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Abstract

Teaching Robots to Span the Space of Functional Expressive Motion

by

Arjun Sripathy

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

Our goal is to enable robots to perform functional tasks in emotive ways, be
it in response to their users’ emotional states, or expressive of their confi-
dence levels. Prior work has proposed learning independent cost functions
from user feedback for each target emotion, so that the robot may opti-
mize it alongside task and environment specific objectives for any situation
it encounters. However, this approach is ine�cient when modeling multiple
emotions and unable to generalize to new ones. In this work, we leverage
the fact that emotions are not independent of each other: they are related
through a latent space of Valence-Arousal-Dominance (VAD). Our key idea
is to learn a model for how trajectories map onto VAD with user labels.
Considering the distance between a trajectory’s mapping and a target VAD
allows this single model to represent cost functions for all emotions. As a
result 1) all user feedback can contribute to learning about every emotion;
2) the robot can generate trajectories for any emotion in the space instead of
only a few predefined ones; and 3) the robot can respond emotively to user-
generated natural language by mapping it to a target VAD. We introduce a
method that interactively learns to map trajectories to this latent space and
test it in simulation and in a user study. In experiments, we use a simple
vacuum robot as well as the Cassie biped.
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Abstract— Our goal is to enable robots to perform functional
tasks in emotive ways, be it in response to their users’ emotional
states, or expressive of their confidence levels. Prior work
has proposed learning independent cost functions from user
feedback for each target emotion, so that the robot may
optimize it alongside task and environment specific objectives
for any situation it encounters. However, this approach is
inefficient when modeling multiple emotions and unable to
generalize to new ones. In this work, we leverage the fact that
emotions are not independent of each other: they are related
through a latent space of Valence-Arousal-Dominance (VAD).
Our key idea is to learn a model for how trajectories map
onto VAD with user labels. Considering the distance between
a trajectory’s mapping and a target VAD allows this single
model to represent cost functions for all emotions. As a result
1) all user feedback can contribute to learning about every
emotion; 2) the robot can generate trajectories for any emotion
in the space instead of only a few predefined ones; and 3) the
robot can respond emotively to user-generated natural language
by mapping it to a target VAD. We introduce a method that
interactively learns to map trajectories to this latent space and
test it in simulation and in a user study. In experiments, we
use a simple vacuum robot as well as the Cassie biped.

I. INTRODUCTION

Robotics research tends to focus on generating functional
motion, in service of the robot’s task. But imagine coming
home from work exhausted and disappointed in being re-
jected from a job application, and the robot continuing to
carry on its tasks as if nothing changed. Or, coming back
with high energy after taking a walk in the sun, and the robot
still putting the dishes away in the same exact way it always
does. Ideally, our robots should adapt their behavior like in
Fig. 1, including the way they move, in response to us, as
well as in response to successes and failures they encounter,
their confidence levels when performing a task, etc.

While much work has focused on expressive or emotive
robot gestures [1]–[3], the ability to generate emotive func-
tional motion that still achieves the robot’s task remains an
open problem. How can a robot walk to its goal and avoid
obstacles while seeming happy or confident in response to its
user having had a great day? How could a manipulator place
a dish in the sink while empathizing with its user’s disap-
pointment at work? Taking an existing motion and adjusting
its affective features, as researchers do with gestures [1],
[4], would no longer meet the functional task specification.
Instead, prior work [5] has proposed to learn a cost function

*This research is supported by the Office of Naval Research (ONR-
YIP), the Air Force Office of Scientific Research (AFOSR), the
UCSF Weill Institute for Neuroscience, and the Apple AI/ML PhD
Fellowship. All authors are with the EECS department at UC Berkeley
{arjunsripathy, abobu, zhongyu li, koushils,
dsbrown, anca}@berkeley.edu

Great weather today!

Didn’t get the offer…

Fig. 1: Cassie robot performing a task with trajectories it believes
exhibit similar emotion VAD as the human speech. (Top) The
person’s happier sentiment (orange) results in the robot’s fast
upright motion. (Bottom) The person’s sad sentiment (blue) results
in slow and slouched motion.

from user feedback for each desired emotion or style, that
can be then optimized along with the task specification.
Although this addresses the problem of generating motion
in an emotive style even as the specifics of the task change,
it has the challenge that we have to think of every desired
emotion in advance, and collect data specific to it. Further,
we still need a way to decide which style or emotion to use.

In our work, we focus on the fact that emotions are not
independent—they are latently related through the Valence-
Arousal-Dominance (VAD) spectrum. Motivated by foun-
dational studies in social psychology, VAD identifies three
continuous, interpretable directions capturing much of emo-
tional variance [6], [7]. Rather than learning independent cost
functions for each emotion, our key idea is to learn to map
robot trajectories to an emotive VAD latent space—this way,
all user feedback contributes to learning about all emotions,
and the robot can model new emotions that interpolate those
seen during training. This enables robots to perform tasks
in ways expressive of any specific emotion, by optimizing
for a trajectory with a projection onto the latent space that
is as close as possible to the desired emotion’s VAD. They
also may use natural language to infer target emotion VAD:
enabling stylistic response to emotive words, like “anger”,
or even sentences, like “Great weather today!” as in Fig. 1.

Our approach interactively collects data from a user to
learn this emotive latent space: it starts with an initial space,
uses it to optimize emotive trajectories for a variety of task
specifications and target emotions, asks the user to label these
trajectories, and retrains the latent space to agree with the



user labels. Users may choose to label directly with VAD,
or use language, which we can map to VAD by using pre-
trained language models [8] finetuned to predict VAD scores.

In experiments with simulated human feedback for a
Vacuum robot and the Cassie biped, we demonstrate the
efficiency of our method in learning emotive costs when
compared to approaches which model each emotion inde-
pendently. We then show in a user study with the Vac-
uum robot that real humans can teach personalized emotive
style in only 30 minutes of labeling. We find that users
are able to recognize target emotions in robot motions
generated with the model trained on their labels, even
though those target emotions were not explicitly queried
for during training. In summary, we propose a method
for generating functional, stylistic robot motion by effi-
ciently teaching how trajectories map to VAD defining a
cost function encouraging target emotive style specified by
natural language. Code and videos are made available at
arjunsripathy.github.io/robot emotive space.

Despite showing promise in enabling simulated robots to
perform functional tasks while expressing a wide range of
emotions, much work remains ahead. Demonstrating general-
ization to a broader range of tasks than locomotion, thinking
critically about how target VAD should be determined based
on the emotion the user expresses, and moving as much
of the process as possible to the physical domain all pose
interesting challenges which we discuss further in Sec. V-B

II. RELATED WORK

Getting robots and virtual avatars to exhibit realistic
looking and human-recognizable motions is a well-studied
problem, from conveying intent in a task [4], [9], [10], to
communicating incapability [11], [12], to expressing emo-
tions [5], [13], [14]. In this section, we focus our attention
on literature from the latter category, as our goal is enabling
robots to learn emotive styles for performing functional tasks.

Motion style research has its roots in the graphics com-
munity. Some work looks at transferring motion capture
style from one clip to another [15]–[17], but such uncon-
strained transfer is not appropriate for robots that need to
satisfy rigid physical dynamics, or, even more challeng-
ing, to still be performing the desired underlying task.
Alternative approaches use human demonstrations to learn
locomotion styles as cost functions that the robot optimizes
to respect task constraints [18], [19]. Unfortunately, due to
the correspondence problem in robotics [20], these methods
cannot be applied outside of locomotion robots, and acquir-
ing demonstrations of stylized non-anthropomorphic robots
is extremely challenging, especially when moving beyond
gestures to functional motion.

In typical robotics motion style work, researchers design
libraries of emotive motions that the robot can use during
task execution [13], [14], [21]. To produce trajectories fea-
sible for complex physical systems, Li et. al. [21] employ
a dynamically constrained optimization that encourages the
resulting motion to match stylized trajectories while abiding
by the robot’s dynamics. The motions in these methods are
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Fig. 2: Visualization of our method. The optimizer combines the
task’s base cost Cbase with the style cost Cstyle of a sampled
emotion to produce a query trajectory the style discriminator
believes aligns with the target VAD. The user labels the trajectory
with a VAD, and the style discriminator f✓ is trained to bring its
predicted VAD closer to the human label.

hand-crafted and, therefore, specific to the system and task
they are being designed for. To generalize to a more diverse
set of tasks, recent methods [5], [18], [19] try to learn a cost
function that when optimized produces the desired emotive
motion. However, these methods requires collecting labels
for each emotion one at a time, resulting in inefficient and
costly learning that fails to generalize to new emotions.

Instead of representing each emotive motion with an
individual cost function, we can learn a more generalizable
representation. Suguitan et. al. [1] learned a latent emotive
embedding along the VA spectrum [6], [7] capturing a whole
space of emotions. While their approach enabled the robot
to exhibit simple emotive gestures, like a slow lowering of
the head for sad, we are interested in integrating emotive
motion during the robot’s task execution. In this work, we
take inspiration to similarly learn an embedding that maps
emotive trajectories like the ones in Fig. 1 to a latent VAD
space but extend their approach to functional task behaviors.

With this embedding, we have a representation that is both
generalizable to new emotions and amenable to alternative
forms of human feedback, such as natural language. Recently
large, pre-trained language models such as BERT [8] have
made transfer learning for downstream natural language tasks
more accessible and efficient. Further, due to the breadth
of research around VAD there exist datasets containing
language and corresponding manual VAD annotations [22],
[23]. Putting these together we may train a model for
mapping natural language into our learned VAD space which
will allow us to make the interaction between user and our
system even more seamless.

III. METHOD

We now present our method for enabling a human to
teach robots how to exhibit a broad range of emotions while
performing various tasks. The core of our method is training
a style discriminator, which predicts what emotion the human
would perceive given a trajectory, using VAD labels collected
from humans in response to query motions. For any target
emotion, we’ll define a motion style cost based convincing

https://arjunsripathy.github.io/robot_emotive_space


the discriminator that the trajectory being optimized exhibits
the target VAD. We leverage the interpretable structure of
VAD as a representation for emotion to improve learning
efficiency, interpolate or extrapolate to new emotions, and
integrate natural language seamlessly.

A. Preliminaries
We represent a trajectory ⇠ 2 ⌅, where ⌅ denotes the

set of all trajectories in an environment, as a variable length
sequence of waypoints along with the variable time duration
between each pair of consecutive points. We denote envi-
ronment tasks, such as moving from a specific start location
to a specific goal, as ⌧ 2 T , where T denotes the set of all
tasks in the environment. The robot produces a trajectory that
solves a particular task in the environment by optimizing a
base cost Cbase : ⌅⇥T ! R. Optimizing a trajectory using
Cbase yields an efficient trajectory but offers no control over
the emotion and typically produces a neutral style.

We describe the style of a trajectory based on an emotion
VAD latent e 2 E := [�1, 1]3, where the three values
continously represent Valence, Arousal, and Dominance in
that order. Our goal is to learn a trajectory style cost, Cstyle :
⌅⇥ E ! R, capable of encouraging stylistic alignment with
any target emotion e. Ultimately, to produce trajectories that
achieve the task with the target style the robot will trade off
between the base cost and the style cost:

C(⇠, ⌧, e) = Cbase(⇠, ⌧) + ↵ · Cstyle(⇠, e) , (1)

where ↵ is a user specified hyperparameter that prioritizes
between style and efficiency.

B. Cost Function Formulation
To learn the style cost Cstyle, we propose training a neural

network style discriminator f✓ : ⌅ ! E parameterized by ✓
to map a trajectory ⇠ to the emotion e the robot exhibits while
following it. Our motivation for this design is that every
trajectory exhibits some emotion. The style discriminator
f✓ naturally motivates a style cost function Cstyle which
penalizes a trajectory ⇠ based on how much its exhibited
emotion, f✓(⇠), differs from the target e. We formalize this
intuition using Euclidean distance in E :

Cstyle(⇠, e) = ||f✓(⇠)� e||22 . (2)

By optimizing the combined cost function in Eq. (1) along
with any task constraints, the resulting trajectory ⇠ completes
the task while making its best effort to exhibit the target e.

C. Generating Human Queries
To train a robust discriminator f✓, we generate batches of

trajectories and query the user for emotive labels as shown
in Fig. 2. The user provides either direct VAD labels or
language which we map to VAD as discussed in Sec. III-
E. Our goal is to learn ✓, which is randomly initialized and
updated after each labeling round as discussed in Sec. III-D.

To generate a round of query trajectories we optimize
Eq. (1) for a batch of sample emotions and tasks, using
the current estimate of ✓ for Cstyle. Given Cstyle does

Fig. 3: The VAD latent space with each of Valence, Arousal,
and Dominance being a real valued axis ranging from -1 to 1.
The scatter plot depicts the projections of 1,672 emotive words
projections into this space with the red dots highlighting the 6 basic
evaluation emotions we used in our experiments.

not explicitly model the task, we focus on how to sample
emotions in a way that is most informative for ✓. Motivated
by active learning literature we seek a diverse batch that
biases towards important, unexplored areas of E [24].

Not all areas of E are equally important. Emotions are
not uniformly spread across E , and we would like to focus
our queries on more populated areas of the space. We
leverage the empirical emotion distribution from the NRC
VAD lexicon [22], which contains annotated VAD values for
20k words. We filtered them down to 1,672 common emotive
words, resulting in the VAD distribution in Fig. 3.

We now propose an active learning method for improving
query coverage of this distribution to make the discriminator,
f✓, more robust. For the first round of queries, since the net-
work f✓ is randomly initialized and has no semantic meaning
yet, we uniformly sample B emotions from E . To explain
the process for successive rounds we must establish some
notation. We conduct K query rounds with k 2 [1,K] refer-
encing the round index. Let Sk := {sk}1:B 2 EB reference
the batch of sample emotions to be chosen by active learning
to cover the empirical distribution of D = 1672 lexicon
VAD values e1, ..., eD. By optimizing Eq. 1 for Sk alongside
tasks randomly presented by environment, we generate query
trajectories Qk := {qk}1:B 2 ⌅B . For these queries we will
collect human labels referenced Lk := {lk}1:B 2 EB .

Our active learning method seeks to minimize the average
distance between lexicon emotions and the closest acquired
label from any round. This relies on estimating the Lk based
on our selection of Sk. Our approximation here is Lk ⇡ Sk

which becomes more accurate over the course of training.
With this assumption, for k > 1, we may select Sk as:

Sk = argmin
Sk

DX

i=1

min
l2Sk[

k�1S
j=1

Lj

||ei � l||2 . (3)



Sk will bias towards densely populated areas of the VAD
space where we do not yet have a nearby label. We approx-
imate the optimal solution using expectation maximization
[25]. We now turn our attention to how we may update ✓
after each round based on the collected human feedback.

D. Trajectory Network Training and Architecture

After each round k of querying, we update ✓ given our
trajectory queries and VAD label responses collected so far
(Q1:k, L1:k). We optimize the following MSE training loss:

Lk(✓,Q1:k,L1:k) =
kX

i=1

BX

j=1

||f✓(qji )� lji ||
2
2 . (4)

Note the summand is exactly equivalent to Cstyle(q
j
i , l

j
i )

allowing for an alternative interpretation: we treat the queries
as demonstrations for the emotion labels and would like to
assign them minimal style cost.

In implementing this method, we have to choose a specific
architecture for f✓. Recall from Sec. III-A that we represent
a trajectory as a variable-length sequence of waypoints and
time deltas. We utilize an architecture similar to PointNet
[26] for its simplicity and ability to gracefully handle varying
length trajectories. First, a fully connected network processes
each waypoint independently. Then we apply average and
softmax pooling over waypoints to produce a single trajec-
tory embedding. From there another fully connected network
predicts the overall trajectory VAD value. Both networks use
ELU activation [27].

It is important that the network predictions are smooth so
they guide trajectory optimization well when used within the
cost function. In other words, not only must predictions be
accurate, but their gradient signal must also be informative.
These factors motivated us to use smoother pooling (average
& softmax) and activation functions (ELU), and to limit
network capacity. A single hidden layer in each network,
of dimensions chosen to match the complexity of the robot,
along with L1 regularization worked well in our experiments.

E. Natural Language to VAD

We now describe how VAD may be inferred from natural
language and where this may be used. Single words we look
up directly in the NRC VAD lexicon [22]. For sentences, or
words not present in the lexicon, we apply a BERT model
finetuned to predict VAD using EmoBank: a dataset with 10k
VAD labeled sentences [8], [23]. The wealth of resources and
data around VAD is another benefit of using the spectrum as
our latent space.

In many scenarios language provides a more natural means
of communicating emotion than VAD. During training, lan-
guage labels could be easier to provide compared to VAD
directly. To be practical after training, the robot likely must
determine target emotion in a less burdensome way then
explicitly requesting VAD. Interpreting VAD from language
allows the robot to seamlessly identify target emotion and
modulate its behavior around humans.

IV. EXPERIMENTS

There are three primary hypotheses we seek to test with
our experiments. (1) A real human is capable of using our
method to teach their perception of a robot’s emotive style,
and after training they perceive the robot’s intended target
emotion in generated stylistic trajectories; (2) Our method
is more efficient at learning a set of emotive styles than
an approach that models each emotion independently; (3)
Despite using general emotive labels, our method is equally
efficient at learning any single emotive style as alternatives
which leverage feedback specific to that emotion.

To evaluate hypothesis (2) & (3) we run a set of simulated
human trials comparing the query efficiency our method to
alternatives which model emotions independently. To test (1)
we conduct a user study where real humans’ perception of
emotion takes the place of simulated human heuristics. We
evaluate the effectiveness of teaching by the extent to which
the human (simulated or real) perceives emotion similar to
what the robot intended to exhibit while completing various
tasks. We will discuss the results for each case and ultimately
find our hypotheses supported by the data collected.

A. Robots

We used two simulated robots to experiment with our
method: a simpler Vacuum robot (VacuumBot) and the
more complex and realistic Cassie bipedal robot [21]. We
now describe the robot specifications, the environments they
operated in, and the tasks they must complete.

VacuumBot is tasked with moving to collect dust that
appears in a 2D world. It has 3 DOF controlling horizontal,
vertical and angular acceleration and is subject to various
physical constraints including gravity and friction. The cur-
rent state of the robot and environment is summarized by
the position and velocity corresponding to the DOF as well
as the location of the dust. Trajectories are optimized for
VacuumBot entirely using PyTorch [28].

Cassie, shown in Fig. 4, is a person-sized bipedal robot
which has 20 DoF including 6 DoF of the base (its pelvis),
5 DoF and 2 passive joints of each leg. More details about
Cassie can be found in [21]. In our paper, Cassie is tasked
with navigating to a randomly generated target location while
avoiding random obstacles represented by the red cones in
Fig. 4. We leverage collocation to obtain a trajectory mini-
mizing the proposed style cost while imposing constraints
including collision-avoidance and reduced-order nonlinear
dynamics as described in [29]. Based on the optimized
trajectory of robot base velocity and height, the robot’s whole
body motion is obtained from a gait library optimized by its
full-order dynamics [21], [30]. This nonlinear optimization
is formulated in CasADI [31], solved via IPOPT [32], and
the resulting trajectory is visualized through animation in
Blender [21]. To integrate our PyTorch implementation of
f✓ we export our learned ✓ after every training round and
replicate the neural network as a fixed numerical function in
CasADI [31].



Afraid Happy Sad

Fig. 4: Cassie must reach a target location avoiding obstacles represented by cones. Here it optimizes for various target emotions on
various tasks using a model learned with our method. Visuals overlay one snapshot per second with earlier frames made more transparent.
Afraid first takes a few cautious steps back before proceeding. Happy keeps head high and moves fast. Sad slouches and proceeds slowly.

B. Experimental Design

The simulated human trials and real human study used a
very similar experimental design. In this section, we describe
the process for evaluating a single method in general terms,
and will discuss how this was adapted for the two contexts
in their corresponding sections. We implement alternative
models in a way that allows them to conform to the same
evaluation procedure as our method.

Using notation from Sec. III-D, we train by conduct-
ing K rounds of B trajectory query batches updating the
model after each batch of labels. Then we evaluate stylistic
trajectories, produced for a representative set of evaluation
emotions, based on the extent to which the human perceives
the intended emotion in each.

To identify our evaluation emotions, we again leveraged
VAD values from the NRC VAD Lexicon [22]. Based on
the empirical distribution shown in Fig. 3, we identified
the corners [-1, -1, -1], [1, 1, 1], [-1, 1, -1], [1, -1, 1],
and [-1, 1, 1] as the best regions to evaluate our model
due to their population density and general coverage of
the space. We selected representative emotions near each
of these corners: sadness, joy, fear, confidence, anger, and
patience respectively. Note that consecutive pairs on this list
are diametric opposites in VAD space. We will not always
use all 6 evaluation emotions and use N to reference the
specific number we are working with. For consistency, when
N < 6 we will always use the first N emotions based on
the order we presented these above. We restrict ourselves to
N 2 {2, 4, 6} to keep the emotions in opposing pairs.

Our three evaluation metrics are Quality score, Top-1
accuracy, and Top-2 accuracy. Quality score measures binary
alignment: how well trajectories express the intended emo-
tion compared to its diametric opposite. Top-X accuracies
measure precise alignment: how well trajectories express the
intended emotion compared to all N �1 alternatives. Ideally
we’d evaluate across all tasks, but given the task space is
continuous we randomly sample M tasks for each of the N
evaluation emotions averaging the metric values we get.

To compute the quality score, the robot presents the user
with N/2 sets of 2 ·M trajectories for evaluation. Each set
is associated with one diametric pair of evaluation emotions,
say A and B. The 2 ·M trajectories includes M trajectories
optimized for A and M trajectories optimized for B. The
user is asked to assign each trajectory a score, s from 1
to 7 answering the Likert question: Is the trajectory more

expressive of Emotion B than A? with a response of 1
indicating the trajectory is very expressive of Emotion A
and a 7 indicating that the trajectory is very expressive of B.
Let q be the Quality score metric. For trajectories optimized
for B we define q := s, and for A q := 8� s. As a result, q
ranges from 1 to 7 with 7 indicating perfect alignment with
the intended emotion compared to its opposite.

To compute Top-X accuracies, we present the user with
another N ·M trajectories including M trajectories optimized
for each of the evaluation emotions. Now the user is asked
to select which of the N emotions is most expressed by each
trajectory as well as their second choice. We define the Top-
X accuracy metric, for X 2 {1, 2}, as the proportion of the
time the user’s top X choices include the intended emotion.

C. Simulated Human Trials

We first conducted a set of experiments with simulated
human feedback, since it would have been impractical to
reliably test all our configurations with real humans.

1) Simulating Human Feedback: The simulated “human”
(SH) uses heuristics to determine VAD for trajectories. For
example, SH quantifies dominance for Cassie based on the
average head height. SH may not accurately represent human
emotive perception, but its consistent feedback allows us to
compare learning efficiency between various methods.

During training SH directly provides its determined VAD
for a trajectory as feedback. During evaluation, it must
further transform this VAD value to mimic appropriate hu-
man responses. For the Likert question juxtaposing opposite
emotions, SH projects the VAD value on to the diametric
axis between the pair of emotions; then SH linearly scales
the result so exactly Emotion A is 1 and exactly B is 7
clipping outside that range. For the choice based component,
SH picks the closest and second closest evaluation emotion
based on Euclidean distance in VAD space.

2) Alternative Methods: We compare our method to two
alternative approaches which model emotions independently
to test hypotheses (2) & (3). First is an approach inspired
by Zhou et al. [5] which we’ll reference as SEP, because
it trains separate models directly predicting cost for each
evaluation emotion. To do so, SEP directly asks the user
to label trajectories with how expressive they are of one
of the evaluation emotions. The second approach is SEP-
ALL which we allow access to real valued cost labels for
all evaluation emotions for each trajectory; SEP-ALL does
not have to split its labeling budget between emotions as



Fig. 5: Quality score, Top-1, Top-2 accuracy and standard errors over the course of training averaged across six seeds for each (environment,
method, N ) configuration. Metrics were computed before training and after each of 4 batches of 20 trajectory queries, with the query
number indicated in the horizontal axis. Shown in dotted lines are the expected values if users chose randomly during evaluation. Our
method is able to match performance of SEP-ALL whereas SEP struggles to keep pace as N , the number of evaluation emotions, increases.

SEP does. Recall our approach requests VAD labels from the
user irrespective of the evaluation set enabling generalization
beyond predefined emotions. In contrast, SEP and SEP-ALL
both require knowledge of the evaluation set of emotions
prior to training and get feedback specific to them.

To select emotions to generate trajectory queries for, SEP
and SEP-ALL simply sample with replacement from the
evaluation set. To remove a potential confound and isolate
learning efficiency, we use the same selection process for our
method in the simulated experiments. In the Sec. IV-D study
we revert to the active learning described in Sec. III-C.

3) Simulation Results Discussion: The simulated human
trials involved running each (environment, method, N ) com-
bination with 6 seeds, 108 experiments total, using K = 4
rounds of B = 20 trajectory labels. We present the average
evaluation results using M = 6 tasks per emotion along with
standard errors in Fig. 5.

To evaluate hypothesis (2), improving learning efficiency
for a set of emotions compared to an approach that models
them independently, we juxtapose our method with SEP.
Across all metrics our method is able to reach a higher
performance faster, the gap growing with N , supporting our
hypothesis. With SEP each query is only informative for one
of N emotive models. By contrast, with our method each
query is informative for the entire VAD space and, thus,
every evaluation emotion to some extent.

To evaluate hypothesis (3), matching learning efficiency
for a single emotion compared to an approach that gets
feedback specific to that emotion for each query, we jux-
tapose our method with SEP-ALL. SEP-ALL gets emotion
specific cost labels for all N emotions with each query, as
opposed to the generic VAD label our method receives. Yet
across the board performance of our method matches SEP-
ALL supporting our hypothesis again. It is not practical to
go beyond a few evaluation emotions with SEP-ALL since
labeling overhead scales linearly with respect to N , whereas

our method has constant overhead enabling capture of the full
span of emotions. Furthermore, even for small N providing
VAD values (or natural language) may be easier than real
valued emotion specific costs.

Ultimately, VAD provides an interpretable latent represen-
tation that allows efficient learning of the space of emotive
style with performance no worse than if we targeted any
specific target emotion. Fig. 4 visualizes some emotive
styles Cassie learned from this experiment, demonstrating
our method’s ability to work with high DOF, complex robots.

D. Real Human Study

The benefit of this efficiency demonstrated in Sec. IV-C is
that it becomes practical for real humans to use our system.
In this section, we present a user study with VacuumBot
aimed at testing hypothesis (1): the effectiveness of our
method in teaching emotive style that is recognizable to end
users.

1) Study Setup: We recruited 12 participants (9 male, 3
female) between 20 and 27 years old. They were asked to
provide emotion labels for K = 2 rounds of B = 20 robot
trajectories. We use a lower value for K here compared to the
simulated experiments to emphasize the practicality of our
approach. We found it was easier for humans to consistently
label trajectories with VAD labels directly; however, as
discussed earlier language may be used as well.

For the evaluation phase we used N = 6 emotions
with M = 3 tasks each for all participants. To keep the
overall study time shorter we did not perform intermediate
evaluations, only evaluating after all labeling was complete.
The labeling portion of the study took 30-40 minutes and
the evaluation phase 20-25 minutes per participant.

2) Study Results Discussion: Fig. 6 compares human
evaluation results to a random guess baseline. We break down
results by each of the 6 evaluation emotions.



Fig. 6: Quality score, Top-1, and Top-2 accuracy and standard error for each evaluation emotion averaged across study users. Metrics
significantly outperforms a random guess baseline, shown with the dashed lines, suggesting humans can indeed teach emotive motion
with our method.

Angry User 1

Confident User 1

Angry User 2

Confident User 2

Angry User 3

Confident User 3

Fig. 7: VacuumBot collecting dust with style trained by three real users optimized for two target emotions on a single task. Judging by
these motions, User 2 and 3’s perception of anger involved greater speed, jumping, and arm movement than User 1. User 3’s confidence
had more arm movement but less jumping than User 1 and 2’s.

Great weather today! Didn’t get the offer… I don’t know what to do!

Fig. 8: Three trajectories for a single task where VacuumBot infers VAD from the displayed phrases and produces motions based on a
study user’s trained model. When the human expresses cheerfulness it gracefully hops to the goal. When the human expresses sorrow it
slowly slouches its way there. When the human expresses fear it reflects that nervous energy.

For every emotion and metric we ran t-tests at the 5%
significance level comparing performance to the random
baseline. Each test indicated statistically significant improve-
ment which is reflected by the standard errors in Fig. 6. These
results support hypothesis (1): our participants could teach
the robot by labeling query trajectories in about 30 minutes,
and during evaluation they perceived the robot’s intended
emotion at a rate significantly higher than random chance.

While the quality scores are relatively consistent across
emotions the Top-1 accuracy varies a fair amount. This
suggests the method is reliable in producing trajectories that
are generally in the right direction but might not exactly line
up with the intended one. In some use cases the former may
be of primary importance and in others emotional precision
may be equally important; however, it is reassuring to know
that the robot will roughly align with the intended style even
with it is not perfect in targeting the particular one.

A qualitative observation is that all users had their own
personalized views of emotions. As demonstrated in Fig. 7,
robots trained by three different study users ended up with
fairly different, yet justifiable behaviors for the same emo-
tions and task. Furthermore, in Fig. 8 we showcase example

motions for one user’s robot generated based on the VAD of
short phrases. This highlights one of the major benefits of our
method: the robot learns more than a finite set of emotions
from its teacher, instead learning an entire emotive space
that it can index into and generate behavior with consistent
results. By making the teaching process more accessible, our
work takes an important step towards enabling anyone to
teach robots nuanced behaviors without needing a technical
foundation themselves.

V. DISCUSSION

A. Summary
We introduced a method that enables robots to perform

functional tasks in ways that are expressive of a wide range of
emotions. By teaching how trajectories map to VAD the robot
may include a cost function encouraging a target emotive
style in task motion optimization. Inferring VAD enables
the robot to decide target emotions from human speech
while in use and may also substitute VAD labels during
training. Our experiments suggest that learning the VAD
space jointly, beyond enabling emotion generalization, is
more efficient and practical than trying to model each target



emotion separately. Furthermore, our experiments provide
evidence that our method enables real humans to teach robots
emotive style, to the extent where they can discern produced
trajectories as expressive of intended emotions.

B. Limitations and Future Work
First we share some short term directions. our environ-

ments only presented robot locomotion tasks, albeit varying
the start, goal, and obstacle locations, hence expanding the
task space to include more diverse objectives (e.g. object
manipulation) would be an interesting direction. Although
we mentioned the possibility of using language in place of
VAD for training we did not explicitly evaluate this option.
After training we propose inferring target VAD from user
sentences, and despite promising qualitative results in Fig. 8
more in depth analysis is required. It’s unclear even whether
the robot should alter user emotion or merely reflect it.

Now we higlight some long term challenges. There are
existing solutions for producing physical trajectories with our
style cost [21], but bringing the training procedure into the
physical domain is more challenging. It removes the ability
to easily reset the robot as we do in simulation to facilitate
label collection. Another challenge is while VAD captures the
three most important emotive directions, sometimes differing
emotions have similar VAD. For example, fear and disgust
both have low valence and dominance with high arousal.
Future work would have to navigate these subtleties while
preserving the efficiency of our learning process.

We are excited about our results and believe they make an
important contribution towards the end-goal of making robots
more expressive and enabling people to teach personalized
emotive styles. We look forward to seeing robots operate
alongside humans with control over their exhibited emotion.
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