
Data Science in Snap!: A Block-Based Approach to

Data Science Education

Isaac Merritt

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-43

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-43.html

May 9, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Data Science in Snap!: A Block-Based Approach to
Data Science Education
Isaac Merritt
May 13th, 2022

As Data Science increases in popularity, demand is increasing for ac-
cessible educational Data Science content. Though it is common to ad-
dress this demand with educational content in text-based programming
languages like Python, we have identified a different approach that has
proven successful in other fields of computing in the past. Course con-
tent known as BJC (The Beauty and Joy of Computing) offers students
the experience of learning how to program in the block-based language
Snap!. BJC content is taught all over the country at the high school level,
so our goal was to take a similar approach with Data Science content.

By adapting Data Science educational content into Snap! in the form
of DASIS (Data Science in Snap!) and BJDS (The Beauty and Joy of Data
Science), we have created new opportunities for high-school-age Data
Science students. DASIS is a new programming library in Snap! that
provides basic and advanced Data Science tools to Snap! users, and
BJDS is a series of online modules that covers introductory Data Science
Principles using the DASIS library. We have made Data Science more
accessible not only by adapting it to be taught in a high school setting,
but also by making it publicly available on the Internet without the need
for any additional software. This means that any high school teacher
or student can access introductory Data Science material with only an
Internet connection.

Introduction

Data Science as a discipline is in demand more than ever before
[10]. As data begins to drive more and more important decisions in
the world, having the ability to process and interpret data becomes a
crucial asset. The interdisciplinary nature of Data Science’s principles
offers a student interested in almost any other field the opportunity
to enhance their skill set. Data literacy is important for navigating
difficult choices in life, where making data-driven decisions can avoid
common misconceptions. This is why all high school students can
benefit from a strong Data Science background.

It is therefore very important to ensure that those interested in
learning about Data Science can do so without having to wait until
they reach the university level of education. There is little to no exist-
ing standard infrastructure for Data Science content in high schools,
so the opportunity to standardize learning objectives and create a
beginner-friendly environment in which students can learn is integral
to the development of the field as a whole. Making Data Science acces-
sible to any and all interested students is an important step in making



data science in snap!: a block-based approach to data science education 2

data-driven problem solving a more common skill.

This report is organized into four main sections.

• Section 1 discusses why DASIS is written in Snap!, and how it dif-
fers from existing libraries like UC Berkeley’s datascience library
and Python’s pandas.

• Section 2 details the development of DASIS from inception to de-
sign to implementation.

• Section 3 outlines DASIS functionality, covering different groups of
blocks and what Data Science principles they facilitate.

• Section 4 details how BJDS builds upon existing BJC infrastructure
and creates an iteration of block-based programming education cen-
tered around Data Science.

1 Block-Based Education

1.1 Snap!

Snap! is a block-based programming language that extends the
implementation of MIT’s Scratch [2]. University-level courses like UC
Berkeley’s CS10 [3] use Snap! as its primary programming language,
and hundreds of high-school-level courses like BJC [2] use it as well.
Its visual style makes it more intuitive for students with no coding
background to learn programming principles without having to use
text editors or IDEs. Snap!’s interface is publicly available online for
anyone to use [11]; there are no downloads or installs required to run
Snap! on any machine with an Internet connection.

This immediately helps make Snap! more accessible, as students
do not have to worry about troubleshooting software installs or down-
loading potential malware from the Internet. Students can run Snap!
just as easily as they can use Google.

1.2 Data Science in Text-based Languages

There are many text-based tools that can be used to teach Data Sci-
ence principles. Some of these alternatives include Python libraries
like Berkeley’s datascience and pandas. The datascience library is
used in UC Berkeley’s introductory Data Science course, Data 8 [7],
and pandas is used in the following Data Science course, Data 100 [6].
Both of these libraries have more advanced features than DASIS, but
the additional functionality does not necessarily enhance a beginner’s
educational experience. DASIS provides students with all the function-
ality required to learn Data Science principles, whereas datascience



data science in snap!: a block-based approach to data science education 3

and pandas may be better suited for a transition towards more ad-
vanced topics in Data Science.

These tools also require Python to be installed on the student’s
machine and the libraries themselves must be downloaded from the
Internet as well. This necessary step in the process can cause students
to have to spend time troubleshooting software downloads and instal-
lation, which can discourage otherwise determined students who feel
intimidated by the complications.

Even if download and installation do not present a problem to stu-
dents, the increased functionality comes at the cost of interactive com-
plexity. Unlike Snap!, Python typically entails using a text editor and
the command line or Jupyter Notebooks. These are additional sources
of potential troubleshooting for students, where Snap!’s drag, drop,
and click-to-run model is streamlined and more intuitive for new pro-
grammers. All the tools available to a student learning how to use their
Data Science toolkits are visibly present in the Snap! toolbar, whereas
when using a language like Python, the student has to remember the
names and arguments for every function or method they learn as they
type.

Above all else, these Python tools require students to have exist-
ing Python literacy. They already need to know how Python works,
because datascience and pandas are tools within the Python frame-
work. Learning a text-based programming language can take a signif-
icantly longer amount of time and energy than learning a block-based
language, so to get Data Science principles into students’ hands faster,
the opportunity to explore a block-based approach was a natural de-
velopment step.

Overall, because students would need to download software from
the Internet to use Python, install the libraries from the Internet, in-
stall a text editor or Jupyter Notebooks, and know how to use Python
before being able to learn anything about Data Science, there is an op-
portunity to simplify the process and provide students with a more
accessible introduction to Data Science. This is where Snap!’s block-
based approach offers itself as a means to reduce the student’s techno-
logical burden.

2 DASIS

As stated earlier in this report, there was strong motivation to cre-
ate block-based Data Science content, but unfortunately there was no
way to facilitate this material in Snap!. The clear choice was going to
be writing a new library that would allow the same functionality as
other Data Science tools in other languages. This is where the idea for
DASIS was born.



data science in snap!: a block-based approach to data science education 4

DASIS is the Data Science in Snap! programming library. It
contains blocks that provide students with the tools to learn Data Sci-
ence principles in a block-based environment. We designed the library
from scratch, as the existing Data Science blocks in Snap! were a bit
disorganized, difficult to use, and provided only minimal functional-
ity.

2.1 Design

The design process began in the summer of 2021. Initial designs
reflected SQL-style querying options. The end goal was functionality
similar to SQL, a known tool for teaching, such as in UC Berkeley’s
CS 186 [5]. Where DASIS was intended to be different was in all the
ways it could take advantage of Snap!’s block-based, visual style. We
wanted queries in DASIS to be composed of blocks that do individual
operations, different from SQL syntax that does multiple operations
at once, so that students can better understand how each operation
works.

Ultimately, DASIS was designed to be a suite of blocks created
for individual querying and visualization tasks, where the outputs of
blocks could be used as inputs to others. Unlike SQL’s rigid query
structure, DASIS was designed to be more flexible with complex queries
that require more than one block. Students would be able to use query-
ing blocks in any valid order they choose, which would allow them to
be able to interact with important ideas without having to spend as
much time learning language-specific syntax typical of a text-based
language. The data visualization blocks were also designed to remove
complicated syntax from the visualization process and redirect focus
on the importance of good data visualization practices.

2.2 Development

Once the design stage was complete and there was a concrete vi-
sion for the new library, development of DASIS began in the fall of
2021. Each DASIS function, method, and helper block was written
from scratch using Snap!’s default blocks. We used Snap!’s JavaScript
capabilites to do atomic sort and group operations on the finest lev-
els of granularity, which significantly improved runtimes in the ORDER,
GROUP, and PIVOT blocks. All of the computational Javascript code is
on the backend, invisible to students and never used directly in BJDS
content.

This means that by importing or including DASIS blocks in a Snap!
file, DASIS blocks work with the default Snap! environment. This
is just another way to improve the student’s experience by providing
them an educational programming environment with the least amount



data science in snap!: a block-based approach to data science education 5

of potential troubleshooting necessary.
One of the best ways DASIS takes advantage of Snap!’s visual style

is its data visualization functionality. DASIS supports 4 central data
visualization techniques:

• Horizontal Bar Graphs

• Line Plots

• Scatter Plots

• Histograms

These visualization techniques take advantage of Snap!’s stage.
The stage is an area in the upper right corner of Snap!’s interface that
can be used to draw, move sprites, and more. For our purposes, it was
the perfect integrated feature to facilitate conversations about data vi-
sualization.

DASIS now includes over 40 interactive blocks for student use and
over 70 blocks overall. Currently, to use DASIS there is an xml file
that includes all DASIS blocks available on the BJDS website [9] for
download. By clicking the link and dragging the xml file into Snap!’s
interface, DASIS blocks will be available for use. However, we are
currently looking to include DASIS as one of Snap!’s default down-
loadable libraries, further simplifying the technological needs of Data
Science students.

Figure 1: Reporter block in
Snap!

DASIS blocks are used like any other blocks in Snap!. Users pro-
vide arguments to DASIS blocks and click the block to see the output.
Reporter blocks (See Figure 1) will give a return value when clicked,
and command blocks (See Figure 2) will not return anything, but will
make a change to the stage or to a Table object.

Figure 2: Command block in
Snap!

3 DASIS Functionality

In this section, we will provide an overview of different DASIS
blocks. All the blocks in this section, as mentioned eariler in this re-
port, were made from scratch.

3.1 Table Object

Figure 3: Argument shape for a
Table Object in DASIS.

DASIS’s fundamental data structure is the Table. The figure on the
right displays the shape indicating a Table Object being used as an
argument to another DASIS block. In DASIS, a Table is represented by
a 4-item Snap! list:



data science in snap!: a block-based approach to data science education 6

Table 1: The DASIS Table object

Table Item Use
Data • Data contained by this Table

• Type: list of lists, each row is an item of the columns list
• Accessed using the "table data of Table" method

Rows • Number of rows in this Table
• Type: integer
• Accessed using the "number of rows in Table" method

Columns • Number of columns in this Table
• Type: integer
• Accessed using the "number of columns in Table" method

Column Names • Column names in this Table
• Type: list of strings
• Accessed using the "column names in Table" method

This Table data structure is involved in nearly every single DASIS
block. Reporter blocks involving Tables will never modify the original
Table, and will return a copy of the Table with the requested query
modifications. Orange command blocks involving Tables will modify
the Table object passed in as an argument, so they should be used
with more caution. As a precaution, command blocks with reporter
counterparts contain permanent in their titles so as to warn students
that their effect is permanent and difficult to undo in Snap!.

Figure 4: Create Table with tex-
tual data block

There are two ways to make a new Table object. Using either raw
textual data (See Figure 4) or imported csv data (See Figure 5), there
are DASIS blocks that turn data into a Table object. It is recommended
to always use imported csv data, however if students just want to make
a quick, small Table to run tests on, there is an option to create your
own Table from scratch by typing the table data into an argument of a
DASIS block.

Figure 5: Create Table with im-
ported data block3.2 Viewing a Table

Figure 6: View Table block

Because of the Table data structure’s abstracted design, viewing a
Table is not as trivial as clicking the variable name that stores a Table.
Using one of two DASIS methods, we can view a Table in a visually
straightforward fashion. These blocks, the VIEW Table block (See Fig-
ure 6) and the head of Table block (See Figure 7), allow a student to
be able to see a Table’s column names and data combined in one re-
turn value. Students could see this information using a combination
of other DASIS blocks, but these blocks are present to simplify the
process of viewing a Table as people expect them to look.

Figure 7: head of Table block



data science in snap!: a block-based approach to data science education 7

3.3 Querying Blocks

Table 2: DASIS Table Methods

Block Image Use
• Accessor method that returns the data contained in a Table
object
• Does not include column labels
• Accessor method that returns the number of rows in a Table
object
• Accessor method that returns the number of columns in a
Table object
• Accessor method that returns the list of column names in a
Table object
• Returns the nth column of a Table object as a list, where n is
the integer argument
• Returns the name of the nth column in a Table object, where
n is the integer argument
• Returns the column of data from a Table object corresponding
to the column name argument as a list
• Returns the index of the column in a Table object correspond-
ing to the column name argument
• Returns True if the column name argument is a column label
in the given Table object, False otherwise
• Returns the nth row of a Table object as a list, where n is the
integer argument
• Since rows do not have labels in Table objects, the only way
to access a specific row is by its index
• Returns the nth item of a given row, where n is the integer
argument
• There is no Table argument required to use this block because
no label is necessary to access a row
• Returns the nth item of the column in a Table object corre-
sponding to the column name argument, where n is the integer
argument
• Returns the item in the ith row, and the jth column of a Table
object, where i and j are the first and second integer arguments
• Returns the item of a Table object in the given row and in the
column corresponding to the column name argument



data science in snap!: a block-based approach to data science education 8

Table 3: Querying Reporter Blocks in DASIS

Block Image Use
• Returns a new Table with a new row added to the original
Table
• Does not edit the original Table
• Returns a new Table with a new column added to the original
Table; name provided by the column name argument
• Does not edit the original Table
• Returns a list that represents all the values in the given column
argument modified with the reporter argument
• Returns a Table without the columns provided as drop argu-
ments
• Best used when only a few columns are to be omitted
• Returns a Table with one row for each unique value in the
grouping column argument
• Each row is aggregated via argument using sum, mean, or
count
• The column names of the returned Table are the same as the
original Table, but all rows except the grouping row have been
appended with the name of the aggregator function
• Returns a Table with a column for every unique value in the
first pivoting column argument and a row for every unique value
in the second pivoting column argument
• Each value in the returned Table is the number of rows in the
original with the combination of values at the intersection of its
location
• Returns a Table with only the top n rows, where n is the integer
argument
• Can be helpful for viewing a large Table
• Orders Table data by the provided column argument
• Ordering column can optionally be modified before ordering
• Can order in ascending or descending order
• Returns a Table with only the columns selected by the user
• Best used when only a few columns are to be kept
• Returns a Table with only rows with a value in the given

column that satisfies the given boolean function
• Boolean function is created by the boolean operator argument,
comparing the row’s value in that column to the value argument
• Filtering column can optionally be modified before filtering



data science in snap!: a block-based approach to data science education 9

The querying blocks can be organized into 4 groups: Table
methods, reporter blocks, command blocks, and data visualization
blocks. Tables displaying all the blocks in these categories with their
usages appear in the tables above and below.

Table 2 contains all blocks that give information about a Table with-
out any modifications. These blocks help students learn about a data
set before answering any questions or coming to conclusions about the
data.

Table 3 contains all querying reporters. These blocks modify a Ta-
ble in some way and return a modified copy to satisfy the query. None
of these blocks edit the original Table object passed in as their argu-
ments.

Once students have learned about how to investigate a data set
without modifications using the blocks mentioned in the previous ta-
bles, they can use the following blocks to calculate answers to potential
questions about the data.

Table 4: Querying Command Blocks in DASIS

Block Image Use
• Adds a column to the Table permanently
• Column is added to the end (right) of the Table
• Adds a row to the Table permanently
• Row is added to the end (bottom) of the Table
• Applies the reporter function argument to the

items of the column corresponding to the first col-
umn name argument and adds the result as a new
column in the Table with the name provided by the
second column name argument
• Deletes the column corresponding to the column
name argument from a Table
• Deletes all columns corresponding to each column
name in the list argument from a Table
• Deletes the column at the index provided as the
integer argument from a Table
• Deletes the row at the index provided as the inte-
ger argument from a Table
• Relabels an existing column name, provided as
the first column name argument, and changes it to
the name provided as the second column name ar-
gument in a Table



data science in snap!: a block-based approach to data science education 10

Table 4 contains query command blocks. These blocks execute
functions homologous to their reporter counterparts, except that they
edit a Table directly and permanently. These blocks all have function-
ality represented by another DASIS reporter, but the calculations or
changes they make do not happen to a copy of the original Table; their
changes are difficult to undo and should be used with caution.

Table 5: Data Visualization Blocks in DASIS

Block Image Use
• Generates a horizontal bar

plot of a categorical variable
• Can optionally group data

before plotting
• Generates a histogram of a
numerical variable
• Can choose number of bins,
or let DASIS choose by default
• Generates a line plot of a nu-
merical variable over time
• Can optionally group data

before plotting
• Generates a scatter plot of

two numerical variables
• Can optionally group data

before plotting

Table 5 contains data visualization blocks. These blocks execute
functions that visually represent data on the Snap! stage. They have
a purple color to indicate that they are not querying blocks and that
they draw on the stage.

These data visualization blocks create visual plots in Snap!, exam-
ples of which can be found in the margins as Figures 8-11. They each
run very quickly on large data sets; they have been tested on data sets
on the order of 7000 rows.

Figure 8: A DASIS Horiontal
Bar Plot

4 BJC and BJDS

The Beauty and Joy of Data Science (BJDS) is an introductory Data
Science curriculum in Snap!. BJDS uses DASIS to facilitate its learning
objectives, and it currently consists of 4 interactive modules available
online [8]. These modules are hosted on the same website as BJC (The
Beauty and Joy of Computing), and they can be seen as an extension
of BJC-style material.



data science in snap!: a block-based approach to data science education 11

It is not a requirement that students have previous experience with
Snap! in order to engage with BJDS material, but a background with
Snap! helps students establish comfort with Data Science principles
because they have established comfort in the programming language
first. For this reason, students who have already taken BJC at their
high school are in a great position to learn with BJDS.

Figure 9: A DASIS Histogram

4.1 UC Berkeley’s CS10

CS10 is the university-level implementation of BJC content. Each
semester, between 150 and 350 [1] new students at UC Berkeley take
this course, many of whom have little to no previous programming
experience before enrolling in the course. As a former CS10 student
and a former CS10 staff member (Academic Intern, Reader, and even-
tually TA), I can speak from experience that the opportunity to learn
programming for the very first time at the university level can feel
like a daunting task. However, Snap! does not feel as intimidating
to students as they learn how to code, and the course’s structure al-
lows students to follow a natural progression through various topics
in computing.

Figure 10: A DASIS Line Plot

CS10 spends a little over 2
3 of its curriculum teaching exclusively

in Snap!, and spends the rest of the semester introducing students to
Python [3]. There is a very natural transition between the two lan-
guages, where students are able to make comparisons between their
functionalities. Snap! has many functions that students can find in
Python, so when making the switch from a block-based language to a
text-based language, there is already an existing knowledge base that
supports students. The task of learning a new programming language
comes down to understanding its syntax and translating knowledge
from your known language to the new one. This takes a lot of the
pressure off students as they venture into Python.

Figure 11: A DASIS Scatter Plot

Additionally, CS10 provides coding opportunities for students of
generally under-represented communities in the field of programming
(women and ethnic minorities) [4]. At UC Berkeley, female enrollment
routinely surpasses 50% of the class, and this fact has generated na-
tional exposure from several major news outlets including the New
York Times, KQED, NPR’s All Things Considered, USA Today, San
Jose Mercury News, San Francisco Chronicle, and many others [4].

All these qualities are desirable starting points for any computing
curriculum. This is why the style of BJDS was so heavily influenced
by BJC and CS10. Creating a Data Science addition to existing infras-
tructure like this was a high priority for us, and the BJDS that exists
today reflects that desire.



data science in snap!: a block-based approach to data science education 12

4.2 BJDS Learning Objectives

As mentioned earlier in this report, BJDS is a Data Science curricu-
lum implemented with online modules. The learning objectives of the
curriculum aim to provide students with introductory Data Science
skills that can be built upon by future Data Science education. There
are three main goals that students are encouraged to remember as they
make their way through the curriculum:

1. Explore Data Science using Snap!

2. Explore Tables and how we can use Snap! to manipulate them

3. Understand how Tables can be used to answer questions about data

The technical skills and activities they will engage with during their
time with BJDS all contribute to these goals. While fluency with Snap!
is important, that knowledge is only a stepping stone towards better
understanding Data Science principles.

4.3 BJDS Module Content

Table 6: BJDS Modules

Module Covered Content/Activities

Assignment 1: Tables and Data

• Familiarizing students with DASIS
• Creating a Table from scratch using data that is not imported
• Accessing data from a Table
• Accessing information about a Table
• Importing a Table from a file
• Exploring introductory calculation using Table data

Assignment 2: Querying a Table
• Exploring new Table methods in DASIS
• Using those Table methods to answer more complex questions
about data

Assignment 3: Group and Pivot

• Explore the Group and Pivot table methods in Snap!
• Use those Table methods to answer more complicated questions
about data
• Understand how Group and Pivot allow us to more easily visu-
alize data

Assignment 4: Data Visualization

• Learn about statistical variable types: numerical (continu-
ous/discrete) and categorical (ordinal/nominal)
• Learn how to properly visualize variables using DASIS blocks
• Detect patterns and draw conclusions about data using visual-
ization

BJDS is a series of 4 modules that develop students’ technical
programming knowledge and provide the skills required to explore



data science in snap!: a block-based approach to data science education 13

the field of Data Science. These 4 modules build off each other, as the
skills learned in a previous module are necessary for students in the
next module.

4.4 Next Steps for BJDS Students

By the time students have completed these 4 modules, they will
be ready to take their next steps in their Data Science education. In
most cases, that will mean a transition to a text-based language, sim-
ilar to the way BJC and CS10 transition to Python. There are many
languages students will be able to learn after completing BJDS, like
Python’s datascience and pandas, R, or SQL, but no matter which
path they take with their Data Science future, BJDS will have prepared
them with the skills to properly analyze, query, and draw meaningful
conclusions about data.

Students at this point are free to explore new languages on their
own or even continue on to university-level Data Science. A course
like Data 8 at UC Berkeley would be an example of a Python transition,
but many other universities also offer students opportunities to grow
their skills and interest in Data Science.

5 Conclusion

Overall, DASIS and BJDS aim to help expose younger students to
the field of Data Science in a beginner-friendly programming environ-
ment. By making them both accessible to the public, we open the door
to any high school teachers in America being able to teach our material
to their students, and we also allow any interested students to engage
with the material on their own.

5.1 Next Steps

In the future, we would be happy to see BJDS expand. We would
be excited to see BJDS in more high schools in the coming years, as
right now the curriculum is being piloted in a Bay Area high school by
teacher Sean Morris and will be taught as a part of a new Data Science
class in the Fall of 2022 by teacher Parisa Safa. Once it has been taught
in a live environment, we hope to see it spread to other high schools
where more and more high school students will be able to learn about
Data Science. The more students that are able to interact with BJDS
and explore Data Science, the better.

We can also see a next step where another group builds on the
content we have created to improve the quality of the curriculum. This
could entail creating new activities with relevant data sets or creating
projects for students to work on and test their new skills.



data science in snap!: a block-based approach to data science education 14

Overall, we want DASIS and BJDS to facilitate the growth of Data
Science as a field to motivate the next generation to make data-driven
conclusions. The best way to do that is ensure that interested students
can begin learning at a younger age and develop their skills earlier
than college.

Acknowledgements

This project would not have been possible without the help of many
others who supported me and guided me during my time at Berkeley.
I would like to thank:

• Josh Hug, my advisor, without whom I would not have been able
to conduct my research or been able to learn so much about the
educational process.

• John Denero, my second reader, who graciously agreed to help me
revise this report and provide me valuable feedback.

• Dan Garcia, my first computer science professor and the educator
whose enthusiasm and passion for the field of computer science
showed me that anyone can code (even those who don’t start learn-
ing until college!).

• Suraj Rampure, Niki Zarkub, Maxson Yang, Murtaza Ali, Kathleen
Gao, all my fellow CS10 staff members, and countless others who
I have had the pleasure of teaching alongside during my time at
Berkeley.

• My friends and family whose support and compassion motivated
me to be the best version of myself as a student at UC Berkeley.

References

[1] BerkeleyTime | CS10 Enrollment Statistics. url: https://berkeleytime.
com/enrollment/2-2315-spring-2021-332192&3-2315-fall-

2020-325182 (visited on 04/15/2022).

[2] BJC | The Beauty and Joy of Computing. url: https : / / bjc .

berkeley.edu/ (visited on 04/12/2022).

[3] CS10 | Course Webpage. url: https : / / cs10 . org (visited on
12/04/2022).

[4] CS10 Spring 2022. url: https://cs10.org/sp20/.

[5] CS186 | Course Webpage. url: https://cs186berkeley.net/
(visited on 05/02/2022).

https://berkeleytime.com/enrollment/2-2315-spring-2021-332192&3-2315-fall-2020-325182
https://berkeleytime.com/enrollment/2-2315-spring-2021-332192&3-2315-fall-2020-325182
https://berkeleytime.com/enrollment/2-2315-spring-2021-332192&3-2315-fall-2020-325182
https://bjc.berkeley.edu/
https://bjc.berkeley.edu/
https://cs10.org
https://cs10.org/sp20/
https://cs186berkeley.net/


data science in snap!: a block-based approach to data science education 15

[6] Data 100 | Course Webpage. url: https://ds100.org/ (visited
on 12/04/2022).

[7] Data 8 | Course Webpage. url: http://data8.org/ (visited on
12/04/2022).

[8] Data Science in Snap! | BJDS Home. url: https://cs10.org/bjc-
r/course/berkeley_bjds.html (visited on 04/14/2022).

[9] Data Science in Snap! | Download DASIS. url: https://cs10.
org/bjc-r/cur/programming/data_science/lab01/03-download.

html?topic=berkeley_bjds%2Ftables%2F1- tables.topic&

course=berkeley_bjds.html&novideo&noreading&noassignment

(visited on 04/13/2022).

[10] Salaries And Job Opportunities For Data Scientists Continue To Rise.
url: https://www.forbes.com/sites/gilpress/2021/06/
27/salaries-and-job-opportunities-for-data-scientists-

continue-to-rise/?sh=675eb0104276 (visited on 04/12/2022).

[11] Snap! User Interface. url: https://snap.berkeley.edu/snap/
snap.html (visited on 12/04/2022).

https://ds100.org/
http://data8.org/
https://cs10.org/bjc-r/course/berkeley_bjds.html
https://cs10.org/bjc-r/course/berkeley_bjds.html
https://cs10.org/bjc-r/cur/programming/data_science/lab01/03-download.html?topic=berkeley_bjds%2Ftables%2F1-tables.topic&course=berkeley_bjds.html&novideo&noreading&noassignment
https://cs10.org/bjc-r/cur/programming/data_science/lab01/03-download.html?topic=berkeley_bjds%2Ftables%2F1-tables.topic&course=berkeley_bjds.html&novideo&noreading&noassignment
https://cs10.org/bjc-r/cur/programming/data_science/lab01/03-download.html?topic=berkeley_bjds%2Ftables%2F1-tables.topic&course=berkeley_bjds.html&novideo&noreading&noassignment
https://cs10.org/bjc-r/cur/programming/data_science/lab01/03-download.html?topic=berkeley_bjds%2Ftables%2F1-tables.topic&course=berkeley_bjds.html&novideo&noreading&noassignment
https://www.forbes.com/sites/gilpress/2021/06/27/salaries-and-job-opportunities-for-data-scientists-continue-to-rise/?sh=675eb0104276
https://www.forbes.com/sites/gilpress/2021/06/27/salaries-and-job-opportunities-for-data-scientists-continue-to-rise/?sh=675eb0104276
https://www.forbes.com/sites/gilpress/2021/06/27/salaries-and-job-opportunities-for-data-scientists-continue-to-rise/?sh=675eb0104276
https://snap.berkeley.edu/snap/snap.html
https://snap.berkeley.edu/snap/snap.html

	Introduction
	1 Block-Based Education
	2 DASIS
	3 DASIS Functionality
	4 BJC and BJDS
	5 Conclusion
	Acknowledgements

