. On the other hand, recent advancements in deep learning have shown impressive
performance in a variety of areas. With abundant open-source projects available online, deep
neural networks have become a great fit for representing different specification formats and
efficiently learning the synthesis rules from data. In the end, learning-based techniques are
necessary for broadening the impact of program synthesis.

Despite the recent progress of program synthesis, including learning-based approaches,
prior works still suffer from limited complexity and generalizability, i.e., the predicted programs
tend to become inconsistent with the specification when the specification and its corresponding
program are long and complicated. Meanwhile, understanding heterogeneous specification
formats remains a challenge for the real-world deployment of program synthesizers.

In this dissertation, we present deep learning-based techniques towards addressing the
aforementioned challenges and demonstrating the real-world impact of learning-based program
synthesis. Meanwhile, our work also aim to address the core challenges of artificial intelli-
gence and machine learning regarding generalization, compositionality, interpretability, and
reasoning. Specifically, we have designed neural-symbolic frameworks that interleave neural
and symbolic modules, which learn to produce problem solutions represented as programs.

In terms of program synthesis applications, we present learning-based program synthesis

CHAPTER 1. INTRODUCTION 2

approaches to synthesize programs from various types of specifications, including natural
language descriptions (Part I), input-output examples (Part II), and reference programs
(Part III). Our SpreadsheetCoder model, which predicts spreadsheet formulas from the
tabular context, was integrated into Google Sheets. The formula suggestion feature could
potentially benefit hundreds of millions of users, and makes data analysis easier and more
efficient (Chapter 2). Meanwhile, our execution-guided synthesis technique brings significant
performance gains for synthesizing more complex programs from input-output examples
(Chapters 4 and 5) .

Furthermore, we also introduce a new methodology to reason over data via program
synthesis, where the neural networks are trained to make predictions as programs (Part IV).
Existing deep neural networks have been primarily designed to learn what to predict, instead
of the rationale behind the predictions. As a result, despite the remarkable success of deep
neural networks in various applications, they are insufficient for more complex reasoning
beyond superficial pattern matching, such as numerical calculation and logical reasoning.
Furthermore, deep neural networks have exposed limitations in generalization, even if the
test input only slightly deviates from the training distribution. Facing these challenges of
reasoning and generalization, we have developed neural-symbolic techniques that empower
neural networks with the ability to synthesize programs that represent the reasoning process.
By integrating the symbolic component into deep neural networks, our neural-symbolic
reader demonstrates decent performance on challenging numerical reasoning over text, which
is not naturally achievable even with massive pre-training (Chapter 8). Meanwhile, our
neural-symbolic stack machines learn execution traces that reveal the compositional rules for
language understanding, which achieve full generalization to unseen test cases (Chapter 9).

3

Part I

Synthesis with Natural Language

4

Chapter 2

SpreadsheetCoder: Formula Prediction
from Semi-structured Context

Spreadsheet formula prediction has been an important program synthesis problem with
many real-world applications. Previous works typically utilize input-output examples as the
specification for spreadsheet formula synthesis, where each input-output pair simulates a
separate row in the spreadsheet. However, this formulation does not fully capture the rich
context in real-world spreadsheets. First, spreadsheet data entries are organized as tables,
thus rows and columns are not necessarily independent from each other. In addition, many
spreadsheet tables include headers, which provide high-level descriptions of the cell data.
However, previous synthesis approaches do not consider headers as part of the specification.
In this chapter, we present the first approach for synthesizing spreadsheet formulas from
tabular context, which includes both headers and semi-structured tabular data. In particular,
we propose SpreadsheetCoder, a BERT-based model architecture to represent the tabular
context in both row-based and column-based formats. We train our model on a large dataset
of spreadsheets, and demonstrate that SpreadsheetCoder achieves top-1 prediction accuracy
of 42.51%, which is a considerable improvement over baselines that do not employ rich tabular
context. Compared to the rule-based system, SpreadsheetCoder assists 82% more users in
composing formulas on Google Sheets 1.

2.1 Introduction

Spreadsheets are ubiquitous for data storage, with hundreds of millions of users. Helping users
write formulas in spreadsheets is a powerful feature for data analysis. Although spreadsheet
formula languages are relatively simpler than general-purpose programming languages for
data manipulation, writing spreadsheet formulas could still be tedious and error-prone for
end users [98, 111, 59]. Systems such as FlashFill [98, 99] help end-users perform string
transformation tasks in spreadsheets using a few input-output examples by automatically

1The material in this chapter is based on Chen et al. [57].

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 5

synthesizing a program in a domain-specific language (DSL). Recently, several learning
approaches based on different neural architectures have been developed for learning such
programs from examples, and have demonstrated promising results [201, 74, 252].

All these previous works formalize the spreadsheet program prediction problem as a
programming by example task, with the goal of synthesizing programs from a small number
of input-output examples. We argue that this choice engenders three key limitations. First,
this setup assumes that each data row is independent, and each formula is executed on data
cells of the same row. However, real spreadsheets are less structured than this. Data in
spreadsheets is typically organized as semi-structured tables, and cells in different rows could
be correlated. As shown in Figure 2.1, in the same table, different data blocks could have
different structures, and formulas can take cell values in other rows as function arguments.
Second, because spreadsheets are semi-structured, they also contain rich metadata. In
particular, many spreadsheet tables include headers that provide high-level descriptions of
the data, which could provide important clues for formula prediction. However, table headers
are not utilized in prior work. Finally, programming-by-example methods output programs
in a DSL, which is typically designed to facilitate synthesis, and is much less flexible than the
language in which users write formulas. For example, the FlashFill DSL only covers a subset
of spreadsheet functions for string processing, and it does not support rectangular ranges, a
common feature of spreadsheet formulas. In contrast, spreadsheet languages also support
a wide variety of functions for numerical calculation, while the argument selection is more
flexible and takes the spreadsheet table structure into account. In total, these limitations can
compromise the applicability of such prior efforts to more diverse real-world spreadsheets
and to richer language functionality.

Instead, we propose synthesizing spreadsheet formulas without an explicit specification.
To predict a formula in a given cell, the context of data and metadata is used as an implicit
(partial) specification of the desired program. For example (Figure 2.1b), if predicting a
formula at the end of a column of numbers labeled “Score”, and a cell in the same row
contains the text “Total”, this context might specify the user’s intent to compute a column
sum. Our problem brings several new challenges compared to related work in programming
by example [98, 35, 22], semantic parsing [211, 292, 283] and source code completion [215,
157, 242]. Spreadsheet tables contain rich two-dimensional relational structure and natural
language metadata, but the rows do not follow a fixed schema as in a relational database.
Meanwhile, our tabular context is more ambiguous as the program specification, and the
spreadsheet language studied in this work is more flexible than languages studied in the
program synthesis literature.

In this paper, we present SpreadsheetCoder, a neural network architecture for spreadsheet
formula prediction. SpreadsheetCoder encodes the spreadsheet context in its table format,
and generates the corresponding formula in the target cell. A BERT-based encoder [72]
computes an embedding vector for each input token, incorporating the contextual information
from nearby rows and columns. The BERT encoder is initialized from the weights pre-trained
on English text corpora, which is beneficial for encoding table headers. To handle cell
references, we propose a two-stage decoding process inspired by sketch learning for program

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 6

Target
formula

Header

Target cell

Surrounding
cell values

Range

(a)

Target
formula

Header

Target cell

Surrounding
cell values

Range

(b)
Target
formula

Header

Surrounding
cell values

(c)

Target
formula
Header

Surrounding
cell values

(d)

Figure 2.1: Illustrative synthetic examples of our spreadsheet formula prediction setup. (a):
The formula manipulates cell values in the same row. (b): The formula is executed on the
rows above. (c) and (d): Formulas involve cells in different rows and columns. The data
value in the target cell is excluded from the input. All of these formulas can be correctly
predicted by our model.

synthesis [234, 185, 79, 192]. Our decoder first generates a formula sketch, which does not
include concrete cell references, and then predicts the corresponding cell ranges to generate
the complete formula.

For evaluation (Section 2.4), we construct a large-scale benchmark of spreadsheets publicly
shared within our organization. We show that SpreadsheetCoder outperforms neural network
approaches for programming by example [74], and achieves 42.51% top-1 full-formula accuracy,
and 57.41% top-1 formula-sketch accuracy, both of which are already high enough to be
practically useful. In particular, SpreadsheetCoder assists 82% more users in composing
formulas than the rule-based system on Google Sheets. Moreover, SpreadsheetCoder can
predict cell ranges and around a hundred different spreadsheet operators, which is much more
flexible than DSLs used in prior works. With various ablation experiments, we demonstrate
that both implicit specification from the context and text from the headers are crucial for
obtaining good performance.

2.2 Problem Setup

In this section, we discuss the setup of our spreadsheet formula prediction problem. We
first describe the input specification, then introduce the language and representation for
spreadsheet formulas.

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 7

Input specification. We illustrate the input context in Figure 2.1. The input context
consists of two parts: (a) context surrounding the target cell (e.g., all cell values in rows 2–7,
and columns A–D, excluding cell D4 in Figure 2.1a), and (b) the header row (e.g., row 1).

In contrast to prior programming-by-example approaches [98, 201, 74, 252], our input
specification features (a) tabular input, rather than independent rows as input-output
examples, and (b) header information. Tabular input is important for many cases where
formulas are executed on various input cells from different rows and columns (Figure 2.1), and
headers hold clues about the purpose of a column as well as its intended type, e.g, the header
cell ”Score” in Figure 2.1b is likely to indicate that the column data should be numbers.

Note that we do not include the intended output of the target cell in our input specification,
for three reasons. First, unlike programming-by-example problems, we do not have multiple
independent input-output examples available from which to induce a formula, so providing
multiple input-output examples is not an option. Second, even for our single input instance,
the evaluated formula value may not be known by the spreadsheet user yet. Finally, we tried
including the intended formula execution result in our specification, but it did not improve
the prediction accuracy beyond what the contextual information alone allowed.

The spreadsheet language. Our model predicts formulas written in the Google Sheets
language2. Compared to the domain-specific language defined in FlashFill, which focuses on
string transformations, the spreadsheet language supports a richer set of operators. Besides
string manipulation operators such as CONCATENATE, LOWER, etc., the spreadsheet language
also includes operators for numerical calculations (e.g., SUM and AVERAGE), table lookups
(e.g., VLOOKUP) and conditional statements (IF, IFS). As will be discussed in Section 2.4,
around a hundred different base formula functions appear in our dataset, many more than
the operators defined in the FlashFill DSL.

In this work, we limit our problem to formulas with references to local cells in a spreadsheet
tab, thus we exclude formulas with references to other tabs or spreadsheets, and absolute
cell ranges. As will be discussed in Section 2.3, we also exclude formulas with relative cell
references outside a bounded range, i.e., farther than D = 10 rows and columns in our
evaluation. We consider improving the computational efficiency to support larger D and
enabling the synthesis of formulas with more types of cell references as future work.

Formula representation. One of the key challenges in formula representation is how
to represent cell references, especially ranges, which are prevalent in spreadsheet formulas.
Naively using the absolute cell positions, e.g., A5, may not be meaningful across different
spreadsheets. Meanwhile, a single spreadsheet can have millions of cells, thus the set of
possible ranges is very large.

To address this, we design a representation for formula sketches inspired by prior work on
sketch learning for program synthesis [234, 185, 79, 192]. A formula sketch includes every
token in the prefix representation of the parse tree of the spreadsheet formula, except for
cell references. References, which can be either a single cell or a range of cells, are replaced
with a special placeholder RANGE token. For example, the sketch of the formula in Fig-

2Google Sheets function list: https://support.google.com/docs/table/25273?hl=en.

https://support.google.com/docs/table/25273?hl=en

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 8

<Range> ::= R <R> <C> $ENDR$
| R <R> <C> SEP <R> <C> $ENDR$

<R> ::= R[-10] | R[-9] | ...R[9] | R[10]
<C> ::= C[-10] | C[-9] | ...C[9] | C[10]

Figure 2.2: The full grammar for range representation.

ure 2.1a is IF <= RANGE 1 "A" IF <= RANGE 2 "B" IF <= RANGE 3 "C" IF <= RANGE 4

"D" "E" $ENDSKETCH$, where $ENDSKETCH$ denotes the end of the sketch. Notice that the
sketch includes literals, such as the constants 1 and "A".

To complete the formula representation, we design an intermediate representation for
ranges, relative to the target cell, as shown in Figure 2.2. For example, B5 in Figure 2.1c is
represented as R R[0] C[1] $ENDR$ since it is on the next column but the same row as
the target cell A5, and range C2:C6 in Figure 2.1b is represented as R R[-5] C[0] SEP
R[-1] C[0] $ENDR$. The special tokens R and $ENDR$ start and conclude a concrete range,
respectively, and SEP separates the beginning and end (relative) references of a rectangular
multi-cell range.

A complete spreadsheet formula includes both the sketch and any concrete ranges; e.g., the
formula in Figure 2.1b is represented as SUM RANGE $ENDSKETCH$ R R[-5] C[0] SEP
R[-1] C[0] $ENDR$ EOF, where EOF denotes the end of the formula. In Section 2.3, we will
discuss our two-stage decoding process, which sequentially predicts the formula sketch and
ranges.

2.3 SpreadsheetCoder Model Architecture

In this section, we present our SpreadsheetCoder model architecture for spreadsheet formula
prediction. We provide an overview of our model design in Figure 2.3.

Tabular Context Encoder

Input representation. Our model input includes the surrounding data values of the target
cell as a table, and the first row is the header. When there is no header in the spreadsheet
table, we set the header row to be an empty sequence. We include data values in cells that
are at most D rows and D columns away from the target cell, so that the input dimension is
(2D + 2)× (2D + 1), and we set D = 10 in our experiments.

Row-based BERT encoder. We first use a BERT encoder [72] to compute a row-based
contextual embedding for each token in the target cell’s context. Since our 2D + 1 + 1 rows
contain many tokens and we use a standard BERT encoder of 512-token inputs, we tile our
rows into bundles of N = 3 adjacent data rows, plus the header row, which is included in
every bundle. Then we compute a token-wise BERT embedding for each bundle separately;

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 9

Aggregated
Token-wise	
Embedding

Row-Based	
BERT	Encoder

Header
Attention

Rowwise
Convolution

Columnwise
Convolution LSTM

Decoder

Cell	Data
Attention

Sketch
Predictor

Range
Predictor

Skip	Connection

Column-Based
BERT	Encoder

Rowwise
Convolution

Columnwise
Convolution

Skip	Connection

Input	Table

Figure 2.3: An overview of our model architecture.

the BERT weights are initialized from a pre-trained checkpoint for English. Specifically, in
our experiments where D = 10, we concatenate all cell values for each row i in the context
into a token sequence Ri, which has length L = 128 (we trim and pad as needed). We
combine rows in bundles Srb = [Hr, R3b−1, R3b, R3b+1], for b ∈ [−3, 3]; here Hr is the header
row. We set the BERT segment IDs to 0 for the header tokens, and 1 for data tokens in each
bundle. There are 2D+ 1 = 21 rows of context, so each of the 21 data rows is covered exactly
once by the seven bundles. The header row is assigned a different BERT representation in
each bundle. To obtain a single representation of the header row, we average per token across
the embeddings from all of the bundles.

The number of data rows N = 3 is set to seek the balance between the size of the tabular
context fed into the encoder and the computational efficiency. Since the BERT we use takes
512 input tokens, we can feed at most L = 512/(N + 1) tokens per row. To generate formulas
referring to cells within D = 10 rows and columns, L = 128 is a good fit in our evaluation. If
we further decrease N and increase L, it imposes extra computational overhead due to more
forward passes over BERT (21/N).

Column-based BERT encoder. As shown in Figure 2.1b, some formulas manipulate
cells in the same column, in which case a column-based representation may be more desirable.
Therefore, we also compute a column-based contextual embedding for all context tokens.
We perform similar tiling as for the row-based BERT encoding, yielding column bundles Scb
for b ∈ [−3, 3]. Unlike with row-wise tiling, where we include the header row Hr with every
bundle, for column-wise tiling we use the column of the target cell, Hc = C0, as the “header
column” in every bundle. After obtaining all token embeddings from this tiled computation
by the BERT encoder, we discard token embeddings of C0 in its role as header column, and
only use its regular token embeddings from the bundle Sc0.

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 10

Row-wise and column-wise convolution layers. Although the output vectors of
BERT encoders already contain important contextual information, such as headers, nearby
rows and columns, they still do not fully embed the entire input table as the context. To
encode the context from more distant rows and columns, we add a row-wise convolution layer
and a column-wise convolution layer on top of each BERT encoder. Specifically, the row-wise
convolution layer has a kernel size of 1 × L, and the column-wise convolution layer has a
kernel size of (2D+ 2)× 1 for row-based BERT, and (2D+ 1)× 1 for column-based BERT. In
this way, the convolution layer aggregates across BERT embeddings from different bundles,
allowing the model to take longer range dependencies into account. For each input token,
let eb be its BERT output vector, cr be the output of the row-wise convolution layer, and
cc be the output of the column-wise convolution layer. The final embedding of each input
token is the concatenation of the BERT output and the output of convolution layers, i.e.,
e = [cr + cc; eb].

Two-stage Formula Decoder

We train an LSTM [115] decoder to generate the formula as a token sequence. Meanwhile,
we use the standard attention mechanism [20] to compute two attention vectors, one over
the input header, and one over the cell data. We concatenate these two attention vectors
with the LSTM output, and feed them to a fully-connected layer with the output dimension
|V |, where |V | is the vocabulary size of formula tokens. Note that the token vocabularies are
different for sketches (formula operators, literals, and special tokens) and ranges (relative row
and column tokens and special range tokens). The output token prediction is computed with
the softmax.

As mentioned in Section 2.2, we design a two-stage decoding process, where the decoder
first generates the formula sketch, and then predicts the concrete ranges. In the first stage,
the sketch is predicted as a sequence of tokens by the LSTM, and the prediction terminates
when an $ENDSKETCH$ token is generated. Then in the second stage, the range predictor
sequentially generates formula ranges corresponding to each RANGE token in the sketch, and
the prediction terminates when an EOF token is generated. Both sketch and range predictors
share the same LSTM, but with different output layers.

2.4 Experiments

We evaluate SpreadsheetCoder on spreadsheet formula prediction tasks in different settings.
We first describe our dataset, then introduce our experimental setup and discuss the results 3.

3The code and data are available at https://github.com/google-research/google-research/tree/
master/spreadsheet_coder.

https://github.com/google-research/google-research/tree/master/spreadsheet_coder
https://github.com/google-research/google-research/tree/master/spreadsheet_coder

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 11

Dataset

We constructed our dataset from a corpus of Google Sheets publicly shared within our
organization. We collected 46K Google Sheets with formulas, and split them into 42K for
training, 2.3K for validation, and 1.7K for testing.

Although in principle, our model could generate formulas using any operator in the
spreadsheet language, some kinds of value references are impossible to predict from local
context, thus we remove formulas with such values from our dataset. Specifically, we exclude
formulas that use the HYPERLINK function with a literal URL, since those are merely ”stylistic”
formulas that perform no computation beyond presenting a URL as a clickable link. As
discussed in Section 2.2, we also filtered out formulas with cross-references from other tabs
or spreadsheets, with cell references farther than 10 rows or columns from the target cell in
either direction, or with absolute cell ranges. Finally, our dataset includes 770K training
samples, 42K for validation, and 34K for testing.

About the length distribution of target spreadsheet formulas, about 32% formulas have
sketch lengths of 2, 53% formulas have sketch lengths of 3, 11% formulas have sketch lengths
of 4-5, and 4% formulas have sketch lengths of at least 6. As discussed in Section 2.2, even
if the formula sketches are mostly short, it is still challenging to generate the full formulas
correctly. For example, the formula in Figure 2.1b is represented as SUM RANGE $ENDSKETCH$
R R[-5] C[0] SEP R[-1] C[0] $ENDR$ EOF, which has a sketch length of 2, but the
full formula length is 10 if excluding the EOF token for length calculation. In total, around a
hundred operators are covered in our output vocabulary, including 82 spreadsheet-specific
functions, and other general-purpose numerical operators (e.g., +, -). We defer more details
about dataset construction process and dataset statistics to Appendix A.3.

By default, each sample includes both the header row and surrounding data values of
relative cell positions within [−10, 10]. Note that we do not include the data of the target
cell, and we leave an empty value there. We perform the header detection according to the
spreadsheet table format, i.e., we recognize the first row of a table as the header when it is
frozen. Though some spreadsheet tables may include header-like descriptions in the leftmost
column, e.g., “Total Score” in Figure 2.1a, we only extract headers as a row, to ensure the
precision of header detection. In Section 2.4, we also discuss settings when the model input
does not include headers, and when we only include a few data rows above the target cell as
the input context.

Evaluation Setup

Metrics. We evaluate the following metrics: (1) Formula accuracy : the percentage of
predicted formulas that are the same as the ground truth. (2) Sketch accuracy : the percentage
of predictions with the same formula sketches as the ground truth. As discussed in Section 2.2,
formula sketches do not include ranges, but include both functions and literals. (3) Range
accuracy : the percentage of predictions with the same ranges as the ground truth. Note that
the order of predicted ranges should also be the same as the ground truth. In addition, the

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 12

model may predict the ranges correctly even if the sketch prediction is wrong, as shown in
Figure 2.5b.

Note that our formula accuracy metric could be an underestimate of the semantic
equivalence, because different spreadsheet formulas may be semantically equivalent. For
example, to predict arguments for SUM and MULTIPLY, different orders of the cell ranges have
the same meaning. However, it is hard to systematically define the semantic equivalence in our
evaluation, because we aim to support a wide range of operators in the spreadsheet language.
Some existing works on program synthesis have evaluated the semantic equivalence based on
the execution results [74, 35, 238]. However, it is hard to sample different input spreadsheets
requiring the same formula, thus evaluating the execution accuracy is challenging. Therefore,
we still focus on our current metric to measure the formula accuracy, where we compare
whether the predicted formula is exactly the same as the single ground truth formula included
in the spreadsheet.

Model details. For models with the BERT encoder [72], including our full Spread-
sheetCoder model, we use the BERT-Medium architecture, and initialize from the English
pre-trained model by default.4 We compared our full model with several variants:

(1) Different encoder architectures. i) Using a single BERT encoder, either row-based or
column-based; ii) removing convolution layers, where the BERT output is directly fed into
the decoder.

(2) Different decoding approaches. We compare our two-stage decoding discussed in
Section 2.3 to a simpler model that uses the same predictor for both the sketch and ranges,
with a single joint output vocabulary for both.

(3) Different model initialization. When not using the pre-trained BERT model weights,
we randomly initialize BERT encoders. This tests whether pre-training on generic natural
language text is useful for our spreadsheet data.

We compare to previous approaches for related program synthesis tasks. First, we evaluate
RobustFill, which demonstrates the state-of-the-art performance on string manipulation tasks
for Excel spreadsheets [74]. Specifically, RobustFill encodes the cell context as independent
rows, rather than a 2D table as in SpreadsheetCoder. Afterwards, at each decoding step, a
shared LSTM decoder generates a hidden state per data row, which are then fed into a max
pooling layer. Finally, the pooled hidden state is fed into a fully-connected layer to predict
the formula token. We trained two variants of RobustFill on our dataset: one encodes each
row independently, and another encodes each column independently, denoted as row-based
RobustFill and column-based RobustFill respectively. In addition, we compared to a baseline
that does not utilize any input context, thus the model only includes the LSTM decoder,
similar to prior work on language modeling [239, 136].

4We downloaded the pre-trained BERT from: https://github.com/google-research/bert.

https://github.com/google-research/bert

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 13

Results

In this section, we present the results using different variants of spreadsheet contexts as the
model inputs. We perform a beam search during the inference time. Empirically, we find
that results with different beam sizes (2, 4, 8, 16, 32, 64, 128) are similar, i.e., the accuracies
vary within 0.3%. Therefore, we set the beam size to be 64 for all settings.

Results with the Full Input Context

Using both headers and the full surrounding data cell values as the model input, we present
the formula accuracy in Table 2.1, where top-k accuracy measures how often the ground truth
appears in the top k predictions using beam search. Compared to the model without the
input context, all other models are able to use the contextual data to provide more accurate
predictions. In particular, our full model achieves over 40% top-1 full formula prediction
accuracy, which is 4 times as high as the model without context. We also observe that the
full SpreadsheetCoder model has much better accuracy than either of the RobustFill models,
demonstrating that our model is more capable of leveraging the implicit specification provided
by the tabular context.

Different encoder architectures. Appropriately encoding the input context is im-
portant. Comparing with RobustFill models, we observe that it is beneficial to model the
dependency among different rows and columns, instead of encoding each row or column
independently. Meanwhile, adding convolution layers brings additional performance gain,
because it enables the representation of each input token to aggregate broader contextual
information beyond a few nearby rows or columns, i.e., 3 for our BERT encoders as discussed
in Section 2.3. Finally, although models representing the input context as column-based
tables generally perform worse than those using row-based tables, including both row-based
and column-based encoders improves the overall accuracies by 2–3 percentage points. Note
that the improvement is not due to the larger model size: to test this, we trained row-based
and column-based BERT models with the larger BERT-base and BERT-large architectures,
but the results were no better, while taking longer to train. In addition, initializing from
pre-trained BERT encoders increases the formula accuracy by around 10 percentage points,
suggesting that although spreadsheet headers are generally short natural language phrases,
pre-training on a large-scale text corpus with much more complex text still enables the model
to better understand the spreadsheet context.

Breakdown analysis of sketch and range prediction. We present the sketch and
range accuracies in Table 2.2. On the one hand, sketch accuracies are generally much higher
than range accuracies, since formulas are more likely to share common sketches with similar
spreadsheet context, while range prediction requires a more careful investigation of the table
structure. On the other hand, sketch prediction becomes more challenging when literals are
included. In Figure 2.5a, we present a prediction with the correct sketch but the wrong range.
Specifically, the model could easily infer that the formula should call a SUM function, since it
is a common prediction given the input token “Total”. However, the model wrongly selects all

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 14

Table 2.1: Formula accuracy on the test set. “−” means the corresponding component is
removed from our full model.

Approach Top-1 Top-5 Top-10

Full Model 42.51% 54.41% 58.57%
− Column-based BERT 39.42% 51.68% 56.50%
− Row-based BERT 20.37% 40.87% 48.37%
− Convolution layers 38.43% 51.31% 55.87%
− Two-stage decoding 41.12% 53.57% 57.95%
− Pretraining 31.51% 42.64% 49.77%

Row-based RobustFill 31.14% 40.09% 47.10%
Column-based RobustFill 20.65% 39.69% 46.96%
No context 10.56% 23.27% 31.96%

cells above as the function argument, and ignores the fact that the cell B5 is already the sum
of cells B2–B4, indicated by the text “Total price” in cell A5. Figure 2.5b shows a prediction
with the correct range but the wrong sketch, where the predicted formula misses a “/” as
an argument to the string concatenation operator “&”. Two-stage decoding disentangles
the generation of sketches and ranges, so that the two predictors could focus on addressing
different difficulties in formula prediction, and this mechanism improves the overall accuracy.

Prediction on formulas with different sketch lengths. We present the top-1 formula
accuracy on formulas with different sketch lengths in Figure 2.4. Note that we exclude
the $ENDSKETCH$ token from length calculation. First, all models achieve higher performance
on formulas with sketch lengths of 2–3 than longer formulas. It is harder to make exactly the
same prediction as the ground truth when the formula becomes longer, especially given that
the input context is often an ambiguous specification for formula prediction. Fortunately,
users typically do not need to write complicated formulas for spreadsheet data manipulation.
Specifically, 85% of our collected formulas have sketch lengths of 2–3. Despite the performance
degradation, our full model consistently performs better than other models on formulas with
different sketch lengths.

The Effect of Header Information

In this section, we evaluate the effect of including the header row as the model input, which
usually provides a short description of the table in natural language. For all models, we
remove the headers from the context by replacing the header tokens with empty values. Thus
the models can only use surrounding data cells as the spreadsheet context.

In Table 2.3, we observe a notable accuracy drop compared to Table 2.1, indicating that
leveraging headers is critical. Figure 2.7a shows an example that can be correctly predicted by
our full model, but is wrongly predicted by the model without input headers. We can observe

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 15

Figure 2.4: Top-1 formula accuracies for different sketch lengths.

that without the header “Average”, it is much harder to figure out that the formula should
call the AVERAGE function instead of a division. Interestingly, without input headers, using
row-based or column-based table representation no longer makes much difference. However,
our tabular input context encoders still perform better than RobustFill models, suggesting
the importance of modeling the dependency among different rows and columns. In addition,
initializing from pre-trained BERT model weights does not improve the results, and even
slightly hurts the performance. The main reason is that the cell data values are mostly
numeric and string literals. Breakdown results are deferred to Appendix A.2.

Results in the FlashFill-like Setting

In this section, we conduct experiments in the FlashFill-like setting, where formulas are
always executed on cells in the same row. In total, 2.5K formulas in the test set only include
cells with the relative row position R[0], which constitute around 73% of the test set. More
details are in Appendix A.4.

In Figure 2.6, we present the top-1 formula accuracies with different numbers of input
data rows. We observe that even for spreadsheet formulas that only refer to cells in the same
row, our models with tabular input encoders still perform better. In particular, with the
increase of the number of input data rows, the accuracy of the RobustFill model does not

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 16

Table 2.2: Sketch and range accuracy on the test set.

(a) Sketch accuracy.

Approach Top-1 Top-5 Top-10

Full Model 57.41% 72.04% 78.52%
− Column-based BERT 55.50% 70.88% 77.73%
− Row-based BERT 27.49% 61.95% 73.95%
− Convolution layers 53.68% 69.38% 75.67%
− Two-stage decoding 56.47% 72.02% 78.30%
− Pretraining 41.26% 64.67% 76.36%

Row-based RobustFill 40.23% 61.50% 72.20%
Column-based RobustFill 29.50% 59.97% 71.31%
No context 25.19% 47.08% 52.70%

(b) Range accuracy.

Approach Top-1 Top-5 Top-10

Full Model 46.93% 59.60% 63.51%
− Column-based BERT 43.60% 57.12% 62.27%
− Row-based BERT 22.57% 47.84% 55.29%
− Convolution layers 42.84% 56.64% 61.03%
− Two-stage decoding 44.59% 58.52% 62.48%
− Pretraining 36.03% 49.85% 54.71%

Row-based RobustFill 33.88% 48.16% 54.83%
Column-based RobustFill 23.97% 47.09% 52.75%
No context 11.80% 25.54% 38.07%

show much improvement, while the accuracies of the other two models increase considerably,
especially our full model. This demonstrates that our model could better utilize the available
cell data context for prediction. Figure 2.7b shows a formula that can be correctly predicted
by our model when the full input context is given, but is wrongly predicted when the input
only contains the header row and one data row. This example shows that understanding the
cell data is especially important when the header is not informative enough. Notice that
including only a few input rows or columns does not fit our encoder design well, since our
BERT encoders simultaneously embed 3 data rows at a time, while the RobustFill model
independently encodes each row by design. This could be the main reason why models with
BERT-based encoders may perform worse than RobustFill when less than 3 data rows are
presented. In addition, including headers still consistently provides a significant performance
gain.

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 17

Target cell: B7

Ground truth formula:
SUM RANGE $ENDSKETCH$
R R[-2] C[0] SEP
R[-1] C[0] $ENDR$ EOF

Model prediction:
SUM RANGE $ENDSKETCH$
R R[-5] C[0] SEP
R[-1] C[0] $ENDR$ EOF

(a)

Ground truth formula:
RANGE & “/” & RANGE $ENDSKETCH$
R R[0] C[-2] $ENDR$ R R[0] C[-1] $ENDR$ EOF

Model prediction:
RANGE & RANGE $ENDSKETCH$
R R[0] C[-2] $ENDR$ R R[0] C[-1] $ENDR$ EOF

(b)

Figure 2.5: Examples of wrong formula predictions by our full model. (a) The sketch
prediction is correct, but the range is wrong. (b) The range prediction is correct, but the
sketch is wrong. These are synthetic examples for illustrative purposes.

Table 2.3: Formula accuracy on the test set, excluding headers in the context. Corresponding
results with headers are in Table 2.1.

Approach Top-1 Top-5 Top-10

Full Model 20.47% 40.23% 47.40%
− Column-based BERT 20.63% 40.40% 48.70%
− Row-based BERT 20.38% 40.11% 47.88%
− Pretraining 20.94% 40.64% 48.51%

Row-based RobustFill 19.02% 33.60% 37.38%
Column-based RobustFill 17.64% 30.45% 36.79%
No context 10.56% 23.27% 31.96%

Results on Public Excel Spreadsheets

Finally, we evaluate SpreadsheetCoder on the Enron corpus 5, which includes over 17K
Excel Spreadsheets extracted from the Enron email corpus [141, 109]. We preprocess the
Enron corpus in the same way as our Google Sheets corpus, and our final dataset includes
178K samples in the training set, 41K samples in the validation set, and 33K samples in
the validation set. About 55% formulas have sketch lengths of 2, 18% formulas have sketch
lengths of 3, 13% formulas have sketch lengths of 4-5, 9% formulas have sketch lengths of
6-7, and 5% formulas have sketch lengths of at least 8. The formulas utilize 13 spreadsheet
functions, and 4 general-purpose numerical operators (i.e., +, -, *, and /). Compared to our

5The raw spreadsheet corpus is here: https://github.com/SheetJS/enron_xls.

https://github.com/SheetJS/enron_xls

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 18

Figure 2.6: Top-1 formula accuracy in the FlashFill-like setting, with different number of
input rows.

Google Sheets corpus, the Enron dataset is smaller and the formulas include fewer types of
spreadsheet functions, but it contain more formulas with long sketches. More details about
the dataset are deferred to Appendix A.3.

On the Enron test set, SpreadsheetCoder achieves 29.8% top-1 accuracy, 41.8% top-5
accuracy, and 48.5% top-10 accuracy. These numbers are lower than the results on our Google
Sheets corpus. When investigating into the model predictions, we observe that the main
reason is due to the spreadsheet format difference. Specifically, because Enron spreadsheets
are in Excel, while our data preprocessing pipeline is implemented for Google Sheets, we
import Enron spreadsheets into Google Sheets for data preprocessing. Therefore, a larger
proportion of table headers are not properly detected. However, when comparing to the
prediction results without headers, as shown in Table 2.3, the accuracies on the Enron test
set are still better.

2.5 Related Work

In this section, we present a high-level overview of the related work, and we defer a more in-
depth discussion to Appendix A.1. Program synthesis has been a long-standing challenge, and
various types of specifications have been discussed, including input-output examples [99, 22,
35, 25, 227, 47], natural language descriptions [100, 283, 278, 161, 159, 257], and images [267,

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 19

Ground truth formula:
AVERAGE RANGE $ENDSKETCH$
R R[0] C[-3] SEP R[0] C[-1] $ENDR$ EOF

Prediction of the model excluding headers:
/ RANGE RANGE $ENDSKETCH$
R R[0] C[-2] $ENDR$ R R[0] C[-1] $ENDR$ EOF

(a)

Ground truth formula:
/ RANGE $ENDSKETCH$
R R[0] C[-3] SEP R[0] C[-1] $ENDR$ EOF

Prediction of the model without the full data context:
* RANGE RANGE $ENDSKETCH$
R R[0] C[-2] $ENDR$ R R[0] C[-1] $ENDR$ EOF

(b)

Figure 2.7: Examples of formulas that are correctly predicted by our full model with the full
context, but wrongly predicted with missing context. (a) The wrong prediction when the
model input does not include headers. Note that the model with headers predicts it correctly
even if only one data row is provided. (b) The wrong prediction when the model input only
includes headers and one data row. These are synthetic examples for illustrative purposes.

167, 238]. In particular, the FlashFill benchmark [99] is the most related to our task, and their
goal is to generate string transformation programs to manipulate the Excel spreadsheet data,
given input-output examples as the specification. Various neural network approaches have
been proposed for FlashFill [201, 74, 252]. On the other hand, Nlyze [100] translates natural
language specifications to programs in an SQL-like DSL for spreadsheet data manipulation;
and Autopandas [25] synthesizes dataframe transformation functions implemented with the
Python Pandas library, given input-output dataframe examples. The spreadsheet formula
prediction task in our work considers the semi-structured tabular spreadsheet context as the
specification, rather than standardized input-output examples or natural language descriptions.
Therefore, our formula specifications are more ambiguous and diverse. Furthermore, we show
that including the header information is a key factor to improving the formula prediction
performance.

In terms of the model input format, our spreadsheet formula prediction task is related to
existing benchmarks on semantic parsing over a tabular database [124, 292, 283]. There are
two key differences between these tasks and ours. First, their program specification contains
a natural language question, while our work predicts spreadsheet formulas based on the
tabular context only. Therefore, our input specification is much more ambiguous. Meanwhile,
our spreadsheet tables are typically less structured than the database tables. As shown in
Figure 2.1, spreadsheet tables do not necessarily satisfy a consistent row-based schema, and
data cell values may be dependent on cells from other rows.

Our tabular context encoder is related to prior works on tabular BERT models, including
TAPAS [113], TaBERT [279], and Table-BERT [46]. Our encoder design differs from these
works in the following ways. First, these models are designed for question answering [113,
279] or fact verification [46], thus their inputs are the concatenation of a natural language

CHAPTER 2. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 20

question/statement and a table. In contrast, our model input only contains a spreadsheet
table. Second, both TAPAS and Table-BERT require that the maximum table size is 512
tokens, which is not enough for our problem. SpreadsheetCoder encodes larger tabular input
by tiling multiple rows/columns in multiple forward passes over BERT, and then doing the
convolution to capture broader context. TaBERT independently embeds each table row with
the question, then applies an attention mechanism over other tokens in the same column but
different rows. This is similar to our row-based BERT without the row-wise convolution. As
shown in Table 2.1, this alternative underperforms our full model.

Our spreadsheet formula prediction problem is also related to code completion tasks [215,
157, 242, 241, 243]. Specifically, the goal of code completion tasks is to synthesize the
subsequent program tokens given the code context, while we aim to generate the formula in
the cell with the missing value to complete the spreadsheet. However, instead of providing a
token sequence to represent the code context, our data context is a semi-structured table,
where data values in different cells are connected in a two-dimensional space.

2.6 Discussion

We presented the first technique to synthesize spreadsheet formulas given a tabular context,
including both headers and cell values. In particular, we develop SpreadsheetCoder, a
BERT-based model to capture the two-dimensional relational structure of the spreadsheet
context, which are typically semi-structured tables. We demonstrate that incorporating the
table headers significantly facilitates the prediction. Furthermore, modeling the dependency
among cells of different rows and columns is important for generating formulas in real-world
spreadsheets with diverse table structures. Compared to the rule-based system on Google
Sheets, SpreadsheetCoder assists 82% more users in composing formulas.

There are a number of promising directions for future research about spreadsheet applica-
tions. First, developing a paradigm for pre-training on spreadsheet data could enable the
encoder to be more specialized for spreadsheet applications. Second, we could infer more
fine-grained knowledge of the table structure from the spreadsheet format information, such
as colors and fonts, which could be utilized to develop more advanced encoder architectures.
Finally, we could also extend our approach to support more spreadsheet applications, such as
bug detection and clone detection.

21

Chapter 3

PlotCoder: Synthesizing Visualization
Code in Programmatic Context

Creating effective visualization is an important part of data analytics. While there are many
libraries for creating visualizations, writing such code remains difficult given the myriad of
parameters that users need to provide. In this chapter, we propose the new task of synthesizing
visualization programs from a combination of natural language utterances and code context.
To tackle the learning problem, we introduce PlotCoder, a new hierarchical encoder-decoder
architecture that models both the code context and the input utterance. We use PlotCoder
to first determine the template of the visualization code, followed by predicting the data to be
plotted. We use Jupyter notebooks containing visualization programs crawled from GitHub
to train PlotCoder. On a comprehensive set of test samples from those notebooks, we show
that PlotCoder correctly predicts the plot type of about 70% samples, and synthesizes the
correct programs for 35% samples, performing 3-4.5% better than the baselines. 1

3.1 Introduction

Visualizations play a crucial role in obtaining insights from data. While a number of
libraries [120, 225, 32] have been developed for creating visualizations that range from simple
scatter plots to complex 3D bar charts, writing visualization code remains a difficult task.
For instance, drawing a scatter plot using the Python matplotlib library can be done using
both the scatter and plot methods, and the scatter method [176] takes in 2 required
parameters (the values to plot) along with 11 other optional parameters (marker type, color,
etc), with some parameters having numeric types (e.g., the size of each marker) and some
being arrays (e.g., the list of colors for each collection of the plotted data, where each color is
specified as a string or another array of RGB values). Looking up each parameter’s meaning

1The material in this chapter is based on Chen et al. [55]. Our code and data are available at https:

//github.com/jungyhuk/plotcoder.

https://github.com/jungyhuk/plotcoder
https://github.com/jungyhuk/plotcoder

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 22

and its valid values remains tedious and error-prone, and the multitude of libraries available
further compounds the difficulty for developers to create effective visualizations.

In this paper, we propose to automatically synthesize visualization programs using a
combination of natural language utterances and the programmatic context that the visual-
ization program will reside (e.g., code written in the same file as the visualization program
to load the plotted data), focusing on programs that create static visualizations (e.g., line
charts, scatter plots, etc). While there has been prior work on synthesizing code from natural
language [288, 195, 264, 278], and with addition information such as database schemas [292,
283, 282, 281] or input-output examples [209, 287], synthesizing general-purpose code from
natural language remains highly difficult due to the ambiguity in the natural language input
and complexity of the target. Our key insight in synthesizing visualization programs is to
leverage their properties: they tend to be short, do not use complex programmatic control
structures (typically a few lines of method calls without any control flow or loop constructs),
with each method call restricted to a single plotting command (e.g., scatter, pie) along
with its parameters (e.g., the plotted data). This influences our model architecture design as
we will explain.

To study the visualization code synthesis problem, we use the Python Jupyter note-
books from the JuiCe dataset [3], where each notebook contains the visualization program
and its programmatic context. These notebooks are crawled from GitHub and written
by various programmers, thus a main challenge is understanding the complexity and the
noisiness of real-world programmatic contexts and the huge variance in the quality of natural
language comments. Unfortunately, using standard LSTM-based models and Transformer
architectures [249] fails to solve the task, as noted in prior work [3].

We observe that while data to be plotted is usually stored in pandas dataframes [200],
they are not explicitly annotated in JuiCe. Hence, unlike prior work, we augment the
programmatic context with dataframe names and their schema when available in predicting
the plotted data.

We next utilize our insight above and design a hierarchical deep neural network code
generation model called PlotCoder that decomposes synthesis into two subtasks: generating
the plot command, then the parameters to pass in given the command. PlotCoder uses a
pointer network architecture [253], which allows the model to directly select code tokens in
the previous code cells in the same notebook as the plotted data. Meanwhile, inspired by the
schema linking techniques proposed for semantic parsing with structured inputs, such as text
to SQL tasks [122, 257, 101], PlotCoder’s encoder connects the embedding of the natural
language descriptions with their corresponding code fragments in previous code cells within
each notebook. Although the constructed links can be noisy because the code context is less
structured than the database tables in text-to-SQL problems, we observe that our approach
results in substantial performance gain.

We evaluate PlotCoder’s ability to synthesize visualization programs using Jupyter
notebooks of homework assignments or exam solutions. On the gold test set where the
notebooks are official solutions, our best model correctly predicts the plot types for over 80%
of samples, and precisely predicts both the plot types and the plotted data for over 50%

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 23

PLOTCODER: Hierarchical Decoding for Synthesizing Visualization Code
in Programmatic Context

Anonymous NAACL-HLT 2021 submission

Abstract

001

Natural Language
Explore the relationship between rarity and a skill of your
choice. Choose one skill (‘Attack’,‘Defense’ or ‘Speed’)
and do the following. Use the scipy package to assess
whether Catch Rate predicts the skill. Create a scatterplot
to visualize how the skill depends upon the rarity of the
pokemon. Overlay a best fit line onto the scatterplot.

Local Code Context
slope, intercept, r_value, p_value, std_err =

linregress(df['Catch_Rate'], df['Speed'],)
x = np.arange(256)
y = slope * x + intercept

Distant Dataframe Context
df['Weight_kg'].describe()
df['Color'].value_counts().plot(kind='bar')
df['Body_Style'].value_counts().plot(kind='bar')
grouped = df.groupby(['Body_Style','hasGender',]).mean()
df.groupby('Color')['Attack'].mean()
df.groupby('Color')['Pr_Male'].mean()
df.sort_values('Catch_Rate',ascending=False).head()

Dataframe Schema
df: ['Catch_Rate', 'Speed', 'Weight_kg', 'Color',

'Body_Style']

Ground Truth
plt.scatter(df['Catch_Rate'], df['Speed'])
plt.plot(x,y)002

(a) Natural Language
Create a scatter plot of the observations in the ‘credit’
dataset for the attributes ‘Duration’ and ‘Age’ (age should
be shown on the xaxis).

Local Code Context
duration = credit['Duration'].values
age = credit['Age'].values

Ground Truth
plt.scatter(age, duration)

Prediction
plt.scatter(duration, age)003

(b) Natural Language
This graph provides more evidence that the higher a state’s
participation rates, the lower that state’s averages scores
are likely to be. The higher the participation rate, the lower
the expected average verbal scores.

Local Code Context
plt.plot(sat_data['Math'], sat_data['Verbal'])

Dataframe Schema
sat: ['Rate', 'Math', 'Verbal']

Ground Truth
plt.plot(sat_data['Rate'], sat_data['Math'])
plt.plot(sat_data['Rate'], sat_data['Verbal'])

Prediction
plt.plot(sat_data['Math'], sat_data['Verbal'])
plt.plot(sat_data['Rate'], sat_data['Verbal']) 004

(a) Natural Language
Plot a Gaussian by looping through a range of x values
and creating a resulting list of Gaussian values, g

Local Code Context
x_axis = np.arange(-20, 20, 0.1)
g = []
for x in x_axis:

g.append(f(mu, sigma2, x))

Ground Truth & Prediction
plt.plot(x_axis, g) 005

(b) Natural Language
Like in Q9, let’s start by thinking about two dice

Local Code Context
results = []
for i in range(1,7):

for j in range(1,7):
print((i,j),max(i,j))
results.append(max(i,j))

Ground Truth & Prediction
plt.hist(results) 006

1

Figure 3.1: An example of plot code synthesis problem studied in this work. Given the
natural language, code context within a few code cells from the target code, and other code
snippets related to dataframes, PlotCoder synthesizes the data visualization code.

of the samples. On the more noisy test splits with notebooks written by students, which
may include work-in-progress code, our model still achieves over 70% plot type prediction
accuracy, and around 35% accuracy for generating the entire code, showing how PlotCoder’s
design decisions improve our prediction accuracy.

3.2 Visualization Code Synthesis Problem

We now discuss our problem setup of synthesizing visualization code in programmatic context,
where the model input includes different types of specifications. We first describe the model
inputs, then introduce our code canonicalization process to make it easier to train our models
and evaluate the accuracy, and finally our evaluation metrics.

Program Specification

We illustrate our program specification in Figure 3.1, which represents a Jupyter notebook
fragment. Our task is to synthesize the visualization code given the natural language
description and code from the preceding cells. To do so, our model takes in the following
inputs:

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 24

• The natural language description for the visualization, which we extract from the
natural language markdown above the target code cell containing the gold program in
the notebook.

• The local code context, defined as a few code cells that immediately precede the target
code cell. The number of cells to include is a tunable hyper-parameter to be described
in Section 3.4.

• The code snippets related to dataframe manipulation that appear before the target
code cell in the notebook, but are not included in the local code context. We refer to
such code as the distant dataframe context. When such context contains code that uses
dataframes, they are part of the model input by default.

As mentioned in Section 3.1, unlike JuiCe, we also extract the code snippets related to
dataframes, and annotate the dataframe schemas according to their syntax trees. As shown
in Section 3.1, knowing the column names in each dataframe is important for our task, as
dataframes are often used for plotting.

Code Canonicalization

One way to train our models is to directly utilize the plotting code in Jupyter notebooks as the
ground truth. However, due to the variety of plotting APIs and coding styles, such a model
rarely predicts exactly the same code as written in Jupyter notebooks. For example, there
are at least four ways in Matplotlib to create a scatter plot for columns ‘y’ against ‘x’ from
a dataframe df: plt.scatter(df[’x’], df[’y’]), plt.plot(df[’x’], df[’y’], ’o’),
df.plot.scatter(x=’x’, y=’y’), df.plot(kind=’scatter’, x=’x’, y=’y’). Moreover,
given that the natural language description is ambiguous, many plot attributes are hard to
precisely predict. For example, from the context shown in Figure 3.1, there are many valid
ways to specify the plot title, the marker style, axis ranges, etc. In our experiments, we find
that when trained on raw target programs, fewer than 5% predictions are exactly the same
as the ground truth, and a similar phenomenon is also observed earlier [3].

Therefore, we design a canonical representation for plotting programs, which covers the
core of plot generation. Specifically, we convert the plotting code into one of the following
templates:

• LIB.PLOT TYPE(X,{Y}∗), where LIB is a plotting library, and PLOT TYPE is the plot
type to be created. The number of arguments may vary for different PLOT TYPE, e.g., 1
for histograms and pie charts, and 2 for scatter plots.

• L0 \n L1 \n ... Lm, where each Li is a plotting command in the above template,
and \n are separators.

For example, when using plt as the library (a commonly used abbreviation of matplotlib.pyplot),
we convert df.plot(kind=’scatter’,x=’x’,y=’y’) into plt.scatter(df[’x’],df[’y’]),

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 25

where LIB = plt and PLOT TYPE = scatter. Plotting code in other libraries could be con-
verted similarly.

The tokens that represent the plotted data, i.e., X and Y, are annotated in the code context
as follows:

• VAR, when the token is a variable name, e.g., x and y in Figure 3.1.

• DF, when the token is a Pandas dataframe or a Python dictionary, e.g., df in Figure 3.1.

• STR, when the token is a column name of a dataframe, or a key name of a Python
dictionary, such as ‘Catch Rate’ and ‘Speed’ in Section 3.1.

The above annotations are used to cover different types of data references. For example,
a column in a dataframe is usually referred to as DF[STR], and sometimes as DF[VAR] where
VAR is a string. In Section 3.3, we will show how to utilize these annotations for hierarchical
program decoding, where our decoder first generates a program sketch that predicts these
token types without the plotted data, then predicts the actual plotted data subsequently.

Evaluation Metrics

Plot type accuracy. To compute this metric, we categorize all plots into several types, and
a prediction is correct when it belongs to the same type as the ground truth. In particular, we
consider the following categories: (1) scatter plots (e.g., generated by plt.scatter); (2) his-
tograms (e.g., generated by plt.hist); (3) pie charts (e.g., generated by plt.pie); (4) a scat-
terplot overlaid by a line (e.g., such as that shown in Figure 3.1, or generated by sns.lmplot);
(5) a plot including a kernel density estimate (e.g., plots generated by sns.distplot or
sns.kdeplot); and (6) others, which are mostly plots generated by plt.plot.

Plotted data accuracy. This metric measures whether the predicted program selects the
same data to plot as the ground truth. Unless otherwise specified, the ordering of variables
must match the ground truth as well, i.e., swapping the data used to plot x and y axes result
in different plots.

Program accuracy. We consider a predicted program to be correct if both the plot type
and plotted data are correct. As discussed in Section 3.2, we do not evaluate the correctness
of other plot attributes because they are mostly unspecified.

3.3 PlotCoder Model Architecture

In this section, we present PlotCoder, a hierarchical model architecture for synthesizing
visualization code from natural language and code context. PlotCoder includes an LSTM-
based encoder [115] to jointly embed the natural language and code context, as well as a
hierarchical decoder that generates API calls and selects data for plotting. We provide an
overview of our model architecture in Figure 3.2.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 26

Figure 3.2: Overview of the PlotCoder architecture. The NL-Code linking component
connects the embedding vectors for underscored tokens in natural language and code context,
i.e., “age”.

NL-Code Context Encoder

PlotCoder’s encoder computes a vector representation for each token in the natural language
description and the code context, where the code context is the concatenation of the code
snippets describing dataframe schemas and the local code cells, as described in Section 3.2.

NL encoder. We build a vocabulary for the natural language tokens, and train an embed-
ding matrix for it. Afterwards, we use a bi-directional LSTM to encode the input natural
language sequence (denoted as LSTMnl), and use the LSTM’s output at each timestep as the
contextual embedding vector for each token.

Code context encoder. We build a vocabulary Vc for the code context, and train an
embedding matrix for it. Vc also includes the special tokens {VAR, DF, STR} used for sketch
decoding in Section 3.3. We train another bi-directional LSTM (LSTMc), which computes a
contextual embedding vector for each token in a similar way to the natural language encoder.
We denote the hidden state of LSTMc at the last timestep as Hc.

NL-code linking. Capturing the correspondence between the code context and natural
language is crucial in achieving a good prediction performance. For example, in Figure 3.2,
PlotCoder infers that the dataframe column “age” should be plotted, as this column name is
mentioned in the natural language description. Inspired by this observation, we design the
NL-code linking mechanism to explicitly connect the embedding vectors of code tokens and
their corresponding natural language words. Specifically, for each token in the code context
that also occurs in the natural language, let hc and hnl be its embedding vectors computed
by LSTMc and LSTMnl, respectively, we compute a new code token embedding vector as:

h′c = Wl([hc;hnl])

where Wl is a linear layer, and [hc;hnl] is the concatenation of hc and hnl. When no natural
language word matches the code token, hnl is the embedding vector of the [EOS] token at the
end of the natural language description. When we include this NL-code linking component in
the model, h′c replaces the original embedding hc for each token in the code context, and the

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 27

new embedding is used for decoding. We observe that many informative natural language
descriptions explicitly state the variable names and dataframe columns for plotting, which
makes our NL-code linking effective. Moreover, this component is especially useful when the
variable names for plotting are unseen in the training set, thus NL-code linking provides the
only cue to indicate that these variables are relevant.

Hierarchical Program Decoder

We train another LSTM to decode the visualization code sequence, denoted as LSTMp. Our
decoder generates the program in a hierarchical way. At each timestep, the model first
predicts a token from the code token vocabulary that represents the program sketch. As
shown in Figure 3.2, the program sketch does not include the plotted data. After that, the
decoder predicts the plotted data, where it employs a copy mechanism [97, 253] to select
tokens from the code context.

First, we initiate the hidden state of LSTMp with Hc, the final hidden state of LSTMc,
and the start token is [GO] for both sketch and full program decoding. At each step t, let st−1
and ot−1 be the sketch token and output program token generated at the previous step. Note
that st−1 and ot−1 are different only when st−1 ∈ {VAR, DF, STR}, where ot−1 is the actual
data name with the corresponding type. Let est−1 and eot−1 be the embedding vectors of st−1
and ot−1 respectively, which are computed using the same embedding matrix for the code
context encoder. The input of LSTMp is the concatenation of the two embedding vectors,
i.e., [est−1; eot−1].

Attention. To compute attention vectors over the natural language description and the
code context, we employ the two-step attention in [123]. Specifically, we first use hpt to
compute the attention vector over the natural language input using the standard attention
mechanism [20], and we denote the attention vector as attnt. Then, we use attnt to compute
the attention vector over the code context, denoted as attpt.

Sketch decoding. For sketch decoding, the model computes the probability distribution
among all sketch tokens in the code token vocabulary Vc:

Pr(st) = Softmax(Ws(hpt + attnt + attpt))

Here Ws is a linear layer. For hierarchical decoding, we do not allow the model to directly
decode the names of the plotted data during sketch decoding, so st is selected only from the
valid sketch tokens, such as library names, plotting function names, and special tokens for
plotted data representation in templates discussed in Section 3.2.

Data selection. For st ∈ {VAR, DF, STR}, we use the copy mechanism to select the plotted
data from the code context. Specifically, our decoder includes 3 pointer networks [253]
for selecting data with the type VAR, DF, and STR respectively, and they employ similar
architectures but different model parameters.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 28

Split Train Dev (gold) Test (gold) Dev (hard) Test (hard)

All 38971 57 48 827 894
Scatter 11895 19 17 254 276
Hist 8856 14 11 182 175
Pie 574 1 1 14 13
Scatter+Plot 1533 3 1 34 57
KDE 2609 3 5 51 64
Others 13504 17 13 292 309

Table 3.1: Dataset statistics.

We take variable name selection as an instance to illustrate our data selection approach
using the copy mechanism. We first compute vt = Wv(attnt), where Wv is a linear layer.
For the i-th token ci in the code context, let hci be its embedding vector, we compute its
prediction probability as:

Pr(ci) =
exp vTt hci∑
j exp vTt hcj

After that, the model selects the token with the highest prediction probability as the next
program token ot, and uses the corresponding embedding vectors for st and ot as the input
for the next decoding step of LSTMp.

The decoding process terminates when the model generates the [EOF] token.

3.4 Experiments

In this section, we first describe our dataset for visualization code synthesis, then introduce
our experimental setup and discuss the results.

Dataset Construction

We build our benchmark upon the JuiCe dataset, and select those that call plotting
APIs, including those from matplotlib.pyplot (plt), pandas.DataFrame.plot, seaborn
(sns), ggplot, bokeh, plotly, geoplotlib, pygal. Over 99% of the samples use plt,
pandas.DataFrame.plot, or sns. We first extract plot samples from the original dev and
test splits of JuiCe to construct Dev (gold) and Test (gold). However, the gold splits are too
small to obtain quantitative results. Therefore, we extract around 1,700 Jupyter notebooks
of homeworks and exams from JuiCe’s training set, and split them roughly evenly into Dev
(hard) and Test (hard). All remaining plot samples from the JuiCe training split are included
in our training set. The length of the visualization programs to be generated varies between
6 and 80 tokens, but the code context is typically much longer. We summarize the dataset
statistics in Table 3.1.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 29

Evaluation Setup

Implementation details. Unless otherwise specified, for the input specification we include
K = 3 previous code cells as the local context, which usually provides the best accuracy.
We set 512 as the length limit for both the natural language and the code context. For all
model architectures, we train them for 50 epochs, and select the best checkpoint based on
the program accuracy on the Dev (hard) split. More details are deferred to Appendix B.1.

Baselines. We compare the full PlotCoder against the following baselines: (1) - Hierarchy :
the encoder is the same as in the full PlotCoder, but the decoder directly generates the full
program without predicting the sketch. (2) - Link : the encoder does not use NL-code linking,
and the decoder is not hierarchical. (3) LSTM : the model does not use NL-code linking, copy
mechanism, and hierarchical decoding. The encoder still uses two separate LSTMs to embed
the natural language and code context, which performs better than the LSTM baseline in prior
work [3]. (4) + BERT : we use the same hierarchical decoder as the full model, but replace
the encoder with a Transformer architecture [249] initialized from a pre-trained model, and
we fine-tune the encoder with other part of the model. We evaluated two pre-trained models.
One is RoBERTa-base [166], an improved version of BERT-Base [72] pre-trained on a large
text corpus. Another is codeBERT [89], which has the same architecture as RoBERTa-base,
but is pre-trained on GitHub code in several programming languages including Python, and
has demonstrated good performance on code retrieval tasks. To demonstrate the effectiveness
of target code canonicalization discussed in Section 3.2, we also compare with models that
are directly trained on the raw ground truth code from the same set of Jupyter notebooks.

Results

We present the program prediction accuracies in Table 3.2. First, training on the canonicalized
code significantly boosts the performance for all models, suggesting that canonicalization
improves data quality and hence prediction accuracies. When trained with target code
canonicalization, the full PlotCoder significantly outperforms other model variants on different
data splits. On the hard data splits, the hierarchical PlotCoder predicts 35% of the samples
correctly, improving over the non-hierarchical model by 3−4.5%. Meanwhile, NL-code linking
enables the model to better capture the correspondence between the code context and the
natural language, and consistently improves the performance when trained on canonicalized
target code. Without the copy mechanism, the baseline LSTM cannot predict any token
outside of the code vocabulary. Therefore, this model performs worse than other LSTM-based
models, especially on plotted data accuracies, as shown in Table 3.3.

Interestingly, while our hierarchical decoding, NL-code linking, and copy mechanism
are mainly designed to improve the prediction accuracy of the plotted data, as shown in
Table 3.4, we observe that the plot type accuracies of our full model are also mostly better,
especially on the hard splits. To better understand this, we break down the results by
plot type, and observe that the most significant improvement comes from the predictions

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 30

Model Test (hard) Dev (hard) Test (gold) Dev (gold)

With code canonicalization
Full Model 34.79% 34.70% 56.25% 47.37%
− Hierarchy 30.20% 31.56% 45.83% 47.37%
− Link 29.98% 28.05% 43.75% 45.61%
LSTM 26.17% 24.67% 41.67% 40.35%
+ CodeBERT 33.11% 34.58% 54.17% 35.09%
+ RoBERTa 32.77% 33.37% 50.00% 26.32%

Without code canonicalization
Full Model 20.58% 22.73% 22.92% 28.07%
− Hierarchy 20.25% 22.85% 18.75% 26.32%
− Link 20.02% 21.77% 20.83% 24.56%
LSTM 16.22% 16.93% 16.67% 24.56%
+ CodeBERT 20.92% 22.61% 22.92% 24.56%
+ RoBERTa 20.47% 22.37% 20.83% 24.56%

Table 3.2: Evaluation on program accuracy.

of scatter plots (“S”) and plots in “Others” category. We posit that these two categories
constitute the majority of the dataset, and the hierarchical model learns to better categorize
plot types from a large number of training samples. In addition, we observe that the full
model does not always perform better than other baselines on data splits of small sizes, and
the difference mainly comes from the ambiguity in the natural language description. We
defer more discussion to Section 3.4.

Also, using BERT-like encoders does not improve the results. This might be due to the
difference in data distribution for pre-training and vocabularies. Specifically, RoBERTa is pre-
trained on English passages, which does not include many visualization-related descriptions
and code comments. Therefore, the subword vocabulary utilized by RoBERTa breaks down
important keywords for visualization, e.g., “scatterplots” and “histograms” into multiple
words, which limits model performance, especially for plot type prediction. Using codeBERT
improves the performance of RoBERTa, but it still does not improve over the LSTM-based
models, which may again due to vocabulary mismatch. As a result, in Table 3.4, the plot
type accuracies of both models using BERT-like encoders are considerably lower than the
LSTM-based models.

To better understand the plotted data prediction performance, in addition to the default
plotted data accuracy that requires the data order to be the same as the ground truth, we
also evaluate a relaxed version without ordering constraints. Note that the ordering includes
two factors: (1) the ordering of the plotted data for the different axes; and (2) the ordering of
plots when multiple plots are included. We observe that the ordering issue happens for around
1.5% of samples, and is more problematic for scatter plots (“S”) and “Others.” Figure 3.3
shows sample predictions where the model selects the correct set of data to plot, but the
ordering is wrong. Although sometimes the natural language explicitly specifies which axes to

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 31

Model Test (hard) Dev (hard) Test (gold) Dev (gold)

With code canonicalization
Full Model 40.16% 38.69% 60.42% 49.12%
− Hierarchy 35.91% 37.00% 47.92% 47.37%
− Link 35.46% 35.67% 47.92% 47.37%
LSTM 29.87% 28.05% 43.75% 40.35%
+ codeBERT 38.14% 38.33% 58.33% 40.35%
+ RoBERTa 37.47% 38.33% 58.33% 29.82%

Without code canonicalization
Full Model 24.94% 27.69% 29.17% 33.33%
− Hierarchy 26.73% 27.93% 31.25% 31.58%
− Link 25.39% 27.21% 25.00% 28.07%
LSTM 18.90% 21.04% 18.75% 26.32%
+ CodeBERT 26.85% 27.21% 29.17% 31.58%
+ RoBERTa 25.28% 27.81% 27.08% 28.07%

Table 3.3: Evaluation on plotted data accuracy.

Model Test (hard) Dev (hard) Test (gold) Dev (gold)

With code canonicalization
Full Model 70.58% 71.46% 83.33% 78.95%
− Hierarchy 64.65% 68.92% 87.50% 82.46%
− Link 65.32% 64.09% 81.25% 73.68%
LSTM 66.67% 67.47% 85.42% 85.96%
+ codeBERT 65.44% 67.96% 75.00% 57.89%
+ RoBERTa 65.21% 66.38% 66.67% 54.39%

Without code canonicalization
Full Model 63.53% 65.66% 72.92% 80.70%
− Hierarchy 61.41% 67.47% 66.67% 73.68%
− Link 61.30% 63.72% 64.58% 77.19%
LSTM 64.65% 65.78% 81.25% 70.18%
+ CodeBERT 56.04% 57.07% 60.42% 56.14%
+ RoBERTa 61.30% 61.91% 68.75% 49.12%

Table 3.4: Evaluation on plot type accuracy.

plot (e.g., Figure 3.3 (a)), such descriptions are mostly implicit (e.g., Figure 3.3 (b)), making
it hard for the model to learn. Full results on different plot types are in Section 3.4.

The Effect of Different Model Inputs

To evaluate the effect of including different input specifications, we present the results in
Table 3.5. Specifically, - NL means the model input does not include the natural language,

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 32

PLOTCODER: Hierarchical Decoding for Synthesizing Visualization Code
in Programmatic Context

Anonymous NAACL-HLT 2021 submission

Abstract
001

Natural Language
Explore the relationship between rarity and a skill of your
choice. Choose one skill (‘Attack’,‘Defense’ or ‘Speed’)
and do the following. Use the scipy package to assess
whether Catch Rate predicts the skill. Create a scatterplot
to visualize how the skill depends upon the rarity of the
pokemon. Overlay a best fit line onto the scatterplot.

Local Code Context
slope, intercept, r_value, p_value, std_err =

linregress(df['Catch_Rate'], df['Speed'],)
x = np.arange(256)
y = slope * x + intercept

Distant Dataframe Context
df['Weight_kg'].describe()
df['Color'].value_counts().plot(kind='bar')
df['Body_Style'].value_counts().plot(kind='bar')
grouped = df.groupby(['Body_Style','hasGender',]).mean()
df.groupby('Color')['Attack'].mean()
df.groupby('Color')['Pr_Male'].mean()
df.sort_values('Catch_Rate',ascending=False).head()

Dataframe Schema
df: ['Catch_Rate', 'Speed', 'Weight_kg', 'Color',

'Body_Style']

Ground Truth
plt.scatter(df['Catch_Rate'], df['Speed'])
plt.plot(x,y)002

(a) Natural Language
Plot a Gaussian by looping through a range of x values
and creating a resulting list of Gaussian values, g

Local Code Context
x_axis = np.arange(-20, 20, 0.1)
g = []
for x in x_axis:

g.append(f(mu, sigma2, x))

Ground Truth & Prediction
plt.plot(x_axis, g)003

(b) Natural Language
Like in Q9, let’s start by thinking about two dice

Local Code Context
results = []
for i in range(1,7):

for j in range(1,7):
print((i,j),max(i,j))
results.append(max(i,j))

Ground Truth & Prediction
plt.hist(results)004

(a) Natural Language
Create a scatter plot of the observations in the ‘credit’
dataset for the attributes ‘Duration’ and ‘Age’ (age should
be shown on the xaxis).

Local Code Context
duration = credit['Duration'].values
age = credit['Age'].values

Ground Truth
plt.scatter(age, duration)

Prediction
plt.scatter(duration, age) 005

(b) Natural Language
This graph provides more evidence that the higher a state’s
participation rates, the lower that state’s averages scores
are likely to be. The higher the participation rate, the lower
the expected average verbal scores.

Local Code Context
plt.plot(sat_data['Math'], sat_data['Verbal'])

Dataframe Schema
sat: ['Rate', 'Math', 'Verbal']

Ground Truth
plt.plot(sat_data['Rate'], sat_data['Math'])
plt.plot(sat_data['Rate'], sat_data['Verbal'])

Prediction
plt.plot(sat_data['Math'], sat_data['Verbal'])
plt.plot(sat_data['Rate'], sat_data['Verbal']) 006

1

Figure 3.3: Examples of predictions where the model selects the correct set of data to plot,
but the order is wrong.

Input Test (hard) Dev (hard) Test (gold) Dev (gold)

Full input 34.79% 34.70% 56.25% 47.37%
− Distant DFs 34.34% 34.10% 52.08% 45.61%
− NL 27.52% 28.42% 43.75% 21.05%

Table 3.5: Evaluation on the full hierarchical model with different inputs.

and - Distant DFs means the code context only includes the local code cells. Interestingly,
even without the natural language description, PlotCoder correctly predicts a considerable
number of samples. Figure 3.4 shows sample correct predictions without relying on the
natural language description. To predict the plotted data, a simple yet effective heuristic is
to select variable names appearing in the most recent code context. This is also one possible
reason that causes the wrong data ordering prediction in Figure 3.3(a); in fact, the prediction
is correct if we change the order of assignment statements for variables age and duration in
the code context.

Meanwhile, we evaluated PlotCoder by varying the number of local code cells K. The

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 33

PLOTCODER: Hierarchical Decoding for Synthesizing Visualization Code
in Programmatic Context

Anonymous NAACL-HLT 2021 submission

Abstract

001

Natural Language
Explore the relationship between rarity and a skill of your
choice. Choose one skill (‘Attack’,‘Defense’ or ‘Speed’)
and do the following. Use the scipy package to assess
whether Catch Rate predicts the skill. Create a scatterplot
to visualize how the skill depends upon the rarity of the
pokemon. Overlay a best fit line onto the scatterplot.

Local Code Context
slope, intercept, r_value, p_value, std_err =

linregress(df['Catch_Rate'], df['Speed'],)
x = np.arange(256)
y = slope * x + intercept

Distant Dataframe Context
df['Weight_kg'].describe()
df['Color'].value_counts().plot(kind='bar')
df['Body_Style'].value_counts().plot(kind='bar')
grouped = df.groupby(['Body_Style','hasGender',]).mean()
df.groupby('Color')['Attack'].mean()
df.groupby('Color')['Pr_Male'].mean()
df.sort_values('Catch_Rate',ascending=False).head()

Dataframe Schema
df: ['Catch_Rate', 'Speed', 'Weight_kg', 'Color',

'Body_Style']

Ground Truth
plt.scatter(df['Catch_Rate'], df['Speed'])
plt.plot(x,y)002

(a) Natural Language
Create a scatter plot of the observations in the ‘credit’
dataset for the attributes ‘Duration’ and ‘Age’ (age should
be shown on the xaxis).

Local Code Context
duration = credit['Duration'].values
age = credit['Age'].values

Ground Truth
plt.scatter(age, duration)

Prediction
plt.scatter(duration, age)003

(b) Natural Language
This graph provides more evidence that the higher a state’s
participation rates, the lower that state’s averages scores
are likely to be. The higher the participation rate, the lower
the expected average verbal scores.

Local Code Context
plt.plot(sat_data['Math'], sat_data['Verbal'])

Dataframe Schema
sat: ['Rate', 'Math', 'Verbal']

Ground Truth
plt.plot(sat_data['Rate'], sat_data['Math'])
plt.plot(sat_data['Rate'], sat_data['Verbal'])

Prediction
plt.plot(sat_data['Math'], sat_data['Verbal'])
plt.plot(sat_data['Rate'], sat_data['Verbal']) 004

(a) Natural Language
Plot a Gaussian by looping through a range of x values
and creating a resulting list of Gaussian values, g

Local Code Context
x_axis = np.arange(-20, 20, 0.1)
g = []
for x in x_axis:

g.append(f(mu, sigma2, x))

Ground Truth & Prediction
plt.plot(x_axis, g) 005

(b) Natural Language
Like in Q9, let’s start by thinking about two dice

Local Code Context
results = []
for i in range(1,7):

for j in range(1,7):
print((i,j),max(i,j))
results.append(max(i,j))

Ground Truth & Prediction
plt.hist(results) 006

1

Figure 3.4: Examples of model predictions even without the natural language input.

results show that the program accuracies converge or start to decrease when K > 3 for
different models, as observed in [3]. However, the accuracy drop of our hierarchical model is
much less noticeable than the baselines, suggesting that our model is more resilient to the
addition of irrelevant code context. See Appendix B.2 for more discussion.

Prediction Results Per Plot Type

We present the breakdown results per plot type in Tables 3.6 and 3.7. To better understand
the plotted data prediction performance, in addition to the default plotted data accuracy
that requires the data order to be the same as the ground truth, we also evaluate a relaxed
version without ordering constraints, described as permutation invariant in Table 3.7. We
compute the results on Test (hard), which has more samples per plot type than the gold
splits. Compared to the non-hierarchical models, the most significant improvement comes
from the predictions of scatter plots (“S”) and plots in “Others” category. We posit that
these two categories constitute the majority of the dataset, and the hierarchical model learns
to better categorize plot types from a large number of training samples. The accuracy of the
hierarchical model on some categories is lower than the baseline’s, but the difference is not
statistically significant since those categories only contain a few examples. A more detailed
discussion is included in Appendix B.3.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 34

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL-IJCNLP 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

PLOTCODER: Hierarchical Decoding for Synthesizing Visualization Code
in Programmatic Context

Anonymous ACL-IJCNLP submission

Abstract

Natural Language
Explore the relationship between rarity and a skill of your
choice. Choose one skill (‘Attack’,‘Defense’ or ‘Speed’)
and do the following. Use the scipy package to assess
whether Catch Rate predicts the skill. Create a scatterplot
to visualize how the skill depends upon the rarity of the
pokemon. Overlay a best fit line onto the scatterplot.

Local Code Context
slope, intercept, r_value, p_value, std_err =

linregress(df['Catch_Rate'], df['Speed'],)
x = np.arange(256)
y = slope * x + intercept

Distant Dataframe Context
df['Weight_kg'].describe()
df['Color'].value_counts().plot(kind='bar')
df['Body_Style'].value_counts().plot(kind='bar')
grouped = df.groupby(['Body_Style','hasGender',]).mean()
df.groupby('Color')['Attack'].mean()
df.groupby('Color')['Pr_Male'].mean()
df.sort_values('Catch_Rate',ascending=False).head()

Dataframe Schema
df: ['Catch_Rate', 'Speed', 'Weight_kg', 'Color',

'Body_Style']

Ground Truth
plt.scatter(df['Catch_Rate'], df['Speed'])
plt.plot(x,y)

(a) Natural Language
Plot a Gaussian by looping through a range of x values
and creating a resulting list of Gaussian values, g

Local Code Context
x_axis = np.arange(-20, 20, 0.1)
g = []
for x in x_axis:

g.append(f(mu, sigma2, x))

Ground Truth & Prediction
plt.plot(x_axis, g)

(b) Natural Language
Like in Q9, let’s start by thinking about two dice

Local Code Context
results = []
for i in range(1,7):

for j in range(1,7):
print((i,j),max(i,j))
results.append(max(i,j))

Ground Truth & Prediction
plt.hist(results)

(a) Natural Language
Create a scatter plot of the observations in the ‘credit’
dataset for the attributes ‘Duration’ and ‘Age’ (age should
be shown on the xaxis).

Local Code Context
duration = credit['Duration'].values
age = credit['Age'].values

Ground Truth
plt.scatter(age, duration)

Prediction
plt.scatter(duration, age)

(b) Natural Language
This graph provides more evidence that the higher a state’s
participation rates, the lower that state’s averages scores
are likely to be. The higher the participation rate, the lower
the expected average verbal scores.

Local Code Context
plt.plot(sat_data['Math'], sat_data['Verbal'])

Dataframe Schema
sat: ['Rate', 'Math', 'Verbal']

Ground Truth
plt.plot(sat_data['Rate'], sat_data['Math'])
plt.plot(sat_data['Rate'], sat_data['Verbal'])

Prediction
plt.plot(sat_data['Math'], sat_data['Verbal'])
plt.plot(sat_data['Rate'], sat_data['Verbal'])

Natural Language
Problem 5. Age groups (1 point) Create a histogram of
all people’s ages. Use the default settings. Add the label
”Age” on the x-axis and ”Count” on the y-axis.

Local Code Context
income_data.columns = ["age","workclass","fnlwgt",
"education","education_num", "marital_status",
"occupation","relationship","race","sex",
"capital_gain","capital_loss","hours_per_week",
"native_country","income_class"]
...
married_af_peoples = \\
income_data[income_data["marital_status"].str.contains(
"Married-AF-spouse")].shape[0]
...

Dataframe Schema
income_data: ['age', 'workclass', ..., 'income_class']
married_af_peoples: ['age', 'workclass', ..., 'income_class']

Ground Truth
plt.hist(income_data.age)

Prediction
plt.hist(married_af_peoples.age)

Figure 3.5: A sample prediction that requires a good understanding of the code context.

Model S H Pie S+P KDE Others

With code canonicalization
Full Model 77.17% 70.86% 61.54% 12.28% 29.69% 84.14%
− Hierarchy 70.65% 68.00% 76.92% 15.79% 39.06% 71.20%
− Link 73.55% 68.00% 69.23% 21.05% 35.94% 70.55%
LSTM 73.91% 71.43% 69.23% 21.05% 28.13% 73.79%
+ codeBERT 67.39% 66.29% 76.92% 21.05% 35.94% 77.02%
+ RoBERTa 61.59% 62.29% 61.54% 10.53% 34.38% 80.58%

Without code canonicalization
Full Model 71.01% 74.29% 76.92% 12.28% 37.50% 65.05%
− Hierarchy 75.00% 72.00% 61.54% 14.04% 31.25% 58.25%
− Link 72.10% 60.57% 69.23% 22.81% 37.50% 63.75%
LSTM 74.64% 74.29% 69.23% 19.30% 29.69% 65.70%
+ codeBERT 71.01% 56.00% 46.15% 14.04% 35.94% 55.02%
+ RoBERTa 73.91% 47.13% 46.15% 10.53% 29.69% 74.43%

Table 3.6: Plot type accuracy on Test (hard) per type.

Error Analysis

To better understand the challenges of our task, we conduct a qualitative error analysis and
categorize the main reasons of error predictions. We investigate all error cases on Test (gold)
split for the full hierarchical model, and present the results in Table 3.8. We summarize the
key observations below, and defer more discussion to Appendix B.5.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 35

Model All S H Pie S+P KDE Others

Plotted data accuracy
Full Model 40.16% 42.39% 41.14% 61.54% 10.53% 21.88% 45.95%
− Hierarchy 35.91% 35.87% 40.00% 69.23% 8.77% 21.88% 40.13%
− Link 35.46% 36.96% 39.43% 53.85% 8.77% 14.06% 40.45%
LSTM 29.87% 30.43% 33.14% 61.54% 8.77% 12.50% 33.66%
+ codeBERT 38.14% 38.41% 39.43% 61.54% 8.77% 20.31% 44.98%
+ RoBERTa 37.47% 39.13% 36.57% 69.23% 3.51% 17.19% 45.63%

Plotted data accuracy (permutation invariant)
Full Model 41.50% 44.57% 41.14% 61.54% 12.28% 21.88% 47.57%
− Hierarchy 37.47% 38.04% 40.00% 69.23% 10.53% 21.88% 42.39%
− Link 41.05% 40.58% 39.43% 53.85% 8.77% 15.62% 43.04%
LSTM 30.65% 31.88% 33.14% 61.54% 10.53% 12.50% 34.30%

Table 3.7: Plotted data accuracy on Test (hard) per type. All models are trained with
canonicalized target code.

• Around half of error cases are due to the ambiguity of the natural language description.
(1-3)

• About 10% samples require longer code context for prediction, because the program
selects the plotted data from distant code context that exceeds the input length limit.
(4)

• Sometimes the model generates semantically same but syntactically different programs
from the ground truth, which can happen when two variables or data frames contain
the same data.(5)

• Besides understanding complex natural language description, as shown in Figure 3.3,
another challenge is to understand the code context and reason about the data
stored in different variables. For example, in Figure 3.5, although both dataframes
income data and married af peoples include the age column, the model must infer
that married af peoples is a subset of income data, thus it should select income data

to plot the statistics of people from all groups. (6-7)

3.5 Related Work

There has been work on translating natural language to code in different languages [288, 264,
195, 278, 292, 283, 161]. While the input specification only includes the natural language for
most tasks, prior work also uses additional information for program prediction, including
database schemas and contents for SQL query synthesis [292, 283, 282, 281], input-output
examples [209, 287], and code context [123, 3]. There has also been work on synthesizing

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 36

Error Category %

(1) NL only suggests the plot type 28.57
(2) NL only suggests the plotted data 9.52
(3) NL has no plotting information 9.52
(4) Need more code context 9.52
(5) Semantically correct 14.29
(6) Challenging NL understanding 19.05
(7) Challenging code context understanding 9.52

Table 3.8: Error analysis on Test (gold) with the hierarchical model.

data manipulation programs only from input-output examples [82, 258]. In this work, we
focus on synthesizing visualization code from both natural language description and code
context, and we construct our benchmark based on the Python Jupyter notebooks from the
JuiCe [3]. Compared to JuiCe’s input format, we also annotate dataframe schema if available,
which is especially important for visualization code synthesis.

Prior work has studied generating plots from other specifications. Falx [261, 259] synthe-
sizes plots from input-output examples, but do not use any learning technique, and focuses
on developing a domain-specific language for plot generation instead. In [75], the authors
apply a standard LSTM-based sequence-to-sequence model with attention for plot generation,
but the model takes in only raw data to be visualized with no natural language input. The
visualization code synthesis problem studied in our work is much more complex, where both
the natural language and the code context can be long, and program specifications are implicit
and ambiguous.

Our design of hierarchical program decoding is inspired by prior work on sketch learning
for program synthesis, where various sketch representations have been proposed for different
applications [234, 185, 79, 192]. Compared to other code synthesis tasks, a key difference is
that our sketch representation distinguishes between dataframes and other variables, which
is important for synthesizing visualization code.

Our code synthesis problem is also related to code completion, i.e., autocompleting the
program given the code context [215, 157, 241]. However, standard code completion only
requires the model to generate a few tokens following the code context, rather than entire
statements. In contrast, our task requires the model to synthesize complete and executable
visualization code. Furthermore, unlike standard code completion, our model synthesizes
code from both the natural language description and code context. Nevertheless, when the
prefix of the visualization code is given, our model could also be used for code completion, by
including the given partial code as part of the code context.

CHAPTER 3. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 37

3.6 Discussion

In this chapter, we present the first study of visualization code synthesis from natural
language and programmatic context. Built upon the JuiCe dataset, we construct a large-scale
benchmark with Python Jupyter notebooks including natural language descriptions, code
context, and dataframes. We describe PlotCoder, a model architecture that includes an
encoder that links the natural language description and code context, and a hierarchical
program decoder that synthesizes plotted data from the code context and dataframe items.
Results on real-world Jupyter notebooks show that PlotCoder can synthesize visualization
code for different plot types, and outperforms various baseline models. We consider extending
our approach to synthesize other parts of visualization programs (e.g., titles and legends)
as future work, which could require additional specification besides the natural language to
achieve good prediction results, such as input-output examples.

38

Part II

Synthesis from Input-Output
Examples

39

Chapter 4

Execution-Guided Neural Program
Synthesis

Neural program synthesis from input-output examples has attracted an increasing interest
from both the machine learning and the programming language community. Most existing
neural program synthesis approaches employ an encoder-decoder architecture, which uses
an encoder to compute the embedding of the given input-output examples, as well as a
decoder to generate the program from the embedding following a given syntax. Although
such approaches achieve a reasonable performance on simple tasks such as FlashFill, on more
complex tasks such as Karel, the state-of-the-art approach can only achieve an accuracy of
around 77%. We observe that the main drawback of existing approaches is that the semantic
information is greatly under-utilized. In this work, we propose two simple yet principled
techniques to better leverage the semantic information, which are execution-guided synthesis
and synthesizer ensemble. These techniques are general enough to be combined with any
existing encoder-decoder-style neural program synthesizer. Applying our techniques to the
Karel dataset, we can boost the accuracy from around 77% to more than 90% 1.

4.1 Introduction

Program synthesis is a traditional challenging problem. Such a problem typically takes a
specification as the input, and the goal is to generate a program within a target domain-
specific language (DSL). One of the most interesting forms of the specifications is input-output
examples, and there have been several applications, such as FlashFill [98, 99].

Recently, there is an increasing interest of applying neural network approaches to tackle
the program synthesis problem. For example, Devlin et al. have demonstrated that using
an encoder-decoder-style neural network, their neural program synthesis algorithm called
RobustFill can outperform the performance of the traditional non-neural program synthesis
approach by a large margin on the FlashFill task [74].

1The material in this chapter is based on Chen et al. [47].

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 40

Despite their promising performance, we identify several inefficiencies of such encoder-
decoder-style neural program synthesis approaches. In particular, such a neural network
considers program synthesis as a sequence generation problem; although some recent work
take the syntactical information into consideration during program generation [35, 212, 277,
201, 271], the semantic information, which is typically well-defined in the target DSL, is not
effectively leveraged by existing work.

In light of this observation, in this work, we develop simple yet principled techniques
that can be combined with any existing encoder-decoder-style neural program synthesizers.
The main novel technique is called execution-guided synthesis. The basic idea is to view
the program execution as a sequence of manipulations to transform each input state into
the corresponding output state. In such a view, executing a partial program can result in
intermediate states; thus, synthesizing the rest of the program can be conditioned on these
intermediate states, so that the synthesizer can take the state changes into account in the
followup program generation process. Therefore, we can leverage this idea to combine with
any existing encoder-decoder-style neural synthesizer, and we observe that it can significantly
improve the performance of the underlying synthesizers.

In addition, we also propose a simple yet effective technique called synthesizer ensemble,
which leverages the semantic information to ensemble multiple neural program synthesizers.
In particular, for the input-output program synthesis problem, we can easily verify if a
synthesized program satisfies the input-output specification, which allows us to remove invalid
predictions from the ensemble during inference time. Albeit its simplicity, to the best of our
knowledge, we are not aware of any previous neural program synthesis work applying this
approach. We observe that this technique further boosts the performance substantially.

We evaluate our techniques on the Karel task [35, 73], the largest publicly available
benchmark for input-output program synthesis, on which the most performant model in
the past can achieve only an accuracy of around 77% [35]. We observe that our proposed
techniques can gain better performance than the previous state-of-the-art results. In particular,
by combining both of our techniques, we can achieve an accuracy of 92%, which is around
15 percentage points better than the state-of-the-art results. This shows that our approach
is effective in boosting the performance of algorithms for neural program synthesis from
input-output examples.

4.2 Problem Setup

In this section, we first introduce the input-output program synthesis problem and existing
encoder-decoder-style neural program synthesis approaches, then present an overview of our
approaches.

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 41

Problem Definition

We follow the literature [74, 35, 48] to formally define the input-output program synthesis
problem below.

Problem Definition 1 (Program emulation). Let L be the space of all valid programs in the
domain-specific language (DSL). Given a set of input-output pairs {(Ik, Ok)}Kk=1 (or {IOK}
in short), where there exists a program P ∈ L, such that P (Ik) = Ok,∀k ∈ {1, ..., K}. Our
goal is to compute the output Otest for a new test input Itest, so that Otest = P (Itest).

Although the problem definition only requires to compute the output for a test input,
a typical method is to synthesize a program P ′ ∈ L such that P ′ is consistent with all
input-output pairs {IOK}, and then use P ′ to compute the output. In this case, we say
program P ′ emulates the program P corresponding to {IOK}.

In particular, in this work, we are mainly interested in the following formulation of the
problem.

Problem Definition 2 (Program synthesis). Let L be the space of all valid programs in
the domain-specific language (DSL). Given a training dataset of {IOK}i for i = 1, ..., N ,
where N is the size of the training data, compute a synthesizer Γ, so that given a test
input-output example set {IOK}test, the synthesizer Γ({IOK}test) = P produces a program P ,
which emulates the program corresponding to {IOK}test.

Encoder-decoder-style Neural Program Synthesis Approaches

There have been many approaches proposed for different neural program synthesis tasks,
and most of them follow an encoder-decoder-style neural network architecture [35, 74, 201].
Figure 4.1 shows a general neural network architecture for input-output program synthesis.
First, an encoder converts input-output examples {IOK} into an embedding. For example,
RobustFill [74] deals with the string transformation tasks, thus it uses LSTMs as the encoder.
For the Karel task, both inputs and outputs are 2D grids (see Figure 4.2); therefore, [35]
employ a CNN as the encoder.

Once the IO embeddings are computed, these approaches employ an LSTM decoder to
generate the programs conditioned on the embeddings. For program synthesis, one unique
property is that the generated program should satisfy the synthax of L. Therefore, a commonly
used refinement is to filter syntactically invalid program prefixes during generation [201, 74,
35].

In the above approaches, only the syntax information is leveraged; the semantics of L is
not utilized. In particular, standard supervised training procedure could suffer from program
aliasing : for the same input-output examples, there are multiple semantically equivalent
programs, but all except the one provided in the training data will be penalized as wrong
programs. To mitigate this issue, Bunel et al. propose to train with reinforcement learning,
so that it rewards all semantically correct programs once they are fully generated [35]. In our

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 42

Figure 4.1: A neural network architecture for input-output program synthesis (e.g., [35]). At
each timestep t, the decoder LSTM generates a program token gt conditioned on both the
input-output pairs {IOK} and the previous program token gt−1. Each IO pair is fed into
the LSTM individually, and a max-pooling operation is performed over the hidden states
{hkt }Kk=1 of the last layer of LSTM for all IO pairs. The resulted vector is fed into a softmax
layer to obtain a prediction probability distribution over all the possible program tokens in
the vocabulary. More details can be found in Appendix C.3.

work, we demonstrate that we can leverage the semantic information in an effective way that
provides a better performance.

An Overview of our Approaches

In this work, we propose two general and principled techniques that can improve the
performance over existing work, which are execution-guided synthesis (Section 4.3) and
synthesizer ensemble (Section 4.4). The main idea of our techniques is to better leverage the
semantics of the language L during synthesis. Meanwhile, our techniques are compatible with
any existing encoder-decoder-style neural program synthesis architecture. We will describe
these techniques in detail in the following sections.

4.3 Execution-Guided Synthesis

Existing approaches generate the entire program only based on the input-output examples
before execution. However, this is an inefficient use of the semantics of L. For example,
when a program consists of a sequence of statements, we can view the output to be a result
by continuously executing each statement in the sequence to convert the input state into a
sequence of intermediate states. Figure 4.2 illustrates such an example. From this perspective,

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 43

Figure 4.2: An example of the execution of partial programs to reach the target state in the
Karel domain. The blue dot denotes the marker put by the Karel robot.

P := B;⊥
B := ⊥ | S | B;B

| if C then B else B fi
| while C do B end

S, C ∈ L

Table 4.1: Syntax of Lext.

instead of generating the whole program at once, we can generate one statement at a time
based on the intermediate/output state pairs.

However, most interesting programs are not just sequential. In this work, we explore this
idea using a general control-flow framework. In particular, given any language L, we extend
it with three classical types of control-flow: sequential, branching, and looping. The extended
language is call Lext. Then, we develop our above idea based on Lext, called execution-guided
synthesis. In the following, to make our discussion concise, we first formalize Lext (Section 4.3),
and then present the idea of execution-guided synthesis (Section 4.3).

The Formal Specification of the Extended Language Lext

In this work, we assume some additional control-flow syntax on top of L. We define the
extended language Lext in Table 4.1. In particular, we assume that a code block B can be
composed by a sequence of statements S ∈ L or sub code blocks, and each code block can
also be an if-statement or a while-statement. We use C to indicate a condition expression in
L, and ⊥ to indicate the termination of a program execution.

The semantics of Lext is specified in Figure 4.3. These rules are largely standard following
the convention in programming language literature. In particular, each rule’s name starts with
S- indicating that they are semantics rules; the suffixes indicate the constructors each rule
specifies, (e.g., Stmt for statements, Seq for sequences, etc.). The judgment 〈B, s〉 → 〈B′, s′〉
indicates a small-step execution of program B over state s to result in a new program B′ and
a new state s′. The judgments 〈S, s〉 ⇓ s′ and 〈C, s〉 ⇓ b capture the big-step execution in L
that statement S evaluates to a new state s′ from s, and condition C evaluates to a boolean
value b from s. Following the semantics of Lext, we can formally define a program execution.

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 44

Figure 4.3: Semantic rules 〈B, s〉 → 〈B′, s′〉 for Lext.

Definition 1 (Program execution). Given a program P ∈ Lext and an input I, the execution
is a sequence s0...sT , such that (1) s0 = I; (2) B0 = P ; (3) 〈Bi, si〉 → 〈Bi+1, si+1〉 for
i = 0, ..., T − 1; and (4) BT = ⊥. The output of the program is O = sT .

Execution-Guided Synthesis Algorithm

In Definition 1, we can observe that the initial and final states are simply two special states
provided as the input-output examples of the synthesis problem. Thus, a synthesizer Γ for
input-output pairs should also be able to take any state-pairs as inputs. Our execution-guided
synthesis algorithm takes advantage of this fact to improve the performance of the synthesizer.
In the following, we discuss three cases from the easiest to the hardest to present our approach.

Sequential programs. We now consider the simplest case, where the program is in the
form of S1; ...;ST , to illustrate the basic idea of execution-guided synthesis algorithm. We
present the algorithm in Algorithm 1. Assuming the input-output examples are {IOK}, we
can treat them as K state-pairs {(ski , sko)}Kk=1, where ski = Ik, sko = Ok. The Exec algorithm
takes the synthesizer Γ and the input-output pairs {IOK} as its input. It also takes an
additional input ∆, which is the ending token to be synthesized. For the top-level program,
∆ will be the ⊥ token. Later we will see that when synthesizing the sub-program for If- and
While-blocks, different ending tokens will be used.

The synthesized program is initially empty (line 3). Then the algorithm iteratively
generates one statement S at a time (line 4-10 and 17), and appends it to the end of P
(line 16). Importantly, if S is not an if-statement or a while-statement, for which we handle
separately, the algorithm executes the newly generated statement S to transit ski into sknew
(line 11-14). Therefore, in the subsequent iteration, the synthesizer can start from the new
states sknew after executing the partial program P generated so far. In doing so, the synthesizer

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 45

Algorithm 1 Execution-guided synthesis (sequential case)

1: function Exec(Γ, {(ski , sko)}Kk=1, ∆)
2: // The main algorithm is called using Exec (Γ, {IOK}, ⊥)
3: P ← ⊥
4: S ← Γ({(ski , sko)}Kk=1)
5: while S 6= ∆ do
6: if S = if -token then // If-statement synthesis
7: S, {(ski , sko)}Kk=1 ← ExecIf(Γ, {(ski , sko)}Kk=1)
8: else
9: if S = while-token then // While-statement synthesis

10: S, {(ski , sko)}Kk=1 ← ExecWhile(Γ, {(ski , sko)}Kk=1)
11: else // Execution of S
12: 〈S, ski 〉 → 〈⊥, sknew〉 for k = 1, ..., K
13: ski ← sknew for k = 1, ..., K
14: end if
15: end if
16: P ← P ;S
17: S ← Γ({(ski , sko)}Kk=1)
18: end while
19: return P
20: end function

can see all intermediate states to better adjust the followup synthesis strategies to improve
the overall synthesis performance.

Branching programs. Dealing with if-statements is slightly more complicated than
sequential programs, since in an if-statement, not all statements will be executed on all
inputs. Following the execution in Algorithm 1 naively, we have to use Γ to synthesize the
entire if-statement before being able to execute the partially generated program to derive
intermediate states.

Therefore, in Algorithm 2, we extend the above idea to handle if-statements. When
the next predicted token is an if -token, our execution-guided synthesizer first predicts the
condition of the if-statement C (line 2). Then, we evaluate C over all state-pairs. Based on
the evaluation results, we can divide the IO pairs into two sets It and If (line 3-4), so that
all states in the former meet the branching condition to go to the true branch, and all states
in the latter go to the false branch. Therefore, in the followup synthesis, we do not need to
consider If (or It) when synthesizing the true branch (or the false branch) (line 5-6). Note
that in line 5-6, synthesizing both true-branch and false-branch employ execution-guided
synthesis algorithm to leverage intermediate states, and different ending tokens (i.e., else
and fi) are supplied respectively. Once we have done the synthesis of both branches, we

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 46

Algorithm 2 Execution-guided synthesis (if-statement)

1: function ExecIf(Γ, I)
2: C ← Γ(I)
3: It ← {(si, so) ∈ I|〈C, si〉 ⇓ true}
4: If ← {(si, so) ∈ I|〈C, si〉 ⇓ false}
5: Bt ← Exec(Γ, It, else-token)
6: Bf ← Exec(Γ, If ,fi-token)
7: I ′t ← {(snew, so)|(si, so) ∈ It ∧ 〈Bt, si〉 ⇓ snew}
8: I ′f ← {(snew, so)|(si, so) ∈ If ∧ 〈Bf , si〉 ⇓ snew}
9: I ← I ′t ∪ I ′f

10: S ← if C then Bt else Bf fi
11: return S, I
12: end function

can execute the generated branches to get the new states I (line 7-9), and return the newly
generated if-statement and updated states to the caller of this algorithm.

In Algorithm 2, we use 〈B, s〉 ⇓ s′ to indicate a big-step execution of code block B over
state s to get s′. In particular, this means that 〈B, s〉 → 〈B1, s1〉 → ...→ 〈⊥, s′〉.

Looping programs. The remaining problem is to handle while-statements. Due to the
rule S-While (see Figure 4.3), a while-statement

while C do B end (4.1)

is equivalent to
if C then (B; while C do B end) else ⊥ fi (4.2)

Therefore, we can employ a procedure similar to Algorithm 2 once a while-token is predicted.
However, there are two differences. First, in (4.2), the false-branch is empty, thus we do not
need to deal with the false-branch. Second, although the true-branch is B; while C do B end,
once we have generated B, we do not need to generate the rest of the true-branch, since both
C and B have been generated. The detailed algorithm can be found in Appendix C.2.

Remarks. The final algorithm is called by Exec (Γ, {IOK}, ⊥). Note that our execution-
guided synthesis algorithm can be applied to any neural synthesizer Γ, and we can train
the synthesizer Γ using any supervised or reinforcement learning algorithms that have
been proposed before [74, 35]. In our evaluation, we demonstrate that our execution-guided
synthesis technique helps boost the performance of both supervised and reinforcement learning
algorithms proposed in existing work [35].

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 47

4.4 Synthesizer Ensemble

In our experiments, we observe that when we use different random initializations of the
synthesizer during training, even if the synthesizer architectures are the same, they will be
effective on different subsets of the dataset, although the overall prediction accuracy is similar
to each other. Thus, a natural idea is to train multiple synthesizers, and ensemble them to
build a more performant synthesizer.

Different from other deep learning tasks, for program synthesis task, without knowing
the ground truth, we can already filter out those wrong predictions that cannot satisfy the
input-output specification. Thus, we ensemble multiple synthesizers as follows: we run all
synthesizers to obtain multiple programs, and select from programs that are consistent with
all input-output examples. This provides us with a better chance to select the correct final
prediction that generalizes to held-out IO pairs.

The main subtlety of such an approach is to deal with the case when multiple generated
programs satisfy the input-output examples. In this work, we consider several alternatives as
follows:

• Majority vote. We can choose the most frequently predicted program as the final
prediction.

• Shortest. Following the Occam’s razor principle, we can choose the shortest program
as the final prediction.

4.5 Evaluation

In this section, we demonstrate the effectiveness of our approaches on the Karel dataset [204,
35]. We first introduce the task, discuss the experimental details, and present the results.

The Karel Task

Karel is an educational programming language proposed in the 1980s [204]. Using this
language, we can control a robot to move inside a 2D grid world and modify the world state,
and our goal is to synthesize a program given a small number of input and output grids as
the specification. Such tasks have been used in Stanford CS introductory courses [65] and
the Hour of Code [114], and have been studied recently in several neural program synthesis
works [73, 35, 228]. Figure 4.2 shows an example in the Karel domain. We provide the
grammar specification and the state representation in Appendix C.1. In particular, the Karel
DSL includes control flow constructs such as conditionals and loops, which is more challenging
than problems well-studied before, such as FlashFill [98, 74].

Our evaluation follows the setup in [35]. We train and evaluate our approaches on their
dataset, which is built by randomly sampling programs from the DSL. For each program, 5
IO pairs serve as the specification, and the sixth one is the held-out test sample. In total,

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 48

there are 1,116,854 programs for training, 2,500 in the validation set, and 2,500 in the test
set. We evaluate the following two metrics, which are the same as in [35]:

• Exact Match. The predicted program is an exact match if it is the same as the ground
truth.

• Generalization. The predicted program is a generalization if it satisfies the input-
output examples in both the specification and the held-out examples.

Training dataset construction for the Exec algorithm. Note that the original Karel
dataset only provides the input-output examples and the ground truth programs. To train
the synthesizer Γ with our Exec algorithm in the supervised learning setting, we need
the supervision on intermediate states as well, which can be obtained easily by executing
the ground truth programs following the semantics (Figure 4.3). In particular, for each
sample 〈{IOK}, P 〉 in the original training set, we construct a sequence of training samples
〈{(ski−1, Ok)}Ki

k=1, Si〉 (i = 1, 2, ..., T), with each sample containing Ki ≤ K state pairs and a
program Si ∈ P . The algorithm to construct this set is largely analogous to the semantics
specification, and we defer the details to Appendix C.2.

Training algorithms. Once the training set is constructed, the neural synthesizer Γ can
be trained on this new dataset using the same algorithm as the one for training Γ on the
original dataset. Therefore, our Exec algorithm can be applied to both supervised learning
and reinforcement learning algorithms proposed in [35] for evaluation.

Model details. We employ the same neural network architecture as in [35] to synthesize
the programs, which is briefly discussed in Section 4.2. During the inference time, we set
the beam size B = 64, and select the one with the highest prediction probability from the
remaining programs. More details can be found in Appendix C.3.

Results

We present our main results in Table 4.2. We report the results of ensembling 15 models
for our ensemble techniques. For reference, we include MLE and RL results in [35], which
were the state-of-the-art on the Karel task for the exact match and generalization metrics
respectively. We first apply our ensemble techniques to these approaches, and observe that
the performance could be significantly boosted by around 7%.

We next observe that our execution-guided synthesis alone can significantly improve
the generalization accuracy over all approaches from [35], even after we accompany their
approaches with our ensemble techniques. In particular, without the ensemble, “Exec+SL”
already improves “MLE+RL” by 8 points on generalization accuracy; and when ensemble
approaches are applied to “MLE+RL”, this gap is shrunk, but still positive. Similar to [35],
we can also train our Exec model using the RL technique, which improves the generalization

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 49

Training Ensemble Generalization Exact Match From

MLE

SL
- 71.91% 39.94% [35]
S 78.80% 46.68% This work

MV 78.80% 47.08% This work

RL
- 77.12% 32.17% [35]
S 84.84% 46.04% This work

MV 84.16% 46.36% This work

Exec

SL
- 85.08% 40.88%

This work

S 91.60% 45.84%
MV 91.52% 45.36%

RL
- 86.04% 39.40%
S 91.68% 46.36%

MV 92.00% 45.64%

Table 4.2: Accuracy on the Karel test set. In the “Training”column, we use “MLE” and
“Exec” to indicate the training approaches proposed in [35] and this work, “SL” and “RL”
to indicate supervised learning and reinforcement learning respectively. In the “Ensemble”
column, dash indicates that no ensemble is used, “S” and “MV” indicate the shortest and
majority vote principles respectively. For the single model accuracy, we report the results of
the model with the best generalization accuracy. We include 15 models in each ensemble.

accuracy by another 1 point, while slightly decreases the exact match accuracy. These results
show that utilizing intermediate execution states alone is already an effective approach to
boost the performance.

Note that the improvement of Exec on the exact match accuracy is relatively minor,
and sometimes negative when applying the ensemble to baseline training algorithms. This
is because our Exec algorithm is not designed to optimize for exact match accuracy. In
particular, we decouple the full programs in the original training dataset into small pieces,
thus our synthesizer Γ is trained with segments of the original training programs instead
of the full programs. In doing so, our synthesizer is more capable of generating programs
piece-by-piece and thus tends to generate semantically correct programs (i.e., with a better
generalization accuracy) rather than the same programs in the training and testing sets (i.e.,
with a better exact match accuracy). In fact, for real-world applications, the generalization
accuracy is more important than the exact match accuracy, because exact match accuracy is
more about evaluating how well the synthesizer recovers the language model of the pCFG
sampler used to generate the dataset. More discussion can be found in Appendix C.4.

Finally, we apply our ensemble approaches on top of Exec+SL and Exec+RL. We observe
that this can further improve the generalization accuracy and exact match accuracy by
around 6% on top of the best single model. These results show that our ensemble approaches
consistently boost the performance, regardless of the underlying models used for ensembling.

In addition, we investigate the performance of ensembling different number of models.

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 50

Figure 4.4: Results of the ensemble model trained with Exec + RL approach. Left: gener-
alization accuracy. Right: exact match accuracy. The corresponding figures using models
trained with Exec approach can be found in Appendix C.4.

We present the results of ensembling Exec + RL models in Figure 4.4, and defer the results
of ensembling Exec models to Appendix C.4. We observe that using the shortest principle is
generally more effective than using the majority vote principle, especially when fewer number
of models are included in the ensemble. However, when there are more models, majority vote
may achieve a better generalization accuracy than the shortest principle. This is reasonable,
since when there are too few models, there might not be enough effective models to form the
majority.

Interestingly, we observe that Exec+RL+Ensemble does not significantly improve the
performance over Exec+SL+Ensemble. This may be due to that the improvement from
ensemble hides the improvement from RL. More discussion of our evaluation results can be
found in Appendix C.4.

To summarize, we make the following key observations:

1. Our execution-guided synthesis technique can effectively improve previous approaches,
which only use the syntactic information, or the final program execution outputs.

2. Our ensemble approaches can effectively improve the performance regardless of the
underlying models being used.

3. The different modules of our proposed approaches, i.e., execution-guided synthesis and
ensemble techniques, can work independently to improve the performance, and thus
they can be applied independently to other tasks as well.

4. By combining all our novel techniques, we improve the state-of-the-art on the Karel
task by 14.88 points (generalization) and 7.14 points (exact match).

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 51

4.6 Related Work

Synthesizing a program from input-output examples is an important challenging problem
with many applications [74, 99, 98, 35, 48, 38, 156, 217, 286, 285, 90, 268, 91]. There has
been an emerging interest in studying neural networks for program synthesis. A line of work
studies training a neural network to directly generate the outputs given the inputs [74, 73,
95, 131, 133]. In particular, Devlin et al. study the Karel domain [73]. However, as shown
in [73], this approach is incapable of handling the case when the number of input-output
examples is small, and is hard to generalize to unseen inputs.

Recent work study using neural networks to generate programs in a domain-specific
language (DSL) from a few input-output examples [74, 35, 201, 209, 295]. Several work
synthesize programs for FlashFill tasks, which are in the string transformation domain [74,
201]. Other work synthesize programs in a LISP-style DSL for array manipulation [209, 295].
In particular, [295] also study the idea of encoding the state of the transformed inputs as it
is updated during execution. However, these DSLs only include sequential programs, and do
not support more complex control flows such as loops and conditionals in our studied Karel
problem. Prior works also consider incorporating syntax constraints and information from
program execution to facilitate program synthesis [74, 260, 35]. However, all these works
generate the whole program, and use its execution results to guide the synthesis process; in
contrast, our work leverages more fine-grained yet generic semantic information that can be
gathered during executing programs in most imperative languages. As a result, our approach’s
performance is significantly better than previous work [35].

Previous work also study program synthesis given intermediate states. For example, [238]
propose to synthesize the program from demonstration videos, which can be viewed as
sequences of states. In such a problem, all intermediate states can be extracted from the
videos. On the contrary, in the input-output program synthesis problem studied in our work,
the input to the program synthesizer provides only the initial state and the final state. Thus,
our synthesizer is required to address the challenge of inferring intermediate states, which is
mainly tackled by our execution-guided synthesis algorithm.

In contrast to training a neural network to generate the entire program, a recent line
of research studies using a neural network to guide the symbolic program search based
on the input-output specification, so that the search process prioritizes the operators that
have higher domain-specific scores predicted by the neural networks [22, 252]. Instead of
predicting such domain-specific scores to guide the program search, we directly incorporate
the domain knowledge by executing partial programs, and utilize the execution results for
program generation of the neural network synthesizer. Meanwhile, recent work propose to
leverage the full execution traces in the context of program repair [262]. Our work is the first
to leverage partial execution traces for the program synthesis task, which is a much harder
task than program repair.

CHAPTER 4. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 52

4.7 Discussion

In this work, we propose two general and principled techniques to better leverage the semantic
information for neural program synthesis: (1) execution-guided synthesis; and (2) synthesizer
ensemble. On a rich DSL with complex control flows, we achieve a significant performance
gain over the existing work, which demonstrates that utilizing the semantic information is
crucial in boosting the performance of neural program synthesis approaches. We believe that
our techniques are also beneficial to other program generation applications, and we consider
extending our techniques to handle programming languages with richer semantics as important
future work. At the same time, we have observed that utilizing existing reinforcement learning
techniques does not provide much performance gain when combined with our approaches. We
believe that there is plenty of room left for further improvement, and we are also interested
in exploring this problem in the future.

53

Chapter 5

Latent Execution for Neural Program
Synthesis

Program synthesis from input-output (IO) examples has been a long-standing challenge.
While recent works demonstrated limited success on domain-specific languages (DSL), it
remains highly challenging to apply them to real-world programming languages, such as
C. Due to complicated syntax and token variation, there are three major challenges: (1)
unlike many DSLs, programs in languages like C need to compile first and are not executed
via interpreters; (2) the program search space grows exponentially when the syntax and
semantics of the programming language become more complex; and (3) collecting a large-scale
dataset of real-world programs is non-trivial. As a first step to address these challenges, we
propose LaSynth and show its efficacy in a restricted-C domain (i.e., C code with tens of
tokens, with sequential, branching, loop and simple arithmetic operations but no library call).
More specifically, LaSynth learns the latent representation to approximate the execution
of partially generated programs, even if they are incomplete in syntax (addressing (1)).
The learned execution significantly improves the performance of next token prediction over
existing approaches, facilitating search (addressing (2)). Finally, once trained with randomly
generated ground-truth programs and their IO pairs, LaSynth can synthesize more concise
programs that resemble human-written code. Furthermore, retraining our model with these
synthesized programs yields better performance with fewer samples for both Karel and C
program synthesis, indicating the promise of leveraging the learned program synthesizer to
improve the dataset quality for input-output program synthesis (addressing (3)). When
evaluating on whether the program execution outputs match the IO pairs, LaSynth achieves
55.2% accuracy on generating simple C code with tens of tokens including loops and branches,
outperforming existing approaches without executors by around 20%. 1

1The material in this chapter is based on Chen et al. [50]. The code is available at https://github.com/
Jungyhuk/latent-execution.

https://github.com/Jungyhuk/latent-execution
https://github.com/Jungyhuk/latent-execution

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 54

5.1 Introduction

Program synthesis from input-output (IO) pairs, also called programming by example (PBE),
requires high-level reasoning and remains a challenging problem for deep models. Unlike
Natural Language Processing (NLP) [20, 72] and perceptual tasks such as Computer Vision
(CV) [69, 107], the mapping from IO pairs to the program itself is hard to model. Many
works attempt to learn a direct mapping from training samples, but often found that it is
already difficult to achieve a low training error, and generalization to new problems is even
harder. Alternatively, one might choose to formulate program synthesis as a search problem:
to find the program that satisfies IO pairs. Unfortunately, the search space of programs is
often vast and highly non-smooth, i.e., a small perturbation of the program often leads to a
complete change of the output.

While there are many previous works on programming by example tasks [22, 74, 35], they
mainly focus on Domain Specific Languages (DSLs), and cannot be easily applied to popular
general-purpose programming languages. For example, to synthesize C programs, we need to
deal with both high-level control flows (e.g., branching and loop) and low-level operations (e.g.,
which variable is the target of assignment). Moreover, unlike DSLs (e.g., Karel) for which it
is feasible to implement a per-line interpreter, C programs need compilation and a partial C
program cannot execute. On the other hand, some recent works investigate natural language
descriptions as the auxiliary information of the program specification, and they evaluate
neural program synthesis models on constrained or simplified competitive programming
problems [144, 6, 108, 43, 17]. Although some of these works demonstrate promising results
for synthesizing Python or C code, they require manual annotations of natural language
specifications [144] or large-scale pre-training on human-written programs [43, 17], and
the performance significantly degrades when only input-output examples are fed into the
synthesizer [6].

To synthesize C programs from input-output examples only, we propose LaSynth, which
generates the program in a recurrent and token-by-token manner. As the first contribution on
model architectures for program synthesis, we propose to use two latent parallel representations
in the recurrent model. One representation is learned from regular recurrent models as in
autoregressive language models [115], with the double attention mechanism over IO pairs
proposed in RobustFill [74] and an operation predictor that models the arithmetic relationship
between the program input and output. The second representation, named Latent Execution
Trace (LaET), models the hypothetical input signal for the remaining partial program to
execute to get to the desired output. Motivated by the line of work on execution-guided
program synthesis [238, 85, 295, 47], we learn a latent representation for C programs which are
not executed via interpreters, and train the model given only IO pairs without the intermediate
program execution states. The two parallel representations are trained end-to-end.

As the second contribution on dataset construction, we demonstrate that it is possible to
automatically construct a C codebase that is of high quality, controllable and concise through
our proposed program synthesis procedure. Specifically, starting from randomly generated
C programs that might contain a lot of redundant statements, we show that via iterative

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 55

retraining, the subsequent generated code from our learned model becomes more concise and
similar to human-written ones. Moreover, learning directly from the generated code leads to
better performance given the same amount of samples, and improves the sample efficiency.
We observe similar results when applying our iterative retraining technique to Karel [35],
another programming by example benchmark consisting of randomly generated programs.
Although the initial Karel dataset includes a large proportion of complicated programs with
different control flow constructs, we demonstrate that nearly half of the problems can be
solved by straight-line programs, which again confirms that randomly generated programs
tend to be unnecessarily complicated. We envision that the iterative retraining procedure
could greatly reduce laborious efforts in human codebase collection in future research.

As the third contribution, we show for the first time that short C code in a restricted
domain (tens of tokens, no library call) with sequential, branching, loop and simple arithmetic
operations can be effectively synthesized from IO pairs only. In particular, while LaSynth
tends to generate more concise programs (and does not have exact token match with random
generated ground truth code), when measuring whether the program execution outputs match
the IO pairs, LaSynth achieves 55.2% accuracy, and outperforms existing neural program
synthesis models by around 20%. These results demonstrate the effectiveness of learning
latent execution traces.

5.2 Problem Setup

In programming by example tasks, the program specification is a set of input-output ex-
amples [74, 35]. Specifically, we provide the synthesizer with a set of K input-output pairs
{(I(k), O(k))}Kk=1 ({IO}K in short). These input-output pairs are annotated with a ground
truth program P ?, so that P ?(I(k)) = O(k) for any k ∈ {1, 2, ..., K}. To measure the pro-
gram correctness, we include another set of held-out test cases {IO}Ktest

test that differs from
{IO}K . The goal of the program synthesizer is to predict a program P from {IO}K , so that
P (I) = P ?(I) = O for any (I, O) ∈ {IO}K + {IO}Ktest

test .
C Program Synthesis. In this work, we make the first attempt of synthesizing C code

in a restricted domain from input-output examples only, and we focus on programs for list
processing. List processing tasks have been studied in some prior works on input-output
program synthesis, but they synthesize programs in restricted domain-specific languages
instead of full-fledged popular programming languages [22, 196, 197].

Our C code synthesis problem brings new challenges for programming by example.
Compared to domain-specific languages, the syntax and semantics of C are much more
complicated, which significantly enlarges the program search space. Meanwhile, learning good
representations for partially decoded programs also becomes more difficult. In particular,
prior neural program synthesizers that utilize per-line interpreters for the programming
language to guide the synthesis and representation learning [47, 227, 193, 85, 197] are not
directly applicable to C. Although it is possible to dump some intermediate variable states
during C code execution [39], since partial C programs are not executable, we are able to

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 56

I1: [-4, 3, 1, 2, 1]
I2: [3, 4, 3, 2, 4]
I3: [2, 1, 4, 1, 2]
I4: [1, 4, 1, 1, -2]
I5: [2, 4, 4, -1, 4]

O1: [-4, 3, 3, 3, 3]
O2: [3, 4, 3, 3, 3]
O3: [2, 1, 3, 3, 3]
O4: [1, 4, 3, 3, 3]
O5: [2, 4, 3, 3, 3]

Random Input
Generator

Random Program
Generator

Neural
Program

Synthesizer

Figure 5.1: Illustration of the C program synthesis pipeline. For dataset construction, we develop a
random program generator to sample random C programs, then execute the program over randomly
generated inputs and obtain the outputs. The input-output pairs are fed into the neural program
synthesizer to predict the programs. Note that the synthesized program can be more concise than
the original random program.

ℎ"#$

	𝐼'"#$
Latent	
Executor

ℎ"

	𝐼'"

Program	
Decoder

𝑝"

Latent	
Executor

Program	
Decoder

𝑝"#$

(a) Model Overview

𝐿𝑆𝑇𝑀-

𝑂 IO	
Encoder

𝑝/,	𝑝$,	…,			𝑝"#$
Program	
Context

	ℎ"#$

	𝑠"1 𝑠"2

𝑜𝑝4"

	ℎ"

Max
Pool

	𝑚" 	𝑑"

Softmax

	𝑝"
(b) Program Decoder

𝐿𝑆𝑇𝑀7

Training	
Target

Softmax
𝐸𝑋𝐸𝐶"

(c) Latent Executor

I O Op

2 4 O=2+I

2 0 O=2-I

… …𝑠"
2($)… 𝑠"

2(=) 	𝑜𝑝4"
($)… 	𝑜𝑝4"

(=)

	𝐼'"#$

ℎ"

	𝐼'"#$ 	𝐼'" 	𝐼'>

𝑂
(d)

	𝑠"
1($) … 𝑠"

1(=)

Operation Predictor
Attention

Retrieve

ℎ"?$

	𝐼'"?$

𝑝"?$

Figure 5.2: (a) An overview of LaSynth model architecture. (b), (c), and (d) present the details
of the program decoder, latent executor, and the operation predictor. Note that the operation
predictor is specialized for numerical calculation, and thus is not used for the Karel domain.

obtain all the execution states only until a full C code is generated, which is too late to
include them in the program decoding process. In particular, the intermediate execution
state is not available when the partial program is syntactically invalid, and this happens
more frequently for C due to its syntax design.

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 57

5.3 Program Synthesis with Learned Execution

In this section, we present LaSynth which learns to represent the execution of partial
programs to guide the synthesis process. Figure 5.2(a) provides an overview of LaSynth
model architecture which consists of two components, the program decoder and the latent
executor. We present the core design below, and defer more details to Appendix D.1 and
Appendix D.2.

Model Overview

At a high level, the program decoder (Fig. 5.2(b)) takes a latent vector ht−1 that represents
the generated partial program, the previous (generated) program token pt−1, and outputs the
latent vector ht and the next program token pt to be generated at time step t:

(ht, pt) = ProgramDecoder(ht−1, pt−1; IOt−1) (5.1)

Here the recurrent model is conditioned on the IO pair IOt−1. When IOt = IO := (I, O)
for every t, i.e., IOt remains constant over the entire recurrent generation process, Eqn. 5.1
represents the standard recurrent architecture used in most autoregressive natural language
models [115, 249], and is also used in prior works on program synthesis from input-output
examples [74, 35].

For program decoding, the decoder first takes two attention vectors sIt and sOt computed
from IO pairs and latent vector ht−1 via double attention [74], and utilizes a max pooling
layer to compute an aggregated embedding mt for all IO pairs (Fig. 5.2(b)):

mt = MaxPoolj∈{1,2,...,K}(tanh(W [s
I(j)
t ; s

O(j)
t])) (5.2)

Here the superscript (j) indicates that the representation is for the j-th IO pair, [a; b] is
vector concatenation of a and b, and W is a trainable matrix. To facilitate the prediction of
long programs, we compute an attention vector dt over previously generated program tokens
using the standard attention mechanism [20, 171]:

dt = Attention(mt, {p0, ..., pt−1}) (5.3)

Finally, the next token pt is sampled from P[pt] = Softmax(V dt)pt where V is a trainable
matrix.

Latent Executor Design

As shown in our experiments (Section 5.5), the standard program decoder architecture may
not be able to achieve strong performance in program synthesis when the program complexity
increases. One main reason is that the standard program decoder only takes the initial IO
pairs as the input without considering the program execution, thus the learned representation

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 58

for the partial program does not effectively guide the synthesis process. Motivated by prior
works that utilize execution traces for Karel program synthesis [47, 227, 238], in this paper,
we introduce latent executor (Fig. 5.2(c)) which maintains a second representation Ît during
program decoding. Intuitively, Ît−1 models the hypothetical input of the partial program pt...T
so that its output becomes O. Given the estimated input Ît−1 and the latent vector ht, the
latent executor returns Ît at the next time step t:

Ît = LatentExecutor(Ît−1, ht) (5.4)

The collection of {Ît}Tt=0 is the latent execution trace (LaET). With the help of latent
executor, we now use the IO pairs IOt−1 := (Ît−1, O) instead of (I, O) for the program
decoder (Eqn. 5.1).

End-to-end Training

We train our model with supervised learning, by minimizing the sum of token prediction loss
LProg, and the latent executor loss LExec:

L = LProg + LExec (5.5)

Specifically, LProg :=
∑T

t=1 Loss(pt, p
?
t) is the step-by-step cross-entropy loss between the

predicted programs p1...T and the ground truth programs p?1...T .
For latent executor, since the semantics of partial programs (e.g., partial C programs) are

not always well-defined, there is no step-by-step training supervision. However, the output of
the executor should be consistent with the program specification after taking the annotated
ground truth program as the input. Therefore, we set Î0 = I (true input) and minimize the
distance between ÎT and O (true output) after the program finishes:

LExec = Loss(ÎT , O) (5.6)

Note that LExec does not rely on any assumptions of the partial program semantics, and thus
is applicable to both domain-specific languages and general-purpose programming languages
such as C. In our evaluation, equipping with the latent executor significantly improves the
program prediction performance, where each program could include up to 256 tokens.

Data Regeneration and Iterative Retraining

Interestingly, once our model is trained on the initial random generated programs D0, the
predicted program becomes more concise and resembles human-written code. While the exact
token match accuracy is low even on the training set, the model still satisfies the IO pairs
for many problems. We leverage such a phenomenon to construct a new dataset D1 with
higher-quality programs from D0. Specifically, we run beam search on the trained model to
predict program p0...T given input-output pairs in the training set. If model prediction p0...T

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 59

Table 5.1: The comparison between our restricted C domain and existing programming by example
tasks.

Control flow Variables Arithmetics No helper functions

Restricted C (Ours) 3 3 3 3

Karel [35] 3 − − −
DeepCoder [22] − 3 3 −
FlashFill [98] − − − −

satisfies all the input-output examples and held-out cases, we replace the original program
p?0...T with p0...T in D1, and keep p?0...T otherwise. Afterward, we re-train the model on D1.
In Sec. 5.5, we will demonstrate that the retraining process further improves the model
performance, especially with smaller training datasets.

5.4 Restricted C Program Synthesis Domain

In this section, we discuss our restricted C program synthesis domain, and our operation
predictor design for improving the numerical reasoning ability of program synthesis models.

Data Generation

Collecting large-scale high-quality datasets for program synthesis requires a lot of human
efforts, and we aim to reduce the manual work for dataset construction.

Our data generator is built upon Csmith [274], a random C code generation tool originally
designed for finding bugs in compilers. Following the common practice of generating input-
output pairs, for each program, we randomly sample 5 numerical lists as the program inputs,
and execute the program to obtain the corresponding output lists. This is similar to existing
works on PBE problems that sample programs based on a probabilistic context-free grammar,
randomly generate valid inputs for the programs and obtain the outputs [201, 73, 22]. This
creates infinite samples for synthesizing programs in domain-specific languages. While the
programs sampled in this way differ from human-written code, Sec. 5.3 shows that they can
be converted to be more concise and human-like.

The subset of language features used. Our generated program has variable declaration,
variable assignment, and expressions with addition or subtraction operations. The programs
also have non-sequential statements, including If statements, For loops, Continue and
Break statements. Except for the input argument which is a list, all variables declared are
integers, and all program statements are integer manipulation. Each expression has at most 2
mathematical operations, and chaining the full C program could perform multi-step numerical
calculation (e.g., p0 = p0 - p1 + p2; p0 = p0 - 1;). Looping statements other than For

(i.e., While or Do-While loops) are not supported. Note that we only constrain the final

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 60

program length (≤ 256 tokens) and the program can have nested for-loops and complicated
if-conditions.

Post-processing. We perform a few post-processing steps to obtain our final programs
from programs generated by Csmith (see Fig. 5.1 for an example). We resample different
components of the program, so that (1) each constant numerical value lies in [−4, 4], (2)
mathematical operators only contain addition and subtraction, and (3) upper/lower limits of
For loops are positive and within the length of the list. Programs are discarded if they are
trivial (e.g., constant or identity mappings), or the input-output examples include values out
of the range [−4, 4].

Final dataset. We reweight the program distribution so that at least half of them
include For loops. Our full dataset includes 500K samples in the training set, 1K samples
in the validation set, and 1K samples in the test set. As shown in Fig. 5.1, the randomly
sampled program may contain redundant statements, which can be easily avoided by human
programmers. We compare our restricted C domain to prior datasets of programming by
example in Table 5.1.

Program Decoding with the Operation Predictor
For program decoder, predicting the next program token pt is non-trivial, especially when
mathematical reasoning is required [222, 152]. To improve the program synthesis performance
for domains involving numerical calculation, such as our restricted C domain, we design an
associative memory structure named operation predictor (Fig. 5.2(d)), based on the following
intuition: given the input I = 2 and output O = 4, human would infer that “O = I + 2”
might be the desired operation and write down the code accordingly. To materialize such
an intuition, we create a pre-computed table that covers all possible integer addition and
subtraction operations for valid input and output list values. We defer the details of the
model architecture to Appendix D.1. The program decoding process remains similar to the
one described in Sec. 5.3, and we highlight the key differences as follows.

The operation predictor takes two attention vectors sIt and sOt as the representations of
input-output examples, and yields an operator embedding ôpt. To compute the aggregated
embedding vector for all input-output examples, we modify Eqn. 5.2 to also take ôpt as an
input of the max pooling layer:

mt = MaxPoolj∈{1,2,...,K}(tanh(W [s
I(j)
t ; s

O(j)
t ; ôp

(j)
t])) (5.7)

To train the operation predictor, we add an additional loss LOp:

L = LProg + LExec + LOp (5.8)

LOp is designed to ensure that the operation predictor predicts operations related to IO pairs,
and we defer the details to Appendix D.1.

Limitations. In our current implementation of the operation predictor, the operation
table is only able to enumerate the arithmetic operations over a pre-defined constant set, thus

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 61

Table 5.2: The comparison between LaSynth and baseline neural program synthesis models in our
evaluation.

LaSynth
Exec Shin et al. Bunel et al. RobustFill Property Signatures
[47] [227] [35] [74] [196]

+ Program execution 3 3 3 − − −
No interpreter needed 3 − − 3 3 3

it requires that the set of possible numerical values in input-output pairs is finite. One way of
extending our operation predictor to support potentially unbounded numerical calculation is
to combine it with the subword tokenizer, which has been commonly used in recent language
models [72, 43, 17]. We consider designing general-purpose number representation for better
mathematical reasoning as future work.

5.5 Experiments

In this section, we discuss our results on synthesizing programs in Karel and C languages.
We first show that LaSynth achieves competitive performance on Karel benchmark. Then
we present the results on our restricted C benchmark, and demonstrate that our approach
significantly outperforms existing neural program synthesis models. Finally, we discuss the
effect of iterative retraining.

Karel Program Synthesis

Evaluation Setup

Karel domain. Karel is an educational programming language [204], and has been studied
in recent works on neural program synthesis from input-output examples [73, 35, 47, 227].
A Karel program controls a robot in a 2D grid world. There are instructions that control
the robot, e.g., move, turnLeft and PutMarker, as well as conditionals and loops, i.e., if,
repeat and while.

We train and evaluate all models on the Karel dataset introduced in [35]. The dataset
contains randomly sampled programs from the Karel DSL (1.1M training samples, 2.5K
samples in the validation set and 2.5K samples in the test set). Each program includes 5
input-output pairs as the specification, and the sixth pair as the held-out test case. Following
the prior work, we evaluate two metrics: (1) Exact Match: the predicted program is the
same as the ground truth; (2) Generalization: the predicted program satisfies both the
input-output pairs and the held-out input-output test case.

Baselines. Bunel et al. [35] designed the first program synthesis model for the Karel
benchmark with a similar high-level design as RobustFill, but they use convolutional neural
networks (CNN) to encode the Karel grid maps. Compared to LaSynth, this model does

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 62

Table 5.3: Results on Karel dataset. Gen
and Exact denote generalization and exact
match accuracies.

Approach Gen Exact

LaSynth 83.68% 41.12%
Exec [47] 86.04% 39.40%
Bunel et al. [35] 77.12% 32.17%
Shin et al. [227] 81.30% 42.80%

Figure 5.3: Generalization accuracies with differ-
ent training data sizes on Karel. With the full
training set, the accuracies are 86.04%, 89.28%
and 89.36% for training on random programs, re-
training for 1 and 2 iterations.

not utilize any program execution information, and does not include our latent executor.
Instead of directly synthesizing the program from input-output examples, the model in Shin et
al. [227] first predicts the execution traces containing the robot actions from the input-output
pairs, then decodes the program based on the execution traces. This model improves the
prediction performance over Bunel et al., but it requires the full execution traces for model
training and an interpreter for execution. Exec [47] leverages the execution states of partial
generated programs to guide the subsequent synthesis process, but the execution states are
obtained from the Karel interpreter rather than learned by the model, thus this approach
represents the ideal scenario where the partial programs could be executable.

Our model architecture for Karel is largely similar to the model for C code synthesis,
except that we employ the CNN encoder in Bunel et al. [35] in our program decoder and latent
executor. The comparison with baseline models is shown in the middle block of Table 5.2.
All models use the beam search for decoding programs, with the beam size of 64.

Results

We present the results of LaSynth and baseline model architectures in Table 5.3. First,
LaSynth outperforms all baselines that do not incorporate the partial program execution
information, and achieves competitive performance compared with the Exec algorithm that
requires an interpreter to obtain the partial program execution states. In particular, LaSynth
achieves a higher generalization accuracy than Shin et al. with lower exact match accuracy,
showing that decoded programs by LaSynth are more different from randomly generated
programs. Although Shin et al. also model the program execution by predicting the robot
actions, the prediction of the action traces does not take the program structure into account,
resulting in the inferior performance.

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 63

(a) (b)

Figure 5.4: Program distributions after iterative retraining on Karel. (a) The distributions of
different program types. Seq-only : no control flows. If-only : the program includes If statements but
no loops. Repeat/While-only : the program includes Repeat/While loops, but no other control flow
constructs. Mixture: the program includes at least two types of control flow constructs. (b) The
distributions of programs with different token lengths.

C Code Synthesis

Evaluation Setup

Given the variety of C programs, we observe that the exact match accuracies of models
are mostly nearly 0. Therefore, we focus on evaluating the generalization accuracy, and
we consider the predicted program to be correct when it satisfies both the 5 input-output
examples and 5 held-out test cases.

Baselines. We compare the full LaSynth with its multiple ablated versions:

• NoExecutor. The program decoder (Eqn. 5.1) always takes the initial input-output
pairs as the input; i.e,. Ît = I0 for every t.

• NoPartialExecutor. Ît = I0 = I for every t and additionally hT is regularized so that
LatentExecutor(I0, hT) matches the output O under loss LExec. Therefore, no partial
latent execution.

• NoOpPredictor. The max pooling layer only takes the vectors computed by the double
attention as the input (Eqn. 5.2).

• NoAttentionInDecoding. There is no attention over decoded program tokens, and
the output of the max pooling layer is directly fed into the output softmax layer; i.e.,
P[pt] = Softmax(V mt)pt (compared to Eqn. 5.3).

We also compare with existing neural program synthesis models with good performance on
related tasks, as shown in the rightmost block of Table 5.2. RobustFill [74] is the state-
of-the-art neural network architecture on FlashFill benchmark, which synthesizes string

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 64

int * func_1(int a[])
{

int p_0 = 0;
int l_25 = 4;
a[p_0] = 1;
--a[l_25];
return a;

}

int * func_1(int a[])
{

int p_0 = 2;
int l_12 = 3;
for (p_0 = 1; p_0 <= 2; p_0++)
{

a[p_0]--;
}
a[l_12] = a[l_12] + 4;
return a;

}

int * func_1(int a[])
{

int p_0 = 0;
int l_7 = 3;
int l_8 = 1;
a[l_8] = (a[l_7] - a[p_0]);
for (p_0 = 3; p_0 <= 4; p_0++)
{

for (int p_1 = 1; p_1 <= 2; p_1++)
{

a[p_1] = a[p_1] + a[p_0];
a[p_1] = a[p_1] + 2;

}
}
return a;

}

Figure 5.5: Sample programs that could be correctly predicted by LaSynth, but wrongly predicted
by models without the latent executor. These programs require multiple different operations for
different input list elements.

manipulation programs in a domain-specific language. As described in Sec. 5.3, the input-
output encoder and the program decoder architectures in RobustFill are similar to LaSynth,
except that it does not include the latent executor, operation predictor, and the attention on
the decoded program sequence.

Property Signatures [196] was designed for synthesizing list manipulation programs in
domain-specific languages, but instead of taking the raw input and output lists as the neural
network input, they design some properties that distinguish different programs, then take
the values of these properties as the model input. A sample property could be whether the
program output is the same as the input, and the property values could be “All True”, “All
False”, or “Mixed”, indicating that the property always holds for any input-output pair in
the specification, never holds, and holds for some pairs but not others, respectively. We
customize the original design [196] for our setting. First, our property set takes the format of
O = C + I? and O = C − I?, where C ∈ [−4, 4]. For example, O = 2 + I? means whether
the output O could be calculated by adding 2 to the input I. These properties focus more
on numerical calculation, similar to our operation predictor. Second, different from the task
in [196], our C programs sometimes manipulate only a subset of the input lists, thus encoding
the list with a single property value is inappropriate. Instead, we compute the property value
per element in input-output pairs, use a bi-directional LSTM to encode the property values
as a sequence, then take the outputs of the bi-LSTM for program prediction.

Results

Table 5.4 presents the results, where all models are trained on the initial random programs.
The full LaSynth outperforms other variants, and improves the performance of RobustFill
and Property Signatures by around 20%. We also increase the model size of RobustFill

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 65

Table 5.4: Results on C dataset.

Approach Accuracy

LaSynth 55.2%
NoAttentionInDecoding 53.5%
NoOpPredictor 53.7%
NoPartialExecutor 42.9%
NoExecutor 38.6%
RobustFill [74] 37.6%
Property Signatures [196] 34.5% Figure 5.6: Accuracies of different program

types on C dataset.

(a) (b)

Figure 5.7: Results of iterative retraining on the C dataset. (a) Accuracies with different training
data sizes. With the full training set, the accuracies are 55.2%, 56.0% and 56.5% for training on
random programs, retraining for 1 and 2 iterations, respectively. (b) The program distributions
after each retraining iteration.

to see if the improvement comes from larger model size, but the results are not better. In
particular, the latent executor significantly increases the prediction accuracy, and achieves
better results than NoPartialExecutor, which shows that learning latent execution traces
leads to better partial program representations. In Fig. 5.5, we present sample programs
that could be correctly synthesized by LaSynth, but models without the latent executor
provide the wrong prediction. We observe that the latent executor is beneficial when the
program involves different manipulations for different list elements, e.g., more than one
For loop and different mathematical calculations. Our breakdown results on programs of
different complexity also justify this observation. We first present the results on programs
with different control flow constructs in Fig. 5.6. Specifically, Seq-only includes programs with
no control flow constructs, For-only includes programs with For loops but no If statements,
and Mixture includes programs with both For loops and If statements. Then we demonstrate

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 66

(a) (b)

Figure 5.8: Results on programs of different token lengths on the C dataset. (a) The program token
length distributions after each retraining iteration. (b) The accuracies on programs of different
token lengths.

the results on different program lengths in Fig. 5.8b. We show that LaSynth achieves decent
performance on long and complicated programs, while the accuracies of baseline models drop
dramatically.

Discussion of Iterative Retraining

In Fig. 5.3, we show the effectiveness of retraining on decoded Karel programs (Sec. 5.3).
We observe that retraining for one iteration is sufficient, and it significantly improves the
generalization accuracy by over 3%. To understand the differences between predicted programs
and randomly generated programs, we demonstrate the changes of dataset distributions after
each retraining iteration in Fig. 5.4a and 5.4b. We observe that the model learns to predict
more concise programs than the ground truth for a large proportion of input-output examples,
and considerably alters the dataset distribution so that it becomes more concentrated on
short programs with simplified control flow structures. Specifically, from Fig. 5.4a, although
the initial Karel dataset seems to include a large proportion of complicated programs with
different control flow constructs, our model synthesizes straight-line programs for nearly half
of the samples, which means that many loops and branches in the annotated ground truth
programs are unnecessary. This distribution shift also explains the gap between the exact
match and generalization accuracies. The program distribution after the second retraining
iteration is largely similar to the first iteration, thus retraining for more iterations does not
considerably improve the performance. Note that in the second iteration, the synthesizer
tends to generate slightly more complicated programs than the first iteration, in order to
deal with the cases when the input-output examples oversimplify the intended program
functionality. For example, sometimes the input-output examples do not cover the edge cases
that the robot may encounter, thus adding additional If branches could avoid the crashes
when testing on held-out cases.

Fig. 5.7a presents the results of retraining on decoded C programs. Similarly, retraining

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 67

improves the prediction accuracy, especially when the training set is small. From Fig. 5.7b
and 5.8a, we again observe that the model tends to predict shorter programs than the random
code, and it eliminates unnecessary control flows to simplify the programs. We present more
examples in Appendix D.3.

5.6 Related Work

Programming by example. Programming by example problems have been widely studied
with various applications, and recent works have developed deep neural networks as program
synthesizers [99, 201, 74, 35]. Most prior works focus on synthesizing programs in domain-
specific languages, such as FlashFill [201, 74, 252] for string transformation, Karel [35, 227,
47, 102] for simulated robot navigation, and LISP-style languages for list manipulation [22,
209, 295, 192]. In this work, we make the first attempt of synthesizing C code in a restricted
domain from input-output examples only, and we focus on the list manipulation domain.

Some recent works investigate the limitations of synthetic datasets and the ambiguity
in program specifications for neural program synthesis [229, 62, 237, 147]. These works
focus on reducing the bias of data distributions and generating more diverse input-output
pairs, while our data regeneration aims to improve the quality of programs. We consider
incorporating both lines of work to further improve the dataset quality as future work. In
addition, drawing the inspiration from self-training and bootstrapping techniques developed
for other applications [184, 1, 178, 269] to extend our iterative retraining scheme is also
another future direction.

Execution-guided program synthesis. To learn better program representations, some
recent works incorporate the execution information to guide the synthesis process [238,
295, 227, 47, 85, 247, 23, 102, 197, 193, 172]. In particular, leveraging partial program
execution states improves the performance for several program synthesis tasks [47, 295, 85,
193]. However, existing approaches rely on program interpreters to provide the intermediate
execution results whenever applicable. In contrast, we demonstrate that our latent executor
learns the latent execution traces (LaET) without such a requirement. Besides program
synthesis, execution traces have also been utilized for other software engineering applications [5,
179].

Neural execution. Our latent executor is related to prior works on learning to execute
algorithms [284, 251, 273] and programs [29]. They focus on predicting execution results
for full algorithms and programs, but do not utilize them for program synthesis. Latent
state prediction has also been studied in other applications such as task-oriented dialogue
systems [180, 291] and robotics [205].

CHAPTER 5. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 68

5.7 Discussion

In this work, we propose LaSynth, which learns the latent representation to approximate the
execution of partial programs, even if their semantics are not well-defined. We demonstrate
the possibility of synthesizing elementary C code from input-output examples only, and
leveraging learned execution significantly improves the prediction performance by around
20%. Meanwhile, compared to the randomly generated programs, LaSynth synthesizes
more concise programs that resemble human-written code, and training on these synthesized
programs further improves the prediction performance for both Karel and C program synthesis.
Our results indicate the promise of leveraging the learned program synthesizer to improve
the dataset quality for programming by example tasks.

We consider extending our approach to synthesize more complicated real-world code as
future work. For example, we will integrate our latent executor into large-scale pre-trained
language models, which could further improve the performance of those program synthesis
models taking natural language specifications. We will also study program synthesis problems
with unbounded input ranges and different type signatures, which could be approached with
the usage of subword tokenizers.

69

Part III

Synthesis for Software Engineering
Applications

70

Chapter 6

Tree-to-tree Neural Networks for
Program Translation

Program translation is an important tool to migrate legacy code in one language into an
ecosystem built in a different language. In this chapter, we employ deep neural networks
toward tackling this problem. We observe that program translation is a modular procedure,
in which a sub-tree of the source tree is translated into the corresponding target sub-tree
at each step. To capture this intuition, we design a tree-to-tree neural network to translate
a source tree into a target one. Meanwhile, we develop an attention mechanism for the
tree-to-tree model, so that when the decoder expands one non-terminal in the target tree,
the attention mechanism locates the corresponding sub-tree in the source tree to guide the
expansion of the decoder. We evaluate the program translation capability of our tree-to-tree
model against several state-of-the-art approaches. Compared against other neural translation
models, we observe that our approach is consistently better than the baselines with a margin
of up to 15 points. Further, our approach can improve the previous state-of-the-art program
translation approaches by a margin of 20 points on the translation of real-world projects 1.

6.1 Introduction

Programs are the main tool for building computer applications, the IT industry, and the
digital world. Various programming languages have been invented to facilitate programmers
to develop programs for different applications. At the same time, the variety of different
programming languages also introduces a burden when programmers want to combine
programs written in different languages together. Therefore, there is a tremendous need to
enable program translation between different programming languages.

Nowadays, to translate programs between different programming languages, typically
programmers would manually investigate the correspondence between the grammars of the
two languages, then develop a rule-based translator. However, this process can be inefficient

1The material in this chapter is based on Chen et al. [49].

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 71

and error-prone. In this work, we make the first attempt to examine whether we can leverage
deep neural networks to build a program translator automatically.

Intuitively, the program translation problem in its format is similar to a natural language
translation problem. Some previous work propose to adapt phrase-based statistical machine
translation (SMT) for code migration [189, 134, 188]. Recently, neural network approaches,
such as sequence-to-sequence-based models, have achieved the state-of-the-art performance on
machine translation [20, 60, 86, 106, 249]. In this work, we study neural machine translation
methods to handle the program translation problem. However, a big challenge making a
sequence-to-sequence-based model ineffective is that, unlike natural languages, programming
languages have rigorous grammars and are not tolerant to typos and grammatical mistakes. It
has been demonstrated that it is very hard for an RNN-based sequence generator to generate
syntactically correct programs when the lengths grow large [136].

In this work, we observe that the main issue of an RNN that makes it hard to produce
syntactically correct programs is that it entangles two sub-tasks together: (1) learning the
grammar; and (2) aligning the sequence with the grammar. When these two tasks can be
handled separately, the performance can typically boost. For example, Dong et al. employ a
tree-based decoder to separate the two tasks [80]. In particular, the decoder in [80] leverages
the tree structural information to (1) generate the nodes at the same depth of the parse tree
using an LSTM decoder; and (2) expand a non-terminal and generate its children in the
parse tree. Such an approach has been demonstrated to achieve the state-of-the-art results
on several semantic parsing tasks.

Inspired by this observation, we hypothesize that the structural information of both source
and target parse trees can be leveraged to enable such a separation. Inspired by this intuition,
we propose tree-to-tree neural networks to combine both a tree encoder and a tree decoder.
In particular, we observe that in the program translation problem, both source and target
programs have their parse trees. In addition, a cross-language compiler typically follows a
modular procedure to translate the individual sub-components in the source tree into their
corresponding target ones, and then compose them to form the final target tree. Therefore,
we design the workflow of a tree-to-tree neural network to align with this procedure: when the
decoder expands a non-terminal, it locates the corresponding sub-tree in the source tree using
an attention mechanism, and uses the information of the sub-tree to guide the non-terminal
expansion. In particular, a tree encoder is helpful in this scenario, since it can aggregate all
information of a sub-tree to the embedding of its root, so that the embedding can be used to
guide the non-terminal expansion of the target tree.

We follow the above intuition to design the tree-to-tree translation model. Some existing
work [233, 146] propose tree-based autoencoder architectures. However, in these models, the
decoder can only access to a single hidden vector representing the source tree, thus they are
not performant on the translation task. In our evaluation, we demonstrate that without
an attention mechanism, the translation performance is 0% in most cases, while using an
attention mechanism could boost the performance to > 90%. Another work [33] proposes
a tree-based attentional encoder-decoder architecture for natural language translation, but
their model performs even worse than the attentional sequence-to-sequence baseline model.

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 72

One main reason is that their attention mechanism calculates the attention weights of each
node independently, which does not well capture the hierarchical structure of the parse trees.
In our work, we design a parent attention feeding mechanism that formulates the dependence
of attention maps between different nodes, and show that this attention mechanism further
improves the performance of our tree-to-tree model considerably, especially when the size of
the parse trees grows large (i.e., 20%− 30% performance gain). To the best of our knowledge,
this is the first successful demonstration of tree-to-tree neural network architecture proposed
for translation tasks in the literature.

To test our hypothesis, we develop two novel program translation tasks, and employ a
Java to C# benchmark used by existing program translation works [188, 189]. First, we
compare our approach against several neural network approaches on our proposed two tasks.
Experimental results demonstrate that our tree-to-tree model outperforms other state-of-
the-art neural networks on the program translation tasks, and yields a margin of up to 5%
on the token accuracy and up to 15% on the program accuracy. Further, we compare our
approach with previous program translation approaches on the Java to C# benchmark, and
the results show that our tree-to-tree model outperforms previous state-of-the-art by a large
margin of 20% on program accuracy. These results demonstrate that our tree-to-tree model
is promising toward tackling the program translation problem. Meanwhile, we believe that
our proposed tree-to-tree neural network could also be adapted to other tree-to-tree tasks,
and we consider it as future work.

6.2 Program Translation Problem

In this work, we consider the problem of translating a program in one language into another.
One approach is to model the problem as a machine translation problem between two
languages, and thus numerous neural machine translation approaches can be applied.

For the program translation problem, however, a unique property is that each input
program unambiguously corresponds to a unique parse tree. Thus, rather than modeling the
input program as a sequence of tokens, we can consider the problem as translating a source
tree into a target tree. Note that most modern programming languages are accompanied
with a well-developed parser, so we can assume that the parse trees of both the source and
the target programs can be easily obtained.

The main challenge of the problem in our consideration is that the cross-compiler for
translating programs typically does not exist. Therefore, even if we assume the existence of
parsers for both the source and the target languages, the translation problem itself is still
non-trivial. We formally define the problem as follows.

Definition 2 (Program translation). Given two programming languages Ls and Lt, each
being a set of instances (pk, Tk), where pk is a program, and Tk is its corresponding parse tree.
We assume that there exists a translation oracle π, which maps instances in Ls to instances
in Lt. Given a dataset of instance pairs (is, it) such that is ∈ Ls, it ∈ Lt and π(is) = it, our
problem is to learn a function F that maps each is ∈ Ls into it = π(is).

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 73

CoffeeScript Program: x=1 if y==0 JavaScript Program: if (y === 0) { x = 1; }

Block

If

Op===

Value

Identifier

Literal

y

Value

Number

Literal

0

Assign

Value

Identifier

Literal

x

Value

Number

Literal

1

Block

Program

IfStatement

BinaryExpression

Identifier

y

=== Literal

0

BlockStatement

ExpressionStatement

AssignExpression

Identifier

x

= Literal

1

Parse Tree Parse Tree

Figure 6.1: Translating a CoffeeScript program into JavaScript. The sub-component in the
CoffeeScript program and its corresponding translation in JavaScript are highlighted.

In this work, we focus on the problem setting that we have a set of paired source and
target programs to learn the translator. Note that all existing program translation works [134,
188, 189] also study the problem under such an assumption. When such an alignment is
lacking, the program translation problem is more challenging. Several techniques for NMT
have been proposed to handle this issue, such as dual learning [106], which have the potential
to be extended for the program translation task. We leave these more challenging problem
setups as future work.

6.3 Tree-to-tree Neural Network

In this section, we present our design of the tree-to-tree neural network. We first motivate
the design, and then present the details.

Program Translation as a Tree-to-tree Translation Problem

Figure 6.1 presents an example of translation from CoffeeScript to JavaScript. We observe
that an interesting property of the program translation problem is that the translation process
can be modular. The figure highlights a sub-component in the source tree corresponding
to x=1 and its translation in the target tree corresponding to x=1;. This correspondence is
independent of other parts of the program. Consider when the program grows longer and this
statement may repetitively occur multiple times, it may be hard for a sequence-to-sequence
model to capture the correspondence based on only token sequences without structural
information. Thus, such a correspondence makes it a natural solution to locate the referenced
sub-tree in the source tree when expanding a non-terminal in the target tree into a sub-tree.

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 74

Block

If

Op===

Value

Identifier

Literal

y

Value

Number

Literal

0

Assign

Value

Identifier

Literal

x

Value

Number

Literal

1

Block

Program

IfStatement

BinaryExpression

Expanding

To Expand

Source Tree Target Tree

ℎ1

ℎ2

ℎ8

ℎ7

ℎ6

ℎ5

ℎ4

ℎ3

ℎ14

ℎ13

ℎ12

ℎ11

ℎ10

ℎ9

ℎ17

ℎ16

ℎ15

ℎ1′

ℎ2′

ℎ3′

ℎ4′

ℎ5′

Attention map: 𝑤𝑖 ∝ exp(ℎ𝑖
𝑇𝑊0ℎ5

′)

Source embedding: 𝑒𝑠 = ∑𝑖=1
17 𝑤𝑖ℎ𝑖 = ℎ1; … ; ℎ17 𝑤

Combined embedding: 𝑒𝑡 = tanh(𝑊1𝑒𝑠 +𝑊2ℎ5′)

Predicting the node: node = argmax 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑊et)

Figure 6.2: Tree-to-tree workflow: The arrows indicate the computation flow. Blue solid
arrows indicate the flow from/to the left child, while orange dashed arrows are for the right
child. The black dotted arrow from the source tree root to the target tree root indicates that
the LSTM state is copied. The green box denotes the expanding node, and the grey one
denotes the node to be expanded in the queue. The sub-tree of the source tree corresponding
to the expanding node is highlighted in yellow. The right corner lists the formulas to predict
the value of the expanding node.

Tree-to-tree Neural Network

Inspired by the above motivation, we design the tree-to-tree neural network, which follows an
encoder-decoder framework to encode the source tree into an embedding, and decode the
embedding into the target tree. To capture the intuition of the modular translation process,
the decoder employs an attention mechanism to locate the corresponding source sub-tree
when expanding the non-terminal. We illustrate the workflow of a tree-to-tree model in
Figure 6.2, and present each component of the model below.

Converting a tree into a binary one. Note that the source and target trees may contain
multiple branches. Although we can design tree-encoders and tree-decoders to handle trees
with arbitrary number of branches, we observe that encoder and decoder for binary trees can
be more effective. Thus, the first step is to convert both the source tree and the target tree
into a binary tree. To this end, we employ the Left-Child Right-Sibling representation for
this conversion.

Binary tree encoder. The encoder employs a Tree-LSTM [244] to compute embeddings
for both the entire source tree and each of its sub-tree. In particular, consider a node N
with the value ts in its one-hot encoding representation, and it has two children NL and NR,
which are its left child and right child respectively. The encoder recursively computes the
embedding for N from the bottom up.

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 75

Assume that the left child and the right child maintain the LSTM state (hL, cL) and
(hR, cR) respectively, and the embedding of ts is x. Then the LSTM state (h, c) of N is
computed as

(h, c) = LSTM(([hL;hR], [cL; cR]), x) (6.1)

where [a; b] denotes the concatenation of a and b. Note that a node may lack one or both of
its children. In this case, the encoder sets the LSTM state of the missing child to be zero.

Binary tree decoder. The decoder generates the target tree starting from a single root
node. The decoder first copies the LSTM state (h, c) of the root of the source tree, and
attaches it to the root node of the target tree. Then the decoder maintains a queue of all
nodes to be expanded, and recursively expands each of them. In each iteration, the decoder
pops one node from the queue, and expands it. In the following, we call the node being
expanded the expanding node.

First, the decoder will predict the value of expanding node. To this end, the decoder
computes the embedding et of the expanding node N , and then feeds it into a softmax
regression network for prediction:

tt = argmax softmax(Wet) (6.2)

Here, W is a trainable matrix of size Vt × d, where Vt is the vocabulary size of the outputs
and d is the embedding dimension. Note that et is computed using the attention mechanism,
which we will explain later.

The value of each node tt is a non-terminal, a terminal, or a special 〈EOS〉 token. If
tt = 〈EOS〉, then the decoder finishes expanding this node. Otherwise, the decoder generates
one new node as the left child and another new node as the right child of the expanding one.
Assume that (h′, c′), (h′′, c′′) are the LSTM states of its left child and right child respectively,
then they are computed as:

(h′, c′) = LSTML((h, c), Btt) (6.3)

(h′′, c′′) = LSTMR((h, c), Btt) (6.4)

Here, B is a trainable word embedding matrix of size d × Vt. Note that the generation of
the left child and right child use two different sets of parameters for LSTML and LSTMR

respectively. These new children are pushed into the queue of all nodes to be expanded.
When the queue is empty, the target tree generation process terminates.

Notice that although the sets of terminal and non-terminal are disjoint, it is necessary
to include the 〈EOS〉 token for the following reasons. First, due to the left-child-right-
sibling encoding, although a terminal does not have a child, since it could have a right child
representing its sibling in the original tree, 〈EOS〉 is still needed for predicting the right
branch. Meanwhile, we combine the terminal and non-terminal sets into a single vocabulary
Vt for the decoder, and do not incorporate the knowledge of grammar rules into the model,
thus the model needs to infer whether a predicted token is a terminal or a non-terminal itself.

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 76

In our evaluation, we find that a well-trained model never generates a left child for a terminal,
which indicates that the model can learn to distinguish between terminals and non-terminals
correctly.

Attention mechanism to locate the source sub-tree. Now we consider how to compute
et. One straightforward approach is to compute et as h, which is the hidden state attached
to the expanding node. However, in doing so, the embedding will soon forget the information
about the source tree when generating deep nodes in the target tree, and thus the model
yields a very poor performance.

To make better use of the information of the source tree, our tree-to-tree model employs
an attention mechanism to locate the source sub-tree corresponding to the sub-tree rooted at
the expanding node. Specifically, we compute the following probability:

P (Ns is the source sub-tree corresponding to Nt|Nt)

where Nt is the expanding node. We denote this probability as P (Ns|Nt), and we compute it
as

P (Ns|Nt) ∝ exp(hTsW0ht) (6.5)

where W0 is a trainable matrix of size d× d.
To leverage the information from the source tree, we compute the expectation of the

hidden state value across all Ns conditioned on Nt, i.e.,

es = E[hNs|Nt] =
∑
Ns

hNs · P (Ns|Nt) (6.6)

This embedding can then be combined with h, the hidden state of the expanding node,
to compute et as follows:

et = tanh(W1es +W2h) (6.7)

where W1, W2 are trainable matrices of size d× d respectively.

Parent attention feeding. In the above approach, the attention vectors et are computed
independently to each other, since once et is used for predicting the node value tt, et is
no longer used for further predictions. However, intuitively, the attention decisions for the
prediction of each node should be related to each other. For example, for a non-terminal
node Nt in the target tree, suppose that it is related to Ns in the source tree, then it is
very likely that the attention weights of its children should focus on the descendants of Ns.
Therefore, when predicting the attention vector of a node, the model should leverage the
attention information of its parent as well.

Following this intuition, we propose a parent attention feeding mechanism, so that the
attention vector of the expanding node is taken into account when predicting the attention
vectors of its children. Formally, besides the embedding of the node value tt, we modify the
inputs to LSTML and LSTMR of the decoder in Equations (6.3) and (6.4) as below:

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 77

(h′, c′) = LSTML((h, c), [Btt; et]) (6.8)

(h′′, c′′) = LSTMR((h, c), [Btt; et]) (6.9)

Notice that these formulas in their formats coincide with the input-feeding method for
sequential neural networks [171], but their meanings are different. For sequential models, the
input attention vector belongs to the previous token, while here it belongs to the parent node.
In our evaluation, we will show that such a parent attention feeding mechanism significantly
improves the performance of our tree-to-tree model.

6.4 Evaluation

In this section, we evaluate our tree-to-tree neural network with several baseline approaches
on the program translation task. To do so, we first describe three benchmark datasets in
Section 6.4 for evaluating different aspects; then we evaluate our tree-to-tree model against
several baseline approaches, including the state-of-the-art neural network approaches and
program translation approaches.

Datasets

To evaluate different approaches for the program translation problem, we employ three tasks:
(1) a synthetic translation task from an imperative language to a functional language; (2)
translation between CoffeeScript and JavaScript, which are both full-fledged languages; and
(3) translation of real-world projects from Java to C#, which has been used as a benchmark
in the literature. Due to the space limit, we present the translation tasks of real-world
programming languages (i.e., task (2) and (3)) below, and we discuss the synthetic task in
Appendix E.5.

For the CoffeeScript-JavaScript task, CoffeeScript employs a Python-style succinct syntax,
while JavaScript employs a C-style verbose syntax. To control the program lengths of the
training and test data, we develop a pCFG-based program generator and a subset of the
core CoffeeScript grammar. We also limit the set of variables and literals to restrict the
vocabulary size. We utilize the CoffeeScript compiler to generate the corresponding ground
truth JavaScript programs. The grammar used to generate the programs in our experiments
can be found in Appendix E.4. In doing so, we obtain a set of CoffeeScript-JavaScript pairs,
and thus we can build a CoffeeScript-to-JavaScript dataset, and a JavaScript-to-CoffeeScript
dataset by exchanging the source and the target. To build the dataset, we randomly generate
100,000 pairs of source and target programs for training, 10,000 pairs as the development
set, and 10,000 pairs for testing. We guarantee that there is no overlap among training,
development and test sets, and all samples are unique in the dataset. More statistics of the
dataset can be found in Appendix E.2.

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 78

For the evaluation on Java to C#, we tried to contact the authors of [188] for their
dataset, but our emails were not responded. Thus, we employ the same approach as in [188]
to crawl several open-source projects, which have both a Java and a C# implementation.
Same as in [188], we pair the methods in Java and C# based on their file names and method
names. The statistics of the dataset is summarized in Appendix E.2. Due to the change of
the versions of these projects, the concrete dataset in our evaluation may differ from [188].
For each project, we apply ten-fold validation on matched method pairs, as in [188].

Metrics

The main metric evaluated in our evaluation is the program accuracy, which is the percentage
of the predicted target programs that are exactly the same as the ground truth in the dataset.
Note that the program accuracy is an underestimation of the true accuracy based on semantic
equivalence, and this metric has been used in [188]. This metric is more meaningful than other
previously proposed metrics, such as syntax-correctness and dependency-graph-accuracy,
which are not directly comparable to semantic equivalence. We also measure another metric
called token accuracy, and we defer the details to Appendix E.3.

Model Details

We evaluate our tree-to-tree model against a sequence-to-sequence model [20, 254], a sequence-
to-tree model [80], and a tree-to-sequence model [86]. Note that for a sequence-to-sequence
model, there can be four variants to handle different input-output formats. For example,
given a program, we can simply tokenize it into a sequence of tokens. We call this format as
raw program, denoted as P. We can also use the parser to parse the program into a parse
tree, and then serialize the parse tree as a sequence of tokens. Our serialization of a tree
follows its depth-first traversal order, which is the same as [254]. We call this format as parse
tree, denoted as T. For both input and output formats, we can choose either P or T. For a
sequence-to-tree model, we have two variants based on its input format being either P or T;
note that the sequence-to-tree model generates a tree as output, and thus requires its output
format to be T (unserialized). Similarly, the tree-to-sequence model has two variants, and
our tree-to-tree only has one form. Therefore, we have 9 different models in our evaluation.

The hyper-parameters used in different models can be found in Appendix E.1. The
baseline models have employed their own input-feeding or parent-feeding method that is
analogous to our parent attention feeding mechanism.

Results on the CoffeeScript-JavaScript Task

For the CoffeeScript-JavaScript task, we create several datasets named as XY-ZW: X and
Y (C or J) indicate the source and target languages respectively; Z (A or B) indicates the
vocabulary; and W (S or L) indicates the program length. In particular, vocabulary A uses
{x,y} as variable names and {0,1} as literals; vocabulary B uses all alphabetical characters

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 79

Tree2tree Seq2seq Seq2tree Tree2seq

T→T
T→T T→T

P→P P→T T→P T→T P→T T→T T→P T→T
(-PF) (-Attn)

CoffeeScript to JavaScript translation
CJ-AS 99.57% 98.80% 0.09% 90.51% 79.82% 92.73% 89.13% 86.52% 88.50% 96.96% 92.18%
CJ-BS 99.75% 99.67% 0% 97.44% 16.26% 98.05% 93.89% 91.97% 88.22% 96.83% 78.77%
CJ-AL 97.15% 71.52% 0% 21.04% 0% 0% 0% 80.82% 78.60% 82.55% 46.94%
CJ-BL 95.60% 78.61% 0% 19.26% 9.98% 25.35% 42.08% 76.12% 76.21% 83.61% 26.83%

JavaScript to CoffeeScript translation
JC-AS 87.75% 85.11% 0.09% 83.07% 86.13% 73.88% 86.31% 86.86% 86.99% 71.61% 86.53%
JC-BS 86.37% 80.35% 0% 80.49% 85.94% 69.77% 85.28% 85.06% 84.25% 66.82% 85.31%
JC-AL 78.59% 54.93% 0% 77.10% 77.30% 65.52% 75.70% 77.11% 77.59% 60.75% 75.75%
JC-BL 75.62% 44.40% 0% 73.14% 73.96% 61.92% 74.51% 74.34% 71.56% 57.09% 73.86%

Table 6.1: Program accuracy for the translation between CoffeeScript and JavaScript.

as variable names, and all single digits as literals. S means that the CoffeeScript programs
has 10 tokens on average; and L for 20.

The program accuracy results are presented in Table 6.1. We can observe that our
tree2tree model outperforms all baseline models on all datasets. Especially, on the dataset
with longer programs, the program accuracy significantly outperforms all seq2seq models
by a large margin, i.e., up to 75%. Its margin over a seq2tree model can also reach around
20 points. These results demonstrate that tree2tree model is more capable of learning the
correspondence between the source and the target programs; in particular, it is significantly
better than other baselines at handling longer inputs.

Meanwhile, we perform an ablation study to compare the full tree2tree model with (1)
tree2tree without parent attention feeding (T→T (-PF)) and (2) tree2tree without attention
(T→T (-Attn)). We observe that the full tree2tree model significantly outperforms the other
alternatives. In particular, on JC-BL, the full tree2tree’s program accuracy is 30 points
higher than the tree2tree model without parent attention feeding.

More importantly, we observe that the program accuracy of tree2tree model without
the attention mechanism is nearly 0%. Note that such a model is similar to a tree-to-tree
autoencoder architecture. This result shows that our novel architecture can significantly
outperform previous tree-to-tree-like architectures on the program translation task.

However, although our tree2tree model performs better than other baselines, it still could
not achieve 100% accuracy. After investigating into the prediction, we find that the main
reason is because the translation may introduce temporary variables. Because such temporary
variables appear very rarely in the training set, it could be hard for a neural network to
infer correctly in these cases. Actually, the longer the programs are, the more temporary
variables that the cross-compiler may introduce, which makes the prediction harder. We
consider further improving the model to handle this problem as future work.

In addition, we observe that for the translation from JavaScript to CoffeeScript, the
improvements of the tree2tree model over the baselines are much smaller than for CoffeeScript

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 80

Tree2tree
J2C# 1pSMT mppSMT

Reported in [188]
Lucene 72.8% 21.5% 21.6% 40.0%

POI 72.2% 18.9% 34.6% 48.2%
Itext 67.5% 25.1% 24.4% 40.6%
JGit 68.7% 10.7% 23.0% 48.5%
JTS 68.2% 11.7% 18.5% 26.3%
Antlr 31.9% (58.3%) 10.0% 11.5% 49.1%

Table 6.2: Program accuracy on the Java to C# translation. In the parentheses, we present
the program accuracy that can be achieved by increasing the training set.

to JavaScript translation. We attribute this to the fact that the target programs are much
shorter. For example, for a CoffeeScript program with 20 tokens, its corresponding JavaScript
program may contain more than 300 tokens. Thus, the model needs to predict much fewer
tokens for a CoffeeScript program than a JavaScript program, so that even seq2seq models
can achieve a reasonably good accuracy. However, still, we can observe that our tree2tree
model outperforms all baselines.

Results on Real-world Projects

We now compare our approach with three state-of-the-art program translation approaches,
i.e., J2C# [126], 1pSMT [189], and mppSMT [188], on the real-world benchmark from Java
to C#. Here, J2C# is a rule-based system, 1pSMT directly applies the phrase-based SMT
on sequential programs, and mppSMT is a multi-phase phrase-based SMT approach that
leverages both the raw programs and their parse trees.

The results are summarized in Table 6.2. For previous approaches, we report the results
from [188]. We can observe that our tree2tree approach can significantly outperform the
previous state-of-the-art on all projects except Antlr. The improvements range from 20.2%
to 41.9%.

On Antlr, the tree2tree model performs worse. We attribute this to the fact that Antlr
contains too few data samples for training. We test our hypothesis by constructing another
training and validation set from all other 5 projects, and test our model on the entire Antlr.
We observe that our tree2tree model can achieve a test accuracy of 58.3%, which is 9 points
higher than the state-of-the-art. Therefore, we conclude that our approach can significantly
outperform previous program translation approaches when there are sufficient training data.

6.5 Related Work

Statistical approaches for program translation. Some recent work have applied
statistical machine translation techniques to program translation [7, 134, 188, 189, 190, 195].

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 81

For example, several works propose to adapt phrase-based statistical machine translation
models and leverage grammatical structures of programming languages for code migration [134,
188, 189]. In [190], Nguyen et al. propose to use Word2Vec representation for APIs in
libraries used in different programming languages, then learn a transformation matrix for
API mapping. On the contrary, our work is the first to employ deep learning techniques for
program translation.

Neural networks with tree structures. Recently, various neural networks with tree
structures have been proposed to employ the structural information of the data [80, 212, 201,
277, 9, 244, 294, 232, 86, 289, 233, 146, 33]. In these work, different tree-structured encoders
are proposed for embedding the input data, and different tree-structured decoders are proposed
for predicting the output trees. In particular, in [233, 146], they propose tree-structured
autoencoders to learn vector representations of trees, and show better performance on tree
reconstruction and other tasks such as sentiment analysis. Another work [33] proposes to use
a tree-structured encoder-decoder architecture for natural language translation, where both
the encoder and the decoder are variants of the RNNG model [84]; however, the performance
of their model is slightly worse than the sequence-to-sequence model with attention, which is
mainly due to the fact that their attention mechanism can not condition the future attention
weights on previously computed ones. In this work, we are the first to demonstrate a successful
design of tree-to-tree neural network for translation tasks.

Neural networks for parsing. Other work study using neural networks to generate
parse trees from input-output examples [80, 254, 4, 212, 277, 9, 84, 48, 53]. In [80], Dong
et al. propose a seq2tree model that allows the decoder RNN to generate the output tree
recursively in a top-down fashion. This approach achieves the state-of-the-art results on
several semantic parsing tasks. Some other work incorporate the knowledge of the grammar
into the architecture design [277, 212] to achieve better performance on specific tasks. However,
these approaches are hard to generalize to other tasks. Again, none of them is designed for
program translation or proposes a tree-to-tree architecture.

Neural networks for code generation. A recent line of research study using neural
networks for code generation [22, 74, 201, 162, 212, 277]. In [162, 212, 277], they study
generating code in a DSL from inputs in natural language or in another DSL. However, their
designs require additional manual efforts to adapt to new DSLs in consideration. In our
work, we consider the tree-to-tree model as a generic approach that can be applied to any
grammar.

6.6 Discussion

In this work, we are the first to consider neural network approaches for the program translation
problem, and are the first to demonstrate a successful design of tree-to-tree neural network

CHAPTER 6. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 82

combining both a tree-RNN encoder and a tree-RNN decoder for translation tasks. Extensive
evaluation demonstrates that our tree-to-tree neural network outperforms several state-of-
the-art models. This renders our tree-to-tree model as a promising tool toward tackling the
program translation problem. In addition, we believe that our proposed tree-to-tree neural
network has the potential to generalize to other tree-to-tree tasks, and we consider it as
future work.

At the same time, we observe many challenges in program translation that existing
techniques are not capable of handling. For example, the models are hard to generalize to
programs longer than the training ones; it is unclear how to handle an infinite vocabulary set
that may be employed in real-world applications; further, the training requires a dataset of
aligned input-output pairs, which may be lacking in practice. We consider all these problems
as important future work in the research agenda toward solving the program translation
problem.

83

Chapter 7

Neural Rewriter for Code
Optimization and beyond

Search-based methods for hard combinatorial optimization are often guided by heuristics.
Tuning heuristics in various conditions and situations is often time-consuming. In this
paper, we propose NeuRewriter that learns a policy to pick heuristics and rewrite the local
components of the current solution to iteratively improve it until convergence. The policy
factorizes into a region-picking and a rule-picking component, each parameterized by a neural
network trained with actor-critic methods in reinforcement learning. NeuRewriter captures
the general structure of combinatorial problems and shows strong performance in three
versatile tasks: expression simplification, online job scheduling and vehicle routing problems.
NeuRewriter outperforms the expression simplification component in Z3 [68]; outperforms
DeepRM [174] and Google OR-tools [92] in online job scheduling; and outperforms recent
neural baselines [186, 142] and Google OR-tools [92] in vehicle routing problems. 1

7.1 Introduction

Solving combinatorial problems is a long-standing challenge and has a lot of practical
applications (e.g., job scheduling, theorem proving, planning, decision making). While
problems with specific structures (e.g., shortest path) can be solved efficiently with proven
algorithms (e.g, dynamic programming, greedy approach, search), many combinatorial
problems are NP-hard and rely on manually designed heuristics to improve the quality of
solutions [2, 218, 135].

Although it is usually easy to come up with many heuristics, determining when and where
such heuristics should be applied, and how they should be prioritized, is time-consuming. It
takes commercial solvers decades to tune to strong performance in practical problems [68,
235, 92].

1The material in this chapter is based on Chen et al. [51]. The code is available at https://github.com/
facebookresearch/neural-rewriter.

https://github.com/facebookresearch/neural-rewriter
https://github.com/facebookresearch/neural-rewriter

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 84

To address this issue, previous works use neural networks to predict a complete solution
from scratch, given a complete description of the problem [253, 174, 142, 95]. While this
avoids search and tuning, a direct prediction could be difficult when the number of variables
grows.

Improving iteratively from an existing solution is a common approach for continuous
solution spaces, e.g, trajectory optimization in robotics [177, 245, 154]. However, such
methods relying on gradient information to guide the search, is not applicable for discrete
solution spaces due to indifferentiablity.

To address this problem, we directly learn a neural-based policy that improves the
current solution by iteratively rewriting a local part of it until convergence. Inspired by the
problem structures, the policy is factorized into two parts: the region-picking and the rule-
picking policy, and is trained end-to-end with reinforcement learning, rewarding cumulative
improvement of the solution.

We apply our approach, NeuRewriter, to three different domains: expression simplification,
online job scheduling, and vehicle routing problems. We show that NeuRewriter is better
than strong heuristics using multiple metrics. For expression simplification, NeuRewriter
outperforms the expression simplification component in Z3 [68]. For online job scheduling,
under a controlled setting, NeuRewriter outperforms Google OR-tools [92] in terms of both
speed and quality of the solution, and DeepRM [174], a neural-based approach that predicts
a holistic scheduling plan, by large margins especially in more complicated setting (e.g.,
with more heterogeneous resources). For vehicle routing problems, NeuRewriter outperforms
two recent neural network approaches [186, 142] and Google OR-tools [92]. Furthermore,
extensive ablation studies show that our approach works well in different situations (e.g.,
different expression lengths, non-uniform job/resource distribution), and transfers well when
distribution shifts (e.g., test on longer expressions than those used for training).

7.2 Problem Setup

Let S be the space of all feasible solutions in the problem domain, and c : S → R be the cost
function. The goal of optimization is to find arg mins∈S c(s). In this work, instead of finding
a solution from scratch, we first construct a feasible one, then make incremental improvement
by iteratively applying local rewriting rules to the existing solution until convergence. Our
rewriting formulation is especially suitable for problems with the following properties: (1)
a feasible solution is easy to find; (2) the search space has well-behaved local structures,
which could be utilized to incrementally improve the solution. For such problems, a complete
solution provides a full context for the improvement using a rewriting-based approach, allowing
additional features to be computed, which is hard to obtain if the solution is generated from
scratch; meanwhile, different solutions might share a common routine towards the optimum,
which could be represented as local rewriting rules. For example, it is much easier to decide
whether to postpone jobs with large resource requirements when an existing job schedule is
provided. Furthermore, simple rules like swapping two jobs could improve the performance.

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 85

Formally, each solution is a state, and each local region and the associated rewriting rule
is an action.

Optimization as a rewriting problem. Let U be the rewriting ruleset. Suppose st
is the current solution (or state) at iteration t. We first compute a state-dependent region
set Ω(st), then pick a region ωt ∈ Ω(st) using the region-picking policy πω(ωt|st). We then
pick a rewriting rule ut applicable to that region ωt using the rule-picking policy πu(ut|st[ωt]),
where st[ωt] is a subset of state st. We then apply this rewriting rule ut ∈ U to st[ωt], and
obtain the next state st+1 = f(st, ωt, ut). Given an initial solution (or state) s0, our goal is
to find a sequence of rewriting steps (s0, (ω0, u0)), (s1, (ω1, u1)), ..., (sT−1, (ωT−1, uT−1)), sT so
that the final cost c(sT) is minimized.

To tackle a rewriting problem, rule-based rewriters with manually-designed rewriting
routines have been proposed [105]. However, manually designing such routines is not a trivial
task. An incomplete set of routines often leads to an inefficient exhaustive search, while a set
of kaleidoscopic routines is often cumbersome to design, hard to maintain and lacks flexibility.

In this paper, we propose to train a neural network instead, using reinforcement learning.
Recent advance in deep reinforcement learning suggests the potential of well-trained models
to discover novel effective policies, such as demonstrated in Computer Go [230] and video
games [198]. Moreover, by leveraging reinforcement learning, our approach could be extended
to a broader range of problems that could be hard for rule-based rewriters and classic search
algorithms. For example, we can design the reward to take the validity of the solution into
account, so that we can start with an infeasible solution and then move towards a feasible
one. On the other hand, we can also train the neural network to explore the connections
between different solutions in the search space. In our evaluation, we demonstrate that our
approach (1) mitigates laborious human efforts, (2) discovers novel rewriting paths from
its own exploration, and (3) finds better solution to optimization problem than the current
state-of-the-art and traditional heuristic-based software packages tuned for decades.

7.3 Neural Rewriter Model

In the following, we present the design of our rewriting model, i.e., NeuRewriter. We first
provide an overview of our model framework, then present the design details for different
applications.

Model Overview

Figure 7.5 illustrates the overall framework of our neural rewriter, and we describe the two
key components for rewriting as follows. More details can be found in Appendix F.3.

Score predictor. Given the state st, the score predictor computes a score Q(st, ωt) for
every ωt ∈ Ω(st), which measures the benefit of rewriting st[ωt]. A high score indicates that
rewriting st[ωt] could be desirable. Note that Ω(st) is a problem-dependent region set. For

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 86

expression simplification, Ω(st) includes all sub-trees of the expression parse trees; for job
scheduling, Ω(st) covers all job nodes for scheduling; and for vehicle routing, it includes all
nodes in the route.

Rule selector. Given st[ωt] to be rewritten, the rule-picking policy predicts a probability
distribution πu(st[ωt]) over the entire ruleset U , and selects a rule ut ∈ U to apply accordingly.

Training Details

Let (s0, (ω0, u0)), ..., (sT−1, (ωT−1, uT−1)), sT be the rewriting sequence in the forward pass.
Reward function. We define r(st, (ωt, ut)) as r(st, (ωt, ut)) = c(st)− c(st+1), where c(·)

is the task-specific cost function in Section 7.2.
Q-Actor-Critic training. We train the region-picking policy πω and rule-picking policy

πu simultaneously. For πω(ωt|st; θ), we parameterize it as a softmax of the underlying
Q(st, ωt; θ) function:

πω(ωt|st; θ) =
exp(Q(st, ωt; θ))∑
ωt

exp(Q(st, ωt; θ))
(7.1)

and instead learn Q(st, ωt; θ) by fitting it to the cumulative reward sampled from the current
policies πω and πu:

Lω(θ) =
1

T

T−1∑
t=0

(
T−1∑
t′=t

γt
′−tr(s′t, (ω

′
t, u
′
t))−Q(st, ωt; θ))

2 (7.2)

Where T is the length of the episode (i.e., the number of rewriting steps), and γ is the decay
factor.

For rule-picking policy πu(ut|st[ωt];φ), we employ the Advantage Actor-Critic algo-
rithm [240] with the learned Q(st, ωt; θ) as the critic, and thus avoid boot-strapping which
could cause sample insufficiency and instability in training. This formulation is similar in
spirit to soft-Q learning [104]. Denoting ∆(st, (ωt, ut)) ≡

∑T−1
t′=t γ

t′−tr(s′t, (ω
′
t, u
′
t))−Q(st, ωt; θ)

as the advantage function, the loss function of the rule selector is:

Lu(φ) = −
T−1∑
t=0

∆(st, (ωt, ut)) log πu(ut|st[ωt];φ) (7.3)

The overall loss function is L(θ, φ) = Lu(φ) + αLω(θ), where α is a hyper-parameter.

7.4 Applications

In the following sections, we discuss the application of our rewriting approach to three different
domains: expression simplification, online job scheduling, and vehicle routing. In expression
simplification, we minimize the expression length using a well-defined semantics-preserving

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 87

min -

v0 v2 v1 v1

!"

#"∗ = argmax +# ⋅, !"

Constant
Reduction

0
./

≤(a) (b) (c)
0

1

5

3

42

#"∗
!"

./
4

3
swap

!"
3

21

0

Route: 0 → 1 → 2→ 0→ 3→ 0
#"∗

2swap./ 0

Figure 7.1: The instantiation of NeuRewriter for different domains: (a) expression simplification;
(b) job scheduling; and (c) vehicle routing. In (a), st is the expression parse tree, where each square
represents a node in the tree. The set Ω(st) includes every sub-tree rooted at a non-terminal node,
from which the region-picking policy selects ωt ∼ πω(ωt|st)) to rewrite. Afterwards, the rule-picking
policy predicts a rewriting rule ut ∈ U , then rewrites the sub-tree ωt to get the new tree st+1. In
(b), st is the dependency graph representation of the job schedule. Each circle with index greater
than 0 represents a job node, and node 0 is an additional one representing the machine. Edges in
the graph reflect job dependencies. The region-picking policy selects a job ωt to re-schedule from all
job nodes, then the rule-picking policy chooses a moving action ut for ωt, then modifies st to get a
new dependency graph st+1. In (c), st is the current route, and ωt is the node selected to change
the visit order. Node 0 is the depot, and other nodes are customers with certain resource demands.
The region-picking policy and the rule-picking policy work similarly to the job scheduling ones.

rewriting ruleset. In online job scheduling, we aim to reduce the overall waiting time of jobs.
In vehicle routing, we aim to minimize the total tour length.

Expression Simplification

We first apply our approach to expression simplification domain. In particular, we consider
expressions in Halide, a domain-specific language for high-performance image processing [213],
which is widely used at scale in multiple products of Google (e.g., YouTube) and Adobe
Photoshop. Simplifying Halide expressions is an important step towards the optimization
of the entire code. To this end, a rule-based rewriter is implemented for the expressions,
which is carefully tuned with manually-designed heuristics. The grammar of the expressions
considered in the rewriter is specified in Appendix F.1.

Notice that the grammar includes a more comprehensive operator set than previous works
on finding equivalent expressions, which consider only boolean expressions [8, 87] or a subset
of algorithmic operations [8]. The rewriter includes hundreds of manually-designed rewriting
templates. Given an expression, the rewriter checks the templates in a pre-designed order,
and applies those rewriting templates that match any sub-expression of the input.

After investigating the rewriting templates in the rule-based rewriter, we find that a large
number of rewriting templates enumerate specific cases for an uphill rule, which lengthens
the expression first and shortens it later (e.g., “min/max” expansion). Similar to momentum
terms in gradient descent for continuous optimization, such rules are used to escape a local

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 88

optimum. However, they should only be applied when the initial expression satisfies certain
pre-conditions, which is traditionally specified by manual design, a cumbersome process that
is hard to generalize.

Observing these limitations, we hypothesize that a neural network model has the potential
of doing a better job than the rule-based rewriter. In particular, we propose to only keep the
core rewriting rules in the ruleset, remove all unnecessary pre-conditions, and let the neural
network decide which and when to apply each rewriting rule. In this way, the neural rewriter
has a better flexibility than the rule-based rewriter, because it can learn such rewriting
decisions from data, and has the ability of discovering novel rewriting patterns that are not
included in the rule-based rewriter.

Ruleset. We incorporate two kinds of templates from Halide rewriting ruleset. The first
kind is simple rules (e.g., v − v → 0), while the second one is the uphill rules after removing
their manually designed pre-conditions that do not affect the validity of the rewriting. In
this way, a ruleset with |U| = 19 categories is built. See Appendix F.2 for more details.

Model specification. We use expression parse trees as the input, and employ the N-ary
Tree-LSTM designed in [244] as the input encoder to compute the embedding for each node
in the tree. Both the score predictor and the rule selector are fully connected neural networks,
taken the LSTM embeddings as the input. More details can be found in Appendix F.3.

Job Scheduling Problem

We also study the job scheduling problem, using the problem setup in [174].
Notation. Suppose we have a machine with D types of resources. Each job j is specified

as vj = (ρj, Aj, Tj), where the D-dimensional vector ρj = [ρjd] denotes the required portion
0 ≤ ρjd ≤ 1 of the resource type d, Aj is the arrival timestep, and Tj is the duration. In
addition, we define Bj as the scheduled beginning time, and Cj = Bj + Tj as the completion
time.

We assume that the resource requirement is fixed during the entire job execution, each
job must run continuously until finishing, and no preemption is allowed. We adopt an online
setting: there is a pending job queue that can hold at most W jobs. When a new job arrives,
it can either be allocated immediately, or be added to the queue. If the queue is already
full, to make space for the new job, at least one job in the queue needs to be scheduled
immediately. The goal is to find a time schedule for every job, so that the average waiting
time is as short as possible.

Ruleset. The set of rewriting rules is to re-schedule a job vj and allocate it after another
job vj′ finishes or at its arrival time Aj. See Appendix F.2 for details of a rewriting step.
The size of the rewriting ruleset is |U| = 2W , since each job could only switch its scheduling
order with at most W of its former and latter jobs respectively.

Representation. We represent each schedule as a directed acyclic graph (DAG), which
describes the dependency among the schedule time of different jobs. Specifically, we denote
each job vj as a node in the graph, and we add an additional node v0 to represent the machine.
If a job vj is scheduled at its arrival time Aj (i.e., Bj = Aj), then we add a directed edge

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 89

〈v0, vj〉 in the graph. Otherwise, there must exist at least one job vj′ such that Cj′ = Bj (i.e.,
job j starts right after job j′). We add an edge 〈vj′ , vj〉 for every such job vj′ to the graph.
Figure 7.1(b) shows the setting, and we defer the embedding and graph construction details
to Appendix F.3.

Model specification. To encode the graphs, we extend the Child-Sum Tree-LSTM
architecture in [244], which is similar to the DAG-structured LSTM in [293]. Similar to
the expression simplification model, both the score predictor and the rule selector are fully
connected neural networks, and we defer the model details to Appendix F.3.

Vehicle Routing Problem

In addition, we evaluate our approach on vehicle routing problems studied in [142, 186].
Specifically, we focus on the Capacitated VRP (CVRP), where a single vehicle with limited
capacity needs to satisfy the resource demands of a set of customer nodes. To do so, we
construct multiple routes starting and ending at the depot, i.e., node 0 in Figure 7.1(c), so
that the resources delivered in each route do not exceed the vehicle capacity, while the total
route length is minimized.

We represent each vehicle routing problem as a sequence of the nodes visited in the
tour, and use a bi-directional LSTM to embed the routes. The ruleset is similar to the job
scheduling, where each node can swap with another node in the route. The architectures of
the score predictor and rule selector are similar to job scheduling. More details can be found
in Appendix F.3.

7.5 Experiments

We present the evaluation results in this section. To calculate the inference time, we run all
algorithms on the same server equipped with 2 Quadro GP100 GPUs and 80 CPU cores.
Only 1 GPU is used when evaluating neural networks, and 4 CPU cores are used for search
algorithms. We set the timeout of search algorithms to be 10 seconds per instance. All neural
networks in our evaluation are implemented in PyTorch [203].

Expression Simplification

Setup. To construct the dataset, we first generate random pipelines using the generator in
Halide, then extract expressions from them. We filter out those irreducible expressions, then
split the rest into 8/1/1 for training/validation/test sets respectively. See Appendix F.1 for
more details.

Metrics. We evaluate the following two metrics: (1) Average expression length reduction,
which is the length reduced from the initial expression to the rewritten one, and the length is
defined as the number of characters in the expression; (2) Average tree size reduction, which
is the number of nodes decreased from the initial expression parse tree to the rewritten one.

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 90

Average expression length reduction Average tree size reduction
0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 e

x
p
re

ss
io

n
 l
e
n
g
th

 r
e
d
u
ct

io
n

1
7

.7
4

3
6

.1
3

4
7

.0
8

5
0

.8
1 5
7

.2
8

0

5

10

15

20

A
v
e
ra

g
e
 t

re
e
 s

iz
e
 r

e
d
u
ct

io
n

7
.3

9

9
.6

8

1
3

.7
6 1

5
.8

2

1
6

.7
1

Z3-simplify

Halide-rule

Heuristic Search

Z3-ctx-solver-simplify

NeuRewriter

(a)

Test Test>100

0

20

40

60

80

100

A
v
e
ra

g
e
 e

x
p
re

ss
io

n
 l
e
n
g
th

 r
e
d
u
ct

io
n

3
6
.1

3 4
5
.2

5

5
0
.8

1

6
9
.7

9

5
7
.2

8

7
9
.0

8

5
4
.3

5

7
2
.9

5

5
1
.4

9

6
9
.9

3

5
0
.7

4 6
5
.0

9

5
0
.5

5 6
4
.4

4

Halide-rule

Z3-ctx-solver-simplify

NeuRewriter (Train)

NeuRewriter (Train 100)

NeuRewriter (Train 50)

NeuRewriter (Train 30)

NeuRewriter (Train 20)

(b)

Figure 7.2: Experimental results of the expression simplification problem. In (b), we train
NeuRewriter on expressions of different lengths (described in the brackets).

(a) (b) (c) (d)

Figure 7.3: Experimental results of the job scheduling problem varying the following aspects: (a)
the number of resource types D; (b) job frequency; (c) resource distribution; (d) job length. For
NeuRewriter, we describe training job distributions in the brackets. Workloads in (a) are with steady
job frequency, non-uniform resource distribution, and non-uniform job length. In (b), (c) and (d),
D = 20. In (b) and (c), we omit the comparison with some approaches because their results are
significantly worse; for example, the average slowdown of EJF is 14.53 on the dynamic job frequency,
and 11.06 on the uniform resource distribution. More results can be found in Appendix F.4.

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 91

VRP20, Cap30 VRP50, Cap40 VRP100, Cap500

5

10

15

20

25

Av
er

ag
e

to
ur

 le
ng

th

7.
08

12
.9

6

20
.3

3

6.
81

12
.2

5

18
.9

6

6.
43

11
.3

1

17
.1

6

6.
40

11
.1

5

16
.9

6

6.
25

10
.6

2

16
.2

3

6.
16

10
.5

1

16
.1

0

Random Sweep
Random CW
Or-tools
Nazari et al. (RL beam 10)
AM (sampling)
NeuRewriter

(a)

VRP20, Cap30 VRP50, Cap40 VRP100, Cap500

5

10

15

20

25

Av
er

ag
e

to
ur

 le
ng

th

6.
16

11
.5

1

18
.8

6

6.
38

10
.5

1

17
.3

3

6.
65

11
.6

3 16
.1

0

NeuRewriter (VRP20, Cap30)
NeuRewriter (VRP50, Cap40)
NeuRewriter (VRP100, Cap50)

(b)

Figure 7.4: Experimental results of the vehicle routing problem with different number of customer
nodes and vehicle capacity; e.g., VRP100, Cap50 means there are 100 customer nodes and the
vehicle capacity is 50. (a) NeuRewriter outperforms multiple baselines and previous works [142,
186]. More results can be found in Appendix F.5. (b) We evaluate the generalization performance
of NeuRewriter on problems from different distributions, and we describe the training problem
distributions in the brackets.

Baselines. We examine the effectiveness of NeuRewriter against two kinds of baselines.
The first kind of baselines are heuristic-based rewriting approaches, including Halide-rule

(the rule-based Halide rewriter in Section 7.2) and Heuristic-search, which applies beam
search to find the shortest rewriting with our ruleset at each step. Note that NeuRewriter
does not use beam search.

In addition, we also compare our approach with Z3, a high-performance theorem prover
developed by Microsoft Research [68]. Z3 provides two tactics to simplify the expres-
sions: Z3-simplify performs some local transformation using its pre-defined rules, and
Z3-ctx-solver-simplify traverses each sub-formula in the input expression and invokes
the solver to find a simpler equivalent one to replace it. This search-based tactic is able to
perform simplification not included in the Halide ruleset, and is generally better than the
rule-based counterpart but with more computation. For Z3-ctx-solver-simplify, we set
the timeout to be 10 seconds for each input expression.

Results. Figure 7.2a presents the main results. We can notice that the performance
of Z3-simplify is worse than Halide-rule, because the ruleset included in this simplifier
is more restricted than the Halide one, and in particular, it can not handle expressions
with “max/min/select” operators. On the other hand, NeuRewriter outperforms both the
rule-based rewriters and the heuristic search by a large margin. In particular, NeuRewriter
could reduce the expression length and parse tree size by around 52% and 59% on average;
compared to the rule-based rewriters, our model further reduces the average expression
length and tree size by around 20% and 15% respectively. We observe that the main
performance gain comes from learning to apply uphill rules appropriately in ways that

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 92

are not included in the manually-designed templates. For example, consider the expres-
sion 5 ≤ max(max(v0, 3) + 3,max(v1, v2)), which could be reduced to True by expanding
max(max(v0, 3) + 3,max(v1, v2)) and max(v0, 3). Using a rule-based rewriter would require
the need of specifying the pre-conditions recursively, which becomes prohibitive when the
expressions become more complex. On the other hand, heuristic search may not be able to
find the correct order of expanding the right hand size of the expression when more “min/max”
are included, which would make the search less efficient.

Furthermore, NeuRewriter also outperforms Z3-ctx-solver-simplify in terms of both
the result quality and the time efficiency, as shown in Figure 7.2a and Table 7.1a. Note that
the implementation of Z3 is in C++ and highly optimized, while NeuRewriter is implemented
in Python; meanwhile, Z3-ctx-solver-simplify could perform rewriting steps that are not
included in the Halide ruleset. More results can be found in Appendix F.6.

Generalization to longer expressions. To measure the generalizability of our approach,
we construct 4 subsets of the training set: Train≤20, Train≤30, Train≤50 and Train≤100, which
only include expressions of length at most 20, 30, 50 and 100 in the full training set. We also
build Test>100, a subset of the full test set that only includes expressions of length larger
than 100. The statistics of these datasets can be found in Appendix F.1.

We present the results of training our model on different datasets above in Figure 7.2b.
Even trained on short expressions, NeuRewriter is still comparable with the Z3 solver. Thanks
to local rewriting rules, our approach can generalize well even when operating on very different
data distributions.

Job Scheduling Problem

Setup. We randomly generate 100K job sequences, and use 80K/10K/10K for training,
validation and testing. Typically each job sequence includes ∼ 50 jobs. We use an online
setting where jobs arrive on the fly with a pending job queue of length W = 10. Unless
stated otherwise, we generate initial schedules using Earliest Job First (EJF), which can be
constructed with negligible overhead.

When the number of resource types D = 2, we follow the same setup as in [174]. The
maximal job duration Tmax = 15, and the latest job arrival time Amax = 50. With larger D,
except changing the resource requirement of each job to include more resource types, other
configurations stay the same.

Metric. Following DeepRM [174], we use the average job slowdown ηj ≡ (Cj −Aj)/Tj ≥ 1
as our evaluation metric. Note that ηj = 1 means no slow down.

Job properties. To test the stability and generalizability of NeuRewriter, we change
job properties (and their distributions): (1) Number of resource types D: larger D leads to
more complicated scheduling; (2) Average job arrival rate: the probability that a new job
will arrive, Steady job frequency sets it to be 70%, and Dynamic job frequency means the job
arrival rate changes randomly at each timestep; (3) Resource distribution: jobs might require
different resources, where some are uniform (e.g., half-half for resource 1 and 2) while others
are non-uniform (see Appendix F.1 for the detailed description); (4) Job lengths : Uniform

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 93

job length: length of each job in the workload is either [10, 15] (long) or [1, 3] (short), and
Non-uniform job length: workload has both short and long jobs. We show that NeuRewriter is
fairly robust under different distributions. When trained on one distribution, it can generalize
to others without performance collapse.

We compare NeuRewriter with three kinds of baselines.
Baselines on Manually designed heuristics: Earliest Job First (EJF) schedules each

job in the increasing order of their arrival time. Shortest Job First (SJF) always allocates the
shortest job in the pending job queue at each timestep, which is also used as a baseline in [174].
Shortest First Search (SJFS) searches over the shortest k jobs to schedule at each timestep,
and returns the optimal one. We find that other heuristic-based baselines used in [174]
generally perform worse than SJF, especially with large D. Thus, we omit the comparison.

Baselines on Neural network. We compare with DeepRM [174], a neural network also
trained with RL to construct a solution from scratch.

Baselines on Offline planning. To measure the optimality of these algorithms, we also
take an offline setting, where the entire job sequence is available before scheduling. Note that
this is equivalent to assuming an unbounded length of the pending job queue. With such
additional knowledge, this setting provides a strong baseline. We tried two offline algorithms:
(1) SJF-offline, which is a simple heuristic that schedules each job in the increasing order
of its duration; and (2) Google OR-tools [92], which is a generic toolbox for combinatorial
optimization. For OR-tools, we set the timeout to be 10 seconds per workload, but we find
that it can not achieve a good performance even with a larger timeout, and we defer the
discussion to Appendix F.4.

Results on Scalability. As shown in Figure 7.3, NeuRewriter outperforms both heuristic
algorithms and the baseline neural network DeepRM. In particular, while the performance of
DeepRM and NeuRewriter are similar when D = 2, with larger D, DeepRM starts to perform
worse than heuristic-based algorithms, which is consistent with our hypothesis that it becomes
challenging to design a schedule from scratch when the environment becomes more complex.
On the other hand, NeuRewriter could capture the bottleneck of an existing schedule that
limits its efficiency, then progressively refine it to obtain a better one. In particular, our results
are even better than offline algorithms that assume the knowledge of the entire job sequence,
which further demonstrates the effectiveness of NeuRewriter. Meanwhile, we present the
running time of OR-tools, DeepRM and NeuRewriter in Table 7.1b. We can observe that both
DeepRM and NeuRewriter are much more time-efficient than OR-tools; on the other hand, the
running time of NeuRewriter is comparable to DeepRM, while achieving much better results.
More discussion can be found in Appendix F.4.

Results on Robustness. As shown in Figure 7.3, NeuRewriter excels in almost all
different job distributions, except when the job lengths are uniform (short or long, Figure 7.3d),
in which case existing methods/heuristics are sufficient. This shows that NeuRewriter can
deal with complicated scenarios and is adaptive to different distributions.

Results on Generalization. Furthermore, NeuRewriter can also generalize to different
distributions than those used in training, without substantial performance drop. This shows
the power of local rewriting rules: using local context could yield more generalizable solutions.

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 94

Time (s)
Z3-solver 1.375

NeuRewriter 0.159

(a)

Time (s)
OR-tools 10.0
DeepRM 0.020

NeuRewriter 0.037

(b)

VRP20 VRP50 VRP100
OR-tools 0.010 0.053 0.231

Nazari et al. 0.162 0.232 0.445
AM 0.036 0.168 0.720

NeuRewriter 0.133 0.211 0.398

(c)

Table 7.1: Average runtime (per instance) of different solvers (OR-tools [92] and the tactic
Z3-ctx-solver-simplify of Z3 [68]) and RL-based approaches (NeuRewriter, DeepRM [174],
Nazari et al. [186] and AM [142]) over the test set of: (a) expression simplification; (b) job
scheduling; (c) vehicle routing.

Vehicle Routing Problem

Setup and Baselines. We follow the same training setup as [142, 186] by randomly
generating vehicle routing problems with different number of customer nodes and vehicle
capacity. We compare with two neural network approaches, i.e., AM [142] and Nazari et
al. [186], and both of them train a neural network policy using reinforcement learning to
construct the route from scratch. We also compare with OR-tools and several classic heuristics
studied in [186].

Results. We first demonstrate our main results in Figure 7.4a, where we include the
variant of each baseline that performs the best, and defer more results to Appendix F.5. Note
that the initial routes generated for NeuRewriter are even worse than the classic heuristics;
however, starting from such sub-optimal solutions, NeuRewriter is still able to iteratively
improve the solutions and outperforms all the baseline approaches on different problem
distributions. In addition, for VRP20 problems, we can compute the exact optimal solutions,
which provides an average tour length of 6.10. We observe that the result of NeuRewriter
(i.e., 6.16) is the closest to this lower bound, which also demonstrates that NeuRewriter is
able to find solutions with better quality.

We also compare the runtime of the most competitive approaches in Table 7.1c. Note
that the OR-Tools solver for vehicle routing problems is highly tuned and implemented in
C++, while the RL-based approaches in comparison are implemented in Python. Meanwhile,
following [186], to report the runtime of RL models, we decode a single instance at a time,
thus there is potential room for speed improvement by decoding multiple instances per batch.
Nevertheless, we can still observe that NeuRewriter achieves a better balance between the
result quality and the time efficiency, especially with a larger problem scale.

Results on Generalization. Furthermore, in Figure 7.4b, we show that NeuRewriter
can generalize to different problem distributions than training ones. In particular, they still
exceed the performance of the classic heuristics, and are sometimes comparable or even better
than the OR-tools. More discussion can be found in Appendix F.5.

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 95

!" #" ∼ %# ⋅ |!" (" ∼ %(⋅ |!" [#"]

!"+, = .(!", #", (")

Current State
(i.e. Solution) Region-Picker Rule-Picker

!"

#"

!"[#"]

("

!"+,

Figure 7.5: The framework of our neural rewriter. Given the current state (i.e., solution to the
optimization problem) st, we first pick a region ωt by the region-picking policy πω(ωt|st), and
then pick a rewriting rule ut using the rule-picking policy πu(ut|st[ωt]), where πu(ut|st[ωt]) gives
the probability distribution of applying each rewriting rule u ∈ U to the partial solution. Once
the partial solution is updated, we obtain an improved solution st+1 and repeat the process until
convergence.

7.6 Related Work

Methods. Using neural network models for combinatorial optimization has been explored
in the last few years. A straightforward idea is to construct a solution directly (e.g., with a
Seq2Seq model) from the problem specification [253, 26, 174, 138]. However, such approaches
might meet with difficulties if the problem has complex configurations, as our evaluation
indicates. In contrast, our paper focuses on iterative improvement of a complete solution.

Trajectory optimization with local gradient information has been widely studied in robotics
with many effective techniques [177, 34, 255, 245, 155, 154]. For discrete problems, it is
possible to apply continuous relaxation and apply gradient descent [36]. In contrast, we learn
the gradient from previous experience to optimize a complete solution, similar to data-driven
descent [248] and synthetic gradient [125].

At a high level, our framework is closely connected with the local search pipeline. Specifi-
cally, we can leverage our learned RL policy to guide the local search, i.e., to decide which
neighbor solution to move to. We will demonstrate that in our evaluated tasks, our approach
outperforms several local search algorithms guided by manually designed heuristics, and
softwares supporting more advanced local search algorithms, i.e., Z3 [68] and OR-tools [92].

Applications. For expression simplification, some recent work use deep neural networks
to discover equivalent expressions [37, 8, 284]. In particular, [37] trains a deep neural network
to rewrite algebraic expressions with supervised learning, which requires a collection of
ground truth rewriting paths, and may not find novel rewriting routines. We mitigate these
limitations using reinforcement learning.

Job scheduling and resource management problems are ubiquitous and fundamental in
computer systems. Various work have studied these problems from both theoretical and
empirical sides [30, 94, 16, 224, 246, 174, 45]. In particular, a recent line of work studies deep
reinforcement learning for job scheduling [174, 45] and vehicle routing problems [142, 186].

Our approach is tested on multiple domains with extensive ablation studies, and could
also be extended to other closely related tasks such as code optimization [223, 44], theorem

CHAPTER 7. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND 96

proving [118, 153, 19, 116], text simplification [63, 199, 88], and classical combinatorial
optimization problems beyond routing problems [71, 138, 27, 253, 135], e.g., Vertex Cover
Problem [24].

7.7 Discussion

In this work, we propose to formulate optimization as a rewriting problem, and solve the
problem by iteratively rewriting an existing solution towards the optimum. We utilize deep
reinforcement learning to train our neural rewriter. In our evaluation, we demonstrate the
effectiveness of our neural rewriter on multiple domains, where our model outperforms both
heuristic-based algorithms and baseline deep neural networks that generate an entire solution
directly.

Meanwhile, we observe that since our approach is based on local rewriting, it could become
time-consuming when large changes are needed in each iteration of rewriting. In extreme
cases where each rewriting step needs to change the global structure, starting from scratch
becomes preferrable. We consider improving the efficiency of our rewriting approach and
extending it to more complicated scenarios as future work.

97

Part IV

Neural-Symbolic Reasoning for
Language Understanding

98

Chapter 8

Neural Symbolic Reader for Reading
Comprehension

Integrating distributed representations with symbolic operations is essential for reading
comprehension requiring complex reasoning, such as counting, sorting and arithmetics, but
most existing approaches rely on specialized neural modules and are hard to adapt to multiple
domains or multi-step reasoning. In this chapter, we propose the Neural Symbolic Reader
(NeRd), which includes a reader, e.g., BERT, to encode the passage and question, and
a programmer, e.g., LSTM, to generate a program for multi-step reasoning. By using operators
like span selection, the program can be executed over text to generate the answer. Compared
to previous works, NeRd is more scalable in two aspects: (1) domain-agnostic, i.e., the same
neural architecture works for different domains; (2) compositional, i.e., complex programs can
be generated by compositionally applying the symbolic operators. Furthermore, to overcome
the challenge of training NeRd with weak supervision, we apply data augmentation techniques
and hard Expectation-Maximization (EM) with thresholding. On DROP, a challenging reading
comprehension dataset requiring discrete reasoning, NeRd achieves 1.37%/1.18% absolute
gain over the state-of-the-art on Exact-Match/F1 metrics. With the same architecture, NeRd
significantly outperforms the baselines on MathQA, a math problem benchmark that requires
multiple steps of reasoning, by 25.5% absolute gain on accuracy when trained on all the
annotated programs, and more importantly, still beats the baselines even with only 20% of
the program annotations 1.

8.1 Introduction

Deep neural networks have achieved remarkable successes in natural language processing
recently. In particular, pretrained language models, e.g., BERT [72], have significantly ad-
vanced the state-of-the-art in reading comprehension. While neural models have demonstrated
performance superior to humans on some benchmarks, e.g., SQuAD [214], so far such progress

1The material in this chapter is based on Chen et al. [54].

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION 99

is mostly limited to extractive question answering, in which the answer is a single span from
the text. In other words, this type of benchmarks usually test the capability of text pattern
matching, but not of reasoning. Some recent datasets, e.g., DROP [83] and MathQA [10], are
collected to examine the capability of both language understanding and discrete reasoning,
where the direct application of the state-of-the-art pre-trained language models, such as
BERT or QANet [280], achieves very low accuracy. This is especially challenging for pure
neural network approaches, because discrete operators learned by neural networks, such as
addition and sorting, can hardly generalize to inputs of arbitrary size without specialized
design [217, 38, 133]. Therefore, integrating neural networks with symbolic reasoning is
crucial for solving those new tasks.

The recent progress on neural semantic parsing [128, 160] is sparked to address this
problem. However, such success is mainly restricted to question answering with structured
data sources, e.g., knowledge graphs [28] or tabular databases [202]. Extending it to reading
comprehension by parsing the text into structured representations suffers severely from the
cascade errors, i.e., the issues of the structured parsing for data preprocessing account for
the poor performance of the learned neural model [83].

A recent line of work [83, 117, 11] extends BERT/QANet to perform reasoning on the
DROP dataset. However, they cannot easily scale to multiple domains or multi-step complex
reasoning because: (1) they usually rely on handcrafted and specialized modules for each
type of questions; (2) they don’t support compositional applications of the operators, so it is
hard to perform reasoning of more than one step.

In this work, we propose the Neural Symbolic Reader (NeRd) for reading comprehension,
which consists of (1) a reader that encodes passages and questions into vector representations;
and (2) a programmer that generates programs, which are executed to produce answers. The
key insights behind NeRd are as follows: (1) by introducing a set of span selection operators,
the compositional programs, usually executed against structured data such as databases in
semantic parsing, can now be executed over text; (2) the same architecture can be applied to
different domains by simply extending the set of symbolic operators.

A main challenge of training NeRd is that it is often expensive to collect program
annotations, so the model needs to learn from weak supervision, i.e., with access only to the
final answers. This raises two problems for learning: (1) cold start problem. There are no
programs available at the beginning of training, so the training cannot proceed. We address
this problem through data augmentation that generates noisy training data to bootstrap the
training; (2) spurious program problem, where some programs produce the right answer for
wrong rationales. We propose an iterative process using hard EM with thresholding, which
filters out the spurious programs during training.

In our evaluation, NeRd demonstrates three major advantages over previous methods: (1)
better accuracy. It outperforms the previous state-of-the-art on DROP by 1.37%/1.18% on
EM/F1, and the baselines on MathQA by a large margin of 25.5% on accuracy if trained with
all annotated programs. Notably, it still outperforms the MathQA baselines using only 20%
of the program annotations; (2) more scalable (domain-agnostic and compositional). Unlike
previous approaches, which rely on specialized modules that do not support compositional

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION100

Reader Reader

Neural
Semantic

Parser
Structured
Parser: SRL...

Programmer Answer Type

SpanAdd/Sub Count

Negation

NeRd Specialized Modules Neural Semantic Parser

AnswerAnswer Answer

Passage Question Passage Question Passage Question

Compositional
Programs

Compositional
Programs

Structured
table

ExecutionExecution

Figure 8.1: Comparison of NeRd with previous approaches for reading comprehension
requiring complex reasoning. The components in grey boxes are the neural architectures.
Previous works mainly take two approaches: (1) augmenting pre-trained language model
such as BERT with specialized modules for each type of questions, which is hard to scale to
multiple domains or multi-step complex reasoning; (2) applying neural semantic parser to the
structured parses of the passage, which suffers severely from the cascade error. In contrast,
the neural architecture of NeRd is domain-agnostic, which includes a reader, e.g., BERT, and
a programmer, e.g., LSTM, to generate compositional programs that are directly executed
over the passages.

application of the operators, NeRd can be applied to tasks of different domains, e.g., DROP
and MathQA, without changing the architecture, and more complex programs can be simply
generated by extending the set of operators and compositionally applying them; (3) better
interpretability. It is easier to interpret and verify an answer by inspecting the program that
produces it, especially for the questions involving complex reasoning such as counting and
sorting.

8.2 Neural Symbolic Reader

In this section, we present the design of NeRd. It consists of a reader that encodes the
passages and questions into vector representations, and a programmer that generates programs
in a domain specific language. The overall comparison between NeRd and previous works is
visualized in Figure 8.1.

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION101

Neural Architecture

We provide an overview of the two components in NeRd, and defer more details to Ap-
pendix G.3.

Reader. Given the natural language text including a question and a passage, the reader
component encodes each token ti in the text into an embedding ei. Note that our framework
is agnostic to the architecture choice of the encoder, so any neural module that turns words
into vectors is applicable, e.g., BERT [72].

Programmer. The programmer takes the output of the reader as input, and then decodes
a program as a sequence of tokens. Again, our model is agnostic to the design of decoder.
For simplicity, we use an LSTM [115] decoder with attention [20] over the encoded text, and
self-attention [249] over the previously generated tokens.

A major advantage of our architecture is that it is domain-agnostic, i.e., the same
architecture can be used for different domains. Compared to previous approaches that craft
separate specialized modules for each answer type, we use a unified programmer component
to generate programs for multi-step reasoning, and we can simply extend the operator set
in the domain specific language (see the next section) to adapt to a different domain. See
Section 8.4 for a more detailed discussion.

Domain Specific Language

In this section, we introduce our domain specific language (DSL), which is used to interpret
the tokens generated by the programmer component as an executable program.

We list the operators in our DSL in Table 8.1. To handle discrete reasoning, the DSL
includes operators that perform arithmetics (DIFF, SUM), counting (COUNT) and sorting
(ARGMAX, ARGMIN, MAX, MIN). These operators have been used in previous work in semantic
parsing over structured data sources such as a knowledge graph or a tabular database.

However, the main challenge of applying such operations for reading comprehension is that
the model needs to manipulate unstructured data, i.e., natural language text, and parsing
the text into structured representations may introduce a lot of cascade errors. For example,
Dua et al. [83] found that their best performing semantic parsing pipeline using SRL [40] can
only find the logical forms for 35% of the questions, resulting in poor performance.

To address this issue, a key insight in our DSL design is to introduce the span selection
operators, so that all the arithmetics, counting and sorting operators can be applied to text.
Specifically, we introduce PASSAGE_SPAN, QUESTION_SPAN, VALUE, KEY-VALUE for selecting
spans or numbers from the passage and question. For example, COUNT can use PASSAGE_SPAN

to pick out the spans that mention the relevant entities or events, e.g., touchdowns made by
a certain person, and then returns the total number; ARGMAX relies on applying KEY-VALUE

to pick out the spans (keys) for relevant mentions and their associated numbers (values),
e.g., touchdowns and their lengths, and then returns the key with the highest value, e.g.,

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION102

Operator Arguments Outputs Description

PASSAGE_SPAN v0: the start index. a span. Select a span from the passage
QUESTION_SPAN v1: the end index. or question.

VALUE v0: an index. a number. Select a number from the passage.

KEY-VALUE (KV) v0: a span. a key-value Select a key (span) value (number)
v1: a number. pair. pair from the passage.

DIFF v0: a number or index. a number. Compute the difference or
SUM v1: a number or index. sum of two numbers.

COUNT v: a set of spans. a number. Count the number of given spans.

MAX v: a set of numbers. a number. Select the maximum / minimum
MIN among the given numbers.

ARGMAX v: a set of key-value a span. Select the key (span)
ARGMIN pairs. with the highest / lowest value.

Table 8.1: Overview of our domain-specific language. See Table 8.7 for the sample usage.

the player kicking the longest touchdown. More examples can be found in Table 8.7. In
summary, the introduction of span selection operators in the DSL enables the application of
the discrete reasoning operators to text, and the resulting programs act as executable and
interpretable representations of the reasoning process.

As mentioned above, our architecture is domain-agnostic and the only change needed, to
apply to a different domain, is to extend the DSL with new operators. For example, MathQA
benchmark requires adding more advanced mathematical operations beyond addition and
subtraction, which are defined in [10]. We defer the details to Section 8.4.

A major advantage of our DSL is its compositionality, i.e., complex programs can be
generated by compositionally applying the operators. Previous works [11] only allow applying
the operators for one step, which requires them to introduce operators to mimic two-step
compositions, e.g., Merge (selecting two spans) and Sum3 (summing up three numbers).
However, this would not scale to more steps of reasoning, as the number of required operators
will grow exponentially w.r.t the number of steps. In contrast, NeRd can compose different
operators to synthesize complex programs for multi-step reasoning. For example, on MathQA,
the average number of operations per question is 5, and some programs apply more than 30
operations to compute the final answer.

8.3 Training with Weak Supervision

Although it is relatively easy to collect question-answer pairs, it is often hard and expensive
to obtain program annotations that represent the reasoning behind the answers. Thus, how

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION103

to train NeRd with only weak supervision becomes a main challenge. In this section, we
revisit the cold start and spurious program problems described in Section 8.1, and present
our solutions.

Data Augmentation for Cold Start

The cold start problem means that the training cannot get started when there isn’t any
program available. For example, a question “How many touchdowns did Brady throw”
annotated with only an answer “3” cannot be directly used to train our model due to the lack
of the target program to optimize on. To obtain program annotations from question-answer
pairs, we first follow previous work to find programs for questions answerable by span selection
or arithmetic operations via an exhaustive search, and we defer the details to Section 8.4.
However, for questions involving counting or sorting operations, the space becomes too large
for an exhaustive search, since these operations rely on the span selection as their sub-routines.
For example, the number of possible spans in a text with 200 words is in the order of 104,
and what’s more, counting and sorting operators usually include more than one span as their
arguments.

We apply data augmentation to address the search space explosion problem for counting
and sorting operations. For counting, we augment the span selection questions by replacing
the interrogatives, e.g., “what” and “who”, with “how many” when applicable, and adding a
call to COUNT over the selected spans in the answer. For example, a question “What areas have
a Muslim population of more than 50000 people?” is changed into “How many areas...”. For
sorting, we extract the key-value pairs by first applying CoreNLP [173] for entity recognition,
and then heuristically find an associated number for each entity. If including them as the
arguments of any sorting operator yields the correct answer, then such programs are added
to the training set. More details can be found in Appendix G.4. Although the programs
found for counting and sorting through this data augmentation process is noisy, they help
bootstrap the training. Throughout the training, we also use the model to decode programs,
and add those leading to correct answers into our training set.

Hard EM with thresholding against Spurious Programs

After collecting a set of programs for each question-answer pair, another obstacle is the
spurious program problem, the phenomenon that a wrong program accidentally predicts
a right answer. For example, per arithmetic question in DROP, there are on average 9.8
programs that return correct answers, but usually only one of them is semantically correct. To
filter out spurious programs, we adopt hard EM [159, 181] due to its simplicity and efficiency.
Specifically, this approach uses the current model to select the program with the highest
model probability among the ones that return the correct answer, and then maximizes the
likelihood of the selected program. In other words, it relies on the neural model itself to filter
out spurious programs. This algorithm is usually faster than the marginalized approach [28]

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION104

because at most one program per question-answer pair is used to compute the gradient, and
the selection process is fast since it only has a forward pass.

Algorithm 3 Hard EM with Thresholding

Input: question-answer pairs {(xi, yi)}Ni=1,
a model pθ, initial threshold α0, decay factor γ
for each (xi, yi) do

Zi ← DataAugmentation(xi, yi)
end for
T ← 0
repeat

α← α0 ∗ γT
D ← ∅
for each (xi, yi) do

z∗i = arg maxk pθ(z
k
i |xi), zki ∈ Zi

if pθ(z
∗
i) > α or T = 0 and |Zi| = 1 then

D ← D ∪ (xi, z
∗
i)

end if
end forUpdate θ by maximizing∑
D log pθ(z

∗|x)
T ← T + 1

until converge or early stop

Hard EM assumes that for any
question-answer pair, at least one of the
generated programs is correct. However,
there exist questions without any seman-
tically correct program found, e.g., when
the annotated answer itself is wrong. In
this case, when directly applying the
hard EM algorithm, even if the model
probabilities for all the programs are
very small, it will still select a pro-
gram for training. RL-based approaches
such as MAPO [159] avoid this issue by
optimizing the expected return, which
weighs the gradient by the model prob-
ability. Thus, when all the programs of
a question-answer pair have very small
probabilities, they will be largely ignored
during training. We incorporate this
intuition into hard EM by introducing
a decaying threshold α, so that a pro-
gram’s probability has to be at least α
in order to be included for training. Our

experiments show that both hard EM and thresholding are crucial for successful training.
The pseudo-code of our training procedure is presented in Algorithm 3, and we defer more
details to Appendix G.4.

8.4 Evaluation

In this section, we demonstrate the effectiveness of our approach on DROP [83] and
MathQA [10], two recent benchmarks that require discrete reasoning over passages.

Datasets

DROP. DROP (Discrete Reasoning Over Paragraphs) [83] is designed to combine the
challenges from both reading comprehension and semantic parsing communities. Specifically,
the passages are collected from Wikipedia, each having at least twenty numbers. The question-
answer pairs are crowdsourced in an adversarial way that they are accepted only when the
questions cannot be correctly answered by the BiDAF model [226]. The dataset has 96.6K
question-answer pairs from 6.7K passages. Unlike most existing datasets that are solely

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION105

Question Answer

Someone on a skateboard is
traveling 8 miles per hour.
How many feet does she travel
in 5 seconds? (1 mile = 5280
feet)

Program:
multiply(5,divide(multiply(8,5280),const 3600))
Result: 5 * ((8 * 5280) / 3600) = 58.67 ft

Table 8.2: An example in MathQA dataset.

based on the single span selection, the questions in DROP require complex reasoning, such
as selecting multiple spans, arithmetic operations over numbers in the passage, counting and
sorting, etc., which poses extra challenge for existing models. For example, vanilla BERT
only gets around 30% F1 score. Table 8.7 provides some sample questions in DROP, and
their corresponding programs in our DSL (Table 8.1).

For evaluation, we use the same metrics in [83]: (1) Exact Match (EM), where the score
is 1 if the prediction exactly matches the ground truth, and 0 otherwise; (2) F1 score, which
gives partial credits to a prediction that is not exactly the same as the ground truth, but
overlaps with it.

MathQA. MathQA [10] is a dataset with 37K question-answer pairs selected from AQuA [163],
but it is further annotated with gold programs in their domain-specific language. The passage
length in MathQA is 38 on average, much shorter than DROP with 224. However, the
questions in MathQA require more complex and advanced mathematical reasoning than
DROP. To this aim, they design 58 math operations, which cover various advanced math
topics including geometry, physics, probability, etc. Accordingly, we augment our DSL with
those operators to support more advanced numerical reasoning. In these annotated programs,
the average number of operations per question is 5, and some programs involve more than 30
steps of computation. Table 8.2 shows an example from MathQA.

Note that each question in MathQA is accompanied with 4 options, where 1 of them
is the correct answer. However, since we do not have the full knowledge of the operation
semantics, we choose a conservative metric to evaluate the accuracy: a predicted program is
considered to be correct only if it is exactly the same as the annotated program. Thus, this
metric is an under-estimation of the accuracy based on the execution results. Despite that
we use a much stricter measurement in our evaluation, we show that NeRd still outperforms
the baselines by a large margin.

Implementation Details

DROP. Similar to previous work [83], for span prediction, we perform an exhaustive search
to find all mentions of the ground truth spans in the passage, then include all of them as
candidate programs. For numerical questions, we perform another exhaustive search over

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION106

all expressions applying addition and subtraction over up to 3 numbers. In this way, we are
able to find at least one program for over 95% of the training samples with a number as the
answer. Our data augmentation approach for counting and sorting questions can be seen in
Section 8.3.

MathQA. Besides the setting where all the ground truth programs are provided during
training, we also evaluate the weak supervision setting on MathQA. Due to the lack of
program executor, we are unable to perform the search similar to what we have done on
DROP. To enable the first training iteration of the model, we assume that we have access
to the ground truth programs for a small fraction of training samples at the beginning, and
only know the final answer for the rest of training samples. In the first training iteration,
the model only trains on the samples annotated with programs. In each of the following
iterations, we first run a beam search with a beam size 64 to generate programs for each
training sample that has not been annotated in previous iterations, and add the generated
program only if it is exactly the same as the ground truth annotation.

For a fair comparison, our reader uses the same pre-trained model as [117, 11], i.e.,
BERTLARGE. For both benchmarks, we perform greedy decoding during the evaluation.

Baselines

DROP. We evaluate NeRd against three types of baselines: (1) previous models on DROP;
(2) NeRd with and without counting and sorting operations; (3) NeRd with different training
algorithms, and we discuss the details below.

Previous approaches. We compare with NAQANet [83], NABERT [117], MTMSN [117],
and BERT-Calc [11]. We have discussed the key differences between NeRd and BERT-Calc,
the baseline with the best performance, in Section 8.2. On the other hand, NAQANet,
NABERT, MTMSN share the same overall framework, where they augment an existing model
to include individual modules for span selection, numerical expression generation, counting,
negation, etc. While NAQANet is based on QANet, other baselines as well as NeRd are
based on BERT. Note that the span selection modules themselves are not able to handle
questions that return multiple spans as the answer, which causes the exact match accuracy
to be zero on multiple-span selection questions for both NAQANet and NABERT. To tackle
this issue, MTMSN adapts the non-maximum suppression algorithm [219] to select multiple
spans from the candidates with the top prediction probabilities.

Operator variants of NeRd. To show that NeRd learns to apply counting and sorting
operations appropriately, we also evaluate the following two variants: (1) NeRd without
counting : we remove the COUNT operation in Table 8.1, and introduce 10 operations COUNT_0,
COUNT_1, ..., COUNT_9, where the execution engine returns the number x for operation COUNT_X.
This counting process is the same as [11]. (2) NeRd without sorting : we remove ARGMAX,
ARGMIN, MAX and MIN operations, so that the model needs to use span selection operations
for sorting questions.

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION107

Overall Dev Overall Test Number (62%) Span (32%) Spans (4.4%) Date (1.6%)
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

NAQANet 46.75 50.39 44.24 47.77 44.9 45.0 58.2 64.8 0.0 27.3 32.0 39.6
NABERTLARGE 64.61 67.35 − − 63.8 64.0 75.9 80.6 0.0 22.7 55.7 60.8
MTMSNLARGE 76.68 80.54 75.85 79.85 80.9 81.1 77.5 82.8 25.1 62.8 55.7 69.0

BERT-Calc 78.09 81.65 76.96 80.53 82.0 82.1 78.8 83.4 5.1 45.0 58.1 61.8

N
eRd 78.55 81.85

78.33 81.71
82.4 82.6 76.2 81.8 51.3 77.6 58.3 67.2

± 0.27 ± 0.20 ± 0.3 ± 0.2 ± 0.4 ± 0.2 ± 0.8 ± 1.2 ± 1.8 ± 1.7

Table 8.3: Results on DROP dataset. On the development set, we present the mean and
standard error of 10 NeRd models, and the test result of a single model. For all models, the
performance breakdown of different question types is on the development set. Note that the
training data of BERT-Calc model [11] for test set evaluation is augmented with CoQA [216].

Training variants of NeRd. To show the effectiveness of our training algorithm, we
compare with the following baselines: (1) Hard EM described in Section 8.3; and (2) Maximum
Likelihood, which maximizes the likelihood of each program that returns the correct answer
for a training sample.

MathQA. We compare with Seq2prog and Seq2prog+cat models in [10], which are
LSTM-based encoder-decoder architectures implemented in OpenNMT [140]. In partic-
ular, Seq2prog+cat extracts the category label of each question, then trains separate LSTMs
to handle different categories, which improves the accuracy by 2.3%.

Results

DROP. Table 8.3 summarizes our main evaluation results on DROP dataset, with 9.5K sam-
ples in the development set and 9.6K hidden samples in the test set. Note that NABERTLARGE

was not evaluated on the test set [117]. Specifically, we train 10 NeRd models with the best
configuration from different random initialization, present the mean and standard error of the
results on the development set, and submit a single model to obtain the result on the hidden
test set. We can observe that on test set, NeRd outperforms previous models by 1.37% on
exact match, and 1.18% on F1 score. Notice that in [11], they train their BERT-Calc model
on CoQA [216] in addition to DROP, and they also evaluate an ensemble with 6 models,
resulting in the exact match of 78.14, and F1 score of 81.78 on test set. However, we can see
that without additional training data and ensembling, NeRd still beats their single model,
and the performance is on par with their ensemble model.

To understand the strengths of NeRd, we first show examples of correct predictions in
Table 8.7. We can observe that NeRd is able to compose multiple operations so as to obtain
the correct answer, which helps boost the performance. In particular, for questions that
require the selection of multiple spans, the exact match accuracy of NeRd is more than double
of the best previous approach that specially designed for multi-span prediction, and the F1

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION108

with Count Op w/o Count op

EM 73.1 71.2
F1 73.1 71.2

(a)

with Sort Ops w/o Sort Ops

EM 83.9 82.1
F1 86.8 85.5

(b)

Table 8.4: Results of counting and sorting questions on DROP development set, where we
compare variants of NeRd with and without the corresponding operations. (a): counting;
(b): sorting. For each setting, we present the best results on development set.

EM F1
Hard EM

80.58 83.42
with thresholding

Hard EM 73.72 77.46
Maximum Likelihood 63.96 67.98

Table 8.5: Results of different training algorithms on DROP development set. For each
setting, we present the best results on the development set.

score also improves around 15%. Meanwhile, NeRd is able to generate more complicated
arithmetic expressions than [11], thanks to the compositionality of our approach.

We further present our ablation studies of counting and sorting operations in Tables 8.4
and 8.8. Specifically, we evaluate on two subsets of DROP development set that include
counting and sorting questions only, using the variants of NeRd with and without the
corresponding operations. We can observe that adding these advanced operations can not
only boost the performance, but also enable the model to provide the rationale behind its
predictions. For counting problems, NeRd is able to select the spans related to the question.
For sorting problems, NeRd first associates the entities with their corresponding values to
compose the key-value pairs, then picks the most relevant ones for prediction. None of
the previous models is able to demonstrate such reasoning processes, which suggests better
interpretability of NeRd.

Finally, we present the results of different training algorithms in Table 8.5. First, we
observe that by filtering spurious programs, the hard EM significantly boosts the performance
of the maximum likelihood training for 10%, which may be due to the fact that the exhaustive
search finds plenty of spurious programs that yield the correct answer. Adding the threshold
for program selection provides further improvement of about 7%, indicating that our training
algorithm can better handle the issue of spurious programs and be more tolerant to the noise
of answer annotations. In Appendix G.5, we show some examples discarded by NeRd using
the threshold, which mostly have the wrong answer annotations, e.g., incorrect numerical
operations or missing part of the information in the question.

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION109

Accuracy
Seq2prog 51.9

Seq2prog+cat 54.2

NeRd 79.7
NeRd (-pretraining) 71.6

NeRd (20%) 56.5

Table 8.6: Results on MathQA test set, with NeRd and two variants: (1) no pre-training; (2)
using 20% of the program annotations in training.

MathQA. We present the results on MathQA test set with around 3K samples in Table 8.6.
NeRd dramatically boosts the accuracy of the baselines by 25.5%. In addition, we also
evaluate a variant of NeRd with the same model architecture, but the BERT encoder is not
pre-trained and is randomly initialized. We observe that this variant still yields a performance
gain of 17.4%. Note that NeRd is measured by the program accuracy, which is a much
stricter criterion and thus is an underestimation of the execution accuracy computed in [10].
Moreover, even with only 20% training data labeled with ground truth programs, NeRd still
outperforms the baseline.

8.5 Related Work

Reading comprehension and question answering have recently attracted a lot of attention
from the NLP community. A plethora of datasets have been available to evaluate different
capabilities of the models, such as SQuAD [214], CoQA [216], GLUE [256], etc. A bunch
of representative models are proposed for these benchmarks, including BiDAF [226], r-
net [263], DrQA [42], DCN [270] and QANet [280]. More recently, massive text pre-training
techniques, e.g., ELMo [206], BERT [72], XLNet [275] and Roberta [166], have achieved
superior performance on these tasks. However, for more complicated tasks that require logical
reasoning, pre-trained models alone are insufficient.

On the other hand, semantic parsing has recently seen a lot of progress from the neural
symbolic approaches. One line of work applied neural sequence-to-sequence and sequence-to-
tree models to semantic parsing with full supervision [128, 80, 292] . Some other work have
advanced the state-of-the-art in weakly supervised semantic parsing on knowledge graphs and
tabular databases [160, 187, 143, 103, 159]. However, most of the successes of semantic parsing
are limited to structured data sources. In contrast, our work naturally extends the complex
reasoning in semantic parsing to reading comprehension by introducing the span selection
operators. Several methods for training with weak supervision have been proposed in the
context of weakly supervised semantic parsing including Maximum Marginal Likelihood [28,
143, 66, 103], RL [160, 159] and Hard EM [160, 181]. Our approach is based on Hard EM

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION110

due to its simplicity and efficiency, and extends it by adding a decaying threshold, which
improves its robustness against spurious programs.

In the broader context, neural symbolic approaches have been applied to Visual Question
Answering [13, 175, 130], where the neural architecture is composed with sub-modules based
on the structured parses of the questions. Another line of work studied neural symbolic
approaches to learn the execution of symbolic operations such as addition and sorting [95,
217, 38, 78]. In this work, we study neural symbolic approaches for reading comprehension
tasks that require discrete reasoning over the text [83, 117, 11, 10].

8.6 Discussion

We presented the Neural Symbolic Reader (NeRd) as a scalable integration of distributed
representations and symbolic operations for reading comprehension. NeRd architecture
consists of a reader that encodes text into vector representation, and a programmer that
generates programs, which will be executed to produce the answer. By introducing the span
selection operators, our domain-agnostic architecture can generate compositional programs
to perform complex reasoning over text for different domains by only extending the set of
operators. We also overcome the challenge of weak supervision by applying data augmentation
techniques and hard EM with thresholding. In our evaluation, using the same model
architecture without any change, NeRd significantly surpasses previous state-of-the-arts on
two challenging reading comprehension tasks, DROP and MathQA. We hope to motivate
future works to introduce complex reasoning to other domains or other tasks in NLP, e.g.,
machine translation and language modeling, by extending the set of operators.

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION111

Passage Question & Answer

Multiple spans

...the population was spread out with
26.20% under the age of 18,
9.30% from 18 to 24, 26.50% from
25 to 44, 23.50% from 45 to 64,
and 14.60% who were 65 years of age
or older...

Question: Which groups in percent are larger
than 16%?
Program:
PASSAGE SPAN(26,30),
PASSAGE SPAN(46,48),
PASSAGE SPAN(55,57)
Result: ‘under the age of 18’, ‘25 to 44’, ‘45 to
64’

Date

When major general Nathanael
Greene took command in the south,
Marion and lieutenant colonel Henry
Lee were ordered in January 1781...
On August 31, Marion rescued a
small American force trapped by 500
British soldiers...

Question: When did Marion rescue the Ameri-
can force?
Program:
PASSAGE SPAN(71,71),
PASSAGE SPAN(72,72),
PASSAGE SPAN(32,32)
Result: ’August’, ’31’, ’1781’

Numerical operations

...Lassen county had a population
of 34,895. The racial makeup of
Lassen county was 25,532 (73.2%)
white (U.S. census), 2,834 (8.1%)
African American (U.S. census)...

Question: How many people were not either
solely white or solely African American?
Program: DIFF(9,SUM(10,12))
Result: 34895 - (25532 + 2834) = 6529

Counting

...the Bolshevik party came to power
in November 1917 through the si-
multaneous election in the so-
viets and an organized uprising
supported by military mutiny...

Question: How many factors were involved in
bringing the Bolsheviks to power?
Program:
COUNT(PASSAGE SPAN(62, 66), PAS-
SAGE SPAN(69, 74))
Result:
COUNT(

’simultaneous election in the soviets’,
’organized uprising supported by military

mutiny’) = 2

Sorting

...Jaguars kicker Josh Scobee man-
aged to get a 48-yard field goal...with
kicker Nate Kaeding getting a 23-
yard field goal...

Question: Who kicked the longest field goal?
Program:
ARGMAX(

KV(PASSAGE SPAN(50,53),VALUE(9)),
KV(PASSAGE SPAN(92,94),VALUE(11)))

Result:
ARGMAX(KV(‘Josh Scobee’, 48), KV(‘Nate
Kaeding’, 23))
= ‘Josh Scobee’

...Leftwich flipped a 1-yard touch-
down pass to Wrighster...Leftwich
threw a 16- yard touchdown pass to
Williams for a 38-0 lead...

Question: How many yards was the shortest
touchdown pass?
Program: MIN(VALUE(17), VALUE(19))
Result: MIN(1, 16) = 1

Table 8.7: Examples of correct predictions on DROP development set.

CHAPTER 8. NEURAL SYMBOLIC READER FOR READING COMPREHENSION112

Passage Question & Prediction

...with field goals of
38 and 36 yards by
kicker Dan Carpen-
ter ... followed by a
43-yard field goal
by Carpenter ... 52-
yard field goal ...

Question: How many total field goals were kicked in the game?
Predicted Program:
COUNT(

PASSAGE SPAN(75,75), PASSAGE SPAN(77,78),
PASSAGE SPAN(133,135), PASSAGE SPAN(315,317))

Result: COUNT(‘38’,‘36 yards’, ‘43-yard’,‘52-yard’) = 4
Predicted Program (-counting): COUNT5 Result: 5

... with the five
most common surg-
eries being breast
augmentation, li-
posuction, breast
reduction, eyelid
surgery and ab-
dominoplasty ...

Question: How many of the five most common procedures are not
done on the breasts?
Predicted Program:
COUNT(

PASSAGE SPAN(132,135), PASSAGE SPAN(140,142), PAS-
SAGE SPAN(144,149))
Result: COUNT(‘liposuction’, ‘eyelid surgery’, ‘abdominoplasty’) =
3
Predicted Program (-counting): COUNT4 Result: 4

(a)

Passage Question & Prediction

...In the third quarter, Ari-
zona’s deficit continued to
climb as Cassel completed a
76-yard touchdown pass to
wide receiver Randy Moss ...
quarterback Matt Leinart
completed a 78-yard touch-
down pass to wide receiver
Larry Fitzgerald ...

Question: Who threw the longest touchdown pass?
Predicted Program:
ARGMAX(

KV(PASSAGE SPAN(205,208),VALUE(18)),
KV(PASSAGE SPAN(142,143), VALUE(14)))

Result: ARGMAX(KV(‘Matt Leinart’, 78),KV(‘Cassel’, 76)) =
‘Matt Leinart’
Predicted Program (-sorting): PASSAGE SPAN(82,84) Re-
sult: Matt Cassel

... Carney got a 38-yard field
goal ... with Carney connect-
ing on a 39-yard field goal
...

Question: How many yards was the longest field goal?
Predicted Program: MAX(VALUE(14),VALUE(11))
Result: MAX(39, 38) = 39
Predicted Program (-sorting): VALUE(11) Result: 38

(b)

Table 8.8: Examples of counting and sorting questions on DROP development set, where
NeRd with the corresponding operations gives the correct predictions, while the variants
without them do not. (a): counting; (b): sorting.

113

Chapter 9

Compositional Generalization via
Neural-Symbolic Stack Machines

Despite achieving tremendous success, existing deep learning models have exposed limitations
in compositional generalization, the capability to learn compositional rules and apply them
to unseen cases in a systematic manner. To tackle this issue, we propose the Neural-Symbolic
Stack Machine (NeSS). It contains a neural network to generate traces, which are then
executed by a symbolic stack machine enhanced with sequence manipulation operations.
NeSS combines the expressive power of neural sequence models with the recursion supported by
the symbolic stack machine. Without training supervision on execution traces, NeSS achieves
100% generalization performance in four domains: the SCAN benchmark of language-driven
navigation tasks, the task of few-shot learning of compositional instructions, the compositional
machine translation benchmark, and context-free grammar parsing tasks 1.

9.1 Introduction

Humans have an exceptional capability of compositional reasoning. Given a set of basic
components and a few demonstrations of their combinations, a person could effectively capture
the underlying compositional rules, and generalize the knowledge to novel combinations [61,
183, 151, 150]. In contrast, deep neural networks, including the state-of-the-art models for
natural language understanding, typically lack such generalization abilities [148, 137, 168],
although they have demonstrated impressive performance on various applications.

To evaluate the compositional generalization, [148] proposes the SCAN benchmark for
natural language to action sequence generation. When SCAN is randomly split into training
and testing sets, neural sequence models [20, 115] can achieve perfect generalization. However,
when SCAN is split such that the testing set contains unseen combinations of components in
the training set, the test accuracies of these models drop dramatically, though the training
accuracies are still nearly 100%. Some techniques have been proposed to improve the

1The material in this chapter is based on Chen et al. [52].

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 114

performance on SCAN, but they either still fail to generalize on some splits [221, 149, 158,
93, 12], or are specialized for SCAN-like grammar learning [194].

In this paper, we propose the Neural-Symbolic Stack machine (NeSS), which integrates
a symbolic stack machine into a sequence-to-sequence generation framework, and learns
a neural network as the controller to operate the machine. NeSS preserves the capacity
of existing neural models for sequence generation; meanwhile, the symbolic stack machine
supports recursion [38, 48], so it can break down the entire sequence into components, process
them separately and then combine the results, encouraging the model to learn the primitives
and composition rules. In addition, we propose the notion of operational equivalence, which
formalizes the intuition that semantically similar sentences often imply similar operations
executed by the symbolic stack machine. It enables NeSS to categorize components based on
their semantic similarities, which further improves the generalization. To train our model
without the ground truth execution traces, we design a curriculum learning scheme, which
enables the model to find correct execution traces for long training samples.

We evaluate NeSS on four benchmarks that require compositional generalization: (1)
the SCAN benchmark discussed above; (2) the task of few-shot learning of compositional
instructions [150]; (3) the compositional machine translation task [148]; and (4) the context-
free grammar parsing tasks [48]. NeSS achieves 100% generalization performance on all these
benchmarks.

9.2 Neural-Symbolic Stack Machine (NeSS)

In this section, we demonstrate NeSS, which includes a symbolic stack machine enhanced
with sequence manipulation operations, and a neural network as the machine controller that
produces a trace to be executed by the machine. We present our stack machine in Section 9.2,
describe the model architecture of our machine controller in Section 9.2, and discuss the
expressiveness and generalization power of NeSS in Section 9.2.

Enhanced Stack Machine for Sequence Manipulation

We design a stack machine that supports recursion, a key component to achieving compo-
sitional generalization. In particular, this machine supports general-purpose sequence-to-
sequence tasks, where an input sequence in a source language is mapped into an output
sequence in a target language. We present an overview of the machine operations in Table 9.1.
Specifically, SHIFT is used for reading the input sequence, PUSH and POP are standard stack
operations, REDUCE is used for output sequence generation, CONCAT M and CONCAT S concate-
nate the generated sequences to form a longer one, and the FINAL operation terminates the
machine operation and produces the output. We provide an illustrative example in Figure 9.1,
and defer more descriptions to the supplementary.

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 115

Table 9.1: Instruction semantics of our stack machine. See Figure 9.1 for the sample usage.

Operator Arguments Description

SHIFT − Pull one token from the input stream to append to the end of the stack top.

REDUCE [t1, t2, ..., tl] Reduce the stack’s top to a sequence [t1, t2, ..., tl] in the target language.

PUSH − Push a new frame to the stack top.

POP − Pop the stack top and append the popped data to the new stack top.

CONCAT M [i1, i2, ..., il]
Concatenate the items from the stack top and the memory with indices i1, i2, ..., il,
then put the concatenated sequence in the memory.

CONCAT S [i1, i2, ..., il]
Concatenate the items from the stack top and the memory with indices i1, i2, ..., il,
then put the concatenated sequence in the stack top.

FINAL − Terminate the execution, and return the stack top as the output.

Figure 9.1: An illustrative example of how to use the stack machine for SCAN benchmark.
A more complex example can be found in the supplementary material.

Operational Equivalence

Inspired by Combinatory Categorial Grammar (CCG) [236], we use component categorization
as an ingredient for compositional generalization. As shown in Figure 9.2, from the perspective
of categorical grammars, categories for source language may be considered as the primitive
types of the lexicon, while predicting categories for the target language may be considered

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 116

Figure 9.2: An illustration of component categorization, where Csi and Cti denote the i-th
category of source and target languages respectively.

as the type inference. By mapping “jump” and “run” into the same category, we can easily
infer the meaning of “run and walk” after learning to “jump and walk”. Meanwhile, mapping
“twice” and “thrice” into the same category indicates the similarity of their combinatorial
rules, e.g., both of them should be processed before parsing the word “and”. From the
perspective of parsing, categorical information is encoded in non-terminals of the (latent)
parse tree, which provides higher-level abstraction of the terminal tokens’ semantic meaning.
However, annotations of tree structures are typically unavailable or expensive to obtain.
Faced with this challenge similar to unsupervised parsing and grammar induction [14, 67,
31], we leverage the similarities between the execution traces to induce the latent categorical
information. This intuition is formalized as operational equivalence below.

Operational Equivalence (OE). Let Ls, Lt be the source and target languages, π be
a one-to-one mapping from Ls to Lt; Opπ(s) be the operator to perform the mapping π,
given the current machine status s; S be the set of valid machine statuses; s′ = R(s, si, s

′
i)

means replacing the occurrences of si in s with s′i. Components si and s′i are operationally
equivalent if and only if ∀s ∈ S, s′ = R(s, si, s

′
i) ∈ S and Opπ(s) = Opπ(s′).

In Figure 9.3, we present some examples of operational equivalence captured by the
execution traces. We observe that, when two sequences only differ in the arguments of
REDUCE, their corresponding tokens could be mapped to the same category, which is the main
focus of most prior work on compositional generalization [93, 158, 149]. For example, [93]
proposes the notation of local equivariance to capture such information. On the other hand,
by grouping sequences only differing in CONCAT M and CONCAT S arguments, we also allow
the model to capture structural equivalence, as shown in Figure 9.3b, which is the key to
enabling generalization beyond primitive substitutions.

Neural Controller

With the incorporation of a symbolic machine into our sequence-to-sequence generation
framework, NeSS does not directly generate the entire output sequence. Instead, the neural
network in NeSS acts as a controller to operate the machine. The machine runs the execution
trace generated by the neural network to produce the output sequence. Meanwhile, the design
of our machine allows the neural controller to make predictions based on the local context of
the input, which is a key factor to achieving compositional generalization. We provide an
overview of the neural controller in Figure 9.4, describe the key components below, and defer
more details to the supplementary.

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 117

(a)

(b)

Figure 9.3: An illustration of the operational equivalence captured by the execution traces
on SCAN benchmark. (a) With primitive replacement, e.g., changing “walk” into “jump”,
the operator trace remains the same, while the REDUCE arguments differ, thus “walk” and
“jump” can be grouped into the same category. Such equivalence is also characterized by local
equivariance defined in [93]. (b) By changing “twice” into “thrice”, the operator trace remains
the same, while the CONCAT M and CONCAT S arguments could differ, thus “twice” and “thrice”
are in the same category. Such equivalence is crucial in achieving length generalization on
SCAN, which is not characterized by primitive equivariance studied in prior work [93, 158,
149]

Machine status encoder. A key property of NeSS is that it enables the neural
controller to focus on the local context that is relevant to the prediction, thanks to the
recursion supported by the stack machine. Specifically, the input to the neural controller
consists of three parts: (1) the next token in the input queue tok , e.g., the token “around”
before executing step 4 in Figure 9.1; (2) the top 2 frames of the stack; and (3) the memory.
Note that including the second stack frame from the top is necessary for determining the
association rules of tokens, as discussed in [48]. Take arithmetic expression parsing as an
example, when the top stack frame includes a variable “y” and the next input token is “*”,
we continue processing this token when the previous stack frame includes a “+”, while we
need a POP operation when the previous stack frame includes “*”. We use 4 bi-directional
LSTMs as the machine status encoders to encode the input sequence, the top 2 stack frames
and the memory respectively. Then we denote the 4 computed embedding vectors as etok ,
ecur, epre and eM .

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 118

Figure 9.4: An overview of the neural architecture for the machine controller. A more detailed
illustration is included in the supplementary material.

Operator predictor. The operator predictor is a multi-layer fully connected network
with a |Op|-dimensional softmax output layer, where |Op| = 7 is the number of operators
supported by the machine, as listed in Table 9.1. Its input is the concatenation of etok , ecur,
epre and eM .

Argument predictors. We include three neural modules for argument prediction, which
are used for REDUCE, CONCAT M and CONCAT S respectively. We design the REDUCE argument
predictor as a standard LSTM-based sequence-to-sequence model with attention, which
generates a token sequence in the target vocabulary as the arguments. For both CONCAT M

and CONCAT S argument predictors, we utilize the pointer network architecture [253] to select
indices from an element list as arguments, where the list contains the elements from the top
stack frame and the memory.

Latent category predictors. We introduce two latent category predictors for source
and target languages. The source category predictor, denoted as psc(etok), computes an
embedding vector ectok to indicate the categorical information given the input etok . Similarly,
we denote the target category predictor as ptc(es), where the input es is the embedding of
the token sequence s in the target language. For the input to the operator predictor, we
replace etok with ectok as the representation of the next input token tok , which encourages the
neural controller to predict the same operator for tokens of the same category. Similarly, the
categorical predictions for the target language are used for subsequent instruction predictions.

Discussion

In the following, we discuss the expressiveness and generalization power of NeSS. In particular,
NeSS preserves the same expressive power as sequence-to-sequence models, while our neural-
symbolic design enhances its compositional generalization capability.

Expressive power. When we impose no constraints to regularize the machine, e.g., we
do not restrict the argument length for REDUCE instruction, there is a degenerate execution
trace that is valid for every input-output example. Specifically, this trace keeps running the

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 119

SHIFT instruction until an [EOS] is observed as the next input token, then executes a REDUCE

instruction with the entire output sequence as its argument. In this way, NeSS preserves
the capacity of existing sequence-to-sequence models [20, 266, 115, 249, 72]. To leverage the
recursion property of the machine, we could set a length limit for REDUCE arguments, so that
the neural model mainly calls REDUCE instruction to generate phrases in the target language,
and utilizes other instructions to combine the generated primitives to form a longer sequence.
We call such compositional traces as non-degenerate traces hereafter.

Generalization. Some recent work proposes neural-symbolic architectures to achieve
length generalization for program induction [38, 48, 268, 207]. The core idea is to incorporate
a stack into the symbolic machine, so that the neural network model could restrict its
attention to only part of the input important for the current decision. This recursion design
principle is also crucial in achieving compositional generalization in our case. Meanwhile,
capturing the operational equivalence enables NeSS to simultaneously obtain generalization
capability and expressive power.

9.3 Training

As discussed in Section 9.2, without the ground truth execution traces as training supervision,
the model may exploit the REDUCE argument generator and predict degenerate traces without
compositionality. To avoid this degenerate solution, we apply a curriculum learning scheme.
At a high level, the model first performs a trace search for each sample in the lesson, and then
categorizes components based on the operational equivalence. We discuss the key sub-routines
below. The full training procedure can be found in the supplementary material.

Curriculum learning. We sort the training samples in the increasing order of their input
and output lengths to construct the curriculum. Before training on the first lesson, the neural
model is randomly initialized. Afterwards, for each new lesson, the model is initialized with
the parameters learned from previous lessons. To obtain training supervision, for each input
sequence within the current lesson, we search for an execution trace that leads to the ground
truth output, based on the probability distribution predicted by the neural model, and we
prioritize the search for non-degenerate execution traces. If the model could not find any
non-degenerate execution trace within the search budget, a degenerate execution trace is used
for training. The model proceeds to the new lesson when no more non-degenerate execution
traces can be found.

Learning to categorize. To provide training supervision for latent category predictors,
we leverage the operational equivalence defined in Section 9.2. Specifically, after the trace
search, we collect the non-degenerate operator traces, and compare among different samples
within a training batch. If two samples share the same operator trace, we first assign their
target sequences with the same target category for training. Note that their input sequences
have the same length, because the same SHIFT instructions are executed. Therefore, we

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 120

enumerate each index within the input length, pair up the tokens with the same index, and
assign them with the same source category for training.

9.4 Experiments

We evaluate NeSS in four domains: (1) the SCAN splits that require compositional gen-
eralization [148]; (2) the task of few-shot learning of compositional instructions proposed
in [150]; (3) the compositional machine translation benchmark proposed in [148]; and (4)
the context-free grammar parsing benchmarks proposed in [48]. We present the setup and
key results below, and defer more experimental details to the supplementary material. Note
that we perform greedy decoding to generate the execution traces during the inference time,
without any search.

SCAN Benchmark

The SCAN benchmark has been widely used to evaluate the compositional generalization
of neural networks, where the input sequence is a navigation command in English, and the
output is the corresponding action sequence [148]. See Figure 9.1 for a sample usage of NeSS
for the SCAN tasks.

Evaluation setup. Similar to prior work [149, 93, 194], we evaluate the following four
settings. (1) Length generalization: the output sequences in the training set include
at most 22 actions, while the output lengths in the test set are between 24 and 48. (2)
Template generalization for “around right”: the phrase “around right” is held out from
the training set; however, both “around” and “right” occurs in the training set separately.
For example, the phrases “around left” and “opposite right” are included in the training
set. (3) Primitive generalization for “jump”: all commands not including “jump” are
included in the training set, but the primitive “jump” only appears as a single command in
the training set. The test set includes commands combining “jump” with other primitives
and templates, such as “jump twice” and “jump after walk”. (4) Simple split: randomly
split samples into training and test sets. In this case, no compositional generalization is
required.

Previous approaches. We compare NeSS with two classes of existing approaches on
SCAN benchmark. The first class of approaches propose different neural network architectures,
without additional data to provide training supervision. Specifically, sequence-to-sequence
models (seq2seq) [148] and convolutional neural networks (CNN) [70] are standard neural
network architectures, Stack LSTM learns an LSTM to operate a differentiable stack [96],
while the equivariant sequence-to-sequence model [93] incorporates convolution operations into
the recurrent neural networks, so as to achieve local equivariance discussed in Section 9.2. On
the other hand, the syntactic attention model [221] and primitive substitution [158] learn two
attention maps for primitives and templates separately. The second class of approaches design
different schemes to generate auxiliary training data. Specifically, GECA [12] performs data

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 121

augmentation by replacing fragments of training samples with different fragments from other
similar samples, while the meta sequence-to-sequence model [149] and the rule synthesizer
model (synth) [194] are trained with samples drawn from a meta-grammar with the format
close to the SCAN grammar.

Table 9.2: Learned categories on SCAN.
The words in a pair of brackets belong to
the same category. The categories con-
tained in the three lines are respectively
learned from input sequences of length 1,
2 and 3.

{run, look, jump, look}

{left, right}, {twice, thrice}, {turn}

{and, after}, {around}, {opposite}

Results. Table 9.3 summarizes our results on
SCAN tasks. In the top block, we compare with
models trained without additional data. Among
these approaches, NeSS is the only one achieving
100% test accuracies on tasks that require com-
positional generalization, and the performance
is consistent among 5 independent runs. In par-
ticular, the best generalization accuracy on the
length split is only around 20% for the baseline
models. Note that the stack LSTM does not
achieve better results, demonstrating that with-
out a symbolic stack machine that supports re-
cursion and sequence manipulation, augmenting
neural networks with a stack alone is not sufficient.

Meanwhile, without category predictors, NeSS still achieves 100% test accuracy in 2 runs, but
the accuracy drops to around 20% for other 3 runs. A main reason is that existing models
could not generalize to the input template “around left/right thrice”, when the training
set only includes the template “around left/right twice”. Although NeSS correctly learns
the parsing rules for different words, without category predictors, NeSS still may not learn
that the parsing rule for “thrice” has the same priority as “twice”. For example, in the test
set, there is a new pattern “jump around right thrice”. The correct translation is to parse
“jump around right” first, then repeat the action sequence thrice, resulting in 24 actions.
Without category prediction, NeSS could mistakenly parse “right thrice” first, concatenate
the action sequences of “jump” and “right thrice”, then repeat it for four times, resulting in
16 actions. Such a model could still achieve 100% training accuracy, because this pattern
does not occur in the training set, but the test accuracy drops dramatically due to the wrong
order for applying rules. Therefore, to achieve generalization, besides the parsing rules for
each individual word, the model also needs to understand the order of applying different rules,
which is not captured by the primitive equivalence [149, 158, 221] or local equivariance [93]
studied in prior work. On the other hand, as shown in Table 9.2, the operational equivalence
defined in Section 9.2 enables the model to learn the priorities of different parsing rules, e.g.,
categorizing “twice” and “thrice” together, which is crucial in achieving length generalization.

Next, we compare NeSS with models trained with additional data. In particular, the meta
sequence-to-sequence model is trained with different permutations of primitive assignment,
i.e., different one-to-one mapping of {run, look, jump, walk} to {RUN, LOOK, JUMP,
WALK}, denoted as “(perm)”. We consider two evaluation modes of the rule synthesizer
model (synth) [194], where the first variant performs greedy decoding, denoted as “(no
search)”; the second one performs a search process, where the model samples candidate

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 122

Table 9.3: Test accuracy on SCAN splits. All models in the top block are trained without
additional data. In the bottom, GECA is trained with data augmentation, while Meta Seq2seq
(perm) and both variants of Synth are trained with samples drawn from a meta-grammar,
with a format close to the SCAN grammar. In particular, Synth (with search) performs
a search procedure to sample candidate grammars, and returns the one that matches the
training samples; instead, other models always return the prediction with the highest decoding
probability.

Approach Length Around right Jump Simple

NeSS (ours) 100.0 100.0 100.0 100.0
Seq2seq [148] 13.8 − 0.08 99.8

CNN [70] 0.0 56.7 69.2 100.0
Stack LSTM [96] 17.0 0.3 0.0 100.0

Syntactic Attention [221] 15.2 28.9 91.0 −
Primitive Substitution [158] 20.3 83.2 98.8 99.9

Equivariant Seq2seq [93] 15.9 92.0 99.1 100.0

GECA [12] − 82 87 −
Meta Seq2seq (perm) [149] 16.64 98.71 99.95 −

Synth (no search) [194] 0.0 0.0 3.5 13.3
Synth (with search) [194] 100.0 100.0 100.0 100.0

grammars, and returns the one that matches the training samples. We observe that even
with additional training supervision, Synth (with search) is the only baseline approach that
is able to achieve 100% generalization on all these SCAN splits.

Although both Synth and NeSS achieve perfect generalization, there are key differences
we would like to highlight. First, the meta-grammar designed in Synth restricts the search
space to only include grammars with a similar format to the SCAN grammar [194]. For
example, each grammar has between 4 and 9 primitive rules that map a single word to
a single primitive (e.g., run → RUN), and 3 to 7 higher order rules that encode variable
transformations given by a single word (e.g., x1 and x2 → [x1] [x2]). Therefore, Synth cannot
be applied to other two benchmarks in our evaluation. Unlike Synth, NeSS does not make
such assumptions about the number of rules nor their formats. Also, NeSS does not perform
any search during the inference, while Synth requires a search procedure to ensure that the
synthesized grammar satisfies the training samples.

Few-shot Learning of Compositional Instructions

Next, we evaluate on the few-shot learning benchmark proposed in [150], where the model
learns to produce abstract outputs (i.e., colored circles) from pseudowords (e.g., “dax”).
Compared to the SCAN benchmark, the grammar of this task is simpler, with 4 primitive

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 123

Table 9.4: Accuracy on the few-shot learning
task proposed in [150].

Approach Accuracy

NeSS (ours) 100.0
Seq2seq [158] 2.5

Primitive Substitution [158] 76.0
Human [150] 84.3

Table 9.5: Accuracy on the compositional
machine translation benchmark in [148],
measured by semantic equivalence.

Approach Accuracy

NeSS (ours) 100.0
Seq2seq [148] 12.5

Primitive Substitution [158] 100.0

Table 9.6: Results on the context-free grammar parsing benchmarks proposed in [48]. “Test-
LEN” indicates the testset including inputs of length LEN.

Test
NeSS Neural

Seq2seq Seq2tree
Stack

(ours) Parser LSTM

Training 100% 100% 81.29% 100% 100%
Test-10 100% 100% 0% 0.8% 0%

Test-5000 100% 100% 0% 0% 0%

rules and 3 compositional rules. However, while the SCAN training set includes over 10K
examples, there are only 14 training samples in this benchmark, thus models need to learn
the grammar from very few demonstrations. In [150], they demonstrate that humans are
generally good at such few-shot learning tasks due to their inductive biases, while existing
machine learning models struggle to obtain this capability.

Results. We present the results in Table 9.4, where we compare with the standard
sequence-to-sequence model, the primitive substitution approach discussed in Section 9.4, and
the human performance evaluated in [150]. We didn’t compare with the meta sequence-to-
sequence model and the rule synthesizer model discussed in Section 9.4, because they require
meta learning with additional training samples. Despite that the number of training samples
is very small, NeSS achieves 100% test accuracy in 5 independent runs, demonstrating the
benefit of integrating the symbolic stack machine to capture the grammar rules.

Compositional Machine Translation

Then we evaluate on the compositional machine translation benchmark proposed in [148].
Specifically, the training set includes 11,000 English-French sentence pairs, where the English
sentences begin with phrases such as “I am”, “you are” and “he is”, and 1,000 of the
samples are repetitions of “I am daxy” and its French translation, which is the only sentence
that introduces the pseudoword “daxy” in the training set. The test set includes different
combinations of the token “daxy” and other phrases, e.g., “you are daxy”, which do not

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 124

appear in the training set. Compared to the SCAN benchmark, the translation rules in this
task are more complex and ambiguous, which makes it challenging to be fully explained with
a rigorous rule set.

Results. We present the results in Table 9.5, where we compare NeSS with the standard
sequence-to-sequence model [148], and the primitive substitution approach discussed in
Section 9.4. Note that instead of measuring the exact match accuracy, where the prediction is
considered correct only when it is exactly the same as ground truth, we measure the semantic
equivalence in Table 9.5. As discussed in [158], only one reference translation is provided for
each sample in the test set, but there are 2 different French translations of “you are” that
appear frequently in the training set, which are both valid translations. Therefore, if we
measure the exact match accuracy, the accuracy of the Primitive Substitution approach is
62.5%, while NeSS achieves 100% in 2 runs, and 62.5% in 3 other runs. Although both NeSS
and the Primitive Substitution approach achieves 100% generalization, by preserving the
sequence generation capability of sequence-to-sequence models with the REDUCE argument
generator, NeSS is the only approach that simultaneously enables length generalization for
rule learning tasks and achieves 100% generalization on machine translation with more diverse
rules, by learning the phrase alignment.

Context-free Grammar Parsing

Finally we evaluate NeSS on the context-free grammar parsing tasks in [48]. Following [48],
we mainly consider the curriculum learning setting, where we train the model with their
designed curriculum, which includes 100 to 150 samples enumerating all constructors in the
grammar. NeSS parses the inputs by generating the serialized parse trees, as illustrated in
the supplementary material. The average input length of samples in the curriculum is around
10. This benchmark is mainly designed to evaluate length generalization, where the test
samples are much longer than training samples.

Results. We present the main results in Table 9.6, where we compare NeSS with the
sequence-to-sequence model [254], sequence-to-tree model [80], LSTM augmented with a
differentiable stack structure [96], and the neural parser [48]. All these models are trained
on the curriculum of the While language designed in [48], and we defer the full evaluation
results of more setups and baselines to the supplementary material, where we draw similar
conclusions. Again, NeSS achieves 100% accuracy in 5 independent runs. We notice that
none of the models without incorporating a symbolic machine generalizes to test inputs that
are 500 × longer than training samples, suggesting the necessity of the neural-symbolic model
design. Meanwhile, compared to the neural parser model, NeSS achieves the same capability
of precisely learning the grammar production rules, while it supports more applications that
are not supported by the neural parser model, as discussed in Section 9.2.

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 125

9.5 Related Work

There has been an increasing interest in studying the compositional generalization of deep
neural networks for natural language understanding [148, 137, 21, 220]. A line of literature
develops different techniques for the SCAN domain proposed in [148], including architectural
design [221, 158, 93], training data augmentation [12], and meta learning [149, 194]. Note that
we have already provided a more detailed discussion in Section 9.4. In particular, the rule
synthesis approach in [194] also achieves 100% generalization performance as NeSS. However,
they design a meta-grammar space to generate training samples, which contains grammars
with the format close to the SCAN grammar, and their model requires a search process to
sample candidate grammars during the inference time. On the other hand, NeSS does not
assume the knowledge of a restricted meta-grammar space as in [149, 194]. In addition, no
search is needed for model evaluation, thus NeSS could be more efficient especially when the
task requires more examples as the test-time input specification.

Some recent work also studies compositional generalization for other applications, including
semantic parsing [137, 12], visual question answering [129, 21, 175, 250, 276, 119], image
captioning [191], and other grounded language understanding domains [220]. In particular, a
line of work proposes neural-symbolic approaches for visual question answering [175, 250, 276,
119], and the main goal is to achieve generalization to new composition of visual concepts,
as well as scenes with more objects than training images. Compared to vision benchmarks
measuring the compositional generalization, our tasks do not require visual understanding,
but typically need much longer execution traces.

On the other hand, length generalization has been emphasized for program induction,
where the learned model is supposed to generalize to longer test samples than the training
ones [95, 286, 217, 38, 48]. A line of approaches learn a neural network augmented with a
differentiable data structure or a differentiable machine [95, 286, 131, 133, 145, 96]. However,
these approaches either can not achieve length generalization, or are only capable of solving
simple tasks, as also shown in our evaluation. Another class of approaches incorporate a
symbolic machine into the neural network [217, 38, 285, 48, 268, 207], which enables length
generalization either with training supervision on execution traces [38], or well-designed
curriculum learning schemes [48, 268, 207]. In particular, our neural-symbolic architecture
is inspired by the neural parser introduced in [48], which designs a parsing machine based
on classic SHIFT-REDUCE systems [64, 182, 164, 48]. By serializing the target parse tree,
our machine fully covers the usages supported by the parsing machine. Meanwhile, the
incorporation of a memory module and enhanced instructions for sequence generation enables
NeSS to achieve generalization for not only algorithmic induction, but also natural language
understanding domains. Some recent work also studies length generalization for other tasks,
including relational reasoning [78], multi-task learning [41], and structure inference [169].

CHAPTER 9. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 126

9.6 Discussion

In this work, we presented NeSS, a differentiable neural network to operate a symbolic
stack machine supporting general-purpose sequence-to-sequence generation, to achieve com-
positional generalization. To train NeSS without supervision on ground truth execution
traces, we proposed the notation of operational equivalence, which captured the primitive and
compositional rules via the similarity of execution traces. NeSS achieved 100% generalization
performance on four benchmarks ranging from natural language understanding to gram-
mar parsing. For future work, we consider extending our techniques to other applications
that require the understanding of compositional semantics, including grounded language
understanding and code translation.

127

Chapter 10

Conclusion

In this thesis, we present our work on learning-based techniques for program synthesis, and
neural-symbolic reasoning for language understanding. For program synthesis applications
from different specification formats, we have developed neural network architectures that
learn structured representations of the input specifications and output programs, which
better capture the syntactic and semantic characteristics of the programming languages under
consideration. Our work demonstrate the importance of structured representation learning
for a wide range of applications, including spreadsheet formula synthesis (Chapter 2), visual-
ization code synthesis (Chapter 3), program translation (Chapter 6), and code optimization
(Chapter 7).

For program synthesis from input-output examples, we present our execution-guided
synthesis techniques to incorporate partial program execution states (Part II). The principle
of execution-guided synthesis is to view the program execution as a sequence of manipulations
to transform a program input into the corresponding output. From this perspective, when
a partial program is synthesized, we can obtain the intermediate execution state, which
explicitly reveals the synthesis progress, and guides the followup program generation process
to move on to reach the target program output. When an interpreter is available to obtain
the execution states of partial programs, we demonstrate that feeding the execution states
as the synthesizer input significantly improves the synthesis performance (Chapter 4). For
programming languages that do not support partial program execution, such as C, we further
show that we can learn a neural executor to approximate the partial program execution
states, which still provides remarkable performance gain (Chapter 5).

Besides developing learning techniques for program synthesis applications, in Part IV, we
introduce program synthesis as a new learning formulation. Specifically, we present neural-
symbolic frameworks that integrate symbolic modules into neural networks, which allows the
neural network to compose and execute symbolic operators to represent its knowledge of the
data. In particular, our neural-symbolic models learn to interpret and reason over complex
text (Chapter 8), comprehend grammar rules that reveal the compositionality in languages,
and generalize the knowledge to new inputs (Chapter 9).

CHAPTER 10. CONCLUSION 128

10.1 Future Work

We envision that low-code development is the future of the programming paradigm, where
coding skills are no longer required for programming computers, hence everyone is able to
create new software. There are several grand challenges of developing learning-based program
synthesis techniques towards the goal: (1) limited scalability and efficiency of program search;
(2) a lack of understanding of the mechanism driving the predicted outputs; and (3) the
weaknesses and vulnerabilities of learning models. In the following, we highlight some concrete
future directions.

Learning-based program synthesis for scalable software tool development. Our
past work has demonstrated the feasibility of learning-based program synthesis approaches
for various synthetic benchmarks and real-world applications. However, we still observe
significant challenges in scaling up the techniques to handle more sophisticated code in large-
scale projects. Moreover, existing learning-based program synthesis models generally suffer
from sample inefficiency for synthesizing general-purpose code; e.g., tens or even hundreds
of samples might be required to correctly predict a Python utility function implemented
in 10 lines of code. We plan to continue improving neural network architectures to better
capture the underlying semantics of programs. Meanwhile, we aim to develop new program
search algorithms to further improve the sample efficiency. For example, we will extend our
execution-guided synthesis framework to more specification formats, and draw inspiration
from classic divide-and-conquer algorithms to leverage the compositionality in programming
languages and explore the program search space more efficiently.

Human-friendly interactive programming from multi-modal specifications. Our
work on program improvement shows the importance of iteratively updating the predicted
program according to the execution results [102]. Besides program execution, we can also
directly seek user feedback to gradually refine the program. In our work on visualization code
synthesis (Chapter 3), we demonstrated that we can learn a model to synthesize code in real-
world Python Jupyter notebooks crawled from GitHub, where the input specification contains
interleaved code blocks and natural language markdown. This interactive programming
paradigm allows users to break down the full program and provide step-by-step natural
language descriptions of each building block, so that the program synthesizer does not have to
absorb the full program specification all at once. One important future research direction is to
develop interactive program synthesis systems that learn to adapt the predictions according
to the user feedback, and ask for clarifications when necessary. To give users more flexibility
in specifying the program intents, we also plan to develop neural network architectures
to effectively aggregate the information from input specifications of different types, e.g.,
simultaneously supporting natural language descriptions, input-output examples, and other
external resources as the reference.

CHAPTER 10. CONCLUSION 129

Symbolic reasoning towards better robustness and generalization. In our work
on neural-symbolic reasoning (Part IV), we have revealed several types of weaknesses and
limitations of existing deep neural networks, including their generalizability and reasoning
capability. Besides that, our work on adversarial machine learning also highlighted the
security risks of deep neural networks, such as test-time attacks [165, 272] and training-time
data poisoning [58, 56]. By learning to generate a symbolic representation as the model
output, neural-symbolic models could potentially be more robust to distribution shift, while
the predictions are also more interpretable and easier to verify. In the future, we plan to work
on more systematic investigation of the success and failure modes of deep neural networks,
including large-scale pre-trained models for program synthesis and other domains. Meanwhile,
we are passionate about extending our neural-symbolic framework to support more diverse
and noisy inputs, such as open-domain images and natural language text, and designing new
pre-training and data augmentation schemes to strengthen the reasoning capability.

130

Bibliography

[1] Steven Abney. “Bootstrapping”. In: Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, pp. 360–367.

[2] Michael Affenzeller and Rene Mayrhofer. “Generic heuristics for combinatorial op-
timization problems”. In: Proc. of the 9th International Conference on Operational
Research. 2002, pp. 83–92.

[3] Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. “JuICe: A Large Scale Distantly
Supervised Dataset for Open Domain Context-based Code Generation”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
2019, pp. 5439–5449.

[4] Roee Aharoni and Yoav Goldberg. “Towards string-to-tree neural machine translation”.
In: ACL. 2017.

[5] Mejbah Alam et al. “A zero-positive learning approach for diagnosing software perfor-
mance regressions”. In: Advances in Neural Information Processing Systems 32 (2019),
pp. 11627–11639.

[6] Ferran Alet et al. “A large-scale benchmark for few-shot program induction and
synthesis”. In: International Conference on Machine Learning. PMLR. 2021, pp. 175–
186.

[7] Miltiadis Allamanis et al. “A Survey of Machine Learning for Big Code and Natural-
ness”. In: arXiv preprint arXiv:1709.06182 (2017).

[8] Miltiadis Allamanis et al. “Learning Continuous Semantic Representations of Symbolic
Expressions”. In: International Conference on Machine Learning. 2017, pp. 80–88.

[9] David Alvarez-Melis and Tommi S Jaakkola. “Tree-structured decoding with doubly-
recurrent neural networks”. In: ICLR. 2017.

[10] Aida Amini et al. “MathQA: Towards Interpretable Math Word Problem Solving with
Operation-Based Formalisms”. In: arXiv preprint arXiv:1905.13319 (2019).

[11] Daniel Andor et al. “Giving BERT a Calculator: Finding Operations and Arguments
with Reading Comprehension”. In: arXiv preprint arXiv:1909.00109 (2019).

BIBLIOGRAPHY 131

[12] Jacob Andreas. “Good-enough compositional data augmentation”. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. 2020.

[13] Jacob Andreas et al. “Learning to Compose Neural Networks for Question Answering”.
In: arXiv:1601.01705 (2016).

[14] Dana Angluin. “Learning regular sets from queries and counterexamples”. In: Infor-
mation and computation 75.2 (1987), pp. 87–106.

[15] Antlr. Antlr. https://github.com/antlr/. 2018.

[16] Michael Armbrust et al. “A view of cloud computing”. In: Communications of the
ACM 53.4 (2010), pp. 50–58.

[17] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint
arXiv:2108.07732 (2021).

[18] Awais Azam, Khubaib Amjad Alam, and Areeba Umair. “Spreadsheet Smells: A
Systematic Mapping Study”. In: 2019 International Conference on Frontiers of Infor-
mation Technology (FIT). IEEE. 2019, pp. 345–3455.

[19] Leo Bachmair and Harald Ganzinger. “Rewrite-based equational theorem proving
with selection and simplification”. In: Journal of Logic and Computation 4.3 (1994),
pp. 217–247.

[20] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation
by jointly learning to align and translate”. In: International Conference on Learning
Representations. 2015.

[21] Dzmitry Bahdanau et al. “CLOSURE: Assessing Systematic Generalization of CLEVR
Models”. In: arXiv preprint arXiv:1912.05783 (2019).

[22] Matej Balog et al. “DeepCoder: Learning to Write Programs”. In: International
Conference on Learning Representations. 2017.

[23] Matej Balog et al. “Neural program synthesis with a differentiable fixer”. In: arXiv
preprint arXiv:2006.10924 (2020).

[24] Reuven Bar-Yehuda and Shimon Even. “A linear-time approximation algorithm for
the weighted vertex cover problem”. In: Journal of Algorithms 2.2 (1981), pp. 198–203.

[25] Rohan Bavishi et al. “AutoPandas: neural-backed generators for program synthesis”.
In: Proceedings of the ACM on Programming Languages 3.OOPSLA (2019), pp. 1–27.

[26] Alessandro Bay and Biswa Sengupta. “Approximating meta-heuristics with homotopic
recurrent neural networks”. In: arXiv preprint arXiv:1709.02194 (2017).

[27] Irwan Bello et al. “Neural combinatorial optimization with reinforcement learning”.
In: arXiv preprint arXiv:1611.09940 (2016).

[28] Jonathan Berant et al. “Semantic Parsing on Freebase from Question-Answer Pairs.”
In: EMNLP 2.5 (2013), p. 6.

BIBLIOGRAPHY 132

[29] David Bieber et al. “Learning to Execute Programs with Instruction Pointer Attention
Graph Neural Networks”. In: Advances in Neural Information Processing Systems.
2020.

[30] Jacek B lażewicz, Wolfgang Domschke, and Erwin Pesch. “The job shop schedul-
ing problem: Conventional and new solution techniques”. In: European journal of
operational research 93.1 (1996), pp. 1–33.

[31] Rens Bod. “An all-subtrees approach to unsupervised parsing”. In: Proceedings of the
21st International Conference on Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics. Association for Computational
Linguistics. 2006, pp. 865–872.

[32] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3 data-driven documents”. In:
IEEE transactions on visualization and computer graphics 17.12 (2011), pp. 2301–2309.

[33] James Bradbury and Richard Socher. “Towards Neural Machine Translation with
Latent Tree Attention”. In: arXiv preprint arXiv:1709.01915 (2017).

[34] Steven J Bradtke, B Erik Ydstie, and Andrew G Barto. “Adaptive linear quadratic
control using policy iteration”. In: Proceedings of the American control conference.
Vol. 3. Citeseer. 1994, pp. 3475–3475.

[35] Rudy Bunel et al. “Leveraging Grammar and Reinforcement Learning for Neural
Program Synthesis”. In: International Conference on Learning Representations. 2018.
url: https://openreview.net/forum?id=H1Xw62kRZ.

[36] Rudy R Bunel et al. “Adaptive neural compilation”. In: Advances in Neural Information
Processing Systems. 2016, pp. 1444–1452.

[37] Cheng-Hao Cai et al. “Learning of human-like algebraic reasoning using deep feed-
forward neural networks”. In: Biologically Inspired Cognitive Architectures 25 (2018),
pp. 43–50.

[38] Jonathon Cai, Richard Shin, and Dawn Song. “Making Neural Programming Archi-
tectures Generalize via Recursion”. In: ICLR. 2017.

[39] Brian Campbell. “An executable semantics for CompCert C”. In: International Con-
ference on Certified Programs and Proofs. Springer. 2012, pp. 60–75.

[40] Xavier Carreras and Lluis Marquez. “Introduction to the CoNLL-2004 shared task:
Semantic role labeling”. In: Proceedings of the Eighth Conference on Computational
Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004. 2004, pp. 89–97.

[41] Michael B Chang et al. “Automatically composing representation transformations as a
means for generalization”. In: International Conference on Learning Representations.
2019.

https://openreview.net/forum?id=H1Xw62kRZ

BIBLIOGRAPHY 133

[42] Danqi Chen et al. “Reading Wikipedia to Answer Open-Domain Questions”. In: Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers. 2017,
pp. 1870–1879.

[43] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv
preprint arXiv:2107.03374 (2021).

[44] Tianqi Chen et al. “Learning to Optimize Tensor Programs”. In: NIPS (2018).

[45] Weijia Chen, Yuedong Xu, and Xiaofeng Wu. “Deep Reinforcement Learning for
Multi-Resource Multi-Machine Job Scheduling”. In: arXiv preprint arXiv:1711.07440
(2017).

[46] Wenhu Chen et al. “Tabfact: A large-scale dataset for table-based fact verification”.
In: International Conference on Learning Representations. 2020.

[47] Xinyun Chen, Chang Liu, and Dawn Song. “Execution-guided neural program synthe-
sis”. In: International Conference on Learning Representations. 2019.

[48] Xinyun Chen, Chang Liu, and Dawn Song. “Towards Synthesizing Complex Programs
from Input-Output Examples”. In: ICLR. 2018.

[49] Xinyun Chen, Chang Liu, and Dawn Song. “Tree-to-tree neural networks for program
translation”. In: Advances in neural information processing systems 31 (2018).

[50] Xinyun Chen, Dawn Song, and Yuandong Tian. “Latent execution for neural program
synthesis beyond domain-specific languages”. In: Advances in Neural Information
Processing Systems 34 (2021).

[51] Xinyun Chen and Yuandong Tian. “Learning to perform local rewriting for combi-
natorial optimization”. In: Advances in Neural Information Processing Systems 32
(2019).

[52] Xinyun Chen et al. “Compositional generalization via neural-symbolic stack machines”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 1690–1701.

[53] Xinyun Chen et al. “Latent attention for if-then program synthesis”. In: Advances in
Neural Information Processing Systems. 2016, pp. 4574–4582.

[54] Xinyun Chen et al. “Neural symbolic reader: Scalable integration of distributed and
symbolic representations for reading comprehension”. In: International Conference on
Learning Representations. 2020.

[55] Xinyun Chen et al. “Plotcoder: Hierarchical decoding for synthesizing visualization
code in programmatic context”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 2021, pp. 2169–2181.

[56] Xinyun Chen et al. “Refit: a unified watermark removal framework for deep learning
systems with limited data”. In: Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security. 2021, pp. 321–335.

BIBLIOGRAPHY 134

[57] Xinyun Chen et al. “Spreadsheetcoder: Formula prediction from semi-structured
context”. In: International Conference on Machine Learning. PMLR. 2021, pp. 1661–
1672.

[58] Xinyun Chen et al. “Targeted backdoor attacks on deep learning systems using data
poisoning”. In: arXiv preprint arXiv:1712.05526 (2017).

[59] Shing-Chi Cheung et al. “CUSTODES: automatic spreadsheet cell clustering and smell
detection using strong and weak features”. In: Proceedings of the 38th International
Conference on Software Engineering. 2016, pp. 464–475.

[60] Sébastien Jean Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. “On Using
Very Large Target Vocabulary for Neural Machine Translation”. In: ACL. 2015.

[61] Noam Chomsky and David W Lightfoot. Syntactic structures. Walter de Gruyter,
2002.

[62] Judith Clymo et al. “Data generation for neural programming by example”. In: Inter-
national Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 3450–
3459.

[63] Trevor Anthony Cohn and Mirella Lapata. “Sentence compression as tree transduction”.
In: Journal of Artificial Intelligence Research 34 (2009), pp. 637–674.

[64] James Cross and Liang Huang. “Span-Based Constituency Parsing with a Structure-
Label System and Provably Optimal Dynamic Oracles”. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. 2016, pp. 1–11.

[65] CS106A. Stanford CS106A course page. https://see.stanford.edu/Course/CS106A.
2018.

[66] Pradeep Dasigi et al. “Iterative Search for Weakly Supervised Semantic Parsing”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 2019, pp. 2669–2680.

[67] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

[68] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer. 2008, pp. 337–340.

[69] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009,
pp. 248–255.

[70] Roberto Dessi and Marco Baroni. “CNNs found to jump around more skillfully than
RNNs: Compositional Generalization in Seq2seq Convolutional Networks”. In: Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
2019, pp. 3919–3923.

BIBLIOGRAPHY 135

[71] Michel Deudon et al. “Learning heuristics for the tsp by policy gradient”. In: Interna-
tional Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Springer. 2018, pp. 170–181.

[72] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: NAACL-HLT (1). 2019.

[73] Jacob Devlin et al. “Neural Program Meta-Induction”. In: Advances in Neural Infor-
mation Processing Systems. 2017, pp. 2077–2085.

[74] Jacob Devlin et al. “RobustFill: Neural Program Learning under Noisy I/O”. In:
ICML. 2017.

[75] Victor Dibia and Cagatay Demiralp. “Data2vis: Automatic generation of data visual-
izations using sequence-to-sequence recurrent neural networks”. In: IEEE computer
graphics and applications 39.5 (2019), pp. 33–46.

[76] Haoyu Dong et al. “Semantic Structure Extraction for Spreadsheet Tables with a
Multi-task Learning Architecture”. In: Workshop on Document Intelligence at NeurIPS
2019. 2019.

[77] Haoyu Dong et al. “Tablesense: Spreadsheet table detection with convolutional neural
networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
2019, pp. 69–76.

[78] Honghua Dong et al. “Neural logic machines”. In: International Conference on Learning
Representations. 2019.

[79] Li Dong and Mirella Lapata. “Coarse-to-Fine Decoding for Neural Semantic Parsing”.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2018, pp. 731–742.

[80] Li Dong and Mirella Lapata. “Language to logical form with neural attention”. In:
ACL. 2016.

[81] Wensheng Dou et al. “Detecting table clones and smells in spreadsheets”. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 2016, pp. 787–798.

[82] Ian Drosos et al. “Wrex: A Unified Programming-by-Example Interaction for Synthe-
sizing Readable Code for Data Scientists”. In: CHI ’20: CHI Conference on Human
Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020. ACM, 2020,
pp. 1–12.

[83] Dheeru Dua et al. “DROP: A Reading Comprehension Benchmark Requiring Discrete
Reasoning Over Paragraphs”. In: Proc. of NAACL. 2019.

[84] Chris Dyer et al. “Recurrent neural network grammars”. In: NAACL. 2016.

[85] Kevin Ellis et al. “Write, Execute, Assess: Program Synthesis with a REPL”. In:
Advances in Neural Information Processing Systems. 2019.

BIBLIOGRAPHY 136

[86] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. “Tree-to-sequence
attentional neural machine translation”. In: ACL. 2016.

[87] Richard Evans et al. “Can Neural Networks Understand Logical Entailment?” In:
ICLR (2018).

[88] Dan Feblowitz and David Kauchak. “Sentence simplification as tree transduction”. In:
Proceedings of the Second Workshop on Predicting and Improving Text Readability for
Target Reader Populations. 2013, pp. 1–10.

[89] Zhangyin Feng et al. “Codebert: A pre-trained model for programming and natural
languages”. In: arXiv preprint arXiv:2002.08155 (2020).

[90] Roy Fox et al. “Parametrized Hierarchical Procedures for Neural Programming”. In:
ICLR. 2018.

[91] Yaroslav Ganin et al. “Synthesizing Programs for Images using Reinforced Adversarial
Learning”. In: arXiv preprint arXiv:1804.01118 (2018).

[92] Google. Google Or-Tools. https://developers.google.com/optimization/. 2019.

[93] Jonathan Gordon et al. “Permutation equivariant models for compositional gener-
alization in language”. In: International Conference on Learning Representations.
2020.

[94] Robert Grandl et al. “Multi-resource packing for cluster schedulers”. In: ACM SIG-
COMM Computer Communication Review 44.4 (2015), pp. 455–466.

[95] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural turing machines”. In: arXiv
preprint arXiv:1410.5401 (2014).

[96] Edward Grefenstette et al. “Learning to transduce with unbounded memory”. In:
Advances in Neural Information Processing Systems. 2015, pp. 1828–1836.

[97] Jiatao Gu et al. “Incorporating Copying Mechanism in Sequence-to-Sequence Learning”.
In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2016, pp. 1631–1640.

[98] Sumit Gulwani. “Automating string processing in spreadsheets using input-output
examples”. In: ACM SIGPLAN Notices. Vol. 46. 1. ACM. 2011, pp. 317–330.

[99] Sumit Gulwani, William R Harris, and Rishabh Singh. “Spreadsheet data manipulation
using examples”. In: Communications of the ACM 55.8 (2012), pp. 97–105.

[100] Sumit Gulwani and Mark Marron. “Nlyze: Interactive programming by natural lan-
guage for spreadsheet data analysis and manipulation”. In: Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 2014, pp. 803–814.

[101] Jiaqi Guo et al. “Towards Complex Text-to-SQL in Cross-Domain Database with
Intermediate Representation”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2019, pp. 4524–4535.

BIBLIOGRAPHY 137

[102] Kavi Gupta et al. “Synthesize, execute and debug: Learning to repair for neural
program synthesis”. In: Advances in Neural Information Processing Systems. 2020.

[103] Kelvin Guu et al. “From Language to Programs: Bridging Reinforcement Learning
and Maximum Marginal Likelihood”. In: ACL (2017).

[104] Tuomas Haarnoja et al. “Reinforcement learning with deep energy-based policies”. In:
ICML. JMLR. org. 2017, pp. 1352–1361.

[105] Halide. Halide Simplifier. https://github.com/halide/Halide. 2018.

[106] Di He et al. “Dual learning for machine translation”. In: Advances in Neural Informa-
tion Processing Systems. 2016, pp. 820–828.

[107] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[108] Dan Hendrycks et al. “Measuring Coding Challenge Competence With APPS”. In:
arXiv preprint arXiv:2105.09938 (2021).

[109] Felienne Hermans and Emerson Murphy-Hill. “Enron’s spreadsheets and related emails:
A dataset and analysis”. In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 2. IEEE. 2015, pp. 7–16.

[110] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “Detecting and visualizing
inter-worksheet smells in spreadsheets”. In: 2012 34th International Conference on
Software Engineering (ICSE). IEEE. 2012, pp. 441–451.

[111] Felienne Hermans, Martin Pinzger, and Arie van Deursen. “Measuring spreadsheet
formula understandability”. In: arXiv preprint arXiv:1209.3517 (2012).

[112] Felienne Hermans et al. “Data clone detection and visualization in spreadsheets”. In:
2013 35th International Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 292–301.

[113] Jonathan Herzig et al. “TAPAS: Weakly Supervised Table Parsing via Pre-training”.
In: Annual Meeting of the Association for Computational Linguistics (ACL). 2020.

[114] HoC. Hour of Code. https://codehs.com/hourofcode/. 2018.

[115] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[116] Jieh Hsiang et al. “The term rewriting approach to automated theorem proving”. In:
The Journal of Logic Programming 14.1-2 (1992), pp. 71–99.

[117] Minghao Hu et al. “A Multi-Type Multi-Span Network for Reading Comprehension
that Requires Discrete Reasoning”. In: arXiv preprint arXiv:1908.05514 (2019).

[118] Daniel Huang et al. “GamePad: A Learning Environment for Theorem Proving”. In:
arXiv preprint arXiv:1806.00608 (2018).

[119] Drew A Hudson and Christopher D Manning. “Compositional Attention Networks for
Machine Reasoning”. In: International Conference on Learning Representations. 2018.

BIBLIOGRAPHY 138

[120] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in science
& engineering 9.3 (2007), pp. 90–95.

[121] IText. IText. http://sourceforge.net/projects/itext/. 2018.

[122] Srinivasan Iyer et al. “Learning a Neural Semantic Parser from User Feedback”.
In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2017, pp. 963–973.

[123] Srinivasan Iyer et al. “Mapping Language to Code in Programmatic Context”. In: Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
2018, pp. 1643–1652.

[124] Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. “Search-based neural structured
learning for sequential question answering”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2017,
pp. 1821–1831.

[125] Max Jaderberg et al. “Decoupled neural interfaces using synthetic gradients”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org. 2017, pp. 1627–1635.

[126] Java2CSharp. Java2CSharp. http://sourceforge.net/projects/j2cstranslator/. 2018.

[127] JGit. JGit. https://github.com/eclipse/jgit/. 2018.

[128] Robin Jia and Percy Liang. “Data recombination for neural semantic parsing”. In:
ACL (2016).

[129] Justin Johnson et al. “Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 2901–2910.

[130] Justin Johnson et al. “Inferring and executing programs for visual reasoning”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 2989–
2998.

[131] Armand Joulin and Tomas Mikolov. “Inferring algorithmic patterns with stack-
augmented recurrent nets”. In: NIPS. 2015.

[132] JTS. JTS. http://sourceforge.net/projects/jts-topo-suite/. 2018.

[133] Lukasz Kaiser and Ilya Sutskever. “Neural gpus learn algorithms”. In: arXiv preprint
arXiv:1511.08228 (2015).

[134] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. “Phrase-based statistical
translation of programming languages”. In: Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software.
ACM. 2014, pp. 173–184.

[135] Richard M Karp. “Reducibility among combinatorial problems”. In: Complexity of
computer computations. Springer, 1972, pp. 85–103.

BIBLIOGRAPHY 139

[136] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and understanding
recurrent networks”. In: arXiv preprint arXiv:1506.02078 (2015).

[137] Daniel Keysers et al. “Measuring Compositional Generalization: A Comprehensive
Method on Realistic Data”. In: International Conference on Learning Representations.
2020.

[138] Elias Khalil et al. “Learning combinatorial optimization algorithms over graphs”. In:
Advances in Neural Information Processing Systems. 2017, pp. 6348–6358.

[139] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: ICLR. 2015.

[140] Guillaume Klein et al. “OpenNMT: Neural Machine Translation Toolkit”. In: arXiv
preprint arXiv:1805.11462 (2018).

[141] Bryan Klimt and Yiming Yang. “Introducing the Enron corpus.” In: CEAS. 2004.

[142] Wouter Kool, Herke van Hoof, and Max Welling. “Attention, Learn to Solve Routing
Problems!” In: International Conference on Learning Representations. 2019. url:
https://openreview.net/forum?id=ByxBFsRqYm.

[143] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. “Neural semantic parsing
with type constraints for semi-structured tables”. In: EMNLP (2017).

[144] Sumith Kulal et al. “Spoc: Search-based pseudocode to code”. In: Advances in Neural
Information Processing Systems. 2019.

[145] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. “Neural random-access
machines”. In: arXiv preprint arXiv:1511.06392 (2015).

[146] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. “Grammar Varia-
tional Autoencoder”. In: arXiv preprint arXiv:1703.01925 (2017).

[147] Larissa Laich, Pavol Bielik, and Martin Vechev. “Guiding program synthesis by learning
to generate examples”. In: International Conference on Learning Representations. 2019.

[148] Brenden Lake and Marco Baroni. “Generalization without Systematicity: On the
Compositional Skills of Sequence-to-Sequence Recurrent Networks”. In: International
Conference on Machine Learning. 2018, pp. 2873–2882.

[149] Brenden M Lake. “Compositional generalization through meta sequence-to-sequence
learning”. In: Advances in Neural Information Processing Systems. 2019, pp. 9788–
9798.

[150] Brenden M Lake, Tal Linzen, and Marco Baroni. “Human few-shot learning of compo-
sitional instructions”. In: arXiv preprint arXiv:1901.04587 (2019).

[151] Brenden M Lake et al. “Building machines that learn and think like people”. In:
Behavioral and brain sciences 40 (2017).

[152] Guillaume Lample and François Charton. “Deep learning for symbolic mathematics”.
In: International Conference on Learning Representations. 2020.

https://openreview.net/forum?id=ByxBFsRqYm

BIBLIOGRAPHY 140

[153] Gil Lederman, Markus N Rabe, and Sanjit A Seshia. “Learning Heuristics for Auto-
mated Reasoning through Deep Reinforcement Learning”. In: arXiv preprint arXiv:1807.08058
(2018).

[154] Sergey Levine and Pieter Abbeel. “Learning neural network policies with guided policy
search under unknown dynamics”. In: Advances in Neural Information Processing
Systems. 2014, pp. 1071–1079.

[155] Sergey Levine and Vladlen Koltun. “Guided policy search”. In: International Confer-
ence on Machine Learning. 2013, pp. 1–9.

[156] Chengtao Li et al. “Neural Program Lattices”. In: ICLR. 2017.

[157] Jian Li et al. “Code completion with neural attention and pointer networks”. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018,
pp. 4159–25.

[158] Yuanpeng Li et al. “Compositional Generalization for Primitive Substitutions”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 2019, pp. 4284–4293.

[159] Chen Liang et al. “Memory augmented policy optimization for program synthesis
and semantic parsing”. In: Advances in Neural Information Processing Systems. 2018,
pp. 9994–10006.

[160] Chen Liang et al. “Neural Symbolic Machines: Learning Semantic Parsers on Freebase
with Weak Supervision”. In: ACL (2017).

[161] Xi Victoria Lin et al. “NL2Bash: A Corpus and Semantic Parser for Natural Language
Interface to the Linux Operating System”. In: Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018). 2018.

[162] Wang Ling et al. “Latent predictor networks for code generation”. In: ACL. 2016.

[163] Wang Ling et al. “Program Induction by Rationale Generation: Learning to Solve
and Explain Algebraic Word Problems”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 2017,
pp. 158–167.

[164] Jiangming Liu and Yue Zhang. “Shift-reduce constituent parsing with neural lookahead
features”. In: Transactions of the Association for Computational Linguistics 5 (2017),
pp. 45–58.

[165] Yanpei Liu et al. “Delving into transferable adversarial examples and black-box
attacks”. In: International Conference on Learning Representations. 2016.

[166] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”.
In: arXiv:1907.11692 (2019).

[167] Yunchao Liu and Zheng Wu. “Learning to describe scenes with programs”. In: Inter-
national Conference on Learning Representations. 2019.

BIBLIOGRAPHY 141

[168] Joao Loula, Marco Baroni, and Brenden M Lake. “Rearranging the familiar: Testing
compositional generalization in recurrent networks”. In: arXiv preprint arXiv:1807.07545
(2018).

[169] Sidi Lu et al. “Neurally-Guided Structure Inference”. In: International Conference on
Machine Learning. 2019.

[170] Lucene. Lucene. http://lucene.apache.org/. 2018.

[171] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches
to attention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025
(2015).

[172] Shantanu Mandal et al. “Learning Fitness Functions for Machine Programming”. In:
Proceedings of Machine Learning and Systems 3 (2021).

[173] Christopher Manning et al. “The Stanford CoreNLP natural language processing
toolkit”. In: Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 2014, pp. 55–60.

[174] Hongzi Mao et al. “Resource management with deep reinforcement learning”. In:
Proceedings of the 15th ACM Workshop on Hot Topics in Networks. ACM. 2016,
pp. 50–56.

[175] Jiayuan Mao et al. “The neuro-symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision”. In: International Conference on Learning
Representations. 2019.

[176] Matplotlib. Matplotlib Scatter method documentation. https://matplotlib.org/3.
3.3/api/_as_gen/matplotlib.pyplot.scatter.html. 2020.

[177] DAVID Q MAYNE. “Differential Dynamic Programming–A Unified Approach to
the Optimization of Dynamic Systems”. In: Control and Dynamic Systems. Vol. 10.
Elsevier, 1973, pp. 179–254.

[178] David McClosky, Eugene Charniak, and Mark Johnson. “Effective self-training for
parsing”. In: Proceedings of the Human Language Technology Conference of the NAACL,
Main Conference. 2006, pp. 152–159.

[179] Charith Mendis et al. “Ithemal: Accurate, portable and fast basic block throughput
estimation using deep neural networks”. In: International Conference on machine
learning. PMLR. 2019, pp. 4505–4515.

[180] Qingkai Min et al. “Dialogue State Induction Using Neural Latent Variable Models”.
In: International Joint Conferences on Artificial Intelligence. 2020.

[181] Sewon Min et al. “A Discrete Hard EM Approach for Weakly Supervised Question
Answering”. In: arXiv preprint arXiv:1909.04849 (2019).

[182] Dipendra Misra and Yoav Artzi. “Neural shift-reduce ccg semantic parsing”. In:
Proceedings of the 2016 conference on empirical methods in natural language processing.
2016, pp. 1775–1786.

https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.scatter.html

BIBLIOGRAPHY 142

[183] Richard Montague. “Universal grammar”. In: Theoria 36.3 (1970), pp. 373–398.

[184] Christopher Z Mooney et al. Bootstrapping: A nonparametric approach to statistical
inference. 95. sage, 1993.

[185] Vijayaraghavan Murali et al. “Neural Sketch Learning for Conditional Program Gen-
eration”. In: International Conference on Learning Representations. 2018.

[186] MohammadReza Nazari et al. “Reinforcement Learning for Solving the Vehicle Routing
Problem”. In: Advances in Neural Information Processing Systems. 2018, pp. 9861–
9871.

[187] Arvind Neelakantan et al. “Learning a natural language interface with neural pro-
grammer”. In: arXiv preprint arXiv:1611.08945 (2016).

[188] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. “Divide-and-conquer
approach for multi-phase statistical migration for source code (t)”. In: Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE. 2015, pp. 585–596.

[189] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. “Lexical statistical
machine translation for language migration”. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM. 2013, pp. 651–654.

[190] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. “Mapping API elements
for code migration with vector representations”. In: Software Engineering Companion
(ICSE-C), IEEE/ACM International Conference on. IEEE. 2016, pp. 756–758.

[191] Mitja Nikolaus et al. “Compositional Generalization in Image Captioning”. In: Proceed-
ings of the 23rd Conference on Computational Natural Language Learning (CoNLL).
2019, pp. 87–98.

[192] Maxwell Nye et al. “Learning to Infer Program Sketches”. In: International Conference
on Machine Learning. 2019, pp. 4861–4870.

[193] Maxwell Nye et al. “Representing Partial Programs with Blended Abstract Semantics”.
In: International Conference on Learning Representations. 2021.

[194] Maxwell I Nye et al. “Learning Compositional Rules via Neural Program Synthesis”.
In: arXiv preprint arXiv:2003.05562 (2020).

[195] Yusuke Oda et al. “Learning to generate pseudo-code from source code using statistical
machine translation (t)”. In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2015, pp. 574–584.

[196] Augustus Odena and Charles Sutton. “Learning to represent programs with property
signatures”. In: International Conference on Learning Representations. 2020.

[197] Augustus Odena et al. “BUSTLE: Bottom-up program-Synthesis Through Learning-
guided Exploration”. In: arXiv preprint arXiv:2007.14381 (2020).

[198] OpenAI. OpenAI Dota 2 Bot. https://openai.com/the-international/. 2018.

BIBLIOGRAPHY 143

[199] Gustavo H Paetzold and Lucia Specia. “Text simplification as tree transduction”. In:
Proceedings of the 9th Brazilian Symposium in Information and Human Language
Technology. 2013.

[200] Pandas. Pandas Dataframe documentation. https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.html. 2020.

[201] Emilio Parisotto et al. “Neuro-Symbolic Program Synthesis”. In: International Con-
ference on Learning Representations. 2017.

[202] Panupong Pasupat and Percy Liang. “Compositional Semantic Parsing on Semi-
Structured Tables”. In: ACL (2015).

[203] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W. 2017.

[204] Richard E Pattis. Karel the robot: a gentle introduction to the art of programming.
John Wiley & Sons, Inc., 1981.

[205] Chris Paxton et al. “Prospection: Interpretable plans from language by predicting
the future”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 6942–6948.

[206] Matthew E. Peters et al. “Deep Contextualized Word Representations”. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,
Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers). 2018, pp. 2227–2237.

[207] Thomas Pierrot et al. “Learning compositional neural programs with recursive tree
search and planning”. In: Advances in Neural Information Processing Systems. 2019,
pp. 14646–14656.

[208] POI. POI. http://poi.apache.org/. 2018.

[209] Illia Polosukhin and Alexander Skidanov. “Neural program search: Solving program-
ming tasks from description and examples”. In: arXiv preprint arXiv:1802.04335
(2018).

[210] Oleksandr Polozov and Sumit Gulwani. “FlashMeta: a framework for inductive program
synthesis”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 2015, pp. 107–
126.

[211] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. “Towards a theory of natural
language interfaces to databases”. In: Proceedings of the 8th international conference
on Intelligent user interfaces. 2003, pp. 149–157.

[212] Maxim Rabinovich, Mitchell Stern, and Dan Klein. “Abstract Syntax Networks for
Code Generation and Semantic Parsing”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1.
2017, pp. 1139–1149.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

BIBLIOGRAPHY 144

[213] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for optimizing paral-
lelism, locality, and recomputation in image processing pipelines”. In: ACM SIGPLAN
Notices 48.6 (2013), pp. 519–530.

[214] Pranav Rajpurkar et al. “SQuAD: 100,000+ Questions for Machine Comprehension
of Text”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. 2016,
pp. 2383–2392.

[215] Veselin Raychev, Martin Vechev, and Eran Yahav. “Code completion with statisti-
cal language models”. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2014, pp. 419–428.

[216] Siva Reddy, Danqi Chen, and Christopher D. Manning. “CoQA: A Conversational
Question Answering Challenge”. In: TACL 7 (2019), pp. 249–266.

[217] Scott Reed and Nando De Freitas. “Neural programmer-interpreters”. In: ICLR. 2016.

[218] Colin R Reeves. Modern heuristic techniques for combinatorial problems. Advanced
topics in computer science. Vol. 15. Mc Graw-Hill, 1995.

[219] Azriel Rosenfeld and Mark Thurston. “Edge and curve detection for visual scene
analysis”. In: IEEE Transactions on computers 5 (1971), pp. 562–569.

[220] Laura Ruis et al. “A Benchmark for Systematic Generalization in Grounded Language
Understanding”. In: arXiv preprint arXiv:2003.05161 (2020).

[221] Jake Russin et al. “Compositional generalization in a deep seq2seq model by separating
syntax and semantics”. In: arXiv preprint arXiv:1904.09708 (2019).

[222] David Saxton et al. “Analysing mathematical reasoning abilities of neural models”.
In: (2019).

[223] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic superoptimization”. In:
ACM SIGARCH Computer Architecture News. Vol. 41. 1. ACM. 2013, pp. 305–316.

[224] Ziv Scully et al. “Optimally scheduling jobs with multiple tasks”. In: ACM SIGMET-
RICS Performance Evaluation Review 45.2 (2017), pp. 36–38.

[225] Seaborn. mwaskom/seaborn library documentation. 2020.

[226] Min Joon Seo et al. “Bidirectional Attention Flow for Machine Comprehension”. In:
ICLR. 2017.

[227] Eui Chul Shin, Illia Polosukhin, and Dawn Song. “Improving neural program synthesis
with inferred execution traces”. In: Advances in Neural Information Processing Systems.
2018, pp. 8917–8926.

[228] Richard Shin, Illia Polosukhin, and Dawn Song. “Towards Specification-Directed
Program Repair”. In: (2018).

[229] Richard Shin et al. “Synthetic datasets for neural program synthesis”. In: International
Conference on Learning Representations. 2019.

BIBLIOGRAPHY 145

[230] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature
550.7676 (2017), p. 354.

[231] Rishabh Singh, Benjamin Livshits, and Benjamin Zorn. “Melford: Using neural net-
works to find spreadsheet errors”. In: (2017).

[232] Richard Socher et al. “Parsing natural scenes and natural language with recursive
neural networks”. In: Proceedings of the 28th international conference on machine
learning (ICML-11). 2011, pp. 129–136.

[233] Richard Socher et al. “Semi-supervised recursive autoencoders for predicting sentiment
distributions”. In: Proceedings of the conference on empirical methods in natural
language processing. Association for Computational Linguistics. 2011, pp. 151–161.

[234] Armando Solar-Lezama. “Program Synthesis by Sketching”. PhD thesis. UNIVERSITY
OF CALIFORNIA, BERKELEY, 2008.

[235] Niklas Sorensson and Niklas Een. “Minisat v1. 13-a sat solver with conflict-clause
minimization”. In: SAT 2005.53 (2005), pp. 1–2.

[236] Mark Steedman. The syntactic process. Vol. 24. MIT press Cambridge, MA, 2000.

[237] Alexander Suh and Yuval Timen. “Creating Synthetic Datasets via Evolution for
Neural Program Synthesis”. In: arXiv preprint arXiv:2003.10485 (2020).

[238] Shao-Hua Sun et al. “Neural program synthesis from diverse demonstration videos”.
In: International Conference on Machine Learning. 2018, pp. 4790–4799.

[239] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM neural networks for
language modeling”. In: Thirteenth annual conference of the international speech
communication association. 2012.

[240] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
1998.

[241] Alexey Svyatkovskiy et al. “IntelliCode Compose: Code Generation Using Transformer”.
In: arXiv preprint arXiv:2005.08025 (2020).

[242] Alexey Svyatkovskiy et al. “Pythia: AI-assisted code completion system”. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2019, pp. 2727–2735.

[243] Alexey Svyatkovskoy et al. “Fast and Memory-Efficient Neural Code Completion”. In:
arXiv preprint arXiv:2004.13651 (2020).

[244] Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Improved semantic rep-
resentations from tree-structured long short-term memory networks”. In: Proceedings
of the Annual Meeting of the Association for Computational Linguistics. 2015.

[245] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of complex
behaviors through online trajectory optimization”. In: Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE. 2012, pp. 4906–4913.

BIBLIOGRAPHY 146

[246] Daria Terekhov, Douglas G Down, and J Christopher Beck. “Queueing-theoretic
approaches for dynamic scheduling: a survey”. In: Surveys in Operations Research and
Management Science 19.2 (2014), pp. 105–129.

[247] Yonglong Tian et al. “Learning to infer and execute 3d shape programs”. In: Interna-
tional Conference on Learning Representations. 2019.

[248] Yuandong Tian and Srinivasa G Narasimhan. “Hierarchical data-driven descent for
efficient optimal deformation estimation”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2013, pp. 2288–2295.

[249] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[250] Ramakrishna Vedantam et al. “Probabilistic Neural Symbolic Models for Interpretable
Visual Question Answering”. In: International Conference on Machine Learning. 2019,
pp. 6428–6437.

[251] Petar Veličković et al. “Neural execution of graph algorithms”. In: International
Conference on Learning Representations. 2020.

[252] Ashwin J Vijayakumar et al. “Neural-Guided Deductive Search for Real-Time Program
Synthesis from Examples”. In: ICLR. 2018.

[253] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. “Pointer networks”. In: Advances
in neural information processing systems. 2015, pp. 2692–2700.

[254] Oriol Vinyals et al. “Grammar as a foreign language”. In: NIPS. 2015.

[255] Draguna Vrabie et al. “Adaptive optimal control for continuous-time linear systems
based on policy iteration”. In: Automatica 45.2 (2009), pp. 477–484.

[256] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 2019.

[257] Bailin Wang et al. “Rat-sql: Relation-aware schema encoding and linking for text-to-sql
parsers”. In: Annual Meeting of the Association for Computational Linguistics (ACL).
2020.

[258] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing highly expressive
SQL queries from input-output examples”. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI. ACM, 2017,
pp. 452–466.

[259] Chenglong Wang et al. “Falx: Synthesis-Powered Visualization Authoring”. In: CHI
’21: CHI Conference on Human Factors in Computing Systems. ACM, 2021, 106:1–
106:15.

[260] Chenglong Wang et al. “Robust Text-to-SQL Generation with Execution-Guided
Decoding”. In: arXiv preprint arXiv:1807.03100 (2018).

BIBLIOGRAPHY 147

[261] Chenglong Wang et al. “Visualization by example”. In: Proceedings of the ACM on
Programming Languages 4.POPL (2019), pp. 1–28.

[262] Ke Wang, Rishabh Singh, and Zhendong Su. “Dynamic Neural Program Embedding
for Program Repair”. In: ICLR. 2018.

[263] Wenhui Wang et al. “Gated Self-Matching Networks for Reading Comprehension and
Question Answering”. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers. 2017, pp. 189–198.

[264] Yushi Wang, Jonathan Berant, and Percy Liang. “Building a semantic parser overnight”.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). 2015, pp. 1332–1342.

[265] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Reinforcement Learning. Springer, 1992, pp. 5–32.

[266] Sam Wiseman and Alexander M Rush. “Sequence-to-sequence learning as beam-search
optimization”. In: EMNLP. 2016.

[267] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. “Neural scene de-rendering”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 699–707.

[268] Da Xiao, Jo-Yu Liao, and Xingyuan Yuan. “Improving the Universality and Learn-
ability of Neural Programmer-Interpreters with Combinator Abstraction”. In: ICLR.
2018.

[269] Qizhe Xie et al. “Self-training with noisy student improves imagenet classification”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 10687–10698.

[270] Caiming Xiong, Victor Zhong, and Richard Socher. “Dynamic Coattention Networks
For Question Answering”. In: CoRR abs/1611.01604 (2016). arXiv: 1611.01604. url:
http://arxiv.org/abs/1611.01604.

[271] Xiaojun Xu, Chang Liu, and Dawn Song. “SQLNet: Generating Structured Queries
From Natural Language Without Reinforcement Learning”. In: arXiv preprint arXiv:1711.04436
(2017).

[272] Xiaojun Xu et al. “Fooling vision and language models despite localization and
attention mechanism”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 4951–4961.

[273] Yujun Yan et al. “Neural execution engines: Learning to execute subroutines”. In:
Advances in Neural Information Processing Systems. 2020.

https://arxiv.org/abs/1611.01604
http://arxiv.org/abs/1611.01604

BIBLIOGRAPHY 148

[274] Xuejun Yang et al. “Finding and understanding bugs in C compilers”. In: Proceed-
ings of the 32nd ACM SIGPLAN conference on Programming language design and
implementation. 2011, pp. 283–294.

[275] Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Language
Understanding”. In: CoRR abs/1906.08237 (2019).

[276] Kexin Yi et al. “Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding”. In: Advances in neural information processing systems. 2018, pp. 1031–
1042.

[277] Pengcheng Yin and Graham Neubig. “A Syntactic Neural Model for General-Purpose
Code Generation”. In: ACL. 2017.

[278] Pengcheng Yin et al. “Learning to mine aligned code and natural language pairs
from stack overflow”. In: 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). IEEE. 2018, pp. 476–486.

[279] Pengcheng Yin et al. “TaBERT: Pretraining for Joint Understanding of Textual and
Tabular Data”. In: Annual Meeting of the Association for Computational Linguistics
(ACL). 2020.

[280] Adams Wei Yu et al. “QANet: Combining Local Convolution with Global Self-Attention
for Reading Comprehension”. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. 2018.

[281] Tao Yu et al. “CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-
Domain Natural Language Interfaces to Databases”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019,
pp. 1962–1979.

[282] Tao Yu et al. “SParC: Cross-Domain Semantic Parsing in Context”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. 2019,
pp. 4511–4523.

[283] Tao Yu et al. “Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 2018, pp. 3911–
3921.

[284] Wojciech Zaremba and Ilya Sutskever. “Learning to execute”. In: arXiv preprint
arXiv:1410.4615 (2014).

[285] Wojciech Zaremba and Ilya Sutskever. “Reinforcement Learning Neural Turing Machines-
Revised”. In: arXiv preprint arXiv:1505.00521 (2015).

[286] Wojciech Zaremba et al. “Learning Simple Algorithms from Examples”. In: Proceedings
of The 33rd International Conference on Machine Learning. 2016, pp. 421–429.

BIBLIOGRAPHY 149

[287] Maksym Zavershynskyi, Alex Skidanov, and Illia Polosukhin. “NAPS: Natural program
synthesis dataset”. In: arXiv preprint arXiv:1807.03168 (2018).

[288] Luke S Zettlemoyer and Michael Collins. “Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars”. In: arXiv preprint
arXiv:1207.1420 (2012).

[289] Xingxing Zhang, Liang Lu, and Mirella Lapata. “Top-down Tree Long Short-Term
Memory Networks”. In: Proceedings of NAACL-HLT. 2016, pp. 310–320.

[290] Yakun Zhang et al. “Learning to detect table clones in spreadsheets”. In: Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2020, pp. 528–540.

[291] Yichi Zhang et al. “A Probabilistic End-To-End Task-Oriented Dialog Model with
Latent Belief States towards Semi-Supervised Learning”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

[292] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2sql: Generating structured
queries from natural language using reinforcement learning”. In: arXiv preprint
arXiv:1709.00103 (2017).

[293] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. “Dag-structured long short-term
memory for semantic compositionality”. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2016, pp. 917–926.

[294] Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. “Long short-term memory over re-
cursive structures”. In: International Conference on Machine Learning. 2015, pp. 1604–
1612.

[295] Amit Zohar and Lior Wolf. “Automatic Program Synthesis of Long Programs with a
Learned Garbage Collector”. In: Advances in Neural Information Processing Systems.
2018, pp. 2094–2103.

150

Appendix A

SpreadsheetCoder: Formula Prediction
from Semi-structured Context

A.1 An Extended Discussion of Related Work

Various neural network approaches have been proposed for the FlashFill benchmark [201, 74,
252]. Specifically, both R3NN [201] and RobustFill [74] are purely statistical models, and
RobustFill performs better. In a RobustFill model, each formula is executed on a single data
row, thus each row is independently fed into a shared encoder. Afterwards, at each decoding
step, a shared LSTM decoder generates a hidden state per data row, which are then fed into
a max pooling layer. Finally, the pooled hidden state is fed into a fully-connected layer to
predict the formula token. On the other hand, in [252], they design a neural network to guide
the deductive search performed by PROSE [210], a commercial framework for input-output
program synthesis. A recent work proposes neural-guided bottom-up search for program
synthesis from input-output examples, and they extend the domain-specific language of
FlashFill to support more spreadsheet programs [197].

Besides formula prediction, some previous work has studied other applications related to
spreadsheets, including smell detection [110, 59, 231, 18], clone detection [112, 81, 290], and
structure extraction for spreadsheet tables [76, 77]. Our proposed encoder architecture could
potentially be adapted for these spreadsheet tasks as well, and we leave it for future work.

A.2 More Experimental Results

For the setting where the model input does not include headers, corresponding to Table 2.3
in Section 2.4, we present the sketch and range accuracies in Table A.1, and the breakdown
accuracies on formulas of different sketch lengths in Figure A.1. We observe that the
performance degradation is more severe for formulas of sketch lengths 2–3.

APPENDIX A. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 151

Figure A.1: Top-1 formula accuracies for different sketch lengths, excluding headers in the
context.

A.3 More Dataset Details

Although in principle, our model could generate formulas using any operator in the spreadsheet
language, some kinds of value references are impossible to predict from local context, thus we
remove formulas with such values from our dataset. Specifically, we exclude formulas that
use the HYPERLINK function with a literal URL, since those are merely ”stylistic” formulas
that perform no computation beyond presenting a URL as a clickable link. As discussed in
Section 2.2, we also filtered out formulas with cross-references from other tabs or spreadsheets.
In total, the formulas filtered out after these two steps constitute around 40% of all formulas.
We further filtered out formulas with cell references farther than 10 rows or columns from
the target cell in either direction, and formulas with absolute cell ranges. In this way, about
45% of the original set of formulas are kept in our dataset.

Meanwhile, we observe that some spreadsheets may have tens of thousands of rows
including the same formula, and including all of them in the dataset could bias our data
distribution. Therefore, when multiple rows in the same spreadsheet table include the same
formula in the same column, we keep the first 10 occurrences of such a formula, and create one
data sample per formula. In this way, we extract around 846K formulas from 20M formulas
before this filtering step, and we split them into 770K training samples, 42K for validation,

APPENDIX A. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 152

Table A.1: Breakdown accuracies on the test set, excluding headers in the context.

(a) Sketch accuracy.

Approach Top-1 Top-5 Top-10

Full Model 28.33% 62.55% 72.89%
− Column-based BERT 28.40% 61.60% 74.92%
− Row-based BERT 27.71% 60.84% 73.43%
− Pretraining 28.78% 62.37% 74.61%

Row-based RobustFill 25.78% 42.66% 50.17%
Column-based RobustFill 26.15% 47.78% 57.72%
No context 25.19% 47.08% 52.70%

(b) Range accuracy.

Approach Top-1 Top-5 Top-10

Full Model 22.60% 47.11% 53.84%
− Column-based BERT 22.82% 47.76% 54.98%
− Row-based BERT 22.47% 46.14% 54.51%
− Pretraining 23.48% 47.27% 54.59%

Row-based RobustFill 21.01% 38.21% 43.89%
Column-based RobustFill 21.27% 37.80% 43.77%
No context 11.80% 25.54% 38.07%

and 34K for testing.
In total, around 100 operators are covered in our output vocabulary. Among all spreadsheet

formulas included in our filtered dataset, we list the 30 most commonly used spreadsheet func-
tions and operators with their types 1 as follows: SUM (Math), + (Operator, equivalent to ADD),
- (Operator, equivalent to MINUS), * (Operator, equivalent to MULTIPLY), / (Operator, equiv-
alent to DIV), & (Operator, equivalent to CONCAT), AVERAGE (Statistical), LEN (Text), UPLUS
(Operator), STDEV (Statistical), COUNTA (Statistical), MAX (Statistical), LEFT (Text), IFERROR
(Logical), ABS (Math), MEDIAN (Statistical), UMINUS (Operator), CONCATENATE (Text), ROUND
(Math), WEEKNUM (Date), AVERAGEA (Statistical), MIN (Statistical), COUNT (Statistical), TRIM
(Text), COS (Math), SIN (Math), SINH (Math), TODAY (Date), IF (Logical), MONTH (Date).
We observe that most of these functions and operators are for mathematical calculation,
statistical computation, and text manipulation. However, people also write conditional
statements, and spreadsheet formulas for calculating the dates.

The spreadsheet functions and operators utilized in the Enron corpus are: + (Operator,
equivalent to ADD), SUM (Math), - (Operator, equivalent to MINUS), UPLUS (Operator), * (Op-
erator, equivalent to MULTIPLY), / (Operator, equivalent to DIV), AVERAGE (Statistical), MIN
(Statistical), MAX (Statistical), UMINUS (Operator), COUNT (Statistical), COUNTA (Statistical),

1The function types are based on the Google Sheets function list here: https://support.google.com/
docs/table/25273?hl=en.

https://support.google.com/docs/table/25273?hl=en
https://support.google.com/docs/table/25273?hl=en

APPENDIX A. SPREADSHEETCODER: FORMULA PREDICTION FROM
SEMI-STRUCTURED CONTEXT 153

ABS (Math), LN (Math), DAY (Date), WEEKDAY (Date), and STDEV (Statistical).

A.4 More Discussion of the FlashFill-like Setting

Following prior work on FlashFill [74, 201, 252], we evaluate model performance when different
numbers of data rows are presented to the model as input. Specifically, when the input
includes 1–11 data rows, we grow the input from the target row upward. Our full data context
includes 21 data rows, with 10 rows above the target cell, 10 rows below the target cell, and
1 row where the target cell locates. Consistent with prior work, when we vary the number of
input data rows during inference, we always evaluate the same model trained with the full
data context including 21 data rows. Since RobustFill independently encodes each row, it
supports variable number of input rows by design. For our models with the tabular input
representation, we set the rows to be empty when they are out of the input scope, and apply
a mask to indicate that the corresponding data values are invalid.

A.5 Implementation Details

Data preprocessing. The content in each cell includes its data type and value, and we
concatenate them as a token sequence. For example, A2 in Figure 2.1a is represented as
num 0. As discussed in Section 2.3, we concatenate all cell values in the same row as a
token sequence, where values of different cells are separated by the [SEP] token. Each
data row fed into the model includes L = 128 tokens, and when the concatenated token
sequence exceeds the length limit, we discard cells that are further away from the target
cell. For column-wise representation, we produce token embeddings independently for each
column-wise bundle Scb = [Hc, C3b−1, C3b, C3b+1] for b ∈ [−3, 3], where Ci is a token sequence
produced by concatenating all tokens of the cells in column Ci.

Output vocabulary construction. To construct the output formula token vocabulary, we
filtered out tokens that appear less than 10 times in the training set, so that the vocabulary
contains 462 tokens, out of 2625 tokens before filtering. In total, around a hundred operators
are covered in our output vocabulary, including 82 spreadsheet-specific functions, and other
general-purpose numerical operators (e.g., +, -).

Hyper-parameters. The formula decoder is a 1-layer LSTM with the hidden size of 512.
We train the model with the Adam optimizer, with an initial learning rate of 5e-5. We train
models for 200K minibatch updates, with a batch size 64. We set the dropout rate to be 0.1
for training. The norm for gradient clipping is 1.0.

154

Appendix B

PlotCoder: Synthesizing Visualization
Code in Programmatic Context

B.1 Implementation Details

For the model input, we select the suffix of the code sequence when it exceeds the length
limit, and we select the prefix for the natural language. To construct the vocabularies, we
include natural language words that occur at least 15 times in the training set, and code
tokens that occur at least 1,000 times, so that each vocabulary includes around 10, 000 tokens.
We include an [UNK] token in both vocabularies, which is used to encode all input tokens
not appeared in our vocabularies.

The model parameters are randomly initialized within [−0.1, 0.1]. Each LSTM has 2
layers, and a hidden size of 512. The embedding size of all embedding matrices is 512, and the
hidden size of the linear layers is 512. For training, the batch size is 32, the initial learning
rate is 1e-3, with a decay rate of 0.9 after every 6, 000 batch updates. The dropout rate is
0.2, and the norm for gradient clipping is 5.0.

For models using the Transformer architecture as the encoder, we use the pre-trained
RoBERTa-base and codeBERT from their official repositories.1 The hyper-parameters are
largely the same as the LSTM-based models, except that we added a linear learning rate
warmup for the first 6, 000 training steps, which is the common practice for fine-tuning
BERT-like models.

APPENDIX B. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 155

(a) (b)

Figure B.1: Program accuracy with different number of input code cells. (a) Results of
different model architectures. (b) The comparison between the accuracy of the hierarchical
model and the upper bounds.

B.2 Training with Varying Number of Contextual

Code Cells

As discussed in Section 3.4, we provide the results of including different number of local code
cells as the model input in Figure B.1. We also evaluated the upper bounds of program
accuracies for different values of K, where we consider an example to be predictable if all
plotted data in the target program are covered in the input code context. We observe that
including dataframe manipulation code in distant code cells improves the coverage, especially
when K is small.

B.3 Detailed Analysis on Results Per Plot Type

In Section 3.4, we present the breakdown results per plot type in Tables 3.6 and 3.7, where
we observed that “Scatter” and “Others” constitute the majority of the dataset, and the
hierarchical model learns to better categorize plot types from a large number of training
samples.

Note that for categories that the hierarchical model does not perform better than baselines,
even if the accuracy differences are noticeable, the numbers of correct predictions do not
differ much. For example, among the 13 samples in the “Pie” category, the hierarchical model
correctly classifies 8 samples, while the non-hierarchical version makes 10 correct predictions.
When looking at the predictions, we observe that the 2 different predictions are mainly due
to the ambiguity of the natural language descriptions. Specifically, the text descriptions
are “The average score of group A is better than average score of group B in 51% of the

1RoBERTa: https://github.com/pytorch/fairseq/tree/master/examples/roberta
codeBERT: https://github.com/microsoft/CodeBERT

https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/microsoft/CodeBERT

APPENDIX B. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 156

state” and “I am analyzing the data of all male passengers”. In fact, for both examples, the
hierarchical model still generates a program including the plotted data in the ground truth.
However, the hierarchical model wrongly selects plt.bar as the plotting API for the former
sample, and selects plt.scatter for the latter sample, where it additionally selects another
variable for the x-axis. For these 2 samples, we observe that the code context includes plotting
programs that use other data to generate pie charts, and the non-hierarchical model picks a
heuristic to select the same plot type in the code context when there is no cue provided in
the natural language description, while the hierarchical model selects plot types that happen
more frequently in the training distribution. A similar phenomenon holds for other categories
or data splits with a small number of examples.

B.4 Other Plot Types

In the “Others” category discussed in Section 3.2, besides the plots generated by plt.plot,
there are also other plot types, with much smaller data sizes than plt.plot. In Table B.1, we
present the breakdown accuracies of some plot types, which constitute the largest percentages
in the “Others” category excluding plt.plot samples. Specifically, around 4% samples use
boxplot, and each of the other 3 plot types include around 1% samples. Due to the lack of
data for such plot types, the results are much lower than the overall accuracies of all plot
categories, but still non-trivial.

Plot Type Plot Type Acc Plotted Data Acc Program Acc

boxplot 51.04% 10.42% 7.29%
pairplot 42.31% 34.62% 23.00%
jointplot 36.36% 9.09% 4.55%
violinplot 47.06% 5.88% 5.88%

Table B.1: Breakdown accuracies of plots in “Others” category on Test (hard), using the full
hierarchical model.

B.5 More Discussion of Error Analysis

As discussed in Section 3.4, the lack of information in natural language descriptions is the
main reason for a large proportion of wrong predictions (categories 1-3 in Table 3.8).

• Many natural language descriptions only mention the plot type, e.g., “Make a scatter
plot,” which is one reason that the plot type accuracy is generally much higher than
the plotted data accuracy. (1)

APPENDIX B. PLOTCODER: SYNTHESIZING VISUALIZATION CODE IN
PROGRAMMATIC CONTEXT 157

• Sometimes the text only mentions the plotted data without specifying the plot type,
e.g., “Plot the data x1 and x2,” where both plt.plot(x1,x2) and plt.scatter(x1,x2)

are possible predictions, and the model needs to infer the plot type from the code
context. (2)

• The text description includes no plotting information at all, e.g., “Localize your search
around the value you found above,” where the model needs to infer which variables are
search results and could be plotted. (3)

We consider several directions to address different error categories as future work. To
mitigate the ambiguity of natural language descriptions, we could incorporate additional
program specifications such as input-output examples. Input-output examples are also helpful
for evaluating the execution accuracy, which considers all semantically correct programs as
correct predictions even if they differ from the ground truth. Most Jupyter notebooks from
GitHub do not contain sufficient execution information, e.g., many of them load external
data for plotting, and the data sources are not public. Therefore, developing techniques to
automatically synthesize input-output examples is a promising future direction. Designing
new models for code representation learning is another future direction, which could help
address the challenge of embedding long code context.

158

Appendix C

Execution-Guided Neural Program
Synthesis

C.1 More Descriptions of the Karel Domain

Figure C.1 presents the grammar specification of the Karel DSL.
Each Karel grid world has a maximum size of 18× 18, and is represented as a 16× 18× 18

tensor, where each cell of the grid is represented as a 16-dimensional vector corresponding to
the features described in Table C.1.

Prog p ::= def run() : s

Stmt s ::= while(b) : s | repeat(r) : s | s1 ; s2 | a
| if(b) : s | ifelse(b) : s1 else : s2

Cond b ::= frontIsClear() | leftIsClear() | rightIsClear
| markersPresent() | noMarkersPresent() | not b

Action a ::= move() | turnRight() | turnLeft()
| pickMarker() | putMarker()

Cste r ::= 0 | 1 | ... | 19

Figure C.1: Grammar for the Karel task.

C.2 More Details about the Execution-guided

Algorithm

While-statement synthesis algorithm. Algorithm 4 demonstrates the execution-guided
algorithm for while-statement synthesis.

APPENDIX C. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 159

Robot facing North
Robot facing East

Robot facing South
Robot facing West

Obstacle
Grid boundary

1 marker
2 markers
3 markers
4 markers
5 markers
6 markers
7 markers
8 markers
9 markers
10 markers

Table C.1: Representation of each cell in the Karel state.

Training dataset construction for supervised learning. Consider a program P =
S1; ...;ST ;⊥, where each Si is in one of the following forms: (1) Si ∈ L; (2) if C thenBt elseBf fi;
and (3) while C do B end. For each Si ∈ L, we construct a sample of 〈{(ski−1, Ok)}Kk=1,Si〉
directly.

For Si = if C thenBt elseBf fi, we first construct a training sample 〈{(ski−1, Ok)}Kk=1, if C then〉.
Afterwards, we split the input-output examples into two subsets It] If , where for all
(s,O) ∈ It, we have 〈C, s〉 ⇓ true; and C evaluates to false for all (s,O) ∈ If on the other hand.
Then we obtain two derived samples 〈It, Bt else;Si+1; ...;ST ;⊥〉 and 〈If , Bf fi;Si+1; ...;ST ;⊥〉,
from which we construct training samples respectively using the same approach as discussed
above.

In a similar way, we can deal with Si = while C do B end. Finally, we include
〈{(Ok, Ok)}Kk=1,⊥〉 in our constructed training set.

C.3 Model Details

Neural Network Architecture

Our neural network architecture can be found in Figure 4.1, which follows the design in [35].
In particular, the IO Encoder is a convolutional neural network to encode the input and
output grids, which outputs a 512-dimensional vector for each input-output pair. The decoder

APPENDIX C. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 160

Algorithm 4 Execution-guided synthesis (while-statement)

1: function ExecWhile(Γ, I)
2: C ← Γ(I)
3: It ← {(si, so) ∈ I|〈C, si〉 ⇓ true}
4: If ← {(si, so) ∈ I|〈C, si〉 ⇓ false}
5: Bt ← Exec(Γ, It, end-token)
6: I ′t ← {(snew, so)|(si, so) ∈ It ∧ 〈Bt, si〉 ⇓ snew}
7: I ← I ′t ∪ If
8: S ← while C do Bt end
9: return S, I

10: end function

is a 2-layer LSTM with a hidden size of 256. The embedding size of the program tokens is
256.

Each program is represented as a sequence of tokens G = [g1, g2, ..., gL], where each
program token gi belongs to a vocabulary Σ. At each timestep t, the decoder LSTM generates
a program token gt conditioned on both the input-output pair and the previous program
token gt−1, thus the input dimension is 768. Each IO pair is fed into the LSTM individually,
and we a max-pooling operation is performed over the hidden states {ht}Kk=1 of the last layer
of LSTM for all IO pairs. The resulted 256-dimensional vector is fed into a softmax layer to
obtain a prediction probability distribution over all the 52 possible program tokens in the
vocabulary.

Notice that this neural network architecture can also be applied to other program synthesis
problems, with modifications of the IO encoder architectures for different formats of input-
output pairs. For example, in the domain where input-output examples are text strings, such
as FlashFill [98], the IO encoders can be recurrent neural networks (RNNs) [74].

Training Objective Functions

To estimate the parameters θ of the neural network, we first perform supervised learning to
maximize the conditional log-likelihood of the referenced programs [201, 74, 35]. In particular,
we estimate θ∗ such that

θ∗ = arg max
θ

N∏
i=1

pθ(πi|{IOk
i }Kk=1) = arg max

θ

N∑
i=1

log pθ(πi|{IOk
i }Kk=1) (C.1)

Where πi are the ground truth programs provided in the training set.
When training with reinforcement learning, we leverage the policy gradient algorithm

REINFORCE [265] to solve the following objective:

APPENDIX C. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 161

θ∗ = arg max
θ

N∑
i=1

∑
G

log pθ(G|{IOk
i }Kk=1)Ri(G) (C.2)

Where Ri(G) is the reward function to represent the quality of the sampled program
G. In our evaluation, we set Ri(G) = 1 if G gives the correct outputs for given inputs, and
Ri(G) = 0 otherwise.

Training Hyper-parameters

We use the Adam optimizer [139] for both the supervised training and the RL training. The
learning rate of supervised training is 10−4, and the learning rate of reinforcement learning is
10−5. We set the batch size to be 128 for supervised training, and 16 for RL training.

C.4 Evaluation Details

More Analysis of Evaluation Results

In our evaluation, we observe that while our Exec approach significantly boosts the gener-
alization accuracy, the performance gain of the exact match accuracy is much smaller, and
sometimes even negative. We attribute this to the fact that the ground truth program in the
Karel benchmark is not always the simplest one satisfying the input-output examples; on the
other hand, our approach tends to provide short predictions among all programs consistent
with the input-output specification. For example, Figure C.2 shows a predicted program
that is simpler than the ground truth, while also satisfies the input-output pairs. Notice
that different from the MLE approach in [35], our model is not directly optimized for the
exact match accuracy, since the training set not only includes the input-output examples
in the original training set, but also the intermediate state pairs, which constitute a larger
part of our augmented training set. Meanwhile, in our training set, for state pairs resembling
{(sk1, sk2)}Kk=1 in Figure C.2, it is more common for the ground truth program to be a single
“move()” statement than other more complicated ones. Therefore, when training with our
approach, the model is less prone to overfitting to the sample distribution of the original
dataset, and focuses more on the program semantics captured by the intermediate execution.

More Details of the Ensemble

For different training approaches of a single model, we train 15 models with different random
initializations. To do the ensemble, we first sort the 15 models according to the descending
order of their generalization accuracies on the validation set, then select the first k models to
compute the results of the k-model ensemble. When multiple programs satisfy the ensemble
criterion, e.g., with the shortest length for the Shortest method, we choose the one from the
models with better generalization accuracies on the validation set.

APPENDIX C. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 162

Figure C.2: An example of the predicted program that generalizes to all input-output
examples, but is different from the ground truth. Here, we only include 2 out of 5 input-
output examples for simplicity. Notice that the predicted program is simpler than the ground
truth.

Figure C.3: Results of the ensemble model trained with our Exec approach. Left: generaliza-
tion accuracy. Right: exact match accuracy.

Figure C.3 shows the results of the ensemble trained with our Exec approach. Tables C.2
and C.3 show the numerical results of applying ensemble to our Exec approach and Exec +
RL approach.

APPENDIX C. EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS 163

Ensemble 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Exec (S) 40.88% 42.16% 42.64% 43.12% 43.00% 43.36% 44.32% 44.64% 44.72% 45.64% 45.32% 45.60% 45.52% 45.92% 45.84%

Exec (MV) 40.88% 41.24% 41.36% 41.52% 41.96% 41.76% 42.64% 43.12% 43.48% 43.56% 43.92% 44.44% 44.80% 45.32% 45.36%
Exec + RL (S) 39.40% 42.80% 43.56% 43.84% 44.32% 44.96% 45.16% 45.44% 45.52% 46.36% 46.24% 46.04% 46.28% 46.16% 46.04%

Exec + RL (MV) 39.40% 40.76% 41.56% 42.92% 42.84% 43.84% 43.68% 44.36% 44.48% 44.60% 45.24% 45.52% 45.48% 45.64% 45.64%

Table C.2: Exact match accuracy of the ensemble.

Ensemble 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Exec (S) 85.08% 86.44% 87.04% 87.52% 87.76% 88.20% 89.04% 89.72% 90.16% 90.28% 90.68% 91.16% 91.44% 91.40% 91.60%

Exec (MV) 85.08% 86.08% 86.84% 87.36% 87.72% 87.84% 88.68% 89.36% 89.80% 90.00% 90.44% 91.12% 91.48% 91.40% 91.52%
Exec + RL (S) 86.04% 87.20% 88.64% 89.40% 89.64% 90.24% 90.32% 90.44% 90.48% 90.60% 90.96% 91.24% 91.32% 91.64% 91.68%

Exec + RL (MV) 86.04% 86.88% 88.24% 89.16% 89.20% 90.04% 90.08% 90.20% 90.56% 90.68% 91.28% 91.48% 91.76% 91.96% 92.00%

Table C.3: Generalization accuracy of the ensemble.

164

Appendix D

Latent Execution for Neural Program
Synthesis

D.1 Details in Model Architecture

Program Decoder

Our model follows the encoder-decoder framework in prior work on neural program synthesis
from input-output examples [74, 35], which includes an encoder for the input-output pairs,
and a decoder to synthesize the program.

The program decoder is an LSTM (denoted as LSTMD), which decodes the program as
a token sequence. Let pt−1 be the decoded program token at step t − 1, Ep(pt−1) be the
embedding vector of pt−1, ht−1 be the hidden state of the program decoder at step t− 1, and
Ît−1 and O be the sequences of vectors representing the input list elements and output list
elements. We first compute attention vectors over both the input and output lists, following
the double attention mechanism in RobustFill:

sOt = Attention(ht−1, O), sIt = Attention([ht−1; s
O
t], Ît−1)

The notation [a; b] means the concatenation of vectors a and b. Then we calculate the
output vector of the program decoder at step t as ht = LSTMD(ht−1, [Ep(pt−1); s

I
t ; s

O
t]).

Input-Output Encoder. For C program synthesis, our input-output encoder architecture
is similar to RobustFill [74]. For each input-output pair, we use two bi-directional LSTMs [115]
to encode the input and output lists respectively. To capture the relationship between the
input and output lists, the output list encoder computes attention vectors over the input list
elements, using the standard attention mechanism [20, 171]. We also employ different encoder
architectures for program synthesis tasks with other formats of input-output examples, as
discussed in Sec. 5.5.

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 165

To capture the required arithmetic operation to convert from the program input to the
output, we also include the output of the operation predictor ôpt for program decoding, and
we discuss the details later. Afterwards, the max pooling layer aggregates the representation
of different IO pairs to generate a single vector:

mt = MaxPoolj∈{1,2,...,K}(tanh(W [s
I(j)
t ; s

O(j)
t ; ôp

(j)
t]))

Here the superscript (j) indicates that the representation is for the j-th IO pair, and W is a
trainable weight matrix.

To facilitate the prediction of long programs, we compute an attention vector over
previously generated program tokens as follows:

dt = Attention(mt, {Ep(p0), Ep(p1), ..., Ep(pt−1)})

Finally, the next token pt is sampled from P[pt] = Softmax(V dt)pt where V is a trainable
matrix.

Operation Predictor for Restricted C Domain

Training neural networks for mathematical reasoning is a challenging problem itself [222, 152],
and jointly predicting the mathematical calculations and other program operations imposes
extra burden on the program decoder. To mitigate the difficulty, we include a pre-computed
table as part of the model input, which describes possible mathematical operations to derive
an output value given the input number. For example, Fig. 5.2(d) shows that by applying
the O = 2 + I operation to the input I = 2, the output O = 4. For each valid input list
value C, we include two operations O = C + I and O = C − I in the table. Then for each
operation O = C + I, we enumerate all valid integer list values I, and we include the row
[O = C+ I, I, O] in the table when O is also within our bounded range. In this way, the table
covers all possible integer addition and subtraction operations for valid input and output list
values.

With the pre-computed table, the operation predictor aims to predict the most possible
program operation at the next step. First, we re-use the same embedding matrices as those
in the input-output encoder, and compute the embedding vectors for each numerical element
in the table. Let R be the number of table rows. For the i-th row, we refer to the embedding
vector of the input and output values as r[i] and c[i], respectively. Then we utilize sIt and
sOt to compute the attention weights over the table columns of input and output values as
follows:

wi
[i]
t = AttentionWeight(sIt , {r[i]|i ∈ {1, 2, ..., R}})

wo
[i]
t = AttentionWeight(sOt , {c[i]|i ∈ {1, 2, ..., R}})

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 166

Let op[i] be the operation in row i, then the probability of selecting the operation in the
i-th row at step t is

P[opt = op[i]] ∝ wi
[i]
t · wo

[i]
t

Let Eop(op) be the embedding vector of the operation op, then the operation predictor
output is

ôpt =
∑
i

P[opt = op[i]]Eop(op
[i])

To train the operation predictor, we provide the training supervision at step 0, when no
transformation has been applied to the program input:

LOp = Loss(wi
[i]
0 ,1[r[i] = Î0 = I]) + Loss(wo

[i]
0 ,1[c[i] = O]) (D.1)

Latent Executor

In RobustFill, the encoder only takes the initial input-output pairs as the input. On the other
hand, in recent work on execution-guided program synthesis [47, 238, 295, 85, 197, 193], the
execution states of partial programs are leveraged as the model input to guide the subsequent
program prediction. However, existing approaches mostly assume that the programs are
sequential [295, 85], or require an interpreter of partial programs [47]. To address these
limitations, Nye et al. design neural networks to represent the partial program semantics
when they are not well-defined [193]. However, they need to train a separate neural module to
represent each program operation, thus it is hard to scale beyond domain-specific languages.

In this work, we include another LSTM to approximate the program execution states,
denoted as LSTME. Let Ît−1 be the input of LSTME, which is the program input at step
t− 1. The output of LSTME is:

Exect = LSTME(ht, Ît−1)

Implementation for Restricted C Domain

For our restricted C domain, the length of Exect is the same as Ît−1, i.e., the input list length.
Let L be the length of input and output lists. Let P[It = v] be the probability that the
execution result at step t is v, then:

P[It,l = vl] = Softmax(WEExect,l)vl

Here the subscript l denotes that the representation is for the l-th list element, and WE is
a trainable weight matrix.

Finally, the approximated execution state Ît is the weighted sum of the embedding vectors
of all possible program input integers c ∈ [−4, 4] ∩ Z (where Z is the set of all integers):

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 167

Ît,l =
∑

c∈[−4,4]∩Z

P[It,l = c]Eio(c)

Here Eio(c) denotes the embedding vector of the list value c. At the next program decoding
step, Ît will be fed into the encoder to replace the previous input list Ît−1.

Implementation for Karel Domain

Similar to our restricted C domain, in our latent executor implementation for Karel domain,
Ît,l is also the weighted sum of all possible execution states. Each Karel state describes
the following variables: (1) (robotX , robotY) denotes the position of the Karel robot, where
0 ≤ robotX , robotY < 18; (2) robotdir ≤ {North, South, West, East} denotes the robot
orientation at (robotX , robotY); and (3) the number of markers in each grid. Therefore, we
train 3 predictors on top of LSTME to predict these variables: (1) a trainable layer that
outputs a (18× 18)-dimensional vector, representing the robot position; (2) a trainable layer
that outputs a 4-dimensional vector, representing the robot orientation; and (3) an LSTM
that generates an 11-dimensional vector at each step, representing the number of markers in
each grid. We apply the softmax to all output vectors to obtain the probability distributions
of different variables.

Afterward, we combine the outputs of the predictors to construct a 16×18×18-dimensional
vector representing the Karel state, according to Table C.1, with the value of each dimension
in [0, 1]. Note that Karel programs can not change the grid boundary and obstacles, thus
we apply a mask on the predicted intermediate execution states to ensure that the features
representing the grid boundary and obstacles remain the same, which are the last 2 dimensions
described in Table C.1.

D.2 Implementation Details

All encoders and decoders in our models are 2-layer bi-directional LSTMs with the hidden
size of 512. The embedding size is 1024. We use the Adam optimizer [139] for training. The
learning rate starts from 1e-3, and is decayed by 0.9 for every 6000 timesteps. The batch
size is 8. The training converges in 200K batch updates. The norm for gradient clipping is
5.0. All models are trained on a single GPU. The beam size is 64 for evaluating the model
performance, and is 8 for iterative retraining due to the large size of the training set.

About the implementation of the Property Signatures [196], we further illustrate the key
difference between our adaption for the restricted C domain and the original implementation
in [196] with the following example. Suppose an input-output pair is ([−4, 3, 1, 2, 1], [−4, 3, 3, 3, 3]),
when the feature is “Input == Output?”, the corresponding property signature is “False”
according to the implementation in [196], while the signature is “[True, True, False, False,
False]” in our adapted implementation. Compared to the original implementation of property
signatures, our adaptation better reveals which specific list elements are manipulated in

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 168

Table D.1: Results of iterative retraining on Karel dataset.

Iters 100% 10% 20% 30% 40% 50%
Generalization Accuracy

1 86.04% 70.92% 75.16% 78.84% 80.88% 82.08%
2 89.28% 76.20% 78.40% 81.08% 82.40% 83.40%
3 89.36% 78.12% 81.20% 83.68% 84.24% 86.32%

Exact Match Accuracy
1 39.40% 36.20% 37.20% 38.36% 40.20% 40.04%
2 41.56% 37.24% 37.28% 39.24% 39.72% 39.16%
3 41.16% 36.56% 38.16% 38.68% 38.72% 39.64%

Table D.2: Results of iterative retraining on C dataset.

Iters 100% 10% 20% 30% 40% 50%

1 55.2% 11.9% 26.4% 39.1% 45.2% 48.5%
2 56.0% 39.6% 43.9% 48.7% 51.9% 54.1%
3 56.5% 41.7% 44.4% 49.4% 52.8% 54.4%

the program. This modification makes our implementation of property signatures a much
stronger baseline for the restricted C domain, because our C programs do not always perform
the same manipulation steps over all elements in the input list, and sometimes change the
values of only a subset of the input numbers.

D.3 More Results of Iterative Retraining

Figure D.1 presents more examples of predicted correct programs that are more concise
than the randomly generated ground truth programs on C dataset.

Figure D.2 presents more examples of predicted correct programs that are more concise
than the randomly generated ground truth programs on Karel dataset. Note that the
predicted Karel program is not semantically equivalent to the annotated ground truth in
many cases. The main reason is because the randomly generated ground truth program
might include redundant branching statements, i.e., the conditions always evaluate to true or
false for all program inputs in the specification and the held-out test cases.

We present the numerical results of iterative retraining on Karel and C benchmarks in
Table D.1 and Table D.2 respectively.

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 169

I1: [2, 4, 1, 2, -3]
O1: [2, 4, 3, 2, -3]
I2: [1, 0, 1, -3, 4]
O2: [1, 0, 3, -3, 4]
I3: [2, 2, -4, 2, 0]
O3: [2, 2, 3, 2, 0]
I4: [0, -2, 3, 1, 3]
O4: [0, -2, 3, 1, 3]
I5: [-2, 1, 4, 0, 0]
O5: [-2, 1, 3, 0, 0]

int * func_1(int a[])
{

int p_0 = 4;
int l_7 = 2;
int l_8 = 4;
a[l_7] = 3;
a[l_8] = a[p_0];
return a;

}

int * func_1(int a[])
{

int p_0 = 2;
a[p_0] = 3;
return a;

}

I1: [3, 1, 3, -2, -4]
O1: [3, 1, 2, -2, -4]
I2: [2, 0, -1, -1, 3]
O2: [2, 0, 2, -1, 3]
I3: [2, 0, -1, 4, 0]
O3: [2, 0, 2, 4, 0]
I4: [-2, -1, 3, 2, -4]
O4: [-2, -1, 2, 2, -4]
I5: [-4, 0, 3, 0, 1]
O5: [-4, 0, 2, 0, 1]

int * func_1(int a[])
{

int p_0 = 2;
int l_10 = 0;
int l_1 = 4;
l_10 = 2;
for (p_0 = 2; p_0 >= 1; p_0--)
{

a[p_0] = 3;
a[p_0] = 2;
if (a[p_0])

break;
a[p_0] = a[l_1];
a[p_0]++;

}
return a;

}

// Training on random programs
int * func_1(int a[])
{

int p_0 = 2;
int l_7 = 2;
a[l_7] = 2;
return a;

}

// After iterative retraining
int * func_1(int a[])
{

int p_0 = 2;
a[p_0] = 2;
return a;

}

I1: [0, 4, 0, 4, 2]
O1: [0, 4, 0, 1, 1]
I2: [4, 0, 1, 1, 4]
O2: [4, 0, 1, 1, 1]
I3: [3, 2, 3, 0, 0]
O3: [3, 2, 3, 1, 1]
I4: [1, 1, 4, 0, 4]
O4: [1, 1, 4, 1, 1]
I5: [1, 3, 0, 1, 1]
O5: [1, 3, 0, 1, 1]

int * func_1(int a[])
{

int p_0 = 0;
int l_10 = 3;
for (p_0 = 4; p_0 >= 0; p_0--)
{

a[p_0] = 3;
a[p_0] = a[p_0];
a[p_0] = 1;
if (a[p_0])

break;
}
a[l_10] = a[l_10];
a[l_10] = a[p_0];
return a;

}

int * func_1(int a[])
{

int p_0 = 4;
for (p_0 = 3; p_0 <= 4; p_0++)
{

a[p_0] = 1;
}
return a;

}

I1: [0, 3, -1, 0, 0]
O1: [4, 3, -1, 4, 4]
I2: [4, -3, 3, 4, 2]
O2: [4, -3, 3, 4, 4]
I3: [-4, 1, 0, 4, -2]
O3: [4, 1, 0, 4, 4]
I4: [0, 4, 3, 0, 4]
O4: [4, 4, 3, 4, 4]
I5: [2, 2, 0, 3, 2]
O5: [4, 2, 0, 4, 4]

int * func_1(int a[])
{

int p_0 = 0;
int l_11 = 3;
for (p_0 = 2; p_0 >= 1; p_0--)
{

for (int p_1 = 4; p_1 >= 3; p_1--)
{

a[p_1] = 4;
}

}
a[p_0] = a[l_11];
return a;

}

int * func_1(int a[])
{

int p_0 = 3;
int l_7 = 0;
a[l_7] = 4;
for (p_0 = 4; p_0 >= 3; p_0--)
{

a[p_0] = 4;
}
return a;

}

Figure D.1: More examples of predicted correct programs that are more concise than the randomly
generated ground truth programs on C dataset. Left: input-output examples. Middle: the randomly
generated ground truth program. Right: the predicted programs. Unless otherwise specified, the
predicted programs come from the model trained on random programs.

APPENDIX D. LATENT EXECUTION FOR NEURAL PROGRAM SYNTHESIS 170

def run():
repeat (5):
ifelse (rightIsClear):

move
else:

move
putMarker

def run():
repeat (5):
move
putMarker

def run():
move
turnRight
ifelse (noMarkersPresent):
repeat (2):

putMarker
else:
pickMarker

repeat (5):
turnRight

def run():
move
turnLeft
turnLeft
ifelse (markersPresent):
pickMarker

else:
putMarker
putMarker

def run():
pickMarker
move
ifelse (not rightIsClear):
putMarker
move

else:
move
putMarker
while (not rightIsClear):

move
putMarker

putMarker
turnRight
move

def run():
pickMarker
move
move
putMarker
putMarker
turnRight
move

def run():
move
turnRight
repeat (5):

pickMarker
putMarker

def run():
move
repeat (4):
pickMarker

turnRight

def run():
move
ifelse (markersPresent):
ifelse (frontIsClear):

putMarker
else:

pickMarker
else:
while (rightIsClear):

turnRight
repeat (2):
repeat (2):

putMarker
turnLeft

def run():
move
while (leftIsClear):
turnLeft

repeat (4):
putMarker

def run():
putMarker
move
ifelse (not leftIsClear):

putMarker
else:

turnRight
if (rightIsClear):

pickMarker

def run():
putMarker
move
putMarker
if (rightIsClear):

pickMarker

Figure D.2: Examples of predicted correct programs that are more concise than the randomly
generated ground truth programs on Karel dataset. 1st and 3rd columns: the randomly generated
ground truth programs. 2nd and 4th: the corresponding predicted programs. The predictions come
from the model trained on random programs.

171

Appendix E

Tree-to-Tree Neural Networks for
Program Translation

E.1 Hyper-parameters of Neural Network Models

Seq2seq Seq2tree Tree2seq Tree2tree
Batch size 100 20 100 100
Number of RNN layers 3 1 1 1
Encoder RNN cell LSTM LSTM Tree LSTM Tree LSTM
Decoder RNN cell LSTM
Initial learning rate 0.005

Learning rate decay schedule
Decay the learning rate by a factor of 0.8× when the
validation loss does not decrease for 500 mini-batches

Hidden state size 256
Embedding size 256
Dropout rate 0.5
Gradient clip threshold 5.0
Weights initialization Uniformly random from [-0.1, 0.1]

Table E.1: Hyper-parameters chosen for each neural network model.

We present the hyper-parameters of different neural networks in Table E.1. These hyper-
parameters are chosen to achieve the best accuracy on the development set through a grid
search.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 172

E.2 More Statistics of the Datasets

We present more detailed statistics of the datasets for the CoffeeScript-JavaScript task and
the translation of real-world projects from Java to C# in Table E.2 and E.3 respectively.

CJ-(A/B)S CJ-(A/B)L
Average input length (P) 10 20
Minimal output length (P) 23 33
Maximal output length (P) 151 311
Average output length (P) 44 69
Minimal input length (T) 34 69
Maximal input length (T) 61 111
Average input length (T) 48 85
Minimal output length (T) 38 73
Maximal output length (T) 251 531
Average output length (T) 71 129

Table E.2: Statistics of the datasets used for the CoffeeScript-JavaScript task.

Project # of matched methods
Lucene [170] 5,516

POI [208] 3,153
Itext [121] 3,079
JGit [127] 2,780
JTS [132] 2,003
Antlr [15] 465

Total 16,996

Table E.3: Statistics of the Java to C# dataset.

E.3 More Results on the CoffeeScript-JavaScript Task

Besides the program accuracy, we also measure the token accuracy of different approaches,
which is the percentage of the tokens that are exactly the same as the ground truth. This
metric is a finer-grained measurement of the correctness, thus provides some additional
insights of the performance of different models.

Table E.4 shows the token accuracy of different approaches for the translation between
CoffeeScript and JavaScript.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 173

Tree2tree Seq2seq Seq2tree Tree2seq

T→T
T→T T→T

P→P P→T T→P T→T P→T T→T T→P T→T
(-PF) (-Attn)

CoffeeScript to JavaScript translation
CJ-AS 99.97% 99.97% 56.21% 93.51% 92.30% 95.46% 95.05% 93.29% 95.94% 98.96% 98.09%
CJ-BS 99.98% 99.98% 47.54% 99.08% 87.51% 99.11% 96.14% 98.31% 98.09% 99.27% 98.10%
CJ-AL 99.37% 98.16% 32.99% 85.84% 25.65% 19.13% 36.18% 95.64% 94.74% 94.18% 84.71%
CJ-BL 99.36% 99.27% 31.80% 80.22% 63.49% 87.27% 79.85% 94.09% 94.64% 93.85% 78.07%

JavaScript to CoffeeScript translation
JC-AS 99.14% 98.81% 65.42% 88.44% 96.27% 88.46% 98.34% 98.20% 99.06% 86.93% 98.36%
JC-BS 98.84% 98.18% 55.22% 86.85% 97.92% 85.98% 98.09% 96.93% 98.84% 84.81% 97.94%
JC-AL 96.95% 92.65% 42.23% 88.09% 95.94% 87.19% 95.04% 93.51% 96.59% 84.57% 94.63%
JC-BL 96.48% 92.49% 39.89% 87.31% 94.12% 85.70% 96.24% 94.79% 96.33% 83.03% 94.68%

Table E.4: Token accuracy of different approaches for translation between CoffeeScript and
JavaScript.

E.4 Grammar for the CoffeeScript-JavaScript Task

The grammar used to generate the CoffeeScript-JavaScript dataset, which is a subset of the
core CoffeeScript grammar, is provided in Figure E.1.

E.5 Evaluation on the Synthetic Task

In the following, we discuss our synthetic translation task from an imperative language to a
functional language.

Evaluation Setup

For the synthetic task, we design an imperative source language and a functional target
language. Such a design makes the source and target languages use different programming
paradigms, so that the translation can be challenging. Figure E.2 illustrates an example of
the translation, which demonstrates that a for-loop is translated into a recursive function. We
manually implement a translator, which is used to acquire the ground truth. The grammar
specifications of the source language (FOR language) and the target language (LAMBDA
language) are provided in Figure E.3 and Figure E.4 respectively. The python source code
to implement the translator from a FOR program to a LAMBDA program is provided in
Figure E.5.

To build the dataset, similar to the CoffeeScript-JavaScript task, we randomly generate
100,000 pairs of source and target programs for training, 10,000 pairs as the development
set, and 10,000 pairs for testing. We guarantee that there is no overlap among training,
development and test sets, and all samples are unique in the dataset. More statistics of the
dataset can be found in Table E.6.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 174

<Expr> ::= <Var>

| <Const>

| <Expr> + <Var>

| <Expr> + <Const>

| <Expr> * <Var>

| <Expr> * <Const>

| <Expr> == <Var>

| <Expr> == <Const>

<Simple> ::= <Var> = <Expr>

| <Expr>

<IfShort> ::= <Simple> if <Expr>

| <IfShort> if <Expr>

<WhileShort> ::= <Simple> while <Expr>

| <WhileShort> while <Expr>

<ShortStatement> ::= <Simple> | <IfShort> | <WhileShort>
<Statement> ::= <ShortStatement>

| if <Expr>
 <indent+> <Block> <indent->

| while <Expr>
 <indent+> <Block> <indent->

| if <Expr>
 <indent+> <Block> <indent->

else
 <indent+> <Block> <indent->

| if <Expr> then <ShortStatement> else <ShortStatement>

<Block> ::= <Statement>

| <Block>
 <Statement>

Figure E.1: A subset of the CoffeeScript grammar used to generate the CoffeeScript-JavaScript
dataset. Here,
 denotes the newline character.

Results on the Synthetic Task

We create two datasets for the synthetic task: one with an average length of 20 (SYN-S) and
the other with an average length of 50 (SYN-L). Here, the length of a program indicates the
number of tokens in the source program.

We present the results in Table E.5. Our observations are consistent with the results of
the CoffeeScript-JavaScript task: our tree2tree model outperforms all baseline models; all
models perform worse on longer inputs; both the attention and the parent attention feeding
mechanisms boost the performance of our tree2tree model significantly.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 175

Source program Target program
for i=1; i<10; i+1 do letrec f i =

if x>1 then if i<10 then
y=1 let = if x>1 then

else let y=1 in ()
y=2 else let y=2 in ()

endfor in f i+1
else ()

in f 1

Figure E.2: An example of the translation for the synthetic task.

Tree2tree Seq2seq Seq2tree Tree2seq

T→T
T→T T→T

P→P P→T T→P T→T P→T T→T T→P T→T
(-PF) (-Attn)

Token accuracy
SYN-S 99.99% 99.95% 55.60% 99.75% 99.59% 99.90% 99.73% 99.70% 99.51% 99.88% 99.82%
SYN-L 99.60% 96.68% 34.48% 68.31% 45.28% 67.37% 35.01% 96.95% 97.41% 97.08% 95.88%

Program accuracy
SYN-S 99.76% 98.61% 0% 97.92% 97.35% 98.38% 98.18% 96.14% 98.01% 98.51% 98.36%
SYN-L 97.50% 57.42% 0% 12.19% 0% 9.19% 0% 67.34% 68.11% 91.35% 87.84%

Table E.5: Token accuracy and program accuracy of different approaches for the synthetic
task.

SYN-S SYN-L
Average input length (P) 20 50
Minimal output length (P) 22 46
Maximal output length (P) 44 96
Average output length (P) 30 71
Minimal input length (T) 40 100
Maximal input length (T) 56 134
Average input length (T) 49 111
Minimal output length (T) 41 90
Maximal output length (T) 82 177
Average output length (T) 55 133

Table E.6: Statistics of the datasets used for the synthetic task.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 176

<Expr> ::= <Var>

| <Const>

| <Expr> + <Var>

| <Expr> + <Const>

| <Expr> − <Var>

| <Expr> − <Const>

<Cmp> ::= <Expr> == <Expr>

| <Expr> > <Expr>

| <Expr> < <Expr>

<Assign> ::= <Var> = <Expr>

<If> ::= if <Cmp> then <statement>

else <statement> endif
<For> ::= for <Var> = <Expr> ;

<Cmp> ; <Expr> do
<Statement> endfor

<Single> ::= <Assign> | <If> | <For>
<Seq> ::= <Single> ; <Single>

| <Seq> ; <Single>
<Statement> ::= <Seq> | <Single>

Figure E.3: Grammar for the source language FOR in the synthetic task.

<Unit> ::= ()
<App> ::= <Var> <Expr>

| <App> <Expr>

<Expr> ::= <Var>

| <Expr> + <Var>

| <Expr> − <Var>

<Cmp> ::= <Expr> == <Expr>

| <Expr> > <Expr>

| <Expr> < <Expr>

<Term> ::= <LetTerm> | <Expr> | <Unit>
| <IfTerm> | <App>

<LetTerm> ::= let <Var> = <Term> in <Term>

| letrec <Var> <Var> = <Term>

in <Term>

<IfTerm> ::= if <Cmp> then <Term>

else <Term>

Figure E.4: Grammar for the target language LAMBDA in the synthetic task.

APPENDIX E. TREE-TO-TREE NEURAL NETWORKS FOR PROGRAM
TRANSLATION 177

def t r a n s l a t e f r o m f o r (s e l f , a s t) :
i f type (a s t) == type ([]) :

i f as t [0] == '<SEQ> ' :
t1 = s e l f . t r a n s l a t e f r o m f o r (a s t [1])
t2 = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
i f t1 [0] == '<LET> ' and t1 [−1] == '<UNIT> ' :

t1 [−1] = t2
return t1

else :
return ['<LET> ' , ' blank ' , t1 , t2]

e l i f as t [0] == '<IF> ' :
cmp = ast [1]
t1 = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
t2 = s e l f . t r a n s l a t e f r o m f o r (a s t [3])
return ['<IF> ' , cmp, t1 , t2]

e l i f as t [0] == '<FOR> ' :
var = s e l f . t r a n s l a t e f r o m f o r (a s t [1])
i n i t = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
cmp = s e l f . t r a n s l a t e f r o m f o r (a s t [3])
inc = s e l f . t r a n s l a t e f r o m f o r (a s t [4])
body = s e l f . t r a n s l a t e f r o m f o r (a s t [5])
tb = ['<LET> ' , ' blank ' , body , ['<APP> ' , ' func ' , i n c]]
func body = ['<IF> ' , cmp, tb , '<UNIT> ']
t r a n s l a t e = ['<LETREC> ' , ' func ' , var , func body ,

['<APP> ' , ' func ' , i n c]]
return t r a n s l a t e

e l i f as t [0] == '<ASSIGN> ' :
return ['<LET> ' , a s t [1] , a s t [2] , '<UNIT> ']

e l i f as t [0] == '<Expr> ' :
return as t

e l i f as t [0] == '<Op+> ' :
return as t

e l i f as t [0] == '<Op−> ' :
return as t

e l i f as t [0] == '<CMP> ' :
return as t

else :
return as t

Figure E.5: The Python code to translate a FOR program into a LAMBDA program in the
synthetic task.

178

Appendix F

Neural Rewriter for Code
Optimization and beyond

F.1 More Details of the Dataset

Expression Simplification

Figure F.1 presents the grammar of Halide expressions in our evaluation. We use the random
pipeline generator in the Halide repository to build the dataset 1. Table F.1 presents the
statistics of the datasets.

Job Scheduling

Description of different resource distributions. For each job j, we define dominant
resources ddom as the resources with 0.5 ≤ ρjddom ≤ 1, and auxiliary resources daux as those
with 0.1 ≤ ρjdaux ≤ 0.2. We refer to a job with both dominant and auxiliary resources as a job
with non-uniform resources. We also evaluate on workloads including only jobs with uniform
resources, where each job only includes either dominant resources or auxiliary resources.

Vehicle Routing

Our data generation follows the setup in [186, 142]. The positions of the depot and customer
nodes are uniformly randomly sampled from the unit square [0, 1] × [0, 1]. Each node is
denoted as vj = ((xj, yj), δj), where (xj, yj) is the position, and δj is the resource demand.
We set δ0 = 0 for the depot (i.e., node 0), and δj ∈ {1, 2, ..., 9} for customer nodes (i.e.,
j > 0).

1https://github.com/halide/Halide/tree/new_autoschedule_with_new_simplifier/apps/

random_pipeline.

https://github.com/halide/Halide/tree/new_autoschedule_with_new_simplifier/apps/random_pipeline
https://github.com/halide/Halide/tree/new_autoschedule_with_new_simplifier/apps/random_pipeline

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND179

<Expr> ::= <AlgExpr> | <BoolExpr>
<BoolExpr> ::= <AlgExpr> <<AlgExpr>

| <AlgExpr> <= <AlgExpr>

| <AlgExpr> == <AlgExpr>

| (!<BoolExpr>)
| (<BoolExpr> && <BoolExpr>)
| (<BoolExpr> —— <BoolExpr>)

<AlgExpr> ::= <Term>

| (<AlgExpr> + <Term>)
| (<AlgExpr> - <Term>)
| (<AlgExpr> * <Term>)
| (<AlgExpr> / <Term>)
| (<AlgExpr> % <Term>)

<Term> ::= <Var> | <Const>
| max(<AlgExpr>, <AlgExpr>)
| min(<AlgExpr>, <AlgExpr>)
| select(<BoolExpr>, <AlgExpr>, <AlgExpr>)

Figure F.1: Grammar of the Halide expressions in our evaluation. “select (c, e1, e2)” means
that when the condition c is satisfied, this term is equal to e1, otherwise is equal to e2. In
our dataset, all constants are integers ranging in [−1024, 1024], and variables are from the
set {v0, v1, ..., v12}.

Number of expressions in the dataset Length of expressions Size of expression parse trees
Total: 1.36M Average: 106.84 Average: 27.39

Train/Val/Test: 1.09M/136K/136K Min/Max: 10/579 Min/Max:3/100
Train≤20: 17K Average: 16.76 Average: 4.66
Train≤30: 48K Average: 22.91 Average: 6.43
Train≤50: 170K Average: 35.62 Average: 10.18
Train≤100: 588K Average: 63.49 Average: 18.72

Test>100: 53K Average: 142.22 Average: 42.20

Table F.1: Statistics of the dataset for expression simplification.

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND180

Figure F.2: An example of the rewriting process for Halide expressions. The initial expression
is 5 ≤ max(v0, 3) + 3, which could be reduced to 1, i.e., True.

F.2 More Details on the Rewriting Ruleset

More Details for Expression Simplification Problem

The ruleset implemented in the Halide rule-based rewriter can be found in their public
repository 2.

More discussions about the uphill rules. A commonly used type of uphill rules is
“min/max” expansion, e.g., min(a, b) < c→ a < c||b < c. Dozens of templates in the ruleset
of the Halide rewriter are describing conditions when a “min/max” expression could be
simplified. Notice that although applying this rewriting rule has no benefit in most cases,
since it will increase the expression length, it is necessary to include it in the ruleset, because
when either a < c or b < c is always true, expanding the “min” term could reduce the entire
expression to a tautology, which ends up simplifying the entire expression. Figure F.2 shows
an example of the rewriting process using uphill rules properly.

More Details for Job Scheduling Problem

Algorithm 5 describes a single rewriting step for job scheduling problem.

2 https://github.com/halide/Halide.

https://github.com/halide/Halide

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND181

Algorithm 5 Algorithm of a Single Rewriting Step for Job Scheduling Problem

1: function Rewrite(vj, vj′ , st)
2: if Cj′ < Aj or Cj′ == Bj then
3: return st
4: end if
5: if j′ 6= 0 then B′j = Cj′ else B′j = Aj fi
6: C ′j = B′j + Tj
7:

8: //Resolve potential resource occupation overflow within [B′j, C
′
j]

9: J = all jobs in st except vj that are scheduled within [B′j, C
′
j]

10: Sort J in the topological order
11: for vi ∈ J do
12: B′i = the earliest time that job vi can be scheduled
13: C ′i = B′i + Ti
14: end for
15: For vi 6∈ J , B′i = Bi, C

′
i = Ci

16: st+1 = {(B′i, C ′i)}
17: return st+1

18: end function

F.3 More Details on Model Architectures

Model Details for Expression Simplification

Input embedding. Notice that in this problem, each non-terminal has at most 3 children.
Thus, let x be the embedding of a non-terminal, (hL, cL), (hM , cM), (hR, cR) be the LSTM
states maintained by its children nodes, the LSTM state of the non-terminal node is computed
as

(h, c) = LSTM(([hL;hM ;hR], [cL; cM ; cR]), x) (F.1)

Where [a; b] denotes the concatenation of vectors a and b. For non-terminals with less than 3
children, the corresponding LSTM states are set to be zero. We use d to represent the size of
h and c, i.e., the hidden size of the LSTM.

Input representation. For each sub-tree ωi, its input to both the score predictor and
the rule-picking policy is represented as a 2d-dimensional vector [h0;hi], where h0 is the
embedding of the root node encoding the entire tree. The reason why we include h0 in the
input is that looking at the sub-tree itself is sometimes insufficient to determine whether it is
beneficial to perform the rewriting. For example, consider the expression max(a, b)+2 < a+2,
by looking at the sub-expression max(a, b) + 2 itself, it does not seem necessary to rewrite
it as max(a + 2, b + 2). However, given the entire expression, we can observe that this
rewriting is an important step towards the simplification, since the resulted expression

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND182

Job embeddingJob schedule

Time

Job 1
!" = [0.1, 0.7], +" = 1, ," = 2, ." = 1

Job 2
!/ = [0.2, 0.5], +/ = 2, ,/ = 3, ./ = 3

Job 3
!2 = [0.6, 0.1], +2 = 3, ,2 = 1, .2 = 3

4"=[0.1, 0.7, 0.1, 0.7, 0.1, 0.7, 0.0, …, 0.0, 1.0]

4/=[0.2, 0.5, 0.8, 0.6, 0.2, 0.5, 0.2, 0.5, 0.0, …, 0.0, 4/3]

42=[0.6, 0.1, 0.8, 0.6, 0.0, …, 0.0, 1.0]

1 2 3 4 5 6

Figure F.3: An example to illustrate the job embedding approach for the job scheduling
problem.

Scheduling 1

Job 1

Job 2

Job 3

0
1

2
3

1 32 4 5 6

0
1

2

3
1

2

3

1 32 4 5 6

Jobs

1

0

timetime

Slow down
Slow
down

Resource

1

2

3

Graph representation Graph representation

Scheduling 2

!
" = 2, & = 1

" = 3, & = 2

" = 1, & = 3

Figure F.4: An example to illustrate two possible job schedules on a single machine and
their corresponding graph representations. Node 0 was added to represent the start of the
scheduling process. For multiple machines, multiple node 0 will be added.

max(a + 2, b + 2) < a + 2 could be reduced to False. We have tried other approaches of
combining the parent information into the input, but we find that including the embedding
of the entire tree is the most efficient way.

Score predictor. The score predictor is an LP -layer fully connected network with a
hidden size of NP . For each sub-tree ωi, its input to the score predictor is represented as a
2d-dimensional vector [h0;hi], where h0 embeds the entire tree.

Rule selector. The rule selector is an LS-layer fully connected network with the hidden
size NS, and its input format is the same as the score predictor. A |U|-dimensional softmax
layer is used as the output layer.

More Details for Job Scheduling Problem

Job embedding. We embed each job into a (D × (Tmax + 1) + 1)-dimensional vector ej,
where Tmax is the maximal duration of a job. This vector encodes the information of the
job attributes and the machine status during its execution. We describe the details of job
embedding as follows. Consider a job vj = (ρj, Aj, Tj). We denote the amount of resources
occupied by all jobs at each timestep t as ρ′t = (ρ′t1, ρ

′
t2, ..., ρ

′
tD). Each job vj is represented as

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND183

a (D × (Tmax + 1) + 1)-dimensional vector, where the first D dimensions of the vector are
ρj, representing its resource requirement. The following D × Tj dimensions of the vector
are the concatenation of ρ′Bj

,ρ′Bj+1, ...,ρ
′
Bj+Tj−1, which describes the machine usage during

the execution of the job vj. When Tj < Tmax, the following D × (Tmax − Tj) dimensions are
zero. The last dimension of the embedding vector is the slowdown of the job in the current
schedule. We denote the embedding of each job vj as ej . The embedding of the machine (i.e.,
v0) is a zero vector e0 = 0. Figure F.3 shows an example of our job embedding approach,
and Figure F.4 illustrates an example of the graph construction.

Model specification. To encode the graphs, we extend the Child-Sum Tree-LSTM
architecture in [244], which is similar to the DAG-structured LSTM in [293]. Specifically, for
a job vj, suppose (h1, c1), (h2, c2), ..., (hp, cp) are the LSTM states of all parents of vj, then
its LSTM state is:

(h, c) = LSTM((

p∑
i=1

hi,

p∑
i=1

ci), ej) (F.2)

For each node, the d-dimensional hidden state h is used as the embedding for other two
components.

Score predictor. This component is an LP -layer fully connected neural network with a
hidden size of NP , and the input to the predictor of job vj is hj.

Rule selector. The rewriting rules are equivalent to moving the current job vj to be a
child of another job vj′ or v0 in the graph, which means allocating job vj after job vj′ finishes
or at its arrival time Aj. Thus, the input to the rule selector not only includes hj, but also
hj′ of all other vj′ that could be used for rewriting. The rule selector has two modules. The
first module is an LS-layer fully connected neural network with a hidden size of NS. For each
job vj , let Nj be the number of jobs that could be the parent of vj , and {vj′k} denotes the set
of such jobs. For each vj′k , the input is [hj;hj′k], and this module computes a d-dimensional
vector h′k to encode such a pair of jobs. The second module of the rule selector is another
LS-layer fully connected neural network with a hidden size of NS. For this module, the
input is a (|U| × d)-dimensional vector [h′1;h

′
2; ...;h

′
|U|], where |U| = 2W . When Nj < |U|,

h′Nj+1, h
′
Nj+2, ..., h

′
|U| are set to be zero. The output layer of this module is a |U|-dimensional

softmax layer, which predicts the probability of each different move of vj.

More Details for Vehicle Routing Problem

Node embedding. We embed each node into a 7-dimensional vector ej. This vector
encodes the information of the node position, node resource demand, and the current status
of the vehicle. We describe the details of node embedding as follows. Consider a node
vj = ((xj, yj), δj), where (xj, yj) is the position, and δj is the resource demand. We set δ0 = 0
for the depot (i.e., node 0). Denote Cap as the vehicle capacity. The first three dimensions

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND184

of ej are xj , yj , and δj/Cap. The next three dimensions of ej are the coordinates of the node
visited at the previous step (set as the depot position for the first visited node) and the
Euclidean distance between vj and the previous node. The last dimension is the amount of
remaining resources carried by the vehicle at the current step, which is also normalized by
the vehicle capacity.

Score predictor. This component is an LP -layer fully connected neural network with a
hidden size of NP , and the input to the predictor of the node vj is hj , where hj is the output
of the bi-directional LSTM used to encode each node in the route.

Rule selector. The rewriting rules are equivalent to moving a node in the route vj after
another node vj′ , similar to the job scheduling setting. However, different from job scheduling,
the number of such nodes vj′ varies among different problems. Thus, we train an attention
module to select vj′ , with a similar design to the pointer network [253].

Model hyper-parameters

For both the expression simplification and job scheduling tasks, LS = LP = 1. For the vehicle
routing task, LS = LP = 2. For all the three tasks, NS = NP = 256, d = 512.

F.4 More Results for Job Scheduling Problem

We observe that while OR-tools is a high-performance solver for generic combinatorial
optimization problems, it is less effective than both heuristic-based scheduling algorithms and
neural network approaches on our job scheduling problem, especially with more resource types.
After looking into the schedules computed by OR-tools, we find that they often prioritize
long jobs over short jobs, while swapping the scheduling order between them would clearly
decrease the job waiting time. On the other hand, both our neural rewriter and heuristic
algorithms based on the job length would usually schedule short jobs very soon after their
arrival, which results in better schedules.

Table F.2 and F.3 present the results of ablation study on job frequency and resource
distribution respectively.

To examine how the initial schedules affect the final results, besides earliest-job-first
schedules, we also evaluate initial schedules with different average slowdown. Specifically, for
each job sequence, we generate different initial schedules by randomly allocating one job at a
time.

In Table F.4, we present the results with D = 20 types of resources. For each job sequence,
we randomly generate 10 different initial schedules. We can observe that although the
effectiveness of initial schedules affects the final schedules, the performance is still consistently
better than other baseline approaches, which demonstrates that our neural rewriter is able to
substantially improve the initial solution regardless of its quality.

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND185

Dynamic Job Frequency Steady Job Frequency
Earliest Job First (EJF) 14.53 24.23
Shortest Job First (SJF) 3.62 5.00

SJF-offline 2.70 4.26
NeuRewriter (dynamic) 2.56 3.99
NeuRewriter (steady) 2.59 3.94

Table F.2: Experimental results of the job scheduling problem with different distribution of
job frequency.

Uniform Job Resources Non-uniform Job Resources
Earliest Job First (EJF) 11.06 24.23
Shortest Job First (SJF) 4.51 5.00

SJF-offline 2.76 4.26
NeuRewriter (uniform) 2.73 4.05

NeuRewriter (non-uniform) 3.13 3.94

Table F.3: Experimental results of the job scheduling problem with different distribution of
job resources.

Initial average slowdown ≤ 10 10− 25 > 25
Final average slowdown 3.88 3.90 4.06

Earliest Job First (EJF) 24.23
Shortest Job First (SJF) 5.00

Shortest First Search (SJFS) 4.98
DeepRM 10.18
OR-tools 15.18

SJF-offline 4.26
NeuRewriter 3.94

Table F.4: Experimental results of the job scheduling problem using initial schedules with
different average slowdown. The number of resource types D = 20.

F.5 More Discussion of the Evaluation on Vehicle

Routing Problem

We generate the initial routes for NeuRewriter in the following way: starting from the depot,
at each timestep, the vehicle visits the nearest node that is either: (1) a customer node that
has not been visited yet, and its resource demand can be satisfied; or (2) the depot node, and
the resources carried by the vehicle is less than its capacity. See Figure F.5 for examples of

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND186

Model VRP20, Cap30 VRP50, Cap40 VRP100, Cap50
NeuRewriter 6.16 10.51 16.10
AM-Greedy 6.40 10.98 16.80

AM-Sampling 6.25 10.62 16.23
Nazari et al. (RL-Greedy) 6.59 11.39 17.23
Nazari et al. (RL-BS(5)) 6.45 11.22 17.04
Nazari et al. (RL-BS(10)) 6.40 11.15 16.96

CW-Greedy 7.22 12.85 19.72
CW-Rnd(5,5) 6.89 12.35 19.09

CW-Rnd(10,10) 6.81 12.25 18.96
SW-Basic 7.59 13.61 21.01

SW-Rnd(5) 7.17 13.09 20.47
SW-Rnd(10) 7.08 12.96 20.33

OR-Tools 6.43 11.31 17.16
Gurobi (optimal) 6.10 - -

Table F.5: Experimental results of the vehicle routing problems.

the initial solutions. In this way, the average tour length is 7.74 for VRP20, 13.47 for VRP50,
and 20.36 for VRP100. Note that these results are even worse than the classic heuristics
compared in Table F.5.

Table F.5 presents more results for vehicle routing problems, and Figure F.5 shows an
example of the rewriting steps performed by NeuRewriter.

For generalization results, note that after training on VRP50, NeuRewriter achieves an
average tour length of 17.33 on VRP100 (See Figure 7.4b in the mainbody of the paper).
This is better than 18.00 reported in [186], suggesting that our approach could adapt better
to different problem distributions.

F.6 More Results for Expression Simplification

In Figures F.6 and F.7, we present some success cases of expression simplification, where we
can simplify better than both the Halide rule-based rewriter and the Z3 solver.

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND187

(a) Step 0. (b) Step 1.

(c) Steps 2-5. (d) Step 6.

Figure F.5: An example of the rewriting steps for a VRP20 problem. The square is the depot,
and circles are customer nodes. The customer node sizes are proportional to their resource
demands. At each stage, red edges are to be rewritten at the next step, and green edges are
rewritten ones. The tour length of the initial route is 7.31, and the final tour length after
rewriting is 5.98.

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND188

(a) Step 0. (b) Step 1.

(c) Step 2. (d) Step 3.

(e) Step 4.

Figure F.6: The rewriting process that simplifies the expression ((v0−v1+18)/35∗35+35) ≤
v0− v1 + 119 to 34 ≤ (v0− v1 + 13)%35.

APPENDIX F. NEURAL REWRITER FOR CODE OPTIMIZATION AND BEYOND189

(a) Step 0. (b) Step 1.

(c) Step 2. (d) Step 3.

(e) Step 4. (f) Step 5.

(g) Step 6. (h) Step 7.

(i) Step 8. (j) Step 9.

(k) Step 10.

Figure F.7: The rewriting process that simplifies the expression ((v0− v1 + 12)/137 ∗ 137 +
137) ≤ min((v0− v1 + 149)/137 ∗ 137, v0− v1 + 13) to 136 ≤ (v0− v1 + 12)%137.

190

Appendix G

Neural-Symbolic Reader for Reading
Comprehension

G.1 More details about the input preprocessing

We preprocess the input passages and questions in a similar way as the input preprocessing
of DROP dataset described in [11]. Specifically, to facilitate the usage of BERT, we split up
the documents longer than L = 512 tokens. Meanwhile, we extract the locations and values
of the numbers, so that they can be retrieved via indices when applying numerical operators.
We apply the same input preprocessing on MathQA as well.

G.2 More discussion about the domain specific

language

To better support numerical reasoning, sometimes we need to leverage pre-defined constants
for our computation. On MathQA, we have shown that applying the constant 3600, which is
provided in their pre-defined question-agnostic constant list, is necessary for the calculation
in Table 8.2. Meanwhile, we find that defining such a constant list is also helpful on DROP
benchmark. For example, a variant of the sample numerical operation question in Table 8.7
is “How many people, in terms of percentage, were not either solely white or solely African
American?”, and such questions are included in DROP dataset as well. In this case, unless we
are able to use the number 100 in our calculation, there is no way to obtain the correct answer.
Again, previous works design specialized modules to deal with such questions, which is the
main role of the negation module illustrated in Figure 8.1. On the contrary, we introduce
a constant list that is callable for every question, so that the model can learn to apply any
constant covered in the list, without the need of manually designing separate modules for
questions requiring different constants.

In our evaluation, for DROP, we used [100, 12, 28, 29, 30, 31, 1, 0] as the constant list, which

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION191

is helpful for percentage and date time calculation. For MathQA, we used the constant list
provided in their public dataset, which includes 23 constants that cover common conversion
between different units, domain-specific constants for geometry, physics and probability, etc.

G.3 More details about the model architecture

Reader

The reader implementation is largely the same as [11]. Specifically, for the embedding
representation of the reader component, we feed the question and passage jointly into BERT,
which provides the output vector of each input token ti as ei. Unless otherwise specified,
the encoder is initialized with the uncased whole-word-masking version of BERTLARGE. We
denote the size of ei as H0.

Programmer

The core architecture of the programmer is a 1-layer LSTM with the hidden size of H = 512.
To formally describe the input space and output space of the programmer, we denote R as the
size of the reserved tokens, which include both operators and constants in a domain-specific
language, and the special start and end tokens [GO] and [EOF]; and L = 512 as the total
number of the question and passage tokens in a single sample. Samples with fewer than
L = 512 tokens will be padded with [EOF] tokens to achieve this length. In the following, we
discuss the details of each component.

Input embedding. At each timestep, the programmer could generate a program token
from: (1) the reserved tokens of the domain-specific language; and (2) the input question
and passage tokens. The embedding of the i-th reserved token is

hri = ET
r ri

Where Er is a trainable embedding matrix of size R×H, and ri is the one-hot encoding
of the token.

For the i-th token in the input question and passage token list, their embedding is

hti = Ptei

Where Pt is a trainable projection matrix of size H ×H0.

Attention module over the input. At each timetstep T , let [p1, p2, ..., pT−1] denote
the list of program tokens that are already generated in previous timesteps, and we define
[hp0, hp1, hp2, ..., hpT−1] as the decoder history, where hp0 is the embedding vector of the [GO]

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION192

token calculated as above; [hp1, hp2, ..., hpT−1] are H-dimensional vectors corresponding to
the generated program token list, and we will discuss how they are computed later.

Denote (hT , cT) = LSTM(hpT−1, (hT−1, cT−1)) as the hidden state of the LSTM decoder
at timestep T, where (h0, c0) is the trainable initial state, and hpT−1 is the LSTM input.

For each of hpi in the decoder history, we compute

vhi = Whhpi

Where Wh is a trainable matrix of size H ×H.
The attention weight of each hpi in the decoder history is computed as

whi =
exp(hTTvhi)∑T−1
j=0 exp(hTTvhj)

The attention vector of the decoder history is thus

atth =
T−1∑
i=0

whi · hpi

This formulation is similar to the attention mechanism introduced in prior work [20].
Correspondingly, we compute the attention vector of the passage tokens attp, and the attention
vector of the question tokens attq.

Afterwards, we compute

vT = Wv[atth; attq; attp;hT]

Where Wv is a trainable matrix of size H × 4H, and [a; b] denotes the concatenation of a
and b.

Program token prediction. We compute another attention vector of the question tokens
att′q in a similar way as above, but with a different set of trainable parameters. Then for each
input token, we have

ht′i = P ′[hti;hti ◦ att′q]

hr′i = P ′[hri;hri ◦ att′q]
Where P ′ is a trainable matrix of size H × 2H, and ◦ is the Hadamard product.
Let H ′T be a (R+L)×H-dimensional matrix, where the first R rows are hr′i for 0 ≤ i < R,

and the next L rows are ht′i for 0 ≤ i < L. Then we compute

w′T = H ′T · vT
Where w′T i denotes the weight of selecting the i-th token as the next program token. This

design is similar to the pointer network [253].

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION193

Note that a valid program should satisfy the grammar constraints, for instance, those listed
in Table 8.1 on DROP dataset. Therefore, we compute a mask mT as an (R+L)-dimensional
vector, where mT i = 1 when the i-th token is a valid next program token, and mT i = 0 if it
is invalid. In the following, we take the DROP dataset as the example, and list some sample
rules for mask generation:

(1) At the beginning of the program generation, mT i = 1 iff the i-th token denotes an
operator;

(2) When the previous generated program token pT−1 is PASSAGE_SPAN, then mT i = 1 iff
the i-th token is from the passage. Similarly, if pT−1 is QUESTION_SPAN, then mT i = 1 iff the
i-th token is from the question.

(3) As discussed in Appendix G.1, we preprocess the data to extract the locations and
values of numbers in the input question and passage, thus we can leverage it to generate
masks for numerical calculation operators. Specifically, when pT−1 ∈ {DIFF, SUM, VALUE},
mT i = 1 iff the i-th token is from the constant list, or a number from either the input question
or the passage.

With the generated program mask, we compute

wT = w′T − C(1−mT)

Where C is a large positive constant to ensure that the weight of an invalid program
token is much smaller than the valid program tokens. In practice, we use C = 1e6. Such
a grammar-based decoding process is a common practice in order to ensure the syntactic
correctness of the generated programs [143, 160, 35].

Afterwards, the model predicts pT = arg maxi(wT) as the next program token. We can
also apply the beam search for decoding, but we find that the greedy decoding is already
sufficient to provide good results, while the inference process is also much faster than the
beam search.

Finally, hpT = H ′T pT is the vector representation corresponding to pT , which is appended
to the decoder history for generating the next program token.

G.4 More details about training

Data augmentation

In this section, we discuss the details of our data augmentation process for counting and
sorting questions on DROP. To obtain training samples for counting questions with ground
truth annotations, starting from the span selection questions in the training set, we filter out
those questions that either can be answered by using the QUESTION_SPAN operation, or do not
start with any interrogative in [“What”, “Which”, “Who”, “Where”]. Afterwards, we replace
the interrogative with “How many”, and modify the ground truth program correspondingly.
In this way, we can augment 15K additional questions for counting in DROP training set.

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION194

To annotate the key-value pairs, for each entity recognized by the CoreNLP tool, we
search for the numbers that are in the same clause as the entity, i.e., not separated by any
punctuation mark, and discard those entities that do not have any nearby number satisfying
this constraint. Afterwards, we filter out those questions that do not include any superlative
in [“longest”, “shortest”, “largest”, “smallest”, “most” and “least”]. For the remaining
questions, we call each of the sorting operations, i.e., ARGMAX, ARGMIN, MAX, MIN, with all
extracted key-value pairs as the arguments. For ARGMAX and MAX operators, the key-value
pairs are sorted in the descending order of their values; for ARGMIN and MIN operators, they
are sorted in the increasing order of their values. If any of the resulted sorting program
yields the correct answer, the program is included into the training set. In this way, we can
annotate 0.9K questions using ARGMAX or ARGMIN operations, and 1.8K questions using MAX

or MIN operations in DROP training set.

Training configuration

For the training algorithm described in Algorithm 3, the initial threshold α0 = 0.5, and the
decay factor γ = 0.5. We perform early stopping when both exact match and F1 score on
the development set do not improve for two consecutive training iterations. For both DROP
and MathQA datasets, the training typically takes around 50K ∼ 60K training steps.

For both tasks in our evaluation, we train the model with Adam optimizer, with an initial
learning rate of 5e-5, and batch size of 32. Gradients with L2 norm larger than 1.0 are
clipped.

G.5 Examples of wrong annotations on DROP

Table G.1 lists some examples of wrong annotations in DROP training set. Specifically, the
first annotation is wrong because the crowd worker simply counts the number of field goals
included in the entire passage, without considering the constraints of lengths and the kicker’s
name; on the other hand, the second mistake comes from the wrong numerical calculations.
For both samples, the highest likelihood among all programs with the annotated answer is
smaller than 1e-4, thus are not included during training, which is why the thresholding helps
significantly.

G.6 Examples of wrong predictions on DROP

Table G.2 presents some error cases of NeRd on DROP development set.

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION195

Passage Question Ground truth
... but had to settle for a 23-
yard field goal by kicker
Matt Bryant ...

How many field goals shorter
than 30 yards did Matt
Bryant kick?

3

... from a sample of 40 Sher-
man tanks, 33 tanks burned
(82 percent) and 7 tanks re-
mained unburned ...

How many more Sherman
tanks burned out than sur-
vived in the Normandy Cam-
paign?

22

Table G.1: Some samples in DROP training set with the wrong annotations, which are
discarded by NeRd because none of the annotated programs passes the threshold of our
training algorithm.

APPENDIX G. NEURAL-SYMBOLIC READER FOR READING COMPREHENSION196

Question
type

Passage Question Prediction

Question
span

The campaigns of 1702
and 1703 showed his lim-
itations as a field officer...
In early 1704 , he spoke
with the envoy of Savoy
about possible opportunities
in their army ...

What happened
first, the Hague
campaigns as
field officer or
he spoke with
envoy of Savoy
for opportunities
in the army?

Prediction:
QUESTION SPAN(7,10)
Result: “campaigns as
field officer”
Ground truth: “cam-
paigns of 1702 and 1703”

Counting ... The five regions with
the lowest fertility rates were
Beijing (0.71), Shanghai
(0.74), Liaoning (0.74),
Heilongjiang (0.75) ...

How many ar-
eas had a fertility
rate of .74?

Prediction: COUNT(
PASSAGE SPAN(216,
216),
PASSAGE SPAN(223,
223),
PASSAGE SPAN(230,
231))
Result:
COUNT(‘’Beijing”,
“Shanghai”, “Liaoning”) =
3
Ground truth: 2

Sorting ... to set up Nugent’s career-
long 54-yard field goal to
give the Jets a 9-3 lead ...
The half ended when Brown
came up five yards short on
a 59-yard field goal attempt
...

How many yards
was the longest
field goal?

Program:
MAX(VALUE(16),
VALUE(20))
Result: MAX(54, 59) =
59
Ground truth: 54

Table G.2: Examples of wrong predictions on DROP dev set.

197

Appendix H

Compositional Generalization via
Neural-Symbolic Stack Machines

H.1 Discussion of the Benchmark Selection for

Evaluation

Given that NeSS achieves impressive results on synthetic natural language benchmarks in
our evaluation, one question is whether it could also improve the performance on commonly
used natural language datasets, e.g., large-scale machine translation benchmarks. However,
note that most existing natural language benchmarks are not designed for evaluating the
compositional generalization performance of models. Instead, the main challenge of those
datasets is to handle the inherently ambiguous and potentially noisy natural language inputs.
Specifically, their training and test sets are usually from the same distribution, and thus
do not evaluate compositional generalization. As a result, we did not run experiments on
these datasets. Instead, our evaluation focuses on standard sequence-to-sequence generation
benchmarks used in previous works on compositional generalization. Such benchmarks are
typically constructed with synthetic grammars, so that it is easier to change training and test
distributions. We consider improving compositional generalization for more natural inputs as
future work.

H.2 More Details of the Stack Machine

We present the sample usage of our machine with a more complex example on SCAN
benchmark in Figure H.1. In the following, we provide a more detailed explanation of our
CONCAT M and CONCAT S operations based on this example. Specifically, when executing the
CONCAT M operation at step 10, we first concatenate all items in the stack top and the memory
as a list, i.e., [[JUMP], around, [RTURN]] in this case. Next, according to the argument
[2, 0], the items with indices 2 and 0 are selected and concatenated, which results in the

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 198

sequence [RTURN, JUMP]. Afterwards, this new sequence replaces the original content in the
memory, and the selected item in the stack top, i.e., [JUMP], is removed from the stack top.
On the other hand, the token “around” is kept in the stack top, because it is not selected for
CONCAT M. The argument selection for CONCAT S is similar, except that this operation puts
the generated sequence in the stack top.

In Figure H.2, we present how our machine supports the REDUCE operation defined in the
parsing machine of [48], which is designed for context-free grammar parsing.

H.3 More Details of the Neural Controller

Architecture

We present the neural controller architecture in Figure H.3, and we describe the details below.

Machine status encoder. We use a bi-directional LSTM LSTMinp to encode the token
sequence in the input queue, and use the LSTM output for tok as its vector representation
etok . We use two separate bi-directional LSTMs LSTMcur and LSTMpre to encode the top 2
stack frames respectively. The LSTM output at the last timestep is used as the embedding
of the 2 stack frames, denoted as ecur and epre. Similarly, another LSTM LSTMM is used to
encode the memory, and we denote the embedding as eM . Note that we always add an [EOS]

token when computing the embedding for stack frames and memory, even if they are empty.

REDUCE argument predictor. The REDUCE instruction takes the top stack frame as the
input, and outputs a token sequence in the target vocabulary as the arguments, denoted
as pREDUCE(arg|ecur). We design the REDUCE argument predictor as a standard LSTM-based
sequence-to-sequence model with attention, and the argument generation process terminates
when an [EOS] token is predicted. The output at the last timestep of the LSTM decoder is
used as the embedding of the entire reduced sequence, and it replaces the embedding vectors
originally in the top stack frame.

CONCAT M and CONCAT S argument predictors. We design the same architecture for
CONCAT M and CONCAT S argument predictors, but with different sets of model parameters,
and we discuss the details for CONCAT M as follows. Firstly, we use a bi-directional LSTM to
compute an embedding vector for each element in the top 2 stack frames and the memory.
Note that the stack frames and memory include tokens in the source vocabulary that are
directly moved from the input queue using the SHIFT instruction, as well as sequences
generated by previous REDUCE, CONCAT M and CONCAT S instructions that consist of tokens in
the target vocabulary. To select the arguments for CONCAT M and CONCAT S, we only consider
token sequences in the target vocabulary that are included in the top stack frame and the
memory as the candidates. However, when computing the embedding vectors, we still include
other elements in the top 2 stack frames and the memory, so as to encode the context

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 199

Figure H.1: A more complicated usage of the stack machine for SCAN benchmark.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 200

Figure H.2: An illustrative example of our stack machine for context-free grammar parsing.
This example showcases the execution steps that are equivalent to a REDUCE operation defined
in the parsing machine of [48]. CONCAT M is used to select the children for the generated tree,
REDUCE is used to generate the non-terminal, and CONCAT S is used to construct the tree.

Figure H.3: The neural architecture for the machine controller. The dotted arrows indicate
the update of machine status representation after executing the corresponding instructions.

.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 201

information. We keep an additional embedding vector of the [EOS] token for argument
prediction, which could be selected to terminate the argument generation process. We utilize
a pointer network architecture [253] to select indices from the input element list as arguments,
and the argument generation process terminates when it selects [EOS] token as the argument.
The output at the last timestep of the pointer network is used as the embedding of the
generated sequence, and it replaces the embedding vectors originally in the memory. We
denote the two generators as pCONCAT M(arg|ecur, epre, eM) and pCONCAT S(arg|ecur, epre, eM).

Latent category predictors. Both source and target category predictors include a classifi-
cation layer followed by an embedding matrix. Specifically, for the source category predictor,
given etok as the input, the classification layer is a |Cs|-dimensional softmax layer, which
predicts a probability distribution of the category that the input word tok belongs to. Let
ctok be the category that tok belongs to, another embedding matrix Ec is used to compute
an embedding vector ectok . Similarly, given an embedding vector of a token sequence s in the
target language, denoted as es, the classification layer of the target category predictor predicts
a |Ct|-dimensional probability distribution indicating the category of the sequence s, then
another embedding matrix is used to compute an embedding vector describing the categorical
information of the token sequence. Note that when a SHIFT instruction is executed, we still
put the embedding vector etok to the stack top instead of its categorical embedding, since
different tokens in the same category could be processed with different REDUCE arguments.
For example, “left” should be reduced into “LTURN”, while “right” should be reduced into
“RTURN”. On the other hand, the categorical predictions for the target language are used for
subsequent predictions of both operators and arguments. We set the number of categories |Cs|
and |Ct| for source and target languages as their vocabulary sizes, to support the degenerate
mapping that considers each token as a separate category.

H.4 More Details for Training

We outline the training algorithm in Algorithm 6. In the algorithm, we denote the predic-
tion probability distribution of the operator predictor as pop, and the argument prediction
probability distribution as pargs.

Rule extraction. Our recursive machine design enables us to extract rules learned from
previous lessons. For each execution step in a learned trace, we denote a tuple of (machine
status, operator) as an extracted rule for operator prediction, where the machine status
includes the contents of the top 2 stack frames, the memory, and the next token tok in the
input queue.

Similarly, we keep 3 rule sets for REDUCE, CONCAT M and CONCAT S argument prediction
respectively, where the machine status includes the information used as the input to the
corresponding predictors. For example, the ruleset for REDUCE argument prediction includes
tuples of (stack top, argument). Therefore, after we extract the rules from NeSS trained

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 202

(a)

(b)

Figure H.4: Sample spurious traces on SCAN benchmark, which could be pruned by rule
extraction. The wrong predictions of operators and arguments are marked with red.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 203

Algorithm 6 Training algorithm for NeSS

Input: training lessons L, the i-th lesson Li = {(xij, yij)}Ni
j=1, a model pθ

The extracted ruleset R← ∅
The current training data D ← ∅
for Li ∈ L do

D ← D ∪ Li
repeat

for each batch Bj = {(xk, yk)}
|Bj |
k=1 ∈ D do

Tj ← TraceSearch(pθ, Bj, R)
Opsj ← operator traces in Tj
argsj = REDUCE, CONCAT M, CONCAT S arguments in Tj
// OEs, OEt: latent category supervision for the source and target languages.
OEsj, OEtj ← OEExtraction(Bj, Tj)
Lossop ← − log pθop(Opsj), Lossargs ← − log pθargs(argsj)
LossOE ← −(log pθsc(OEsj) + log pθtc(OEtj))
Loss← Lossop + Lossargs + LossOE

Update θ to minimize Loss
end for

until No more non-degenerate execution traces are found with the search.
R← RuleExtraction(pθ, Li)

end for

on SCAN, its REDUCE ruleset should be as follows: {(run, [RUN]), (jump, [JUMP]), (look,
[LOOK]), (walk, [WALK]), (left, [LTURN]), (right, [RTURN]), (turn left, [LTURN]), (turn
right, [RTURN])}. The extracted ruleset for the few-shot learning and context free grammar
parsing tasks also largely follow the pre-defined ground truth grammar. For the compositional
machine translation benchmark, the main extracted REDUCE rules include: {(i am, [je suis]),
(i am not, [je ne suis pas]), (you are, [tu es]), (you are not, [tu n es pas]), (he is, [il est]), (he
is not, [il n est pas]), (she is, [elle est]), (she is not, [elle n est pas]), (we are, [nous sommes]),
(we are not, [nous ne sommes pas]), (they are, [elles sont]), (they are not, [elles ne sont pas]),
(very, [tres]), (daxy, [daxiste])}.

Note that we do not extract rules for degenerate execution traces, unless the length of
the output sequence is 1, which suggests that the degenerate execution trace is the most
appropriate one.

Speed up the trace search with extracted rules. To further speed up the trace
search during the training process, we utilize the rules extracted from previous lessons, and
prioritize their usage for the trace search in the current lesson. In Figure H.4, we provide
some examples of spurious traces without leveraging the rules extracted from previous lessons.
For example, in the spurious trace for “walk after jump” shown in Figure H.4a, “walk” and
“jump” are wrongly reduced into “JUMP” and “WALK” respectively, and with the wrong
CONCAT S argument, the output sequence still matches the ground truth. Besides the wrong

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 204

arguments, a spurious trace could also get the operators wrong, as shown in Figure H.4b. In
this spurious trace, a REDUCE operation is applied to the word “twice”. Given that “jump”,
“walk” and “twice” already appear in previous lessons including shorter sentences, ideally,
a well-trained model is supposed to perfectly memorize them. However, since our trace
search is a sampling process, such spurious traces are still possible, especially when the input
sequences become long. With the rule extraction process for training, NeSS prioritizes traces
where the operators and arguments do not conflict with the learned rules, e.g., those with
the correct REDUCE arguments for “walk” and “jump”, and the correct operations for “twice”.
Specifically, when NeSS encounters a machine status that is already included in the rule
set extracted from previous lessons, NeSS directly applies the corresponding rule, and only
searches for other operations when it cannot find any trace consistent with the extracted rule.

Training for latent category predictors. During the training process, when we encounter
two instances that are considered as potentially operationally equivalent, we first feed one of
the instances into the latent category predictor, and randomly sample a category index based
on the probability distribution computed by the predictor. Afterwards, we set this category
index to be the ground truth category for both the two instances. If the first occurrence
of one instance is in an earlier lesson than another one, then we sample the category index
based on the prediction probability distribution computed for this instance, otherwise we
arbitrarily select one instance from them.

H.5 Implementation Details

Curriculum design. For SCAN benchmark, we split the training set into 6 lessons. The
first 4 lessons include samples with an input sequence length or an output sequence length of
1, 2, 3 and 4 respectively. The fifth lesson includes all samples with an input sequence length
larger than 4, and a maximal output action sequence length of 8. The sixth lesson includes
the rest of training samples.

For the compositional machine learning benchmark, the curriculum is designed with the
increasing order of length of the English sentences, where the first lesson includes the shortest
sentences with 3 words, e.g., “I am daxy” and “you are good”, the second lesson includes
the sentences with 4 words, etc. Note that each English sentence in this dataset includes no
more than 9 words.

Trace search for training. When searching for non-degenerate execution traces, the
length limit of the REDUCE argument predictor is 2 for SCAN and the context-free grammar
parsing tasks, and 5 for the compositional machine translation task. No length limit is set
for the CONCAT M and CONCAT S argument predictors. No length limit is set for the REDUCE

argument predictor during the inference time, which allows it to produce degenerate execution
traces.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 205

For each training sample, the model searches for at most 256 execution steps to find a
non-degenerate trace, and if no such trace is found, a degenerate trace is used for training.
The execution steps are counted by the number of operators, e.g., the trace in Figure H.1
includes 21 execution steps. We use a simple trick to further speed up the trace search.
Note that when the sequence generated in an intermediate execution step is already not a
substring of the ground truth output sequence, this operation cannot be correct. In this case,
we backtrack to the previous step, and sample another different operation to execute.

Other training hyper-parameters. We train the model with the Adam optimizer, the
learning rate is 1e-3 without decaying, and the batch size is 256. We do not use dropout for
training. The model parameters are uniformly randomly initialized within [-1.0, 1.0]. The
norm for gradient clipping is 5.0. We perform an evaluation for the model after every 200
training steps, and the model usually converges to the optimum within 3000 training steps.

Model hyper-parameters. Each bi-directional LSTM used in the neural controller includes
1 layer, with the hidden size of 256. The embedding size is 512.

H.6 More Results on the Context-free Grammar

Parsing Task

In Table H.1, we present the results including all different setups and baselines in [48].
Specifically, Stack LSTM, Queue LSTM, and DeQue LSTM are designed in [96], where they
augment an LSTM with a differentiable data structure.

H.7 More Details of the Few-shot Learning Task

Figure H.5 shows the full dataset used for the few-shot learning task in our evaluation.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 206

Figure H.5: The full dataset used for the few-shot learning of compositional instructions.
This figure is taken from [150], where the percentage after each test sample is the proportion
of human participants who predict the correct output.

.

APPENDIX H. COMPOSITIONAL GENERALIZATION VIA NEURAL-SYMBOLIC
STACK MACHINES 207

Table H.1: The full experimental results on context-free grammar parsing benchmarks
proposed in [48].

While-Lang

Train Test
NeSS Neural

Seq2seq Seq2tree
Stack Queue DeQue

(ours) Parser LSTM LSTM LSTM

C
u

rr
ic

u
lu

m

Training 100% 100% 81.29% 100% 100% 100% 100%
Test-10 100% 100% 0% 0.8% 0% 0% 0%
Test-100 100% 100% 0% 0% 0% 0% 0%
Test-1000 100% 100% 0% 0% 0% 0% 0%
Test-5000 100% 100% 0% 0% 0% 0% 0%

S
td

-1
0

Training 100% 100% 94.67% 100% 81.01% 72.98% 82.59%
Test-10 100% 100% 20.9% 88.7% 2.2% 0.7% 2.8%
Test-100 100% 100% 0% 0% 0% 0% 0%
Test-1000 100% 100% 0% 0% 0% 0% 0%

S
td

-5
0

Training 100% 100% 87.03% 100% 0% 0% 0%
Test-50 100% 100% 86.6% 99.6% 0% 0% 0%
Test-500 100% 100% 0% 0% 0% 0% 0%
Test-5000 100% 100% 0% 0% 0% 0% 0%

Lambda-Lang

Train Test
NeSS Neural

Seq2seq Seq2tree
Stack Queue DeQue

(ours) Parser LSTM LSTM LSTM

C
u

rr
ic

u
lu

m

Training 100% 100% 96.47% 100% 100% 100% 100%
Test-10 100% 100% 0% 0% 0% 0% 0%
Test-100 100% 100% 0% 0% 0% 0% 0%
Test-1000 100% 100% 0% 0% 0% 0% 0%
Test-5000 100% 100% 0% 0% 0% 0% 0%

S
td

-1
0

Training 100% 100% 93.53% 100% 0% 95.93% 2.23%
Test-10 100% 100% 86.7% 99.6% 0% 6.5% 0.1%
Test-100 100% 100% 0% 0% 0% 0% 0%
Test-1000 100% 100% 0% 0% 0% 0% 0%

S
td

-5
0

Training 100% 100% 66.65% 89.65% 0% 0% 0%
Test-50 100% 100% 66.6% 88.1% 0% 0% 0%
Test-500 100% 100% 0% 0% 0% 0% 0%
Test-5000 100% 100% 0% 0% 0% 0% 0%

	Contents
	List of Figures
	List of Tables
	Introduction
	Synthesis with Natural Language
	SpreadsheetCoder: Formula Prediction from Semi-structured Context
	Introduction
	Problem Setup
	SpreadsheetCoder Model Architecture
	Experiments
	Related Work
	Discussion

	PlotCoder: Synthesizing Visualization Code in Programmatic Context
	Introduction
	Visualization Code Synthesis Problem
	PlotCoder Model Architecture
	Experiments
	Related Work
	Discussion

	Synthesis from Input-Output Examples
	Execution-Guided Neural Program Synthesis
	Introduction
	Problem Setup
	Execution-Guided Synthesis
	Synthesizer Ensemble
	Evaluation
	Related Work
	Discussion

	Latent Execution for Neural Program Synthesis
	Introduction
	Problem Setup
	Program Synthesis with Learned Execution
	Restricted C Program Synthesis Domain
	Experiments
	Related Work
	Discussion

	Synthesis for Software Engineering Applications
	Tree-to-tree Neural Networks for Program Translation
	Introduction
	Program Translation Problem
	Tree-to-tree Neural Network
	Evaluation
	Related Work
	Discussion

	Neural Rewriter for Code Optimization and beyond
	Introduction
	Problem Setup
	Neural Rewriter Model
	Applications
	Experiments
	Related Work
	Discussion

	Neural-Symbolic Reasoning for Language Understanding
	Neural Symbolic Reader for Reading Comprehension
	Introduction
	Neural Symbolic Reader
	Training with Weak Supervision
	Evaluation
	Related Work
	Discussion

	Compositional Generalization via Neural-Symbolic Stack Machines
	Introduction
	Neural-Symbolic Stack Machine (NeSS)
	Training
	Experiments
	Related Work
	Discussion

	Conclusion
	Future Work

	Bibliography
	SpreadsheetCoder: Formula Prediction from Semi-structured Context
	An Extended Discussion of Related Work
	More Experimental Results
	More Dataset Details
	More Discussion of the FlashFill-like Setting
	Implementation Details

	PlotCoder: Synthesizing Visualization Code in Programmatic Context
	Implementation Details
	Training with Varying Number of Contextual Code Cells
	Detailed Analysis on Results Per Plot Type
	Other Plot Types
	More Discussion of Error Analysis

	Execution-Guided Neural Program Synthesis
	More Descriptions of the Karel Domain
	More Details about the Execution-guided Algorithm
	Model Details
	Evaluation Details

	Latent Execution for Neural Program Synthesis
	Details in Model Architecture
	Implementation Details
	More Results of Iterative Retraining

	Tree-to-Tree Neural Networks for Program Translation
	Hyper-parameters of Neural Network Models
	More Statistics of the Datasets
	More Results on the CoffeeScript-JavaScript Task
	Grammar for the CoffeeScript-JavaScript Task
	Evaluation on the Synthetic Task

	Neural Rewriter for Code Optimization and beyond
	More Details of the Dataset
	More Details on the Rewriting Ruleset
	More Details on Model Architectures
	More Results for Job Scheduling Problem
	More Discussion of the Evaluation on Vehicle Routing Problem
	More Results for Expression Simplification

	Neural-Symbolic Reader for Reading Comprehension
	More details about the input preprocessing
	More discussion about the domain specific language
	More details about the model architecture
	More details about training
	Examples of wrong annotations on DROP
	Examples of wrong predictions on DROP

	Compositional Generalization via Neural-Symbolic Stack Machines
	Discussion of the Benchmark Selection for Evaluation
	More Details of the Stack Machine
	More Details of the Neural Controller Architecture
	More Details for Training
	Implementation Details
	More Results on the Context-free Grammar Parsing Task
	More Details of the Few-shot Learning Task

